WorldWideScience

Sample records for valence fluctuation model

  1. 5th International Conference on Valence Fluctuations

    CERN Document Server

    Malik, S

    1987-01-01

    During the Koln meeting (August 28-31, 1984), Irdia was chosen as the venue for the next International Conference on Valence Fluctuations. lhis was in recognition ard appreciation of the work done, both experimental ard theoretical, by the Irdian scientists in this area during the last decade. We decided to hold this Conference in the month of January, 1987 at Bangalore. lhe subject of Valence Fluctuations has kept itself alive ard active as it has provided many shocks ard suprises particularly among the Ce- ard U-based intermetallies. lhe richness of many interesting physical phenomena occurring in mixed valent materials, the flexibility of modifying their physical properties (by alloying, for example) ard the possibility of synthesizing a wide variety of new such materials seem to be the key factors in this regard. Barely six months before this Conference, an International Conference on Anomalous Rare Earths and Actinides (ICAREA) had been held at Grenoble (July, 1986) which also focussed on mixed valence a...

  2. Role of valence fluctuations in the superconductivity of Ce122 compounds.

    Science.gov (United States)

    Yamaoka, H; Ikeda, Y; Jarrige, I; Tsujii, N; Zekko, Y; Yamamoto, Y; Mizuki, J; Lin, J-F; Hiraoka, N; Ishii, H; Tsuei, K-D; Kobayashi, T C; Honda, F; Onuki, Y

    2014-08-22

    Pressure dependence of the Ce valence in CeCu(2)Ge(2) has been measured up to 24 GPa at 300 K and to 17 GPa at 18-20 K using x-ray absorption spectroscopy in the partial fluorescence yield. A smooth increase of the Ce valence with pressure is observed across the two superconducting (SC) regions without any noticeable irregularity. The chemical pressure dependence of the Ce valence was also measured in Ce(Cu(1-x)Ni(x))(2)Si(2) at 20 K. A very weak, monotonic increase of the valence with x was observed, without any significant change in the two SC regions. Within experimental uncertainties, our results show no evidence for the valence transition with an abrupt change in the valence state near the SC II region, challenging the valence-fluctuation mediated superconductivity model in these compounds at high pressure and low temperature.

  3. Strong valence fluctuation in the quantum critical heavy fermion superconductor β-YbAlB4: a hard x-ray photoemission study.

    Science.gov (United States)

    Okawa, M; Matsunami, M; Ishizaka, K; Eguchi, R; Taguchi, M; Chainani, A; Takata, Y; Yabashi, M; Tamasaku, K; Nishino, Y; Ishikawa, T; Kuga, K; Horie, N; Nakatsuji, S; Shin, S

    2010-06-18

    Electronic structures of the quantum critical superconductor β-YbAlB4 and its polymorph α-YbAlB4 are investigated by using bulk-sensitive hard x-ray photoemission spectroscopy. From the Yb 3d core level spectra, the values of the Yb valence are estimated to be ∼2.73 and ∼2.75 for α- and β-YbAlB4, respectively, thus providing clear evidence for valence fluctuations. The valence band spectra of these compounds also show Yb2+ peaks at the Fermi level. These observations establish an unambiguous case of a strong mixed valence at quantum criticality for the first time among heavy fermion systems, calling for a novel scheme for a quantum critical model beyond the conventional Doniach picture in β-YbAlB4.

  4. Puzzle maker in SmB6: accompany-type valence fluctuation state

    Science.gov (United States)

    Wu, Qi; Sun, Liling

    2017-11-01

    In recent years, studying the Kondo insulator SmB6, a strongly correlated electron material that has been puzzling the community for decades, has again become an attractive topic due to the discovery of its unusual metallic surface state coexisting with the bulk insulating state. Many efforts have been made to understand the microphysics in SmB6, but some puzzles that have been hotly debated and argued have not been solved. In this article, based on the latest progress made in our high-pressure studies on SmB6 and the accumulating results reported by other groups, we propose a notion named the ‘accompany-type valence fluctuation state’, which possibly coexists with the bulk Kondo insulating ground state of SmB6. We expect that this notion could be taken as a common starting point for understanding in a unified way most of the low-temperature phenomena observed by different experimental investigations on SmB6, thus promoting the deciphering of the puzzles. We also expect that this notion could attract rigorous theoretical interpretation and further experimental investigation, or stimulate better thinking on the physics in SmB6.

  5. Modeling fluctuations in scattered waves

    CERN Document Server

    Jakeman, E

    2006-01-01

    Fluctuations in scattered waves limit the performance of imaging and remote sensing systems that operate on all wavelengths of the electromagnetic spectrum. To better understand these fluctuations, Modeling Fluctuations in Scattered Waves provides a practical guide to the phenomenology, mathematics, and simulation of non-Gaussian noise models and discusses how they can be used to characterize the statistics of scattered waves.Through their discussion of mathematical models, the authors demonstrate the development of new sensing techniques as well as offer intelligent choices that can be made for system analysis. Using experimental results and numerical simulation, the book illustrates the properties and applications of these models. The first two chapters introduce statistical tools and the properties of Gaussian noise, including results on phase statistics. The following chapters describe Gaussian processes and the random walk model, address multiple scattering effects and propagation through an extended med...

  6. Q-dependence of the spin fluctuations in the intermediate valence compound CePd3

    Energy Technology Data Exchange (ETDEWEB)

    Fanelli, V. R.; Lawrence, J. M.; Goremychkin, E. A.; Osborn, R.; Bauer, E. D.; McClellan, K. J.; Thompson, J. D.; Booth, C. H.; Christianson, A. D.; Riseborough, P. S.

    2014-06-25

    We report inelastic neutron scattering experiments on a single crystal of the intermediate valence compound CePd3. At 300 K the magnetic scattering is quasielastic, with half-width G = 23 meV, and is independent of momentum transfer Q. At low temperature, the Q-averaged magnetic spectrum is inelastic, exhibiting a broad peak centered near E-max = 55 meV. These results, together with the temperature dependence of the susceptibility, 4f occupation number, and specific heat, can be fit by the Kondo/Anderson impurity model. The low temperature scattering near Emax, however, shows significant variations with Q, reflecting the coherence of the 4f lattice. The intensity is maximal at (1/2, 1/2, 0), intermediate at (1/2, 0, 0) and (0, 0, 0), and weak at (1/2, 1/2, 1/2). We discuss this Q-dependence in terms of current ideas about coherence in heavy fermion systems.

  7. Linear modeling of glacier fluctuations

    NARCIS (Netherlands)

    Oerlemans, J.|info:eu-repo/dai/nl/06833656X

    2012-01-01

    In this contribution a linear first-order differential equation is used to model glacier length fluctuations. This equation has two parameters describing the physical characteristics of a glacier: the climate sensitivity, expressing how the equilibrium glacier length depends on the climatic state,

  8. The chemical bond in inorganic chemistry the bond valence model

    CERN Document Server

    Brown, I David

    2016-01-01

    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  9. In-medium pion valence distributions in a light-front model

    Energy Technology Data Exchange (ETDEWEB)

    Melo, J.P.B.C. de, E-mail: joao.mello@cruzeirodosul.edu.br [Laboratório de Física Teórica e Computacional – LFTC, Universidade Cruzeiro do Sul, 01506-000 São Paulo (Brazil); Tsushima, K. [Laboratório de Física Teórica e Computacional – LFTC, Universidade Cruzeiro do Sul, 01506-000 São Paulo (Brazil); Ahmed, I. [Laboratório de Física Teórica e Computacional – LFTC, Universidade Cruzeiro do Sul, 01506-000 São Paulo (Brazil); National Center for Physics, Quaidi-i-Azam University Campus, Islamabad 45320 (Pakistan)

    2017-03-10

    Pion valence distributions in nuclear medium and vacuum are studied in a light-front constituent quark model. The in-medium input for studying the pion properties is calculated by the quark-meson coupling model. We find that the in-medium pion valence distribution, as well as the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.

  10. Modeling multiphase flow using fluctuating hydrodynamics.

    Science.gov (United States)

    Chaudhri, Anuj; Bell, John B; Garcia, Alejandro L; Donev, Aleksandar

    2014-09-01

    Fluctuating hydrodynamics provides a model for fluids at mesoscopic scales where thermal fluctuations can have a significant impact on the behavior of the system. Here we investigate a model for fluctuating hydrodynamics of a single-component, multiphase flow in the neighborhood of the critical point. The system is modeled using a compressible flow formulation with a van der Waals equation of state, incorporating a Korteweg stress term to treat interfacial tension. We present a numerical algorithm for modeling this system based on an extension of algorithms developed for fluctuating hydrodynamics for ideal fluids. The scheme is validated by comparison of measured structure factors and capillary wave spectra with equilibrium theory. We also present several nonequilibrium examples to illustrate the capability of the algorithm to model multiphase fluid phenomena in a neighborhood of the critical point. These examples include a study of the impact of fluctuations on the spinodal decomposition following a rapid quench, as well as the piston effect in a cavity with supercooled walls. The conclusion in both cases is that thermal fluctuations affect the size and growth of the domains in off-critical quenches.

  11. A stochastic model of river discharge fluctuations

    Science.gov (United States)

    Livina, V.; Ashkenazy, Y.; Kizner, Z.; Strygin, V.; Bunde, A.; Havlin, S.

    2003-12-01

    We study the daily river flow fluctuations of 30 international rivers. Using the detrended fluctuation analysis, we study the correlations in the magnitudes of river flow increments (volatilities), and find power-law correlations in volatilities for time scales less than 1 year; these correlations almost disappear for time scales larger than 1 year. Using surrogate data test for nonlinearity, we show that correlations in the magnitudes of river flow fluctuations are a measure for nonlinearity. We propose a simple nonlinear stochastic model for river flow fluctuations that reproduces the main scaling properties of the river flow series as well as the correlations and periodicities in the magnitudes of river flow increments. According to our model, the source of nonlinearity observed in the data is an interaction between a long-term correlated process and the river discharge itself.

  12. Coexistence of magnetic order and valence fluctuations in a heavy fermion system Ce{sub 2}Rh{sub 3}Sn{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Gamza, Monika [Jeremiah Horrocks Institute, University of Central Lancashire, Preston (United Kingdom); MPI CPfS, Dresden (Germany); Institute of Physics, University of Silesia, Katowice (Poland); Gumeniuk, Roman [Institute of Experimental Physics, Freiberg University of Mining and Technology, Freiberg (Germany); MPI CPfS, Dresden (Germany); Schnelle, Walter; Burkhardt, Ulrich; Rosner, Helge [MPI CPfS, Dresden (Germany); Slebarski, Andrzej [Institute of Physics, University of Silesia, Katowice (Poland)

    2016-07-01

    While most Ce-based intermetallics contain either trivalent or intermediate-valent Ce ions, only for a few compounds a coexistence of both species has been reported. Here, we present a combined experimental and theoretical study based on thermodynamic measurements and spectroscopic data together with ab-initio electronic structure calculations aiming at exploring magnetic properties of Ce ions in two nonequivalent sites in Ce{sub 2}Rh{sub 3}Sn{sub 5}. Ce L{sub III} XAS spectra give direct evidence for valence fluctuations. Magnetization measurements show an onset of an antiferromagnetic order at T{sub N}∼2.5 K. The electronic structure calculations suggest that the magnetic ordering is related only to one Ce sublattice. This is in-line with a small entropy associated with the magnetic transition S{sub mag}∼0.35 R ln2 per Ce atom as revealed by the specific heat measurement. Furthermore, the temperature dependence of the magnetic susceptibility can be well described assuming that there are fluctuating moments of Ce{sup 3+} ions in one sublattice, whereas Ce atoms from the second sublattice are in a nonmagnetic intermediate valence state.

  13. Critical fluctuations in cortical models near instability

    Directory of Open Access Journals (Sweden)

    Matthew J. Aburn

    2012-08-01

    Full Text Available Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human EEG, however, have shown significant autocorrelation at time lags on the scale of minutes, indicating the need to consider regimes where nonlinearities influence the dynamics. Statistical properties such as increased autocorrelation length, increased variance, power-law scaling and bistable switching have been suggested as generic indicators of the approach to bifurcation in nonlinear dynamical systems. We study temporal fluctuations in a widely-employed computational model (the Jansen-Rit model of cortical activity, examining the statistical signatures that accompany bifurcations. Approaching supercritical Hopf bifurcations through tuning of the background excitatory input, we find a dramatic increase in the autocorrelation length that depends sensitively on the direction in phase space of the input fluctuations and hence on which neuronal subpopulation is stochastically perturbed. Similar dependence on the input direction is found in the distribution of fluctuation size and duration, which show power law scaling that extends over four orders of magnitude at the Hopf bifurcation. We conjecture that the alignment in phase space between the input noise vector and the center manifold of the Hopf bifurcation is directly linked to these changes. These results are consistent with the possibility of statistical indicators of linear instability being detectable in real EEG time series. However, even in a simple cortical model, we find that these indicators may not necessarily be visible even when bifurcations are present because their expression can depend sensitively on the neuronal pathway of incoming fluctuations.

  14. Fluctuation microscopy analysis of amorphous silicon models

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.M., E-mail: jmgibson@fsu.edu [Northeastern University, Department of Physics, Boston MA 02115 (United States); FAMU/FSU Joint College of Engineering, 225 Pottsdamer Street, Tallahassee, FL 32310 (United States); Treacy, M.M.J. [Arizona State University, Department of Physics, Tempe AZ 85287 (United States)

    2017-05-15

    Highlights: • Studied competing computer models for amorphous silicon and simulated fluctuation microscopy data. • Show that only paracrystalline/random network composite can fit published data. • Specifically show that pure random network or random network with void models do not fit available data. • Identify a new means to measure volume fraction of ordered material. • Identify unreported limitations of the Debye model for simulating fluctuation microscopy data. - Abstract: Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down structural correlations. We introduce the method of correlograph variance as a promising means of independently measuring the volume fraction of a paracrystalline composite. From comparisons with published data, we affirm that only a composite material of paracrystalline and continuous random network that is substantially paracrystalline could explain the existing experimental data, and point the way to more precise measurements on amorphous semiconductors. The results are of general interest for other classes of disordered materials.

  15. Fluctuation-Noise Model for PEM Fuel Cell

    Science.gov (United States)

    Denisov, E. S.; Salakhova, A. Sh.; Adiutantov, N. A.; Evdokimov, Yu. K.

    2017-08-01

    The fluctuation-noise model is presented. This model allows to describe the power spectral density of PEM fuel cell electrical fluctuation. The proposed model can be used for diagnostics of PEM fuel cell state of health.

  16. Levels of valence

    Directory of Open Access Journals (Sweden)

    Vera eShuman

    2013-05-01

    Full Text Available The distinction between the positive and the negative is fundamental in our emotional life. In appraisal theories, in particular in the component process model of emotion (Scherer, 1984, 2010, qualitatively different types of valence are proposed based on appraisals of (unpleasantness, goal obstructiveness/conduciveness, low or high power, self- (incongruence, and moral badness/goodness. This multifaceted conceptualization of valence is highly compatible with the frequent observation of mixed feelings in real life. However, it seems to contradict the one-dimensional conceptualization of valence often encountered in psychological theories, and the notion of valence as a common currency used to explain choice behavior. Here, we propose a framework to integrate the seemingly disparate conceptualizations of multifaceted valence and one-dimensional valence by suggesting that valence should be conceived at different levels, micro and macro. Micro-valences correspond to qualitatively different types of evaluations, potentially resulting in mixed feelings, whereas one-dimensional macro-valence corresponds to an integrative common currency to compare alternatives for choices. We propose that conceptualizing levels of valence may focus research attention on the mechanisms that relate valence at one level (micro to valence at another level (macro, leading to new hypotheses and addressing various concerns that have been raised about the valence concept, such as the valence-emotion relation.

  17. A valence force field-Monte Carlo algorithm for quantum dot growth modeling

    DEFF Research Database (Denmark)

    Barettin, Daniele; Kadkhodazadeh, Shima; Pecchia, Alessandro

    2017-01-01

    We present a novel kinetic Monte Carlo version for the atomistic valence force fields algorithm in order to model a self-assembled quantum dot growth process. We show our atomistic model is both computationally favorable and capture more details compared to traditional kinetic Monte Carlo models...

  18. Turbulent Spot Pressure Fluctuation Wave Packet Model

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.

  19. Valence instabilities as a possible source of actinide system inconsistencies

    Energy Technology Data Exchange (ETDEWEB)

    Sandenaw, T.A.

    1979-08-01

    The presence of a mixed-valence state in light actinides appears evident from the crystal structures of certain U, Np, and Pu phases. As supporting evidence, the physical property response of these actinide elements (and some of their alloys) is compared with that of rare-earth metallic compounds known to have an unstable valence. Impurities may stabilize an intermediate (different) valence state locally in rare-earth compounds in the presence of the valence state of the bulk phase. Impurity elements from different periodic table groupings may likewise stabilize different intermediate valence states in light actinide elements, thus contributing to inconsistencies in results reported by different experimentalists. Any model (theory) advanced for explaining the physical property behavior of U, Np, and Pu may also require consideration of a configurational limit. A phenomenological connection could exist between a martensitic transformation and the fluctuation temperature in both rare earth and actinide systems.

  20. A Policy-Capturing Investigation of Expectancy Theory Models of Valence and Force.

    Science.gov (United States)

    1979-12-01

    1954) need hierarchy, Herzberg’s (1959) two-factor theory , and Alderfer’s (1972) ERG theory are three of the most widely publicized and researched...AO-AO83 714 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO-ETC F/G 5/10 PC4LICY-CAPTURING INVESTIGATION OF EXPECTANCY THEORY MODELS OF--ETC(U...INVESTIGATION OF EXPECTANCY THEORY MODELS OF VALENCE AND FORCE Thesis Norbert C. Wagner, Jr. Captain USAF AFIT/GSM/SM/79D-21 / C..) Approved for public

  1. Constructing Stochastic Models for Dipole Fluctuations from Paleomagnetic Observations

    OpenAIRE

    Buffett, Bruce; Puranam, Abhijit

    2017-01-01

    Records of relative paleointensity are subject to several sources of error. Temporal averaging due to gradual acquisition of magnetization removes high-frequency fluctuations, whereas random errors introduce fluctuations at high frequency. Both sources of error limit our ability to construct stochastic models from paleomagnetic observations. We partially circumvent these difficulties by recognizing that the largest affects occur at high frequency. To illustrate we construct a stochastic model...

  2. Soliton Model for Halogen-Bridged Mixed-Valence Platinum Complexes

    Science.gov (United States)

    Onodera, Yositaka

    1987-01-01

    The quasi-one-dimensional chains of halogen-bridged mixed-valence platinum complexes (HMPC) have characteristic twofold degeneracy similar to the trans isomer of polyacetylene, which strongly suggests the presence of soliton-like excitations in HMPC. It is shown that the microscopic Hamiltonian proposed by Ichinose for HMPC, which naturally is different from the Su-Schrieffer-Heeger model of trans-polyacetylene, leads to the Takayama-Lin-Liu-Maki Hamiltonian when the continuum limit is taken. This theoretical result implies that we can expect various soliton processes found in trans-polyacetylene to take place in HMPC as well, though such experimental evidences are scarce as yet.

  3. An Efficient Null Model for Conformational Fluctuations in Proteins

    DEFF Research Database (Denmark)

    Harder, Tim Philipp; Borg, Mikael; Bottaro, Sandro

    2012-01-01

    Protein dynamics play a crucial role in function, catalytic activity, and pathogenesis. Consequently, there is great interest in computational methods that probe the conformational fluctuations of a protein. However, molecular dynamics simulations are computationally costly and therefore are often...... limited to comparatively short timescales. TYPHON is a probabilistic method to explore the conformational space of proteins under the guidance of a sophisticated probabilistic model of local structure and a given set of restraints that represent nonlocal interactions, such as hydrogen bonds or disulfide...... on conformational fluctuations that is in correspondence with experimental measurements. TYPHON provides a flexible, yet computationally efficient, method to explore possible conformational fluctuations in proteins....

  4. Constructing stochastic models for dipole fluctuations from paleomagnetic observations

    OpenAIRE

    Buffett, B; Puranam, A

    2017-01-01

    © 2017 Elsevier B.V. Records of relative paleointensity are subject to several sources of error. Temporal averaging due to gradual acquisition of magnetization removes high-frequency fluctuations, whereas random errors introduce fluctuations at high frequency. Both sources of error limit our ability to construct stochastic models from paleomagnetic observations. We partially circumvent these difficulties by recognizing that the largest affects occur at high frequency. To illustrate we constru...

  5. Factor Structure of Early Smoking Experiences and Associations with Smoking Behavior: Valence or Sensitivity Model?

    Science.gov (United States)

    Baggio, Stéphanie; Studer, Joseph; Deline, Stéphane; Mohler-Kuo, Meichun; Daeppen, Jean-Bernard; Gmel, Gerhard

    2013-01-01

    The Early Smoking Experience (ESE) questionnaire is the most widely used questionnaire to assess initial subjective experiences of cigarette smoking. However, its factor structure is not clearly defined and can be perceived from two main standpoints: valence, or positive and negative experiences, and sensitivity to nicotine. This article explores the ESE’s factor structure and determines which standpoint was more relevant. It compares two groups of young Swiss men (German- and French-speaking). We examined baseline data on 3,368 tobacco users from a representative sample in the ongoing Cohort Study on Substance Use Risk Factors (C-SURF). ESE, continued tobacco use, weekly smoking and nicotine dependence were assessed. Exploratory structural equation modeling (ESEM) and structural equation modeling (SEM) were performed. ESEM clearly distinguished positive experiences from negative experiences, but negative experiences were divided in experiences related to dizziness and experiences related to irritations. SEM underlined the reinforcing effects of positive experiences, but also of experiences related to dizziness on nicotine dependence and weekly smoking. The best ESE structure for predictive accuracy of experiences on smoking behavior was a compromise between the valence and sensitivity standpoints, which showed clinical relevance. PMID:24287854

  6. Factor Structure of Early Smoking Experiences and Associations with Smoking Behavior: Valence or Sensitivity Model?

    Directory of Open Access Journals (Sweden)

    Stéphanie Baggio

    2013-11-01

    Full Text Available The Early Smoking Experience (ESE questionnaire is the most widely used questionnaire to assess initial subjective experiences of cigarette smoking. However, its factor structure is not clearly defined and can be perceived from two main standpoints: valence, or positive and negative experiences, and sensitivity to nicotine. This article explores the ESE’s factor structure and determines which standpoint was more relevant. It compares two groups of young Swiss men (German- and French-speaking. We examined baseline data on 3,368 tobacco users from a representative sample in the ongoing Cohort Study on Substance Use Risk Factors (C-SURF. ESE, continued tobacco use, weekly smoking and nicotine dependence were assessed. Exploratory structural equation modeling (ESEM and structural equation modeling (SEM were performed. ESEM clearly distinguished positive experiences from negative experiences, but negative experiences were divided in experiences related to dizziness and experiences related to irritations. SEM underlined the reinforcing effects of positive experiences, but also of experiences related to dizziness on nicotine dependence and weekly smoking. The best ESE structure for predictive accuracy of experiences on smoking behavior was a compromise between the valence and sensitivity standpoints, which showed clinical relevance.

  7. Effective valence as the control parameter of the superconducting ...

    African Journals Online (AJOL)

    In this paper, we have demonstrated that the effective valence of iron can be used as the control parameter to tune the Tc of this family of superconducting materials. This is achieved by postulating that our model of spin fluctuation which has been used to successfully account for the superconductivity in the cuprates in Ref.

  8. Understanding valence-shell electron-pair repulsion (VSEPR) theory using origami molecular models

    Science.gov (United States)

    Endah Saraswati, Teguh; Saputro, Sulistyo; Ramli, Murni; Praseptiangga, Danar; Khasanah, Nurul; Marwati, Sri

    2017-01-01

    Valence-shell electron-pair repulsion (VSEPR) theory is conventionally used to predict molecular geometry. However, it is difficult to explore the full implications of this theory by simply drawing chemical structures. Here, we introduce origami modelling as a more accessible approach for exploration of the VSEPR theory. Our technique is simple, readily accessible and inexpensive compared with other sophisticated methods such as computer simulation or commercial three-dimensional modelling kits. This method can be implemented in chemistry education at both the high school and university levels. We discuss the example of a simple molecular structure prediction for ammonia (NH3). Using the origami model, both molecular shape and the scientific justification can be visualized easily. This ‘hands-on’ approach to building molecules will help promote understanding of VSEPR theory.

  9. Valence Band Structure of InAs1-xBix and InSb1-xBix Alloy Semiconductors Calculated Using Valence Band Anticrossing Model

    Directory of Open Access Journals (Sweden)

    D. P. Samajdar

    2014-01-01

    Full Text Available The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs1-xBix and InSb1-xBix alloy systems. It is found that both the heavy/light hole, and spin-orbit split E+ levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E− energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data.

  10. Fluctuations of offshore wind generation: Statistical modelling

    DEFF Research Database (Denmark)

    Pinson, Pierre; Christensen, Lasse E.A.; Madsen, Henrik

    2007-01-01

    ) and Markov-Switching AutoRegressive (MSAR) models are considered. The particularities of these models are presented, as well as methods for the estimation of their parameters. Simulation results are given for the case of the Horns Rev and Nysted offshore wind farms in Denmark, for time-series of power...... production averaged at a 1, 5, and 10-minute rate. The exercise consists in one-step ahead forecasting of these time-series with the various regime-switching models. It is shown that the MSAR model, for which the succession of regimes is represented by a hidden Markov chain, significantly outperforms...

  11. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential

    Science.gov (United States)

    Zhou, Yu-Ping; Jiang, Jin-Wu

    2017-03-01

    While most existing theoretical studies on the borophene are based on first-principles calculations, the present work presents molecular dynamics simulations for the lattice dynamical and mechanical properties in borophene. The obtained mechanical quantities are in good agreement with previous first-principles calculations. The key ingredients for these molecular dynamics simulations are the two efficient empirical potentials developed in the present work for the interaction of borophene with low-energy triangular structure. The first one is the valence force field model, which is developed with the assistance of the phonon dispersion of borophene. The valence force field model is a linear potential, so it is rather efficient for the calculation of linear quantities in borophene. The second one is the Stillinger-Weber potential, whose parameters are derived based on the valence force field model. The Stillinger-Weber potential is applicable in molecular dynamics simulations of nonlinear physical or mechanical quantities in borophene.

  12. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential.

    Science.gov (United States)

    Zhou, Yu-Ping; Jiang, Jin-Wu

    2017-03-28

    While most existing theoretical studies on the borophene are based on first-principles calculations, the present work presents molecular dynamics simulations for the lattice dynamical and mechanical properties in borophene. The obtained mechanical quantities are in good agreement with previous first-principles calculations. The key ingredients for these molecular dynamics simulations are the two efficient empirical potentials developed in the present work for the interaction of borophene with low-energy triangular structure. The first one is the valence force field model, which is developed with the assistance of the phonon dispersion of borophene. The valence force field model is a linear potential, so it is rather efficient for the calculation of linear quantities in borophene. The second one is the Stillinger-Weber potential, whose parameters are derived based on the valence force field model. The Stillinger-Weber potential is applicable in molecular dynamics simulations of nonlinear physical or mechanical quantities in borophene.

  13. Thermodynamic Models from Fluctuation Solution Theory Analysis of Molecular Simulations

    DEFF Research Database (Denmark)

    Christensen, Steen; Peters, Günther H.j.; Hansen, Flemming Yssing

    2007-01-01

    Fluctuation solution theory (FST) is employed to analyze results of molecular dynamics (MD) simulations of liquid mixtures. The objective is to generate parameters for macroscopic GE-models, here the modified Margules model. We present a strategy for choosing the number of parameters included...

  14. Toward models for fluctuating wall quantities in incompressible turbulent flows

    Science.gov (United States)

    Towne, Aaron; Yang, Xiang; Moin, Parviz

    2017-11-01

    Wall models for large-eddy simulation have been developed that provide accurate estimates of mean wall quantities such as shear stress, heat transfer, and pressure. However, these models typically do not deliver accurate predictions of the space-time fluctuations of these quantities. In this presentation, we describe some first steps toward constructing new wall models that predict the spatiotemporal properties of wall quantities by taking advantage of recent advances in our ability to identify and model the coherent structures that are known to play a central role in the near-wall dynamics. We first analyze data from a direct numerical simulation of a channel at Reτ = 1000 using spectral estimation techniques to isolate the contribution from different scales to fluctuating wall quantities and correlation analysis to link different spatial locations. Then, we explore how modes obtained via singular value decomposition of the resolvent operator, which is obtained from the linearized flow equations, could be used to model these fluctuations. This analysis provides a starting point for leveraging these model reduction ideas to improve the prediction of near-wall fluctuations using wall-modelled large-eddy simulation. Funded by NASA Grant No. NNX15AU93A and PSAAPII Grant No. DE-NA0002373.

  15. A Valence-Bond Nonequilibrium Solvation Model for a Twisting Cyanine Dye

    CERN Document Server

    McConnell, Sean; Olsen, Seth

    2014-01-01

    We study a two-state valence-bond electronic Hamiltonian model of non-equilibrium solvation during the excited-state twisting reaction of monomethine cyanines. These dyes are of interest because of the strong environment-dependent enhancement of their fluorescence quantum yield that results from suppression of competing non-radiative decay via twisted internal charge-transfer (TICT) states. For monomethine cyanines, where the ground state is a superposition of structures with different bond and charge localization, there are two twisting pathways with different charge localization in the excited state. The Hamiltonian designed to be as simple as possible consistent with a few well-enumerated assumptions. It is defined by three parameters and is a function of two $\\pi$-bond twisting angle coordinates and a single solvation coordinate. For parameters corresponding to symmetric monomethines, there are two low-energy twisting channels on the excited-state surface that lead to a manifold of twisted intramolecular ...

  16. Fluctuation correlation models for receptor immobilization

    Science.gov (United States)

    Fourcade, B.

    2017-12-01

    Nanoscale dynamics with cycles of receptor diffusion and immobilization by cell-external-or-internal factors is a key process in living cell adhesion phenomena at the origin of a plethora of signal transduction pathways. Motivated by modern correlation microscopy approaches, the receptor correlation functions in physical models based on diffusion-influenced reaction is studied. Using analytical and stochastic modeling, this paper focuses on the hybrid regime where diffusion and reaction are not truly separable. The time receptor autocorrelation functions are shown to be indexed by different time scales and their asymptotic expansions are given. Stochastic simulations show that this analysis can be extended to situations with a small number of molecules. It is also demonstrated that this analysis applies when receptor immobilization is coupled to environmental noise.

  17. Exact valence bond entanglement entropy and probability distribution in the XXX spin chain and the potts model.

    Science.gov (United States)

    Jacobsen, J L; Saleur, H

    2008-02-29

    We determine exactly the probability distribution of the number N_(c) of valence bonds connecting a subsystem of length L>1 to the rest of the system in the ground state of the XXX antiferromagnetic spin chain. This provides, in particular, the asymptotic behavior of the valence-bond entanglement entropy S_(VB)=N_(c)ln2=4ln2/pi(2)lnL disproving a recent conjecture that this should be related with the von Neumann entropy, and thus equal to 1/3lnL. Our results generalize to the Q-state Potts model.

  18. Modelling of power fluctuations from large offshore wind farms

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio; Vigueras-Rodriguez, Antonio

    2008-01-01

    This paper deals with modelling of power fluctuations from large wind farms. The modelling is supported and validated using wind speed and power measurements from the two large offshore wind farms in Denmark. The time scale in focus is from 1 min to a couple of hours, where significant power...... fluctuations have been observed from these wind farms. Power and wind speed are measured with 1 s sampling time in all individual wind turbines in almost 1 year, which provides a substantial database for the analyses. The paper deals with diversified models representing each wind turbine individually...... and with aggregation of a wind farm to be represented by a single large wind turbine model. Copyright (C) 2007 John Wiley & Sons, Ltd....

  19. Spectral coherence model for power fluctuations in a wind farm

    DEFF Research Database (Denmark)

    Vigueras-Rodriguez, A.; Sørensen, Poul Ejnar; Viedma, A.

    2012-01-01

    This paper provides a model for the coherence between wind speeds located in a horizontal plane corresponding to hub height of wind turbines in a large wind farm. The model has been developed using wind speed and power measurements from the 72 Wind Turbines and two of the meteorological masts from...... Nysted offshore wind farm during 9 months. The coherence model developed in this paper is intended for use of power fluctuations in large offshore wind farms. In this way, analysing the current coherence models it is shown the needing of a new one, adapted to the characteristic distances and the related...

  20. Spin and charge fluctuations in the Hubbard model

    Science.gov (United States)

    Sherman, A.

    2017-10-01

    Using the strong coupling diagram technique for calculating the electron Green's function of the two-dimensional Hubbard model we have summed infinite sequences of ladder diagrams, which describe interactions of electrons with spin and charge fluctuations. For sufficiently low temperatures and doping a pronounced four-band structure is observed in spectral functions. Its appearance is related to the proximity of the transition to the long-range antiferromagnetic order.

  1. LAGRANGIAN MICROMIXING MODELS FOR CONCENTRATION FLUCTUATIONS: AN OVERVIEW

    OpenAIRE

    Andrea Amicarelli; Giovanni Leuzzi; Paolo Monti

    2012-01-01

    This study presents a brief overview of the main features, theoretical formulations and validation tests of some Lagrangian micromixing models, currently used for estimations of the ensemble mean and the turbulent fluctuations of concentration. Their application fields regards several pollutant dispersion phenomena such as: accidents (power or production plants, terroristic attacks, hydrocarbons storage and transport, extraordinary emissions), odours (power plants and energy production from w...

  2. Molecular Thermodynamic Modeling of Fluctuation Solution Theory Properties

    DEFF Research Database (Denmark)

    O’Connell, John P.; Abildskov, Jens

    2013-01-01

    Fluctuation Solution Theory provides relationships between integrals of the molecular pair total and direct correlation functions and the pressure derivative of solution density, partial molar volumes, and composition derivatives of activity coefficients. For dense fluids, the integrals follow...... a relatively simple corresponding-states behavior even for complex systems, show welldefined relationships for infinite dilution properties in complex and near-critical systems, allow estimation of mixed-solvent solubilities of gases and pharmaceuticals, and can be expressed by simple perturbation models...

  3. Fluctuations in models of biological macroevolution (Invited Paper)

    Science.gov (United States)

    Rikvold, Per Arne

    2005-05-01

    Fluctuations in diversity and extinction sizes are discussed and compared for two different, individual-based models of biological coevolution. Both models display power-law distributions for various quantities of evolutionary interest, such as the lifetimes of individual species, the quiet periods between evolutionary upheavals larger than a given cutoff, and the sizes of extinction events. Time series of the diversity and measures of the size of extinctions give rise to flicker noise. Surprisingly, the power-law behaviors of the probability densities of quiet periods in the two models differ, while the distributions of the lifetimes of individual species are the same.

  4. Charge and spin quantum fluctuations in the doped strongly coupled Hubbard model on the honeycomb lattice

    Science.gov (United States)

    Ribeiro, F. G.; Coutinho-Filho, M. D.

    2015-07-01

    Field-theoretic methods are used to investigate the large-U Hubbard model on the honeycomb lattice at half-filling and in the hole-doped regime. Within the framework of a functional-integral approach, we obtain the Lagrangian density associated with the charge and spin degrees of freedom. The Hamiltonian related to the charge degrees of freedom is exactly diagonalized. In the strong-coupling regime, we derive a perturbative low-energy theory suitable to describe the quantum antiferromagnetic phase (AF) as a function of hole doping. At half-filling, we deal with the underlying spin degrees of freedom of the quantum AF Heisenberg model by employing a second-order spin-wave analysis, in which case we have calculated the ground-state energy and the staggered magnetization; the results are in very good agreement with previous studies. Further, in the continuum, we derive a nonlinear σ model with a topological Hopf term that describes the AF-VBS (valence bond solid) competition. Lastly, in the challenging doped regime, our approach allows the derivation of a t -J Hamiltonian, and the analysis of the role played by charge and spin quantum fluctuations on the ground-state energy and, particularly, on the breakdown of the AF order at a critical hole doping; the results are benchmarked against recent Grassmann tensor product state simulations.

  5. Absence of superconductivity and valence bond order in the Hubbard-Heisenberg model for organic charge-transfer solids.

    Science.gov (United States)

    Gomes, N; Clay, R T; Mazumdar, S

    2013-09-25

    A frustrated, effective ½-filled band Hubbard-Heisenberg model has been proposed for describing the strongly dimerized charge-transfer solid families κ-(ET)2X and Z[Pd(dmit)2]2. In addition to showing unconventional superconductivity, these materials also exhibit antiferromagnetism, candidate spin-liquid phases, and, in the case of Z=EtMe3P, a spin-gapped phase that has sometimes been referred to as a valence bond solid. We show that neither superconductivity nor the valence bond order phase occurs within the Hubbard-Heisenberg model. We suggest that a description based on ¼-filling, that is reached when the carrier concentration per molecule instead of per dimer is considered, thus may be appropriate.

  6. Absence of superconductivity and valence bond order in the Hubbard-Heisenberg model for organic charge-transfer solids

    Science.gov (United States)

    Gomes, N.; Clay, R. T.; Mazumdar, S.

    2013-09-01

    A frustrated, effective \\frac{1}{2}-filled band Hubbard-Heisenberg model has been proposed for describing the strongly dimerized charge-transfer solid families κ-(ET)2X and Z[Pd(dmit)2]2. In addition to showing unconventional superconductivity, these materials also exhibit antiferromagnetism, candidate spin-liquid phases, and, in the case of Z=EtMe3P, a spin-gapped phase that has sometimes been referred to as a valence bond solid. We show that neither superconductivity nor the valence bond order phase occurs within the Hubbard-Heisenberg model. We suggest that a description based on \\frac{1}{4}-filling, that is reached when the carrier concentration per molecule instead of per dimer is considered, thus may be appropriate.

  7. Constructing stochastic models for dipole fluctuations from paleomagnetic observations

    Science.gov (United States)

    Buffett, Bruce; Puranam, Abhijit

    2017-11-01

    Records of relative paleointensity are subject to several sources of error. Temporal averaging due to gradual acquisition of magnetization removes high-frequency fluctuations, whereas random errors introduce fluctuations at high frequency. Both sources of error limit our ability to construct stochastic models from paleomagnetic observations. We partially circumvent these difficulties by recognizing that the largest affects occur at high frequency. To illustrate we construct a stochastic model from two recent inversions of paleomagnetic observations for the axial dipole moment. An estimate of the noise term in the stochastic model is recovered from a high-resolution inversion (CALS10k.2), while the drift term is estimated from the low-frequency part of the power spectrum for a long, but lower-resolution inversion (PADM2M). Realizations of the resulting stochastic model yield a composite, broadband power spectrum that agrees well with the spectra from both PADM2M and CALS10k.2. A simple generalization of the stochastic model permits predictions for the mean rate of magnetic reversals. We show that the reversal rate depends on the time-averaged dipole moment, the variance of the dipole moment and a slow timescale that characterizes the adjustment of the dipole toward the time-averaged value. Predictions of the stochastic model give a mean rate of 4.2 Myr-1, which is in good agreement with observations from marine magnetic anomalies.

  8. Decision-making deficits in patients with chronic schizophrenia: Iowa Gambling Task and Prospect Valence Learning model

    OpenAIRE

    Kim, Myung-Sun; Kang,Bit-Na; Lim,Jae Young

    2016-01-01

    Myung-Sun Kim,1 Bit-Na Kang,1 Jae Young Lim2 1Department of Psychology, Sungshin Women’s University, Seoul, Republic of Korea; 2Department of Psychiatry, Keyo Medical Foundation, Keyo Hospital, Uiwang, Republic of Korea Purpose: Decision-making is the process of forming preferences for possible options, selecting and executing actions, and evaluating the outcome. This study used the Iowa Gambling Task (IGT) and the Prospect Valence Learning (PVL) model to investigate deficits in r...

  9. Wavelet-based study of valence?arousal model of emotions on EEG signals with LabVIEW

    OpenAIRE

    Guzel Aydin, Seda; Kaya, Turgay; Guler, Hasan

    2016-01-01

    This paper illustrates the wavelet-based feature extraction for emotion assessment using electroencephalogram (EEG) signal through graphical coding design. Two-dimensional (valence?arousal) emotion model was studied. Different emotions (happy, joy, melancholy, and disgust) were studied for assessment. These emotions were stimulated by video clips. EEG signals obtained from four subjects were decomposed into five frequency bands (gamma, beta, alpha, theta, and delta) using ?db5? wavelet functi...

  10. Langevin equation with fluctuating diffusivity: A two-state model.

    Science.gov (United States)

    Miyaguchi, Tomoshige; Akimoto, Takuma; Yamamoto, Eiji

    2016-07-01

    Recently, anomalous subdiffusion, aging, and scatter of the diffusion coefficient have been reported in many single-particle-tracking experiments, though the origins of these behaviors are still elusive. Here, as a model to describe such phenomena, we investigate a Langevin equation with diffusivity fluctuating between a fast and a slow state. Namely, the diffusivity follows a dichotomous stochastic process. We assume that the sojourn time distributions of these two states are given by power laws. It is shown that, for a nonequilibrium ensemble, the ensemble-averaged mean-square displacement (MSD) shows transient subdiffusion. In contrast, the time-averaged MSD shows normal diffusion, but an effective diffusion coefficient transiently shows aging behavior. The propagator is non-Gaussian for short time and converges to a Gaussian distribution in a long-time limit; this convergence to Gaussian is extremely slow for some parameter values. For equilibrium ensembles, both ensemble-averaged and time-averaged MSDs show only normal diffusion and thus we cannot detect any traces of the fluctuating diffusivity with these MSDs. Therefore, as an alternative approach to characterizing the fluctuating diffusivity, the relative standard deviation (RSD) of the time-averaged MSD is utilized and it is shown that the RSD exhibits slow relaxation as a signature of the long-time correlation in the fluctuating diffusivity. Furthermore, it is shown that the RSD is related to a non-Gaussian parameter of the propagator. To obtain these theoretical results, we develop a two-state renewal theory as an analytical tool.

  11. Langevin equation with fluctuating diffusivity: A two-state model

    Science.gov (United States)

    Miyaguchi, Tomoshige; Akimoto, Takuma; Yamamoto, Eiji

    2016-07-01

    Recently, anomalous subdiffusion, aging, and scatter of the diffusion coefficient have been reported in many single-particle-tracking experiments, though the origins of these behaviors are still elusive. Here, as a model to describe such phenomena, we investigate a Langevin equation with diffusivity fluctuating between a fast and a slow state. Namely, the diffusivity follows a dichotomous stochastic process. We assume that the sojourn time distributions of these two states are given by power laws. It is shown that, for a nonequilibrium ensemble, the ensemble-averaged mean-square displacement (MSD) shows transient subdiffusion. In contrast, the time-averaged MSD shows normal diffusion, but an effective diffusion coefficient transiently shows aging behavior. The propagator is non-Gaussian for short time and converges to a Gaussian distribution in a long-time limit; this convergence to Gaussian is extremely slow for some parameter values. For equilibrium ensembles, both ensemble-averaged and time-averaged MSDs show only normal diffusion and thus we cannot detect any traces of the fluctuating diffusivity with these MSDs. Therefore, as an alternative approach to characterizing the fluctuating diffusivity, the relative standard deviation (RSD) of the time-averaged MSD is utilized and it is shown that the RSD exhibits slow relaxation as a signature of the long-time correlation in the fluctuating diffusivity. Furthermore, it is shown that the RSD is related to a non-Gaussian parameter of the propagator. To obtain these theoretical results, we develop a two-state renewal theory as an analytical tool.

  12. Alteration of Expected Hemispheric Asymmetries: Valence and Arousal Effects in Neuropsychological Models of Emotion

    Science.gov (United States)

    Alfano, Keith M.; Cimino, Cynthia R.

    2008-01-01

    The relative advantage of the left (LH) over the right hemisphere (RH) in processing of verbal material for most individuals is well established. Nevertheless, several studies have reported the ability of positively and negatively valenced stimuli to enhance and reverse, respectively, the usual LH greater than RH asymmetry. These studies, however,…

  13. Baryon number fluctuations in quasi-particle model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ameng [Southeast University Chengxian College, Department of Foundation, Nanjing (China); Luo, Xiaofeng [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE), Institute of Particle Physics, Wuhan (China); Zong, Hongshi [Nanjing University, Department of Physics, Nanjing (China); Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing (China); Institute of Theoretical Physics, CAS, State Key Laboratory of Theoretical Physics, Beijing (China)

    2017-04-15

    Baryon number fluctuations are sensitive to the QCD phase transition and the QCD critical point. According to the Feynman rules of finite-temperature field theory, we calculated various order moments and cumulants of the baryon number distributions in the quasi-particle model of the quark-gluon plasma. Furthermore, we compared our results with the experimental data measured by the STAR experiment at RHIC. It is found that the experimental data can be well described by the model for the colliding energies above 30 GeV and show large discrepancies at low energies. This puts a new constraint on the qQGP model and also provides a baseline for the QCD critical point search in heavy-ion collisions at low energies. (orig.)

  14. Modelling wall pressure fluctuations under a turbulent boundary layer

    Science.gov (United States)

    Doisy, Yves

    2017-07-01

    The derivation of the wave vector-frequency (w-f) spectrum of wall pressure fluctuations below a turbulent boundary layer developed over a rigid flat plate is re-considered. The Lighthill's equation for pressure fluctuations is derived in a frame of reference fix with respect to the plate, at low Mach numbers, and transformed into the convected frame moving with the flow. To model the source terms of the Lighthill equation, it is assumed that in the inertial range, the turbulence is locally isotropic in the convected frame. The w-f spectrum of isotropic turbulence is obtained from symmetry considerations by extending the isotropy to space time, based on the concept of sweeping velocity. The resulting solution for the pressure w-f spectrum contains a term (the mean shear-turbulence term) which does not fulfill the Kraichnan Philipps theorem, due to the form of the selected turbulent velocity spectrum. The viscous effects are accounted for by a cut-off depending on wall distance; this procedure allows extending the model beyond the inertial range contribution. The w-f pressure spectrum is derived and compared to the experimental low wavenumber data of Farabee and Geib (1991) [8] and Bonness et al. (2010) [5], for which a good agreement is obtained. The derived expression is also compared to Chase theoretical model Chase (1987) [6] and found to agree well in the vicinity of the convective ridge of the subsonic domain and to differ significantly both in supersonic and subsonic low wavenumber limits. The pressure spectrum derived from the model and its scaling are discussed and compared to experimental data and to the empirical model of Goody (2002) [23], which results from the compilation of a large set of experimental data. Very good agreement is obtained, except at vanishing frequencies where it is claimed that the experimental results lack of significance due to the limited size of the experimental facilities. This hypothesis supported by the results obtained from

  15. Spin Nematics, Valence-Bond Solids, and Spin Liquids in SO(N) Quantum Spin Models on the Triangular Lattice.

    Science.gov (United States)

    Kaul, Ribhu K

    2015-10-09

    We introduce a simple model of SO(N) spins with two-site interactions which is amenable to quantum Monte Carlo studies without a sign problem on nonbipartite lattices. We present numerical results for this model on the two-dimensional triangular lattice where we find evidence for a spin nematic at small N, a valence-bond solid at large N, and a quantum spin liquid at intermediate N. By the introduction of a sign-free four-site interaction, we uncover a rich phase diagram with evidence for both first-order and exotic continuous phase transitions.

  16. High Valence, Normal Valence and Unknown Valence

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul

    characterised by EPR and the powder spectra successfully simulated using two generic multiplet Hamiltonians, one for S = 2 and one for S = 3. The exchange coupling in chromium diols are investigated with a Broken Symmetry DFT model, which is able to accurately predict the exchange coupling constant J from...... weakly to strongly coupled systems. This represents a quantitative improvement over the established GHP model based on AOM arguments, and the qualitative interpretation of said model is corroborated by in silica magnetostructural correlation studies. Chapter 2 details a single crystal EPR study...... on dinuclear chromium(III) compounds. (Ph4P)4[(SCN)4Cr(OH)2Cr(NCS)4] 2 NCCH3 is investigated again as a ’proof of concept’ that it is possible to accurately simulate the single crystal spectra of a low-symmetry system (monoclinic) where two orientations of the molecules are present in the unit cell...

  17. Effects of length fluctuations on the viscosity exponent in the necklace model

    Energy Technology Data Exchange (ETDEWEB)

    Aldao, C M [Institute of Materials Science and Technology (INTEMA), Universidad Nacional de Mar del Plata-CONICET, Juan B Justo 4302, B7608FDQ Mar del Plata (Argentina); Terranova, G R; Martin, H O [Physics Department, School of Exact and Natural Sciences, Universidad Nacional de Mar del Plata, Dean Funes 3350, B7602AYL Mar del Plata (Argentina)

    2009-04-24

    It is commonly accepted that contour length fluctuations increase the viscosity exponent for chains that diffuse by reptation. We found that length fluctuations in the necklace model can play an unexpected role as they can also decrease this exponent. A detailed analysis of the interplay between the discrete character of the model and how the fluctuations take place is presented in this work. Basically, we found that when fluctuations are symmetric their influence is the expected one; when fluctuations are not symmetric new effects can appear.

  18. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics.

    Science.gov (United States)

    Persson, Rasmus A X; Voulgarakis, Nikolaos K; Chu, Jhih-Wei

    2014-11-07

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  19. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Rasmus A. X.; Chu, Jhih-Wei, E-mail: jwchu@nctu.edu.tw [Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Voulgarakis, Nikolaos K. [Department of Mathematics, Washington State University, Richland, Washington 99372 (United States)

    2014-11-07

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  20. Estimation of Several Turbulent Fluctuation Quantities Using an Approximate Pulsatile Flow Model

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Turbulent fluctuation behavior is approximately modeled using a pulsatile flow model analogy.. This model follows as an extension to the turbulent laminar sublayer model developed by Sternberg (1962) to be valid for a fully turbulent flow domain. Here unsteady turbulent behavior is modeled via a sinusoidal pulsatile approach. While the individual modes of the turbulent flow fluctuation behavior are rather crudely modeled, approximate temporal integration yields plausible estimates for Root Mean Square (RMS) velocity fluctuations. RMS pressure fluctuations and spectra are of particular interest and are estimated via the pressure Poisson expression. Both RMS and Power Spectral Density (PSD), i.e. spectra are developed. Comparison with available measurements suggests reasonable agreement. An additional fluctuating quantity, i.e. RMS wall shear fluctuation is also estimated, yielding reasonable agreement with measurement.

  1. An alternative empirical model for the relationship between the bond valence and the thermal expansion rate of chemical bonds.

    Science.gov (United States)

    Sidey, Vasyl

    2015-08-01

    The relationship between the bond valence s and the thermal expansion rate of chemical bonds (dr/dT) has been closely approximated by using the alternative three-parameter empirical model (dr/dT) = (u + vs)(-1/w), where u, v and w are the refinable parameters. Unlike the s-(dr/dT) model developed by Brown et al. [(1997), Acta Cryst. B53, 750-761], this alternative model can be optimized for particular s-(dr/dT) datasets in the least-squares refinement procedure. For routine calculations of the thermal expansion rates of chemical bonds, the alternative model with the parameters u = -63.9, v = 2581.0 and w = 0.647 can be recommended.

  2. Fluctuation theorems for discrete kinetic models of molecular motors

    Science.gov (United States)

    Faggionato, Alessandra; Silvestri, Vittoria

    2017-04-01

    Motivated by discrete kinetic models for non-cooperative molecular motors on periodic tracks, we consider random walks (also not Markov) on quasi one dimensional (1d) lattices, obtained by gluing several copies of a fundamental graph in a linear fashion. We show that, for a suitable class of quasi-1d lattices, the large deviation rate function associated to the position of the walker satisfies a Gallavotti-Cohen symmetry for any choice of the dynamical parameters defining the stochastic walk. This class includes the linear model considered in Lacoste et al (2008 Phys. Rev. E 78 011915). We also derive fluctuation theorems for the time-integrated cycle currents and discuss how the matrix approach of Lacoste et al (2008 Phys. Rev. E 78 011915) can be extended to derive the above Gallavotti-Cohen symmetry for any Markov random walk on {Z} with periodic jump rates. Finally, we review in the present context some large deviation results of Faggionato and Silvestri (2017 Ann. Inst. Henri Poincaré 53 46-78) and give some specific examples with explicit computations.

  3. Wavelet-based study of valence-arousal model of emotions on EEG signals with LabVIEW.

    Science.gov (United States)

    Guzel Aydin, Seda; Kaya, Turgay; Guler, Hasan

    2016-06-01

    This paper illustrates the wavelet-based feature extraction for emotion assessment using electroencephalogram (EEG) signal through graphical coding design. Two-dimensional (valence-arousal) emotion model was studied. Different emotions (happy, joy, melancholy, and disgust) were studied for assessment. These emotions were stimulated by video clips. EEG signals obtained from four subjects were decomposed into five frequency bands (gamma, beta, alpha, theta, and delta) using "db5" wavelet function. Relative features were calculated to obtain further information. Impact of the emotions according to valence value was observed to be optimal on power spectral density of gamma band. The main objective of this work is not only to investigate the influence of the emotions on different frequency bands but also to overcome the difficulties in the text-based program. This work offers an alternative approach for emotion evaluation through EEG processing. There are a number of methods for emotion recognition such as wavelet transform-based, Fourier transform-based, and Hilbert-Huang transform-based methods. However, the majority of these methods have been applied with the text-based programming languages. In this study, we proposed and implemented an experimental feature extraction with graphics-based language, which provides great convenience in bioelectrical signal processing.

  4. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Huan; Baker, Nathan A.; Wu, Lei; Schenter, Gregory K.; Mundy, Christopher J.; Tartakovsky, Alexandre M.

    2016-08-05

    Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.

  5. Effects of stochastic population fluctuations in two models of biological macroevolution

    Science.gov (United States)

    Murase, Yohsuke; Shimada, Takashi; Ito, Nobuyasu; Rikvold, Per Arne

    Two mathematical models of macroevolution are studied. These models have population dynamics at the species level, and mutations and extinction of species are also included. The population dynamics are updated by difference equations with stochastic noise terms that characterize population fluctuations. The effects of the stochastic population fluctuations on diversity and total population sizes on evolutionary time scales are studied. In one model, species can make either predator-prey, mutualistic, or competitive interactions, while the other model allows only predator-prey interactions. When the noise in the population dynamics is strong enough, both models show intermittent behavior and their power spectral densities show approximate 1/f fluctuations. In the noiseless limit, the two models have different power spectral densities. For the predator-prey model, 1/f2 fluctuations appears, indicating random-walk like behavior, while the other model still shows 1/f noise. These results indicate that stochastic population fluctuations may significantly affect long-time evolutionary dynamics.

  6. Physical modelling of temperature fluctuations in a high aspect ratio model of the Czochralski crystal growth

    Science.gov (United States)

    Pal, J.; Cramer, A.; Grants, I.; Eckert, S.; Gerbeth, G.

    2015-12-01

    A low temperature liquid metal model of the Czochralski (CZ) crystal growth process is considered experimentally for a high aspect ratio. Temperature fluctuations close to the edge of the model crystal are studied under the action of a rotating magnetic field (RMF) and/or rotation of the model crystal. A rotation of thermal structures is observed which loses its periodicity at sufficiently high strengths of the RMF. This finding is in qualitative agreement with previous findings in Rayleigh-Bénard (RB) cells. Opposing to that more generic case, the remaining amplitude of the temperature fluctuations stays significantly higher. I.e., the suppression of the fluctuations, which are detrimental to the growth of a mono-crystal, is weaker in the model under investigation.

  7. Fluctuations, response, and resonances in a simple atmospheric model

    Science.gov (United States)

    Gritsun, Andrey; Lucarini, Valerio

    2017-06-01

    We study the response of a simple quasi-geostrophic barotropic model of the atmosphere to various classes of perturbations affecting its forcing and its dissipation using the formalism of the Ruelle response theory. We investigate the geometry of such perturbations by constructing the covariant Lyapunov vectors of the unperturbed system and discover in one specific case-orographic forcing-a substantial projection of the forcing onto the stable directions of the flow. This results into a resonant response shaped as a Rossby-like wave that has no resemblance to the unforced variability in the same range of spatial and temporal scales. Such a climatic surprise corresponds to a violation of the fluctuation-dissipation theorem, in agreement with the basic tenets of nonequilibrium statistical mechanics. The resonance can be attributed to a specific group of rarely visited unstable periodic orbits of the unperturbed system. Our results reinforce the idea of using basic methods of nonequilibrium statistical mechanics and high-dimensional chaotic dynamical systems to approach the problem of understanding climate dynamics.

  8. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus.

    Science.gov (United States)

    Jiang, Jin-Wu

    2015-08-07

    We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.

  9. Interplay of magnetism and valence instabilities in lanthanide systems

    Directory of Open Access Journals (Sweden)

    José Luiz Ferreira

    2016-06-01

    Full Text Available The valence instability in lanthanide systems is described within an extended periodic Anderson Hamiltonian (EPAM which includes Coulomb repulsion between f- and conduction- electrons, allowing to describe both discontinuous and continuous valence variations. We investigate the connection between valence and magnetism in this model and show that it can be applied to several lanthanide compounds showing both magnetic and valence instabilities.

  10. Hypoxic oxygen fluctuations produce less severe retinopathy than hyperoxic fluctuations in a rat model of retinopathy of prematurity.

    Science.gov (United States)

    McColm, Janet R; Cunningham, Steve; Wade, Jean; Sedowofia, Kofi; Gellen, Balazs; Sharma, Tarun; McIntosh, Neil; Fleck, Brian W

    2004-01-01

    The aim of this study was to investigate whether the mean around which arterial oxygen fluctuations take place was important in a unique animal model of oxygen-induced retinopathy. Retinopathy of prematurity (ROP) is associated with fluctuating arterial oxygen. A recent retrospective study suggested that management of high-risk preterm infants at lower oxygen saturations was associated with less severe ROP. Rat pups were raised in a variable oxygen environment around a high (24%), normal (21%) or low (17%) mean inspired oxygen for 14 d. Rat pups raised in the high (24%) mean variable oxygen environment had more retarded retinal vascular development than did rats raised in an environment that fluctuated around 21% mean oxygen. In contrast, rats raised in a lower mean (17%) but still variable oxygen environment had no discernible retinal differences from controls raised in constant room air. Rats raised in a relatively hypoxic but variable oxygen environment develop less severe retinal vascular abnormalities than those raised in variable oxygen around higher oxygen means.

