WorldWideScience

Sample records for valence band dispersion

  1. Photon energy dependence of graphite valence band photoelectron intensity

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, Masaru, E-mail: m-tkzw@fc.ritsumei.ac.j [Research Organization of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577 (Japan); Namba, Hidetoshi [Department of Physical Sciences, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577 (Japan); Matsui, Fumihiko [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192 (Japan); Daimon, Hiroshi [Department of Physical Sciences, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577 (Japan); Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192 (Japan)

    2010-08-15

    We have measured two-dimensional photoelectron spectra of graphite with various photon energies. We investigated the photon energy dependence of the valence band dispersions of graphite at vicinity of Fermi level which appear at Brillouin zone (BZ) corners. We found that the photoelectron intensities of the Fermi surfaces were, however, very different even when the photon energies are selected to see the same symmetry planes of BZ. This intensity difference of the Fermi surfaces is well reproduced by considering the 'photoemission structure factor' for three-dimensional nature of graphite.

  2. Relaxation and cross section effects in valence band photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    