  11. Effects of a Fluctuating Carrying Capacity on the Generalized Malthus-Verhulst Model

    Directory of Open Access Journals (Sweden)

    Héctor Calisto

    2014-01-01

    Full Text Available We consider a generalized Malthus-Verhulst model with a fluctuating carrying capacity and we study its effects on population growth. The carrying capacity fluctuations are described by a Poissonian process with an exponential correlation function. We will find an analytical expression for the average of a number of individuals and show that even in presence of a fluctuating carrying capacity the average tends asymptotically to a constant quantity.

  12. Using the Circumplex Model of Affect to Study Valence and Arousal Ratings of Emotional Faces by Children and Adults with Autism Spectrum Disorders

    Science.gov (United States)

    Tseng, Angela; Bansal, Ravi; Liu, Jun; Gerber, Andrew J.; Goh, Suzanne; Posner, Jonathan; Colibazzi, Tiziano; Algermissen, Molly; Chiang, I-Chin; Russell, James A.; Peterson, Bradley S.

    2014-01-01

    The Affective Circumplex Model holds that emotions can be described as linear combinations of two underlying, independent neurophysiological systems (arousal, valence). Given research suggesting individuals with autism spectrum disorders (ASD) have difficulty processing emotions, we used the circumplex model to compare how individuals with ASD and…

  13. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model

    DEFF Research Database (Denmark)

    Tarp, Jens M.; Angheluta, Luiza; Mathiesen, Joachim

    2014-01-01

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations....... Dislocation number fluctuations exhibit a power-law spectral density 1/f2 at high frequencies f. The probability distribution of number fluctuations becomes bimodal at low driving rates corresponding to a scenario where low density of defects alternates at irregular times with high populations of defects. We...... propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate....

  14. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model.

    Science.gov (United States)

    Tarp, Jens M; Angheluta, Luiza; Mathiesen, Joachim; Goldenfeld, Nigel

    2014-12-31

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Dislocation number fluctuations exhibit a power-law spectral density 1/f2 at high frequencies f. The probability distribution of number fluctuations becomes bimodal at low driving rates corresponding to a scenario where low density of defects alternates at irregular times with high populations of defects. We propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate.

  15. Modeling 100,000-year climate fluctuations in pre-Pleistocene time series

    Science.gov (United States)

    Crowley, Thomas J.; Kim, Kwang-Yul; Mengel, John G.; Short, David A.

    1992-01-01

    A number of pre-Pleistocene climate records exhibit significant fluctuations at the 100,000-year (100-ky) eccentricity period, before the time of such fluctuations in global ice volume. The origin of these fluctuations has been obscure. Results reported here from a modeling study suggest that such a response can occur over low-altitude land areas involved in monsoon fluctuations. The twice yearly passage of the sun across the equator and the seasonal timing of perihelion interact to increase both 100-ky and 400-ky power in the modeled temperature field. The magnitude of the temperature response is sufficiently large to leave an imprint on the geologic record, and simulated fluctuations resemble those found in records of Triassic lake levels.

  16. Non-Gaussian PDF Modeling of Turbulent Boundary Layer Fluctuating Pressure Excitation

    Science.gov (United States)

    Steinwolf, Alexander; Rizzi, Stephen A.

    2003-01-01

    The purpose of the study is to investigate properties of the probability density function (PDF) of turbulent boundary layer fluctuating pressures measured on the exterior of a supersonic transport aircraft. It is shown that fluctuating pressure PDFs differ from the Gaussian distribution even for surface conditions having no significant discontinuities. The PDF tails are wider and longer than those of the Gaussian model. For pressure fluctuations upstream of forward-facing step discontinuities and downstream of aft-facing step discontinuities, deviations from the Gaussian model are more significant and the PDFs become asymmetrical. Various analytical PDF distributions are used and further developed to model this behavior.

  17. Competition between spin liquids and valence-bond order in the frustrated spin-1/2 Heisenberg model on the honeycomb lattice

    Science.gov (United States)

    Ferrari, Francesco; Bieri, Samuel; Becca, Federico

    2017-09-01

    Using variational wave functions and Monte Carlo techniques, we study the antiferromagnetic Heisenberg model with first-neighbor J1 and second-neighbor J2 antiferromagnetic couplings on the honeycomb lattice. We perform a systematic comparison of magnetically ordered and nonmagnetic states (spin liquids and valence-bond solids) to obtain the ground-state phase diagram. Néel order is stabilized for small values of the frustrating second-neighbor coupling. Increasing the ratio J2/J1 , we find strong evidence for a continuous transition to a nonmagnetic phase at J2/J1≈0.23 . Close to the transition point, the Gutzwiller-projected uniform resonating valence-bond state gives an excellent approximation to the exact ground-state energy. For 0.23 ≲J2/J1≲0.36 , a gapless Z2 spin liquid with Dirac nodes competes with a plaquette valence-bond solid. In contrast, the gapped spin liquid considered in previous works has significantly higher variational energy. Although the plaquette valence-bond order is expected to be present as soon as the Néel order melts, this ordered state becomes clearly favored only for J2/J1≳0.3 . Finally, for 0.36 ≲J2/J1≤0.5 , a valence-bond solid with columnar order takes over as the ground state, being also lower in energy than the magnetic state with collinear order. We perform a detailed finite-size scaling and standard data collapse analysis, and we discuss the possibility of a deconfined quantum critical point separating the Néel antiferromagnet from the plaquette valence-bond solid.

  18. Turbulence Fluctuations, Variational Principles and Universal Realizability Conditions in Modelling

    Science.gov (United States)

    Eyink, Gregory L.; Alexander, Francis J.

    1996-11-01

    General turbulent mean statistics are shown to be characterized by a variational principle. The variational functionals, or ``effective actions'', have experimental consequences for turbulence fluctuations and are subject to realizability conditions of positivity and convexity. They generalize to arbitrary variables in turbulent flow the Onsager- Machlup actions of nonequilibrium statistical mechanics. An efficient Rayleigh-Ritz algorithm is developed to calculate approximate effective actions within PDF closures. Examples are given for Navier-Stokes and for a 3-mode system of Lorenz. The new realizability conditions succeed at detecting a priori the poor predictions of PDF closures even when the classical 2nd-moment realizability conditions are satisfied.

  19. Turbulence Fluctuations and New Universal Realizability Conditions in Modeling

    Science.gov (United States)

    Eyink, Gregory L.; Alexander, Francis J.

    1997-03-01

    General turbulent mean statistics are shown to be characterized by a variational principle. The variational functionals, or ``effective actions,'' have experimental consequences for turbulence fluctuations and are subject to realizability conditions of positivity and convexity. An efficient Rayleigh-Ritz algorithm is available to calculate approximate effective actions within probability density function (PDF) closures. Examples are given for Navier-Stokes and for a three-mode system of Lorenz. The new realizability conditions succeed at detecting a priori the poor predictions of PDF closures even when the classical second-order moment realizability conditions are satisfied.

  20. Turbulence Fluctuations and New Universal Realizability Conditions in Modelling

    CERN Document Server

    Eyink, G L; Eyink, Gregory L.; Alexander, Francis J.

    1996-01-01

    General turbulent mean statistics are shown to be characterized by a variational principle. The variational functionals, or ``effective actions'', have experimental consequences for turbulence fluctuations and are subject to realizability conditions of positivity and convexity. An efficient Rayleigh-Ritz algorithm is available to calculate approximate effective actions within PDF closures. Examples are given for Navier-Stokes and for a 3-mode system of Lorenz. The new realizability conditions succeed at detecting {\\em a priori} the poor predictions of PDF closures even when the classical 2nd-order moment realizability conditions are satisfied.

  1. Anisotropic flow fluctuations in hydro-inspired freeze-out model for relativistic heavy ion collisions

    CERN Document Server

    Bravina, L V; Korotkikh, V L; Lokhtin, I P; Malinina, L V; Nazarova, E N; Petrushanko, S V; Snigirev, A M; Zabrodin, E E

    2015-01-01

    The possible mechanisms contributing to anisotropic flow fluctuations in relativistic heavy ion collisions are discussed. The LHC data on event-by-event harmonic flow coefficients measured in PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted within the HYDJET++ model. To compare the model results with the experimental data the unfolding procedure is employed. It is shown that HYDJET++ correctly reproduces dynamical fluctuations of elliptic and triangular flows and related to it eccentricity fluctuations of the initial state.

  2. Fuzzy Case-Based Reasoning in Product Style Acquisition Incorporating Valence-Arousal-Based Emotional Cellular Model

    Directory of Open Access Journals (Sweden)

    Fuqian Shi

    2012-01-01

    Full Text Available Emotional cellular (EC, proposed in our previous works, is a kind of semantic cell that contains kernel and shell and the kernel is formalized by a triple- L = , where P denotes a typical set of positive examples relative to word-L, d is a pseudodistance measure on emotional two-dimensional space: valence-arousal, and δ is a probability density function on positive real number field. The basic idea of EC model is to assume that the neighborhood radius of each semantic concept is uncertain, and this uncertainty will be measured by one-dimensional density function δ. In this paper, product form features were evaluated by using ECs and to establish the product style database, fuzzy case based reasoning (FCBR model under a defined similarity measurement based on fuzzy nearest neighbors (FNN incorporating EC was applied to extract product styles. A mathematical formalized inference system for product style was also proposed, and it also includes uncertainty measurement tool emotional cellular. A case study of style acquisition of mobile phones illustrated the effectiveness of the proposed methodology.

  3. Bayesian parameter estimation in the Expectancy Valence model of the Iowa gamblling task

    NARCIS (Netherlands)

    Wetzels, R.; Vandekerckhove, J.; Tuerlinckx, F.; Wagenmakers, E.-J.

    2010-01-01

    The purpose of the popular Iowa gambling task is to study decision making deficits in clinical populations by mimicking real-life decision making in an experimental context. Busemeyer and Stout [Busemeyer, J. R., & Stout, J. C. (2002). A contribution of cognitive decision models to clinical

  4. Magnetic-field-induced valence transition in rare-earth systems

    Indian Academy of Sciences (India)

    loys are induced by pressure, temperature or chemical alloying. The change in the valence state of rare-earth ion is found to be either continuous or discontinuous. One of the com- mon features of all the systems which show valence instabilities is that, in the intermediate valence phase, the system fluctuates between a ...

  5. Valence-Bond Theory and Chemical Structure.

    Science.gov (United States)

    Klein, Douglas J.; Trinajstic, Nenad

    1990-01-01

    Discussed is the importance of valence bond theory on the quantum-mechanical theory of chemical structure and the nature of the chemical bond. Described briefly are early VB theory, development of VB theory, modern versions, solid-state applications, models, treatment in textbooks, and flaws in criticisms of valence bond theory. (KR)

  6. Model for calcium-mediated reduction of structural fluctuations in epidermis

    Science.gov (United States)

    Kobayashi, Yasuaki; Kitahata, Hiroyuki; Nagayama, Masaharu

    2015-08-01

    We propose a reaction-advection-diffusion model of epidermis consisting of two variables, the degree of differentiation and the calcium ion concentration, where calcium ions enhance differentiation. By analytically and numerically investigating this system, we show that a calcium localization layer formed beneath the stratum corneum helps reduce spatiotemporal fluctuations of the structure of the stratum corneum. In particular, spatially or temporally small-scale fluctuations in the lower structure are suppressed and do not affect the upper structure, due to acceleration of differentiation by calcium ions. Analytical expressions for the reduction rate of fluctuation amplitudes are shown.

  7. Decision-making deficits in patients with chronic schizophrenia: Iowa Gambling Task and Prospect Valence Learning model.

    Science.gov (United States)

    Kim, Myung-Sun; Kang, Bit-Na; Lim, Jae Young

    2016-01-01

    Decision-making is the process of forming preferences for possible options, selecting and executing actions, and evaluating the outcome. This study used the Iowa Gambling Task (IGT) and the Prospect Valence Learning (PVL) model to investigate deficits in risk-reward related decision-making in patients with chronic schizophrenia, and to identify decision-making processes that contribute to poor IGT performance in these patients. Thirty-nine patients with schizophrenia and 31 healthy controls participated. Decision-making was measured by total net score, block net scores, and the total number of cards selected from each deck of the IGT. PVL parameters were estimated with the Markov chain Monte Carlo sampling scheme in OpenBugs and BRugs, its interface to R, and the estimated parameters were analyzed with the Mann-Whitney U-test. The schizophrenia group received significantly lower total net scores compared to the control group. In terms of block net scores, an interaction effect of group × block was observed. The block net scores of the schizophrenia group did not differ across the five blocks, whereas those of the control group increased as the blocks progressed. The schizophrenia group obtained significantly lower block net scores in the fourth and fifth blocks of the IGT and selected cards from deck D (advantageous) less frequently than the control group. Additionally, the schizophrenia group had significantly lower values on the utility-shape, loss-aversion, recency, and consistency parameters of the PVL model. These results indicate that patients with schizophrenia experience deficits in decision-making, possibly due to failure in learning the expected value of each deck, and incorporating outcome experiences of previous trials into expectancies about options in the present trial.

  8. Model for probing membrane-cortex adhesion by micropipette aspiration and fluctuation spectroscopy

    CERN Document Server

    Alert, Ricard; Brugués, Jan; Sens, Pierre

    2016-01-01

    We propose a model for membrane-cortex adhesion which couples membrane deformations, hydrodynamics and kinetics of membrane-cortex ligands. In its simplest form, the model gives explicit predictions for the critical pressure for membrane detachment and for the value of adhesion energy. We show that these quantities exhibit a significant dependence on the active acto-myosin stresses. The model provides a simple framework to access quantitative information on cortical activity by means of micropipette experiments. We also extend the model to incorporate fluctuations and show that detailed information on the stability of membrane-cortex coupling can be obtained by a combination of micropipette aspiration and fluctuation spectroscopy measurements.

  9. From single molecule fluctuations to muscle contraction: a Brownian model of A.F. Huxley's hypotheses.

    Directory of Open Access Journals (Sweden)

    Lorenzo Marcucci

    Full Text Available Muscular force generation in response to external stimuli is the result of thermally fluctuating, cyclical interactions between myosin and actin, which together form the actomyosin complex. Normally, these fluctuations are modelled using transition rate functions that are based on muscle fiber behaviour, in a phenomenological fashion. However, such a basis reduces the predictive power of these models. As an alternative, we propose a model which uses direct single molecule observations of actomyosin fluctuations reported in the literature. We precisely estimate the actomyosin potential bias and use diffusion theory to obtain a brownian ratchet model that reproduces the complete cross-bridge cycle. The model is validated by simulating several macroscopic experimental conditions, while its interpretation is compatible with two different force-generating scenarios.

  10. Macroeconomic Fluctuations and Propagation Mechanisms: An Agent-Based Simulation Model

    OpenAIRE

    Sella Lisa

    2009-01-01

    This paper proposes an agent-based simulation model exploring aggregate business fluctuations in an artificial market economy. It is inspired by the C++ agent-based simulation model in Howitt (2006), and proposes a modified NetLogo model, which provides new procedures and parameters aiming at analyzing the endogenous dynamics of market adjustment processes

  11. An Algebraic Model for the Pion's Valence-Quark GPD: A Probe for a Consistent Extension Beyond DGLAP Region Via Radon Transform Inversion

    Science.gov (United States)

    Chouika, Nabil; Mezrag, Cédric; Moutarde, Hervé; Rodríguez-Quintero, José

    2017-07-01

    We briefly report on a recent computation, with the help of a fruitful algebraic model, sketching the pion valence dressed-quark generalized parton distribution. Then, preliminary, we introduce on a sensible procedure to get reliable results in both Dokshitzer-Gribov-Lipatov-Altarelli-Parisi and Efremov-Radyushkin-Brodsky-Lepage kinematical regions, grounded on the GPD overlap representation and its parametrization of a Radon transform of the so-called double distribution.

  12. Model predictive control for power fluctuation supression in hybrid wind/PV/battery systems

    DEFF Research Database (Denmark)

    You, Shi; Liu, Zongyu; Zong, Yi

    2015-01-01

    A hybrid energy system, the combination of wind turbines, PV panels and battery storage with effective control mechanism, represents a promising solution to the power fluctuation problem when integrating renewable energy resources (RES) into conventional power systems. This paper proposes a model...... predictive control (MPC)-based algorithm for battery management in a hybrid wind/PV/battery system to suppress the short-term power fluctuation on the ‘minute’ scale. A case study with data collected from a practical hybrid system setup is used to demonstrate the effectiveness of the proposed algorithm...... together with a Monte Carlo simulation-based sensitivity analysis. In addition to illustrating the complementarity between the fluctuations of wind power and PV power, the results prove the proposed MPC algorithm is effective in fluctuation suppression but sensitive to factors such as forecast accuracy...

  13. An analysis of alternative conceptual models relating hyporheic exchange flow to diel fluctuations in discharge during baseflow recession

    Science.gov (United States)

    Steven M. Wondzell; Michael N. Gooseff; Brian L. McGlynn

    2009-01-01

    Diel fluctuations in streamflow during base flow have been observed in many streams and are typically attributed to water losses from evapotranspiration (ET). However, there is no widely transferable conceptual model that explains how ET results in diel fluctuations in streamflow at the watershed outlet. For fluctuations to occur, two factors must be present: (1) some...

  14. Dynamic Aggregation Model Considering Load Fluctuation and Its Participation in Economic Dispatch of Power System

    Science.gov (United States)

    Gaoying, CUI; Yongxian, YI; Xiaojun, CAO; Ciwei, GAO

    2017-05-01

    In order to enable demand side resources effectively participate in the operation of the system, an abstract recognition model of small demand response resource is established which extracts the key parameters such as rated capacity, load fluctuation characteristics and demand response characteristics to help the power system understand more easily. Considering the influence of small load fluctuation and response characteristics, general aggregation and complementary aggregation models are established. An economic dispatching model considering aggregate’s dynamic adjustment potential was established where the aggregate with the lowest power generation cost was selected and a load scheduling strategy was developed. The results show that the proposed model can effectively reduce the cost of power generation. It demonstrates that the demand-side resource dynamic aggregation which considers load fluctuation may conductive to the safe and economic operation of the system

  15. Computer simulation study of water using a fluctuating charge model

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Hydrogen bonding in small water clusters is studied through computer simulation methods using a sophisticated, empirical model of interaction developed by Rick et al (S W Rick, S J Stuart and B J Berne 1994 J. Chem. Phys. 101 6141) and others. The model allows for the charges on the interacting sites to ...

  16. Fluctuation-Response Relation and modeling in systems with fast and slow dynamics

    Directory of Open Access Journals (Sweden)

    G. Lacorata

    2007-10-01

    Full Text Available We show how a general formulation of the Fluctuation-Response Relation is able to describe in detail the connection between response properties to external perturbations and spontaneous fluctuations in systems with fast and slow variables. The method is tested by using the 360-variable Lorenz-96 model, where slow and fast variables are coupled to one another with reciprocal feedback, and a simplified low dimensional system. In the Fluctuation-Response context, the influence of the fast dynamics on the slow dynamics relies in a non trivial behavior of a suitable quadratic response function. This has important consequences for the modeling of the slow dynamics in terms of a Langevin equation: beyond a certain intrinsic time interval even the optimal model can give just statistical prediction.

  17. Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models

    Energy Technology Data Exchange (ETDEWEB)

    Kouza, Maksim, E-mail: mkouza@chem.uw.edu.pl; Kolinski, Andrzej [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warszaw (Poland); Co, Nguyen Truong [Department of Physics, Institute of Technology, National University of HCM City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City (Viet Nam); Nguyen, Phuong H. [Laboratoire de Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris (France); Li, Mai Suan, E-mail: masli@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2015-04-14

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleus size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in

  18. A non-linear state space approach to model groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.

    2006-01-01

    A non-linear state space model is developed for describing groundwater fluctuations. Non-linearity is introduced by modeling the (unobserved) degree of water saturation of the root zone. The non-linear relations are based on physical concepts describing the dependence of both the actual

  19. Baryon number fluctuations in quasi-particle model

    National Research Council Canada - National Science Library

    Zhao, Ameng; Luo, Xiaofeng; Zong, Hongshi

    2017-01-01

    .... According to the Feynman rules of finite-temperature field theory, we calculated various order moments and cumulants of the baryon number distributions in the quasi-particle model of the quark–gluon plasma...

  20. Fluctuations in a mixed IS-LM business cycle model

    Directory of Open Access Journals (Sweden)

    Hamad Talibi Alaoui

    2008-09-01

    Full Text Available In the present paper, we extend a delayed IS-LM business cycle model by introducing an additional advance (anticipated capital stock in the investment function. The resulting model is represented in terms of mixed differential equations. For the deviating argument $au$ (advance and delay being a bifurcation parameter we investigate the local stability and the local Hopf bifurcation. Also some numerical simulations are given to support the theoretical analysis.

  1. Parabolic Free Boundary Price Formation Models Under Market Size Fluctuations

    KAUST Repository

    Markowich, Peter A.

    2016-10-04

    In this paper we propose an extension of the Lasry-Lions price formation model which includes uctuations of the numbers of buyers and vendors. We analyze the model in the case of deterministic and stochastic market size uctuations and present results on the long time asymptotic behavior and numerical evidence and conjectures on periodic, almost periodic, and stochastic uctuations. The numerical simulations extend the theoretical statements and give further insights into price formation dynamics.

  2. Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models

    DEFF Research Database (Denmark)

    Pinson, Pierre; Madsen, Henrik

    2012-01-01

    optimized is based on penalized maximum likelihood, with exponential forgetting of past observations. MSAR models are then employed for one-step-ahead point forecasting of 10 min resolution time series of wind power at two large offshore wind farms. They are favourably compared against persistence......Wind power production data at temporal resolutions of a few minutes exhibit successive periods with fluctuations of various dynamic nature and magnitude, which cannot be explained (so far) by the evolution of some explanatory variable. Our proposal is to capture this regime-switching behaviour...... and autoregressive models. It is finally shown that the main interest of MSAR models lies in their ability to generate interval/density forecasts of significantly higher skill....

  3. Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models

    DEFF Research Database (Denmark)

    Pinson, Pierre; Madsen, Henrik

    optimized is based on penalized maximum-likelihood, with exponential forgetting of past observations. MSAR models are then employed for 1-step-ahead point forecasting of 10-minute resolution time-series of wind power at two large offshore wind farms. They are favourably compared against persistence and Auto......Wind power production data at temporal resolutions of a few minutes exhibits successive periods with fluctuations of various dynamic nature and magnitude, which cannot be explained (so far) by the evolution of some explanatory variable. Our proposal is to capture this regime-switching behaviour......Regressive (AR) models. It is finally shown that the main interest of MSAR models lies in their ability to generate interval/density forecasts of significantly higher skill....

  4. An example of a diesel generator model with fluctuating engine torque for transient analysis using XTAP

    Directory of Open Access Journals (Sweden)

    Orie Sakamoto

    2016-01-01

    Full Text Available In remote site power systems with small diesel generators, weak distribution feeders with diesel generators may suffer from voltage and power fluctuations due to misfiring of the engine cylinder. An electromagnetic transient (EMT program named XTAP is considered to be useful to analyze these phenomena. In this study, a new diesel generator model with example fluctuating engine torque has been developed using XTAP for analyses of small power systems with those diesel engines. The configuration and verification results of the developed model are presented in the paper.

  5. Multi-scaling Properties of EUV Intensity Fluctuations and Models for Impulsive Heating

    Science.gov (United States)

    Cadavid, A. C.; Rivera, Y.; Lawrence, J. K.; Christian, D. J.; Jennings, P.; Rappazzo, A. F.

    2016-12-01

    There is wide agreement on the importance of impulsive processes ("nanoflares") to explain coronal heating. Diagnostics of observational data are necessary to uncover signatures of the underlying mechanisms, and, by comparing to those of simulated data, to determine whether a model explains the observations. We have investigated the multi-scaling properties that characterize the intermittency of AIA/SDO radiance fluctuations. Lags between pairs of wavebands were used to distinguish coronal from transition region (TR) signals. Noise degrades the signals, so the 171Å emission, with the highest signal-to-noise ratio, provides the best information. In an active region core, for both loops and for diffuse emission, the probability distribution functions (PDFs) of the increments of both TR and coronal signals are "quasi-Gaussian" for large temporal scales and "leptokurtic" (peaked with heavy tails) for small time increments, as expected for turbulent systems. Multifractal Detrended Fluctuation Analysis (MF-DFA) shows that the variance of the fluctuations obeys a power law as a function of temporal scales in the range 15-45 min. The value of the scaling exponent indicates that, on average, the time series are nonstationary and anti-persistent with small fluctuations following large fluctuations and vice versa. Other moments of the fluctuations obey corresponding power laws and the multi-scaling exponents quantify the degree of the intermittency in the context of multifractality. The variation in the scaling exponents results from long term correlation in the time series. The multiscaling of the EUV data agrees qualitatively with simulated intensity from a simple model of impulsive bursts plus noise, and also with the ohmic dissipation in a Reduced Magnetohydrodynamic (RMHD) model for coronal loop heating. However, the observational data were found to disagree with the modeled PDFs of increments. There is indication that the multifractal properties in the observations

  6. Fluctuating Entanglements in Single-Chain Mean-Field Models

    Directory of Open Access Journals (Sweden)

    Jay D. Schieber

    2013-06-01

    Full Text Available We consider four criteria of acceptability for single-chain mean-field entangled polymer models: consistency with a multi-chain level of description, consistency with nonequilibrium thermodynamics, consistency with the stress-optic rule, and self-consistency between Green–Kubo predictions and linear viscoelastic predictions for infinitesimally driven systems. Each of these topics has been considered independently elsewhere. However, we are aware of no molecular entanglement model that satisfies all four criteria simultaneously. Here we show that an idea from Ronca and Allegra, generalized to arbitrary flows, can be implemented in a slip-link model to create a model that does satisfy all four criteria. Aside from the direct benefits of agreement, the result modifies the relation between the initial relaxation modulus G(0 and the entanglement molecular weight Me. If this implementation is correct, current estimates for Me would require modification that brings their values more in line with estimates based on topological analysis of molecular dynamics simulations.

  7. Propagation of fluctuations in the quantum Ising model

    Science.gov (United States)

    Navez, P.; Tsironis, G. P.; Zagoskin, A. M.

    2017-02-01

    We investigate entanglement dynamics and correlations in the quantum Ising model in arbitrary dimensions using a large-coordination-number expansion. We start from the pure paramagnetic regime obtained through zero spin-spin coupling and subsequently turn on the interspin interaction in a time-dependent fashion. We investigate analytically and compare results for both the slow adiabatic onset of the interactions and the fast instantaneous switching. We find that in the latter case of an initial excitation mode a quantum correlation wave spreads through the system, propagating with twice the group velocity of the linearized equilibrium modes. This wave establishes the spatiotemporal regime of entangled quantum properties of the system for time scales shorter than the decoherence time and thus provides an indicator for the "quantumness" of the physical system that the specific system models.

  8. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.

    Directory of Open Access Journals (Sweden)

    Olga Kononova

    2016-01-01

    Full Text Available The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F-deformation (X spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications.

  9. The Discrete Beverton-Holt Model with Periodic Harvesting in a Periodically Fluctuating Environment

    Directory of Open Access Journals (Sweden)

    Ziyad AlSharawi

    2010-01-01

    Full Text Available We investigate the effect of constant and periodic harvesting on the Beverton-Holt model in a periodically fluctuating environment. We show that in a periodically fluctuating environment, periodic harvesting gives a better maximum sustainable yield compared to constant harvesting. However, if one can also fix the environment, then constant harvesting in a constant environment can be a better option, especially for sufficiently large initial populations. Also, we investigate the combinatorial structure of the periodic sequence of carrying capacities and its effect on the maximum sustainable yield. Finally, we leave some questions worth further investigations.

  10. Modelling thermal fluctuations in non-ideal fluids with the lattice Boltzmann method.

    Science.gov (United States)

    Gross, M; Adhikari, R; Cates, M E; Varnik, F

    2011-06-13

    Recently, we proposed a theoretical framework to include thermal fluctuations into the Lattice Boltzmann (LB) method for non-ideal fluids. Here, we apply a variant thereof to a certain class of force-based non-ideal fluid LB models. We find that ideal-gas-like noise is an exact result of the fluctuation-dissipation theorem in the hydrodynamic regime. It is shown that satisfactory equilibration of the density and fluid momentum can be obtained in a simulation over a wide range of length scales.

  11. A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick’s law

    Science.gov (United States)

    Donev, Aleksandar; Fai, Thomas G.; Vanden-Eijnden, Eric

    2014-04-01

    We study diffusive mixing in the presence of thermal fluctuations under the assumption of large Schmidt number. In this regime we obtain a limiting equation that contains a diffusive stochastic drift term with diffusion coefficient obeying a Stokes-Einstein relation, in addition to the expected advection by a random velocity. The overdamped limit correctly reproduces both the enhanced diffusion in the ensemble-averaged mean and the long-range correlated giant fluctuations in individual realizations of the mixing process, and is amenable to efficient numerical solution. Through a combination of Eulerian and Lagrangian numerical methods we demonstrate that diffusion in liquids is not most fundamentally described by Fick’s irreversible law; rather, diffusion is better modeled as reversible random advection by thermal velocity fluctuations. We find that the diffusion coefficient is effectively renormalized to a value that depends on the scale of observation. Our work reveals somewhat unexpected connections between flows at small scales, dominated by thermal fluctuations, and flows at large scales, dominated by turbulent fluctuations.

  12. Fast simulation approaches for power fluctuation model of wind farm based on frequency domain

    DEFF Research Database (Denmark)

    Lin, Jin; Gao, Wen-zhong; Sun, Yuan-zhang

    2012-01-01

    This paper discusses one model developed by Riso, DTU, which is capable of simulating the power fluctuation of large wind farms in frequency domain. In the original design, the “frequency-time” transformations are time-consuming and might limit the computation speed for a wind farm of large size...

  13. Simulations of two-dimensional unbiased polymer translocation using the bond fluctuation model

    NARCIS (Netherlands)

    Panja, D.; Barkema, G.T.

    2010-01-01

    We use the bond fluctuation model (BFM) to study the pore-blockade times of a translocating polymer of length N in two dimensions, in the absence of external forces on the polymer (i.e., unbiased translocation) and hydrodynamic interactions (i.e., the polymer is a Rouse polymer), through a narrow

  14. Fluctuations of the Self-Normalized Sum in the Curie-Weiss Model of SOC

    Science.gov (United States)

    Gorny, Matthias; Varadhan, S. R. S.

    2015-08-01

    We extend the main theorem of Cerf and Gorny (Ann Probab, 2015) about the fluctuations in the Curie-Weiss model of SOC in the symmetric case. We present a short proof using the Hubbard-Stratonovich transformation with the self-normalized sum of the random variables.

  15. THE VALENCE OF CORPUSCULAR PROTEINS.

    Science.gov (United States)

    Gorin, M H; Mover, L S

    1942-07-20

    BY THE USE OF TWO EXTREME MODELS: a hydrated sphere and an unhydrated rod the valence (net charge) of corpuscular proteins can be successfully calculated from electric mobility data by the Debye-Hückel theory (modified to include the effect of the ions in the ion atmosphere) in conjunction with the electrophoretic theory of Henry. As pointed out by Abramson, this permits a comparison with values for the valence from titration data. Electrometric titration measurements of serum albumin B (Kekwick) have been determined at several ionic strengths. These results, together with the available data in the literature for serum albumin B, egg albumin, and beta-lactoglobulin have been used to compare values for the valence calculated from measurements of titration, electrophoresis, and membrane potentials. The results indicate that the usual interpretation of titration curves is open to serious question. By extrapolation of the titration data to zero ionic strength and protein concentration, there results an "intrinsic" net charge curve describing the binding of H(+) (OH(-)) ion alone. This curve agrees closely, in each case, with values of the valence calculated from mobility data (which in turn are in close accord with those estimated from membrane potential measurements). The experimental titration curves in the presence of appreciable quantities of ions and protein deviate widely from the ideal curve. It is suggested that, under these conditions, binding of undissociated acid (base) leads to erroneous values for the net charge. This binding would not affect the electrophoretic mobility. Values of the net charge obtained by the two extreme models from electrophoretic data are in agreement within 15 to 20 per cent. The agreement between the cylindrical model and the titration data is somewhat better in each case than with the sphere; i.e., this comparison enables a choice to be made between asymmetry and hydration in the interpretation of results from sedimentation and

  16. Wind model for low frequency power fluctuations in offshore wind farms

    DEFF Research Database (Denmark)

    Vigueras-Rodríguez, A.; Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio

    2010-01-01

    This paper investigates the correlation between the frequency components of the wind speed Power Spectral Density. The results extend an already existing power fluctuation model that can simulate power fluctuations of wind power on areas up to several kilometers and for time scales up to a couple...... of hours, taking into account the spectral correlation between different wind turbines. The modelling is supported by measurements from two large wind farms, namely Nysted and Horns Rev. Measurements from individual wind turbines and meteorological masts are used. Finally, the models are integrated...... is an improvement, but the effect is relatively small. The effect of including the low frequency components in the model is much more significant. Therefore, that aggregated model is useful in the power system planning and operation, e.g. regarding load following and regulation. Copyright © 2009 John Wiley & Sons...

  17. Stress-induced electric current fluctuations in rocks: a superstatistical model

    Science.gov (United States)

    Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter

    2017-04-01

    We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and the overall signal is correlated with the damage induced by microcracking. Our results show that fracture plays a key role in the generation of electric currents in deforming rocks (Cartwright-Taylor et al., in prep). We also analysed the high-frequency fluctuations of these electric current signals and found that they are not normally distributed - they exhibit power-law tails (Cartwright-Taylor et al., 2014). We modelled these distributions with q-Gaussian statistics, derived by maximising the Tsallis entropy. This definition of entropy is particularly applicable to systems which are strongly correlated and far from equilibrium. Good agreement, at all experimental conditions, between the distributions of electric current fluctuations and the q-Gaussian function with q-values far from one, illustrates the highly correlated, fractal nature of the electric source network within the samples and provides further evidence that the source of the electric signals is the developing fractal network of cracks. It has been shown (Beck, 2001) that q-Gaussian distributions can arise from the superposition of local relaxations in the presence of a slowly varying driving force, thus providing a dynamic reason for the appearance of Tsallis statistics in systems with a fluctuating energy dissipation rate. So, the probability distribution for a dynamic variable, u under some external slow forcing, β, can be obtained as a superposition of temporary local

  18. A shallow water table fluctuation model in response to precipitation with consideration of unsaturated gravitational flow

    Science.gov (United States)

    Jeong, Jina; Park, Eungyu

    2017-04-01

    A precise estimation of groundwater fluctuation is studied by considering delayed recharge flux (DRF) and unsaturated zone drainage (UZD). Both DRF and UZD are due to gravitational flow impeded in the unsaturated zone, which may nonnegligibly affect groundwater level changes. In the validation, a previous model without the consideration of unsaturated flow is benchmarked. The model is calibrated using multiyear groundwater data, and consistent model parameter statistics are obtained and validated. The estimation capability of the new model is superior to the benchmarked model as indicated by the significantly improved representation of groundwater level with physically interpretable model parameters.

  19. Inferring interannual fluctuations of the core angular momentum from geomagnetic field models

    Science.gov (United States)

    Asari, Seiki; Wardinski, Ingo

    2017-04-01

    Satellite models for Earth's core magnetic field, as well as observations of Earth rotation variation, suggest an existence of interannual core dynamics. Due to its small magnetic signal, however, interannual variations in the core flow and accompanying core angular momentum (CAM) are still subject to a large ambiguity, particularly when inferred from pre-satellite magnetic models. It is nevertheless indicated from our systematic flow inversions with a core field model C3FM2 that estimated phases of interannual CAM variations are almost insensitive to prior settings of the inversion. We discuss that the uncertainty of Earth's interannual CAM fluctuations arises from, besides the theoretical lack of resolution, differences of core field models in the interannual secular accelerations. C3FM2 may be optimized for better resolving the interannual CAM fluctuations by properly regulating its temporal smoothness.

  20. Capillary fluctuations of surface steps: An atomistic simulation study for the model Cu(111) system

    Science.gov (United States)

    Freitas, Rodrigo; Frolov, Timofey; Asta, Mark

    2017-10-01

    Molecular dynamics (MD) simulations are employed to investigate the capillary fluctuations of steps on the surface of a model metal system. The fluctuation spectrum, characterized by the wave number (k ) dependence of the mean squared capillary-wave amplitudes and associated relaxation times, is calculated for 〈110 〉 and 〈112 〉 steps on the {111 } surface of elemental copper near the melting temperature of the classical potential model considered. Step stiffnesses are derived from the MD results, yielding values from the largest system sizes of (37 ±1 ) meV/A ˚ for the different line orientations, implying that the stiffness is isotropic within the statistical precision of the calculations. The fluctuation lifetimes are found to vary by approximately four orders of magnitude over the range of wave numbers investigated, displaying a k dependence consistent with kinetics governed by step-edge mediated diffusion. The values for step stiffness derived from these simulations are compared to step free energies for the same system and temperature obtained in a recent MD-based thermodynamic-integration (TI) study [Freitas, Frolov, and Asta, Phys. Rev. B 95, 155444 (2017), 10.1103/PhysRevB.95.155444]. Results from the capillary-fluctuation analysis and TI calculations yield statistically significant differences that are discussed within the framework of statistical-mechanical theories for configurational contributions to step free energies.

  1. An improved car-following model with multiple preceding cars' velocity fluctuation feedback

    Science.gov (United States)

    Guo, Lantian; Zhao, Xiangmo; Yu, Shaowei; Li, Xiuhai; Shi, Zhongke

    2017-04-01

    In order to explore and evaluate the effects of velocity variation trend of multiple preceding cars used in the Cooperative Adaptive Cruise Control (CACC) strategy on the dynamic characteristic, fuel economy and emission of the corresponding traffic flow, we conduct a study as follows: firstly, with the real-time car-following (CF) data, the close relationship between multiple preceding cars' velocity fluctuation feedback and the host car's behaviors is explored, the evaluation results clearly show that multiple preceding cars' velocity fluctuation with different time window-width are highly correlated to the host car's acceleration/deceleration. Then, a microscopic traffic flow model is proposed to evaluate the effects of multiple preceding cars' velocity fluctuation feedback in the CACC strategy on the traffic flow evolution process. Finally, numerical simulations on fuel economy and exhaust emission of the traffic flow are also implemented by utilizing VT-micro model. Simulation results prove that considering multiple preceding cars' velocity fluctuation feedback in the control strategy of the CACC system can improve roadway traffic mobility, fuel economy and exhaust emission performance.

  2. New Development on Modelling Fluctuations and Fragmentation in Heavy-Ion Collisions

    Science.gov (United States)

    Lin, Hao; Danielewicz, Pawel

    2017-09-01

    During heavy-ion collisions (HIC), colliding nuclei form an excited composite system. Instabilities present in the system may deform the shape of the system exotically, leading to a break-up into fragments. Many experimental efforts have been devoted to the nuclear multifragmentation phenomenon, while traditional HIC models, lacking in proper treatment of fluctuations, fall short in explaining it. In view of this, we are developing a new model to implement realistic fluctuations into transport simulation. The new model is motivated by the Brownian motion description of colliding particles. The effects of two-body collisions are recast in one-body diffusion processes. Vastly different dynamical paths are sampled by solving Langevin equations in momentum space. It is the stochastic sampling of dynamical paths that leads to a wide spread of exit channels. In addition, the nucleon degree of freedom is used to enhance the fluctuations. The model has been tested in reactions such as 112Sn + 112Sn and 58Ni + 58Ni, where reasonable results are yielded. An exploratory comparison on the 112Sn + 112Sn reaction at 50 MeV/nucleon with two other models, the stochastic mean-field (SMF) and the antisymmetrized molecular dynamics (AMD) models, has also been conducted. Work supported by the NSF Grant No. PHY-1403906.

  3. Dominant superconducting fluctuations in the one-dimensional extended Holstein-extended Hubbard model

    Science.gov (United States)

    Tam, Ka-Ming; Tsai, Shan-Wen; Campbell, David K.

    2014-01-01

    The search for realistic one-dimensional (1D) models that exhibit dominant superconducting (SC) fluctuations effects has a long history. In these 1D systems, the effects of commensurate band fillings—strongest at half-filling—and electronic repulsions typically lead to a finite charge gap and the favoring of insulating density wave ordering over superconductivity. Accordingly, recent proposals suggesting a gapless metallic state in the Holstein-Hubbard (HH) model, possibly superconducting, have generated considerable interest and controversy, with the most recent work demonstrating that the putative dominant superconducting state likely does not exist. In this paper we study a model with nonlocal electron-phonon interactions, in addition to electron-electron interactions. This model unambiguously possesses dominant superconducting fluctuations at half filling in a large region of parameter space. Using both the numerical multi-scale functional renormalization group (MFRG) for the full model and an analytic conventional renormalization group for a bosonized version of the model, we demonstrate the existence of these dominant SC fluctuations and show that they arise because the spin-charge coupling at high energies is weakened by the nonlocal electron-phonon interaction and the charge gap is destroyed by the resultant suppression of the Umklapp process. The existence of the dominant SC pairing instability in this half-filled 1D system suggests that nonlocal boson-mediated interactions may be important in the superconductivity observed in the organic superconductors.

  4. Valency and molecular structure

    CERN Document Server

    Cartmell, E

    1977-01-01

    Valency and Molecular Structure, Fourth Edition provides a comprehensive historical background and experimental foundations of theories and methods relating to valency and molecular structures. In this edition, the chapter on Bohr theory has been removed while some sections, such as structures of crystalline solids, have been expanded. Details of structures have also been revised and extended using the best available values for bond lengths and bond angles. Recent developments are mostly noted in the chapter on complex compounds, while a new chapter has been added to serve as an introduction t

  5. Baryon number fluctuations in chiral effective models and their phenomenological implications

    Science.gov (United States)

    Almási, Gábor András; Friman, Bengt; Redlich, Krzysztof

    2017-07-01

    We study the critical properties of net-baryon-number fluctuations at the chiral restoration transition in a medium at finite temperature and net baryon density. The chiral dynamics of quantum chromodynamics (QCD) is modeled by the Polyakov-loop extended quark-meson Lagrangian that includes the coupling of quarks to vector meson and temporal gauge fields. The functional renormalization group is employed to properly account for the O (4 ) criticality at the phase boundary. We focus on the properties and systematics of ratios of the net-baryon-number cumulants χBn, for 1 ≤n ≤6 , near the phase boundary. The results are presented in the context of the recent experimental data of the STAR Collaboration on fluctuations of the net proton number in heavy-ion collisions at RHIC. We show that the model results for the energy dependence of the cumulant ratios are in good overall agreement with the data, with one exception. At center-of-mass energies below 19.6 GeV, we find that the measured fourth-order cumulant deviates considerably from the model results, which incorporate the expected O (4 ) and Z (2 ) criticality. We assess the influence of model assumptions and in particular of repulsive vector-interactions, which are used to modify the location of the critical end point in the model, on the cumulants ratios. Finally, we discuss a possibility to test to what extent the fluctuations are affected by nonequilibrium dynamics by comparing certain ratios of cumulants.

  6. Effect of river flow fluctuations on riparian vegetation dynamics: Processes and models

    Science.gov (United States)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca

    2017-12-01

    Several decades of field observations, laboratory experiments and mathematical modelings have demonstrated that the riparian environment is a disturbance-driven ecosystem, and that the main source of disturbance is river flow fluctuations. The focus of the present work has been on the key role that flow fluctuations play in determining the abundance, zonation and species composition of patches of riparian vegetation. To this aim, the scientific literature on the subject, over the last 20 years, has been reviewed. First, the most relevant ecological, morphological and chemical mechanisms induced by river flow fluctuations are described from a process-based perspective. The role of flow variability is discussed for the processes that affect the recruitment of vegetation, the vegetation during its adult life, and the morphological and nutrient dynamics occurring in the riparian habitat. Particular emphasis has been given to studies that were aimed at quantifying the effect of these processes on vegetation, and at linking them to the statistical characteristics of the river hydrology. Second, the advances made, from a modeling point of view, have been considered and discussed. The main models that have been developed to describe the dynamics of riparian vegetation have been presented. Different modeling approaches have been compared, and the corresponding advantages and drawbacks have been pointed out. Finally, attention has been paid to identifying the processes considered by the models, and these processes have been compared with those that have actually been observed or measured in field/laboratory studies.

  7. Movement variability near goal equivalent manifolds: fluctuations, control, and model-based analysis.

    Science.gov (United States)

    Cusumano, Joseph P; Dingwell, Jonathan B

    2013-10-01

    Fluctuations in the repeated performance of human movements have been the subject of intense scrutiny because they are generally believed to contain important information about the function and health of the neuromotor system. A variety of approaches has been brought to bear to study these fluctuations. However it is frequently difficult to understand how to synthesize different perspectives to give a coherent picture. Here, we describe a conceptual framework for the experimental study of motor variability that helps to unify geometrical methods, which focus on the role of motor redundancy, with dynamical methods that characterize the error-correcting processes regulating the performance of skilled tasks. We describe how goal functions, which mathematically specify the task strategy being employed, together with ideas from the control of redundant systems, allow one to formulate simple, experimentally testable dynamical models of inter-trial fluctuations. After reviewing the basic theory, we present a list of five general hypotheses on the structure of fluctuations that can be expected in repeated trials of goal-directed tasks. We review recent experimental applications of this general approach, and show how it can be used to precisely characterize the error-correcting control used by human subjects. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Analysis of valence XPS and AES of (PP, P4VP, PVME, PPS, PTFE) polymers by DFT calculations using the model molecules

    Science.gov (United States)

    Endo, Kazunaka; Shimada, Shingo; Kato, Nobuhiko; Ida, Tomonori

    2016-10-01

    We simulated valence X-ray photoelectron spectra (VXPS) of five [(CH2CH(CH3))n {poly(propyrene) PP}, ((CH2CH(C5NH4))n {poly(4-vinyl-pyridine) P4VP}, (CH2CHO(CH3))n {poly(vinyl methyl ether) PVME}, (C6H4S)n {poly(phenylene) sulphide PPS}, (CF2CF2)n {poly(tetrafluoroethylene) PTFE}] polymers by density-functional theory (DFT) calculations using the model oligomers. The spectra reflect the differences in the chemical structures between each polymer, since the peak intensities of valence band spectra are seen to be due to photo-ionization cross-section of (C, N, O, S, F) atoms by considering the orbital energies and cross-section values of the polymer models, individually. In the Auger electron spectra (AES) simulations, theoretical kinetic energies of the AES are obtained with our modified calculation method. The modified kinetic energies correspond to two final-state holes at the ground state and at the transition-state in DFT calculations, respectively. Experimental peaks of (C, N, O)- KVV, and S L2,3VV AES for each polymer are discussed in detail by our modified calculation method.

  9. Mathematical model of the growth of a mollusk affected by a toxicant and by temperature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Kurchenko, T.S.; Burtnaya, I.L.

    1979-01-01

    An attempt is made to model the effect of a gamma isomer of hexachloran (lindane) and of temperature fluctuations on the growth of bivalves. The model is based on an experimental study of the effect of the toxicant on Radix ovata and Viviparus viviparus, and also on the Putter-Bertalanffy-Vinberg models and the model of Zotin. Quite good agreements has been obtained between calculated and experimental data, and growth curves have been constructed for the weight increase of the animals when exposed to lindane concentrations not tested in the experiment.

  10. Isomorphism Between Estes’ Stimulus Fluctuation Model and a Physical- Chemical System

    Directory of Open Access Journals (Sweden)

    Makoto Yamaguchi

    2013-10-01

    Full Text Available Although Estes’ Stimulus Sampling Theory has almost completely lost its influence, its theoretical framework has not been disproved. Particularly, one theory in that framework, Stimulus Fluctuation Model, is still important because it explains spontaneous recovery. In this short note, the process of the theory is shown to be isomorphic to the diffusion of solution between compartments. Envisioning the theory as diffusion will make it appear less artificial and suggest natural extensions.

  11. Algorithmic modeling of the irrelevant sound effect (ISE) by the hearing sensation fluctuation strength.

    Science.gov (United States)

    Schlittmeier, Sabine J; Weissgerber, Tobias; Kerber, Stefan; Fastl, Hugo; Hellbrück, Jürgen

    2012-01-01

    Background sounds, such as narration, music with prominent staccato passages, and office noise impair verbal short-term memory even when these sounds are irrelevant. This irrelevant sound effect (ISE) is evoked by so-called changing-state sounds that are characterized by a distinct temporal structure with varying successive auditory-perceptive tokens. However, because of the absence of an appropriate psychoacoustically based instrumental measure, the disturbing impact of a given speech or nonspeech sound could not be predicted until now, but necessitated behavioral testing. Our database for parametric modeling of the ISE included approximately 40 background sounds (e.g., speech, music, tone sequences, office noise, traffic noise) and corresponding performance data that was collected from 70 behavioral measurements of verbal short-term memory. The hearing sensation fluctuation strength was chosen to model the ISE and describes the percept of fluctuations when listening to slowly modulated sounds (f(mod) < 20 Hz). On the basis of the fluctuation strength of background sounds, the algorithm estimated behavioral performance data in 63 of 70 cases within the interquartile ranges. In particular, all real-world sounds were modeled adequately, whereas the algorithm overestimated the (non-)disturbance impact of synthetic steady-state sounds that were constituted by a repeated vowel or tone. Implications of the algorithm's strengths and prediction errors are discussed.

  12. Determination of humidity and temperature fluctuations based on MOZAIC data and parametrisation of persistent contrail coverage for general circulation models

    Directory of Open Access Journals (Sweden)

    K. M. Gierens

    1997-08-01

    Full Text Available Humidity and temperature fluctuations at pressure levels between 166 and 290 hPa on the grid scale of general circulation models for a region covered by the routes of airliners, mainly over the Atlantic, have been determined by evaluation of the data obtained with almost 2000 flights within the MOZAIC programme. It is found that the distributions of the fluctuations cannot be modelled by Gaussian distributions, because large fluctuations appear with a relatively high frequency. Lorentz distributions were used for the analytical representation of the fluctuation distributions. From these a joint probability distribution has been derived for simultaneous temperature and humidity fluctuations. This function together with the criteria for the formation and persistence of contrails are used to derive the maximum possible fractional coverage of persistent contrails in a grid cell of a GCM. This can be employed in a statistical formulation of contrail appearance in a climate model.

  13. Determination of humidity and temperature fluctuations based on MOZAIC data and parametrisation of persistent contrail coverage for general circulation models

    Directory of Open Access Journals (Sweden)

    K. M. Gierens

    Full Text Available Humidity and temperature fluctuations at pressure levels between 166 and 290 hPa on the grid scale of general circulation models for a region covered by the routes of airliners, mainly over the Atlantic, have been determined by evaluation of the data obtained with almost 2000 flights within the MOZAIC programme. It is found that the distributions of the fluctuations cannot be modelled by Gaussian distributions, because large fluctuations appear with a relatively high frequency. Lorentz distributions were used for the analytical representation of the fluctuation distributions. From these a joint probability distribution has been derived for simultaneous temperature and humidity fluctuations. This function together with the criteria for the formation and persistence of contrails are used to derive the maximum possible fractional coverage of persistent contrails in a grid cell of a GCM. This can be employed in a statistical formulation of contrail appearance in a climate model.

  14. A self-consistent 3D model of fluctuations in the helium-ionizing background

    Science.gov (United States)

    Davies, Frederick B.; Furlanetto, Steven R.; Dixon, Keri L.

    2017-03-01

    Large variations in the effective optical depth of the He II Lyα forest have been observed at z ≳ 2.7, but the physical nature of these variations is uncertain: either the Universe is still undergoing the process of He II reionization, or the Universe is highly ionized but the He II-ionizing background fluctuates significantly on large scales. In an effort to build upon our understanding of the latter scenario, we present a novel model for the evolution of ionizing background fluctuations. Previous models have assumed the mean free path of ionizing photons to be spatially uniform, ignoring the dependence of that scale on the local ionization state of the intergalactic medium (IGM). This assumption is reasonable when the mean free path is large compared to the average distance between the primary sources of He II-ionizing photons, ≳ L⋆ quasars. However, when this is no longer the case, the background fluctuations become more severe, and an accurate description of the average propagation of ionizing photons through the IGM requires additionally accounting for the fluctuations in opacity. We demonstrate the importance of this effect by constructing 3D semi-analytic models of the helium-ionizing background from z = 2.5-3.5 that explicitly include a spatially varying mean free path of ionizing photons. The resulting distribution of effective optical depths at large scales in the He II Lyα forest is very similar to the latest observations with HST/COS at 2.5 ≲ z ≲ 3.5.

  15. Modeling of effect of LC SLM phase fluctuations on kinoforms optical reconstruction quality

    Science.gov (United States)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.

    2015-05-01

    Phase-only liquid crystal (LC) spatial light modulators (SLM) are actively used in various applications. However, majority of scientific applications require stable phase modulation which might be hard to achieve with commercially available SLM due to its consumer origin. The use of digital voltage addressing scheme leads to phase temporal fluctuations, which results in lower diffraction efficiency and reconstruction quality of displayed diffractive optical elements (DOE). It is often preferable to know effect of these fluctuations on DOE reconstruction quality before SLM is implemented into experimental setup. It is especially important in case of multi-level phaseonly DOE such as kinoforms. Therefore we report results of modeling of effect of phase fluctuations of LC SLM "HoloEye PLUTO VIS" on kinoforms optical reconstruction quality. Modeling was conducted in the following way. First dependency of LC SLM phase shift on addressed signal level and time from frame start was measured for all signal values (0-255) with temporal resolution of 0.5 ms in time period of one frame. Then numerical simulation of effect of SLM phase fluctuations on kinoforms reconstruction quality was performed. Based on measured dependency, for each time delay new distorted kinoform was generated and then numerically reconstructed. Averaged reconstructed image corresponds to optically reconstructed one with registration time exceeding time period of one frame (16.7 ms), while individual images correspond to momentary optical reconstruction with registration time less than 1 ms. Quality degradation of modeled optical reconstruction of several test kinoforms was analyzed. Comparison of kinoforms optical reconstruction with SLM and numerically simulated reconstruction was conducted.

  16. Fluctuations in the Energetic Properties of a Spark-Ignition Engine Model with Variability

    Directory of Open Access Journals (Sweden)

    Fernando Angulo-Brown

    2013-08-01

    Full Text Available We study the energetic functions obtained in a simulated spark-ignited engine that incorporates cyclic variability through a quasi-dimensional combustion model. Our analyses are focused on the effects of the fuel-air equivalence ratio of the mixture simultaneously over the cycle-to-cycle fluctuations of heat release (QR and the performance outputs, such as the power (P and the efficiency (QR. We explore the fluctuant behavior for QR, P and n related to random variations of the basic physical parameters in an entrainment or eddy-burning combustion model. P and n show triangle shaped first return maps, while QR exhibits a structured map, especially at intermediated fuel-air ratios. Structure disappears to a considerable extent in the case of heat release and close-to-stoichiometry fuel-air ratios. By analyzing the fractal dimension to explore the presence of correlations at different scales, we find that whereas QR displays short-range correlations for intermediate values of the fuel ratio, both P and n are characterized by a single scaling exponent, denoting irregular fluctuations. A novel noisy loop-shaped P vs. n plot for a large number of engine cycles is obtained. This plot, which evidences different levels of irreversibilities as the fuel ratio changes, becomes the observed loop P vs. n curve when fluctuations are disregarded, and thus, only the mean values for efficiency and power are considered.

  17. Numerical Investigation of Pressure Fluctuation in Centrifugal Pump Volute Based on SAS Model and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Qiaorui Si

    2014-02-01

    Full Text Available This paper presents an investigation of pressure fluctuation of a single-suction volute-type centrifugal pump, particularly volute casing, by using numerical and experimental methods. A new type of hybrid Reynolds-averaged Navier-Stokes/Large Eddy Simulation, referred to as the shear stress transport-scale-adaptive simulation (SAS model, is employed to study the unsteady flow. Statistical analysis method is adopted to show the pressure fluctuation intensity distribution in the volute channel. A test rig for pressure pulsation measurement is built to validate the numerical simulation results using eight transient pressure sensors in the middle section of the volute wall. Results show that the SAS model can accurately predict the inner flow field of centrifugal pumps. Radial force acting on the impeller presents a star distribution related to the blade number. Pressure fluctuation intensity is strongest near the tongue and shows irregular distribution in the pump casing. Pressure fluctuation is distributed symmetrically at the cross-section of the volute casing because the volute can eliminate the rotational movement of the liquid discharged from the impeller. Blade passing frequency and its multiples indicate the dominant frequency of the monitoring points within the volute, and the low-frequency pulsation, particularly in the shaft component, increases when it operates at off-design condition, particularly with a small flow rate. The reason is that the vortex wave is enhanced at the off-design condition, which has an effect on the axle and is presented in the shaft component in the frequency domain.

  18. Entanglement spectra of the two-dimensional Affleck-Kennedy-Lieb-Tasaki model: Correspondence between the valence-bond-solid state and conformal field theory

    Science.gov (United States)

    Lou, Jie; Tanaka, Shu; Katsura, Hosho; Kawashima, Naoki

    2011-12-01

    We investigate the entanglement properties of the valence-bond-solid (VBS) state defined on two-dimensional lattices, which is the exact ground state of the Affleck-Kennedy-Lieb-Tasaki model. It is shown that the entanglement entropy obeys an area law and the nonuniversal prefactor of the leading term is strictly less than ln2. The analysis of entanglement spectra for various lattices reveals that the reduced density matrix associated with the VBS state is closely related to a thermal density matrix of a holographic spin chain, the spectrum of which is reminiscent of that of the spin-1/2 Heisenberg chain. This correspondence is further supported by comparing the entanglement entropy in the holographic spin chain with conformal field theory predictions.

  19. Modelling hard and soft states of Cygnus X-1 with propagating mass accretion rate fluctuations

    Science.gov (United States)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2017-12-01

    We present a timing analysis of three Rossi X-ray Timing Explorer observations of the black hole binary Cygnus X-1 with the propagating mass accretion rate fluctuations model PROPFLUC. The model simultaneously predicts power spectra, time lags and coherence of the variability as a function of energy. The observations cover the soft and hard states of the source, and the transition between the two. We find good agreement between model predictions and data in the hard and soft states. Our analysis suggests that in the soft state the fluctuations propagate in an optically thin hot flow extending up to large radii above and below a stable optically thick disc. In the hard state, our results are consistent with a truncated disc geometry, where the hot flow extends radially inside the inner radius of the disc. In the transition from soft to hard state, the characteristics of the rapid variability are too complex to be successfully described with PROPFLUC. The surface density profile of the hot flow predicted by our model and the lack of quasi-periodic oscillations in the soft and hard states suggest that the spin of the black hole is aligned with the inner accretion disc and therefore probably with the rotational axis of the binary system.

  20. A reaction-diffusion model for market fluctuations - A relation between price change and traded volumes

    Science.gov (United States)

    Yuvan, Steven; Bier, Martin

    2018-02-01

    Two decades ago Bak et al. (1997) [3] proposed a reaction-diffusion model to describe market fluctuations. In the model buyers and sellers diffuse from opposite ends of a 1D interval that represents a price range. Trades occur when buyers and sellers meet. We show analytically and numerically that the model well reproduces the square-root relation between traded volumes and price changes that is observed in real-life markets. The result is remarkable as this relation has commonly been explained in terms of more elaborate trader strategies. We furthermore explain why the square-root relation is robust under model modifications and we show how real-life bond market data exhibit the square-root relation.

  1. Prediction of Francis Turbine Prototype Part Load Pressure and Output Power Fluctuations with Hydroelectric Model

    Science.gov (United States)

    Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.

    2017-04-01

    The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).

  2. Constructing a folding model for protein S6 guided by native fluctuations deduced from NMR structures

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor; Onuchic, José N., E-mail: jonuchic@rice.edu [Center for Theoretical Biological Physics and Department of Physics, Rice University, Houston, Texas 77005 (United States); Schug, Alexander [Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-12-28

    The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein’s functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimal frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism.

  3. Modeling seasonal dynamics of the small fish cohorts in fluctuating freshwater marsh landscapes

    Science.gov (United States)

    Jopp, Fred; DeAngelis, Donald L.; Trexler, Joel C.

    2010-01-01

    Small-bodied fishes constitute an important assemblage in many wetlands. In wetlands that dry periodically except for small permanent waterbodies, these fishes are quick to respond to change and can undergo large fluctuations in numbers and biomasses. An important aspect of landscapes that are mixtures of marsh and permanent waterbodies is that high rates of biomass production occur in the marshes during flooding phases, while the permanent waterbodies serve as refuges for many biotic components during the dry phases. The temporal and spatial dynamics of the small fishes are ecologically important, as these fishes provide a crucial food base for higher trophic levels, such as wading birds. We develop a simple model that is analytically tractable, describing the main processes of the spatio-temporal dynamics of a population of small-bodied fish in a seasonal wetland environment, consisting of marsh and permanent waterbodies. The population expands into newly flooded areas during the wet season and contracts during declining water levels in the dry season. If the marsh dries completely during these times (a drydown), the fish need refuge in permanent waterbodies. At least three new and general conclusions arise from the model: (1) there is an optimal rate at which fish should expand into a newly flooding area to maximize population production; (2) there is also a fluctuation amplitude of water level that maximizes fish production, and (3) there is an upper limit on the number of fish that can reach a permanent waterbody during a drydown, no matter how large the marsh surface area is that drains into the waterbody. Because water levels can be manipulated in many wetlands, it is useful to have an understanding of the role of these fluctuations.

  4. Electron Temperature Fluctuation Measurements and Transport Model Validation at Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    White, Anne [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-06-22

    for studying core turbulence are needed in order to assess the accuracy of gyrokinetic models for turbulent-driven particle, heat and momentum transport. New core turbulence diagnostics at the world-class tokamaks Alcator C-Mod at MIT and ASDEX Upgrade at the Max Planck Institute for Plasma Physics have been designed, developed, and operated over the course of this project. These new instruments are capable of measuring electron temperature fluctuations and the phase angle between density and temperature fluctuations locally and quantitatively. These new data sets from Alcator C-Mod and ASDEX Upgrade are being used to fill key gaps in our understanding of turbulent transport in tokamaks. In particular, this project has results in new results on the topics of the Transport Shortfall, the role of ETG turbulence in tokamak plasmas, profile stiffness, the LOC/SOC transition, and intrinsic rotation reversals. These data are used in a rigorous process of “Transport model validation”, and this group is a world-leader on using turbulence models to design new hardware and new experiments at tokamaks. A correlation electron cyclotron emission (CECE) diagnostic is an instrument used to measure micro-scale fluctuations (mm-scale, compared to the machine size of meters) of electron temperature in magnetically confined fusion plasmas, such as those in tokamaks and stellarators. These micro-scale fluctuations are associated with drift-wave type turbulence, which leads to enhanced cooling and mixing of particles in fusion plasmas and limits achieving the required temperatures and densities for self-sustained fusion reactions. A CECE system can also be coupled with a reflectometer system that measured micro-scale density fluctuations, and from these simultaneous measurements, one can extract the phase between the density (n) and temperature (T) fluctuations, creating an nT phase diagnostic. Measurements of the fluctuations and the phase angle between them are extremely useful for

  5. When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations

    Science.gov (United States)

    Hausdorff, Jeffrey M.; Ashkenazy, Yosef; Peng, Chang-K.; Ivanov, Plamen Ch.; Stanley, H. Eugene; Goldberger, Ary L.

    2001-12-01

    We present a random walk, fractal analysis of the stride-to-stride fluctuations in the human gait rhythm. The gait of healthy young adults is scale-free with long-range correlations extending over hundreds of strides. This fractal scaling changes characteristically with maturation in children and older adults and becomes almost completely uncorrelated with certain neurologic diseases. Stochastic modeling of the gait rhythm dynamics, based on transitions between different “neural centers”, reproduces distinctive statistical properties of the gait pattern. By tuning one model parameter, the hopping (transition) range, the model can describe alterations in gait dynamics from childhood to adulthood - including a decrease in the correlation and volatility exponents with maturation.

  6. TEARHS - Modelling toxic impacts on the airway system from exposure to fluctuating concentrations

    DEFF Research Database (Denmark)

    Duijm, N.J.; Markert, Frank; Ott, Søren

    2000-01-01

    information on toxic effects and the relevant time scale for exposure. Concentration-time-fatality relations areobtained from experiments with rats down to 5 minutes of exposure. If the information from these relations is extrapolated down to 5 to 10 seconds using different assumptions, the predicted...... assessment. A mathematical model is described that predicts the physical and chemical processes in the airways during short exposures to toxic substances. Based on this modelling, it has been assessed how fast and towhat level tissue in the airways is exposed to the substance. These time scales turn out...... mortality is quite different. This study indicates thatatmospheric dispersion models for acutely toxic substances need to provide information about concentration fluctuations of time scales of 5 to 10 sec. Final conclusions can only be drawn when it becomes clear how the gap betweenconcentration...

  7. On the role of fluctuations in the modeling of complex systems.

    Directory of Open Access Journals (Sweden)

    Michel Droz

    2016-09-01

    Full Text Available The study of models is ubiquitous in sciences like physics, chemistry,ecology, biology or sociology. Models are used to explain experimental facts or tomake new predictions. For any system, one can distinguish several levels of description.In the simplest mean-field like description the dynamics is described in terms of spatially averaged quantities while in a microscopic approach local properties are taken into account and local fluctuations for the relevant variables are present. The properties predicted by these two different approaches may be drastically different.In a large body of research literature concerning complex systemsthis problem is often overlooked and simple mean-field like approximation are used without asking the question of the robustness of the corresponding predictions. The goal of this paper is twofold, first to illustrate the importance of the fluctuations in a self-contained and pedagogical way, by revisiting two different classes of problems where thorough investigations have been conducted (equilibrium and non-equilibrium statistical physics.Second, we present our original research on the dynamics of population of annual plantswhich are competing among themselves for just one resource (water through a stochastic dynamics. Depending on the observable considered, the mean-field like and microscopic approaches agree or totally disagree. There is not a general criterion allowing to decide a priori when the two approaches will agree.

  8. Cell protrusion and retraction driven by fluctuations in actin polymerization: A two-dimensional model.

    Science.gov (United States)

    Ryan, Gillian L; Holz, Danielle; Yamashiro, Sawako; Taniguchi, Daisuke; Watanabe, Naoki; Vavylonis, Dimitrios

    2017-07-28

    Animal cells that spread onto a surface often rely on actin-rich lamellipodial extensions to execute protrusion. Many cell types recently adhered on a two-dimensional substrate exhibit protrusion and retraction of their lamellipodia, even though the cell is not translating. Travelling waves of protrusion have also been observed, similar to those observed in crawling cells. These regular patterns of protrusion and retraction allow quantitative analysis for comparison to mathematical models. The periodic fluctuations in leading edge position of XTC cells have been linked to excitable actin dynamics using a one-dimensional model of actin dynamics, as a function of arc-length along the cell. In this work we extend this earlier model of actin dynamics into two dimensions (along the arc-length and radial directions of the cell) and include a model membrane that protrudes and retracts in response to the changing number of free barbed ends of actin filaments near the membrane. We show that if the polymerization rate at the barbed ends changes in response to changes in their local concentration at the leading edge and/or the opposing force from the cell membrane, the model can reproduce the patterns of membrane protrusion and retraction seen in experiment. We investigate both Brownian ratchet and switch-like force-velocity relationships between the membrane load forces and actin polymerization rate. The switch-like polymerization dynamics recover the observed patterns of protrusion and retraction as well as the fluctuations in F-actin concentration profiles. The model generates predictions for the behavior of cells after local membrane tension perturbations. © 2017 Wiley Periodicals, Inc.

  9. Microcanonical work and fluctuation relations for an open system: An exactly solvable model.

    Science.gov (United States)

    Subaşı, Y; Jarzynski, C

    2013-10-01

    We calculate the probability distribution of work for an exactly solvable model of a system interacting with its environment. The system of interest is a harmonic oscillator with a time-dependent control parameter, the environment is modeled by N-independent harmonic oscillators with arbitrary frequencies, and the system-environment coupling is bilinear and not necessarily weak. The initial conditions of the combined system and environment are sampled from a microcanonical distribution and the system is driven out of equilibrium by changing the control parameter according to a prescribed protocol. In the limit of infinitely large environment, i.e., N→∞, we recover the nonequilibrium work relation and Crooks's fluctuation relation. Moreover, the microcanonical Crooks relation is verified for finite environments. Finally, we show the equivalence of multitime correlation functions of the system in the infinite environment limit for canonical and microcanonical ensembles.

  10. Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models.

    Science.gov (United States)

    Barzegar, Rahim; Fijani, Elham; Asghari Moghaddam, Asghar; Tziritis, Evangelos

    2017-12-01

    Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh-Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985-Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R2), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. How can a recurrent neurodynamic predictive coding model cope with fluctuation in temporal patterns? Robotic experiments on imitative interaction.

    Science.gov (United States)

    Ahmadi, Ahmadreza; Tani, Jun

    2017-08-01

    The current paper examines how a recurrent neural network (RNN) model using a dynamic predictive coding scheme can cope with fluctuations in temporal patterns through generalization in learning. The conjecture driving this present inquiry is that a RNN model with multiple timescales (MTRNN) learns by extracting patterns of change from observed temporal patterns, developing an internal dynamic structure such that variance in initial internal states account for modulations in corresponding observed patterns. We trained a MTRNN with low-dimensional temporal patterns, and assessed performance on an imitation task employing these patterns. Analysis reveals that imitating fluctuated patterns consists in inferring optimal internal states by error regression. The model was then tested through humanoid robotic experiments requiring imitative interaction with human subjects. Results show that spontaneous and lively interaction can be achieved as the model successfully copes with fluctuations naturally occurring in human movement patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Quantum antiferromagnetic Heisenberg half-odd integer spin model as the entanglement Hamiltonian of the Affleck-Kennedy-Lieb-Tasaki valence bond solid states

    Science.gov (United States)

    Zhang, Guang-Ming

    Applying a symmetric bulk bipartition to the one-dimensional Affleck-Kennedy-Lieb-Tasaki valence bond solid (VBS) states for the integer spin-S Haldane gapped phase, we can create an array of fractionalized spin-S/2 edge states with the super unit cell l in the reduced bulk system, and the topological properties encoded in the VBS wave functions can be revealed. The entanglement Hamiltonian (EH) with l = even corresponds to the quantum antiferromagnetic Heisenberg spin-S/2 model. For the even integer spins, the EH still describes the Haldane gapped phase. For the odd integer spins, however, the EH just corresponds to the quantum antiferromagnetic Heisenberg half-odd integer spin model with spinon excitations, characterizing the critical point separating the topological Haldane phase from the trivial gapped phase. Our results thus demonstrate that the topological bulk property not only determines its fractionalized edge states, but also the quantum criticality associated with the topological phase, where the elementary excitations are precisely those fractionalized edge degrees of freedom confined in the bulk of the topological phase.

  13. Polarizable Force Fields and Polarizable Continuum Model: A Fluctuating Charges/PCM Approach. 1. Theory and Implementation.

    Science.gov (United States)

    Lipparini, Filippo; Barone, Vincenzo

    2011-11-08

    We present a combined fluctuating charges-polarizable continuum model approach to describe molecules in solution. Both static and dynamic approaches are discussed: analytical first and second derivatives are shown as well as an extended lagrangian for molecular dynamics simluations. In particular, we use the polarizable continuum model to provide nonperiodic boundary conditions for molecular dynamics simulations of aqueous solutions. The extended lagrangian method is extensively discussed, with specific reference to the fluctuating charge model, from a numerical point of view by means of several examples, and a rationalization of the behavior found is presented. Several prototypical applications are shown, especially regarding solvation of ions and polar molecules in water.

  14. Two states are not enough: quantitative evaluation of the valence-bond intramolecular charge-transfer model and its use in predicting bond length alternation effects.

    Science.gov (United States)

    Jarowski, Peter D; Mo, Yirong

    2014-12-15

    The structural weights of the canonical resonance contributors used in the Two-state valence-bond charge-transfer model, neutral (N, R1) and ionic (VB-CT, R2), to the ground states and excited states of a series of linear dipolar intramolecular charge-transfer chromophores containing a buta-1,3-dien-1,4-diyl bridge have been computed by using the block-localized wavefunction (BLW) method at the B3LYP/6-311+G(d) level to provide the first quantitative assessment of this simple model. Ground- and excited-state analysis reveals surprisingly low ground-state structural weights for the VB-CT resonance form using either this Two-state model or an expanded Ten-state model. The VB-CT state is found to be more prominent in the excited state. Individual resonance forms were structurally optimized to understand the origins of the bond length alternation (BLA) of the bridging unit. Using a Wheland energy-based weighting scheme, the weighted average of the optimized bond lengths with the Two-state model was unable to reproduce the BLA features with values 0.04 to 0.02 Å too large compared to the fully delocalized (FD) structure (BLW: ca. -0.13 to -0.07 Å, FD: ca. -0.09 to -0.05 Å). Instead, an expanded Ten-state model fit the BLA values of the FD structure to within only 0.001 Å of FD. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fluctuations in seafloor spreading predicted by tectonic reconstructions and mantle convection models

    Science.gov (United States)

    Coltice, Nicolas; Seton, Maria; Rolf, Tobias; Müller, R. Dietmar; Tackley, Paul J.

    2013-04-01

    The theory of plate tectonics theory has enabled possible the reconstruction of the ancient seafloor and paleogeography. Over 50 years of data collection and kinematic reconstruction efforts, plate models have improved significantly (Seton et al., 2012) although reconstructions of ancient seafloor are naturally limited by the limited preservation of of very old seafloor. It is challenging to reconstruct ancient ocean basins and associated plate boundaries for times earlier than 200 Ma, since seafloor of this age is not preserved. This means we can merely reconstruct only 5% of the history of the planet in this fashion. However, geodynamic models can now help evaluate how seafloor spreading may evolve over longer time periods, since recent developments of numerical models of mantle convection with pseudo-plasticity can generate long-term solutions that simulate a form of seafloor spreading (Moresi and Solomatov, 1998; Tackley, 2000a; Tackley, 2000b). The introduction of models of continental lithosphere further improves the quality of the predictions: the computed distribution of seafloor ages reproduces the consumption of young seafloor as observed on the present-day Earth (Coltice et al., 2012). The time-dependence of the production of new seafloor has long been debated and there is no consensus on how much it has varied in the past 150My, and how it could have fluctuated over longer time-scales. Using plate reconstructions, Parsons (1982) and Rowley (2002) proposed the area vs. age distribution of the seafloor could have experienced limited fluctuations in the past 150My while others suggest stronger variations would fit the observations equally well (Seton et al., 2009. Here we propose to investigate the global dynamics of seafloor spreading using state-of-the-art plate reconstructions and geodynamic models. We focus on the evolution of the distribution of seafloor ages because fundamental geophysical observations like mantle heat flow or sea level provide

  16. Predicting the Water Level Fluctuation in an Alpine Lake Using Physically Based, Artificial Neural Network, and Time Series Forecasting Models

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Young

    2015-01-01

    Full Text Available Accurate prediction of water level fluctuation is important in lake management due to its significant impacts in various aspects. This study utilizes four model approaches to predict water levels in the Yuan-Yang Lake (YYL in Taiwan: a three-dimensional hydrodynamic model, an artificial neural network (ANN model (back propagation neural network, BPNN, a time series forecasting (autoregressive moving average with exogenous inputs, ARMAX model, and a combined hydrodynamic and ANN model. Particularly, the black-box ANN model and physically based hydrodynamic model are coupled to more accurately predict water level fluctuation. Hourly water level data (a total of 7296 observations was collected for model calibration (training and validation. Three statistical indicators (mean absolute error, root mean square error, and coefficient of correlation were adopted to evaluate model performances. Overall, the results demonstrate that the hydrodynamic model can satisfactorily predict hourly water level changes during the calibration stage but not for the validation stage. The ANN and ARMAX models better predict the water level than the hydrodynamic model does. Meanwhile, the results from an ANN model are superior to those by the ARMAX model in both training and validation phases. The novel proposed concept using a three-dimensional hydrodynamic model in conjunction with an ANN model has clearly shown the improved prediction accuracy for the water level fluctuation.

  17. Stochastic Simulation of a Full-Chain Reptation Model with Constraint Release, Chain-Length Fluctuations and Chain Stretching

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Schieber, Jay D.

    1999-01-01

    A self-consistent reptation model that includes chain stretching, chain-length fluctuations, segment connectivity and constraint release is used to predict transient and steady flows. Quantitative comparisons are made with entangledsolution data. The model is able to capture quantitatively all...

  18. Habitat fragmentation, vole population fluctuations, and the ROMPA hypothesis: An experimental test using model landscapes.

    Science.gov (United States)

    Batzli, George O

    2016-11-01

    Increased habitat fragmentation leads to smaller size of habitat patches and to greater distance between patches. The ROMPA hypothesis (ratio of optimal to marginal patch area) uniquely links vole population fluctuations to the composition of the landscape. It states that as ROMPA decreases (fragmentation increases), vole population fluctuations will increase (including the tendency to display multi-annual cycles in abundance) because decreased proportions of optimal habitat result in greater population declines and longer recovery time after a harsh season. To date, only comparative observations in the field have supported the hypothesis. This paper reports the results of the first experimental test. I used prairie voles, Microtus ochrogaster, and mowed grassland to create model landscapes with 3 levels of ROMPA (high with 25% mowed, medium with 50% mowed and low with 75% mowed). As ROMPA decreased, distances between patches of favorable habitat (high cover) increased owing to a greater proportion of unfavorable (mowed) habitat. Results from the first year with intensive live trapping indicated that the preconditions for operation of the hypothesis existed (inversely density dependent emigration and, as ROMPA decreased, increased per capita mortality and decreased per capita movement between optimal patches). Nevertheless, contrary to the prediction of the hypothesis that populations in landscapes with high ROMPA should have the lowest variability, 5 years of trapping indicated that variability was lowest with medium ROMPA. The design of field experiments may never be perfect, but these results indicate that the ROMPA hypothesis needs further rigorous testing. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  19. Fluctuations in a model ferromagnetic film driven by a slowly oscillating field with a constant bias

    Science.gov (United States)

    Buendía, Gloria M.; Rikvold, Per Arne

    2017-10-01

    We present a numerical and theoretical study that supports and explains recent experimental results on anomalous magnetization fluctuations of a uniaxial ferromagnetic film in its low-temperature phase, which is forced by an oscillating field above the critical period of the associated dynamic phase transition (DPT) [P. Riego, P. Vavassori, and A. Berger, Phys. Rev. Lett. 118, 117202 (2017), 10.1103/PhysRevLett.118.117202]. For this purpose, we perform kinetic Monte Carlo simulations of a two-dimensional Ising model with nearest-neighbor ferromagnetic interactions in the presence of a sinusoidally oscillating field, to which is added a constant bias field. We study a large range of system sizes and supercritical periods and analyze the data using a droplet-theoretical description of magnetization switching. We find that the period-averaged magnetization, which plays the role of the order parameter for the DPT, presents large fluctuations that give rise to well-defined peaks in its scaled variance and its susceptibility with respect to the bias field. The peaks are symmetric with respect to zero bias and located at values of the bias field that increase toward the field amplitude as an inverse logarithm of the field oscillation period. Our results indicate that this effect is independent of the system size for large systems, ruling out critical behavior associated with a phase transition. Rather, it is a stochastic-resonance phenomenon that has no counterpart in the corresponding thermodynamic phase transition, providing a reminder that the equivalence of the DPT to an equilibrium phase transition is limited to the critical region near the critical period and zero bias.

  20. Work Valence as a Predictor of Academic Achievement in the Family Context

    Science.gov (United States)

    Porfeli, Erik; Ferrari, Lea; Nota, Laura

    2013-01-01

    This study asserts a theoretical model of academic and work socialization within the family setting. The presumed associations between parents' work valences, children's work valences and valence perceptions, and children's academic interest and achievement are tested. The results suggest that children's perceptions of parents mediate the…

  1. Valence-Dependent Belief Updating: Computational Validation

    Directory of Open Access Journals (Sweden)

    Bojana Kuzmanovic

    2017-06-01

    Full Text Available People tend to update beliefs about their future outcomes in a valence-dependent way: they are likely to incorporate good news and to neglect bad news. However, belief formation is a complex process which depends not only on motivational factors such as the desire for favorable conclusions, but also on multiple cognitive variables such as prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the probabilities and estimation errors. Thus, we applied computational modeling in order to test for valence-induced biases in updating while formally controlling for relevant cognitive factors. We compared biased and unbiased Bayesian models of belief updating, and specified alternative models based on reinforcement learning. The experiment consisted of 80 trials with 80 different adverse future life events. In each trial, participants estimated the base rate of one of these events and estimated their own risk of experiencing the event before and after being confronted with the actual base rate. Belief updates corresponded to the difference between the two self-risk estimates. Valence-dependent updating was assessed by comparing trials with good news (better-than-expected base rates with trials with bad news (worse-than-expected base rates. After receiving bad relative to good news, participants' updates were smaller and deviated more strongly from rational Bayesian predictions, indicating a valence-induced bias. Model comparison revealed that the biased (i.e., optimistic Bayesian model of belief updating better accounted for data than the unbiased (i.e., rational Bayesian model, confirming that the valence of the new information influenced the amount of updating. Moreover, alternative computational modeling based on reinforcement learning demonstrated higher learning rates for good than for bad news, as well as a moderating role of personal knowledge. Finally, in this specific experimental context, the approach based on

  2. Emotion and language: Valence and arousal affect word recognition

    Science.gov (United States)

    Brysbaert, Marc; Warriner, Amy Beth

    2014-01-01

    Emotion influences most aspects of cognition and behavior, but emotional factors are conspicuously absent from current models of word recognition. The influence of emotion on word recognition has mostly been reported in prior studies on the automatic vigilance for negative stimuli, but the precise nature of this relationship is unclear. Various models of automatic vigilance have claimed that the effect of valence on response times is categorical, an inverted-U, or interactive with arousal. The present study used a sample of 12,658 words, and included many lexical and semantic control factors, to determine the precise nature of the effects of arousal and valence on word recognition. Converging empirical patterns observed in word-level and trial-level data from lexical decision and naming indicate that valence and arousal exert independent monotonic effects: Negative words are recognized more slowly than positive words, and arousing words are recognized more slowly than calming words. Valence explained about 2% of the variance in word recognition latencies, whereas the effect of arousal was smaller. Valence and arousal do not interact, but both interact with word frequency, such that valence and arousal exert larger effects among low-frequency words than among high-frequency words. These results necessitate a new model of affective word processing whereby the degree of negativity monotonically and independently predicts the speed of responding. This research also demonstrates that incorporating emotional factors, especially valence, improves the performance of models of word recognition. PMID:24490848

  3. Dynamic photosynthesis under a fluctuating environment: a modelling-based analysis

    NARCIS (Netherlands)

    Morales Sierra, Alejandro

    2017-01-01

    In their natural environment, leaves are exposed to rapid fluctuations of irradiance. Research on CO2 assimilation under fluctuating irradiance often relies on measurements of gas exchange during transients where irradiance is rapidly increased or decreased, after the leaf has adapted to a

  4. Characterisation of non-Gaussian fluctuations in multiplicative log-normal models

    Science.gov (United States)

    Kiyono, Ken; Struzik, Zbigniew R.; Yamamoto, Yoshiharu

    2007-07-01

    Within the general framework of multiplicative log-normal models, we propose methods to characterise non-Gaussian and intermittent fluctuations, and study basic characteristics of non-Gaussian stochastic processes displaying slow convergence to a Gaussian with an increasing coarse-grained level of the time series. Here the multiplicative log-normal model stands for a stochastic process described by the multiplication of Gaussian and log-normally distributed variables. In other words, using two Gaussian variables, ξ and ω, the time series {xi} of this process can be described as xi = ξi expωi. Depending on the variance of ω, λ2, the probability density function (PDF) of x exhibits a non-Gaussian shape. As the non-Gaussianity parameter λ2 increases, the non-Gaussian tails become fatter. On the other hand, when λ2 → 0, the PDF converges to a Gaussian distribution. For the purpose of estimating the non-Gaussianity parameter λ2 from the observed time series, we evaluate a novel method based on analytical expressions of the absolute moments for the multiplicative log-normal models.

  5. Analytical expressions, modeling, and simulations of intensity and frequency fluctuation in a directly modulated semiconductor laser

    Science.gov (United States)

    Ghoniemy, Samy S.; MacEachern, Leonard; Mahmoud, Samy A.

    2003-05-01

    Analytical expressions for the intensity and frequency/phase noise of single mode semiconductor lasers based on quantum-mechanical rate equations are derived. Correlated photons, electrons, and phase Langevin noise sources and their auto and cross-correlation relations are presented along with a novel self-consistent normalized laser model that includes the laser's correlated noise sources. A Symbolically Defined Device (SDD) is constructed using the proposed normalized model and implemented in Agilent's Advanced Design System (ADS) CAD tool. Dynamic laser characteristics are predicted using the SDD implementation for 1300 nm InGaAsP/InP lasers. The results of time domain dynamic simulations of photons, carriers, optical output power, and phase - with and without the effects of the noise - are presented. Simulation results are used to show the effects of random noise on both the phase and optical power output of semiconductor lasers. Simulation results are analyzed to demonstrate the resonance frequency shift dependence on the bias current levels, the relation between the frequency response and the bias current and the dependence of the laser line width broadening on the frequency fluctuations. Comparison between the presented results and other published results (simulations and measurements) show good agreement while achieving simulation time enhancement. The suitability of the proposed models for the study and characterization of the performance of complete systems in both circuit and system simulations is examined.

  6. Multifractal Solar EUV Intensity Fluctuations and their Implications for Coronal Heating Models

    Science.gov (United States)

    Cadavid, A. C.; Rivera, Y. J.; Lawrence, J. K.; Christian, D. J.; Jennings, P. J.; Rappazzo, A. F.

    2016-11-01

    We investigate the scaling properties of the long-range temporal evolution and intermittency of Atmospheric Imaging Assembly/Solar Dynamics Observatory intensity observations in four solar environments: an active region core, a weak emission region, and two core loops. We use two approaches: the probability distribution function (PDF) of time series increments and multifractal detrended fluctuation analysis (MF-DFA). Noise taints the results, so we focus on the 171 Å waveband, which has the highest signal-to-noise ratio. The lags between pairs of wavebands distinguish between coronal versus transition region (TR) emission. In all physical regions studied, scaling in the range of 15-45 minutes is multifractal, and the time series are anti-persistent on average. The degree of anti-correlation in the TR time series is greater than that for coronal emission. The multifractality stems from long-term correlations in the data rather than the wide distribution of intensities. Observations in the 335 Å waveband can be described in terms of a multifractal with added noise. The multiscaling of the extreme-ultraviolet data agrees qualitatively with the radiance from a phenomenological model of impulsive bursts plus noise, and also from ohmic dissipation in a reduced magnetohydrodynamic model for coronal loop heating. The parameter space must be further explored to seek quantitative agreement. Thus, the observational “signatures” obtained by the combined tests of the PDF of increments and the MF-DFA offer strong constraints that can systematically discriminate among models for coronal heating.

  7. A valence bond modeling of trends in hydrogen abstraction barriers and transition states of hydroxylation reactions catalyzed by cytochrome P450 enzymes.

    Science.gov (United States)

    Shaik, Sason; Kumar, Devesh; de Visser, Sam P

    2008-08-06

    The paper outlines the fundamental factors that govern the mechanisms of alkane hydroxylation by cytochrome P450 and the corresponding barrier heights during the hydrogen abstraction and radical rebound steps of the process. This is done by a combination of density functional theory calculations for 11 alkanes and valence bond (VB) modeling of the results. The energy profiles and transition states for the various steps are reconstructed using VB diagrams (Shaik, S. S. J. Am. Chem. Soc. 1981, 103, 3692-3701. Shaik, S.; Shurki, A. Angew. Chem. Int. Ed. 1999, 38, 586-625.) and the DFT barriers are reproduced by the VB model from raw data based on C-H bond energies. The model explains a variety of other features of P450 hydroxylations: (a) the nature of the polar effect during hydrogen abstraction, (b) the difference between the activation mechanisms leading to the Fe(IV) vs the Fe(III) electromers, (c) the difference between the gas phase and the enzymatic reaction, and (d) the dependence of the rebound barrier on the spin state. The VB mechanism shows that the active species of the enzyme performs a complex reaction that involves multiple bond making and breakage mechanisms by utilizing an intermediate VB structure that cuts through the high barrier of the principal transformation between reactants and products, thereby mediating the process at a low energy cost. The correlations derived in this paper create order and organize the data for a process of a complex and important enzyme. This treatment can be generalized to the reactivity patterns of nonheme systems and synthetic iron-oxo porphyrin reagents.

  8. Atomic valence in molecular systems

    Science.gov (United States)

    Bochicchio, R. C.; Lain, L.; Torre, A.

    2003-06-01

    Atomic valence in molecular systems is described as a partitioning of the hole distribution, the complementary part of the particle distribution. In this scheme, valence splits into three contributions, related to electron spin density, nonuniform occupancy of orbitals (nonpairing terms) and exchange density (pairing terms), respectively, and whose importance depends on the nature of the state of the system. Calculations carried out for correlated CI and Hartree-Fock state functions in both Mulliken and topological AIM type partitionings as well as theoretical results show the suitability of this formulation for describing valence concepts.

  9. Field lines and magnetic surfaces in a two-component slab/2D model of interplanetary magnetic fluctuations

    Science.gov (United States)

    Matthaeus, W. H.; Pontius, D. H., Jr.; Gray, P. C.; Bieber, J. W.

    1995-01-01

    A two-component model for the spectrum of interplanetary magnetic fluctuations was proposed on the basis of ISEE observations, and has found an intriguing level of application in other solar wind studies. The model fluctuations consist of a fraction of 'slab' fluctuations, varying only in the direction parallel to the locally uniform mean magnetic field B(0) and a complement of 2D (two-dimensional) fluctuations that vary in the directions transverse to B(0). We have developed an spectral method computational algorithm for computing the magnetic flux surfaces (flux tubes) associated with the composite model, based upon a precise analogy with equations for ideal transport of a passive scalar in planar two dimensional geometry. Visualization of various composite models will be presented, including the 80 percent 2D/ 20 percent slab model with delta B/B(0) approximately equals 1 and a minus 5/3 spectral law, that is thought to approximately represent a snapshot of solar wind turbulence. Characteristically, the visualizations show that flux tubes, even when defined as regular on some plane, shred and disperse rapidly as they are viewed along the parallel direction. This diffusive process, which generalizes the standard picture of field line random walk, will be discussed in detail. Evidently, the traditional picture that flux tubes randomize like strands of spaghetti with a uniform tangle along the axial direction is in need of modification.

  10. Dispersion of a Passive Scalar Fluctuating Plume in a Turbulent Boundary Layer. Part III: Stochastic Modelling

    Science.gov (United States)

    Marro, Massimo; Salizzoni, Pietro; Soulhac, Lionel; Cassiani, Massimo

    2018-01-01

    We analyze the reliability of the Lagrangian stochastic micromixing method in predicting higher-order statistics of the passive scalar concentration induced by an elevated source (of varying diameter) placed in a turbulent boundary layer. To that purpose we analyze two different modelling approaches by testing their results against the wind-tunnel measurements discussed in Part I (Nironi et al., Boundary-Layer Meteorology, 2015, Vol. 156, 415-446). The first is a probability density function (PDF) micromixing model that simulates the effects of the molecular diffusivity on the concentration fluctuations by taking into account the background particles. The second is a new model, named VPΓ, conceived in order to minimize the computational costs. This is based on the volumetric particle approach providing estimates of the first two concentration moments with no need for the simulation of the background particles. In this second approach, higher-order moments are computed based on the estimates of these two moments and under the assumption that the concentration PDF is a Gamma distribution. The comparisons concern the spatial distribution of the first four moments of the concentration and the evolution of the PDF along the plume centreline. The novelty of this work is twofold: (i) we perform a systematic comparison of the results of micro-mixing Lagrangian models against experiments providing profiles of the first four moments of the concentration within an inhomogeneous and anisotropic turbulent flow, and (ii) we show the reliability of the VPΓ model as an operational tool for the prediction of the PDF of the concentration.

  11. Correlations and non-local transport in a critical-gradient fluctuation model

    Science.gov (United States)

    Nicolau, J. H.; García, L.; Carreras, B. A.

    2016-11-01

    A one-dimensional model based on critical-gradient fluctuation dynamics is used to study turbulent transport in magnetically confined plasmas. The model exhibits the selforganized criticality (SOC) dynamics. At the steady state, two regions are found: the outer one is close to critical state and the inner one remaining at the subcritical gradient. The gradient- flux relation exhibits a parabola-like profile centered in the most probable gradient following experimental studies. This is a signature of the non-locality of particle transport driven by avalanches: at the given position transport is due to gradients situated into closer but different positions. The R/S analysis, applied to the fluxes dynamics reveals memory and correlation. Different H exponents corresponding to different dynamical behavior are obtained. The flux at the edge exhibits long time correlations, which can be suppressed if the external drive or the system size is modified. On the other hand, we found that in the sub-critical region the quasiperiodicity is present in the avalanches.

  12. Magnetic Fluctuations in the Hubbard Model on Kagome-based Frustrated Lattices

    Science.gov (United States)

    Udagawa, Masafumi; Motome, Yukitoshi

    2008-03-01

    We report our results on the interplay between electron correlation and magnetic fluctuations in the geometrically-frustrated Kagome and hyper-Kagome Hubbard models at half filling. These models have two different geometrical units important in the low-energy physics: the frustrated triangle and the non-frustrated loop with even-number sites. In order to treat both of them on equal footing, we apply cluster dynamical mean-field theory to large-size clusters up to 12 sites. By calculating the spin susceptibility χ(q, φ), we have found in the Kagome system that an anomalous one-dimensional magnetic correlation previously found near the Mott transition [1] is observed even in the non-interacting case at high temperature, and its temperature range gradually suppressed by increasing electron correlation. This behavior is ascribed to the nesting property at the van-Hove singularity preserved under electron correlation. We will also present the results for hyper-Kagome system in relation to the recent experiments on Na4Ir3O8 [2]. [1] T. Ohashi et al., Phys. Rev. Lett. 97, 066401 (2006)[2] Y. Okamoto et al., Phys. Rev. Lett. 99, 137207 (2007)

  13. Efficient model chemistries for peptides. I. General framework and a study of the heterolevel approximation in RHF and MP2 with Pople split-valence basis sets.

    Science.gov (United States)

    Echenique, Pablo; Alonso, José Luis

    2008-07-15

    We present an exhaustive study of more than 250 ab initio potential energy surfaces (PESs) of the model dipeptide HCO-L-Ala-NH(2). The model chemistries (MCs) investigated are constructed as homo- and heterolevels involving possibly different RHF and MP2 calculations for the geometry and the energy. The basis sets used belong to a sample of 39 representants from Pople's split-valence families, ranging from the small 3-21G to the large 6-311++G(2df,2pd). The reference PES to which the rest are compared is the MP2/6-311++G(2df,2pd) homolevel, which, as far as we are aware, is the most accurate PES in the literature. All data sets have been analyzed according to a general framework, which can be extended to other complex problems and which captures the nearness concept in the space of MCs. The great number of MCs evaluated has allowed us to significantly explore this space and show that the correlation between accuracy and computational cost of the methods is imperfect, thus justifying a systematic search for the combination of features in a MC that is optimal to deal with peptides. Regarding the particular MCs studied, the most important conclusion is that the potentially very cost-saving heterolevel approximation is a very efficient one to describe the whole PES of HCO-L-Ala-NH(2). Finally, we show that, although RHF may be used to calculate the geometry if a MP2 single-point energy calculation follows, pure RHF//RHF homolevels are not recommendable for this problem. (c) 2008 Wiley Periodicals, Inc.

  14. Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations

    Science.gov (United States)

    Yang, Xiang I. A.; Park, George Ilhwan; Moin, Parviz

    2017-10-01

    Log-layer mismatch refers to a chronic problem found in wall-modeled large-eddy simulation (WMLES) or detached-eddy simulation, where the modeled wall-shear stress deviates from the true one by approximately 15 % . Many efforts have been made to resolve this mismatch. The often-used fixes, which are generally ad hoc, include modifying subgrid-scale stress models, adding a stochastic forcing, and moving the LES-wall-model matching location away from the wall. An analysis motivated by the integral wall-model formalism suggests that log-layer mismatch is resolved by the built-in physics-based temporal filtering. In this work we investigate in detail the effects of local filtering on log-layer mismatch. We show that both local temporal filtering and local wall-parallel filtering resolve log-layer mismatch without moving the LES-wall-model matching location away from the wall. Additionally, we look into the momentum balance in the near-wall region to provide an alternative explanation of how LLM occurs, which does not necessarily rely on the numerical-error argument. While filtering resolves log-layer mismatch, the quality of the wall-shear stress fluctuations predicted by WMLES does not improve with our remedy. The wall-shear stress fluctuations are highly underpredicted due to the implied use of LES filtering. However, good agreement can be found when the WMLES data are compared to the direct numerical simulation data filtered at the corresponding WMLES resolutions.

  15. [Analysis of cyclic fluctuations in larch bud moth populations by means of discrete-time dynamic models].

    Science.gov (United States)

    Nedorezov, L V

    2011-01-01

    Analysed are the data of larch bud moth (Zeiraphera diniana Gn.) fluctuations in Swiss Alps. The analysis applies simplest mathematical models of isolated population dynamics (in particular, Kostitzin model, Skellam model, the discrete logistic model, and some other ones), which include the minimal number of unknown parameters. The parameters have been estimated, for all the models in hand, by the least-squares method, to fit certain data from the Global Population Dynamics Database (N 1407 and N 6195), the sequences of the data deviations from the model trajectories being treated as well. The best approximations are shown to be achieved with Moran-Ricker model and the discrete logistic model. Statistical criteria (Kolmogorov-Smirnov and Shapiro-Wilk tests) reveal that the hypotheses of normal distribution of residuals must be rejected for one of the time series (N 1407); some models demonstrate serial correlations in the sequence of residuals (according to Durbin-Watson test). This leads to the conclusion that periodic fluctuations in the larch bud moth population (N 1407) can hardly be explained by self-regulation mechanisms alone. For another time series (N 6195), the modified discrete logistic model has appeared to be acceptable as a mode of fluctuations.

  16. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    Science.gov (United States)

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands.

  17. A Hydro-Economic Model for Water Level Fluctuations: Combining Limnology with Economics for Sustainable Development of Hydropower

    Science.gov (United States)

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  18. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    Directory of Open Access Journals (Sweden)

    Philipp Emanuel Hirsch

    Full Text Available Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity. Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands.

  19. Retrieving CO concentrations from FT-IR spectra with nonmodeled interferences and fluctuating baselines using PCR model parameters

    DEFF Research Database (Denmark)

    Bak, J.

    2001-01-01

    It is demonstrated that good predictions of gas concentrations based on measured spectra can be made even if these spectra contain totally overlapping spectral features from nonidentified and non-modeled interfering compounds and fluctuating baselines. The prediction program (CONTOUR) is based so...

  20. The analysis of volatility of gold coin price fluctuations in Iran using ARCH & VAR models

    Directory of Open Access Journals (Sweden)

    Younos Vakilolroaya

    2014-03-01

    Full Text Available The aim of this study is to investigate the changes in gold price and modeling of its return volatility and conditional variance model. The study gathers daily prices of gold coins as the dependent variable and the price of gold in world market, the price of oil in OPEC, exchange rate USD to IRR and index of Tehran Stock Exchange from March 2007 to July 2013 and using ARCH family models and VAR methods, the study analysis the data. The study first examines whether the data are stationary or not and then it reviews the household stability, Arch and Garch models. The proposed study investigates the causality among variables, selects different factors, which could be blamed of uncertainty in the coin return. The results indicate that the effect of sudden changes of standard deviation and after a 14-day period disappears and gold price goes back to its initial position. In addition, in this study we observe the so-called leverage effect in Iran’s Gold coin market, which means the good news leads to more volatility in futures market than bad news in an equal size. Finally, the result of analysis of variance implies that in the short-term, a large percentage change in uncertainty of the coin return is due to changes in the same factors and volatility of stock returns in the medium term, global gold output, oil price and exchange rate fluctuation to some extent will show the impact. In the long run, the effects of parameters are more evident.

  1. Modelling of the effects of conduction band fluctuations caused by nitrogen clustering in GaInNAs materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiao; Rorison, Judy M. [Department of Electrical and Electronic Engineering, University of Bristol, BS8 1TR (United Kingdom)

    2011-05-15

    It has been observed experimentally that the band edge photoluminescence of GaInNAs Quantum well (QW) materials is broadened resulting from band-tailing, localised states or conduction band edge fluctuations. In this paper we develop a model for N compositional fluctuations causing conduction band edge fluctuations which localise the electrons into the resulting quantum dots (QDs). The electron dynamics in the QDs and QW states are examined using a rate equation approach and the carrier populations presented as a function of barrier height and temperature. This mechanism could lead to broad gain in GaInAsN QW structures which could be useful for broad band SOAs for optical communications (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Systems-level modeling the effects of arsenic exposure with sequential pulsed and fluctuating patterns for tilapia and freshwater clam

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.-Y. [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Tsai, J.-W. [Institute of Ecology and Evolutionary Ecology, China Medical University, Taichung 40402, Taiwan (China); Ju, Y.-R. [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Liao, C.-M., E-mail: cmliao@ntu.edu.t [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2010-05-15

    The purpose of this paper was to use quantitative systems-level approach employing biotic ligand model based threshold damage model to examine physiological responses of tilapia and freshwater clam to sequential pulsed and fluctuating arsenic concentrations. We tested present model and triggering mechanisms by carrying out a series of modeling experiments where we used periodic pulses and sine-wave as featured exposures. Our results indicate that changes in the dominant frequencies and pulse timing can shift the safe rate distributions for tilapia, but not for that of freshwater clam. We found that tilapia increase bioenergetic costs to maintain the acclimation during pulsed and sine-wave exposures. Our ability to predict the consequences of physiological variation under time-varying exposure patterns has also implications for optimizing species growing, cultivation strategies, and risk assessment in realistic situations. - Systems-level modeling the pulsed and fluctuating arsenic exposures.

  3. Superconducting fluctuations in the normal state of the two-dimensional Hubbard model.

    Science.gov (United States)

    Chen, Xi; LeBlanc, J P F; Gull, Emanuel

    2015-09-11

    We compute the two-particle quantities relevant for superconducting correlations in the two-dimensional Hubbard model within the dynamical cluster approximation. In the normal state we identify the parameter regime in density, interaction, and second-nearest-neighbor hopping strength that maximizes the d_{x^{2}-y^{2}} superconducting transition temperature. We find in all cases that the optimal transition temperature occurs at intermediate coupling strength, and is suppressed at strong and weak interaction strengths. Similarly, superconducting fluctuations are strongest at intermediate doping and suppressed towards large doping and half filling. We find a change in sign of the vertex contributions to d_{xy} superconductivity from repulsive near half filling to attractive at large doping. p-wave superconductivity is not found at the parameters we study, and s-wave contributions are always repulsive. For negative second-nearest-neighbor hopping the optimal transition temperature shifts towards the electron-doped side in opposition to the van Hove singularity, which moves towards hole doping. We surmise that an increase of the local interaction of the electron-doped compounds would increase T_{c}.

  4. Maintenance of polygenic sex determination in a fluctuating environment: an individual-based model.

    Science.gov (United States)

    Bateman, A W; Anholt, B R

    2017-05-01

    R. A. Fisher predicted that individuals should invest equally in offspring of both sexes, and that the proportion of males and females produced (the primary sex ratio) should evolve towards 1:1 when unconstrained. For many species, sex determination is dependent on sex chromosomes, creating a strong tendency for balanced sex ratios, but in other cases, multiple autosomal genes interact to determine sex. In such cases, the maintenance of multiple sex-determining alleles at multiple loci and the consequent among-family variability in sex ratios presents a puzzle, as theory predicts that such systems should be unstable. Theory also predicts that environmental influences on sex can complicate outcomes of genetic sex determination, and that population structure may play a role. Tigriopus californicus, a copepod that lives in splash-pool metapopulations and exhibits polygenic and environment-dependent sex determination, presents a test case for relevant theory. We use this species as a model for parameterizing an individual-based simulation to investigate conditions that could maintain polygenic sex determination. We find that metapopulation structure can delay the degradation of polygenic sex determination and that periods of alternating frequency-dependent selection, imposed by seasonal fluctuations in environmental conditions, can maintain polygenic sex determination indefinitely. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  5. Energy distribution and local fluctuations in strongly coupled open quantum systems: The extended resonant level model

    Science.gov (United States)

    Ochoa, Maicol A.; Bruch, Anton; Nitzan, Abraham

    2016-07-01

    We study the energy distribution in the extended resonant level model at equilibrium. Previous investigations [Phys. Rev. B 89, 161306 (2014), 10.1103/PhysRevB.89.161306; Phys. Rev. B 93, 115318 (2016), 10.1103/PhysRevB.93.115318] have found, for a resonant electronic level interacting with a thermal free-electron wide-band bath, that the expectation value for the energy of the interacting subsystem can be correctly calculated by considering a symmetric splitting of the interaction Hamiltonian between the subsystem and the bath. However, the general implications of this approach were questioned [Phys. Rev. B 92, 235440 (2015), 10.1103/PhysRevB.92.235440]. Here, we show that, already at equilibrium, such splitting fails to describe the energy fluctuations, as measured here by the second and third central moments (namely, width and skewness) of the energy distribution. Furthermore, we find that when the wide-band approximation does not hold, no splitting of the system-bath interaction can describe the system thermodynamics. We conclude that in general no proper division subsystem of the Hamiltonian of the composite system can account for the energy distribution of the subsystem. This also implies that the thermodynamic effects due to local changes in the subsystem cannot in general be described by such splitting.

  6. Measurement of Pressure Fluctuations inside a Model Thrust Bearing Using PVDF Sensors

    Science.gov (United States)

    Youssef, Andrew; Matthews, David; Guzzomi, Andrew; Pan, Jie

    2017-01-01

    Thrust bearings play a vital role in propulsion systems. They rely on a thin layer of oil being trapped between rotating surfaces to produce a low friction interface. The “quality” of this bearing affects many things from noise transmission to the ultimate catastrophic failure of the bearing itself. As a result, the direct measure of the forces and vibrations within the oil filled interface would be very desirable and would give an indication of the condition of the bearing in situ. The thickness of the oil film is, however, very small and conventional vibration sensors are too cumbersome to use in this confined space. This paper solves this problem by using a piezoelectric polymer film made from Polyvinylidine Fluoride (PVDF). These films are very thin (50 μm) and flexible and easy to install in awkward spaces such as the inside of a thrust bearing. A model thrust bearing was constructed using a 3D printer and PVDF films inserted into the base of the bearing. In doing so, it was possible to directly measure the force fluctuations due to the rotating pads and investigate various properties of the thrust bearing itself. PMID:28420152

  7. Attachment style in the context of clinical and health psychology : A proposal for the assessment of valence, incongruence, and accessibility of attachment representations in various working models

    NARCIS (Netherlands)

    Gerlsma, Coby; Luteijn, Frans

    By combining the Adult Attachment interview and the Autobiographical Memory Test, a structured interview was developed as a 'quick and dirty' measure for the assessment of attachment representations in clinical settings. The interview intends to assess valence, incongruence, and accessibility of the

  8. Stochastic modelling of intermittent fluctuations in the scrape-off layer: Correlations, distributions, level crossings, and moment estimation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, O. E., E-mail: odd.erik.garcia@uit.no; Kube, R.; Theodorsen, A. [Department of Physics and Technology, UiT The Arctic University of Norway, N-9037 Tromsø (Norway); Pécseli, H. L. [Physics Department, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo (Norway)

    2016-05-15

    A stochastic model is presented for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas. The fluctuations in the plasma density are modeled by a super-position of uncorrelated pulses with fixed shape and duration, describing radial motion of blob-like structures. In the case of an exponential pulse shape and exponentially distributed pulse amplitudes, predictions are given for the lowest order moments, probability density function, auto-correlation function, level crossings, and average times for periods spent above and below a given threshold level. Also, the mean squared errors on estimators of sample mean and variance for realizations of the process by finite time series are obtained. These results are discussed in the context of single-point measurements of fluctuations in the scrape-off layer, broad density profiles, and implications for plasma–wall interactions due to the transient transport events in fusion grade plasmas. The results may also have wide applications for modelling fluctuations in other magnetized plasmas such as basic laboratory experiments and ionospheric irregularities.

  9. Entanglement and fluctuations in the XXZ model with power-law interactions

    Science.gov (United States)

    Frérot, Irénée; Naldesi, Piero; Roscilde, Tommaso

    2017-06-01

    We investigate the ground-state properties of the spin-1 /2 XXZ model with power-law-decaying (1 /rα ) interactions, which describe spins interacting with long-range transverse (XX) ferromagnetic interactions and longitudinal (Z) antiferromagnetic interactions, or hard-core bosons with long-range repulsion and hopping. The long-range nature of the couplings allows us to quantitatively study the spectral, correlation, and entanglement properties of the system by making use of linear spin-wave theory, supplemented with density-matrix renormalization group in one-dimensional systems. Our most important prediction is the existence of three distinct coupling regimes, depending on the decay exponent α and number of dimensions d : (1) a short-range regime for α >d +σc (where σc=1 in the gapped Néel antiferromagnetic phase exhibited by the XXZ model, and σc=2 in the gapless XY ferromagnetic phase), sharing the same properties as those of finite-range interactions (α =∞ ); (2) a long-range regime α sharing the same properties as those of the infinite-range interactions (α =0 ) in the thermodynamic limit; and (3) a most intriguing medium-range regime for d <α model the z exponent is found to control the scaling of fluctuations, the decay of correlations, and a universal subdominant term in the entanglement entropy, leading to a very rich palette of behaviors for ground-state quantum correlations beyond what is known for finite-range interactions.

  10. Modeling of wave-induced irradiance fluctuations at near-surface depths in the ocean: a comparison with measurements.

    Science.gov (United States)

    You, Yu; Stramski, Dariusz; Darecki, Miroslaw; Kattawar, George W

    2010-02-20

    We develop a computationally fast radiative transfer model for simulating the fluctuations of the underwater downwelling irradiance E(d) at near-surface depths, which occur due to focusing of sunlight by wind-driven surface waves. The model is based on the hybrid matrix operator-Monte Carlo method, which was specifically designed for simulating radiative transfer in a coupled atmosphere-surface-ocean system involving a dynamic ocean surface. In the current version of the model, we use a simplified description of surface waves, which accounts for surface slope statistics, but not surface wave elevation, as a direct source of underwater light fluctuations. We compare the model results with measurements made in the Santa Barbara Channel. The model-simulated and measured time series of E(d)(t) show remarkable similarity. Major features of the probability distribution of instantaneous irradiance, the frequency content of irradiance fluctuations, and the statistical properties of light flashes produced by wave focusing are also generally consistent between the model simulations and measurements for a few near-surface depths and light wavelengths examined. Despite the simplification in the representation of surface waves, this model provides a reasonable first-order approximation to modeling the wave focusing effects at near-surface depths, which require high temporal and spatial resolution (of the order of 1 ms and 1 mm, respectively) to be adequately resolved.

  11. Modelling an infinite nucleonic system. Static and dynamical properties. Study of density fluctuations

    Science.gov (United States)

    Idier, D.; Farine, M.; Remaud, B.; Sébille, F.

    For one decade, several fields in physics as well microscopic as macroscopic benefit from the computational particle-models (astrophysics, electronics, fluids mechanics...). In particular, the nuclear matter offers an interesting challenge as many body problem, owing to the quantal nature of its components and the complexity of the in-medium interaction. Using a model derived from semi-classical Vlasov equation and the projection of the Wigner function on a Gaussian coherent states basis (pseudo-particles), static and dynamical properties of nuclear matter are studied, featuring the growing of bulk instabilities in dilute matter. Using different zero and finite range effective interactions, the effect of the model parameters upon the relation total energy - density - temperature and surface energy of the pseudo-particles fluid is pointed out. The dynamical feature is first based upon a model of the 2-body Uehling-Ulhenbeck collisionnal term. A study of the relaxation of a nucleonic system is performed. At last, the pseudo-particle model is used in order to extract time scale for the growing of density fluctuations. This process is supposed to be a possible way to clusterization during heavy nuclei collisions. Depuis une dizaine d'années, plusieurs domaines de la physique aussi bien microscopiques que macroscopiques bénéficient des modèles à particules pour ordinateurs (astrophysique, électronique, plasmas...). En particulier, la matière nucléaire constitue un objet intéressant pour le problème à N corps ; tant par la nature quantique des nucléons que par la complexité des interactions dans ce milieu. A travers un modèle dérivant de l'équation de Vlasov semi-classique et de la projection de la fonction de Wigner sur une base d'état cohérents gaussiens (les pseudo-particules), on étudie les propriétés statiques et dynamiques de la matière nucléaire dont en particulier le développement des instabilités de volume en milieu dilué. Pour diff

  12. Pressure-induced anomalous valence crossover in cubic YbCu5-based compounds.

    Science.gov (United States)

    Yamaoka, Hitoshi; Tsujii, Naohito; Suzuki, Michi-To; Yamamoto, Yoshiya; Jarrige, Ignace; Sato, Hitoshi; Lin, Jung-Fu; Mito, Takeshi; Mizuki, Jun'ichiro; Sakurai, Hiroya; Sakai, Osamu; Hiraoka, Nozomu; Ishii, Hirofumi; Tsuei, Ku-Ding; Giovannini, Mauro; Bauer, Ernst

    2017-07-19

    A pressure-induced anomalous valence crossover without structural phase transition is observed in archetypal cubic YbCu5 based heavy Fermion systems. The Yb valence is found to decrease with increasing pressure, indicating a pressure-induced crossover from a localized 4f 13 state to the valence fluctuation regime, which is not expected for Yb systems with conventional c-f hybridization. This result further highlights the remarkable singularity of the valence behavior in compressed YbCu5-based compounds. The intermetallics Yb2Pd2Sn, which shows two quantum critical points (QCP) under pressure and has been proposed as a potential candidate for a reentrant Yb2+ state at high pressure, was also studied for comparison. In this compound, the Yb valence monotonically increases with pressure, disproving a scenario of a reentrant non-magnetic Yb2+ state at the second QCP.

  13. A model of the geochemical and physical fluctuations of the lava lake at Erebus volcano, Antarctica

    Science.gov (United States)

    Molina, Indira; Burgisser, Alain; Oppenheimer, Clive

    2015-12-01

    Erebus volcano, Antarctica, exhibits periodical surface fluctuations of both geochemical and physical nature. Modeling the physics driving the lake oscillation is a challenge, even with a relatively simple theoretical framework. We present a quantitative analysis that aims to reconcile both lake level and gas geochemical cycles. Our model is based on the assumption that the periodicity is caused by the regular release of magma batches and/or core annular flow that have a fixed volume of melt and ascend and degas in equilibrium. Results suggest that cycles are not caused by the mixing between magma residing in the lake and a deep magma but by two distinct deep sources that rise separately. These sources of bubbly magma come from at most 2-3 km depth and rise buoyantly. Individual batches detach from the rising magmas at depths of 20-250 m. The two batch types can coexist in a single conduit up to a depth of 30 m, above which they rise alternately to release respectively 19 and 23 kg/s of gas at the lake surface every 10 min. The temperature of the descending flow is between 890 and 950 °C, which is roughly 100 °C colder than the ascending currents. Batch pairs have shapes likely constrained by the conduit width. Regardless of their shapes, the pairs reach very high porosities near the surface and have diameters of 4-14 m that are consistent with video observations showing spreading waves at the lake surface. The alternating arrival of these large batches suggests a lava lake mostly filled with gas-rich magma.

  14. Janus Nematic Colloids with Designable Valence

    Directory of Open Access Journals (Sweden)

    Simon Čopar

    2014-05-01

    Full Text Available Generalized Janus nematic colloids based on various morphologies of particle surface patches imposing homeotropic and planar surface anchoring are demonstrated. By using mesoscopic numerical modeling, multiple types of Janus particles are explored, demonstrating a variety of novel complex colloidal structures. We also show binding of Janus particles to a fixed Janus post in the nematic cell, which acts as a seed and a micro-anchor for the colloidal structure. Janus colloidal structures reveal diverse topological defect configurations, which are effectively combinations of surface boojum and bulk defects. Topological analysis is applied to defects, importantly showing that topological charge is not a well determined topological invariant in such patchy nematic Janus colloids. Finally, this work demonstrates colloidal structures with designable valence, which could allow for targeted and valence-conditioned self-assembly at micro- and nano-scale.

  15. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    Science.gov (United States)

    Foy, E.; Ronan, G.; Chinitz, W.

    1982-01-01

    A principal element to be derived from modeling turbulent reacting flows is an expression for the reaction rates of the various species involved in any particular combustion process under consideration. A temperature-derived most-likely probability density function (pdf) was used to describe the effects of temperature fluctuations on the Arrhenius reaction rate constant. A most-likely bivariate pdf described the effects of temperature and species concentrations fluctuations on the reaction rate. A criterion is developed for the use of an "appropriate" temperature pdf. The formulation of models to calculate the mean turbulent Arrhenius reaction rate constant and the mean turbulent reaction rate is considered and the results of calculations using these models are presented.

  16. Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey

    OpenAIRE

    Ee Wah Lim; Razali Ismail

    2015-01-01

    Resistive switching effect in transition metal oxide (TMO) based material is often associated with the valence change mechanism (VCM). Typical modeling of valence change resistive switching memory consists of three closely related phenomena, i.e., conductive filament (CF) geometry evolution, conduction mechanism and temperature dynamic evolution. It is widely agreed that the electrochemical reduction-oxidation (redox) process and oxygen vacancies migration plays an essential role in the CF fo...

  17. Slc26a4 expression prevents fluctuation of hearing in a mouse model of large vestibular aqueduct syndrome.

    Science.gov (United States)

    Nishio, Ayako; Ito, Taku; Cheng, Hui; Fitzgerald, Tracy S; Wangemann, Philine; Griffith, Andrew J

    2016-08-04

    SLC26A4 mutations cause fluctuating and progressive hearing loss associated with enlargement of the vestibular aqueduct (EVA). SLC26A4 encodes a transmembrane anion exchanger called pendrin expressed in nonsensory epithelial cells of the lateral wall of cochlea, vestibular organs and endolymphatic sac. We previously described a transgenic mouse model of EVA with doxycycline (dox)-inducible expression of Slc26a4 in which administration of dox from conception to embryonic day 17.5 (DE17.5) resulted in hearing fluctuation between 1 and 3months of age. In the present study, we hypothesized that Slc26a4 is required to stabilize hearing in DE17.5 ears between 1 and 3months of age. We tested our hypothesis by evaluating the effect of postnatal re-induction of Slc26a4 expression on hearing. Readministration of dox to DE17.5 mice at postnatal day 6 (P6), but not at 1month of age, resulted in reduced click-evoked auditory brainstem response (ABR) thresholds, less fluctuation of hearing and a higher surface density of pendrin expression in spindle-shaped cells of the stria vascularis. Pendrin expression in spindle-shaped cells was inversely correlated with ABR thresholds. These findings suggest that stabilization of hearing by readministration of dox at P6 is mediated by pendrin expression in spindle-shaped cells. We conclude that early re-induction of Slc26a4 expression can prevent fluctuation of hearing in our Slc26a4-insufficient mouse model. Restoration of SLC26A4 expression and function could reduce or prevent fluctuation of hearing in EVA patients. Published by Elsevier Ltd.

  18. Modeling a nucleon system: static and dynamical properties - density fluctuations; Modelisation d`un system de nucleons: proprietes statiques et dynamiques - fluctuation de densite

    Energy Technology Data Exchange (ETDEWEB)

    Idier, D. [Nantes Univ., 44 (France)

    1997-02-15

    This thesis sets forth a quasi-particle model for the static and dynamical properties of nuclear matter. This model is based on a scale ratio of quasi-particle to nucleons and the projection of the semi-classical distribution on a coherent Gaussian state basis. The first chapter is dealing with the transport equations, particularly with the Vlasov equation for Wigner distribution function. The second one is devoted to the statics of nuclear matter. Here, the sampling effect upon the nuclear density is treated and the state equation of the Gaussian fluid is compared with that given by Hartree-Fock approximation. We define state equation as the relationship between the nucleon binding energy and density, for a given temperature. The curvature around the state equation minimum of the quasi-particle system is shown to be related to the speed of propagation of density perturbation. The volume energy and the surface properties of a (semi-)infinite nucleon system are derived. For the resultant saturated auto-coherent semi-infinite system of quasi-particles the surface coefficient appearing in the mass formula is extracted as well as the system density profile. The third chapter treats the dynamics of the two-particle residual interactions. The effect of different parameters on relaxation of a nucleon system without a mean field is studied by means of a Eulerian and Lagrangian modeling. The fourth chapter treats the volume instabilities (spinodal decomposition) in nuclear matter. The quasi-particle systems, initially prepared in the spinodal region of the utilized interaction, are set to evolve. It is shown then that the scale ratio acts upon the amount of fluctuations injected in the system. The inhomogeneity degree and a proper time are defined and the role of collisions in the spinodal decomposition as well as that of the initial temperature and density, are investigated. Assuming different effective macroscopic interactions, the influence of quantities as

  19. Including Thermal Fluctuations in Actomyosin Stable States Increases the Predicted Force per Motor and Macroscopic Efficiency in Muscle Modelling.

    Science.gov (United States)

    Marcucci, Lorenzo; Washio, Takumi; Yanagida, Toshio

    2016-09-01

    Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges.

  20. The valence of small fullerenes

    Science.gov (United States)

    Milani, C.; Giambelli, C.; Roman, H. E.; Alasia, F.; Benedek, G.; Broglia, R. A.; Sanguinetti, S.; Yabana, K.

    1996-08-01

    The production and isolation of small fullerenes and of their stable compounds and the knowledge of their chemistry should pave the way to the syntesis of novel carbon-based cluster-assembled materials like carbon clathrates, hollow diamonds and diamond-like thin films. In this quest, the knowledge of the valence of the small fullerenes is essential. We report here that the small fullerenes C n (20 ≤ n ≤ 32), aside from the well known values associated with the local one electron picture of dangling bonds, display hidden valences connected with the free electron picture of the shell structure of π-electrons.

  1. Continuous information flow fluctuations

    Science.gov (United States)

    Rosinberg, Martin Luc; Horowitz, Jordan M.

    2016-10-01

    Information plays a pivotal role in the thermodynamics of nonequilibrium processes with feedback. However, much remains to be learned about the nature of information fluctuations in small-scale devices and their relation with fluctuations in other thermodynamics quantities, like heat and work. Here we derive a series of fluctuation theorems for information flow and partial entropy production in a Brownian particle model of feedback cooling and extend them to arbitrary driven diffusion processes. We then analyze the long-time behavior of the feedback-cooling model in detail. Our results provide insights into the structure and origin of large deviations of information and thermodynamic quantities in autonomous Maxwell's demons.

  2. Stochastic periodic solution of a non-autonomous toxic-producing phytoplankton allelopathy model with environmental fluctuation

    Science.gov (United States)

    Zhao, Yu; Yuan, Sanling; Zhang, Tonghua

    2017-03-01

    Phytoplankton allelopathy is an ecological phenomenon that concerns the interaction among toxic-producing phytoplankton. Recently, researchers pay great attention to whether the cyclic outbreaks of the harmful algal blooms are related with the allelopathy in a random fluctuating environment. In this paper, we are particularly interested in a non-autonomous toxic-producing phytoplankton allelopathy model with environmental fluctuation. For the model, we first consider the existence of the global positive solution and the boundary periodic solution. Then, by using Khasminskii's method and Lyapunov function, we derive the sufficient conditions for the existence of the nontrivial positive stochastically periodic solution. Our results show that the allelopathic effect plays an important role in the existence of the stochastic periodic solution, for example it can lead to the decrease of the peaks of the cyclic outbreaks of the harmful algal blooms. Numerical simulations are carried out to support our theoretical results.

  3. Modeling the nanoscale viscoelasticity of fluids by bridging non-Markovian fluctuating hydrodynamics and molecular dynamics simulations.

    Science.gov (United States)

    Voulgarakis, Nikolaos K; Satish, Siddarth; Chu, Jhih-Wei

    2009-12-21

    A multiscale computational method is developed to model the nanoscale viscoelasticity of fluids by bridging non-Markovian fluctuating hydrodynamics (FHD) and molecular dynamics (MD) simulations. To capture the elastic responses that emerge at small length scales, we attach an additional rheological model parallel to the macroscopic constitutive equation of a fluid. The widely used linear Maxwell model is employed as a working choice; other models can be used as well. For a fluid that is Newtonian in the macroscopic limit, this approach results in a parallel Newtonian-Maxwell model. For water, argon, and an ionic liquid, the power spectrum of momentum field autocorrelation functions of the parallel Newtonian-Maxwell model agrees very well with those calculated from all-atom MD simulations. To incorporate thermal fluctuations, we generalize the equations of FHD to work with non-Markovian rheological models and colored noise. The fluctuating stress tensor (white noise) is integrated in time in the same manner as its dissipative counterpart and numerical simulations indicate that this approach accurately preserves the set temperature in a FHD simulation. By mapping position and velocity vectors in the molecular representation onto field variables, we bridge the non-Markovian FHD with atomistic MD simulations. Through this mapping, we quantitatively determine the transport coefficients of the parallel Newtonian-Maxwell model for water and argon from all-atom MD simulations. For both fluids, a significant enhancement in elastic responses is observed as the wave number of hydrodynamic modes is reduced to a few nanometers. The mapping from particle to field representations and the perturbative strategy of developing constitutive equations provide a useful framework for modeling the nanoscale viscoelasticity of fluids.

  4. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems.

    Science.gov (United States)

    Huo, Pengfei; Coker, David F

    2012-03-21

    Two-dimensional photon-echo experiments indicate that excitation energy transfer between chromophores near the reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides occurs coherently with decoherence times of hundreds of femtoseconds, comparable to the energy transfer time scale in these systems. The original explanation of this observation suggested that correlated fluctuations in chromophore excitation energies, driven by large scale protein motions could result in long lived coherent energy transfer dynamics. However, no significant site energy correlation has been found in recent molecular dynamics simulations of several model light harvesting systems. Instead, there is evidence of correlated fluctuations in site energy-electronic coupling and electronic coupling-electronic coupling. The roles of these different types of correlations in excitation energy transfer dynamics are not yet thoroughly understood, though the effects of site energy correlations have been well studied. In this paper, we introduce several general models that can realistically describe the effects of various types of correlated fluctuations in chromophore properties and systematically study the behavior of these models using general methods for treating dissipative quantum dynamics in complex multi-chromophore systems. The effects of correlation between site energy and inter-site electronic couplings are explored in a two state model of excitation energy transfer between the accessory bacteriochlorophyll and bacteriopheophytin in a reaction center system and we find that these types of correlated fluctuations can enhance or suppress coherence and transfer rate simultaneously. In contrast, models for correlated fluctuations in chromophore excitation energies show enhanced coherent dynamics but necessarily show decrease in excitation energy transfer rate accompanying such coherence enhancement. Finally, for a three state model of the Fenna-Matthews-Olsen light

  5. Transient and stationary characteristics of the Malthus-Verhulst-Bernoulli model with non-Gaussian fluctuating parameters

    Science.gov (United States)

    Dubkov, Alexander A.; Kharcheva, Anna A.

    2014-05-01

    Two generalized Verhulst equations with non-Gaussian fluctuations of the reproduction rate and the volume of resources are under analytical investigation. For the first model, using the central limit theorem, we find the asymptotic behavior of the probability distribution of population density for an arbitrary non-Gaussian colored noise with nonzero power spectral density at zero frequency. Specifically, we confirm this result in the case of Markovian dichotomous noise and examine the evolution of mean population density. For fluctuating resources with one-sided stable distribution the transient dynamics of probability density function and statistical characteristics in the steady state are obtained. As shown, the scenario of the population's evolution depends on the parameter of nonlinearity in the original stochastic equation.

  6. Models for microtubule cargo transport coupling the Langevin equation to stochastic stepping motor dynamics: Caring about fluctuations

    Science.gov (United States)

    Bouzat, Sebastián

    2016-01-01

    One-dimensional models coupling a Langevin equation for the cargo position to stochastic stepping dynamics for the motors constitute a relevant framework for analyzing multiple-motor microtubule transport. In this work we explore the consistence of these models focusing on the effects of the thermal noise. We study how to define consistent stepping and detachment rates for the motors as functions of the local forces acting on them in such a way that the cargo velocity and run-time match previously specified functions of the external load, which are set on the base of experimental results. We show that due to the influence of the thermal fluctuations this is not a trivial problem, even for the single-motor case. As a solution, we propose a motor stepping dynamics which considers memory on the motor force. This model leads to better results for single-motor transport than the approaches previously considered in the literature. Moreover, it gives a much better prediction for the stall force of the two-motor case, highly compatible with the experimental findings. We also analyze the fast fluctuations of the cargo position and the influence of the viscosity, comparing the proposed model to the standard one, and we show how the differences on the single-motor dynamics propagate to the multiple motor situations. Finally, we find that the one-dimensional character of the models impede an appropriate description of the fast fluctuations of the cargo position at small loads. We show how this problem can be solved by considering two-dimensional models.

  7. Development of analytical model for evaluating temperature fluctuation in coolant. 12. Investigation of stationary random temperature fluctuation characteristics in frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Toshiharu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Thermal striping phenomena characterized by stationary random temperature fluctuations are observed in the region immediately above the core exit of liquid-metal-cooled fast breeder reactors (LMFBRs) due to the interactions of cold sodium flowing out of a control rod (C/R) assembly and hot sodium flowing out of adjacent fuel assemblies (F/As). Therefore the in-vessel components located in the core outlet region, such as upper core structure (UCS), flow guide tube, C/R upper guide tube, etc., must be protected against the stationary random thermal process which might induce high-cycle fatigue. In this study, frequency characteristics of stationary random temperature fluctuations were investigated by the use of the time-series data from parallel impinging jet experiments, TIFFSS-I. (J.P.N.)

  8. Towards a consistent modelling of plasma edge turbulence in mean field transport codes: Focus on sputtering and plasma fluctuations

    Directory of Open Access Journals (Sweden)

    Y. Marandet

    2017-08-01

    Full Text Available Transport codes are the main workhorses for global edge studies and modern divertor design. These tools do not resolve turbulent fluctuations responsible for the bulk of cross-field transport in the Scrape-off Layer (SOL, and solve mean field equations instead. Turbulent fluxes are modelled by diffusive transport along the gradients of the mean fields. Improvements of this description, on the basis of approaches developed in computational fluid dynamics are discussed, broadening the outlook given in Bufferand et al. (2016 [10]. This contribution focuses on additional closure issues related to non-linearities in sources/sinks from plasma-wall interactions, here sputtered fluxes from the plasma facing components. “Fluctuation dressed” sputtering yields Yeff are introduced and calculated from turbulence simulations. Properly taking fluctuations into account is shown to lead to higher sputtering at sub-threshold energies compared to mean field predictions. As a first step towards an implementation in a transport code, the possibility of parametrizing Yeff in terms of the mean fields is tentatively investigated.

  9. Daily fluctuations in teachers' well-being: a diary study using the Job Demands-Resources model.

    Science.gov (United States)

    Simbula, Silvia

    2010-10-01

    The study tests the dynamic nature of the Job Demands-Resources model with regard to both motivational and health impairment processes. It does so by examining whether daily fluctuations in co-workers' support (i.e., a typical job resource) and daily fluctuations in work/family conflict (i.e., a typical job demand) predict day-levels of job satisfaction and mental health through work engagement and exhaustion, respectively. A total of 61 schoolteachers completed a general questionnaire and a daily survey over a period of five consecutive work days. Multilevel analyses provided evidence for both the above processes. Consistently with the hypotheses, our results showed that day-level work engagement mediated the impact of day-level co-workers' support on day-level job satisfaction and day-level mental health, after general levels of work engagement and outcome variables had been controlled for. Moreover, day-level exhaustion mediated the relationship between day-level work/family conflict and day-level job satisfaction and day-level mental health after general levels of exhaustion and outcome variables had been controlled for. These findings provide new insights into the dynamic psychological processes that determine daily fluctuations in employee well-being. Such insights may be transformed into job redesign strategies and other interventions designed to enhance work-related psychological well-being on a daily level.

  10. A conceptual hydrotectonic model of water level fluctuation in a cave at the Vienna Basin (Austria)

    Science.gov (United States)

    Hardege, Jonas; Plan, Lukas; Winkler, Gerhard; Baron, Ivo; Grasemann, Bernhard

    2017-04-01

    Eisensteinhöhle is a hydrothermally overprinted cave at the south-western margin of the Miocene Vienna pull-apart Basin. The basin has been formed by a still active NE-SW trending sinistral strike slip fault associated with NNE-SSW striking normal faults. These faults create pathways for thermal water to rise from the central basin and emerge in several lukewarm thermal springs along the basin margin. The cave was opened during quarrying in 1855 and is developed in a Miocene marine carbonate breccia. It has a crevice-shape while the morphology in most parts is coined by hydrothermal karstification. It is about 2 km long and has a vertical extend of 87 m. At the deepest point, there is a small pond filled with 14.5 °C warm water. This is about 5 °C above the annual average and it shows that there is some connection to a nearby subthermal spring with similar temperature. The water level fluctuates within a range of 3 m and at a certain level the water drains through a hole into a nearby slightly deeper gallery. This pond has attracted considerable attention because sporadic records of water level and discharge measurements since 1992 did not show any correlation with regional precipitation. Within the framework of the SPELEOTECT project (Austrian Science Fund # P25884-N29), the current tectonic activity of two faults along the margin of the Vienna Basin as well as the fault controlling the orientation of the cave are monitored by means of high-resolution moiré extensometers. Since October 2015, data loggers measure water level and temperature in the pond as well as CO2 in the air. A pumping test during medium water level, where the whole pond was emptied showed a volume of only 2800 l and a discharge of 4.5 l/h. Water temperature and hydrochemistry hint towards a mix of old thermal components and young meteoric components. However, water level and temperature change abruptly with no obvious relation to precipitation. Within the first year of the continuous

  11. Emotional Valence and Arousal Effects on Memory and Hemispheric Asymmetries

    Science.gov (United States)

    Mneimne, Malek; Powers, Alice S.; Walton, Kate E.; Kosson, David S.; Fonda, Samantha; Simonetti, Jessica

    2010-01-01

    This study examined predictions based upon the right hemisphere (RH) model, the valence-arousal model, and a recently proposed integrated model (Killgore & Yurgelun-Todd, 2007) of emotion processing by testing immediate recall and recognition memory for positive, negative, and neutral verbal stimuli among 35 right-handed women. Building upon…

  12. Fluctuation contribution to the specific heat in non-Fermi models for superconductivity

    OpenAIRE

    Tifrea, I.; Grosu, I.; Crisan, M.

    1998-01-01

    We investigate the fluctuation contribution to the specific heat of a two-dimensional superconductor with a non-Fermi normal state described by a Anderson Green's function $G(k,i\\omega)=\\omega_c^{-\\alpha}/(i\\omega-\\epsilon_k)^{1-\\alpha}$. The specific heat corrections contain a term proportional to $(T^{2\\alpha-T_c^{2\\alpha}})^{-1}$ and another logarithmic one. We defined a coherence length as function of the non-Fermi parameter $\\alpha$, which showed that a crossover study between BCS and Bo...

  13. Coherent intensity fluctuation model for autocorrelation imaging spectroscopy with higher harmonic generating point scatterers-a comprehensive theoretical study.

    Science.gov (United States)

    Slenders, Eli; vandeVen, Martin; Hooyberghs, Jef; Ameloot, Marcel

    2015-07-15

    We present a general analytical model for the intensity fluctuation autocorrelation function for second and third harmonic generating point scatterers. Expressions are derived for a stationary laser beam and for scanning beam configurations for specific correlation methodologies. We discuss free translational diffusion in both three and two dimensions. At low particle concentrations, the expressions for fluorescence are retrieved, while at high particle concentrations a rescaling of the function parameters is required for a stationary illumination beam, provided that the phase shift per unit length of the beam equals zero.

  14. Experimental studies of toroidal correlations of plasma density fluctuations along the magnetic field lines in the T-10 tokamak and first results of numerical modeling

    Science.gov (United States)

    Buldakov, M. A.; Vershkov, V. A.; Isaev, M. Yu; Shelukhin, D. A.

    2017-10-01

    The antenna system of reflectometry diagnostics at the T-10 tokamak allows to study long-range toroidal correlations of plasma density fluctuations along the magnetic field lines. The antenna systems are installed in two poloidal cross-sections of the vacuum chamber separated by a 90° angle in the toroidal direction. The experiments, which were conducted at the low field side, showed that the high level of toroidal correlations is observed only for quasi-coherent fluctuations. However, broadband and stochastic low frequency fluctuations are not correlated. Numerical modeling of the plasma turbulence structure in the T-10 tokamak was conducted to interpret the experimental results and take into account non-locality of reflectometry measurements. In the model used, it was assumed that the magnitudes of density fluctuations are constant along the magnetic field lines. The 2D full-wave Tamic-RTH code was used to model the reflectometry signals. High level of correlations for quasi-coherent fluctuations was obtained during the modeling, which agrees with the experimental observations. However, the performed modeling also predicts high level of correlations for broadband fluctuations, which contradicts the experimental data. The modeling showed that the effective reflection radius, from which the information on quasi-coherent plasma turbulence is obtained, is shifted outwards from the reflection radius by approximately 7 mm.

  15. A hybrid molecular dynamics/fluctuating hydrodynamics method for modelling liquids at multiple scales in space and time

    Energy Technology Data Exchange (ETDEWEB)

    Korotkin, Ivan, E-mail: i.korotkin@qmul.ac.uk; Karabasov, Sergey; Markesteijn, Anton [The School of Engineering and Material Science, Queen Mary University of London, Mile End Road, E1 4NS London (United Kingdom); Nerukh, Dmitry; Scukins, Arturs [Institute of Systems Analytics, Aston University, Birmingham B4 7ET (United Kingdom); Farafonov, Vladimir [Department of Physical Chemistry, V. N. Karazin Kharkiv National University, Svobody Square 4, 61022 Kharkiv (Ukraine); Pavlov, Evgen [Institute of Systems Analytics, Aston University, Birmingham B4 7ET (United Kingdom); Faculty of Physics, Kiev National Taras Shevchenko University, Prospect Acad. Glushkova 4, Kiev 03127 (Ukraine)

    2015-07-07

    A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single “zoom-in” user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.

  16. An exercise in glacier length modeling: Interannual climatic variability alone cannot explain Holocene glacier fluctuations in New Zealand

    Science.gov (United States)

    Doughty, Alice M.; Mackintosh, Andrew N.; Anderson, Brian M.; Dadic, Ruzica; Putnam, Aaron E.; Barrell, David J. A.; Denton, George H.; Chinn, Trevor J. H.; Schaefer, Joerg M.

    2017-07-01

    Recent model studies suggest that interannual climatic variability could be confounding the interpretation of glacier fluctuations as climate signals. Paleoclimate interpretations of moraine positions and associated cosmogenic exposure ages may have large uncertainties if the glacier in question was sensitive to interannual variability. Here we address the potential for interannual temperature and precipitation variability to cause large shifts in glacier length during the Holocene. Using a coupled ice-flow and mass-balance model, we simulate the response of Cameron Glacier, a small mountain glacier in New Zealand's Southern Alps, to two types of climate forcing: equilibrium climate and variable climate. Our equilibrium results suggest a net warming trend from the Early Holocene (10.69 ± 0.41 ka; 2.7 °C cooler than present) to the Late Holocene (CE 1864; 1.3 °C cooler than present). Interannual climatic variability cannot account for the Holocene glacier fluctuations in this valley. Future studies should consider local environmental characteristics, such as a glacier's climatic setting and topography, to determine the magnitude of glacier length changes caused by interannual variability.

  17. Social learning modulates the lateralization of emotional valence.

    Science.gov (United States)

    Shamay-Tsoory, Simone G; Lavidor, Michal; Aharon-Peretz, Judith

    2008-08-01

    Although neuropsychological studies of lateralization of emotion have emphasized valence (positive vs. negative) or type (basic vs. complex) dimensions, the interaction between the two dimensions has yet to be elucidated. The purpose of the current study was to test the hypothesis that recognition of basic emotions is processed preferentially by the right prefrontal cortex (PFC), whereas recognition of complex social emotions is processed preferentially by the left PFC. Experiment 1 assessed the ability of healthy controls and patients with right and left PFC lesions to recognize basic and complex emotions. Experiment 2 modeled the patient's data of Experiment 1 on healthy participants under lateralized displays of the emotional stimuli. Both experiments support the Type as well as the Valence Hypotheses. However, our findings indicate that the Valence Hypothesis holds for basic but less so for complex emotions. It is suggested that, since social learning overrules the basic preference of valence in the hemispheres, the processing of complex emotions in the hemispheres is less affected by valence.

  18. Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey

    Directory of Open Access Journals (Sweden)

    Ee Wah Lim

    2015-09-01

    Full Text Available Resistive switching effect in transition metal oxide (TMO based material is often associated with the valence change mechanism (VCM. Typical modeling of valence change resistive switching memory consists of three closely related phenomena, i.e., conductive filament (CF geometry evolution, conduction mechanism and temperature dynamic evolution. It is widely agreed that the electrochemical reduction-oxidation (redox process and oxygen vacancies migration plays an essential role in the CF forming and rupture process. However, the conduction mechanism of resistive switching memory varies considerably depending on the material used in the dielectric layer and selection of electrodes. Among the popular observations are the Poole-Frenkel emission, Schottky emission, space-charge-limited conduction (SCLC, trap-assisted tunneling (TAT and hopping conduction. In this article, we will conduct a survey on several published valence change resistive switching memories with a particular interest in the I-V characteristic and the corresponding conduction mechanism.

  19. Valence-to-core-detected X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Hall, Eleanor R.; Pollock, Christopher J.; Bendix, Jesper

    2014-01-01

    X-ray absorption spectroscopy (XAS) can provide detailed insight into the electronic and geometric structures of transition-metal active sites in metalloproteins and chemical catalysts. However, standard XAS spectra inherently represent an average contribution from the entire coordination...... environment with limited ligand selectivity. To address this limitation, we have investigated the enhancement of XAS features using valence-to-core (VtC)-detected XAS, whereby XAS spectra are measured by monitoring fluorescence from valence-to-core X-ray emission (VtC XES) events. VtC emission corresponds...... to transitions from filled ligand orbitals to the metal 1s core hole, with distinct energetic shifts for ligands of differing ionization potentials. VtC-detected XAS data were obtained from multiple valence emission features for a series of well-characterized Mn model compounds; taken together, these data...

  20. Spin fluctuations and the

    Directory of Open Access Journals (Sweden)

    V.M. Loktev

    2008-09-01

    Full Text Available We analyze the spectral properties of a phenomenological model for a weakly doped two-dimensional antiferromagnet, in which the carriers move within one of the two sublattices where they were introduced. Such a constraint results in the free carrier spectra with the maxima at k=(± π/2 , ± π/2 observed in some cuprates. We consider the spectral properties of the model by taking into account fluctuations of the spins in the antiferromagnetic background. We show that such fluctuations lead to a non-pole-like structure of the single-hole Green's function and these fluctuations can be responsible for some anomalous "strange metal" properties of underdoped cuprates in the nonsuperconducting regime.

  1. Particle-Size-Induced Valence Changes in Samarium Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Mason, M. G.; Lee, S. -T.; Apai, G.; Davis, R. F.; Shirley, D. A.; Franciosi, A.; Weaver, J. H.

    1981-09-01

    Samarium clusters exhibit mixed-valence behavior which is sensitive to particle size. XPS and UPS data show samarium to be primarily divalent (4f{sup 6} ) at small particle size. The trivalent state (4f{sup 5} ) becomes progressively more abundant with increasing s1ze, becoming the dominant state for the bulk metal. These results are interpreted using a model in which band narrowing, due to reduced surface coordination, is more dominant than surface tension effects in establishing the valence of small samarium clusters.

  2. Numerical renormalization group study of probability distributions for local fluctuations in the Anderson-Holstein and Holstein-Hubbard models

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, Alex C [Department of Mathematics, Imperial College, London SW7 2AZ (United Kingdom); Bauer, Johannes [Max-Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2010-03-24

    We show that information on the probability density of local fluctuations can be obtained from a numerical renormalization group calculation of a reduced density matrix. We apply this approach to the Anderson-Holstein impurity model to calculate the ground state probability density rho(x) for the displacement x of the local oscillator. From this density we can deduce an effective local potential for the oscillator and compare its form with that obtained from a semiclassical approximation as a function of the coupling strength. The method is extended to the infinite dimensional Holstein-Hubbard model using dynamical mean field theory. We use this approach to compare the probability densities for the displacement of the local oscillator in the normal, antiferromagnetic and charge ordered phases.

  3. Effects of Emotional Valence and Arousal on Recollective and Nonrecollective Recall

    Science.gov (United States)

    Gomes, Carlos F. A.; Brainerd, Charles J.; Stein, Lilian M.

    2013-01-01

    The authors investigated the effects of valence and arousal on memory using a dual-process model that quantifies recollective and nonrecollective components of recall without relying on metacognitive judgments to separate them. The results showed that valenced words increased reconstruction (a component of nonrecollective retrieval) relative to…

  4. SPIN POLARIZATION AND MAGNETIC DICHROISM IN PHOTOEMISSION FROM CORE AND VALENCE STATES IN LOCALIZED MAGNETIC SYSTEMS

    NARCIS (Netherlands)

    THOLE, BT; VANDERLAAN, G

    1991-01-01

    Using group theory we derive a general model for spin polarization and magnetic dichroism in photo-emission in the presence of atomic interactions between the hole created and the valence holes. We predict strong effects in the photoemission from core levels and localized valence levels of

  5. GAUSSIAN FLUCTUATIONS OF POLARIZATION IN THE REGION OF PHASE TRANSITIONS IN DMAGAS-DMAALS FERROELECTRICS IN THE FRAMEWORK OF THE FOUR-STATE MODEL

    Directory of Open Access Journals (Sweden)

    I.V.Stasyuk

    2004-01-01

    Full Text Available A description of thermodynamics of the DMAGaS-DMAAlS family ferroelectrics improved by taking into account the Gaussian fluctuations of polarization is presented. Fluctuations become important in the vicinity of the second order (or the first order close to the second order phase transitions which is the case of the mentioned crystals. The more elaborated theory, adapting the Onyszkiewicz approach to the purpose of the four-state model, provides equations for components of polarization, their fluctuations and free energy in a simple form with a clear physical sense. The results obtained by numerical calculations demonstrate that in the considered system at the sufficiently long-ranged interaction the Gaussian fluctuations lead to the slight decrease of temperatures of phase transitions from paraphase to ferrophase and in the region of the triple point they are of the same order of magnitude for both first and second order phase transitions.

  6. Resonance and Aromaticity : An Ab Initio Valence Bond Approach

    NARCIS (Netherlands)

    Rashid, Zahid; van Lenthe, Joop H.; Havenith, Remco W. A.

    2012-01-01

    Resonance energy is one of the criteria to measure aromaticity. The effect of the use of different orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons within the framework of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. The VB

  7. Variable responses of skinks to a common history of rainforest fluctuation: concordance between phylogeography and palaeo-distribution models.

    Science.gov (United States)

    Moussalli, Adnan; Moritz, Craig; Williams, Stephen E; Carnaval, Ana C

    2009-02-01

    There is a growing appreciation of impacts of late-Quaternary climate fluctuations on spatial patterns of species and genetic diversity. A major challenge is to understand how and why species respond individualistically to a common history of climate-induced habitat fluctuation. Here, we combine modelling of palaeo-distributions and mitochondrial-DNA phylogeographies to compare spatial patterns of population persistence and isolation across three species of rainforest skinks (Saproscincus spp.) with varying climatic preferences. Using Akaike Information Criterion model-averaged projections, all three species are predicted to have maintained one or more small populations in the northern Wet Tropics, multiple or larger populations in the central region, and few if any in the south. For the high-elevation species, Saproscincus czechurai, the warm-wet climate of the mid Holocene was most restrictive, whereas for the generalist S. basiliscus and lower-elevation S. tetradactyla, the cool-dry last glacial maximum was most restrictive. As expected, S. czechurai was the most genetically structured species, although relative to modelled distributions, S. basiliscus had surprisingly deep phylogeographical structure among southern rainforest isolates, implying long-term isolation and persistence. For both S. basiliscus and S. tetradactyla, there was high genetic diversity and complex phylogeographical patterns in the central Wet Tropics, reflecting persistence of large, structured populations. A previously identified vicariant barrier separating northern and central regions is supported, and results from these species also emphasize a historical persistence of populations south of another biogeographical break, the Tully Gorge. Overall, the results support the contention that in a topographically heterogeneous landscape, species with broader climatic niches may maintain higher and more structured genetic diversity due to persistence through varying climates.

  8. Calculation of the Intensity of Physical Time Fluctuations Using the Standard Solar Model and its Comparison with the Results of Experimental Measurements

    Science.gov (United States)

    Morozov, A. N.

    2017-11-01

    The article reviews the possibility of describing physical time as a random Poisson process. An equation allowing the intensity of physical time fluctuations to be calculated depending on the entropy production density within irreversible natural processes has been proposed. Based on the standard solar model the work calculates the entropy production density inside the Sun and the dependence of the intensity of physical time fluctuations on the distance to the centre of the Sun. A free model parameter has been established, and the method of its evaluation has been suggested. The calculations of the entropy production density inside the Sun showed that it differs by 2-3 orders of magnitude in different parts of the Sun. The intensity of physical time fluctuations on the Earth's surface depending on the entropy production density during the sunlight-to-Earth's thermal radiation conversion has been theoretically predicted. A method of evaluation of the Kullback's measure of voltage fluctuations in small amounts of electrolyte has been proposed. Using a simple model of the Earth's surface heat transfer to the upper atmosphere, the effective Earth's thermal radiation temperature has been determined. A comparison between the theoretical values of the Kullback's measure derived from the fluctuating physical time model and the experimentally measured values of this measure for two independent electrolytic cells showed a good qualitative and quantitative concurrence of predictions of both theoretical model and experimental data.

  9. Fluctuating shells under pressure

    Science.gov (United States)

    Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.

    2012-01-01

    Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558

  10. Fluctuations in solidification

    Energy Technology Data Exchange (ETDEWEB)

    Karma, A. (Physics Department, Northeastern University, Boston, Massachusetts 02115 (United States))

    1993-11-01

    We present an analytical treatment of (i) the incorporation of thermal noise in the basic continuum models of solidification, (ii) fluctuations about nonequilibrium steady states, and (iii) the amplification of noise near the onset of morphological instability. In (i), we find that the proper Langevin formalism, consistent with both bulk and interfacial equilibrium fluctuations, consists of the usual bulk forces and an extra stochastic force on the interface associated with its local kinetics. At sufficiently large solidification rate, this force affects interfacial fluctuations on scales where they are macroscopically amplified and, thus, becomes relevant. An estimate of this rate is given. In (ii), we extend the Langevin formalism outside of equilibrium to characterize the fluctuations of a stationary and a directionally solidified planar interface in a temperature gradient. Finally, in (iii), we derive an analytic expression for the linear growth of the mean-square amplitude of fluctuations slightly above the onset of morphological instability. The amplitude of the noise is found to be determined by the small parameter [ital k][sub [ital B]T[ital E]d0][sup [ital c]l][sub [ital T

  11. Fractional Spin Fluctuations as a Precursor of Quantum Spin Liquids: Majorana Dynamical Mean-Field Study for the Kitaev Model.

    Science.gov (United States)

    Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi

    2016-10-07

    Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.

  12. Fractional Spin Fluctuations as a Precursor of Quantum Spin Liquids: Majorana Dynamical Mean-Field Study for the Kitaev Model

    Science.gov (United States)

    Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi

    2016-10-01

    Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.

  13. Are valence and arousal separable in emotional experience?

    Science.gov (United States)

    Kron, Assaf; Pilkiw, Maryna; Banaei, Jasmin; Goldstein, Ariel; Anderson, Adam Keith

    2015-02-01

    The bipolar valence-arousal model of conscious experience of emotions is prominent in emotion research. In this work, we examine the validity of this model in the context of feelings elicited by visual stimuli. In particular, we examine whether arousal has a unique contribution over bivariate valence (separate measures for pleasure and displeasure) in explaining physiological arousal (electrodermal activity, EDA) and self-reported feelings at the level of item-specific responses across and within individuals. Our results suggest that self-reports of arousal have neither an advantage in predicting EDA nor make a unique contribution when valence is present in the model. Acceptance of the null hypothesis was confirmed with the use of the Bayesian information criterion. Arousal also showed no advantage over valence in predicting global feelings, but demonstrated a small unique component (1.5% to 4% of variance explained). These results have practical implications for both experimental design in the study of emotions and the underlying bases of their conscious experience. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  14. A robust multi-objective global supplier selection model under currency fluctuation and price discount

    Science.gov (United States)

    Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman

    2017-11-01

    Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.

  15. Semiconductor cavity QED: Bandgap induced by vacuum fluctuations

    OpenAIRE

    Espinosa-Ortega, T.; Kyriienko, O.; Kibis, O. V.; Shelykh, I. A.

    2014-01-01

    We consider theoretically a semiconductor nanostructure embedded in one-dimensional microcavity and study the modification of its electron energy spectrum by the vacuum fluctuations of the electromagnetic field. To solve the problem, a non-perturbative diagrammatic approach based on the Green's function formalism is developed. It is shown that the interaction of the system with the vacuum fluctuations of the optical cavity opens gaps within the valence band of the semiconductor. The approach ...

  16. Forward modeling of fluctuating dietary 13C signals to validate 13C turnover models of milk and milk components from a diet-switch experiment.

    Directory of Open Access Journals (Sweden)

    Alexander Braun

    Full Text Available Isotopic variation of food stuffs propagates through trophic systems. But, this variation is dampened in each trophic step, due to buffering effects of metabolic and storage pools. Thus, understanding of isotopic variation in trophic systems requires knowledge of isotopic turnover. In animals, turnover is usually quantified in diet-switch experiments in controlled conditions. Such experiments usually involve changes in diet chemical composition, which may affect turnover. Furthermore, it is uncertain if diet-switch based turnover models are applicable under conditions with randomly fluctuating dietary input signals. Here, we investigate if turnover information derived from diet-switch experiments with dairy cows can predict the isotopic composition of metabolic products (milk, milk components and feces under natural fluctuations of dietary isotope and chemical composition. First, a diet-switch from a C3-grass/maize diet to a pure C3-grass diet was used to quantify carbon turnover in whole milk, lactose, casein, milk fat and feces. Data were analyzed with a compartmental mixed effects model, which allowed for multiple pools and intra-population variability, and included a delay between feed ingestion and first tracer appearance in outputs. The delay for milk components and whole milk was ~12 h, and that of feces ~20 h. The half-life (t½ for carbon in the feces was 9 h, while lactose, casein and milk fat had a t½ of 10, 18 and 19 h. The (13C kinetics of whole milk revealed two pools, a fast pool with a t½ of 10 h (likely representing lactose, and a slower pool with a t½ of 21 h (likely including casein and milk fat. The diet-switch based turnover information provided a precise prediction (RMSE ~0.2 ‰ of the natural (13C fluctuations in outputs during a 30 days-long period when cows ingested a pure C3 grass with naturally fluctuating isotope composition.

  17. Dissociable Modulation of Overt Visual Attention in Valence and Arousal Revealed by Topology of Scan Path

    Science.gov (United States)

    Ni, Jianguang; Jiang, Huihui; Jin, Yixiang; Chen, Nanhui; Wang, Jianhong; Wang, Zhengbo; Luo, Yuejia; Ma, Yuanye; Hu, Xintian

    2011-01-01

    Emotional stimuli have evolutionary significance for the survival of organisms; therefore, they are attention-grabbing and are processed preferentially. The neural underpinnings of two principle emotional dimensions in affective space, valence (degree of pleasantness) and arousal (intensity of evoked emotion), have been shown to be dissociable in the olfactory, gustatory and memory systems. However, the separable roles of valence and arousal in scene perception are poorly understood. In this study, we asked how these two emotional dimensions modulate overt visual attention. Twenty-two healthy volunteers freely viewed images from the International Affective Picture System (IAPS) that were graded for affective levels of valence and arousal (high, medium, and low). Subjects' heads were immobilized and eye movements were recorded by camera to track overt shifts of visual attention. Algebraic graph-based approaches were introduced to model scan paths as weighted undirected path graphs, generating global topology metrics that characterize the algebraic connectivity of scan paths. Our data suggest that human subjects show different scanning patterns to stimuli with different affective ratings. Valence salient stimuli (with neutral arousal) elicited faster and larger shifts of attention, while arousal salient stimuli (with neutral valence) elicited local scanning, dense attention allocation and deep processing. Furthermore, our model revealed that the modulatory effect of valence was linearly related to the valence level, whereas the relation between the modulatory effect and the level of arousal was nonlinear. Hence, visual attention seems to be modulated by mechanisms that are separate for valence and arousal. PMID:21494331

  18. Dissociable modulation of overt visual attention in valence and arousal revealed by topology of scan path.

    Directory of Open Access Journals (Sweden)

    Jianguang Ni

    Full Text Available Emotional stimuli have evolutionary significance for the survival of organisms; therefore, they are attention-grabbing and are processed preferentially. The neural underpinnings of two principle emotional dimensions in affective space, valence (degree of pleasantness and arousal (intensity of evoked emotion, have been shown to be dissociable in the olfactory, gustatory and memory systems. However, the separable roles of valence and arousal in scene perception are poorly understood. In this study, we asked how these two emotional dimensions modulate overt visual attention. Twenty-two healthy volunteers freely viewed images from the International Affective Picture System (IAPS that were graded for affective levels of valence and arousal (high, medium, and low. Subjects' heads were immobilized and eye movements were recorded by camera to track overt shifts of visual attention. Algebraic graph-based approaches were introduced to model scan paths as weighted undirected path graphs, generating global topology metrics that characterize the algebraic connectivity of scan paths. Our data suggest that human subjects show different scanning patterns to stimuli with different affective ratings. Valence salient stimuli (with neutral arousal elicited faster and larger shifts of attention, while arousal salient stimuli (with neutral valence elicited local scanning, dense attention allocation and deep processing. Furthermore, our model revealed that the modulatory effect of valence was linearly related to the valence level, whereas the relation between the modulatory effect and the level of arousal was nonlinear. Hence, visual attention seems to be modulated by mechanisms that are separate for valence and arousal.

  19. Application of 2-D sediment model to fluctuating backwater area of Yangtze River

    Directory of Open Access Journals (Sweden)

    Yong FAN

    2009-09-01

    Full Text Available Based on the characteristics of backflow, a two-dimensional mathematical model of sediment movement was established. The complexity of the watercourse boundary at the confluence of the main stream and the tributary was dealt with using a boundary-fitting orthogonal coordinate system. The basic equation of the two-dimensional total sediment load model, the numerical calculation format, and key problems associated with using the orthogonal curvilinear coordinate system were discussed. Water and sediment flow in the Chongqing reach of the Yangtze River were simulated. The calculated water level, flow velocity distribution, amount of silting and scouring, and alluvial distribution are found to be in agreement with the measured data, which indicates that the numerical model and calculation method are reasonable. The model can be used for calculation of flow in a relatively complicated river network.

  20. Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution

    CERN Document Server

    Rikvold, Per Arne

    2007-01-01

    We compare and contrast the long-time dynamical properties of two individual-based models of biological coevolution. Selection occurs via multispecies, stochastic population dynamics with reproduction probabilities that depend nonlinearly on the population densities of all species resident in the community. New species are introduced through mutation. Both models are amenable to exact linear stability analysis, and we compare the analytic results with large-scale kinetic Monte Carlo simulations, obtaining the population size as a function of an average interspecies interaction strength. Over time, the models self-optimize through mutation and selection to approximately maximize a community fitness function, subject only to constraints internal to the particular model. If the interspecies interactions are randomly distributed on an interval including positive values, the system evolves toward self-sustaining, mutualistic communities. In contrast, for the predator-prey case the matrix of interactions is antisym...

  1. Phase fluctuations in two coaxial quasi-one-dimensional superconducting cylindrical surfaces serving as a model system for superconducting nanowire bundles

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.H., E-mail: ch.kh.vong@urfu.ru [Institute of Physics and Technology, Ural Federal University, Clear Water Bay, Kowloon (Russian Federation); Wu, R.P.H., E-mail: pak-hong-raymond.wu@connect.polyu.hk [Department of Applied Physics, The Hong Kong Polytechnic University (Hong Kong); Lortz, R., E-mail: lortz@ust.hk [Department of Physics, Hong Kong University of Science and Technology (Hong Kong)

    2017-03-15

    The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature T{sub DC} is observed when the inner superconducting cylindrical surface is rotated in the angular plane. T{sub DC} reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below T{sub DC}. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.

  2. Effect of fluctuations of the linear feedback coefficient on the frequency spectrum of averaged temperature in a simple energy balance climate model

    Science.gov (United States)

    Petrov, D. A.

    2017-09-01

    Using the stochastic approach, we analyze the effect of fluctuations of the linear feedback coefficient in a simple zero-dimensional energy balance climate model on the frequency spectrum of averaged temperature. An expression is obtained for the model spectrum in the weak noise approximation. Its features are investigated in two cases: when the frequency spectrum of the feedback coefficient is a constant (white noise) and when the spectrum contains one resonant frequency and has a Lorentz form. We consider the issue whether the feedback coefficient fluctuations can be an independent mechanism for a qualitative change in the spectrum of the climate system.

  3. A mathematical model of fluctuation noise based on the wavelet transform

    Directory of Open Access Journals (Sweden)

    Ivan D. Lobanov

    2016-03-01

    Full Text Available A new model of white noise based on the wavelet transform has been proposed. This model is more adequate for solving some radiophysical tasks, such as the problem of electromagnetic waves reflecting from the ionosphere. Moreover, it was shown that in terms of probabilistic description of the random-process trajectories, the wavelet implementation of this random process is more likely (using the probability density functional offered by Amiantov. The wavelet properties and the famous theorems of mathematical analysis and theory of chances were used to develop our model: the mean value theorem and Lyapunov's central limit theorem. Our study resulted in obtaining a theorem on random-process expansion in terms of wavelet basis. It was also shown that the obtained results were in agreement with those of Kotelnikov.

  4. Fluctuating Selection in the Moran.

    Science.gov (United States)

    Dean, Antony M; Lehman, Clarence; Yi, Xiao

    2017-03-01

    Contrary to classical population genetics theory, experiments demonstrate that fluctuating selection can protect a haploid polymorphism in the absence of frequency dependent effects on fitness. Using forward simulations with the Moran model, we confirm our analytical results showing that a fluctuating selection regime, with a mean selection coefficient of zero, promotes polymorphism. We find that increases in heterozygosity over neutral expectations are especially pronounced when fluctuations are rapid, mutation is weak, the population size is large, and the variance in selection is big. Lowering the frequency of fluctuations makes selection more directional, and so heterozygosity declines. We also show that fluctuating selection raises dn /ds ratios for polymorphism, not only by sweeping selected alleles into the population, but also by purging the neutral variants of selected alleles as they undergo repeated bottlenecks. Our analysis shows that randomly fluctuating selection increases the rate of evolution by increasing the probability of fixation. The impact is especially noticeable when the selection is strong and mutation is weak. Simulations show the increase in the rate of evolution declines as the rate of new mutations entering the population increases, an effect attributable to clonal interference. Intriguingly, fluctuating selection increases the dn /ds ratios for divergence more than for polymorphism, a pattern commonly seen in comparative genomics. Our model, which extends the classical neutral model of molecular evolution by incorporating random fluctuations in selection, accommodates a wide variety of observations, both neutral and selected, with economy. Copyright © 2017 by the Genetics Society of America.

  5. Experimental validation of the stochastic model of a randomly fluctuating transmission-line

    NARCIS (Netherlands)

    Sy, O.O.; Vaessen, J.A.H.M.; Beurden, M.C. van; Michielsen, B.L.; Tijhuis, A.G.; Zwamborn, A.P.M.; Groot, J.S.

    2008-01-01

    A modeling method is proposed to quantify uncertainties affecting electromagnetic interactions. This method considers the uncertainties as random and measures them thanks to probability theory. A practical application is considered through the case of a transmission-line of varying geometry,

  6. Dramatic water-level fluctuations in lakes under intense human impact: modelling the effect of vegetation, climate and hydrogeology

    Science.gov (United States)

    Vainu, M.

    2012-04-01

    Lakes form a highly important ecosystem in the glacial terrain of northern Europe and America, but their hydrology remains understudied. When the water-level of a lake drops significantly and rises again in a time span of half a century and the widespread explanation of the fluctuations seems insufficient, then it raises a question: how do different anthropogenic and natural processes actually affect the formation of a lakes' water body. The abovementioned scenario applies to three small closed-basin Estonian lakes (L. Ahnejärv, L. Kuradijärv and L. Martiska) analysed in the current study. These lakes suffered a major water-level drop (up to 3.8 m) between 1946 and 1987 and a major rise between 1987 and 2010, from 1 m (L. Ahnejärv) to 2.5 m (L. Kuradijärv). Decreasing and increasing groundwater abstraction near the lakes has been widely considered to be the only reason for the fluctuations. It is true that the most severe drop in the lake levels did occur after 1972 when groundwater abstraction for drinking water started in the vicinity of the lakes. However, the lake levels started to fall before the groundwater abstraction began and for the time being the lake levels have risen to a higher level than in the 1970s when the quantity of annually abstracted groundwater was similar to nowadays. Therefore the processes affecting the formation of the lakes' water body prove to be more complex than purely the hydrogeological change caused by groundwater abstraction. A new deterministic water balance model (where the evaporation from the lake surface was calculated by Penman equation and the catchment runoff by Thornthwaite-Mather soil-moisture model), compiled for the study, coupled with LiDAR-based GIS-modelling of the catchments was used to identify the different factors influencing the lakes' water level. The modelling results reveal that the moderate drop in lake water levels before the beginning of groundwater abstraction was probably caused by the growth of a

  7. Computational Modeling of Fluctuations in Energy and Metabolic Pathways of Methanogenic Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Luthey-Schulten, Zaida [Univ. of Illinois, Urbana-Champaign, IL (United States). Dept. of Chemistry; Carl R. Woese Inst. for Genomic Biology

    2017-01-04

    The methanogenic archaea, anaerobic microbes that convert CO2 and H2 and/or other small organic fermentation products into methane, play an unusually large role in the global carbon cycle. As they perform the final step in the anaerobic breakdown of biomass, methanogens are a biogenic source of an estimated one billion tons methane each year. Depending on the location, produced methane can be considered as either a greenhouse gas (agricultural byproduct), sequestered carbon storage (methane hydrate deposits), or a potential energy source (organic wastewater treatment). These microbes therefore represent an important target for biotechnology applications. Computational models of methanogens with predictive power are useful aids in the adaptation of methanogenic systems, but need to connect processes of wide-ranging time and length scales. In this project, we developed several computational methodologies for modeling the dynamic behavior of entire cells that connects stochastic reaction-diffusion dynamics of individual biochemical pathways with genome-scale modeling of metabolic networks. While each of these techniques were in the realm of well-defined computational methods, here we integrated them to develop several entirely new approaches to systems biology. The first scientific aim of the project was to model how noise in a biochemical pathway propagates into cellular phenotypes. Genetic circuits have been optimized by evolution to regulate molecular processes despite stochastic noise, but the effect of such noise on a cellular biochemical networks is currently unknown. An integrated stochastic/systems model of Escherichia coli species was created to analyze how noise in protein expression gives—and therefore noise in metabolic fluxes—gives rise to multiple cellular phenotype in isogenic population. After the initial work developing and validating methods that allow characterization of the heterogeneity in the model organism E. coli, the project shifted toward

  8. Critical behaviour and interfacial fluctuations in a phase-separating model colloid-polymer mixture: grand canonical Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vink, R L C; Horbach, J [Institut fuer Physik, Johannes Gutenberg-Universitaet, D-55099 Mainz, Staudinger Weg 7 (Germany)

    2004-09-29

    By using Monte Carlo simulations in the grand canonical ensemble we investigate the bulk phase behaviour of a model colloid-polymer mixture, the so-called Asakura-Oosawa model. In this model the colloids and polymers are considered as spheres with a hard-sphere colloid-colloid and colloid-polymer interaction and a zero interaction between polymers. In order to circumvent the problem of low acceptance rates for colloid insertions, we introduce a cluster move where a cluster of polymers is replaced by a colloid. We consider the transition from a colloid-poor to colloid-rich phase which is analogous to the gas-liquid transition in simple liquids. Successive umbrella sampling, recently introduced by Virnau and Mueller (2003 Preprint cond-mat/0306678), is used to access the phase-separated regime. We calculate the demixing binodal and the interfacial tension, also in the region close to the critical point. Finite size scaling techniques are used to accurately locate the critical point. Also investigated are the colloid density profiles in the phase-separated regime. We extract the interfacial thickness w from the latter profiles and demonstrate that the interfaces are subject to spatial fluctuations that can be understood by capillary wave theory. In particular, we find that, as predicted by capillary wave theory, w{sup 2} diverges logarithmically with the size of the system parallel to the interface.

  9. Elucidating fluctuating diffusivity in center-of-mass motion of polymer models with time-averaged mean-square-displacement tensor

    Science.gov (United States)

    Miyaguchi, Tomoshige

    2017-10-01

    There have been increasing reports that the diffusion coefficient of macromolecules depends on time and fluctuates randomly. Here a method is developed to elucidate this fluctuating diffusivity from trajectory data. Time-averaged mean-square displacement (MSD), a common tool in single-particle-tracking (SPT) experiments, is generalized to a second-order tensor with which both magnitude and orientation fluctuations of the diffusivity can be clearly detected. This method is used to analyze the center-of-mass motion of four fundamental polymer models: the Rouse model, the Zimm model, a reptation model, and a rigid rodlike polymer. It is found that these models exhibit distinctly different types of magnitude and orientation fluctuations of diffusivity. This is an advantage of the present method over previous ones, such as the ergodicity-breaking parameter and a non-Gaussian parameter, because with either of these parameters it is difficult to distinguish the dynamics of the four polymer models. Also, the present method of a time-averaged MSD tensor could be used to analyze trajectory data obtained in SPT experiments.

  10. Comparison Between Two Methods for Estimating the Vertical Scale of Fluctuation for Modeling Random Geotechnical Problems

    Directory of Open Access Journals (Sweden)

    Pieczyńska-Kozłowska Joanna M.

    2015-12-01

    Full Text Available The design process in geotechnical engineering requires the most accurate mapping of soil. The difficulty lies in the spatial variability of soil parameters, which has been a site of investigation of many researches for many years. This study analyses the soil-modeling problem by suggesting two effective methods of acquiring information for modeling that consists of variability from cone penetration test (CPT. The first method has been used in geotechnical engineering, but the second one has not been associated with geotechnics so far. Both methods are applied to a case study in which the parameters of changes are estimated. The knowledge of the variability of parameters allows in a long term more effective estimation, for example, bearing capacity probability of failure.

  11. Modeling the Mass Action Dynamics of Metabolism with Fluctuation Theorems and Maximum Entropy

    Science.gov (United States)

    Cannon, William; Thomas, Dennis; Baxter, Douglas; Zucker, Jeremy; Goh, Garrett

    The laws of thermodynamics dictate the behavior of biotic and abiotic systems. Simulation methods based on statistical thermodynamics can provide a fundamental understanding of how biological systems function and are coupled to their environment. While mass action kinetic simulations are based on solving ordinary differential equations using rate parameters, analogous thermodynamic simulations of mass action dynamics are based on modeling states using chemical potentials. The latter have the advantage that standard free energies of formation/reaction and metabolite levels are much easier to determine than rate parameters, allowing one to model across a large range of scales. Bridging theory and experiment, statistical thermodynamics simulations allow us to both predict activities of metabolites and enzymes and use experimental measurements of metabolites and proteins as input data. Even if metabolite levels are not available experimentally, it is shown that a maximum entropy assumption is quite reasonable and in many cases results in both the most energetically efficient process and the highest material flux.

  12. Randomly-fluctuating heterogeneous continuum model of a ballasted railway track

    Science.gov (United States)

    de Abreu Corrêa, Lucio; Quezada, Juan Carlos; Cottereau, Régis; d'Aguiar, Sofia Costa; Voivret, Charles

    2017-11-01

    This paper proposes a description of a granular medium as a stochastic heterogeneous continuum medium. The heterogeneity of the material properties field recreates the heterogeneous stress field in a granular medium. The stochastic approach means that only statistical information, easily available, is required to construct the model. The heterogeneous continuum model is Calibrated with respect to discrete simulations of a set of railway ballast samples. As they are continuum-based, the equilibrium equations can be solved on a large scale using a parallel implementation of an explicit time discretization scheme for the Finite Element Method. Simulations representative of the influence on the environment of the passage of a train on a ballasted railway track clearly show the influence of the heterogeneity. These simulations seem to correlate well with previously unexplained overly damped measurements in the free field.

  13. Comparison Between Two Methods for Estimating the Vertical Scale of Fluctuation for Modeling Random Geotechnical Problems

    Science.gov (United States)

    Pieczyńska-Kozłowska, Joanna M.

    2015-12-01

    The design process in geotechnical engineering requires the most accurate mapping of soil. The difficulty lies in the spatial variability of soil parameters, which has been a site of investigation of many researches for many years. This study analyses the soil-modeling problem by suggesting two effective methods of acquiring information for modeling that consists of variability from cone penetration test (CPT). The first method has been used in geotechnical engineering, but the second one has not been associated with geotechnics so far. Both methods are applied to a case study in which the parameters of changes are estimated. The knowledge of the variability of parameters allows in a long term more effective estimation, for example, bearing capacity probability of failure.

  14. Direct observation of heterogeneous valence state in Yb-based quasicrystalline approximants

    Science.gov (United States)

    Matsunami, M.; Oura, M.; Tamasaku, K.; Ishikawa, T.; Ideta, S.; Tanaka, K.; Takeuchi, T.; Yamada, T.; Tsai, A. P.; Imura, K.; Deguchi, K.; Sato, N. K.; Ishimasa, T.

    2017-12-01

    We study the electronic structure of Tsai-type cluster-based quasicrystalline approximants, Au64Ge22Yb14 (AGY-I), Au63.5Ge20.5Yb16 (AGY-II), and Zn85.4Yb14.6 (Zn-Yb), by means of photoemission spectroscopy. In the valence band hard x-ray photoemission spectra of AGY-II and Zn-Yb, we separately observe a fully occupied Yb 4 f state and a valence fluctuation derived Kondo resonance peak, reflecting two inequivalent Yb sites, a single Yb atom in the cluster center and its surrounding Yb icosahedron, respectively. The fully occupied 4 f signal is absent in AGY-I containing no Yb atom in the cluster center. The results provide direct evidence for a heterogeneous valence state in AGY-II and Zn-Yb.

  15. Correlations in magnitude series to assess nonlinearities: Application to multifractal models and heartbeat fluctuations

    Science.gov (United States)

    Bernaola-Galván, Pedro A.; Gómez-Extremera, Manuel; Romance, A. Ramón; Carpena, Pedro

    2017-09-01

    The correlation properties of the magnitude of a time series are associated with nonlinear and multifractal properties and have been applied in a great variety of fields. Here we have obtained the analytical expression of the autocorrelation of the magnitude series (C|x |) of a linear Gaussian noise as a function of its autocorrelation (Cx). For both, models and natural signals, the deviation of C|x | from its expectation in linear Gaussian noises can be used as an index of nonlinearity that can be applied to relatively short records and does not require the presence of scaling in the time series under study. In a model of artificial Gaussian multifractal signal we use this approach to analyze the relation between nonlinearity and multifractallity and show that the former implies the latter but the reverse is not true. We also apply this approach to analyze experimental data: heart-beat records during rest and moderate exercise. For each individual subject, we observe higher nonlinearities during rest. This behavior is also achieved on average for the analyzed set of 10 semiprofessional soccer players. This result agrees with the fact that other measures of complexity are dramatically reduced during exercise and can shed light on its relationship with the withdrawal of parasympathetic tone and/or the activation of sympathetic activity during physical activity.

  16. The generation of hourly diffuse irradiation: A model from the analysis of the fluctuation of global irradiance series

    Energy Technology Data Exchange (ETDEWEB)

    Posadillo, R.; Lopez Luque, R. [Grupo de Investigacion de Fisica para las Energias y Recursos Renovables, Dpto. de Fisica Aplicada, UCO, Edificio C2 Campus de Rabanales, 14071 Cordoba (Spain)

    2010-04-15

    An analysis of models for the estimation of hourly diffuse irradiation based on the interrelations between the hourly diffuse fraction k{sub d} and the hourly clearness index k{sub t}, has concluded that k{sub t} is not a sufficient variable for parametrizing the effect of clouds on diffuse irradiation. A detailed study of the dispersion recorded by this diffuse component for a specific clearness index under partly cloudy sky conditions has led to analyzing how the variability in the instantaneous clearness index influences this dispersion. The data sets correspond to 10 years of hourly and instantaneous value records of global and diffuse radiation collected in Cordoba, Spain. In addition to the inclusion of the sine of solar elevation as a variable into the k{sub d}-k{sub t} correlations, this model propose the inclusion of others parameters related to the variability in the normalized clearness index within an hour and with the fluctuations presented by the time series of the instantaneous values of that index. Also presented is the implementation of an algorithm permitting both the determination of the hourly diffuse irradiation and the discrimination between the different sky conditions in those situations known by the designation partly cloudy sky. (author)

  17. Charge fluctuations and electron-phonon interaction in the finite-U Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Cappelluti, E. [' Enrico Fermi' Research Center, c/o Compendio del Viminale, v. Panisperna 89/a, 00184 Rome (Italy)]. E-mail: emmcapp@roma1.infn.it; Cerruti, B. [Dipart. di Fisica, Universita di Roma, ' La Sapienza' , P.le A. Moro, 2, 00185 Rome (Italy); INFM UdR Roma1 (Italy); Pietronero, L. [Dipart. di Fisica, Universita di Roma, ' La Sapienza' , P.le A. Moro, 2, 00185 Rome (Italy); INFM UdR Roma1 (Italy)

    2005-04-30

    Recent experiments have triggered a renewed interest for a theoretical understanding of the electron-phonon (el-ph) properties in strongly correlated systems. We employ a gaussian expansion within the finite-U slave-bosons formalism to investigate the momentum structure of the el-ph vertex function in the Hubbard model as function of U and n. The suppression of large momentum scattering and the onset of a small-q peak structure, parametrized by a cut-off q{sub c}, are shown to be essentially ruled by the band narrowing factor Z{sub MF} due to the electronic correlation. A phase diagram of Z{sub MF} and q{sub c} in the whole U-n space is presented. Our results are in more than qualitative agreement with a recent numerical analysis and permits the understanding of some anomalous features of the quantum Monte Carlo data.

  18. Fractal behavior in the headway fluctuation simulated by the NaSch model

    Science.gov (United States)

    Zhu, H. B.; Gao, J. B.

    2014-03-01

    The fractal behavior of traffic flow is studied by the adaptive fractal analysis method on the basis of the vehicle headway time series, which are obtained from the numerical simulation of the NaSch model. We find that the vehicle headway time series has a fractal behavior that is similar to the standard Brownian motion (BM) over a wide range of scales when the density is low. As the density increases well-defined sharp spectral peaks, corresponding to the stop-and-go waves, appear while the scale range showing BM-like behavior rapidly shrinks. In the high density regime, a new type of fractal behavior with long-range correlations appears, accompanying the worsening of traffic congestions. The underlying dynamics of traffic flow is analyzed, and some meaningful results are obtained.

  19. Genetic models reveal historical patterns of sea lamprey population fluctuations within Lake Champlain

    Directory of Open Access Journals (Sweden)

    Cassidy C. D’Aloia

    2015-10-01

    Full Text Available The origin of sea lamprey (Petromyzon marinus in Lake Champlain has been heavily debated over the past decade. Given the lack of historical documentation, two competing hypotheses have emerged in the literature. First, it has been argued that the relatively recent population size increase and concomitant rise in wounding rates on prey populations are indicative of an invasive population that entered the lake through the Champlain Canal. Second, recent genetic evidence suggests a post-glacial colonization at the end of the Pleistocene, approximately 11,000 years ago. One limitation to resolving the origin of sea lamprey in Lake Champlain is a lack of historical and current measures of population size. In this study, the issue of population size was explicitly addressed using nuclear (nDNA and mitochondrial DNA (mtDNA markers to estimate historical demography with genetic models. Haplotype network analysis, mismatch analysis, and summary statistics based on mtDNA noncoding sequences for NCI (479 bp and NCII (173 bp all indicate a recent population expansion. Coalescent models based on mtDNA and nDNA identified two potential demographic events: a population decline followed by a very recent population expansion. The decline in effective population size may correlate with land-use and fishing pressure changes post-European settlement, while the recent expansion may be associated with the implementation of the salmonid stocking program in the 1970s. These results are most consistent with the hypothesis that sea lamprey are native to Lake Champlain; however, the credibility intervals around parameter estimates demonstrate that there is uncertainty regarding the magnitude and timing of past demographic events.

  20. Valence evaluation with approaching or withdrawing cues: directly testing valence-arousal conflict theory.

    Science.gov (United States)

    Wang, Yan Mei; Li, Ting; Li, Lin

    2017-07-19

    The valence-arousal conflict theory assumes that both valence and arousal will trigger approaching or withdrawing tendencies. It also predicts that the speed of processing emotional stimuli will depend on whether valence and arousal trigger conflicting or congruent motivational tendencies. However, most previous studies have provided evidence of the interaction between valence and arousal only, and have not provided direct proof of the interactive links between valence, arousal and motivational tendencies. The present study provides direct evidence for the relationship between approach-withdrawal tendencies and the valence-arousal conflict. In an empirical test, participants were instructed to judge the valence of emotional words after visual-spatial cues that appeared to be either approaching or withdrawing from participants. A three-way interaction (valence, arousal, and approach-withdrawal tendency) was observed such that the response time was shorter if participants responded to a negative high-arousal stimulus after a withdrawing cue, or to a positive low-arousal stimulus after an approaching cue. These findings suggest that the approach-withdrawal tendency indeed plays a crucial role in valence-arousal conflict, and that the effect depends on the congruency of valence, arousal and tendency at an early stage of processing.

  1. On triangle meshes with valence dominant vertices

    KAUST Repository

    Morvan, Jean-Marie

    2018-02-16

    We study triangulations $\\\\cal T$ defined on a closed disc $X$ satisfying the following condition: In the interior of $X$, the valence of all vertices of $\\\\cal T$ except one of them (the irregular vertex) is $6$. By using a flat singular Riemannian metric adapted to $\\\\cal T$, we prove a uniqueness theorem when the valence of the irregular vertex is not a multiple of $6$. Moreover, for a given integer $k >1$, we exhibit non isomorphic triangulations on $X$ with the same boundary, and with a unique irregular vertex whose valence is $6k$.

  2. Ab initio valence calculations in chemistry

    CERN Document Server

    Cook, D B

    1974-01-01

    Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge

  3. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model.

    Science.gov (United States)

    Park, Jong-Min; Chun, Hyun-Myung; Noh, Jae Dong

    2016-07-01

    We investigate the stochastic thermodynamics of a two-particle Langevin system. Each particle is in contact with a heat bath at different temperatures T_{1} and T_{2} (heat engine performing work against the external driving force. Linearity of the system enables us to examine thermodynamic properties of the engine analytically. We find that the efficiency of the engine at maximum power η_{MP} is given by η_{MP}=1-sqrt[T_{2}/T_{1}]. This universal form has been known as a characteristic of endoreversible heat engines. Our result extends the universal behavior of η_{MP} to nonendoreversible engines. We also obtain the large deviation function of the probability distribution for the stochastic efficiency in the overdamped limit. The large deviation function takes the minimum value at macroscopic efficiency η=η[over ¯] and increases monotonically until it reaches plateaus when η≤η_{L} and η≥η_{R} with model-dependent parameters η_{R} and η_{L}.

  4. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model

    Science.gov (United States)

    Park, Jong-Min; Chun, Hyun-Myung; Noh, Jae Dong

    2016-07-01

    We investigate the stochastic thermodynamics of a two-particle Langevin system. Each particle is in contact with a heat bath at different temperatures T1 and T2 (autonomous heat engine performing work against the external driving force. Linearity of the system enables us to examine thermodynamic properties of the engine analytically. We find that the efficiency of the engine at maximum power ηM P is given by ηM P=1 -√{T2/T1 } . This universal form has been known as a characteristic of endoreversible heat engines. Our result extends the universal behavior of ηM P to nonendoreversible engines. We also obtain the large deviation function of the probability distribution for the stochastic efficiency in the overdamped limit. The large deviation function takes the minimum value at macroscopic efficiency η =η ¯ and increases monotonically until it reaches plateaus when η ≤ηL and η ≥ηR with model-dependent parameters ηR and ηL.

  5. Staggered Schemes for Fluctuating Hydrodynamics

    CERN Document Server

    Balboa, F; Delgado-Buscalioni, R; Donev, A; Fai, T; Griffith, B; Peskin, C S

    2011-01-01

    We develop numerical schemes for solving the isothermal compressible and incompressible equations of fluctuating hydrodynamics on a grid with staggered momenta. We develop a second-order accurate spatial discretization of the diffusive, advective and stochastic fluxes that satisfies a discrete fluctuation-dissipation balance, and construct temporal discretizations that are at least second-order accurate in time deterministically and in a weak sense. Specifically, the methods reproduce the correct equilibrium covariances of the fluctuating fields to third (compressible) and second (incompressible) order in the time step, as we verify numerically. We apply our techniques to model recent experimental measurements of giant fluctuations in diffusively mixing fluids in a micro-gravity environment [A. Vailati et. al., Nature Communications 2:290, 2011]. Numerical results for the static spectrum of non-equilibrium concentration fluctuations are in excellent agreement between the compressible and incompressible simula...

  6. Fluctuations in catalytic surface reactions

    CERN Document Server

    Imbihl, R

    2003-01-01

    The internal reaction-induced fluctuations which occur in catalytic CO oxidation on a Pt field emitter tip have been studied using field electron microscopy (FEM) as a spatially resolving method. The structurally heterogeneous Pt tip consists of facets of different orientations with nanoscale dimensions. The FEM resolution of roughly 2 nm corresponds to a few hundred reacting adsorbed particles whose variations in the density are imaged as brightness fluctuations. In the bistable range of the reaction one finds fluctuation-induced transitions between the two stable branches of the reaction kinetics. The fluctuations exhibit a behaviour similar to that of an equilibrium phase transition, i.e. the amplitude diverges upon approaching the bifurcation point terminating the bistable range of the reaction. Simulations with a hybrid Monte Carlo/mean-field model reproduce the experimental observations. Fluctuations on different facets are typically uncorrelated but within a single facet a high degree of spatial cohere...

  7. MODELING OF A NANOPARTICLE MOTION IN A NEWTONIAN FLUID: A COMPARISON BETWEEN FLUCTUATING HYDRODYNAMICS AND GENERALIZED LANGEVIN PROCEDURES.

    Science.gov (United States)

    Uma, B; Ayyaswamy, P S; Radhakrishnan, R; Eckmann, D M

    2012-03-01

    A direct numerical simulation adopting an arbitrary Lagrangian-Eulerian based finite element method is employed to simulate the motion of a nanocarrier in a quiescent fluid contained in a cylindrical tube. The nanocarrier is treated as a solid sphere. Thermal fluctuations are implemented using two different approaches: (1) fluctuating hydrodynamics; (2) generalized Langevin dynamics (Mittag-Leffler noise). At thermal equilibrium, the numerical predictions for temperature of the nanoparticle, velocity distribution of the particle, decay of the velocity autocorrelation function, diffusivity of the particle and particle-wall interactions are evaluated and compared with analytical results, where available. For a neutrally buoyant nanoparticle of 200 nm radius, the comparisons between the results obtained from the fluctuating hydrodynamics and the generalized Langevin dynamics approaches are provided. Results for particle diffusivity predicted by the fluctuating hydrodynamics approach compare very well with analytical predictions. Ease of computation of the thermostat is obtained with the Langevin approach although the dynamics gets altered.

  8. A fluctuational electrodynamics model for the optimization of light-extraction efficiency in thin-film light-emitting diodes

    Science.gov (United States)

    Heikkilä, Oskari; Oksanen, Jani; Tulkki, Jukka

    2013-12-01

    The rapid development of thin film light-emitting diodes (LEDs) has enabled the enhancement of the light extraction beyond geometrical limits but more quantitative understanding of the underlying optical processes is required to fully optimize the extraction. We present first-principle calculations of the light extraction efficiency and optical energy flow in thin-film LEDs. The presented model generalizes the methods of fluctuational electrodynamics to excited semiconductors and simultaneously accounts for wave optical effects, e.g., interference and near-field coupling as well as the internal absorption of the light-emitting material in determining the rate of light emission and internal dissipation in the optical cavity formed by a planar LED. The calculations show that in structures with a metallic mirror, the emissivity of the active region can approach unity at selected wavelengths, even when the nominal emissivity of the active region is only moderate. However, the results also show that near-field coupling of emission from the active region to the mirror can provide a substantial non-radiative loss channel reducing the maximum light extraction efficiency to 0.67 in our example setup. These losses can be partly compensated by the efficient photon recycling enabled by thick active regions that quench emission to confined modes and thereby reduce parasitic absorption.

  9. Fluctuations and Correlations of net baryon number, electric charge, and strangeness: A comparison of lattice QCD results with the hadron resonance gas model

    CERN Document Server

    Bazavov, A; DeTar, C E; Ding, H -T; Gottlieb, Steven; Gupta, Rajan; Hegde, P; Heller, Urs; Karsch, F; Laermann, E; Levkova, L; Mukherjee, Swagato; Petreczky, P; Schmidt, Christian; Soltz, R A; Soeldner, W; Sugar, R; Vranas, Pavlos M

    2012-01-01

    We calculate the quadratic fluctuations of net baryon number, electric charge and strangeness as well as correlations among these conserved charges in (2+1)-flavor lattice QCD at zero chemical potential. Results in the continuum limit are obtained using calculations with tree level improved gauge and the highly improved staggered quark (HISQ) actions with almost physical light and strange quark masses at three different values of the lattice cut-off. We compare our results with the hadron resonance gas (HRG) model calculations and find agreement with HRG model results only for temperatures T < 150 MeV. We observe significant deviations in the temperature range 160 MeV < T < 170 MeV and qualitative differences in the behavior of the three conserved charge sectors. At $T \\simeq 160 MeV$ quadratic net baryon number fluctuations in QCD agree with HRG model calculations while, the net electric charge fluctuations in QCD are about 10% smaller and net strangeness fluctuations are about 20% larger. These fin...

  10. Perception of emotional valence in horse whinnies.

    Science.gov (United States)

    Briefer, Elodie F; Mandel, Roi; Maigrot, Anne-Laure; Briefer Freymond, Sabrina; Bachmann, Iris; Hillmann, Edna

    2017-01-01

    Non-human animals often produce different types of vocalisations in negative and positive contexts (i.e. different valence), similar to humans, in which crying is associated with negative emotions and laughter is associated with positive ones. However, some types of vocalisations (e.g. contact calls, human speech) can be produced in both negative and positive contexts, and changes in valence are only accompanied by slight structural differences. Although such acoustically graded signals associated with opposite valence have been highlighted in some species, it is not known if conspecifics discriminate them, and if contagion of emotional valence occurs as a result. We tested whether domestic horses perceive, and are affected by, the emotional valence of whinnies produced by both familiar and unfamiliar conspecifics. We measured physiological and behavioural reactions to whinnies recorded during emotionally negative (social separation) and positive (social reunion) situations. We show that horses perceive acoustic cues to both valence and familiarity present in whinnies. They reacted differently (respiration rate, head movements, height of the head and latency to respond) to separation and reunion whinnies when produced by familiar, but not unfamiliar individuals. They were also more emotionally aroused (shorter inter-pulse intervals and higher locomotion) when hearing unfamiliar compared to familiar whinnies. In addition, the acoustic parameters of separation and reunion whinnies affected the physiology and behaviour of conspecifics in a continuous way. However, we did not find clear evidence for contagion of emotional valence. Horses are thus able to perceive changes linked to emotional valence within a given vocalisation type, similar to perception of affective prosody in humans. Whinnies produced in either separation or reunion situations seem to constitute acoustically graded variants with distinct functions, enabling horses to increase their apparent vocal

  11. Influence of chain topology and bond potential on the glass transition of polymer chains simulated with the bond fluctuation model

    Energy Technology Data Exchange (ETDEWEB)

    Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), Senda del Rey 9, 28040 Madrid (Spain)], E-mail: jfreire@invi.uned.es

    2008-07-16

    The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, two distinct values of B have been considered for alternate bonds in linear chains. In the case of the branched chains, mixed models with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of ordering or crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of the abrupt change in the curves associated with a thermodynamic transition. It is concluded that ordering is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves, which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches.

  12. Temperature evolution of spin dynamics in two- and three-dimensional Kitaev models: Influence of fluctuating Z2 flux

    Science.gov (United States)

    Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi

    2017-08-01

    The long-sought quantum spin liquid is a quantum-entangled magnetic state leading to the fractionalization of spin degrees of freedom. Quasiparticles emergent from the fractionalization affect not only the ground-state properties but also thermodynamic behavior in a peculiar manner. Here we investigate how the spin dynamics evolves from the high-temperature paramagnet to the quantum spin-liquid ground state, for the Kitaev spin model describing the fractionalization into itinerant matter fermions and localized Z2 fluxes. Beyond the previous studies [J. Yoshitake, J. Nasu, and Y. Motome, Phys. Rev. Lett. 117, 157203 (2016), 10.1103/PhysRevLett.117.157203; J. Yoshitake, J. Nasu, Y. Kato, and Y. Motome, Phys. Rev. B 96, 024438 (2017), 10.1103/PhysRevB.96.024438], in which the mean-field nature of the cluster dynamical mean-field theory prevented us from studying low-temperature properties, we develop a numerical technique by applying the continuous-time quantum Monte Carlo (CTQMC) method to statistical samples generated by the quantum Monte Carlo (QMC) method in a Majorana fermion representation. This QMC+CTQMC method is fully unbiased and enables us to investigate the low-temperature spin dynamics dominated by thermally excited Z2 fluxes, including the unconventional phase transition caused by Z2 flux loops in three dimensions, which was unreachable by the previous methods. We apply this technique to the Kitaev model in both two and three dimensions. Our results clearly distinguish two cases: while the dynamics changes smoothly through the crossover in the two-dimensional honeycomb case, it exhibits singular behaviors at the phase transition in the three-dimensional hyperhoneycomb case. We show that the low-temperature spin dynamics is a sensitive probe for thermally fluctuating Z2 fluxes that behave very differently between two and three dimensions.

  13. A holographic model for pseudogap in BCS-BEC crossover (I): Pairing fluctuations, double-trace deformation and dynamics of bulk bosonic fluid

    Science.gov (United States)

    DeWolfe, Oliver; Henriksson, Oscar; Wu, Chaolun

    2017-12-01

    We build a holographic model for the pairing fluctuation pseudogap phase in fermionic high temperature superconductivity/superfluidity based on the BCS-BEC crossover scenario. The pseudogap originates from incoherent Cooper pairing and has been observed in recent cold atom experiments. The strength of Cooper pairing and hence the BCS-BEC crossover is controlled by an effective 4-Fermi interaction and we argue that the double-trace deformation for charged scalar operator is a close analog in large N field theories. We employ the double-trace deformed Abelian Higgs model of holographic superconductors and propose that the incoherent fluctuations of the charged scalar in the bulk is the holographic dual of the fluctuating Cooper pairs. Using a Madelung transformation and the velocity-potential formalism, we develop a quantum fluid dynamics as an effective theory for these bulk fluctuations. The new fluid dynamics takes care of the boundary conditions required by AdS/CFT and encodes the vacuum polarization effect in curved spacetime. The pseudogap in conductivity can be related to the plasma oscillation of this bulk fluid.

  14. Density fluctuations in traffic flow

    CERN Document Server

    Yukawa, S

    1996-01-01

    Density fluctuations in traffic current are studied by computer simulations using the deterministic coupled map lattice model on a closed single-lane circuit. By calculating a power spectral density of temporal density fluctuations at a local section, we find a power-law behavior, \\sim 1/f^{1.8}, on the frequency f, in non-congested flow phase. The distribution of the headway distance h also shows the power law like \\sim 1/h^{3.0} at the same time. The power law fluctuations are destroyed by the occurence of the traffic jam.

  15. The electronic properties of mixed valence hydrated europium chloride thin film.

    Science.gov (United States)

    Silly, M G; Charra, F; Lux, F; Lemercier, G; Sirotti, F

    2015-07-28

    We investigate the electronic properties of a model mixed-valence hydrated chloride europium salt by means of high resolution photoemission spectroscopy (HRPES) and resonant photoemission spectroscopy (RESPES) at the Eu 3d → 4f and 4d → 4f transitions. From the HRPES spectra, we have determined that the two europium oxidation states are homogeneously distributed in the bulk and that the hydrated salt film is exempt from surface mixed valence transition. From the RESPES spectra, the well separated resonant contributions characteristic of divalent and trivalent europium species (4f(6) and 4f(7) final states, respectively) are accurately extracted and quantitatively determined from the resonant features measured at the two edges. The partial absorption yield spectra, obtained by integrating the photoemission intensity in the valence-band region, can be well reproduced by atomic multiplet calculation at the M(4,5) (3d-4f) absorption edge and by an asymmetric Fano-like shape profile at the N(4,5) (4d-4f) absorption edge. The ratio of Eu(2+) and Eu(3+) species measured at the two absorption edges matches with the composition of the mixed valence europium salt as determined chemically. We have demonstrated that the observed spectroscopic features of the mixed valence salt are attributed to the mixed-valence ground state rather than surface valence transition. HRPES and RESPES spectra provide reference spectra for the study of europium salts and their derivatives.

  16. Stochastic modelling of aquifer level temporal fluctuations using the Kalman filter adaptation algorithm and an autoregressive exogenous variable model

    Science.gov (United States)

    Varouchakis, Emmanouil

    2017-04-01

    Reliable temporal modelling of groundwater level is significant for efficient water resources management in hydrological basins and for the prevention of possible desertification effects. In this work we propose a stochastic data driven approach of temporal monitoring and prediction that can incorporate auxiliary information. More specifically, we model the temporal (mean annual and biannual) variation of groundwater level by means of a discrete time autoregressive exogenous variable model (ARX model). The ARX model parameters and its predictions are estimated by means of the Kalman filter adaptation algorithm (KFAA). KFAA is suitable for sparsely monitored basins that do not allow for an independent estimation of the ARX model parameters. Three new modified versions of the original form of the ARX model are proposed and investigated: the first considers a larger time scale, the second a larger time delay in terms of the groundwater level input and the third considers the groundwater level difference between the last two hydrological years, which is incorporated in the model as a third input variable. We apply KFAA to time series of groundwater level values from Mires basin in the island of Crete. In addition to precipitation measurements, we use pumping data as exogenous variables. We calibrate the ARX model based on the groundwater level for the years 1981 to 2006 and use it to successfully predict the mean annual and biannual groundwater level for recent years (2007-2010).

  17. Emotional valence and context of social influences on drug abuse-related behavior in animal models of social stress and prosocial interaction.

    Science.gov (United States)

    Neisewander, J L; Peartree, N A; Pentkowski, N S

    2012-11-01

    Social factors are important determinants of drug dependence and relapse. We reviewed pre-clinical literature examining the role of social experiences from early life through the development of drug dependence and relapse, emphasizing two aspects of these experiences: (1) whether the social interaction is appetitive or aversive and (2) whether the social interaction occurs within or outside of the drug-taking context. The models reviewed include neonatal care, isolation, social defeat, chronic subordination, and prosocial interactions. We review results from these models in regard to effects on self-administration and conditioned place preference established with alcohol, psychostimulants, and opiates. We suggest that in general, when the interactions occur outside of the drug-taking context, prosocial interactions are protective against drug abuse-related behaviors, whereas social stressors facilitate these behaviors. By contrast, positive or negative social interactions occurring within the drug-taking context may interact with other risk factors to enhance or inhibit these behaviors. Despite differences in the nature and complexity of human social behavior compared to other species, the evolving animal literature provides useful models for understanding social influences on drug abuse-related behavior that will allow for research on the behavioral and biological mechanisms involved. The models have contributed to understanding social influences on initiation and maintenance of drug use, but more research is needed to understand social influences on drug relapse.

  18. A New Prediction Model for Transformer Winding Hotspot Temperature Fluctuation Based on Fuzzy Information Granulation and an Optimized Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-12-01

    Full Text Available Winding hotspot temperature is the key factor affecting the load capacity and service life of transformers. For the early detection of transformer winding hotspot temperature anomalies, a new prediction model for the hotspot temperature fluctuation range based on fuzzy information granulation (FIG and the chaotic particle swarm optimized wavelet neural network (CPSO-WNN is proposed in this paper. The raw data are firstly processed by FIG to extract useful information from each time window. The extracted information is then used to construct a wavelet neural network (WNN prediction model. Furthermore, the structural parameters of WNN are optimized by chaotic particle swarm optimization (CPSO before it is used to predict the fluctuation range of the hotspot temperature. By analyzing the experimental data with four different prediction models, we find that the proposed method is more effective and is of guiding significance for the operation and maintenance of transformers.

  19. Analysis of the impact of crude oil price fluctuations on China's stock market in different periods-Based on time series network model

    Science.gov (United States)

    An, Yang; Sun, Mei; Gao, Cuixia; Han, Dun; Li, Xiuming

    2018-02-01

    This paper studies the influence of Brent oil price fluctuations on the stock prices of China's two distinct blocks, namely, the petrochemical block and the electric equipment and new energy block, applying the Shannon entropy of information theory. The co-movement trend of crude oil price and stock prices is divided into different fluctuation patterns with the coarse-graining method. Then, the bivariate time series network model is established for the two blocks stock in five different periods. By joint analysis of the network-oriented metrics, the key modes and underlying evolutionary mechanisms were identified. The results show that the both networks have different fluctuation characteristics in different periods. Their co-movement patterns are clustered in some key modes and conversion intermediaries. The study not only reveals the lag effect of crude oil price fluctuations on the stock in Chinese industry blocks but also verifies the necessity of research on special periods, and suggests that the government should use different energy policies to stabilize market volatility in different periods. A new way is provided to study the unidirectional influence between multiple variables or complex time series.

  20. Generation of Kekule valence structures and the corresponding valence bond wave function

    NARCIS (Netherlands)

    Rashid, Z.; van Lenthe, J.H.

    2010-01-01

    A new scheme, called “list of nonredundant bonds”, is presented to record the number of bonds and their positions for the atoms involved in Kekulé valence structures of (poly)cyclic conjugated systems. Based on this scheme, a recursive algorithm for generating Kekulé valence structures has been

  1. Basic features of the pion valence-quark distribution function

    Directory of Open Access Journals (Sweden)

    Lei Chang

    2014-10-01

    Full Text Available The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables a realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, qπ(x; namely, at a characteristic hadronic scale, qπ(x∼(1−x2 for x≳0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.

  2. The XY model and the three-state antiferromagnetic Potts model in three dimensions critical properties from fluctuating boundary conditions

    CERN Document Server

    Gottlob, A P

    1994-01-01

    We present the results of a Monte Carlo study of the three-dimensional XY model and the three-dimensional antiferromagnetic three-state Potts model. In both cases we compute the difference in the free energies of a system with periodic and a system with antiperiodic boundary conditions in the neighbourhood of the critical coupling. From the finite-size scaling behaviour of this quantity we extract values for the critical temperature and the critical exponent nu that are compatible with recent high statistics Monte Carlo studies of the models. The results for the free energy difference at the critical temperature and for the exponent nu confirm that both models belong to the same universality class.

  3. Investigation of the structure of core-coupled odd-proton copper nuclei in fpg valence space using the projected shell model

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Anuradha; Singh, Suram; Bharti, Arun [University of Jammu, Department of Physics and Electronics, Jammu (India); Khosa, S.K. [Central University of Jammu, Department of Physics and Astronomical Sciences, Jammu (India); Bhat, G.H.; Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)

    2017-01-15

    By employing a systematically parametrized Hamiltonian and the best fit of the various input parameters, high-spin yrast energy states for an isotopic chain of odd mass {sup 59-69}Cu nuclei have been investigated by using a novel computational quantum mechanical framework-projected shell model. Comparison of calculations and experiments yields good agreement. The present study of various intriguing nuclear structure properties along the yrast lines in these odd proton isotopes reflects some interesting informative nuclear physics results. The calculations successfully describe the formation of the yrast level structures from multi-quasi-particle configurations based on πf x νg bands for {sup 59-69}Cu isotopes. The present calculations indicate the evolution of the nuclear structure near the magic nuclei, Ni, and also provide an indication of coexistence of both, collective as well as single-particle, levels for {sup 69}Cu nucleus at N=40. (orig.)

  4. Quantum entanglement and temperature fluctuations.

    Science.gov (United States)

    Ourabah, Kamel; Tribeche, Mouloud

    2017-04-01

    In this paper, we consider entanglement in a system out of equilibrium, adopting the viewpoint given by the formalism of superstatistics. Such an approach yields a good effective description for a system in a slowly fluctuating environment within a weak interaction between the system and the environment. For this purpose, we introduce an alternative version of the formalism within a quantum mechanical picture and use it to study entanglement in the Heisenberg XY model, subject to temperature fluctuations. We consider both isotropic and anisotropic cases and explore the effect of different temperature fluctuations (χ^{2}, log-normal, and F distributions). Our results suggest that particular fluctuations may enhance entanglement and prevent it from vanishing at higher temperatures than those predicted for the same system at thermal equilibrium.

  5. Network models predict that reduced excitatory fluctuations can give rise to hippocampal network hyper-excitability in MeCP2-null mice.

    Directory of Open Access Journals (Sweden)

    Ernest C Y Ho

    Full Text Available Rett syndrome is a severe pediatric neurological disorder caused by loss of function mutations within the gene encoding methyl CpG-binding protein 2 (MeCP2. Although MeCP2 is expressed near ubiquitously, the primary pathophysiology of Rett syndrome stems from impairments of nervous system function. One alteration within different regions of the MeCP2-deficient brain is the presence of hyper-excitable network responses. In the hippocampus, such responses exist despite there being an overall decrease in spontaneous excitatory drive within the network. In this study, we generated and used mathematical, neuronal network models to resolve this apparent paradox. We did this by taking advantage of previous mathematical modelling insights that indicated that decreased excitatory fluctuations, but not mean excitatory drive, more critically explain observed changes in hippocampal network oscillations from MeCP2-null mouse slices. Importantly, reduced excitatory fluctuations could also bring about hyper-excitable responses in our network models. Therefore, these results indicate that diminished excitatory fluctuations may be responsible for the hyper-excitable state of MeCP2-deficient hippocampal circuitry.

  6. Sketching the pion's valence-quark generalised parton distribution

    Directory of Open Access Journals (Sweden)

    C. Mezrag

    2015-02-01

    Full Text Available In order to learn effectively from measurements of generalised parton distributions (GPDs, it is desirable to compute them using a framework that can potentially connect empirical information with basic features of the Standard Model. We sketch an approach to such computations, based upon a rainbow-ladder (RL truncation of QCD's Dyson–Schwinger equations and exemplified via the pion's valence dressed-quark GPD, Hπv(x,ξ,t. Our analysis focuses primarily on ξ=0, although we also capitalise on the symmetry-preserving nature of the RL truncation by connecting Hπv(x,ξ=±1,t with the pion's valence-quark parton distribution amplitude. We explain that the impulse-approximation used hitherto to define the pion's valence dressed-quark GPD is generally invalid owing to omission of contributions from the gluons which bind dressed-quarks into the pion. A simple correction enables us to identify a practicable improvement to the approximation for Hπv(x,0,t, expressed as the Radon transform of a single amplitude. Therewith we obtain results for Hπv(x,0,t and the associated impact-parameter dependent distribution, qπv(x,|b→⊥|, which provide a qualitatively sound picture of the pion's dressed-quark structure at a hadronic scale. We evolve the distributions to a scale ζ=2 GeV, so as to facilitate comparisons in future with results from experiment or other nonperturbative methods.

  7. Detrended Fluctuation Analysis on Cardiac Pulses in Both, Animal Models and Humans: A Computation for an Early Prognosis of Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Toru Yazawa

    2008-04-01

    Full Text Available We analyzed the heartbeat interval by the detrended fluctuation analysis (DFA in models and humans. In models, the myocardium of the healthy heart contracted regularly. The deteriorated heart model, however, showed alternating beats so-called "alternans." The DFA revealed that if the heart is having "alternans" exhibited there is a declined scaling exponent (~0.5. In humans, the heart that had "alternans" also showed a low scaling exponent (~0.6. We consider that the coexistence of "alternans" and a low scaling exponent can be a risk marker in predictive and preventative diagnosis, supporting the idea that "alternans" can be a harbinger of sudden death.

  8. Affective Priming with Associatively Acquired Valence

    Science.gov (United States)

    Aguado, Luis; Pierna, Manuel; Saugar, Cristina

    2005-01-01

    Three experiments explored the effect of affectively congruent or incongruent primes on evaluation responses to positive or negative valenced targets (the "affective priming" effect). Experiment 1 replicated the basic affective priming effect with Spanish nouns: reaction time for evaluative responses (pleasant/unpleasant) were slower on…

  9. Valence electronic state density in thorium dioxide

    Directory of Open Access Journals (Sweden)

    Teterin Anton Yu.

    2008-01-01

    Full Text Available This work analyses the fine low energy (0-40 eV X-ray photoelectron spectra of ThO2, taking into account relativistic Xα-discrete variation electronic structure calculations for the ThO8 (D4h cluster reflecting thorium's close environment in ThO2. As a result, it was theoretically shown and experimentally confirmed that Th5f electrons in ThO2 can participate directly (~0.6 Th5f electrons in chemical bond formation.Th6p electrons were shown to be a significant part (~0.44 Th6p electrons not only of inner valence molecular orbitals, but to play a significant role in outer valence molecular orbitals formation, as well. Inner valence molecular orbitals composition and sequent order were established to belong to the binding energy range of 13 eV to 40 eV. The valence electronic state density in the range of 0-40 eV in ThO2 was also calculated. For the first time, these data allowed an interpretation of the fine X-ray photoelectron spectra (0-40 eV and high resolution O4,5(Th X-ray emition spectral structure (~60 - ~85 eV of ThO2.

  10. Cesium's Off-the-Map Valence Orbital

    NARCIS (Netherlands)

    Goesten, Maarten G.; Rahm, Martin; Bickelhaupt, F. Matthias; Hensen, Emiel J.M.

    2017-01-01

    The Td-symmetric [CsO4]+ ion, featuring Cs in an oxidation state of 9, is computed to be a minimum. Cs uses outer core 5s and 5p orbitals to bind the oxygen atoms. The valence Cs 6s orbital lies too high to be involved in bonding, and contributes to Rydberg levels only. From a molecular orbital

  11. Quantum Fluctuation Relations

    OpenAIRE

    Facchi, Paolo; Garnero, Giancarlo; Ligabò, Marilena

    2017-01-01

    We present here a set of lecture notes on exact fluctuation relations. We prove the Jarzynski equality and the Crooks fluctuation theorem, two paradigmatic examples of classical fluctuation relations. Finally we consider their quantum versions, and analyze analogies and differences with the classical case.

  12. Reducing the negative valence of stressful memories through emotionally valenced, modality-specific tasks

    NARCIS (Netherlands)

    Tadmor, Avia; McNally, Richard J; Engelhard, Iris M

    2016-01-01

    BACKGROUND AND OBJECTIVES: People who perform a cognitively demanding secondary task while recalling a distressing memory often experience the memory as less emotional, vivid, or accurate during subsequent recollections. In this experiment, we tested whether the emotional valence (positive versus

  13. Eu valence and Fermi-surface development in EuX{sub 2}Si{sub 2} (X = Co, Rh, Ir) systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetze, K. [Hochfeld-Magnetlabor Dresden, Helmholtz-Zentrum Dresden-Rossendorf (Germany); TU Dresden, Institut fuer Festkoerperphysik (Germany); Seiro, S.; Geibel, C.; Rosner, H.; Petzold, V. [MPI for Chemical Physics of Solids (Germany); Polyakov, A.; Wosnitza, J. [Hochfeld-Magnetlabor Dresden, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Sheikin, I. [LNCMI-Grenoble (France); Suslov, A. [National High Magnetic Field Laboratory, Tallahassee (United States)

    2013-07-01

    The valence-fluctuating Eu systems EuX{sub 2}Si{sub 2}, with X being the transition metal Co, Ir, or Rh, show different types of ground states, strongly depending on X. The instability of the Eu 4f shell underlies this phenomenon and leads among other effects to different valence states ranging from Eu{sup 2+} over mixed valence and intermediate valence behavior to Eu{sup 3+}. Investigations on the structure and the magnetic behavior of EuCo{sub 2}Si{sub 2}, EuIr{sub 2}Si{sub 2}, and EuRh{sub 2}Si{sub 2} have revealed their Eu valence. Further experiments on specific heat and resistivity gave insights to magnetic ordering, electronic correlations, and possible valence fluctuations. We report about a systematic de Haas-van Alphen study on the Fermi-surface development of the EuX{sub 2}Si{sub 2} compounds in magnetic fields up to 35 T. High-quality single crystals were available for the first time. We focus on the Fermi-surface topology obtained by angle dependent measurements and discuss a comparison to band-structure calculations.

  14. Random cascade model in the limit of infinite integral scale as the exponential of a nonstationary 1/f noise: Application to volatility fluctuations in stock markets

    Science.gov (United States)

    Muzy, Jean-François; Baïle, Rachel; Bacry, Emmanuel

    2013-04-01

    In this paper we propose a new model for volatility fluctuations in financial time series. This model relies on a nonstationary Gaussian process that exhibits aging behavior. It turns out that its properties, over any finite time interval, are very close to continuous cascade models. These latter models are indeed well known to reproduce faithfully the main stylized facts of financial time series. However, it involves a large-scale parameter (the so-called “integral scale” where the cascade is initiated) that is hard to interpret in finance. Moreover, the empirical value of the integral scale is in general deeply correlated to the overall length of the sample. This feature is precisely predicted by our model, which, as illustrated by various examples from daily stock index data, quantitatively reproduces the empirical observations.

  15. Phylogeography, historical demography and habitat suitability modelling of freshwater fishes inhabiting seasonally fluctuating Mediterranean river systems: a case study using the Iberian cyprinid Squalius valentinus.

    Science.gov (United States)

    Perea, S; Doadrio, I

    2015-07-01

    The Mediterranean freshwater fish fauna has evolved under constraints imposed by the seasonal weather/hydrological patterns that define the Mediterranean climate. These conditions have influenced the genetic and demographic structure of aquatic communities since their origins in the Mid-Pliocene. Freshwater species in Mediterranean-type climates will likely constitute genetically well-differentiated populations, to varying extents depending on basin size, as a consequence of fragmentation resulting from drought/flood cycles. We developed an integrative framework to study the spatial patterns in genetic diversity, demographic trends, habitat suitability modelling and landscape genetics, to evaluate the evolutionary response of Mediterranean-type freshwater fish to seasonal fluctuations in weather. To test this evolutionary response, the model species used was Squalius valentinus, an endemic cyprinid of the Spanish Levantine area, where seasonal weather fluctuations are extreme, although our findings may be extrapolated to other Mediterranean-type species. Our results underscore the significant role of the Mediterranean climate, along with Pleistocene glaciations, in diversification of S. valentinus. We found higher nuclear diversity in larger drainage basins, but higher mitochondrial diversity correlated to habitat suitability rather than basin size. We also found strong correlation between genetic structure and climatic factors associated with Mediterranean seasonality. Demographic and migration analyses suggested population expansion during glacial periods that also contributed to the current genetic structure of S. valentinus populations. The inferred models support the significant contribution of precipitation and temperature to S. valentinus habitat suitability and allow recognizing areas of habitat stability. We highlight the importance of stable habitat conditions, fostered by typical karstic springs found on the Mediterranean littoral coasts, for the

  16. Phylogeography, historical demography and distribution modelling of freshwater fishes inhabiting seasonally fluctuating Mediterranean river systems: a case study using the Iberian cyprinid Squalius valentinus

    Directory of Open Access Journals (Sweden)

    Silvia Perea

    2015-12-01

    Full Text Available The Mediterranean freshwater fish fauna has evolved under constraints imposed by the seasonal weather/hydrological patterns that define the Mediterranean climate. These conditions have influenced the genetic and demographic structure of aquatic communities since their origins in the Mid-Pliocene. Freshwater species in Mediterranean-type climates will likely constitute genetically well-differentiated populations as a consequence of fragmentation resulting from drought/flood cycles, to varying extents depending on basin size. We developed an integrative framework to study spatial patterns in genetic diversity, demographic trends, distribution modelling, and landscape genetics to evaluate the evolutionary response of Mediterranean-type freshwater fish to seasonal fluctuations in weather. To test this evolutionary response, the model species used was Squalius valentinus, an endemic cyprinid of the Spanish Levantine area, where seasonal weather fluctuations are extreme, although our findings may be extrapolated to other Mediterranean-type species. Our results underscore the significant role of the Mediterranean climate, along with Pleistocene glaciations, in diversification of S. valentinus. We found higher nuclear diversity in larger drainage basins, but higher mitochondrial diversity correlated to habitat suitability rather than basin size. We also found strong correlation between genetic structure and climatic factors associated with Mediterranean seasonality. Demographic and migration analyses suggested population expansion during glacial periods that also contributed to the current genetic structure of S. valentinus populations. The inferred species distribution models support the significant contribution of precipitation and isothermality for S. valentinus habitat suitability. We highlight the importance of stable habitat conditions, fostered by typical karstic springs found on the Mediterranean littoral coasts, for the preservation of

  17. Pressure Fluctuations on the Bed of Surge Tank at the H.P. Zimapan, Hgo., with Different Arrangements Studied on Hydraulic Model, with the Lowest Operation Conditions

    Directory of Open Access Journals (Sweden)

    H. Marengo–Mogollón

    2009-10-01

    Full Text Available In this paper, the pressure fluctuations of the surge tank in the Zimapan Hydroelectric Project are compared in a hydraulic model. The shaft is located lateral, over the conduction tunnel and in the simple form (permitting the tunnel entering the shaft, with and without orifice plates taking into account the demand and supply condition of energy with the minimum level of water of the conduction. It was determined the hydraulic efficiency and it was found that it was the best constructive option.

  18. Evaluative conditioning induces changes in sound valence

    Directory of Open Access Journals (Sweden)

    Anna C. Bolders

    2012-04-01

    Full Text Available Evaluative Conditioning (EC has hardly been tested in the auditory domain, but it is a potentially valuable research tool. In Experiment 1 we investigated whether the affective evaluation of short environmental sounds can be changed using affective words as unconditioned stimuli (US. Congruence effects on an affective priming task (APT for conditioned sounds demonstrated successful EC. Subjective ratings for sounds paired with negative words changed accordingly. In Experiment 2 we investigated whether the acquired valence remains stable after repeated presentation of the conditioned sound without the US or whether extinction occurs. The acquired affective value remained present, albeit weaker, even after 40 extinction trials. These results warrant the use of EC to study processing of short environmental sounds with acquired valence, even if this requires repeated stimulus presentations. This paves the way for studying processing of affective environmental sounds while effectively controlling low level-stimulus properties.

  19. Human Amygdala Represents the Complete Spectrum of Subjective Valence

    Science.gov (United States)

    Jin, Jingwen; Zelano, Christina; Gottfried, Jay A.

    2015-01-01

    Although the amygdala is a major locus for hedonic processing, how it encodes valence information is poorly understood. Given the hedonic potency of odor stimuli and the amygdala's anatomical proximity to the peripheral olfactory system, we combined high-resolution fMRI with pattern-based multivariate techniques to examine how valence information is encoded in the amygdala. Ten human subjects underwent fMRI scanning while smelling 9 odorants that systematically varied in perceived valence. Representational similarity analyses showed that amygdala codes the entire dimension of valence, ranging from pleasantness to unpleasantness. This unidimensional representation significantly correlated with self-reported valence ratings but not with intensity ratings. Furthermore, within-trial valence representations evolved over time, prioritizing earlier differentiation of unpleasant stimuli. Together, these findings underscore the idea that both spatial and temporal features uniquely encode pleasant and unpleasant odor valence in the amygdala. The availability of a unidimensional valence code in the amygdala, distributed in both space and time, would create greater flexibility in determining the pleasantness or unpleasantness of stimuli, providing a mechanism by which expectation, context, attention, and learning could influence affective boundaries for guiding behavior. SIGNIFICANCE STATEMENT Our findings elucidate the mechanisms of affective processing in the amygdala by demonstrating that this brain region represents the entire valence dimension from pleasant to unpleasant. An important implication of this unidimensional valence code is that pleasant and unpleasant valence cannot coexist in the amygdale because overlap of fMRI ensemble patterns for these two valence extremes obscures their unique content. This functional architecture, whereby subjective valence maps onto a pattern continuum between pleasant and unpleasant poles, offers a robust mechanism by which context

  20. A multi-resolution model to capture both global fluctuations of an enzyme and molecular recognition in the ligand-binding site

    CERN Document Server

    Fogarty, Aoife C; Kremer, Kurt

    2016-01-01

    In multi-resolution simulations, different system components are simultaneously modelled at different levels of resolution, these being smoothly coupled together. In the case of enzyme systems, computationally expensive atomistic detail is needed in the active site to capture the chemistry of substrate binding. Global properties of the rest of the protein also play an essential role, determining the structure and fluctuations of the binding site; however, these can be modelled on a coarser level. Similarly, in the most computationally efficient scheme only the solvent hydrating the active site requires atomistic detail. We present a methodology to couple atomistic and coarse-grained protein models, while solvating the atomistic part of the protein in atomistic water. This allows a free choice of which protein and solvent degrees of freedom to include atomistically, without loss of accuracy in the atomistic description. This multi-resolution methodology can successfully model stable ligand binding, and we furt...

  1. Equilibrium gels of limited valence colloids

    OpenAIRE

    Sciortino, Francesco; Zaccarelli, Emanuela

    2017-01-01

    Gels are low-packing arrested states of matter which are able to support stress. On cooling, limited valence colloidal particles form open networks stabilized by the progressive increase of the interparticle bond lifetime. These gels, named equilibrium gels, are the focus of this review article. Differently from other types of colloidal gels, equilibrium gels do not require an underlying phase separation to form. Oppositely, they form in a region of densities deprived of thermodynamic instabi...

  2. Thermodynamic constraints on fluctuation phenomena

    Science.gov (United States)

    Maroney, O. J. E.

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  3. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  4. Neural systems subserving valence and arousal during the experience of induced emotions.

    Science.gov (United States)

    Colibazzi, Tiziano; Posner, Jonathan; Wang, Zhishun; Gorman, Daniel; Gerber, Andrew; Yu, Shan; Zhu, Hongtu; Kangarlu, Alayar; Duan, Yunsuo; Russell, James A; Peterson, Bradley S

    2010-06-01

    The circumplex model of affect construes all emotions as linear combinations of 2 independent neurophysiological dimensions, valence and arousal. We used functional magnetic resonance imaging to identify the neural networks subserving valence and arousal, and we assessed, in 10 participants, the associations of the BOLD (blood oxygen level-dependent) response, an indirect index of neural activity, with ratings of valence and arousal during the emotional experiences induced by the presentation of evocative sentences. Unpleasant emotional experience was associated with increased BOLD signal intensities in the supplementary motor, anterior midcingulate, right dorsolateral prefrontal, occipito-temporal, inferior parietal, and cerebellar cortices. Highly arousing emotions were associated with increased BOLD signal intensities in the left thalamus, globus pallidus, caudate, parahippocampal gyrus, amygdala, premotor cortex, and cerebellar vermis. Separate analyses using a finite impulse response model confirmed these results and revealed that pleasant emotions engaged an additional network that included the midbrain, ventral striatum, and caudate nucleus, all portions of a reward circuit. These findings suggest the existence of distinct networks subserving the valence and arousal dimensions of emotions, with midline and medial temporal lobe structures mediating arousal and dorsal cortical areas and mesolimbic pathways mediating valence.

  5. Photosynthetic Entrainment of the Circadian Clock Facilitates Plant Growth under Environmental Fluctuations: Perspectives from an Integrated Model of Phase Oscillator and Phloem Transportation

    Directory of Open Access Journals (Sweden)

    Takayuki Ohara

    2017-10-01

    Full Text Available Plants need to avoid carbon starvation and resultant growth inhibition under fluctuating light environments to ensure optimal growth and reproduction. As diel patterns of carbon metabolism are influenced by the circadian clock, appropriate regulation of the clock is essential for plants to properly manage their carbon resources. For proper adjustment of the circadian phase, higher plants utilize environmental signals such as light or temperature and metabolic signals such as photosynthetic products; the importance of the latter as phase regulators has been recently elucidated. A mutant of Arabidopsis thaliana that is deficient in phase response to sugar has been shown, under fluctuating light conditions, to be unable to adjust starch turnover and to realize carbon homeostasis. Whereas, the effects of light entrainment on growth and survival of higher plants are well studied, the impact of phase regulation by sugar remains unknown. Here we show that endogenous sugar entrainment facilitates plant growth. We integrated two mathematical models, one describing the dynamics of carbon metabolism in A. thaliana source leaves and the other growth of sink tissues dependent on sucrose translocation from the source. The integrated model predicted that sugar-sensitive plants grow faster than sugar-insensitive plants under constant as well as changing photoperiod conditions. We found that sugar entrainment enables efficient carbon investment for growth by stabilizing sucrose supply to sink tissues. Our results highlight the importance of clock entrainment by both exogenous and endogenous signals for optimizing growth and increasing fitness.

  6. Memory effects of sleep, emotional valence, arousal and novelty in children.

    Science.gov (United States)

    Vermeulen, Marije C M; van der Heijden, Kristiaan B; Benjamins, Jeroen S; Swaab, Hanna; van Someren, Eus J W

    2017-06-01

    Effectiveness of memory consolidation is determined by multiple factors, including sleep after learning, emotional valence, arousal and novelty. Few studies investigated how the effect of sleep compares with (and interacts with) these other factors, of which virtually none are in children. The present study did so by repeated assessment of declarative memory in 386 children (45% boys) aged 9-11 years through an online word-pair task. Children were randomly assigned to either a morning or evening learning session of 30 unrelated word-pairs with positive, neutral or negative valenced cues and neutral targets. After immediately assessing baseline recognition, delayed recognition was recorded either 12 or 24 h later, resulting in four different assessment schedules. One week later, the procedure was repeated with exactly the same word-pairs to evaluate whether effects differed for relearning versus original novel learning. Mixed-effect logistic regression models were used to evaluate how the probability of correct recognition was affected by sleep, valence, arousal, novelty and their interactions. Both immediate and delayed recognition were worse for pairs with negatively valenced or less arousing cue words. Relearning improved immediate and delayed word-pair recognition. In contrast to these effects, sleep did not affect recognition, nor did sleep moderate the effects of arousal, valence and novelty. The findings suggest a robust inclination of children to specifically forget the pairing of words to negatively valenced cue words. In agreement with a recent meta-analysis, children seem to depend less on sleep for the consolidation of information than has been reported for adults, irrespective of the emotional valence, arousal and novelty of word-pairs. © 2017 European Sleep Research Society.

  7. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DEFF Research Database (Denmark)

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina

    2017-01-01

    valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitals directly involved in the light-driven dynamics; a change in the metal ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations......We probe the dynamics of valence electrons in photoexcited [Fe(terpy)2]2+ in solution to gain deeper insight into the Fe ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making...... it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied...

  8. Simulating Ru L 3 -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    Energy Technology Data Exchange (ETDEWEB)

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  9. Particle density fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, M.M.; Ahammed, Z.; Angelis, A.L.S.; Antonenko, V.; Arefiev, V.; Astakhov, V.; Avdeitchikov, V.; Awes, T.C.; Baba, P.V.K.S.; Badyal, S.K.; Bathe, S.; Batiounia, B.; Bernier, T.; Bhalla, K.B.; Bhatia, V.S.; Blume, C.; Bucher, D.; Buesching, H.; Carlen, L.; Chattopadhyay, S.; Das, A.C.; Decowski, M.P.; Donni, P.; Dubey, A.K.; Dutta Majumdar, M.R.; Enosawa, K.; Fokin, S.; Frolov, V.; Ganti, M.S.; Garpman, S.; Gavrishcuk, O.; Geurts, F.J.M.; Glasow, R.; Guskov, B.; Gustafsson, H.A.; Gutbrod, H.H.; Hrivnacova, I.; Ippolitov, M.; Kalechofsky, H.; Kamermans, R.; Karadjev, K.; Karpio, K.; Kolb, B.W.; Kosarev, I.; Koutcheryaev, I.; Kugler, A.; Kulinich, P.; Kurata, M.; Lebedev, A.; Loehner, H.; Mahapatra, D.P.; Manko, V.; Martin, M.; Miake, Y.; Mishra, G.C.; Mohanty, B.; Morrison, D.; Mukhopadhayay, D.S.; Naef, H.; Nandi, B.K.; Nayak, S.K.; Nayak, T.K.; Nianine, A.; Nikitine, V.; Nikolaev, S.; Nishimura, S.; Nomokov, P.; Petracek, V.; Plasil, F.; Purschke, M.L.; Rak, J.; Raniwala, R.; Raniwala, S.; Rao, N.K.; Retiere, F.; Reygers, K.; Roland, G.; Rosselet, L.; Roufanov, I.; Rubio, J.M.; Sambyal, S.S.; Santo, R.; Sato, S.; Schlagheck, H.; Schmidt, H.-R.; Schutz, Y.; Shabratova, G.; Sibiriak, I.; Siemiarczuk, T.; Sinha, B.C.; Slavine, N.; Soederstroem, K.; Sood, G.; Soerensen, S.P.; Stankus, P.; Steinberg, P.; Stenlund, E.; Sumbera, M.; Svensson, T.; Trivedi, M.D.; Tsvetkov, A.; Tykarski, L.; Urbahn, J.; Eijinhoven, N. van; Niewenhuizen, G.J. van; Vinogradov, A.; Viyogi, Y.P.; Vodopianov, A.; Voeroes, S.; Wyslouch, B.; Young, G.R

    2003-03-10

    Event-by-event fluctuations in the multiplicities of charged particles and photons at SPS energies are discussed. Fluctuations are studied by controlling the centrality of the reaction and rapidity acceptance of the detectors. Results are also presented on the event-by-event study of correlations between the multiplicity of charged particles and photons to search for DCC-like signals.

  10. Particle density fluctuations

    CERN Document Server

    Mohanty, Bedangadas; Ahammed, Z.; Angelis, A.L.S.; Antonenko, V.; Arefev, V.; Astakhov, V.; Avdeitchikov, V.; Awes, T.C.; Baba, P.V.K.S.; Badyal, S.K.; Bathe, S.; Batiounia, B.; Bernier, T.; Bhalla, K.B.; Bhatia, V.S.; Blume, C.; Bucher, D.; Busching, H.; Carlen, L.; Chattopadhyay, S.; Das, A.C.; Decowski, M.P.; Donni, P.; Dubey, A.K.; Dutta Majumdar, M.R.; Enosawa, K.; Fokin, S.; Frolov, V.; Ganti, M.S.; Garpman, S.; Gavrishchuk, O.; Geurts, F.J.M.; Glasow, R.; Guskov, B.; Gustafsson, H.A.; Gutbrod, H.H.; Hrivnacova, I.; Ippolitov, M.; Kalechofsky, H.; Kamermans, R.; Karadjev, K.; Karpio, K.; Kolb, B.W.; Kosarev, I.; Koutcheryaev, I.; Kugler, A.; Kulinich, P.; Kurata, M.; Lebedev, A.; Lohne, H.; Mahapatra, D.P.; Manko, V.; Martin, M.; Miake, Y.; Mishra, G.C.; Morrison, D.; Mukhopadhyay, D.S.; Naef, H.; Nandi, B.K.; Nayak, S.K.; Nayak, T.K.; Nianine, A.; Nikitine, V.; Nikolaev, S.; Nishimura, S.; Nomokov, P.; Nystrand, J.; Oskarsson, A.; Otterlund, I.; Phatak, S.C.; Pavliouk, S.; Peitzmann, T.; Petracek, V.; Plasil, F.; Purschke, M.L.; Rak, J.; Raniwala, R.; Raniwala, S.; Rao, N.K.; Retiere, F.; Reygers, K.; Roland, G.; Rosselet, L.; Roufanov, I.; Rubio, J.M.; Sambyal, S.S.; Santo, R.; Sato, S.; Schlagheck, H.; Schmidt, H.R.; Schutz, Y.; Shabratova, G.; Sibiriak, I.; Siemiarczuk, T.; Sinha, B.C.; Slavine, N.; Soderstrom, K.; Sood, G.; Sorensen, S.P.; Stankus, P.; Stefanek, G.; Steinberg, P.; Stenlund, E.; Sumbera, M.; Svensson, T.; Trivedi, M.D.; Tsvetkov, A.; Tykarski, L.; Urbahn, J.; van Eijndhoven, N.; van Nieuwenhuizen, G.J.; Vinogradov, A.; Viyogi, Y.P.; Vodopianov, A.S.; Voros, S.; Wyslouch, B.; Young, G.R.; Mohanty, Bedangadas

    2003-01-01

    Event-by-event fluctuations in the multiplicities of charged particles and photons at SPS energies are discussed. Fluctuations are studied by controlling the centrality of the reaction and rapidity acceptance of the detectors. Results are also presented on the event-by-event study of correlations between the multiplicity of charged particles and photons to search for DCC-like signals.

  11. Mathematical Modeling of Liquid Slag Layer Fluctuation and Slag Droplets Entrainment in a Continuous Casting Mold Based on VOF-LES Method

    Science.gov (United States)

    Zhao, Peng; Li, Qiang; Kuang, Shi Bo; Zou, Zongshu

    2017-05-01

    The slag behaviors, directly relating with the qualities of the final cast products, are influenced by the transient surface flow of liquid steel in a continuous casting mold. A one-half scale model is used to investigate the slag behaviors and their droplets entrainment. The model based on Volume of Fluid (VOF) multiphase coupled with Large Eddy Simulation (LES) is established to further illuminate the phenomena of the liquid oil layer fluctuation, the slag "eye" regions, and the slag entrainment observed in water experiment. The effects of casting speeds on the slag behaviors and their entrained droplets are investigated. The results show that the fluctuation of the oil layer is influenced by the transient flow. The calculations for the oil layer profile, the accumulation, and protrusions of oil layer are consistent with the water experiment. The asymmetry of the slag "eye" regions is also influenced by the asymmetry of free surface and transient turbulent flow. The "eye" regions near the narrow wall show distinct asymmetric change at different casting speeds. At a lower casting speed, the slag "eye" regions change irregularly and display the alternate process of open and collapse at the two sides of the narrow walls of the model. While at a relative higher casting speed, the slag layer gathers toward the nozzle, and the slag "eye" regions gradually grow and always open. The simulation model can reveal that the mechanism of the slag entrainment includes two main modes: the cutting or dragging mode and shear layer instability. The average diameter and amount of the entrained droplets are calculated through the UDF codes of ANSYS FLUENT software, and the size distribution of the entrained droplets is also counted. When the casting speed is lower, the dominant diameters of the entrained droplets range between 2 and 3 mm. With casting speed increase, the distribution of the droplets becomes wider, and there is a gradually increase in the percentage of larger droplets

  12. Multiplicity Distributions and Charged-neutral Fluctuations

    CERN Document Server

    Nayak, Tapan K.; Agnihotri, A.; Ahammed, Z.; Angelis, A.L.S.; Antonenko, V.; Arefev, V.; Astakhov, V.; Avdeitchikov, V.; Awes, T.C.; Baba, P.V.K.S.; Badyal, S.K.; Baldine, A.; Barabach, L.; Barlag, C.; Bathe, S.; Batiounia, B.; Bernier, T.; Bhalla, K.B.; Bhatia, V.S.; Blume, C.; Bock, R.; Bohne, E.M.; Bucher, D.; Buijs, A.; Buis, E.J.; Busching, H.; Carlen, L.; Chalyshev, V.; Chattopadhyay, S.; Chenawi, K.E.; Cherbatchev, R.; Chujo, T.; Claussen, A.; Das, A.C.; Decowski, M.P.; Djordjadze, V.; Donni, P.; Doubovik, I.; Dubey, A.K.; Dutta Majumda, M.R.; Eliseev, S.; Enosawa, K.; Feldmann, H.; Foka, P.; Fokin, S.; Frolov, V.; Ganti, M.S.; Garpman, S.; Gavrishchuk, O.; Geurts, F.J.M.; Ghosh, T.K.; Glasow, R.; Gupta, S.K.; Guskov, B.; Gustafsson, H.A.; Gutbrod, H.H.; Higuchi, R.; Hrivnacova, I.; Ippolitov, M.; Kalechofsky, H.; Kamermans, R.; Kampert, K.H.; Karadjev, K.; Karpio, K.; Kato, S.; Kees, S.; Kim, H.; Kolb, B.W.; Kosarev, I.; Koutcheryaev, I.; Kugler, A.; Kulinich, P.; Kumar, V.; Kurata, M.; Kurita, K.; Kuzmin, N.; Langbein, I.; Lebedev, A.; Lee, Y.Y.; Lohner, H.; Mahapatra, D.P.; Manko, V.; Martin, M.; Maximov, A.; Mehdiyev, Rashid R.; Mgebrichvili, G.; Miake, Y.; Mikhalev, D.; Mishra, G.C.; Miyamoto, Y.; Mohanty, B.; Morrison, Douglas R.O.; Mukhopadhyay, D.S.; Myalkovski, V.; Naef, H.; Nandi, B.K.; Nayak, S.K.; Nayak, T.K.; Neumaier, S.; Nianine, A.; Nikitine, V.; Nikolaev, S.; Nishimura, S.; Nomokov, P.; Nystrand, J.; Obenshain, F.E.; Oskarsson, A.; Otterlund, I.; Pachr, M.; Parfenov, A.; Pavliouk, S.; Peitzmann, T.; Petracek, V.; Plasil, F.; Purschke, M.L.; Raeven, B.; Rak, J.; Raniwala, R.; Raniwala, S.; Ramamurthy, V.S.; Rao, N.K.; Retiere, F.; Reygers, K.; Roland, G.; Rosselet, L.; Roufanov, I.; Rubio, J.M.; Sambyal, S.S.; Santo, R.; Sato, S.; Schlagheck, H.; Schmidt, H.R.; Shabratova, G.; Sibiriak, I.; Siemiarczuk, T.; Sinha, B.C.; Slavine, N.; Soderstrom, K.; Solomey, N.; Sood, G.; Sorensen, S.P.; Stankus, P.; Stefanek, G.; Steinberg, P.; Stenlund, E.; Stuken, D.; Sumbera, M.; Svensson, T.; Trivedi, M.D.; Tsvetkov, A.; Twenhofel, C.; Tykarski, L.; Urbahn, J.; van Eijndhoven, N.; van Heeringen, W.H.; van Nieuwenhuizen, G.J.; Vinogradov, A.; Viyogi, Y.P.; Vodopianov, A.S.; Voros, S.; Vos, M.A.; Wyslouch, B.; Yagi, K.; Yokota, Y.; Young, G.R.; Nayak, Tapan K.

    2001-01-01

    Results from the multiplicity distributions of inclusive photons and charged particles, scaling of particle multiplicities, event-by-event multiplicity fluctuations, and charged-neutral fluctuations in 158$\\cdot A$ GeV Pb+Pb collisions are presented and discussed. A scaling of charged particle multiplicity as $N_{part}^{1.07\\pm 0.05}$ and photons as $N_{part}^{1.12\\pm 0.03}$ have been observed, indicating violation of naive wounded nucleon model. The analysis of localized charged-neutral fluctuation indicates a model-independent demonstration of non-statistical fluctuations in both charged particles and photons in limited azimuthal regions. However, no correlated charged-neutral fluctuations are observed.

  13. Resonating-Valence-Bond Physics Is Not Always Governed by the Shortest Tunneling Loops.

    Science.gov (United States)

    Ralko, Arnaud; Rousochatzakis, Ioannis

    2015-10-16

    It is well known that the low-energy sector of quantum spin liquids and other magnetically disordered systems is governed by short-ranged resonating-valence bonds. Here we show that the standard minimal truncation to the nearest-neighbor valence-bond basis fails completely even for systems where it should work the most, according to received wisdom. This paradigm shift is demonstrated for the quantum spin-1/2 square kagome, where strong geometric frustration, similar to the kagome, prevents magnetic ordering down to zero temperature. The shortest tunneling events bear the strongest longer-range singlet fluctuations, leading to amplitudes that do not drop exponentially with the length of the loop L, and to an unexpected loop-six valence-bond crystal, which is otherwise very high in energy at the minimal truncation level. The low-energy effective description gives in addition a clear example of correlated loop processes that depend not only on the type of the loop but also on its lattice embedding, a direct manifestation of the long-range nature of the virtual singlets.

  14. Valence-bond quantum Monte Carlo algorithms defined on trees.

    Science.gov (United States)

    Deschner, Andreas; Sørensen, Erik S

    2014-09-01

    We present a class of algorithms for performing valence-bond quantum Monte Carlo of quantum spin models. Valence-bond quantum Monte Carlo is a projective T=0 Monte Carlo method based on sampling of a set of operator strings that can be viewed as forming a treelike structure. The algorithms presented here utilize the notion of a worm that moves up and down this tree and changes the associated operator string. In quite general terms, we derive a set of equations whose solutions correspond to a whole class of algorithms. As specific examples of this class of algorithms, we focus on two cases. The bouncing worm algorithm, for which updates are always accepted by allowing the worm to bounce up and down the tree, and the driven worm algorithm, where a single parameter controls how far up the tree the worm reaches before turning around. The latter algorithm involves only a single bounce where the worm turns from going up the tree to going down. The presence of the control parameter necessitates the introduction of an acceptance probability for the update.

  15. Model of phase fluctuations in a lattice d -wave superconductor: Application to the Cooper-pair charge-density wave in underdoped cuprates

    Science.gov (United States)

    Melikyan, Ashot; Tešanović, Zlatko

    2005-06-01

    We introduce and study an XY -type model of thermal and quantum phase fluctuations in a two-dimensional correlated lattice d -wave superconductor based on the QED3 effective theory of high-temperature superconductors. General features of and selected results obtained within this model were reported earlier in an abbreviated format (Z. Tešanović, e-print cond-mat/0405235). The model is geared toward describing not only the long distance but also the intermediate length-scale physics of underdoped cuprates. In particular, we elucidate the dynamical origin and investigate specific features of the charge-density wave of Cooper pairs, which we argue is the state behind the periodic charge-density modulation discovered in recent scanning-tunneling-microscopy experiments. We illustrate how Mott-Hubbard correlations near half-filling suppress superfluid density and favor an incompressible state which breaks translational symmetry of the underlying atomic lattice. We show how the formation of the Cooper pair charge-density wave in such a strongly quantum fluctuating superconductor can naturally be understood as an Abrikosov-Hofstadter problem in a type-II dual superconductor, with the role of the dual magnetic field played by the electron density. The resulting Abrikosov lattice of dual vortices translates into a periodic modulation of the Bogoliubov de Gennes (BdG) gap function and the electronic density. We numerically study the energetics of various Abrikosov-Hofstadter dual vortex arrays and compute their detailed signatures in the single-particle local tunneling density of states. A 4×4 checkerboard-type modulation pattern naturally arises as an energetically favored ground state at and near the x=1/8 doping and produces the local density of states in good agreement with experimental observations. The leading-order behavior of nodal BdG fermions remains unaffected.

  16. An experimental and theoretical study of core-valence double ionisation of acetaldehyde (ethanal).

    Science.gov (United States)

    Zagorodskikh, S; Vapa, M; Vahtras, O; Zhaunerchyk, V; Mucke, M; Eland, J H D; Squibb, R J; Linusson, P; Jänkälä, K; Ågren, H; Feifel, R

    2016-01-28

    Core-valence double ionisation spectra of acetaldehyde (ethanal) are presented at photon energies above the carbon and oxygen 1s ionisation edges, measured by a versatile multi-electron coincidence spectroscopy technique. We use this molecule as a testbed for analyzing core-valence spectra by means of quantum chemical calculations of transition energies. These theoretical approaches range from two simple models, one based on orbital energies corrected by core valence interaction and one based on the equivalent core approximation, to a systematic series of quantum chemical electronic structure methods of increasing sophistication. The two simple models are found to provide a fast orbital interpretation of the spectra, in particular in the low energy parts, while the coverage of the full spectrum is best fulfilled by correlated models. CASPT2 is the most sophisticated model applied, but considering precision as well as computational costs, the single and double excitation configuration interaction model seems to provide the best option to analyze core-valence double hole spectra.

  17. Positive valence music restores executive control over sustained attention.

    Science.gov (United States)

    Baldwin, Carryl L; Lewis, Bridget A

    2017-01-01

    Music sometimes improves performance in sustained attention tasks. But the type of music employed in previous investigations has varied considerably, which can account for equivocal results. Progress has been hampered by lack of a systematic database of music varying in key characteristics like tempo and valence. The aims of this study were to establish a database of popular music varying along the dimensions of tempo and valence and to examine the impact of music varying along these dimensions on restoring attentional resources following performance of a sustained attention to response task (SART) vigil. Sixty-nine participants rated popular musical selections that varied in valence and tempo to establish a database of four musical types: fast tempo positive valence, fast tempo negative valence, slow tempo positive valence, and slow tempo negative valence. A second group of 89 participants performed two blocks of the SART task interspersed with either no break or a rest break consisting of 1 of the 4 types of music or silence. Presenting positive valence music (particularly of slow tempo) during an intermission between two successive blocks of the SART significantly decreased miss rates relative to negative valence music or silence. Results support an attentional restoration theory of the impact of music on sustained attention, rather than arousal theory and demonstrate a means of restoring sustained attention. Further, the results establish the validity of a music database that will facilitate further investigations of the impact of music on performance.

  18. Dissociable effects of valence and arousal in adaptive executive control

    National Research Council Canada - National Science Library

    Kuhbandner, Christof; Zehetleitner, Michael

    2011-01-01

    Based on introspectionist, semantic, and psychophysiological experimental frameworks, it has long been assumed that all affective states derive from two independent basic dimensions, valence and arousal...

  19. Parity fluctuations in stellar dynamos

    Science.gov (United States)

    Moss, D. L.; Sokoloff, D. D.

    2017-10-01

    Observations of the solar butterfly diagram from sunspot records suggest persistent fluctuations in parity, away from the overall, approximately dipolar pattern. A simple mean-field dynamo model is used with a solar-like rotation law and perturbed α effect. The parity of the magnetic field relative to the rotational equator can demonstrate can be described as resonance behavior, while the magnetic energy behaves in a more or less expected way. Possible applications of this effect are discussed in the context of various deviations of the solar magnetic field from dipolar symmetry, as reported from analyses of archival sunspot data. The model produces fluctuations in field parity, and hence in the butterfly diagram, that are consistent with observed fluctuaions in solar behavior.

  20. Determining binding energies of valence-band electrons in insulators and semiconductors via lanthanide spectroscopy

    NARCIS (Netherlands)

    Dorenbos, P.

    2013-01-01

    Models and methods to determine the absolute binding energy of 4f-shell electrons in lanthanide dopants will be combined with data on the energy of electron transfer from the valence band to a lanthanide dopant. This work will show that it provides a powerful tool to determine the absolute binding

  1. Andreas Acrivos Dissertation Award Talk: Modeling drag forces and velocity fluctuations in wall-bounded flows at high Reynolds numbers

    Science.gov (United States)

    Yang, Xiang

    2017-11-01

    The sizes of fluid motions in wall-bounded flows scale approximately as their distances from the wall. At high Reynolds numbers, resolving near-wall, small-scale, yet momentum-transferring eddies are computationally intensive, and to alleviate the strict near-wall grid resolution requirement, a wall model is usually used. The wall model of interest here is the integral wall model. This model parameterizes the near-wall sub-grid velocity profile as being comprised of a linear inner-layer and a logarithmic meso-layer with one additional term that accounts for the effects of flow acceleration, pressure gradients etc. We use the integral wall model for wall-modeled large-eddy simulations (WMLES) of turbulent boundary layers over rough walls. The effects of rough-wall topology on drag forces are investigated. A rough-wall model is then developed based on considerations of such effects, which are now known as mutual sheltering among roughness elements. Last, we discuss briefly a new interpretation of the Townsend attached eddy hypothesis-the hierarchical random additive process model (HRAP). The analogy between the energy cascade and the momentum cascade is mathematically formal as HRAP follows the multi-fractal formulism, which was extensively used for the energy cascade.

  2. Scaling metabolic rate fluctuations

    OpenAIRE

    Labra, Fabio A.; Marquet, Pablo A.; Bozinovic, Francisco

    2007-01-01

    Complex ecological and economic systems show fluctuations in macroscopic quantities such as exchange rates, size of companies or populations that follow non-Gaussian tent-shaped probability distributions of growth rates with power-law decay, which suggests that fluctuations in complex systems may be governed by universal mechanisms, independent of particular details and idiosyncrasies. We propose here that metabolic rate within individual organisms may be considered as an example of an emerge...

  3. Seniority Number in Valence Bond Theory.

    Science.gov (United States)

    Chen, Zhenhua; Zhou, Chen; Wu, Wei

    2015-09-08

    In this work, a hierarchy of valence bond (VB) methods based on the concept of seniority number, defined as the number of singly occupied orbitals in a determinant or an orbital configuration, is proposed and applied to the studies of the potential energy curves (PECs) of H8, N2, and C2 molecules. It is found that the seniority-based VB expansion converges more rapidly toward the full configuration interaction (FCI) or complete active space self-consistent field (CASSCF) limit and produces more accurate PECs with smaller nonparallelity errors than its molecular orbital (MO) theory-based analogue. Test results reveal that the nonorthogonal orbital-based VB theory provides a reverse but more efficient way to truncate the complete active Hilbert space by seniority numbers.

  4. Fluctuations, Environment, Mutations Accumulation and Ageing

    Science.gov (United States)

    Biecek, Przemysław; Cebrat, Stanisław

    We present a model of evolution of the age structured population based on the Monte Carlo method. We have assumed that the health status of an individual is described by variance of its fluctuations. Each expressed deleterious mutation increases the fluctuations. Additionally, the fluctuations of the environment are superimposed on the fluctuations of individuals in the population. An individual dies if the combination of both stochastic processes trespass the limit (level of homeostasis) set as the model parameter. The genes are switched on chronologically, what leads to accumulating defective genes expressed during the late periods of life in the genetic pool of the population. That results in the specific age structured population, in accordance with the predictions of Medawar's hypothesis of ageing and the results of the Penna model simulations. A decrease of the variation of the environmental noise increases the average expected lifespan of individuals.

  5. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reaction flows

    Science.gov (United States)

    Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.

    1984-01-01

    The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.

  6. ADDITIVE MODEL OF FORECASTING OF SCRAP METAL CONSUMPTION AT MELT OF STEEL TAKING INTO ACCOUNT SEASONAL FLUCTUATIONS

    Directory of Open Access Journals (Sweden)

    V. I. Djachenko

    2012-01-01

    Full Text Available The offered and realized additive model of calculation of specific norm of consumption of scrap metal at arc electric steel-smelting furnaces has allowed to reduce considerably the error at calculation of the planned cost price of production.

  7. Effective electron-phonon coupling in the Hubbard-Holstein model in presence of strong correlations and density fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Citro, R. [Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno and CNISM, Unita di ricerca di Salerno, Via S. Allende, 84081 Baronissi (Italy)], E-mail: citro@sa.infn.it; Cojocaru, S.; Marinaro, M. [Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno and CNISM, Unita di ricerca di Salerno, Via S. Allende, 84081 Baronissi (Italy)

    2007-09-01

    We study the Hubbard-Holstein model in the strong coupling regime and discuss the role of electron-electron correlations, doping and phonon frequency (isotope substitution) on the effective electron-phonon coupling. A comparison with recent dynamical mean field (DMF) studies and connection with recent experimental findings in cuprate superconductors is also discussed.

  8. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    Science.gov (United States)

    Chinitz, W.

    1986-01-01

    A computationally-viable model describing the interaction between fluid-mechanical turbulence and finite-rate combustion reactions, principally in high-speed flows was developed. Chemical kinetic mechanisms, complete and global, were developed describing the finite rate reaction of fuels of interest to NASA. These fuels included principally hydrogen and silane, although a limited amount of work involved hydrocarbon fuels as well.

  9. Prediction of valence and arousal from music features

    NARCIS (Netherlands)

    Den Brinker, A.C.; Van Dinther, C.H.B.A.; Skowronek, J.

    2011-01-01

    Mood is an important attribute of music and knowledge on mood can beused as a basic ingredient in music recommender and retrieval systems. Moods are assumed to be dominantly determined by two dimensions:valence and arousal. An experiment was conducted to attain data forsong-based ratings of valence

  10. Intervalence charge transfer transition in mixed valence complexes ...

    Indian Academy of Sciences (India)

    Permanent link: http://www.ias.ac.in/article/fulltext/jcsc/114/04/0431-0442. Keywords. Mixed valence complexes; intervalence charge transfer; rotaxane; inclusion complex; optical electron transfer; cyclodextrin. Abstract. Intervalence charge transfer properties were studied for a set of mixed valence complexes incorporating ...

  11. Teaching Valence Shell Electron Pair Repulsion (VSEPR) Theory

    Science.gov (United States)

    Talbot, Christopher; Neo, Choo Tong

    2013-01-01

    This "Science Note" looks at the way that the shapes of simple molecules can be explained in terms of the number of electron pairs in the valence shell of the central atom. This theory is formally known as valence shell electron pair repulsion (VSEPR) theory. The article explains the preferred shape of chlorine trifluoride (ClF3),…

  12. Evidence of Large Fluctuations of Stock Return and Financial Crises from Turkey: Using Wavelet Coherency and Varma Modeling to Forecast Stock Return

    Science.gov (United States)

    Oygur, Tunc; Unal, Gazanfer

    Shocks, jumps, booms and busts are typical large fluctuation markers which appear in crisis. Models and leading indicators vary according to crisis type in spite of the fact that there are a lot of different models and leading indicators in literature to determine structure of crisis. In this paper, we investigate structure of dynamic correlation of stock return, interest rate, exchange rate and trade balance differences in crisis periods in Turkey over the period between October 1990 and March 2015 by applying wavelet coherency methodologies to determine nature of crises. The time period includes the Turkeys currency and banking crises; US sub-prime mortgage crisis and the European sovereign debt crisis occurred in 1994, 2001, 2008 and 2009, respectively. Empirical results showed that stock return, interest rate, exchange rate and trade balance differences are significantly linked during the financial crises in Turkey. The cross wavelet power, the wavelet coherency, the multiple wavelet coherency and the quadruple wavelet coherency methodologies have been used to examine structure of dynamic correlation. Moreover, in consequence of quadruple and multiple wavelet coherence, strongly correlated large scales indicate linear behavior and, hence VARMA (vector autoregressive moving average) gives better fitting and forecasting performance. In addition, increasing the dimensions of the model for strongly correlated scales leads to more accurate results compared to scalar counterparts.

  13. Assessment of Fluctuating Reservoir Elevations Using Hydraulic Models and Impacts to Larval Pacific Lamprey Rearing Habitat in the Bonneville Pool

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Robert P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rakowski, Cynthia L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Perkins, William A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-24

    This report presents the results of a modeling assessment of likely lamprey larval habitat that may be impacted by dewatering of the major tributary delta regions in the Bonneville Pool of the Columbia River. This assessment was conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers Portland District (CENWP). The goal of the study was to provide baseline data about how the regions of interest would potentially be impacted at three river flows (10, 50, and 90 percent exceedance flow) for four different forebay elevations at Bonneville Dam. Impacts of unsteady flows at The Dalles Dam and changing forebay elevation at Bonneville Dam for a 2-week period were also assessed. The area of dewatered regions was calculated by importing modeled data outputs into a GIS and then calculating the change in inundated area near tributary deltas for the four Bonneville forebay surface elevations. From the modeled output we determined that the overall change in area is less sensitive to elevations changes during higher river discharges. Changing the forebay elevation at Bonneville and the resulting impact to total dewatered regions was greater at the lowest modeled river flow (97 kcfs) and showed the greatest variation at the White Salmon/Hood River delta regions followed by the Wind, Klickitat and the Little White Salmon rivers. To understand how inundation might change on a daily and hourly basis. Unsteady flow models were run for a 2-week period in 2002 and compared to 2014. The water surface elevation in the upstream pool closely follows that of the Bonneville Dam forebay with rapid changes of 1 to 2-ft possible. The data shows that 2.5-ft variation in water surface elevation occurred during this period in 2002 and a 3.7-ft change occurred in 2014. The duration of these changes were highly variable and generally did not stay constant for more than a 5-hr period.

  14. Population Genetics with Fluctuating Population Sizes

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R.

    2017-05-01

    Standard neutral population genetics theory with a strictly fixed population size has important limitations. An alternative model that allows independently fluctuating population sizes and reproduces the standard neutral evolution is reviewed. We then study a situation such that the competing species are neutral at the equilibrium population size but population size fluctuations nevertheless favor fixation of one species over the other. In this case, a separation of timescales emerges naturally and allows adiabatic elimination of a fast population size variable to deduce the fluctuation-induced selection dynamics near the equilibrium population size. The results highlight the incompleteness of the standard population genetics with a strictly fixed population size.

  15. The stabilities and electron structures of Al-Mg clusters with 18 and 20 valence electrons

    Science.gov (United States)

    Yang, Huihui; Chen, Hongshan

    2017-07-01

    The spherical jellium model predicts that metal clusters having 18 and 20 valence electrons correspond to the magic numbers and will show specific stabilities. We explore in detail the geometric structures, stabilities and electronic structures of Al-Mg clusters containing 18 and 20 valence electrons by using genetic algorithm combined with density functional theories. The stabilities of the clusters are governed by the electronic configurations and Mg/Al ratios. The clusters with lower Mg/Al ratios are more stable. The molecular orbitals accord with the shell structures predicted by the jellium model but the 2S level interweaves with the 1D levels and the 2S and 1D orbitals form a subgroup. The clusters having 20 valence electrons form closed 1S21P61D102S2 shells and show enhanced stability. The Al-Mg clusters with a valence electron count of 18 do not form closed shells because one 1D orbital is unoccupied. The ionization potential and electron affinity are closely related to the electronic configurations; their values are determined by the subgroups the HOMO or LUMO belong to. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80042-9

  16. Materials with intermediate valence ; a comparison with transition metals

    Science.gov (United States)

    Mott, N. F.

    A discussion of metallic intermediate valence materials is given, particularly of hybridisation between the 4f and the conduction band δ. If n, 1 - n are the numbers of ions in each of two charge states, the variation of n with temperature is described. Resistivity is ascribed to scattering of the conduction electrons into the 4f band. The mechanism is compared with that in transition metals and their alloys, particularly Pd1-xAg x. The resistivity can be very large, of order of the Ioffe-Regel value 1/3 e2/ħa. It is argued that both here and in metallic alloys, this can only occur with a two-band model. At high temperatures there is some evidence that s-f scattering does not occur. On discute des matériaux métalliques à valence intermédiaire, en particulier de l'hybridation entre la bande 4f et la bande de conduction. Notant n et 1 - n les nombres d'ions dans chacun des deux états de charge, on décrit la variation de n avec la température. Le mécanisme est comparé avec celui des métaux de transition et de leurs alliages, particulièrement Pd1-xAg x. La résistivité peut être très grande, de l'ordre de la valeur de Ioffe-Regel 1/3 e2/ħa. On donne des arguments tendant à prouver que ceci ne peut se produire que dans le cadre d'un modèle à 2 bandes. Il y a des évidences qu'à haute température la diffusion s-f n'a pas lieu.

  17. Coupling of HEC-HMS and HEC-ResSim in Modeling the Fluctuation of Water Level in Devils Lake Using Heterogeneous Data

    Science.gov (United States)

    Munna, H. S.; Lim, Y. H.

    2010-12-01

    Devils Lake, located in Ramsey and Benson County in North Dakota is a sub-basin of the Red River of the North. Although it lies entirely within the Red River Basin, it has no natural outlet at current water levels. Since its inception during the glacier period, Devils Lake has been either rising or falling over the last 10,000 years. Geologic evidence shows that the water level in Devils Lake has fluctuated widely from completely dry (about 1400 feet AMSL) to overflowing into the Sheyenne River (about 1459 feet AMSL). The uncontrolled growth of the lake has been an alarming issue for North Dakota for the past few years as it causes continuous flooding in the surrounding areas. A hydro-climatic model that can provide simulations of the water level of this lake for a 20 or 50 year time frame can be a useful decision making tool. In a mission to achieve that, heterogeneous data obtained from various sources were used to model the lake. Runoff from precipitation is one of the major inputs to the lake and to model that, eight major watersheds that feed directly to the lake were identified using Digital Elevation Models (DEMs) of thirty meter resolution in ArcGIS environment. Hydrology and Arc Hydro tools were used to delineate the watersheds and sub-basins to generate the runoff using the HEC HMS model. The precipitation time series data collected from both NASA and ground stations were used separately to calibrate the runoff model. The generation of time series runoff values for individual basins for four consecutive years (2001-2004) was applied into HEC-ResSim, a reservoir simulation model, to estimate the lake level series considering the elevation-area-storage relationship and evaporation series from previous USGS studies. It is eminent that seepage under the lake played a key role in calibrating the model with observed elevations. The value of seepage flow was varied over increasing elevations as it depends on the height of water column. The model showed an

  18. Glacial fluctuations of the Indian monsoon and their relationship with North Atlantic climate: new data and modelling experiments

    Directory of Open Access Journals (Sweden)

    C. Marzin

    2013-09-01

    Full Text Available Several paleoclimate records such as from Chinese loess, speleothems or upwelling indicators in marine sediments present large variations of the Asian monsoon system during the last glaciation. Here, we present a new record from the northern Andaman Sea (core MD77-176 which shows the variations of the hydrological cycle of the Bay of Bengal. The high-resolution record of surface water δ18O dominantly reflects salinity changes and displays large millennial-scale oscillations over the period 40 000 to 11 000 yr BP. Their timing and sequence suggests that events of high (resp. low salinity in the Bay of Bengal, i.e. weak (resp. strong Indian monsoon, correspond to cold (resp. warm events in the North Atlantic and Arctic, as documented by the Greenland ice core record. We use the IPSL_CM4 Atmosphere-Ocean coupled General Circulation Model to study the processes that could explain the teleconnection between the Indian monsoon and the North Atlantic climate. We first analyse a numerical experiment in which such a rapid event in the North Atlantic is obtained under glacial conditions by increasing the freshwater flux in the North Atlantic, which results in a reduction of the intensity of the Atlantic meridional overturning circulation. This freshwater hosing results in a weakening of the Indian monsoon rainfall and circulation. The changes in the continental runoff and local hydrological cycle are responsible for an increase in salinity in the Bay of Bengal. This therefore compares favourably with the new sea water δ18O record presented here and the hypothesis of synchronous cold North Atlantic and weak Indian monsoon events. Additional sensitivity experiments are produced with the LMDZ atmospheric model to analyse the teleconnection mechanisms between the North Atlantic and the Indian monsoon. The changes over the tropical Atlantic are shown to be essential in triggering perturbations of the subtropical jet over Africa and Eurasia, that in turn

  19. Thermal Fluctuations in Electroweak Phase Transition

    Science.gov (United States)

    Shiromizu, T.; Morikawa, M.; Yokoyama, J.

    1995-11-01

    We estimate the amplitude of thermal fluctuations by calculating the typical size of subcritical bubbles in cosmological electroweak phase transition and show that this thermal fluctuation effect drastically changes dynamics of the phase transition from the ordinary first order type with supercooling. From this fact, we conclude that the standard electroweak baryogenesis scenario associated with such a first order transition does not work in the minimal standard model in certain conditions.

  20. Molecular thermodynamics using fluctuation solution theory

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela

    to relevant experimental data is limited. This thesis addresses the issue of generating and using simple thermodynamic models within a rigorous statistical mechanical framework, the so-called fluctuation solution theory, from which relations connecting properties and phase equilibria can be obtained....... The framework relates thermodynamic variables to molecular pair correlation functions of liquid mixtures. In this thesis, application of the framework is illustrated using two approaches: 1. Solubilities of solid solutes in mixed solvent systems are determined from fluctuation solution theory application...

  1. VALENCY AND SYNTACTICAL RELATION IN BIMANESS

    Directory of Open Access Journals (Sweden)

    Made Sri Satyawati

    2012-11-01

    Full Text Available This study presents the findings and descriptions of the replies to severalproblems that have not been completely and deeply discussed in the researchespreviously conducted on Bimanese. The problems are related to micro-linguistic factors,namely valency and syntactical relation in Bimanese. Both deductive and inductiveapproaches were applied to obtain satisfactory results. The main theory employed in thisstudy is Role and Reference Grammar Theory (RRG by Van Valin and J. Lapolla. It wasemployed to completely analyze the collected data in accordance with the problemsproposed in this research, and the inductive approach was employed to analyze the datain order to get novelties.In this study, clause structure is given the first priority to discuss, followed by thediscussion on operator, voice markers, nominalizers, and definiteness. Based on thepredicate category, the clause in Bimanese can be constructed with the constituents thatare under the categories of verb, noun, adjective, number, and adverb (prepositionalphrase. Based on the clause analysis, it has been found that in Bimanese there are severaloperators, each of which has different functional boundary in marking the clausemeaning. One operator may only sign nucleus, core (nucleus and argument, or core andperiphery. Bimanese has also been identified to have four linguistic states expressed byverbs that are made to make sense based on state (Aktisontrat, achievement, andaccomplishment. RRG classifies verbs into ten instead of four. However, in this study, tomake the analysis easier, verbs are classified into four. The predicate in Bimanese can beboth serial verbs and secondary verbs. It has also been found that the mechanism ofchange in valency is marked by the attachment of markers to the verbs resulting incausativity, applicativity, and resultivity. From those syntactical constructions, thesyntactical relation in Bimanese can be clearly identified. The discussion on syntacticalrelation

  2. Longitudinal fluctuations and decorrelation of anisotropic flow

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Qin, Guang-You [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Roy, Victor [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Wang, Xin-Nian [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division MS70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-15

    We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.

  3. Age-related emotional bias in processing two emotionally valenced tasks.

    Science.gov (United States)

    Allen, Philip A; Lien, Mei-Ching; Jardin, Elliott

    2017-01-01

    Previous studies suggest that older adults process positive emotions more efficiently than negative emotions, whereas younger adults show the reverse effect. We examined whether this age-related difference in emotional bias still occurs when attention is engaged in two emotional tasks. We used a psychological refractory period paradigm and varied the emotional valence of Task 1 and Task 2. In both experiments, Task 1 was emotional face discrimination (happy vs. angry faces) and Task 2 was sound discrimination (laugh, punch, vs. cork pop in Experiment 1 and laugh vs. scream in Experiment 2). The backward emotional correspondence effect for positively and negatively valenced Task 2 on Task 1 was measured. In both experiments, younger adults showed a backward correspondence effect from a negatively valenced Task 2, suggesting parallel processing of negatively valenced stimuli. Older adults showed similar negativity bias in Experiment 2 with a more salient negative sound ("scream" relative to "punch"). These results are consistent with an arousal-bias competition model [Mather and Sutherland (Perspectives in Psychological Sciences 6:114-133, 2011)], suggesting that emotional arousal modulates top-down attentional control settings (emotional regulation) with age.

  4. How the social ecology and social situation shape individuals' affect valence and arousal.

    Science.gov (United States)

    Vogel, Nina; Ram, Nilam; Conroy, David E; Pincus, Aaron L; Gerstorf, Denis

    2017-04-01

    Many theories highlight the role social contexts play in shaping affective experience. However, little is known about how individuals' social environments influence core affect on short time-scales (e.g., hours). Using experience sampling data from the iSAHIB, wherein 150 adults aged 18 to 89 years reported on 64,213 social interactions (average 6.92 per day, SD = 2.85) across 9 weeks of daily life, we examined how 4 features of individuals' social ecology (between-person differences) and immediate social situations (within-person changes) were associated with core affect-valence and arousal-and how those associations differ with age. Results from multilevel models revealed that familiarity, importance, type of social partner, and gender composition of the social context were associated with affect valence and/or affect arousal. Higher familiarity, higher importance, and same-gender composition were associated with more positive affect valence and higher arousal. Interactions with family and friends were linked to more positive valence whereas nonfamily social partners were linked to higher arousal. Age moderated the associations between importance and affect arousal, and between type of social partner and both dimensions of core affect. Findings align with theoretical propositions, contributing to but also suggesting need for further precision regarding how development shapes the interplay between social context and moment-to-moment affective experience. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Of Caucasians, Asians, and Giraffes: The Influence of Categorization and Target Valence on Social Projection.

    Science.gov (United States)

    Machunsky, Maya; Walther, Eva

    2015-09-01

    Past research has indicated that social projection is moderated by categorization, with more projection onto ingroups than onto outgroups. However, a few studies have reported elevated levels of projection even onto outgroups. In line with recent evidence, we hypothesized that positive target valence is the key feature of conditions that elicit projection onto outgroups. The present research extends previous findings by testing whether the effect of valence occurs independent of categorization, with increased levels of projection onto positive ingroup and non-ingroup targets alike. We designed two experiments in which target valence was manipulated by means of evaluative conditioning. Category membership was varied by using faces of Caucasians, Asians, and giraffes. The results supported our valence hypothesis. Counter-intuitively, we also found higher levels of projection onto giraffes than onto humans. These findings suggest that current cognition-based models of projection are not sufficient to account for the whole range of projection phenomena. © 2015 by the Society for Personality and Social Psychology, Inc.

  6. Remote Sensing of Storage Fluctuations of Poorly Gauged Reservoirs and State Space Model (SSM-Based Estimation

    Directory of Open Access Journals (Sweden)

    Alka Singh

    2015-12-01

    Full Text Available To reduce hydrological uncertainties in the regular monitoring of poorly gauged lakes and reservoirs, multi-dimensional remote sensing data have emerged as an excellent alternative. In this paper, we propose three methods to delineate the volume of such equipotential water bodies through a combination of altimetry (1D, Landsat (2D and bathymetry (2D data, namely an altimetry-bathymetry-volume method (ABV, a Landsat-bathymetry-volume method (LBV and an altimetry-Landsat-volume-variation method (ALVV. The first two data products are further merged by a Kalman-filter-based state space model (SSM to obtain a combined estimate (CSSME time series and near future prediction. To validate our methods, we tested them on the well-measured Lake Mead and further applied them on the poorly gauged Aral Sea, which has inaccurate bathymetry and very limited ground observation data. We updated the lake bathymetry of the Aral Sea, which was more than half a century old. The resultant remote sensing products have a very good long-term agreement among each other. The Lake Mead volume estimations are very highly coherent with the ground observations for all cases (R2 > 0.96 and NRMSE < 2.1%, except for the forecast (R2 = 0.75 and NRMSE = 3.7%. Due to lack of in situ data for the Aral Sea, the estimated volumes are compared, and the entire Aral Sea LBV and ABV have R2 = 0.91 and NRMSE = 5.5%, and the forecast compared to CSSME has R2 = 0.60 and NRMSE = 2.4%.

  7. Sample-to-sample fluctuations of power spectrum of a random motion in a periodic Sinai model

    Science.gov (United States)

    Dean, David S.; Iorio, Antonio; Marinari, Enzo; Oshanin, Gleb

    2016-09-01

    The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to the growth of energy barriers with the system size. However, if the potential is random but periodic, the regime of anomalous diffusion crosses over to one of normal diffusion once a tracer has diffused over a few periods of the system. Here we consider a system in which the potential is given by a Brownian bridge on a finite interval (0 ,L ) and then periodically repeated over the whole real line and study the power spectrum S (f ) of the diffusive process x (t ) in such a potential. We show that for most of realizations of x (t ) in a given realization of the potential, the low-frequency behavior is S (f ) ˜A /f2 , i.e., the same as for standard Brownian motion, and the amplitude A is a disorder-dependent random variable with a finite support. Focusing on the statistical properties of this random variable, we determine the moments of A of arbitrary, negative, or positive order k and demonstrate that they exhibit a multifractal dependence on k and a rather unusual dependence on the temperature and on the periodicity L , which are supported by atypical realizations of the periodic disorder. We finally show that the distribution of A has a log-normal left tail and exhibits an essential singularity close to the right edge of the support, which is related to the Lifshitz singularity. Our findings are based both on analytic results and on extensive numerical simulations of the process x (t ) .

  8. Fluctuating Arctic Sea ice thickness changes estimated by an in situ learned and empirically forced neural network model

    Science.gov (United States)

    Belchansky, G.I.; Douglas, D.C.; Platonov, N.G.

    2008-01-01

    Sea ice thickness (SIT) is a key parameter of scientific interest because understanding the natural spatiotemporal variability of ice thickness is critical for improving global climate models. In this paper, changes in Arctic SIT during 1982-2003 are examined using a neural network (NN) algorithm trained with in situ submarine ice draft and surface drilling data. For each month of the study period, the NN individually estimated SIT of each ice-covered pixel (25-km resolution) based on seven geophysical parameters (four shortwave and longwave radiative fluxes, surface air temperature, ice drift velocity, and ice divergence/convergence) that were cumulatively summed at each monthly position along the pixel's previous 3-yr drift track (or less if the ice was <3 yr old). Average January SIT increased during 1982-88 in most regions of the Arctic (+7.6 ?? 0.9 cm yr-1), decreased through 1996 Arctic-wide (-6.1 ?? 1.2 cm yr-1), then modestly increased through 2003 mostly in the central Arctic (+2.1 ?? 0.6 cm yr-1). Net ice volume change in the Arctic Ocean from 1982 to 2003 was negligible, indicating that cumulative ice growth had largely replaced the estimated 45 000 km3 of ice lost by cumulative export. Above 65??N, total annual ice volume and interannual volume changes were correlated with the Arctic Oscillation (AO) at decadal and annual time scales, respectively. Late-summer ice thickness and total volume varied proportionally until the mid-1990s, but volume did not increase commensurate with the thickening during 1996-2002. The authors speculate that decoupling of the ice thickness-volume relationship resulted from two opposing mechanisms with different latitudinal expressions: a recent quasi-decadal shift in atmospheric circulation patterns associated with the AO's neutral state facilitated ice thickening at high latitudes while anomalously warm thermal forcing thinned and melted the ice cap at its periphery. ?? 2008 American Meteorological Society.

  9. Positron annihilation with core and valence electrons

    CERN Document Server

    Green, D G

    2015-01-01

    $\\gamma$-ray spectra for positron annihilation with the core and valence electrons of the noble gas atoms Ar, Kr and Xe is calculated within the framework of diagrammatic many-body theory. The effect of positron-atom and short-range positron-electron correlations on the annihilation process is examined in detail. Short-range correlations, which are described through non-local corrections to the vertex of the annihilation amplitude, are found to significantly enhance the spectra for annihilation on the core orbitals. For Ar, Kr and Xe, the core contributions to the annihilation rate are found to be 0.55\\%, 1.5\\% and 2.2\\% respectively, their small values reflecting the difficulty for the positron to probe distances close to the nucleus. Importantly however, the core subshells have a broad momentum distribution and markedly contribute to the annihilation spectra at Doppler energy shifts $\\gtrsim3$\\,keV, and even dominate the spectra of Kr and Xe at shifts $\\gtrsim5$\\,keV. Their inclusion brings the theoretical ...

  10. Valence band effective Hamiltonians in nitride semiconductors

    Science.gov (United States)

    Punya, Atchara; Schwertfager, Nucharee; Lambrecht, Walter

    2012-02-01

    Valence band effective Hamiltonians are useful to determine the electronic states of shallow impurities, quantum wells, quantum wires and quantum dots within the effective mass approximation. Although significant experimental and theoretical work has been performed, basic parameters such as the Rashba Sheka Pikus (RSP) Hamiltonian parameters are still uncertain. In this work, the electronic band structures of AlN, GaN and InN, all in the wurtzite crystal structure, as well as the RSP Hamiltonian parameters are determined by using the QSGW approximation in a FP-LMTO implementation. The corrections offered by this approach beyond the LDA are important to obtain the splittings and effective masses accurately. The present GW implementation, which allows for a real space representation of the self-energy, enables us to interpolate exactly to a fine k-mesh and hence to obtain accurate effective masses. We find the crystal field splitting in GaN (12 meV) in much closer agreement with experiment than previous work and obtain a negative SO coupling for InN. Moreover, we have generalized the method of invariants to crystals with orthorombic symmetry, such as ZnSiN2 ZnGeN2, ZnSnN2 and CdGeN2 and determined the corresponding Hamiltonian parameters.

  11. Scalar fluctuations of the scalar metric during inflation from a non-perturbative 5D large-scale repulsive gravity model

    OpenAIRE

    Madriz Aguilar. Jose Edgar; Reyes, Luz Marina; Moreno, Claudia; Bellini, Mauricio

    2013-01-01

    We develop a non-perturbative formalism for scalar metric fluctuations from a 5D extended version of General Relativity in vacuum. In this work we concentrate our efforts on calculations valid on large cosmological scales, which are the dominant during the inflationary phase of the universe. The resulting metric on this limit case is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution. We calculate the spectrum of these fluctuations on an ...

  12. Osmotic Suppression of Positional Fluctuation of a Trapped Particle in a Near-Critical Binary Fluid Mixture in the Regime of the Gaussian Model

    Science.gov (United States)

    Fujitani, Youhei

    2017-11-01

    Suppose a spherical colloidal particle surrounded by a near-critical binary fluid mixture in the homogeneous phase. The particle surface usually preferentially attracts one component of the mixture, and the resultant concentration gradient, which causes the osmotic pressure, becomes significant in the ambient near-criticality. The concentration profile is deformed by the particle motion, and can generate a nonzero force exerted on the moving particle. This link was previously shown to slightly suppress the positional equal-time correlation of a particle trapped by a harmonic potential. This previous study presupposed a small fluctuation amplitude of a particle much larger than the correlation length, a weak preferential attraction, and the Gaussian model for the free-energy functional of the mixture. In the present study, we calculate the equal-time correlation without assuming the weak preferential attraction and show that the suppression becomes much more distinct in some range of the trap stiffness because of the increased induced mass. This suggests the possible experimental usage of a trapped particle as a probe for local environments of a near-critical binary fluid mixture.

  13. A non-autonomous optimal control model of renewable energy production under the aspect of fluctuating supply and learning by doing.

    Science.gov (United States)

    Moser, Elke; Grass, Dieter; Tragler, Gernot

    Given the constantly raising world-wide energy demand and the accompanying increase in greenhouse gas emissions that pushes the progression of climate change, the possibly most important task in future is to find a carbon-low energy supply that finds the right balance between sustainability and energy security. For renewable energy generation, however, especially the second aspect turns out to be difficult as the supply of renewable sources underlies strong volatility. Further on, investment costs for new technologies are so high that competitiveness with conventional energy forms is hard to achieve. To address this issue, we analyze in this paper a non-autonomous optimal control model considering the optimal composition of a portfolio that consists of fossil and renewable energy and which is used to cover the energy demand of a small country. While fossil energy is assumed to be constantly available, the supply of the renewable resource fluctuates seasonally. We further on include learning effects for the renewable energy technology, which will underline the importance of considering the whole life span of such a technology for long-term energy planning decisions.

  14. Fluctuations of Intensive Quantities in Statistical Thermodynamics

    Directory of Open Access Journals (Sweden)

    Artur E. Ruuge

    2013-11-01

    Full Text Available In phenomenological thermodynamics, the canonical coordinates of a physical system split in pairs, with each pair consisting of an extensive quantity and an intensive one. In the present paper, the quasithermodynamic fluctuation theory of a model system of a large number of oscillators is extended to statistical thermodynamics based on the idea of perceiving the fluctuations of intensive variables as the fluctuations of specific extensive ones in a “thermodynamically dual” system. The extension is motivated by the symmetry of the problem in the context of an analogy with quantum mechanics, which is stated in terms of a generalized Pauli problem for the thermodynamic fluctuations. The doubled Boltzmann constant divided by the number of particles plays a similar role as the Planck constant.

  15. Chaotic fluctuations in mathematical economics

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Hiroyuki, E-mail: yoshida.hiroyuki@nihon-u.ac.jp [College of Economics, Nihon University, Chiyoda-ku, Tokyo 101-8360 (Japan)

    2011-03-01

    In this paper we examine a Cournot duopoly model, which expresses the strategic interaction between two firms. We formulate the dynamic adjustment process and investigate the dynamic properties of the stationary point. By introducing a memory mechanism characterized by distributed lag functions, we presuppose that each firm makes production decisions in a cautious manner. This implies that we have to deal with the system of integro-differential equations. By means of numerical simulations we show the occurrence of chaotic fluctuations in the case of fixed delays.

  16. Studies of Fluctuation Processes in Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ayik, Sakir [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics

    2016-04-14

    The standard one-body transport approaches have been extensively applied to investigate heavy-ion collision dynamics at low and intermediate energies. At low energies the approach is the mean-field description of the time-dependent Hartree-Fock (TDHF) theory. At intermediate energies the approach is extended by including a collision term, and its application has been carried out mostly in the semi-classical framework of the Boltzmann-Uhling-Uhlenbeck (BUU) model. The standard transport models provide a good understanding of the average properties of the collision dynamics in terms of the effective interactions in both low and intermediate energies. However, the standard models are inadequate for describing the fluctuation dynamics of collective motion at low energies and disassembling of the nuclear system into fragments at intermediate energies resulting from the growth of density fluctuations in the spinodal region. Our tasks have been to improve the standard transport approaches by incorporating fluctuation mechanisms into the description. There are mainly two different mechanisms for fluctuations: (i) Collisional fluctuations generated by binary nucleon collisions, which provide the dominant mechanism at intermediate energies, and (ii) One-body mechanism or mean-field fluctuations, which is the dominant mechanism at low energies. In the first part of our project, the PI extended the standard transport model at intermediate energies by incorporating collisional mechanism according to the “Generalized Langevin Description” of Mori formalism. The PI and his collaborators carried out a number of applications for describing dynamical mechanism of nuclear multi fragmentations, and nuclear collective response in the semi-classical framework of the approach, which is known as the Boltzmann-Langevin model. In the second part of the project, we considered dynamical description at low energies. Because of the effective Pauli blocking, the collisional dissipation and

  17. Altered baseline brain activity in experts measured by amplitude of low frequency fluctuations (ALFF: a resting state fMRI study using expertise model of acupuncturists

    Directory of Open Access Journals (Sweden)

    Minghao eDong

    2015-03-01

    Full Text Available It is well established that expertise modulates evoked brain activity in response to specific stimuli. Recently, researchers have begun to investigate how expertise influences the resting brain. Among these studies, most focused on the connectivity features within/across regions, i.e. connectivity patterns/strength. However, little concern has been given to a more fundamental issue whether or not expertise modulates baseline brain activity. We investigated this question using amplitude of low-frequency (<0.08Hz fluctuation (ALFF as the metric of brain activity and a novel expertise model, i.e. acupuncturists, due to their robust proficiency in tactile perception and emotion regulation. After the psychophysical and behavioral expertise screening procedure, 23 acupuncturists and 23 matched non-acupuncturists (NA were enrolled. Our results explicated higher ALFF for acupuncturists in the left ventral medial prefrontal cortex (VMPFC and the contralateral hand representation of the primary somatosensory area (SI (corrected for multiple comparisons. Additionally, ALFF of VMPFC was negatively correlated with the outcomes of the emotion regulation task (corrected for multiple comparisons. We suggest that our study may reveal a novel connection between the neuroplasticity mechanism and resting state activity, which would upgrade our understanding of the central mechanism of learning. Furthermore, by showing that expertise can affect the baseline brain activity as indicated by ALFF, our findings may have profound implication for functional neuroimaging studies especially those involving expert models, in that difference in baseline brain activity may either smear the spatial pattern of activations for task data or introduce biased results into connectivity-based analysis for resting data.

  18. Entanglement in valence-bond-solid states and quantum search

    Science.gov (United States)

    Xu, Ying

    The present dissertation covers two independent subjects: (i) The quantum entanglement in Valence-Bond-Solid states, and (ii) quantum database search algorithms. Both subjects are presented in a self-contained and pedagogical way. (i) The first chapter is a through introduction to the subject of quantum entanglement in Valence-Bond-Solid (VBS) states defined on a lattice or graph. The VBS state was first introduced as the ground state of the celebrated Affleck-Kennedy-Lieb-Tasaki (AKLT) spin chain model in statistical mechanics. Then it became essential in condensed matter physics, quantum information and measurement-based quantum computation. Recent studies elucidated important entanglement properties of the VBS state. We start with the definition of a general AKLT model and the construction of VBS ground states. A subsystem is introduced and described by the density matrix. Exact spectrum properties of the density matrix are proved and discussed. Density matrices of 1-dimensional models are diagonalized and the entanglement entropies (the von Neumann entropy and Renyi entropy) are calculated. The entropies take saturated value and the density matrix is proportional to a projector in the large subsystem limit. (ii) The second chapter is a detailed introduction to the subject of quantum database search algorithms. The problem of searching a large database (a Hilbert space) for a target item is performed by the famous Grover algorithm which locates the target item with probability 1 and a quadratic speed up compared with the corresponding classical algorithm. If the database is partitioned into blocks and one is searching for the block containing the target item instead of the target item itself, then the problem is referred to as partial search. Partial search trades accuracy for speed and the most efficient version is the Grover-Radhakrishnan-Korepin (GRK) algorithm. The target block can be further partitioned into subblocks so that GRK can be performed in a

  19. Taboo, emotionally valenced, and emotionally neutral word norms

    National Research Council Canada - National Science Library

    Janschewitz, Kristin

    2008-01-01

    Although taboo words are used to study emotional memory and attention, no easily accessible normative data are available that compare taboo, emotionally valenced, and emotionally neutral words on the same scales...

  20. Microcanonical quantum fluctuation theorems.

    Science.gov (United States)

    Talkner, Peter; Hänggi, Peter; Morillo, Manuel

    2008-05-01

    Previously derived expressions for the characteristic function of work performed on a quantum system by a classical external force are generalized to arbitrary initial states of the considered system and to Hamiltonians with degenerate spectra. In the particular case of microcanonical initial states, explicit expressions for the characteristic function and the corresponding probability density of work are formulated. Their classical limit as well as their relations to the corresponding canonical expressions are discussed. A fluctuation theorem is derived that expresses the ratio of probabilities of work for a process and its time reversal to the ratio of densities of states of the microcanonical equilibrium systems with corresponding initial and final Hamiltonians. From this Crooks-type fluctuation theorem a relation between entropies of different systems can be derived which does not involve the time-reversed process. This entropy-from-work theorem provides an experimentally accessible way to measure entropies.

  1. Nearest-neighbour resonating valence bonds in YbMgGaO4

    Science.gov (United States)

    Li, Yuesheng; Adroja, Devashibhai; Voneshen, David; Bewley, Robert I.; Zhang, Qingming; Tsirlin, Alexander A.; Gegenwart, Philipp

    2017-06-01

    Since its proposal by Anderson, resonating valence bonds (RVB) formed by a superposition of fluctuating singlet pairs have been a paradigmatic concept in understanding quantum spin liquids. Here, we show that excitations related to singlet breaking on nearest-neighbour bonds describe the high-energy part of the excitation spectrum in YbMgGaO4, the effective spin-1/2 frustrated antiferromagnet on the triangular lattice, as originally considered by Anderson. By a thorough single-crystal inelastic neutron scattering study, we demonstrate that nearest-neighbour RVB excitations account for the bulk of the spectral weight above 0.5 meV. This renders YbMgGaO4 the first experimental system where putative RVB correlations restricted to nearest neighbours are observed, and poses a fundamental question of how complex interactions on the triangular lattice conspire to form this unique many-body state.

  2. Effect of valence nucleons on nuclear binding energy

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, I. (Kossuth Lajos Tudomanyegyetem, Debrecen (HU))

    1991-10-01

    The nucleonic promiscuity factor P = N{sub p}N{sub n}/(N{sub p} + N{sub n}), where N{sub p}(N{sub n}) is the number of valence protons (neutrons) or holes, is shown to be a useful parameter in the description of the mass number dependence of nuclear binding energies. This means that most of the deviation from a smooth mass number dependence is caused by the isoscalar interaction between valence protons and neutrons.

  3. Power fluctuations from large wind farms - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Pinson, P.; Cutululis, N.A.; Madsen, Henrik; Jensen, Leo Enrico; Hjerrild, J.; Heyman Donovan, M.; Vigueras-ROdriguez, A.

    2009-08-15

    Experience from power system operation with the first large offshore wind farm in Denmark: Horns Rev shows that the power from the wind farm is fluctuating significantly at certain times, and that this fluctuation is seen directly on the power exchange between Denmark and Germany. This report describes different models for simulation and prediction of wind power fluctuations from large wind farms, and data acquired at the two large offshore wind farms in Denmark are applied to validate the models. Finally, the simulation model is further developed to enable simulations of power fluctuations from several wind farms simultaneously in a larger geographical area, corresponding to a power system control area. (au)

  4. Hydrodynamic fluctuations in thermostatted multiparticle collision dynamics.

    Science.gov (United States)

    Híjar, Humberto; Sutmann, Godehard

    2011-04-01

    In this work we study the behavior of mesoscopic fluctuations of a fluid simulated by Multiparticle Collision Dynamics when this is applied together with a local thermostatting procedure that constrains the strength of temperature fluctuations. We consider procedures in which the thermostat interacts with the fluid at every simulation step as well as cases in which the thermostat is applied only at regular time intervals. Due to the application of the thermostat temperature fluctuations are forced to relax to equilibrium faster than they do in the nonthermostatted, constant-energy case. Depending on the interval of application of the thermostat, it is demonstrated that the thermodynamic state changes gradually from isothermal to adiabatic conditions. In order to exhibit this effect we compute from simulations diverse correlation functions of the hydrodynamic fluctuating fields. These correlation functions are compared with those predicted by a linearized hydrodynamic theory of a simple fluid in which a thermostat is applied locally. We find a good agreement between the model and the numerical results, which confirms that hydrodynamic fluctuations in Multiparticle Collision Dynamics in the presence of the thermostat have the properties expected for spontaneous fluctuations in fluids in contact with a heat reservoir.

  5. Emotional Valence and the Free-Energy Principle

    Science.gov (United States)

    Joffily, Mateus; Coricelli, Giorgio

    2013-01-01

    The free-energy principle has recently been proposed as a unified Bayesian account of perception, learning and action. Despite the inextricable link between emotion and cognition, emotion has not yet been formulated under this framework. A core concept that permeates many perspectives on emotion is valence, which broadly refers to the positive and negative character of emotion or some of its aspects. In the present paper, we propose a definition of emotional valence in terms of the negative rate of change of free-energy over time. If the second time-derivative of free-energy is taken into account, the dynamics of basic forms of emotion such as happiness, unhappiness, hope, fear, disappointment and relief can be explained. In this formulation, an important function of emotional valence turns out to regulate the learning rate of the causes of sensory inputs. When sensations increasingly violate the agent's expectations, valence is negative and increases the learning rate. Conversely, when sensations increasingly fulfil the agent's expectations, valence is positive and decreases the learning rate. This dynamic interaction between emotional valence and learning rate highlights the crucial role played by emotions in biological agents' adaptation to unexpected changes in their world. PMID:23785269

  6. Spherical nematic shells with a threefold valence

    Science.gov (United States)

    Koning, Vinzenz; Lopez-Leon, Teresa; Darmon, Alexandre; Fernandez-Nieves, Alberto; Vitelli, V.

    2016-07-01

    We present a theoretical study of the energetics of thin nematic shells with two charge-one-half defects and one charge-one defect. We determine the optimal arrangement: the defects are located on a great circle at the vertices of an isosceles triangle with angles of 66∘ at the charge-one-half defects and a distinct angle of 48∘, consistent with experimental findings. We also analyze thermal fluctuations around this ground state and estimate the energy as a function of thickness. We find that the energy of the three-defect shell is close to the energy of other known configurations having two charge-one and four charge-one-half defects. This finding, together with the large energy barriers separating one configuration from the others, explains their observation in experiments as well as their long-time stability.

  7. PREDICTION OF VOLTAGE FLUCTUATION IN ELECTRIC GRIDS

    Directory of Open Access Journals (Sweden)

    V.A. Sapryka

    2013-06-01

    Full Text Available A mathematical model of voltage fluctuation versus parameters of power quality and power consumption is developed to allow predicting parameters of the power quality in electric grids. Application of the model will result in an electrical complex functioning optimization

  8. Valence Topological Charge-Transfer Indices for Dipole Moments

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2003-01-01

    Full Text Available New valence topological charge-transfer indices are applied to the calculation of dipole moments. The algebraic and vector semisum charge-transfer indices are defined. The combination of the charge-transfer indices allows the estimation of the dipole moments. The model is generalized for molecules with heteroatoms. The ability of the indices for the description of the molecular charge distribution is established by comparing them with the dipole moments of a homologous series of phenyl alcohols. Linear and non-linear correlation models are obtained. The new charge-transfer indices improve the multivariable non-linear regression equations for the dipole moment. When comparing with previous results, the variance decreases 92%. No superposition of the corresponding Gk–Jk and GkV – JkV pairs is observed. This diminishes the risk of co-linearity. Inclusion of the oxygen atom in the p-electron system is beneficial for the description of the dipole moment, owing to either the role of the additional p orbitals provided by the heteroatom or the role of steric factors in the p-electron conjugation. Linear and non-linear correlations between the fractal dimension and various descriptors point not only to a homogeneous molecular structure but also to the ability to predict and tailor drug properties.

  9. Mesoscale wind fluctuations over Danish waters

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C.L.

    2010-12-15

    Mesoscale wind fluctuations affect the large scale integration of wind power because they undermine the day-ahead predictability of wind speed and power production, and because they can result in large fluctuations in power generation that must be balanced using reserve power. Large fluctuations in generated power are a particular problem for offshore wind farms because the typically high concentration of turbines within a limited geographical area means that fluctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water, such as convective rolls and cellular convection, have length scales of tens of kilometers, and can cause large wind fluctuations on a time scale of around an hour. This thesis is an exploration of the predictability of mesoscale wind fluctuations using observations from the world's first two large offshore wind farms - Horns Rev I in the North Sea, and Nysted in the Baltic Sea. The thesis begins with a climatological analysis of wind fluctuations on time scales of 1-10 hours at the two sites. A novel method for calculating conditional climatologies of spectral information is proposed, based on binning and averaging the time axis of the Hilbert spectrum. Results reveal clear patterns between wind fluctuations and locally observed meteorological conditions. The analysis is expanded by classifying wind fluctuations on time scales of 1-3 hours according to synoptic patterns, satellite pictures and wind classes. Results indicate that cold air outbreaks and open cellular convection are a significant contributor to mesoscale wind variability at Horns Rev. The predictability of mesoscale wind fluctuations is tested by implementing standard statistical models that relate local wind variability to parameters based on a large scale weather analysis. The models show some skill, but only achieve a 15% improvement on a persistence forecast. The possibility of explicitly modelling

  10. Scalar fluctuations of the scalar metric during inflation from a non-perturbative 5D large-scale repulsive gravity model

    Energy Technology Data Exchange (ETDEWEB)

    Madriz Aguilar, Jose Edgar; Reyes, Luz M.; Moreno, Claudia [Universidad de Guadalajara (UdG), Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Guadalajara, Jalisco (Mexico); Bellini, Mauricio [Universidad Nacional de Mar del Plata (UNMdP), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina)

    2013-10-15

    We develop a non-perturbative formalism for scalar metric fluctuations from a 5D extended version of general relativity in vacuum. In this work we concentrate our efforts on calculations valid on large cosmological scales, which are dominant during the inflationary phase of the universe. The resulting metric in this limit is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution. We calculate the spectrum of these fluctuations with an effective 4D Schwarzschild-de Sitter spacetime on cosmological scales, which is obtained after we make a static foliation on the non-compact extra coordinate. Our results show how the squared metric fluctuations of the primordial universe become scale invariant with the inflationary expansion. (orig.)

  11. Character Disposition and Behavior Type: Influences of Valence on Preschool Children's Social Judgments

    Science.gov (United States)

    Jones, Elaine F.; Tobias, Marvin; Pauley, Danielle; Thomson, Nicole Renick; Johnson, Shawana Lewis

    2009-01-01

    The authors studied the influences of valence information on preschool children's (n = 47) moral (good or bad), liking (liked or disliked by a friend), and consequence-of-behavior (reward or punishment) judgments. The authors presented 8 scenarios describing the behavior valence, positive valence (help, share), negative valence (verbal insult,…

  12. Electronic structure of InTe, SnAs and PbSb: Valence-skip compound or not?

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Izumi, E-mail: i.hase@aist.go.jp [National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568 (Japan); Yasutomi, Kouki [Graduate School of Pure and Applied Science, Univ. of Tsukuba, Tsukuba, 305-8571 (Japan); Yanagisawa, Takashi; Odagiri, Kousuke [National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568 (Japan); Nishio, Taichiro [Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan)

    2016-08-15

    Highlights: • We calculated the electronic structure of InTe, SnAs and PbSb from first principles. • Obtained tight-binding parameters of InTe are close to those of BaBiO3, which suggests that their electronic properties are also alike. • InTe is favorable to emerge valence skip, while PbSb is not favorable for it. SnAs is between the two. • Our findings well agree with the experimental results. - Abstract: InTe, SnAs and PbSb formally have unusual valence states, In{sup 2+}, Sn{sup 3+} and Pb{sup 3+}. All of them have B1 crystal structure at some pressure range. They are candidates of the valence-skip compound, which may have negative effective Coulomb interaction U{sub eff} < 0. Negative-U Hubbard model is known to show charge-density wave or superconductivity in some parameter region. In fact, SnAs becomes superconducting at ambient pressure. InTe has a kind of charge-density wave at ambient pressure, and it becomes superconducting at high pressure. We investigated their electronic structures by ab-initio calculations, and calculated the number of s-electrons at the cation site. We found that InTe is favorable to emerge valence skip, while PbSb is not favorable for valence skip. SnAs is between these two. These findings well agree with the experimental results.

  13. Gambling with Superconducting Fluctuations

    Science.gov (United States)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  14. Bet Hedging against Demographic Fluctuations

    Science.gov (United States)

    Xue, BingKan; Leibler, Stanislas

    2017-09-01

    Biological organisms have to cope with stochastic variations in both the external environment and the internal population dynamics. Theoretical studies and laboratory experiments suggest that population diversification could be an effective bet-hedging strategy for adaptation to varying environments. Here we show that bet hedging can also be effective against demographic fluctuations that pose a trade-off between growth and survival for populations even in a constant environment. A species can maximize its overall abundance in the long term by diversifying into coexisting subpopulations of both "fast-growing" and "better-surviving" individuals. Our model generalizes statistical physics models of birth-death processes to incorporate dispersal, during which new populations are founded, and can further incorporate variations of local environments. In this way, we unify different bet-hedging strategies against demographic and environmental variations as a general means of adaptation to both types of uncertainties in population growth.

  15. Dynamics of Business Fluctuations in the Leontief-type Economy

    OpenAIRE

    Alexei Krouglov

    1998-01-01

    Presented here is the mathematical model of business fluctuations, which can be observed in the Economy described by the Input-Output Model of Wassily Leontief. These fluctuations are obtained as a solution of the corresponding matrix differential equations, which interrelate commodities' demand, production, and prices.

  16. Taboo, emotionally valenced, and emotionally neutral word norms.

    Science.gov (United States)

    Janschewitz, Kristin

    2008-11-01

    Although taboo words are used to study emotional memory and attention, no easily accessible normative data are available that compare taboo, emotionally valenced, and emotionally neutral words on the same scales. Frequency, inappropriateness, valence, arousal, and imageability ratings for taboo, emotionally valenced, and emotionally neutral words were made by 78 native-English-speaking college students from a large metropolitan university. The valenced set comprised both positive and negative words, and the emotionally neutral set comprised category-related and category-unrelated words. To account for influences of demand characteristics and personality factors on the ratings, frequency and inappropriateness measures were decomposed into raters' personal reactions to the words versus raters' perceptions of societal reactions to the words (personal use vs. familiarity and offensiveness vs. tabooness, respectively). Although all word sets were rated higher in familiarity and tabooness than in personal use and offensiveness, these differences were most pronounced for the taboo set. In terms of valence, the taboo set was most similar to the negative set, although it yielded higher arousal ratings than did either valenced set. Imageability for the taboo set was comparable to that of both valenced sets. The ratings of each word are presented for all participants as well as for single-sex groups. The inadequacies of the application of normative data to research that uses emotional words and the conceptualization of taboo words as a coherent category are discussed. Materials associated with this article may be accessed at the Psychonomic Society's Archive of Norms, Stimuli, and Data, www.psychonomic.org/archive.

  17. Fluctuation relations for anisotropic systems

    Science.gov (United States)

    Villavicencio-Sanchez, R.; Harris, R. J.; Touchette, H.

    2014-02-01

    Currents of particles or energy in driven non-equilibrium steady states are known to satisfy certain symmetries, referred to as fluctuation relations, determining the ratio of the probabilities of positive fluctuations to negative ones. A generalization of these fluctuation relations has been proposed recently for extended non-equilibrium systems of dimension greater than one, assuming, crucially, that they are isotropic (Hurtado P. I., Pérez-Espigares C., del Pozo J. J. and Garrido P. L., Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 7704). Here we relax this assumption and derive a fluctuation relation for d-dimensional systems having anisotropic bulk driving rates. We test the validity of this anisotropic fluctuation relation by calculating the particle current fluctuations in the 2d anisotropic zero-range process, using both exact and fluctuating hydrodynamic approaches.

  18. Correlation length of magnetosheath fluctuations: Cluster statistics

    Directory of Open Access Journals (Sweden)

    O. Gutynska

    2008-09-01

    Full Text Available Magnetosheath parameters are usually described by gasdynamic or magnetohydrodynamic (MHD models but these models cannot account for one of the most important sources of magnetosheath fluctuations – the foreshock. Earlier statistical processing of a large amount of magnetosheath observations has shown that the magnetosheath magnetic field and plasma flow fluctuations downstream of the quasiparallel shock are much larger than those at the opposite flank. These studies were based on the observations of a single spacecraft and thus they could not provide full information on propagation of the fluctuations through the magnetosheath. We present the results of a statistical survey of the magnetosheath magnetic field fluctuations using two years of Cluster observations. We discuss the dependence of the cross-correlation coefficients between different spacecraft pairs on the orientation of the separation vector with respect to the average magnetic field and plasma flow vectors and other parameters. We have found that the correlation length does not exceed ~1 RE in the analyzed frequency range (0.001–0.125 Hz and does not depend significantly on the magnetic field or plasma flow direction. A close connection of cross-correlation coefficients computed in the magnetosheath with the cross-correlation coefficients between a solar wind monitor and a magnetosheath spacecraft suggests that solar wind structures persist on the background of magnetosheath fluctuations.

  19. Protrusion Fluctuations Direct Cell Motion

    Science.gov (United States)

    Caballero, David; Voituriez, Raphaël; Riveline, Daniel

    2014-01-01

    Many physiological phenomena involve directional cell migration. It is usually attributed to chemical gradients in vivo. Recently, other cues have been shown to guide cells in vitro, including stiffness/adhesion gradients or micropatterned adhesive motifs. However, the cellular mechanism leading to these biased migrations remains unknown, and, often, even the direction of motion is unpredictable. In this study, we show the key role of fluctuating protrusions on ratchet-like structures in driving NIH3T3 cell migration. We identified the concept of efficient protrusion and an associated direction index. Our analysis of the protrusion statistics facilitated the quantitative prediction of cell trajectories in all investigated conditions. We varied the external cues by changing the adhesive patterns. We also modified the internal cues using drug treatments, which modified the protrusion activity. Stochasticity affects the short- and long-term steps. We developed a theoretical model showing that an asymmetry in the protrusion fluctuations is sufficient for predicting all measures associated with the long-term motion, which can be described as a biased persistent random walk. PMID:24988339

  20. The correlation between the Nernst effect and fluctuation diamagnetism in strongly fluctuating superconductors

    Science.gov (United States)

    Sarkar, Kingshuk; Banerjee, Sumilan; Mukerjee, Subroto; Ramakrishnan, T. V.

    2017-07-01

    We study the Nernst effect in fluctuating superconductors by calculating the transport coefficient {α }{xy} in a phenomenological model where the relative importance of phase and amplitude fluctuations of the order parameter is tuned continuously to smoothly evolve from an effective XY model to the more conventional Ginzburg-Landau description. To connect with a concrete experimental realization we choose the model parameters appropriate for cuprate superconductors and calculate {α }{xy} and the magnetization {M} over the entire range of experimentally accessible values of field, temperature and doping. We argue that {α }{xy} and {M} are both determined by the equilibrium properties of the superconducting fluctuations (and not their dynamics) despite the former being a transport quantity. Thus, the experimentally observed correlation between the Nernst signal and the magnetization arises primarily from the correlation between {α }{xy} and {M}. Further, there exists a dimensionless ratio {M}/(T{α }{xy}) that quantifies this correlation. We calculate, for the first time, this ratio over the entire phase diagram of the cuprates and find it agrees with previous results obtained in specific parts of the phase diagram. We conclude that there appears to be no sharp distinction between the regimes dominated by phase fluctuations and Gaussian fluctuations for this ratio in contrast to {α }{xy} and {M} individually. The utility of this ratio is that it can be used to determine the extent to which superconducting fluctuations contribute to the Nernst effect in different parts of the phase diagram given the measured values of magnetization.

  1. Space-valence priming with subliminal and supraliminal words.

    Science.gov (United States)

    Ansorge, Ulrich; Khalid, Shah; König, Peter

    2013-01-01

    To date it is unclear whether (1) awareness-independent non-evaluative semantic processes influence affective semantics and whether (2) awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked) primes and visible targets in a space-valence across-category congruence effect. In line with (1), we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1): classifications were faster with a congruent prime (e.g., the prime "up" before the target "happy") than with an incongruent prime (e.g., the prime "up" before the target "sad"). In contrast to (2), no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2). Control conditions showed that standard masked response priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1) that awareness-independent non-evaluative semantic priming influences valence judgments.

  2. Space-Valence Priming with Subliminal and Supraliminal Words

    Directory of Open Access Journals (Sweden)

    Ulrich eAnsorge

    2013-02-01

    Full Text Available To date it is unclear whether (1 awareness-independent non-evaluative semantic processes influence affective semantics and whether (2 awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked primes and visible targets in a space-valence across-category congruence effect. In line with (1, we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1: Classifications were faster with a congruent prime (e.g., the prime ‘up’ before the target ‘happy’ than with an incongruent prime (e.g., the prime ‘up’ before the target ‘sad’. In contrast to (2, no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2. Control conditions showed that standard masked response-priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1 that awareness-independent non-evaluative semantic priming influences valence judgments.

  3. Relationship among phenotypic plasticity, phenotypic fluctuations ...

    Indian Academy of Sciences (India)

    2009-09-04

    Sep 4, 2009 ... ... and evolution speed is obtained. The correlation between developmental robustness to noise and evolutionary robustness to mutation is analysed by simulations of the gene network model. These results provide quantitative formulation on canalization and genetic assimilation, in terms of fluctuations of ...

  4. Low Mach Number Fluctuating Hydrodynamics for Electrolytes

    CERN Document Server

    Péraud, Jean-Philippe; Chaudhri, Anuj; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L

    2016-01-01

    We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids (A. Donev, et al., Physics of Fluids, 27, 3, 2015), we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm...

  5. Processing emotional pictures and words: effects of valence and arousal.

    Science.gov (United States)

    Kensinger, Elizabeth A; Schacter, Daniel L

    2006-06-01

    There is considerable debate regarding the extent to which limbic regions respond differentially to items with different valences (positive or negative) or to different stimulus types (pictures or words). In the present event-related fMRI study, 21 participants viewed words and pictures that were neutral, negative, or positive. Negative and positive items were equated on arousal. The participants rated each item for whether it depicted or described something animate or inanimate or something common or uncommon. For both pictures and words, the amygdala, dorsomedial prefrontal cortex (PFC), and ventromedial PFC responded equally to all high-arousal items, regardless of valence. Laterality effects in the amygdala were based on the stimulus type (word = left, picture = bilateral). Valence effects were most apparent when the individuals processed pictures, and the results revealed a lateral/medial distinction within the PFC: The lateral PFC responded differentially to negative items, whereas the medial PFC was more engaged during the processing of positive pictures.

  6. Strain effects on valence bands of wurtzite ZnO

    Science.gov (United States)

    Qiao, LiPing; Chai, ChangChun; Jin, Zhao; Yang, YinTang; Ma, ZhenYang

    2013-09-01

    Based on the k.p theory of Luttinger-Kohn and Bir-Pikus, analytical E-k solutions for the valence band of strained wurtzite ZnO materials are obtained. Strain effects on valence band edges and hole effective masses in strained wurtzite ZnO materials are also discussed. In comparison with unstrained ZnO materials, apparent movement of valence band edges such as "light hole band", "heavy hole band" and "crystal splitting band" at Γ point is found in strained wurtzite ZnO materials. Moreover, effective masses of "light hole band", "heavy hole band" and "crystal splitting band" for strained wurtzite ZnO materials as the function of stress are given. The analytical results can provide a theoretical foundation for the understanding of physics of strained ZnO materials and its applications with the framework for an effective mass theory.

  7. Authentic Assessment Tool for the Measurement of Students' Understanding of the Valence Shell Electron Pair Repulsion Theory

    Science.gov (United States)

    Wuttisela, Karntarat

    2017-01-01

    There are various types of instructional media related to Valence Shell Electron Pair Repulsion (VSEPR) but there is a lack of diversity of resources devoted to assessment. This research presents an assessment and comparison of students' understanding of VSEPR theory before and after tuition involving the use of the foam molecule model (FMM) and…

  8. Conceptual chemistry approach towards the support effect in supported vanadium oxides: valence bond calculations on the ionicity of vanadium catalysts

    NARCIS (Netherlands)

    Fievez, T.; De Proft, F.; Geerlings, P.; Weckhuysen, B.M.; Havenith, R.W.A.

    2011-01-01

    The concept of bond ionicity, obtained via a valence bond analysis, is invoked in the interpretation of the catalytic activity of supported vanadium oxides, in analogy with previous work conducted within the framework of conceptual DFT. For a set of model clusters representing the vanadium oxide

  9. Conceptual chemistry approach towards the support effect in supported vanadium oxides : Valence bond calculations on the ionicity of vanadium catalysts

    NARCIS (Netherlands)

    Fievez, Tim; De Proft, Frank; Geerlings, Paul; Weckhuysen, Bert M.; Havenith, Remco W. A.

    2011-01-01

    The concept of bond ionicity, obtained via a valence bond analysis, is invoked in the interpretation of the catalytic activity of supported vanadium oxides, in analogy with previous work conducted within the framework of conceptual DFT. For a set of model clusters representing the vanadium oxide

  10. Studies on a Novel Neuro-dynamic Model for Prediction Learning of Fluctuated Data Streams: Beyond Dichotomy between Probabilistic and Deterministic Models

    Science.gov (United States)

    2014-11-04

    problem, we performed robot experiments using a humanoid robot “NAO”. For the robot task, the robot learns to imitate tutor guided behaviors including...298-310, 2013. 5. Y. Yamashita and J. Tani: "Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot

  11. Scaling and a Fokker-Planck model for fluctuations in geomagnetic indices and comparison with solar wind as seen by Wind and ACE

    OpenAIRE

    Hnat, B.; Chapman, Sandra C.; Rowlands, G.

    2005-01-01

    The evolution of magnetospheric indices on temporal scales shorter than that of substorms is characterized by bursty, intermittent events that may arise from turbulence intrinsic to the magnetosphere or that may reflect solar wind-magnetosphere coupling. This leads to a generic problem of distinguishing between the features of the system and those of the driver. We quantify scaling properties of short-term (up to few hours) fluctuations in the geomagnetic indices AL and AU during solar minimu...

  12. Color fluctuations in the nucleon in high-energy scattering.

    Science.gov (United States)

    Frankfurt, L; Strikman, M; Treleani, D; Weiss, C

    2008-11-14

    We study quantum fluctuations of the nucleon's parton densities by combining QCD factorization for hard processes with the notion of cross section fluctuations in soft diffraction. The fluctuations of the small-x gluon density are related to the ratio of inelastic and elastic vector meson production in ep scattering. A simple dynamical model explains the HERA data and predicts the x and Q2 dependence of the ratio. In pp/p[over ]p scattering, fluctuations enhance multiple hard processes (but cannot explain the Tevatron CDF data), and reduce gap survival in central exclusive diffraction.

  13. Accelerative and decelerative effects of hedonic valence and emotional arousal during visual scene processing.

    Science.gov (United States)

    Ihssen, Niklas; Keil, Andreas

    2013-01-01

    Perceptual processing of natural scene pictures is enhanced when the scene conveys emotional content. Such "motivated attention" to pleasant and unpleasant pictures has been shown to improve identification accuracy in non-speeded behavioural tasks. An open question is whether emotional content also modulates the speed of visual scene processing. In the present studies we show that unpleasant content reliably slowed two-choice categorization of pictures, irrespective of physical image properties, perceptual complexity, and categorization instructions. Conversely, pleasant content did not slow or even accelerated choice reactions, relative to neutral scenes. As indicated by lateralized readiness potentials, these effects occurred at cognitive processing rather than motor preparation/execution stages. Specifically, analysis of event-related potentials showed a prolongation of early scene discrimination for stimuli perceived as emotionally arousing, regardless of valence, and reflected in delayed peaks of the N1 component. In contrast, the timing of other processing steps, reflected in the P2 and late positive potential components and presumably related to post-discriminatory processes such as stimulus-response mapping, appeared to be determined by hedonic valence, with more pleasant scenes eliciting faster processing. Consistent with this model, varying arousal (low/high) within the emotional categories mediated the effects of valence on choice reaction speed. Functionally, arousal may prolong stimulus analysis in order to prevent erroneous and potentially harmful decisions. Pleasantness may act as a safety signal allowing rapid initiation of overt responses.

  14. Emotion valence, intensity and emotion regulation in immigrants and majority members in the Netherlands.

    Science.gov (United States)

    Stupar, Snežana; van de Vijver, Fons J R; Fontaine, Johnny R J

    2015-08-01

    We were interested in interethnic differences and similarities in how emotion regulation strategies (reappraisal, suppression and social sharing) can be predicted by emotion valence and intensity. The sample consisted of 389 Dutch majority members and members of five immigrant groups: 136 Turkish and Moroccan, 105 Antillean and Surinamese, 102 Indonesian, 313 Western and 150 other non-Western immigrants. In a path model with latent variables we confirmed that emotion regulation strategies were significantly and similarly related to emotion valence and intensity across the groups. Negative emotions were more reappraised and suppressed than positive emotions. Intensity was positively related to social sharing and negatively related to reappraisal and suppression. The Dutch majority group scored higher on emotion valence than Turkish and Moroccan immigrants. Also, the Dutch majority group scored lower on reappraisal than all non-Western groups, and lower on suppression than Turkish and Moroccan immigrants. We conclude that group differences reside more in mean scores on some components than in how antecedents are linked to regulation strategies. © 2014 International Union of Psychological Science.

  15. Data-Driven Contextual Valence Shifter Quantification for Multi-Theme Sentiment Analysis.

    Science.gov (United States)

    Yu, Hongkun; Shang, Jingbo; Hsu, Meichun; Castellanos, Malú; Han, Jiawei

    2016-10-01

    Users often write reviews on different themes involving linguistic structures with complex sentiments. The sentiment polarity of a word can be different across themes. Moreover, contextual valence shifters may change sentiment polarity depending on the contexts that they appear in. Both challenges cannot be modeled effectively and explicitly in traditional sentiment analysis. Studying both phenomena requires multi-theme sentiment analysis at the word level, which is very interesting but significantly more challenging than overall polarity classification. To simultaneously resolve the multi-theme and sentiment shifting problems, we propose a data-driven framework to enable both capabilities: (1) polarity predictions of the same word in reviews of different themes, and (2) discovery and quantification of contextual valence shifters. The framework formulates multi-theme sentiment by factorizing the review sentiments with theme/word embeddings and then derives the shifter effect learning problem as a logistic regression. The improvement of sentiment polarity classification accuracy demonstrates not only the importance of multi-theme and sentiment shifting, but also effectiveness of our framework. Human evaluations and case studies further show the success of multi-theme word sentiment predictions and automatic effect quantification of contextual valence shifters.

  16. A new water oxidation catalyst: lithium manganese pyrophosphate with tunable Mn valency.

    Science.gov (United States)

    Park, Jimin; Kim, Hyunah; Jin, Kyoungsuk; Lee, Byung Ju; Park, Yong-Sun; Kim, Hyungsub; Park, Inchul; Yang, Ki Dong; Jeong, Hui-Yun; Kim, Jongsoon; Hong, Koo Tak; Jang, Ho Won; Kang, Kisuk; Nam, Ki Tae

    2014-03-19

    The development of a water oxidation catalyst has been a demanding challenge for the realization of overall water-splitting systems. Although intensive studies have explored the role of Mn element in water oxidation catalysis, it has been difficult to understand whether the catalytic capability originates mainly from either the Mn arrangement or the Mn valency. In this study, to decouple these two factors and to investigate the role of Mn valency on catalysis, we selected a new pyrophosphate-based Mn compound (Li2MnP2O7), which has not been utilized for water oxidation catalysis to date, as a model system. Due to the monophasic behavior of Li2MnP2O7 with delithiation, the Mn valency of Li(2-x)MnP2O7 (x = 0.3, 0.5, 1) can be controlled with negligible change in the crystal framework (e.g., volume change ~1%). Moreover, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, ex-situ X-ray absorption near-edge structure, galvanostatic charging-discharging, and cyclic voltammetry analysis indicate that Li(2-x)MnP2O7 (x = 0.3, 0.5, 1) exhibits high catalytic stability without additional delithiation or phase transformation. Notably, we observed that, as the averaged oxidation state of Mn in Li(2-x)MnP2O7 increases from 2 to 3, the catalytic performance is enhanced in the series Li2MnP2O7 catalyst under neutral conditions with controlled Mn valency and atomic arrangement.

  17. Valence Bond Theory Reveals Hidden Delocalized Diradical Character of Polyenes.

    Science.gov (United States)

    Gu, Junjing; Wu, Wei; Danovich, David; Hoffmann, Roald; Tsuji, Yuta; Shaik, Sason

    2017-07-12

    The nature of the electronic-structure of polyenes, their delocalization features, and potential diradicaloid characters constitute a fundamental problem in chemistry. To address this problem, we used valence bond self-consistent field (VBSCF) calculations and modeling of polyenes, C2nH2n+2 (n = 2-10). The theoretical treatment shows that starting with n = 5, the polyene's wave function is mainly a shifting 1,4-diradicaloid, a character that increases as the chain length increases, while the contribution of the fundamental Lewis structure with alternating double and single bonds (1) decays quite fast and becomes minor relative to the diradicaloid pack. We show how, nevertheless, it is this wave function that predicts that polyenes will still exhibit alternating short/long CC bonds like the fundamental structure 1. Furthermore, despite the decay of the VB contribution of 1, it remains the single structure with the largest weight among all the individual structures. The mixing of all the 1,4-diradicaloid structures into 1 follows perturbation theory rules, with the result that the delocalization energy due to this mixing is additive and behaves as a linear function of the number of the double bonds, ΔEdel = -6.9 × n (kcal mol(-1)). The VB modeling shows that while the conjugation stabilizes structure 1, this stabilization energy is energetically overridden by the Pauli repulsion between two adjacent double bonds. Nevertheless, unsubstituted polyenes remain planar; this observation is addressed. Potential manifestations of the diradicaloid nature of polyenes are discussed, and it is concluded that the diradicaloid character is clearly not a well-defined physical property as in real diradicals. Thus, we went full circle to realize that our philosophical question may not be strictly resolved. The localized/delocalized properties of polyenes seem to define a "chemical duality principle". This duality of molecular wave functions is a ubiquitous beguiling phenomenon.

  18. Representations of modality-general valence for videos and music derived from fMRI data.

    Science.gov (United States)

    Kim, Jongwan; Shinkareva, Svetlana V; Wedell, Douglas H

    2017-03-01

    This study tested for neural representations of valence that are shared across visual and auditory modalities referred to as modality-general representations. On a given trial participants made either affective or semantic judgments of short silent videos or music samples. For each modality valence was manipulated at three levels, positive, neutral, and negative, while controlling for the level of arousal. Whole-brain crossmodal identification of affect indicated the presence of modality-general valence representations that distinguished 1) positive from negative trials (signed valence) and 2) valenced from non-valenced trials (unsigned valence). These results generalized across the two tasks. Brain regions that were sensitive to valence states in the same way for both modalities were identified by searchlight analysis of fMRI data by comparing the correlation of voxel responses to the same and different valence conditions across the two modalities. These analyses identified seven clusters that distinguished signed valence, unsigned valence or both. Signed valence was represented in the precuneus, unsigned valence in the bilateral medial prefrontal cortex, superior temporal sulcus (STS)/postcentral, and middle frontal gyrus (MFG) and both types were represented in the STS/MFG and thalamus. These results support the idea that modality general valence is represented in a network of several locations throughout the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Multilevel analysis of facial expressions of emotion and script: self-report (arousal and valence) and psychophysiological correlates.

    Science.gov (United States)

    Balconi, Michela; Vanutelli, Maria Elide; Finocchiaro, Roberta

    2014-09-26

    The paper explored emotion comprehension in children with regard to facial expression of emotion. The effect of valence and arousal evaluation, of context and of psychophysiological measures was monitored. Indeed subjective evaluation of valence (positive vs. negative) and arousal (high vs. low), and contextual (facial expression vs. facial expression and script) variables were supposed to modulate the psychophysiological responses. Self-report measures (in terms of correct recognition, arousal and valence attribution) and psychophysiological correlates (facial electromyography, EMG, skin conductance response, SCR, and heart rate, HR) were observed when children (N = 26; mean age = 8.75 y; range 6-11 y) looked at six facial expressions of emotions (happiness, anger, fear, sadness, surprise, and disgust) and six emotional scripts (contextualized facial expressions). The competencies about the recognition, the evaluation on valence and arousal was tested in concomitance with psychophysiological variations. Specifically, we tested for the congruence of these multiple measures. Log-linear analysis and repeated measure ANOVAs showed different representations across the subjects, as a function of emotion. Specifically, children' recognition and attribution were well developed for some emotions (such as anger, fear, surprise and happiness), whereas some other emotions (mainly disgust and sadness) were less clearly represented. SCR, HR and EMG measures were modulated by the evaluation based on valence and arousal, with increased psychophysiological values mainly in response to anger, fear and happiness. As shown by multiple regression analysis, a significant consonance was found between self-report measures and psychophysiological behavior, mainly for emotions rated as more arousing and negative in valence. The multilevel measures were discussed at light of dimensional attribution model.

  20. Microscopic model for the non-linear fluctuating hydrodynamic of {sup 4} He superfluid helium deduced by maximum entropy method; Modelo microscopico para la hidrodinamica fluctuante no lineal del {sup 4}He superfluido deducido mediante el metodo de maxima entropia

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T

    1998-10-01

    This thesis presents a microscopic model for the non-linear fluctuating hydrodynamic of superfluid helium ({sup 4} He), model developed by means of the Maximum Entropy Method (Maxent). In the chapter 1, it is demonstrated the necessity to developing a microscopic model for the fluctuating hydrodynamic of the superfluid helium, starting from to show a brief overview of the theories and experiments developed in order to explain the behavior of the superfluid helium. On the other hand, it is presented the Morozov heuristic method for the construction of the non-linear hydrodynamic fluctuating of simple fluid. Method that will be generalized for the construction of the non-linear fluctuating hydrodynamic of the superfluid helium. Besides, it is presented a brief summary of the content of the thesis. In the chapter 2, it is reproduced the construction of a Generalized Fokker-Planck equation, (GFP), for a distribution function associated with the coarse grained variables. Function defined with aid of a nonequilibrium statistical operator {rho}hut{sub FP} that is evaluated as Wigneris function through {rho}{sub CG} obtained by Maxent. Later this equation of GFP is reduced to a non-linear local FP equation from considering a slow and Markov process in the coarse grained variables. In this equation appears a matrix D{sub mn} defined with a nonequilibrium coarse grained statistical operator {rho}hut{sub CG}, matrix elements are used in the construction of the non-linear fluctuating hydrodynamics equations of the superfluid helium. In the chapter 3, the Lagrange multipliers are evaluated for to determine {rho}hut{sub CG} by means of the local equilibrium statistical operator {rho}hut{sub l}-tilde with the hypothesis that the system presents small fluctuations. Also are determined the currents associated with the coarse grained variables and furthermore are evaluated the matrix elements D{sub mn} but with aid of a quasi equilibrium statistical operator {rho}hut{sub qe} instead

  1. Low Mach number fluctuating hydrodynamics for electrolytes

    Science.gov (United States)

    Péraud, Jean-Philippe; Nonaka, Andy; Chaudhri, Anuj; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.

    2016-11-01

    We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids [A. Donev et al., Phys. Fluids 27, 037103 (2015), 10.1063/1.4913571], we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm is second order in the deterministic setting and for length scales much greater than the Debye length gives results consistent with an electroneutral approximation. In the stochastic setting, our model captures the predicted dynamics of equilibrium and nonequilibrium fluctuations. We also identify and model an instability that appears when diffusive mixing occurs in the presence of an applied electric field.

  2. Effects of barrier fluctuation on the tunneling dynamics in the ...

    Indian Academy of Sciences (India)

    Tunneling through fluctuating barrier has received considerable attention because of its potential use for modeling in many branches of physics and chemistry [1–24]. ... fluctuating potential barrier in the presence of both white and multiplicative noises. [20,21]. They have shown that the mean first passage time over the ...

  3. Fluctuating asymmetry in waterbirds in relation to mercury exposure

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2016-01-01

    The dataset includes the bird species, sex, mercury concentration in breast feathers and whole blood, and the composite measure of fluctuating asymmetry. Statistical models were developed for each species to analyze the relationship between mercury exposure in either breast feathers or whole blood and the composite measure of fluctuating asymmetry, while accounting for the sex of each bird.

  4. Fluctuations in strongly coupled cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Bonometto, Silvio A. [Department of Physics, Astronomy Unit, Trieste University, Via Tiepolo 11, I 34143 Trieste (Italy); Mainini, Roberto, E-mail: bonometto@oats.inaf.it, E-mail: mainini@mib.infn.it [Department of Physics G. Occhialini, Milano-Bicocca University, Piazza della Scienza 3, I 20126 Milano (Italy)

    2014-03-01

    In the early Universe, a dual component made of coupled CDM and a scalar field Φ, if their coupling β > (3){sup 1/2}/2, owns an attractor solution, making them a stationary fraction of cosmic energy during the radiation dominated era. Along the attractor, both such components expand ∝a{sup −4} and have early density parameters Ω{sub d} = 1/(4β{sup 2}) and Ω{sub c} = 2 Ω{sub d} (field and CDM, respectively). In a previous paper it was shown that, if a further component, expanding ∝a{sup −3}, breaks such stationary expansion at z ∼ 3–5 × 10{sup 3}, cosmic components gradually acquire densities consistent with observations. This paper, first of all, considers the case that this component is warm. However, its main topic is the analysis of fluctuation evolution: out of horizon modes are then determined; their entry into horizon is numerically evaluated as well as the dependence of Meszaros effect on the coupling β; finally, we compute: (i) transfer function and linear spectral function; (ii) CMB C{sub l} spectra. Both are close to standard ΛCDM models; in particular, the former one can be so down to a scale smaller than Milky Way, in spite of its main DM component being made of particles of mass < 1 keV. The previously coupled CDM component, whose present density parameter is O(10{sup −3}), exhibits wider fluctuations δρ/ρ, but approximately β-independent δρ values. We discuss how lower scale features of these cosmologies might ease quite a few problems that ΛCDM does not easily solve.

  5. Valence band structure of the Si(331)-(12 x 1) surface reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Corsin [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue A-L Breguet 2, 2000 Neuchatel (Switzerland); Fabian Schwier, Eike; Monney, Claude; Didiot, Clement; Mariotti, Nicolas; Gunnar Garnier, Michael; Aebi, Philipp [Department of Physics and Fribourg Center for Nanomaterials, Universite de Fribourg, Chemin du Musee 3, 1700 Fribourg (Switzerland); Gaal-Nagy, Katalin; Onida, Giovanni, E-mail: corsin.battaglia@epfl.ch [Dipartimento di Fisica and European Theoretical Spectroscopy Facility (ETSF), Universita degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy)

    2011-04-06

    Using angle-resolved photoelectron spectroscopy we investigate the electronic valence band structure of the Si(331)-(12 x 1) surface reconstruction for which we recently proposed a structural model containing silicon pentamers as elementary structural building blocks. We find that this surface, reported to be metallic in a previous study, shows a clear band gap at the Fermi energy, indicating semiconducting behavior. An occupied surface state, presumably containing several spectral components, is found centered at - 0.6 eV exhibiting a flat energy dispersion. These results are confirmed by scanning tunneling spectroscopy and are consistent with recent first-principles calculations for our structural model.

  6. Entanglement entropy and topological order in resonating valence-bond quantum spin liquids

    Science.gov (United States)

    Wildeboer, Julia; Seidel, Alexander; Melko, Roger G.

    2017-03-01

    On the triangular and kagome lattices, short-ranged resonating valence-bond wave functions can be sampled without the sign problem using a recently developed Pfaffian Monte Carlo scheme. In this Rapid Communication, we study the Renyi entanglement entropy in these wave functions using a replica-trick method. Using various spatial bipartitions, including the Levin-Wen construction, our finite-size scaled Renyi entropy gives a topological contribution consistent with γ =ln(2 ) , as expected for a gapped Z2 quantum spin liquid. We prove that the mutual statistics is consistent with the toric code anyon model and rule out any other quasiparticle statistics such as the double semion model.

  7. Biomolecules: Fluctuations and relaxations

    Science.gov (United States)

    Parak, F.; Ostermann, A.; Gassmann, A.; Scherk, C.; Chong, S.-H.; Kidera, A.; Go, N.

    1999-10-01

    The normal-mode refinement of X-ray crystallographic data opened a new possibility to analyze the mean-square displacements in a protein molecule. A comparison of the X-ray structure of myoglobin at several temperatures with Mössbauer data is performed. In the low-temperature regime below 180 K the iron mean-square displacements obtained by Mössbauer spectroscopy are in good agreement with a normal-mode analysis. The X-ray mean-square displacements at the position of the iron, after the motion originated from the external degrees of freedom are subtracted, have practically the same temperature dependence as those from Mössbauer spectroscopy. The difference between the X-ray mean-square displacements and those predicted by normal-mode analysis measures the distribution of molecules into conformational substates. Above 180 K the Mössbauer effect indicates fluctuations between conformational substates. The relaxation from a Fe(III) conformation to a Fe(II) conformation is shown for superoxide dismutase of Propionibacterium shermanii.

  8. Fluctuating attention in Parkinson's disease

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Aarsland, Dag; Janvin, Carmen

    2001-01-01

    Lewy body dementia (DLB), which share many clinical and pathological features with Parkinson’s disease (PD), is charac- terised by marked fluctuations in cognition and consciousness. Fluctuating cognition has not been formally studied in PD, although some studies indicate that PD patients show...

  9. Quantum Correction of Fluctuation Theorem

    OpenAIRE

    Monnai, T.; Tasaki, S.

    2003-01-01

    Quantum analogues of the transient fluctuation theorem(TFT) and steady-state fluctuation theorem(SSFT) are investigated for a harmonic oscillator linearly coupled with a harmonic reservoir. The probability distribution for the work done externally is derived and quantum correction for TFT and SSFT are calculated.

  10. Fluctuation conductivity in cuprate superconductors

    Indian Academy of Sciences (India)

    superconducting layers in each unit cell is also not adequate. We suggest the fluctuation conductivity to be reduced due to the reduction in the density of states (DOS) of the quasiparticles which results due to the formation of Cooper pairs at the onset of the fluctuations. The data agrees with the theory proposed by Dorin et al ...

  11. Pressure Fluctuations in Nonideal Plasma

    NARCIS (Netherlands)

    Lankin, A.; Norman, G.; Saitov, I.

    Fluctuations of pressure of singly ionized nonideal plasma are studied using the fluctuation approach which provides the self-consistent joint description of free and weakly bound electron states. The classical molecular dynamics method is used. The electron-ion interaction is described by the

  12. Analysis Of Chemical Bonding Using Ab Initio Valence Bond Theory

    NARCIS (Netherlands)

    Engelberts, J.J.

    2017-01-01

    In this thesis, theoretical chemical research is presented in which the Valence Bond (VB) Theory plays a central role. For the last three chapters, the VB method is used, in combination with Magnetically Induced Ring Currents, to analyze the aromaticity of several conjugated molecules. The

  13. Language Civility, Immediacy and Peace Valence among Nigerian ...

    African Journals Online (AJOL)

    In addition, since interactions in the university, as in all human societies, are language driven, the language-based negotiation in the university can produce either harmony or discord. This study, thus, examined students' perception of university lecturers' immediacy and civility as they relate to peace valence of lecturers ...

  14. "Plug-and-go" strategy to manipulate streptavidin valencies.

    Science.gov (United States)

    Sun, Xun; Montiel, Daniel; Li, Hao; Yang, Haw

    2014-08-20

    The streptavidin-biotin set is one of the most widely utilized conjugation pairs in biotechnological applications. The tetravalent nature of streptavidin and its homologues, however, tends to result in such undesirable complications as cross-linking or ill-defined stoichiometry. Here, we describe a mutagenesis-free strategy to manipulate the valencies of wild-type streptavidin that only requires commercially available reagents. The basic idea is simple: one obtains the desired streptavidin valency by blocking off unwanted binding sites using ancillary biotin ("plug"); this way, the extraordinary fM-biotin-binding affinity is fully retained for the remaining sites in streptavidin. In the present implementation, the ancillary biotin is attached to an auxiliary separation handle, negatively charged DNA or His-tagged protein, via a photochemically or enzymatically cleavable linker. Mixing streptavidin with the ancillary biotin construct produces a distribution of streptavidin valencies. The subsequent chromatographic separation readily isolates the construct of desired streptavidin valency, and the auxiliary handles are easily removed afterward ("go"). We demonstrate how this "plug-and-go" strategy allows a precise control for the compositions of streptavidin-biotin conjugates at the single-molecule level. This low-entry-barrier protocol could further expand the application scope of the streptavidin technology.

  15. Mn valence state and electrode performance of perovskite-type ...

    Indian Academy of Sciences (India)

    increase in the oxidation state of Mn ions was due to the formation of Mn4+ ions and oxygen vacancies. The addition of Cu ions to LSM systems could lead to enhanced electrode performance for oxygen reduction reactions originating from the change in valence of Mn ions. Keywords. Cu-doped LSM; electrical conductivity; ...

  16. Language Civility, Immediacy and Peace Valence among Nigerian ...

    African Journals Online (AJOL)

    Language Civility, Immediacy and Peace Valence among Nigerian University Academics. Alexander Essien Timothy, Vincent Ugah Uguma. Abstract. The Sustainable Development Goal (SDG) 16 seeks, in part, to “promote peaceful and inclusive societies for sustainable development ….” Since the university is a vital ...

  17. Mobile linkers on DNA-coated colloids: valency without patches.

    Science.gov (United States)

    Angioletti-Uberti, Stefano; Varilly, Patrick; Mognetti, Bortolo M; Frenkel, Daan

    2014-09-19

    Colloids coated with single-stranded DNA (ssDNA) can bind selectively to other colloids coated with complementary ssDNA. The fact that DNA-coated colloids (DNACCs) can bind to specific partners opens the prospect of making colloidal "molecules." However, in order to design DNACC-based molecules, we must be able to control the valency of the colloids, i.e., the number of partners to which a given DNACC can bind. One obvious, but not very simple approach is to decorate the colloidal surface with patches of single-stranded DNA that selectively bind those on other colloids. Here we propose a design principle that exploits many-body effects to control the valency of otherwise isotropic colloids. Using a combination of theory and simulation, we show that we can tune the valency of colloids coated with mobile ssDNA, simply by tuning the nonspecific repulsion between the particles. Our simulations show that the resulting effective interactions lead to low-valency colloids self-assembling in peculiar open structures, very different from those observed in DNACCs with immobile DNA linkers.

  18. Voice and Valency in San Luis Potosi Huasteco

    Science.gov (United States)

    Munoz Ledo Yanez, Veronica

    2014-01-01

    This thesis presents an analysis of the system of transitivity, voice and valency alternations in Huasteco of San Luis Potosi (Mayan) within a functional-typological framework. The study is based on spoken discourse and elicited data collected in the municipalities of Aquismon and Tancanhuitz de Santos in the state of San Luis Potosi, Mexico. The…

  19. verbal extensions: valency decreasing extensions in the basà ...

    African Journals Online (AJOL)

    Finance

    of the Basà language, data collected for this work include discourse ... Keywords: Basà language, reciprocal, reflexive, valency decreasing verbal .... a body part.” This definition may be associated with some inadequacies with regards to what reflexive actually means. For example, A may perform an action on B which may.

  20. Experimental evidence of photoinduced valence change of Fe 3 in ...

    Indian Academy of Sciences (India)

    Keywords. Photorefraction; electron paramagnetic resonance of Fe3+; BaTiO3; photo-electron paramagnetic resonance. Abstract. With a view to understanding the role of photo-induced valence changes of impurities in BaTiO3 in the phenomena of photorefraction, EPR experiments were conducted under in situ HeNe laser ...

  1. Nonmotor Fluctuations in Parkinson's Disease.

    Science.gov (United States)

    Franke, Christiana; Storch, Alexander

    2017-01-01

    The advanced stage of Parkinson's disease (PD) is characterized by motor complications such as motor fluctuations and dyskinesias induced by long-term levodopa treatment. Recent clinical research provides growing evidence that various nonmotor symptoms such as neuropsychiatric, autonomic, and sensory symptoms (particularly pain) also show fluctuations in patients with motor fluctuations (called nonmotor fluctuations or NMF). However, NMF have not yet been adequately considered in routine care of advanced PD patients and only few therapeutic studies are available. Since the pathophysiology of NMF remains largely unknown, innovative therapeutic concepts are largely missing. The close connection of NMF and motor fluctuations, however, strongly suggests that the strategies used to treat motor complications-namely continuous dopaminergic stimulation-also apply for the therapy of NMF. Future controlled clinical trials specifically addressing NMF are urgently warranted. © 2017 Elsevier Inc. All rights reserved.

  2. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.

    Directory of Open Access Journals (Sweden)

    Andrea Maesani

    2015-11-01

    Full Text Available The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

  3. Doping dependence of fluctuation diamagnetism in high Tc superconductors

    Science.gov (United States)

    Sarkar, Kingshuk; Banerjee, Sumilan; Mukerjee, Subroto; Ramakrishnan, T. V.

    2016-02-01

    Using a recently proposed Ginzburg-Landau-like lattice free energy functional due to Banerjee et al. (2011) we calculate the fluctuation diamagnetism of high-Tc superconductors as a function of doping, magnetic field and temperature. We analyse the pairing fluctuations above the superconducting transition temperature in the cuprates, ranging from the strong phase fluctuation dominated underdoped limit to the more conventional amplitude fluctuation dominated overdoped regime. We show that a model where the pairing scale increases and the superfluid density decreases with underdoping produces features of the observed magnetization in the pseudogap region, in good qualitative and reasonable quantitative agreement with the experimental data. In particular, we explicitly show that even when the pseudogap has a pairing origin the magnetization actually tracks the superconducting dome instead of the pseudogap temperature, as seen in experiment. We discuss the doping dependence of the 'onset' temperature for fluctuation diamagnetism and comment on the role of vortex core-energy in our model.

  4. Quantum fluctuations from thermal fluctuations in Jacobson formalism

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Ashour, Amani; Alcheikh, Mohammad [Damascus University, Mathematics Department, Faculty of Science, Damascus (Syrian Arab Republic); Alasfar, Lina [Universite Clermont Auvergne, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France); Alsaleh, Salwa; Mahroussah, Ahmed [King Saud University, Department of Physics and Astronomy, Riyadh (Saudi Arabia)

    2017-09-15

    In the Jacobson formalism general relativity is obtained from thermodynamics. This is done by using the Bekenstein-Hawking entropy-area relation. However, as a black hole gets smaller, its temperature will increase. This will cause the thermal fluctuations to also increase, and these will in turn correct the Bekenstein-Hawking entropy-area relation. Furthermore, with the reduction in the size of the black hole, quantum effects will also start to dominate. Just as the general relativity can be obtained from thermodynamics in the Jacobson formalism, we propose that the quantum fluctuations to the geometry can be obtained from thermal fluctuations. (orig.)

  5. Critical point fluctuations in supported lipid membranes.

    Science.gov (United States)

    Connell, Simon D; Heath, George; Olmsted, Peter D; Kisil, Anastasia

    2013-01-01

    In this paper, we demonstrate that it is possible to observe many aspects of critical phenomena in supported lipid bilayers using atomic force microscopy (AFM) with the aid of stable and precise temperature control. The regions of criticality were determined by accurately measuring and calculating phase diagrams for the 2 phase L(d)-L(o) region, and tracking how it moves with temperature, then increasing the sampling density around the estimated critical regions. Compositional fluctuations were observed above the critical temperature (T(c)) and characterised using a spatial correlation function. From this analysis, the phase transition was found to be most closely described by the 2D Ising model, showing it is a critical transition. Below T(c) roughening of the domain boundaries occurred due to the reduction in line tension close to the critical point. Smaller scale density fluctuations were also detected just below T(c). At T(c), we believe we have observed fluctuations on length scales greater than 10 microm. The region of critically fluctuating 10-100 nm nanodomains has been found to extend a considerable distance above T(c) to temperatures within the biological range, and seem to be an ideal candidate for the actual structure of lipid rafts in cell membranes. Although evidence for this idea has recently emerged, this is the first direct evidence for nanoscale domains in the critical region.

  6. Fluctuation scaling, Taylor's law, and crime.

    Science.gov (United States)

    Hanley, Quentin S; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May

    2014-01-01

    Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026) while burglary exhibited a greater exponent (α = 1.292 ± 0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs) to 2.094 ± 0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  7. Fluctuation scaling, Taylor's law, and crime.

    Directory of Open Access Journals (Sweden)

    Quentin S Hanley

    Full Text Available Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026 while burglary exhibited a greater exponent (α = 1.292 ± 0.029 indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs to 2.094 ± 0081 (Other Crimes. Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  8. Valenced Cues and Contexts Have Different Effects on Event-Based Prospective Memory

    OpenAIRE

    Peter Graf; Martin Yu

    2015-01-01

    This study examined the separate influence and joint influences on event-based prospective memory task performance due to the valence of cues and the valence of contexts. We manipulated the valence of cues and contexts with pictures from the International Affective Picture System. The participants, undergraduate students, showed higher performance when neutral compared to valenced pictures were used for cueing prospective memory. In addition, neutral pictures were more effective as cues when ...

  9. Approach and withdrawal tendencies during written word processing: effects of task, emotional valence and emotional arousal

    OpenAIRE

    Citron, Francesca M. M.; Abugaber, David; Herbert, Cornelia

    2016-01-01

    The affective dimensions of emotional valence and emotional arousal affect processing of verbal and pictorial stimuli. Traditional emotional theories assume a linear relationship between these dimensions, with valence determining the direction of a behaviour (approach vs. withdrawal) and arousal its intensity or strength. In contrast, according to the valence-arousal conflict theory, both dimensions are interactively related: positive valence and low arousal (PL) are associated with an implic...

  10. Skewness of elliptic flow fluctuations

    Science.gov (United States)

    Giacalone, Giuliano; Yan, Li; Noronha-Hostler, Jacquelyn; Ollitrault, Jean-Yves

    2017-01-01

    Using event-by-event hydrodynamic calculations, we find that the fluctuations of the elliptic flow (v2) in the reaction plane have a negative skew. We compare the skewness of v2 fluctuations to that of initial eccentricity fluctuations. We show that skewness is the main effect lifting the degeneracy between higher-order cumulants, with negative skew corresponding to the hierarchy v2{4 } >v2{6 } observed in Pb+Pb collisions at the CERN Large Hadron Collider. We describe how the skewness can be measured experimentally and show that hydrodynamics naturally reproduces its magnitude and centrality dependence.

  11. Fluctuation theorem: A critical review

    Science.gov (United States)

    Malek Mansour, M.; Baras, F.

    2017-10-01

    Fluctuation theorem for entropy production is revisited in the framework of stochastic processes. The applicability of the fluctuation theorem to physico-chemical systems and the resulting stochastic thermodynamics were analyzed. Some unexpected limitations are highlighted in the context of jump Markov processes. We have shown that these limitations handicap the ability of the resulting stochastic thermodynamics to correctly describe the state of non-equilibrium systems in terms of the thermodynamic properties of individual processes therein. Finally, we considered the case of diffusion processes and proved that the fluctuation theorem for entropy production becomes irrelevant at the stationary state in the case of one variable systems.

  12. Developmental Reversals in False Memory: Effects of Emotional Valence and Arousal

    Science.gov (United States)

    Brainerd, C. J.; Holliday, R. E.; Reyna, V. F.; Yang, Y.; Toglia, M. P.

    2010-01-01

    Do the emotional valence and arousal of events distort children's memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can…

  13. Distinct Brain Systems Underlie the Processing of Valence and Arousal of Affective Pictures

    Science.gov (United States)

    Nielen, M. M. A.; Heslenfeld, D. J.; Heinen, K.; Van Strien, J. W.; Witter, M. P.; Jonker, C.; Veltman, D. J.

    2009-01-01

    Valence and arousal are thought to be the primary dimensions of human emotion. However, the degree to which valence and arousal interact in determining brain responses to emotional pictures is still elusive. This functional MRI study aimed to delineate neural systems responding to valence and arousal, and their interaction. We measured neural…

  14. Valence-Specific Laterality Effects in Vocal Emotion: Interactions with Stimulus Type, Blocking and Sex

    Science.gov (United States)

    Schepman, Astrid; Rodway, Paul; Geddes, Pauline

    2012-01-01

    Valence-specific laterality effects have been frequently obtained in facial emotion perception but not in vocal emotion perception. We report a dichotic listening study further examining whether valence-specific laterality effects generalise to vocal emotions. Based on previous literature, we tested whether valence-specific laterality effects were…

  15. Distinct brain systems underlie the processing of valence and arousal of affective pictures

    NARCIS (Netherlands)

    Nielen, M. M. A.; Heslenfeld, D. J.; Heinen, K.; van Strien, J. W.; Witter, M. P.; Jonker, C.; Veltman, D. J.

    2009-01-01

    Valence and arousal are thought to be the primary dimensions of human emotion. However, the degree to which valence and arousal interact in determining brain responses to emotional pictures is still elusive. This functional MRI study aimed to delineate neural systems responding to valence and

  16. Fluctuations and Instability in Sedimentation

    KAUST Repository

    Guazzelli, Élisabeth

    2011-01-21

    This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations of the velocities of spheres to increase with the size of the container, whereas experiments found no such variation. Two ideas have increased our understanding. First, the correlation length of the velocity fluctuations was found experimentally to be 20 interparticle separations. Second, in dilute suspensions, a vertical variation in the concentration due to the spreading of the front with the clear fluid can inhibit the velocity fluctuations. In a very dilute regime, a homogeneous suspension of fibers suffers a spontaneous instability in which fast descending fiber-rich columns are separated by rising fiber-sparse columns. In a semidilute regime, the settling is hindered, more so than for spheres. © 2011 by Annual Reviews. All rights reserved.

  17. Molecular evolution under fitness fluctuations.

    Science.gov (United States)

    Mustonen, Ville; Lässig, Michael

    2008-03-14

    Molecular evolution is a stochastic process governed by fitness, mutations, and reproductive fluctuations in a population. Here, we study evolution where fitness itself is stochastic, with random switches in the direction of selection at individual genomic loci. As the correlation time of these fluctuations becomes larger than the diffusion time of mutations within the population, fitness changes from an annealed to a quenched random variable. We show that the rate of evolution has its maximum in the crossover regime, where both time scales are comparable. Adaptive evolution emerges in the quenched fitness regime (evidence for such fitness fluctuations has recently been found in genomic data). The joint statistical theory of reproductive and fitness fluctuations establishes a conceptual connection between evolutionary genetics and statistical physics of disordered systems.

  18. Gaussian fluctuations in chaotic eigenstates

    CERN Document Server

    Srednicki, M A; Srednicki, Mark; Stiernelof, Frank

    1996-01-01

    We study the fluctuations that are predicted in the autocorrelation function of an energy eigenstate of a chaotic, two-dimensional billiard by the conjecture (due to Berry) that the eigenfunction is a gaussian random variable. We find an explicit formula for the root-mean-square amplitude of the expected fluctuations in the autocorrelation function. These fluctuations turn out to be O(\\hbar^{1/2}) in the small \\hbar (high energy) limit. For comparison, any corrections due to scars from isolated periodic orbits would also be O(\\hbar^{1/2}). The fluctuations take on a particularly simple form if the autocorrelation function is averaged over the direction of the separation vector. We compare our various predictions with recent numerical computations of Li and Robnik for the Robnik billiard, and find good agreement. We indicate how our results generalize to higher dimensions.

  19. Fluctuations along supersymmetric flat directions during Inflation

    OpenAIRE

    Enqvist, Kari; Figueroa, Daniel G.; Rigopoulos, Gerasimos

    2011-01-01

    We consider a set of scalar fields, consisting of a single flat direction and one or several non-flat directions. We take our cue from the MSSM, considering separately D-flat and F-flat directions, but our results apply to any supersymmetric scenario containing flat directions. We study the field fluctuations during pure de Sitter Inflation, following the evolution of the infrared modes by numerically solving the appropriate Langevin equations. We demonstrate that for the Standard Model U(1),...

  20. Emotional valence and arousal interact in attentional control.

    Science.gov (United States)

    Jefferies, Lisa N; Smilek, Daniel; Eich, Eric; Enns, James T

    2008-03-01

    A recent study demonstrated that observers' ability to identify targets in a rapid visual sequence was enhanced when they simultaneously listened to happy music. In the study reported here, we examined how the emotion-attention relationship is influenced by changes in both mood valence (negative vs. positive) and arousal (low vs. high). We used a standard induction procedure to generate calm, happy, sad, and anxious moods in participants. Results for an attentional blink task showed no differences in first-target accuracy, but second-target accuracy was highest for participants with low arousal and negative affect (sad), lowest for those with strong arousal and negative affect (anxious), and intermediate for those with positive affect regardless of their arousal (calm, happy). We discuss implications of this valence-arousal interaction for the control of visual attention.

  1. Human Amygdala Tracks a Feature-Based Valence Signal Embedded within the Facial Expression of Surprise.

    Science.gov (United States)

    Kim, M Justin; Mattek, Alison M; Bennett, Randi H; Solomon, Kimberly M; Shin, Jin; Whalen, Paul J

    2017-09-27

    Human amygdala function has been traditionally associated with processing the affective valence (negative vs positive) of an emotionally charged event, especially those that signal fear or threat. However, this account of human amygdala function can be explained by alternative views, which posit that the amygdala might be tuned to either (1) general emotional arousal (activation vs deactivation) or (2) specific emotion categories (fear vs happy). Delineating the pure effects of valence independent of arousal or emotion category is a challenging task, given that these variables naturally covary under many circumstances. To circumvent this issue and test the sensitivity of the human amygdala to valence values specifically, we measured the dimension of valence within the single facial expression category of surprise. Given the inherent valence ambiguity of this category, we show that surprised expression exemplars are attributed valence and arousal values that are uniquely and naturally uncorrelated. We then present fMRI data from both sexes, showing that the amygdala tracks these consensus valence values. Finally, we provide evidence that these valence values are linked to specific visual features of the mouth region, isolating the signal by which the amygdala detects this valence information. SIGNIFICANCE STATEMENT There is an open question as to whether human amygdala function tracks the valence value of cues in the environment, as opposed to either a more general emotional arousal value or a more specific emotion category distinction. Here, we demonstrate the utility of surprised facial expressions because exemplars within this emotion category take on valence values spanning the dimension of bipolar valence (positive to negative) at a consistent level of emotional arousal. Functional neuroimaging data showed that amygdala responses tracked the valence of surprised facial expressions, unconfounded by arousal. Furthermore, a machine learning classifier identified

  2. Continuum-limit scaling of overlap fermions as valence quarks

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Herdoiza, Gregorio; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2009-10-15

    We present the results of a mixed action approach, employing dynamical twisted mass fermions in the sea sector and overlap valence fermions, with the aim of testing the continuum limit scaling behaviour of physical quantities, taking the pion decay constant as an example. To render the computations practical, we impose for this purpose a fixed finite volume with lattice size L{approx}1.3 fm. We also briefly review the techniques we have used to deal with overlap fermions. (orig.)

  3. Quantum Phase Transitions around the Staggered Valence Bond Solid

    OpenAIRE

    Xu, Cenke; Balents, Leon

    2011-01-01

    Motivated by recent numerical results, we study the quantum phase transitions between Z_2 spin liquid, Neel ordered, and various valence bond solid (VBS) states on the honeycomb and square lattices, with emphasis on the staggered VBS. In contrast to the well-understood columnar VBS order, the staggered VBS is not described by an XY order parameter with Z_N anisotropy close to these quantum phase transitions. Instead, we demonstrate that on the honeycomb lattice, the staggered VBS is more appr...

  4. Effects of musical valence on the cognitive processing of lyrics

    OpenAIRE

    Fiveash, Anna

    2014-01-01

    The effects of music on the brain have been extensively researched, and numerous connections have been found between music and language, music and emotion, and music and cognitive processing. Despite this work, these three research areas have never before been drawn together in a single research paradigm. This is significant as their combination could lead to valuable insights into the effects of musical valence on the cognitive processing of lyrics. Based on the feelings-as-information theor...

  5. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    Science.gov (United States)

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  6. Modulation of cerebral haemodynamic response to olfactory stimuli by emotional valence detected by functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Cristofer André Caous

    Full Text Available ABSTRACT Olfactory perception, although restricted to just a few contexts in everyday life, is key in medicine. Several dementia conditions have been associated with early loss of olfactory discrimination. Despite the fact that several brain areas have been associated with olfaction in functional magnetic resonance imaging (fMRI, the mechanisms by which emotional valence is conveyed to the brain are not fully understood. Methods In this study, we compared cerebral activations by olfactory stimuli using different emotional valence stimuli on event-related fMRI. We used three standard olfactory odorants with different valence (positive, neutral and negative. Forty-three healthy subjects (22 males were scanned on a 3.0T MR system. Olfactory stimulation was attained through a delivery system synchronized with image acquisition and subjects´ breathing instructions. fMRI data analysis was performed by the FSL package (Oxford University including head movement correction, GLM modeling of the neurovascular (BOLD response and group activation maps produced at p<0.05 and corrected for multiple comparison. Results Increased cerebral responses within the anterior cingulate, amygdaloid nuclei, as well as the dorsolateral prefrontal, occipital and orbitofrontal cortices were observed in positive and negative valence conditions, while response to neutral valence arousal was less intense and not observed in the amygdaloid complex. The most significant statistical response aroused from the stimuli clusters was observed in the negative condition. Conclusion The results of the present study support the hypothesis that neutral stimuli may be more sensitive to early losses in pathological conditions, particularly dementia.

  7. Motion of Euglena gracilis: Active fluctuations and velocity distribution

    Science.gov (United States)

    Romanczuk, P.; Romensky, M.; Scholz, D.; Lobaskin, V.; Schimansky-Geier, L.

    2015-07-01

    We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.

  8. Modified diffusion with memory for cyclone track fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Bernido, Christopher C., E-mail: cbernido@mozcom.com [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Carpio-Bernido, M. Victoria [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Escobido, Matthew G.O. [W. Sycip Graduate School of Business, Asian Institute of Management, 123 Paseo de Roxas Ave., Makati City 1260 (Philippines)

    2014-06-13

    Fluctuations in a time series for tropical cyclone tracks are investigated based on an exponentially modified Brownian motion. The mean square displacement (MSD) is evaluated and compared to a recent work on cyclone tracks based on fractional Brownian motion (fBm). Unlike the work based on fBm, the present approach is found to capture the behavior of MSD versus time graphs for cyclones even for large values of time. - Highlights: • Cyclone track fluctuations are modeled as stochastic processes with memory. • Stochastic memory functions beyond fractional Brownian motion are introduced. • The model captures the behavior of cyclone track fluctuations for longer periods of time. • The approach can model time series for other fluctuating phenomena.

  9. Valenced cues and contexts have different effects on event-based prospective memory.

    Science.gov (United States)

    Graf, Peter; Yu, Martin

    2015-01-01

    This study examined the separate influence and joint influences on event-based prospective memory task performance due to the valence of cues and the valence of contexts. We manipulated the valence of cues and contexts with pictures from the International Affective Picture System. The participants, undergraduate students, showed higher performance when neutral compared to valenced pictures were used for cueing prospective memory. In addition, neutral pictures were more effective as cues when they occurred in a valenced context than in the context of neutral pictures, but the effectiveness of valenced cues did not vary across contexts that differed in valence. The finding of an interaction between cue and context valence indicates that their respective influence on event-based prospective memory task performance cannot be understood in isolation from each other. Our findings are not consistent with by the prevailing view which holds that the scope of attention is broadened and narrowed, respectively, by positively and negatively valenced stimuli. Instead, our findings are more supportive of the recent proposal that the scope of attention is determined by the motivational intensity associated with valenced stimuli. Consistent with this proposal, we speculate that the motivational intensity associated with different retrieval cues determines the scope of attention, that contexts with different valence values determine participants' task engagement, and that prospective memory task performance is determined jointly by attention scope and task engagement.

  10. Valenced cues and contexts have different effects on event-based prospective memory.

    Directory of Open Access Journals (Sweden)

    Peter Graf

    Full Text Available This study examined the separate influence and joint influences on event-based prospective memory task performance due to the valence of cues and the valence of contexts. We manipulated the valence of cues and contexts with pictures from the International Affective Picture System. The participants, undergraduate students, showed higher performance when neutral compared to valenced pictures were used for cueing prospective memory. In addition, neutral pictures were more effective as cues when they occurred in a valenced context than in the context of neutral pictures, but the effectiveness of valenced cues did not vary across contexts that differed in valence. The finding of an interaction between cue and context valence indicates that their respective influence on event-based prospective memory task performance cannot be understood in isolation from each other. Our findings are not consistent with by the prevailing view which holds that the scope of attention is broadened and narrowed, respectively, by positively and negatively valenced stimuli. Instead, our findings are more supportive of the recent proposal that the scope of attention is determined by the motivational intensity associated with valenced stimuli. Consistent with this proposal, we speculate that the motivational intensity associated with different retrieval cues determines the scope of attention, that contexts with different valence values determine participants' task engagement, and that prospective memory task performance is determined jointly by attention scope and task engagement.

  11. Estimating valence from the sound of a word: Computational, experimental, and cross-linguistic evidence.

    Science.gov (United States)

    Louwerse, Max; Qu, Zhan

    2017-06-01

    It is assumed linguistic symbols must be grounded in perceptual information to attain meaning, because the sound of a word in a language has an arbitrary relation with its referent. This paper demonstrates that a strong arbitrariness claim should be reconsidered. In a computational study, we showed that one phonological feature (nasals in the beginning of a word) predicted negative valence in three European languages (English, Dutch, and German) and positive valence in Chinese. In three experiments, we tested whether participants used this feature in estimating the valence of a word. In Experiment 1, Chinese and Dutch participants rated the valence of written valence-neutral words, with Chinese participants rating the nasal-first neutral-valence words more positive and the Dutch participants rating nasal-first neutral-valence words more negative. In Experiment 2, Chinese (and Dutch) participants rated the valence of Dutch (and Chinese) written valence-neutral words without being able to understand the meaning of these words. The patterns replicated the valence patterns from Experiment 1. When the written words from Experiment 2 were transformed into spoken words, results in Experiment 3 again showed that participants estimated the valence of words on the basis of the sound of the word. The computational study and psycholinguistic experiments indicated that language users can bootstrap meaning from the sound of a word.

  12. Anomalous metallic state in the vicinity of metal to valence-bond solid insulator transition in LiVS2.

    Science.gov (United States)

    Katayama, N; Uchida, M; Hashizume, D; Niitaka, S; Matsuno, J; Matsumura, D; Nishihata, Y; Mizuki, J; Takeshita, N; Gauzzi, A; Nohara, M; Takagi, H

    2009-10-02

    We investigate LiVS2 and LiVSe2 with a triangular lattice as itinerant analogues of LiVO2 known for the formation of a valence-bond solid (VBS) state out of an S=1 frustrated magnet. LiVS2, which is located at the border between a metal and a correlated insulator, shows a first order transition from a paramagnetic metal to a VBS insulator at Tc approximately 305 K upon cooling. The presence of a VBS state in the close vicinity of insulator-metal transition may suggest the importance of itinerancy in the formation of a VBS state. We argue that the high temperature metallic phase of LiVS2 has a pseudogap, likely originating from the VBS fluctuation. LiVSe2 was found to be a paramagnetic metal down to 2 K.

  13. Single and double valence configuration interactions for recovering the exponential decay law while tunneling through a molecular wire

    Science.gov (United States)

    Portais, Mathilde; Hliwa, Mohamed; Joachim, Christian

    2016-01-01

    The exponential decay of the electronic transmission through a molecular wire with its length is calculated using a configuration interaction elastic scattering quantum chemistry (CI-ESQC) theory [1, 2]. In the HOMO-LUMO gap and in a one-electron approximation, this decay is exponential since the scattering matrix comes from a product of spatial propagators along the wire. In a valence SD-CI (single and double-configurations interaction) description, such a product does not exist. An effective one was numerically obtained from the CI-ESQC scattering matrix. Fluctuations over the effective CI-exponential decay come from the truncation of the full CI basis set and also from many-body exchange-correlation effects along the molecular wire.

  14. A functionalized surface modification with vanadium nanoparticles of various valences against implant-associated bloodstream infection.

    Science.gov (United States)

    Wang, Jiaxing; Zhou, Huaijuan; Guo, Geyong; Cheng, Tao; Peng, Xiaochun; Mao, Xin; Li, Jinhua; Zhang, Xianlong

    2017-01-01

    Bloodstream infection, especially with implants involved, is an often life-threatening condition with high mortality rates, imposing a heavy burden on patients and medical systems. Herein, we firstly deposited homogeneous vanadium metal, V2O3, VO2, and V2O5 nanofilms on quartz glass by magnetron sputtering. Using these platforms, we further investigated the potential antimicrobial efficiency of these nano-VOx films and the interactions of human erythrocytes and bacteria (methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa) with our samples in a novel cell-bacteria coculture model. It was demonstrated that these nano-VOx precipitated favorable antibacterial activity on both bacteria, especially on S. aureus, and this effect increased with higher vanadium valence. A possible mechanism accountable for these results might be elevated levels of vanadium-induced intracellular reactive oxygen species. More importantly, based on hemolysis assays, our nano-VOx films were found to be able to kill prokaryotic cells but were not toxic to mammalian cells, holding the potential for the prevention of implant-related hematogenous infections. As far as we know, this is the first report wherein such nano-VOx films have assisted human erythrocytes to combat bacteria in a valence-dependent manner. Additionally, vanadium ions were released from these nano-VOx films in a sustained manner, and low-valence films possessed better biocompatibility with human fibroblasts. This work may provide new insights for biomedical applications of inorganic vanadium compounds and attract growing attention in this field. From the perspective of surface modification and functionalization, this study holds promise to avail the prophylaxis of bloodstream infections involving implantable biomedical devices.

  15. Fluctuation theorem in quantum heat conduction.

    Science.gov (United States)

    Saito, Keiji; Dhar, Abhishek

    2007-11-02

    We consider steady-state heat conduction across a quantum harmonic chain connected to reservoirs modeled by infinite collection of oscillators. The heat, Q, flowing across the oscillator in a time interval tau is a stochastic variable and we study the probability distribution function P(Q). We compute the exact generating function of Q at large tau and the large deviation function. The generating function has a symmetry satisfying the steady-state fluctuation theorem without any quantum corrections. The distribution P(Q) is non-Gaussian with clear exponential tails. The effect of finite tau and nonlinearity is considered in the classical limit through Langevin simulations. We also obtain the prediction of quantum heat current fluctuations at low temperatures in clean wires.

  16. Classicalization of Quantum Fluctuation in Inflationary Universe

    Science.gov (United States)

    Kubotani, H.; Uesugi, T.; Morikawa, M.; Sugamoto, A.

    1997-11-01

    We discuss the classicalization of a quantum state induced by an environment in the inflationary stage of the universe. The classicalization is necessary for the homogeneous ground state to become the inhomogeneous classical one accompanied with statistical fluctuations, which is a plausible candidate for the seeds of structure formation. Using simple models, we show that i) the two classicalization criteria, the classical correlation and quantum decoherence, are simultaneously satisfied by the environment and that ii) the power spectrum of the resultant statistical fluctuations depends upon the details of the classicalization process. In particular, the result ii) means that, taking into account the classicalization process, the inflationary scenario does not necessarily predict the unique spectrum which is usually believed.

  17. Interactions between incentive valence and action information in a cued approach-avoidance task.

    Science.gov (United States)

    Hoofs, Vincent; Carsten, Thomas; Boehler, C Nico; Krebs, Ruth M

    2018-01-10

    Environmental stimuli can provoke specific response tendencies depending on their incentive valence. While some studies report positive-approach and negative-avoidance biases, others find no such mappings. To further illuminate the relationship between incentive valence and action requirement, we combined a cued monetary incentive paradigm with an approach/avoidance joystick task. Incentive type was manipulated between groups: The reward group won money, while the punishment group avoided losing money for correct and fast responses to targets following incentive cues. Depending on their orientations, targets had to be 'approached' or 'avoided'. Importantly, incentive valence (signaled by cue color) was orthogonal to action requirement (target orientation). Moreover, targets could carry valence-associated information or not (target color), which was, however, task-irrelevant. First, we observed that both valence cues (reward/punishment) improved performance compared to neutral cues, independent of the required action (approach/avoid), suggesting that advance valence cues do not necessarily produce specific action biases. Second, task-irrelevant valence associations with targets promoted action biases, with valence-associated targets facilitating approach and impairing avoid responses. Importantly, this approach bias for valence-associated targets was observed in both groups and hence occurred independently of absolute valence ('unsigned'). This rather unexpected finding might be related to the absence of a direct contrast between positive valence and negative valence within groups and the common goal to respond fast and accurately in all incentive trials. Together, our results seem to challenge the notion that monetary incentives trigger 'hard-wired' valence-action biases in that specific design choices seem to modulate the presence and/or direction of valence-action biases.

  18. Controlling tax evasion fluctuations

    Science.gov (United States)

    Zaklan, Georg; Lima, F. W. S.; Westerhoff, Frank

    2008-10-01

    We incorporate the behaviour of tax evasion into the standard two-dimensional Ising model and augment it by providing policy-makers with the opportunity to curb tax evasion via an appropriate enforcement mechanism. We find that tax evasion may vary greatly over time if no measures of control are taken. Furthermore, we show that even minimal audit rates of a tax authority may help to alleviate this problem substantially. Similar results are observed for other network structures.

  19. Effect of altering local protein fluctuations using artificial intelligence

    Science.gov (United States)

    Nishiyama, Katsuhiko

    2017-03-01

    The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  20. The scaling properties of dynamical fluctuations in temporal networks

    CERN Document Server

    Chi, Liping

    2015-01-01

    The factorial moments analyses are performed to study the scaling properties of the dynamical fluctuations of contacts and nodes in temporal networks based on empirical data sets. The intermittent behaviors are observed in the fluctuations for all orders of the moments. It indicates that the interaction has self-similarity structure in time interval and the fluctuations are not purely random but dynamical and correlated. The scaling exponents for contacts in Prostitution data and nodes in Conference data are very close to that for 2D Ising model undergoing a second-order phase transition.

  1. Metal Oxide Nanoparticles: The Importance of Size, Shape, Chemical Composition, and Valence State in Determining Toxicity

    Science.gov (United States)

    Dunnick, Katherine

    Nanoparticles, which are defined as a structure with at least one dimension between 1 and 100 nm, have the potential to be used in a variety of consumer products due to their improved functionality compared to similar particles of larger size. Their small size is associated with increased strength, improved catalytic properties, and increased reactivity; however, their size is also associated with increased toxicity in vitro and in vivo. Numerous toxicological studies have been conducted to determine the properties of nanomaterials that increase their toxicity in order to manufacture new nanomaterials with decreased toxicity. Data indicates that size, shape, chemical composition, and valence state of nanomaterials can dramatically alter their toxicity profile. Therefore, the purpose of this dissertation was to determine how altering the shape, size, and chemical composition of various metal oxide nanoparticles would affect their toxicity. Metal oxides are used in variety of consumer products, from spray-sun screens, to food coloring agents; thus, understanding the toxicity of metal oxides and determining which aspects affect their toxicity may provide safe alternatives nanomaterials for continued use in manufacturing. Tungstate nanoparticles toxicity was assessed in an in vitro model using RAW 264.7 cells. The size, shape, and chemical composition of these nanomaterials were altered and the effect on reactive oxygen species and general cytotoxicity was determined using a variety of techniques. Results demonstrate that shape was important in reactive oxygen species production as wires were able to induce significant reactive oxygen species compared to spheres. Shape, size, and chemical composition did not have much effect on the overall toxicity of these nanoparticles in RAW 264.7 cells over a 72 hour time course, implicating that the base material of the nanoparticles was not toxic in these cells. To further assess how chemical composition can affect toxicity

  2. The bulk valence state of Fe and the origin of water in chondrites

    Science.gov (United States)

    Sutton, S.; Alexander, C. M. O'D.; Bryant, A.; Lanzirotti, A.; Newville, M.; Cloutis, E. A.

    2017-08-01

    There is abundant petrologic evidence for the oxidation of Fe during the aqueous alteration of chondrites, and water must have been the oxidant for this process. The H2 lost from the chondrite parent bodies as a result of Fe oxidation would have been isotopically very light, enriching any residual water in D. The extents of the D enrichments will have depended on the fractions of water consumed and the temperatures during Fe oxidation. Here we have estimated the likely ranges of water consumed by Fe oxidation in the CI, CM, CR and LL parent bodies, as well as the likely range of changes in water H isotopic compositions this would have produced. We first used Fe XANES to determine the Fe valences of bulk meteorite powders in Orgueil (CI1), a number of CMs and CRs that experienced varying degrees of alteration, and Semarkona (LL3.00). The total ranges of bulk Fe valences we obtained were: Orgueil 2.77, CMs 2.40-2.63, CRs 1.46-2.54, and Semarkona 2.10. Combining previous estimates of the present water/OH contents of our samples with the present bulk Fe valences and an estimated range of initial bulk Fe valences, we estimate the likely ranges of fractional water losses to have been: Orgueil 15-26%, Semarkona 73-83%, CMs 23-48%, and CRs 39-62%. The associated maximum and minimum changes in the H isotopic compositions of the remaining water were estimated assuming the equilibrium H2-H2O isotopic fractionation factor, Rayleigh fractionation of the H2, and oxidation temperatures of 0-200 °C. Using previous estimates of the water H isotopic compositions in the chondrites, the ranges of estimated δD values for the initial chondritic waters are: Orgueil -672‰ to -422‰, CMs -676‰ to -493‰, CRs -527‰ to -56‰, and Semarkona -527‰ to 154‰. The CI, CM, CR and ordinary chondrites all accreted water with similar H isotopic compositions that were distinct from the compositions of comets or Saturn's moon Enceladus. Thus, the carbonaceous chondrites are unlikely to

  3. Concentration fluctuations in gas releases by industrial accidents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Chatwin, P.C.; Joergensen, H.E.; Mole, N.; Munro, R.J.; Ott, S.

    2002-05-01

    The COFIN project studied existing remote-sensing Lidar data on concentration fluctuations in atmospheric dispersion from continuous sources at ground level. Fluctuations are described by stochastic models developed by a combination of statistical analyses and surface-layer scaling. The statistical moments and probability density distribution of the fluctuations are most accurately determined in a frame of reference following the instantaneous plume centreline. The spatial distribution of these moments is universal with a gaussian core and exponential tails. The instantaneous plume width is fluctuating with a log-normal distribution. The position of the instantaneous plume centre-line is modelled by a normal distribution and a Langevin equation, by which the meander effect on the time-averaged plume width is predicted. Fixed-frame statistics are modelled by convolution of moving-frame statistics and the probability distribution for the plume centreline. The distance-neighbour function generalized for higher-order statistics has a universal exponential shape. Simulation tools for concentration fluctuations have been developed for either multiple correlated time series or multi-dimensional fields. These tools are based on Karhunen-Loeve expansion and Fourier transformations using iterative or correlation-distortion techniques. The input to the simulation is the probability distribution of the individual processes, assumed stationary, and the cross-correlations of all signal combinations. The use in practical risk assessment is illustrated by implementation of a typical heavy-gas dispersion model, enhanced for prediction and simulation of concentration fluctuations. (au)

  4. Generalized noise terms for the quantized fluctuational electrodynamics

    DEFF Research Database (Denmark)

    Partanen, Mikko; Hayrynen, Teppo; Tulkki, Jukka

    2017-01-01

    position-dependent quantum models for the photon number in resonant structures have only been formulated very recently and only for dielectric media. Here we present a general position-dependent quantized fluctuational electrodynamics (QFED) formalism that extends the consistent field quantization...... to describe the photon number also in the presence of magnetic field-matter interactions. It is shown that the magnetic fluctuations provide an additional degree of freedom in media where the magnetic coupling to the field is prominent. Therefore, the field quantization requires an additional independent...... noise operator that is commuting with the conventional bosonic noise operator describing the polarization current fluctuations in dielectric media. In addition to allowing the detailed description of field fluctuations, our methods provide practical tools for modeling optical energy transfer...

  5. Fluctuations of water near extended hydrophobic and hydrophilic surfaces.

    Science.gov (United States)

    Patel, Amish J; Varilly, Patrick; Chandler, David

    2010-02-04

    We use molecular dynamics simulations of the SPC-E model of liquid water to derive probability distributions for water density fluctuations in probe volumes of different shapes and sizes, both in the bulk as well as near hydrophobic and hydrophilic surfaces. Our results are obtained with a biased sampling of coarse-grained densities that is easily combined with molecular dynamics integration algorithms. Our principal result is that the probability for density fluctuations of water near a hydrophobic surface, with or without surface water attractions, is akin to density fluctuations at the water-vapor interface. Specifically, the probability of density depletion near the surface is significantly larger than that in the bulk, and this enhanced probability is responsible for hydrophobic forces of assembly. In contrast, we find that the statistics of water density fluctuations near a model hydrophilic surface are similar to that in the bulk.

  6. Fluctuation theorems for quantum processes.

    Science.gov (United States)

    Albash, Tameem; Lidar, Daniel A; Marvian, Milad; Zanardi, Paolo

    2013-09-01

    We present fluctuation theorems and moment generating function equalities for generalized thermodynamic observables and quantum dynamics described by completely positive trace preserving maps, with and without feedback control. Our results include the quantum Jarzynski equality and Crooks fluctuation theorem, and clarify the special role played by the thermodynamic work and thermal equilibrium states in previous studies. We show that for a specific class of generalized measurements, which include projective measurements, unitality replaces microreversibility as the condition for the physicality of the reverse process in our fluctuation theorems. We present an experimental application of our theory to the problem of extracting the system-bath coupling magnitude, which we do for a system of pairs of coupled superconducting flux qubits undergoing quantum annealing.

  7. Fluctuation theorems for stochastic dynamics

    Science.gov (United States)

    Harris, R. J.; Schütz, G. M.

    2007-07-01

    Fluctuation theorems make use of time reversal to make predictions about entropy production in many-body systems far from thermal equilibrium. Here we review the wide variety of distinct, but interconnected, relations that have been derived and investigated theoretically and experimentally. Significantly, we demonstrate, in the context of Markovian stochastic dynamics, how these different fluctuation theorems arise from a simple fundamental time-reversal symmetry of a certain class of observables. Appealing to the notion of Gibbs entropy allows for a microscopic definition of entropy production in terms of these observables. We work with the master equation approach, which leads to a mathematically straightforward proof and provides direct insight into the probabilistic meaning of the quantities involved. Finally, we point to some experiments that elucidate the practical significance of fluctuation relations.

  8. Fluctuation theorems for quantum processes

    Science.gov (United States)

    Albash, Tameem; Lidar, Daniel A.; Marvian, Milad; Zanardi, Paolo

    2013-09-01

    We present fluctuation theorems and moment generating function equalities for generalized thermodynamic observables and quantum dynamics described by completely positive trace preserving maps, with and without feedback control. Our results include the quantum Jarzynski equality and Crooks fluctuation theorem, and clarify the special role played by the thermodynamic work and thermal equilibrium states in previous studies. We show that for a specific class of generalized measurements, which include projective measurements, unitality replaces microreversibility as the condition for the physicality of the reverse process in our fluctuation theorems. We present an experimental application of our theory to the problem of extracting the system-bath coupling magnitude, which we do for a system of pairs of coupled superconducting flux qubits undergoing quantum annealing.

  9. Sources of Economic Fluctuations in Central America

    Directory of Open Access Journals (Sweden)

    Wilfredo Toledo

    2014-06-01

    Full Text Available Using panel data from Central America, this paper studies the determining factors of inflation and aggregate output fluctuations by estimating two Structural Vector Autoregressive (SVAR models. Price and output variables are included in one of the models, whereas M2 and the price of oil are additional variables in the other one. Findings of this study suggest that price is determined by the demand, while output seems to be influenced mainly by the supply shocks in that area. It was also evidenced that the price of oil does not have a significant impact on the general price level in that region.

  10. Fluctuations of wavefunctions about their classical average

    CERN Document Server

    Bénet, L; Hernandez-Saldana, H; Izrailev, F M; Leyvraz, F; Seligman, T H

    2003-01-01

    Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics.

  11. Fluctuation Solution Theory Properties from Molecular Simulation

    DEFF Research Database (Denmark)

    Abildskov, Jens; Wedberg, R.; O’Connell, John P.

    2013-01-01

    The thermodynamic properties obtained in the Fluctuation Solution Theory are based on spatial integrals of molecular TCFs between component pairs in the mixture. Molecular simulation, via either MD or MC calculations, can yield these correlation functions for model inter- and intramolecular...... potential functions. However, system-size limitations and statistical noise cause uncertainties in the functions at long range, and thus uncertainties or errors in the integrals. A number of methods such as truncation, distance shifting, long-range modeling, transforms, DCF matching, finite-size scaling...

  12. Behavior of axisymmetric density fluctuations in TCV

    Science.gov (United States)

    Merlo, Gabriele; Jenko, Frank; Brunner, Stephan; Coda, Stefano; Huang, Zhouji; Villard, Laurent; Goerler, Tobias; Navarro, Alejandro B.; Told, Daniel

    2017-10-01

    Axisymmetric density fluctuations, either with a radially coherent or dispersive nature, are routinely observed in the TCV tokamak and experimentally interpreted as Geodesic Acoustic Modes (GAMs). We use local and global GENE simulations to investigate their behavior. With a simplified physical model, neglecting impurities and using heavy electrons, simulations reproduce the observed behavior. Simulations allow to conclude that the modification of the safety factor q alone cannot explain the transition between these two different fluctuation regimes, which thus appear as a consequence of variations of other parameters, including collisionality and finite machine size effects. The behavior of the radially coherent GAM is further investigated with high-realism GENE simulations. With this set-up, local simulations reproduce the experimental transport level at different radii while matching the observed GAM frequency at the location where the mode peaks. Global high-realism runs, aiming at reproducing the radial extent of the fluctuations, will be discussed as well. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under Grant Agreement No 633053.

  13. Chromodynamic Fluctuations in Quark-Gluon Plasma

    OpenAIRE

    Mrowczynski, Stanislaw

    2008-01-01

    Fluctuations of chromodynamic fields in the collisionless quark-gluon plasma are found as a solution of the initial value linearized problem. The plasma initial state is on average colorless, stationary and homogeneous. When the state is stable, the initial fluctuations decay exponentially and in the long-time limit a stationary spectrum of fluctuations is established. For the equilibrium plasma it reproduces the spectrum which is provided by the fluctuation-dissipation relation. Fluctuations...

  14. Climatically driven fluctuations in Southern Ocean ecosystems.

    Science.gov (United States)

    Murphy, Eugene J; Trathan, Philip N; Watkins, Jon L; Reid, Keith; Meredith, Michael P; Forcada, Jaume; Thorpe, Sally E; Johnston, Nadine M; Rothery, Peter

    2007-12-22

    Determining how climate fluctuations affect ocean ecosystems requires an understanding of how biological and physical processes interact across a wide range of scales. Here we examine the role of physical and biological processes in generating fluctuations in the ecosystem around South Georgia in the South Atlantic sector of the Southern Ocean. Anomalies in sea surface temperature (SST) in the South Pacific sector of the Southern Ocean have previously been shown to be generated through atmospheric teleconnections with El Niño Southern Oscillation (ENSO)-related processes. These SST anomalies are propagated via the Antarctic Circumpolar Current into the South Atlantic (on time scales of more than 1 year), where ENSO and Southern Annular Mode-related atmospheric processes have a direct influence on short (less than six months) time scales. We find that across the South Atlantic sector, these changes in SST, and related fluctuations in winter sea ice extent, affect the recruitment and dispersal of Antarctic krill. This oceanographically driven variation in krill population dynamics and abundance in turn affects the breeding success of seabird and marine mammal predators that depend on krill as food. Such propagating anomalies, mediated through physical and trophic interactions, are likely to be an important component of variation in ocean ecosystems and affect responses to longer term change. Population models derived on the basis of these oceanic fluctuations indicate that plausible rates of regional warming of 1oC over the next 100 years could lead to more than a 95% reduction in the biomass and abundance of krill across the Scotia Sea by the end of the century.

  15. Fluctuation sensitivity of a transcriptional signaling cascade

    Science.gov (United States)

    Pilkiewicz, Kevin R.; Mayo, Michael L.

    2016-09-01

    The internal biochemical state of a cell is regulated by a vast transcriptional network that kinetically correlates the concentrations of numerous proteins. Fluctuations in protein concentration that encode crucial information about this changing state must compete with fluctuations caused by the noisy cellular environment in order to successfully transmit information across the network. Oftentimes, one protein must regulate another through a sequence of intermediaries, and conventional wisdom, derived from the data processing inequality of information theory, leads us to expect that longer sequences should lose more information to noise. Using the metric of mutual information to characterize the fluctuation sensitivity of transcriptional signaling cascades, we find, counter to this expectation, that longer chains of regulatory interactions can instead lead to enhanced informational efficiency. We derive an analytic expression for the mutual information from a generalized chemical kinetics model that we reduce to simple, mass-action kinetics by linearizing for small fluctuations about the basal biological steady state, and we find that at long times this expression depends only on a simple ratio of protein production to destruction rates and the length of the cascade. We place bounds on the values of these parameters by requiring that the mutual information be at least one bit—otherwise, any received signal would be indistinguishable from noise—and we find not only that nature has devised a way to circumvent the data processing inequality, but that it must be circumvented to attain this one-bit threshold. We demonstrate how this result places informational and biochemical efficiency at odds with one another by correlating high transcription factor binding affinities with low informational output, and we conclude with an analysis of the validity of our assumptions and propose how they might be tested experimentally.

  16. Priming for performance: valence of emotional primes interact with dissociable prototype learning systems.

    Directory of Open Access Journals (Sweden)

    Marissa A Gorlick

    Full Text Available Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB and one-prototype (AN prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning.

  17. Embodied simulation of emotional valence: Facial muscle responses to abstract and concrete words.

    Science.gov (United States)

    Künecke, Janina; Sommer, Werner; Schacht, Annekathrin; Palazova, Marina

    2015-12-01

    Semantic knowledge is thought to be at least partially grounded in sensory, motor, and affective information, acquired through experiences in our inner and outer world. The reactivation of experience-related information during meaning access is called simulation. In the affective simulation account, it is assumed that the grounding information depends on the concepts' concreteness. Whereas abstract concepts are thought to be mainly represented through affective experiential information, concrete words rely more on sensory-motor experiential information. To test this hypothesis, we measured facial muscle activity as an indicator of affective simulation during visual word recognition. Words varied on the dimensions of concreteness and valence. Behavioral and electromyographic data were analyzed with linear mixed-effects models with maximal random effect structure to optimize generalization over participants and word samples. Contrary to this hypothesis, we found a valence effect in the m. corrugator supercilii only in response to concrete but not to abstract words. Our data show that affective simulation as measured with facial muscle activity occurs in response to concrete rather than to abstract words. More concrete words are supposed to have higher context availability and richer visual imagery, which might promote affective simulation on the expressive level of facial muscle activity. The results are in line with embodied accounts of semantic representation but speak against its predominant role for representing affective information in abstract concepts. © 2015 Society for Psychophysiological Research.

  18. Stress and emotional valence effects on children's versus adolescents' true and false memory.

    Science.gov (United States)

    Quas, Jodi A; Rush, Elizabeth B; Yim, Ilona S; Edelstein, Robin S; Otgaar, Henry; Smeets, Tom

    2016-01-01

    Despite considerable interest in understanding how stress influences memory accuracy and errors, particularly in children, methodological limitations have made it difficult to examine the effects of stress independent of the effects of the emotional valence of to-be-remembered information in developmental populations. In this study, we manipulated stress levels in 7-8- and 12-14-year-olds and then exposed them to negative, neutral, and positive word lists. Shortly afterward, we tested their recognition memory for the words and false memory for non-presented but related words. Adolescents in the high-stress condition were more accurate than those in the low-stress condition, while children's accuracy did not differ across stress conditions. Also, among adolescents, accuracy and errors were higher for the negative than positive words, while in children, word valence was unrelated to accuracy. Finally, increases in children's and adolescents' cortisol responses, especially in the high-stress condition, were related to greater accuracy but not false memories and only for positive emotional words. Findings suggest that stress at encoding, as well as the emotional content of to-be-remembered information, may influence memory in different ways across development, highlighting the need for greater complexity in existing models of true and false memory formation.

  19. Determining binding energies of valence-band electrons in insulators and semiconductors via lanthanide spectroscopy

    Science.gov (United States)

    Dorenbos, Pieter

    2013-01-01

    Models and methods to determine the absolute binding energy of 4f-shell electrons in lanthanide dopants will be combined with data on the energy of electron transfer from the valence band to a lanthanide dopant. This work will show that it provides a powerful tool to determine the absolute binding energy of valence band electrons throughout the entire family of insulator and semiconductor compounds. The tool will be applied to 28 fluoride, oxide, and nitride compounds providing the work function and electron affinity together with the location of the energy levels of all divalent and all trivalent lanthanide dopants with an accuracy that surpasses that of traditional methods like photoelectron spectroscopy. The 28 compounds were selected to demonstrate how work function and electron affinity change with composition and structure, and how electronic structure affects the optical properties of the lanthanide dopants. Data covering more than 1000 different halide (F, Cl, Br, I), chalcogenide (O, S, Se), and nitride compounds are available in the archival literature enabling us to routinely establish work function and electron affinity for this much wider collection of compounds.

  20. 1D valence bond solids in a magnetic field

    Science.gov (United States)

    Iaizzi, Adam; Sandvik, Anders W.

    2015-09-01

    A Valence bond solid (VBS) is a nonmagnetic, long-range ordered state of a quantum spin system where local spin singlets are formed in some regular pattern. We here study the competition between VBS order and a fully polarized ferromagnetic state as function of an external magnetic field in a one-dimensional extended Heisenberg model—the J-Q2 model— using stochastic series expansion (SSE) quantum Monte Carlo simulations with directed loop updates. We discuss the ground state phase diagram.

  1. Influence of intermediate valence states of cerium on thermo-e. m. f. of Ce-Ni intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lutsiv, R.V.; Koterlin, M.D.; Babich, O.I. (L' vovskij Gosudarstvennyj Univ. (Ukrainian SSR))

    1984-06-01

    The temperature dependences of the thermo-e. m. f. coefficient of compounds of the Ce-Ni(CeNi, CeNi/sub 2/, CeNi,L3, Ce/sub 2/Ni/sub 7/ and CeNi/sub 5/) system in the intermediate valence state are investigated, as well as a series of analogous compounds with La. on the basis of estimates of splitting (..delta..) of the Ce/sup 3 +/ 4f-level in the crystal field it is shown that the abovesaid compounds realize condition ..delta.. approximately GITAHsub(f) (GITAsub(f)=hybride width of 4f-level), and thermo-e. m. f. anomalies are especially sensitive to parameters of the Ce valence instability. Possibilities of the existing theoretical models for describing thermo-e. m. f. in such systems are discussed.

  2. Reaction rates when barriers fluctuate

    OpenAIRE

    Reimann, Peter

    1999-01-01

    Reaction rates when barriers fluctuate : a path integral approach / P. Hänggi and P. Reimann. - In: International Conference on Path Integrals from peV to TeV : Proceedings of the ... / eds.: R. Casalbuoni ... - Singapore u.a. : World Scientific, 1999. - S. 407-409

  3. The response of a simple Antarctic ice-flow model to temperature and sea-level fluctuations over the Cenozoic era

    NARCIS (Netherlands)

    van Tuyll, C.I.|info:eu-repo/dai/nl/304831875; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556; Oerlemans, J.|info:eu-repo/dai/nl/06833656X

    2007-01-01

    An ice-flow model is used to simulate the Antarctic ice-sheet volume and deep-sea temperature record during Cenozoic times. We used a vertically integrated axisymmetric ice-sheet model, including bedrock adjustment. In order to overcome strong numerical hysteresis effects during climate change, the

  4. Expertise in video game playing is associated with reduced valence-concordant emotional expressivity.

    Science.gov (United States)

    Weinreich, André; Strobach, Tilo; Schubert, Torsten

    2015-01-01

    In carefully selected groups of video game playing (VGP) experts and nonexperts, we examined valence-concordant emotional expressivity. We measured electromyographic (EMG) activity over the corrugator supercilii muscle while participants viewed pleasant, neutral, and unpleasant pictures. Potential group differences concerning valence-concordant expressivity may arise from differences concerning the participants' emotional reactivity. To control for such differences, we concomitantly measured skin conductance response (SCR) and, in a separate affect misattribution procedure (AMP), valence transfer from the same set of stimuli. Importantly, we found attenuated valence-concordant EMG activity over the corrugator supercilii muscle in VGP experts compared to nonexperts, but no differences were evident concerning SCR or valence transfer in the AMP. The findings suggest that expertise in VGP is particularly associated with reduced valence-concordant emotional expressivity. Copyright © 2014 Society for Psychophysiological Research.

  5. Virtual Distance and Soundstage, and their Impacts on Experienced Emotional Valence

    DEFF Research Database (Denmark)

    Christensen, Justin

    2015-01-01

    Research from animal ethology and affective neuroscience suggest that a listener’s perceived distance from a signal source can alter their experienced emotional valence of the music. Furthermore, appraisal theories of emotion suggest that emotionally valenced responses will diverge according...... to the type of emotion presented. For these exploratory investigations, subjects listen to selected musical excerpts on speakers in combination with a tactile transducer attached to their chair. The listening sessions are recorded on EEG supported by subject feedback responses. My hypothesis is that musical...... stimuli should cause stronger valenced responses in the nearfield than at a distance. Thus, music experienced as being negatively valenced at a distance should be more negatively valenced in nearfield, and music that is experienced as having a positive valence at a distance should be more positively...

  6. Valence band electronic structure of Pd based ternary chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lohani, H. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mishra, P. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Goyal, R.; Awana, V.P.S. [National Physical Laboratory(CSIR), Dr. K. S. Krishnan Road, New Delhi 110012 (India); Sekhar, B.R., E-mail: sekhar@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India)

    2016-12-15

    Highlights: • VB Photoemission study and DFT calculations on Pd based ternary superconductors are presented. • Nb{sub 2}Pd{sub 0.95}S{sub 5} shows a temperature dependent pseudogap. • VB spectral features of ternary superconductors are correlated to their structural geometry. - Abstract: We present a comparative study of the valence band electronic structure of Pd based ternary chalcogenide superconductors Nb{sub 2}Pd{sub 0.95}S{sub 5}, Ta{sub 2}Pd{sub 0.97}S{sub 6} and Ta{sub 2}Pd{sub 0.97}Te{sub 6} using experimental photoemission spectroscopy and density functional based theoretical calculations. We observe a qualitatively similarity between valence band (VB) spectra of Nb{sub 2}Pd{sub 0.95}S{sub 5} and Ta{sub 2}Pd{sub 0.97}S{sub 6}. Further, we find a pseudogap feature in Nb{sub 2}Pd{sub 0.95}S{sub 5} at low temperature, unlike other two compounds. We have correlated the structural geometry with the differences in VB spectra of these compounds. The different atomic packing in these compounds could vary the strength of inter-orbital hybridization among various atoms which leads to difference in their electronic structure as clearly observed in our DOS calculations.

  7. An ecological valence theory of human color preference.

    Science.gov (United States)

    Palmer, Stephen E; Schloss, Karen B

    2010-05-11

    Color preference is an important aspect of visual experience, but little is known about why people in general like some colors more than others. Previous research suggested explanations based on biological adaptations [Hurlbert AC, Ling YL (2007) Curr Biol 17:623-625] and color-emotions [Ou L-C, Luo MR, Woodcock A, Wright A (2004) Color Res Appl 29:381-389]. In this article we articulate an ecological valence theory in which color preferences arise from people's average affective responses to color-associated objects. An empirical test provides strong support for this theory: People like colors strongly associated with objects they like (e.g., blues with clear skies and clean water) and dislike colors strongly associated with objects they dislike (e.g., browns with feces and rotten food). Relative to alternative theories, the ecological valence theory both fits the data better (even with fewer free parameters) and provides a more plausible, comprehensive causal explanation of color preferences.

  8. The effects of colour and valence on news evaluation.

    Science.gov (United States)

    Kaspar, Kai; Grümmer, Melanie; Kießler, Antje; Neuß, Celina; Schröter, Franziska

    2017-12-01

    Research across different fields of psychology has reported effects of colour cues on a variety of cognitive processes. Especially, the colour red has been shown to have striking influences. In the context of media reception, however, colour effects have been widely neglected so far. This study made a first step in this direction by investigating the effects of the colour red (compared with blue and grey) on the way news articles are evaluated. Two types of news were framed by a coloured border while the valence of the news content additionally varied. Based on 369 participants who read and evaluated the news articles online, we observed effects for colour cues and news valence in the absence of an interaction effect, indicating that the colour red induced approach motivation. However, only the contrast between red and grey reached statistical significance, indicating that chromatic and achromatic colours may differ in their perceived visual saliency. Overall, these results provide an important complement to previous studies and have practical implications for media researchers and producers. © 2015 International Union of Psychological Science.

  9. Emotional valence contributes to music-induced analgesia.

    Science.gov (United States)

    Roy, Mathieu; Peretz, Isabelle; Rainville, Pierre

    2008-01-01

    The capacity of music to soothe pain has been used in many traditional forms of medicine. Yet, the mechanisms underlying these effects have not been demonstrated. Here, we examine the possibility that the modulatory effect of music on pain is mediated by the valence (pleasant-unpleasant dimension) of the emotions induced. We report the effects of listening to pleasant and unpleasant music on thermal pain in healthy human volunteers. Eighteen participants evaluated the warmth or pain induced by 40.0, 45.5, 47.0 and 48.5 degrees C thermal stimulations applied to the skin of their forearm while listening to pleasant and unpleasant musical excerpts matched for their high level of arousal (relaxing-stimulating dimension). Compared to a silent control condition, only the pleasant excerpts produced highly significant reductions in both pain intensity and unpleasantness, demonstrating the effect of positive emotions induced by music on pain (Pairwise contrasts with silence: p'semotional valence contributes to music-induced analgesia. These findings call for the integration of music to current methods of pain control.

  10. Visuospatial Asymmetries and Emotional Valence Influence Mental Time Travel.

    Science.gov (United States)

    Thomas, Nicole A; Takarangi, Melanie K T

    2017-11-27

    Spatial information is tightly intertwined with temporal and valence-based information. Namely, "past" is represented on the left, and "future" on the right, along a horizontal mental timeline. Similarly, right is associated with positive, whereas left is negative. We developed a novel task to examine the effects of emotional valence and temporal distance on mental representations of time. We compared positivity biases, where positive events are positioned closer to now, and right hemisphere emotion biases, where negative events are positioned to the left. When the entire life span was used, a positivity bias emerged; positive events were closer to now. When timeline length was reduced, positivity and right hemisphere emotion biases were consistent for past events. In contrast, positive and negative events were equidistant from now in the future condition, suggesting positivity and right hemisphere emotion biases opposed one another, leading events to be positioned at a similar distance. We then reversed the timeline by moving past to the right and future to the left. Positivity biases in the past condition were eliminated, and negative events were placed slightly closer to now in the future condition. We conclude that an underlying left-to-right mental representation of time is necessary for positivity biases to emerge for past events; however, our mental representations of future events are inconsistent with positivity biases. These findings point to an important difference in the way in which we represent the past and the future on our mental timeline. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. An ecological valence theory of human color preference

    Science.gov (United States)

    Palmer, Stephen E.; Schloss, Karen B.

    2010-01-01

    Color preference is an important aspect of visual experience, but little is known about why people in general like some colors more than others. Previous research suggested explanations based on biological adaptations [Hurlbert AC, Ling YL (2007) Curr Biol 17:623–625] and color-emotions [Ou L-C, Luo MR, Woodcock A, Wright A (2004) Color Res Appl 29:381–389]. In this article we articulate an ecological valence theory in which color preferences arise from people’s average affective responses to color-associated objects. An empirical test provides strong support for this theory: People like colors strongly associated with objects they like (e.g., blues with clear skies and clean water) and dislike colors strongly associated with objects they dislike (e.g., browns with feces and rotten food). Relative to alternative theories, the ecological valence theory both fits the data better (even with fewer free parameters) and provides a more plausible, comprehensive causal explanation of color preferences. PMID:20421475

  12. Communication: Nanoscale ion fluctuations in Nafion polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Rumberger, Brant; Bennett, Mackenzie; Zhang, Jingyun; Israeloff, N. E. [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Dura, J. A. [National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899 (United States)

    2014-08-21

    Ion conduction mechanisms and the nanostructure of ion conduction networks remain poorly understood in polymer electrolytes which are used as proton-exchange-membranes (PEM) in fuel cell applications. Here we study nanoscale surface-potential fluctuations produced by Brownian ion dynamics in thin films of low-hydration Nafion™, the prototype PEM. Images and power spectra of the fluctuations are used to derive the local conductivity-relaxation spectrum, in order to compare with bulk behavior and hopping-conductivity models. Conductivity relaxation-times ranged from hours to milliseconds, depending on hydration and temperature, demonstrating that the observed fluctuations are produced by water-facilitated hydrogen-ion hopping within the ion-channel network. Due to the small number of ions probed, non-Gaussian statistics of the fluctuations can be used to constrain ion conduction parameters and mechanisms.

  13. Effect of quantum fluctuation in error-correcting codes.

    Science.gov (United States)

    Otsubo, Yosuke; Inoue, Jun-ichi; Nagata, Kenji; Okada, Masato

    2012-11-01

    We discuss the decoding performance of error-correcting codes based on a model in which quantum fluctuations are introduced by means of a transverse field. The essential issue in this paper is whether quantum fluctuations improve the decoding quality compared with the conventional estimation based on thermal fluctuations, which is called finite-temperature decoding. We found that an estimation incorporating quantum fluctuations approaches the optimal performance of finite-temperature decoding. The results are illustrated by numerically solving saddle-point equations and performing a Monte Carlo simulation. We also evaluated the upper bound of the overlap between the original sequence and the decoded sequence derived from the equations of state for the order parameters, which is a measure of the decoding performance.

  14. Fluctuation of Information Entropy Measures in Cell Image

    Directory of Open Access Journals (Sweden)

    Ishay Wohl

    2017-10-01

    Full Text Available A simple, label-free cytometry technique is introduced. It is based on the analysis of the fluctuation of image Gray Level Information Entropy (GLIE which is shown to reflect intracellular biophysical properties like generalized entropy. In this study, the analytical relations between cellular thermodynamic generalized entropy and diffusivity and GLIE fluctuation measures are explored for the first time. The standard deviation (SD of GLIE is shown by experiments, simulation and theoretical analysis to be indifferent to microscope system “noise”. Then, the ability of GLIE fluctuation measures to reflect basic cellular entropy conditions of early death and malignancy is demonstrated in a cell model of human, healthy-donor lymphocytes, malignant Jurkat cells, as well as dead lymphocytes and Jurkat cells. Utilization of GLIE-based fluctuation measures seems to have the advantage of displaying biophysical characterization of the tested cells, like diffusivity and entropy, in a novel, unique, simple and illustrative way.

  15. Communication: nanoscale ion fluctuations in Nafion polymer electrolyte.

    Science.gov (United States)

    Rumberger, Brant; Bennett, Mackenzie; Zhang, Jingyun; Dura, J A; Israeloff, N E

    2014-08-21

    Ion conduction mechanisms and the nanostructure of ion conduction networks remain poorly understood in polymer electrolytes which are used as proton-exchange-membranes (PEM) in fuel cell applications. Here we study nanoscale surface-potential fluctuations produced by Brownian ion dynamics in thin films of low-hydration Nafion™, the prototype PEM. Images and power spectra of the fluctuations are used to derive the local conductivity-relaxation spectrum, in order to compare with bulk behavior and hopping-conductivity models. Conductivity relaxation-times ranged from hours to milliseconds, depending on hydration and temperature, demonstrating that the observed fluctuations are produced by water-facilitated hydrogen-ion hopping within the ion-channel network. Due to the small number of ions probed, non-Gaussian statistics of the fluctuations can be used to constrain ion conduction parameters and mechanisms.

  16. Escape routes, weak links, and desynchronization in fluctuation-driven networks.

    Science.gov (United States)

    Schäfer, Benjamin; Matthiae, Moritz; Zhang, Xiaozhu; Rohden, Martin; Timme, Marc; Witthaut, Dirk

    2017-06-01

    Shifting our electricity generation from fossil fuel to renewable energy sources introduces large fluctuations to the power system. Here, we demonstrate how increased fluctuations, reduced damping, and reduced intertia may undermine the dynamical robustness of power grid networks. Focusing on fundamental noise models, we derive analytic insights into which factors limit the dynamic robustness and how fluctuations may induce a system escape from an operating state. Moreover, we identify weak links in the grid that make it particularly vulnerable to fluctuations. These results thereby not only contribute to a theoretical understanding of how fluctuations act on distributed network dynamics, they may also help designing future renewable energy systems to be more robust.

  17. Universality and Specificity in Protein Fluctuation Dynamics

    Science.gov (United States)

    Copperman, J.; Dinpajooh, M.; Beyerle, E. R.; Guenza, M. G.

    2017-10-01

    We investigate the universal scaling of protein fluctuation dynamics with a site-specific diffusive model of protein motion, which predicts an initial subdiffusive regime in the configurational relaxation. The long-time dynamics of proteins is controlled by an activated regime. We argue that the hierarchical free energy barriers set the time scales of biological processes and establish an upper limit to the size of single protein domains. We find it compelling that the scaling behavior for the protein dynamics is in close agreement with the Kardar-Parisi-Zhang scaling exponents.

  18. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations

    Science.gov (United States)

    Kwapień, Jarosław; Oświecimka, Paweł; DroŻdŻ, Stanisław

    2015-11-01

    The detrended cross-correlation coefficient ρDCCA has recently been proposed to quantify the strength of cross-correlations on different temporal scales in bivariate, nonstationary time series. It is based on the detrended cross-correlation and detrended fluctuation analyses (DCCA and DFA, respectively) and can be viewed as an analog of the Pearson coefficient in the case of the fluctuation analysis. The coefficient ρDCCA works well in many practical situations but by construction its applicability is limited to detection of whether two signals are generally cross-correlated, without the possibility to obtain information on the amplitude of fluctuations that are responsible for those cross-correlations. In order to introduce some related flexibility, here we propose an extension of ρDCCA that exploits the multifractal versions of DFA and DCCA: multifractal detrended fluctuation analysis and multifractal detrended cross-correlation analysis, respectively. The resulting new coefficient ρq not only is able to quantify the strength of correlations but also allows one to identify the range of detrended fluctuation amplitudes that are correlated in two signals under study. We show how the coefficient ρq works in practical situations by applying it to stochastic time series representing processes with long memory: autoregressive and multiplicative ones. Such processes are often used to model signals recorded from complex systems and complex physical phenomena like turbulence, so we are convinced that this new measure can successfully be applied in time-series analysis. In particular, we present an example of such application to highly complex empirical data from financial markets. The present formulation can straightforwardly be extended to multivariate data in terms of the q -dependent counterpart of the correlation matrices and then to the network representation.

  19. Outer magnetospheric fluctuations and pulsar timing noise

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, K.S.

    1987-10-01

    The Cheng, Ho, and Ruderman (1986) outer-magnetosphere gap model was used to investigate the stability of Crab-type outer magnetosphere gaps for pulsars having the parameter (Omega-square B) similar to that of the Crab pulsar. The Lamb, Pines, and Shaham (1978) fluctuating magnetosphere noise model was applied to the Crab pulsar to examine the type of the equation of state that best describes the structure of the neutron star. The noise model was also applied to other pulsars, and the theoretical results were compared with observational data. The results of the comparison are consistent with the stiff equation of state, as suggested by the vortex creep model of the neutron star interior. The timing-noise observations also contribute to the evidence for the existence of superfluid in the core of the neutron star. 37 references.

  20. On the successful use of a simplified model to simulate the succession of toxic cyanobacteria in a hypereutrophic reservoir with a highly fluctuating water level.

    Science.gov (United States)

    Fadel, Ali; Lemaire, Bruno J; Vinçon-Leite, Brigitte; Atoui, Ali; Slim, Kamal; Tassin, Bruno

    2017-07-18

    Many freshwater bodies worldwide that suffer from harmful algal blooms would benefit for their management from a simple ecological model that requires few field data, e.g. for early warning systems. Beyond a certain degree, adding processes to ecological models can reduce model predictive capabilities. In this work, we assess whether a simple ecological model without nutrients is able to describe the succession of cyanobacterial blooms of different species in a hypereutrophic reservoir and help understand the factors that determine these blooms. In our study site, Karaoun Reservoir, Lebanon, cyanobacteria Aphanizomenon ovalisporum and Microcystis aeruginosa alternatively bloom. A simple configuration of the model DYRESM-CAEDYM was used; both cyanobacteria were simulated, with constant vertical migration velocity for A. ovalisporum, with vertical migration velocity dependent on light for M. aeruginosa and with growth limited by light and temperature and not by nutrients for both species. The model was calibrated on two successive years with contrasted bloom patterns and high variations in water level. It was able to reproduce the measurements; it showed a good performance for the water level (root-mean-square error (RMSE) lower than 1 m, annual variation of 25 m), water temperature profiles (RMSE of 0.22-1.41 °C, range 13-28 °C) and cyanobacteria biomass (RMSE of 1-57 μg Chl a L(-1), range 0-206 μg Chl a L(-1)). The model also helped understand the succession of blooms in both years. The model results suggest that the higher growth rate of M. aeruginosa during favourable temperature and light conditions allowed it to outgrow A. ovalisporum. Our results show that simple model configurations can be sufficient not only for theoretical works when few major processes can be identified but also for operational applications. This approach could be transposed on other hypereutrophic lakes and reservoirs to describe the competition between dominant phytoplankton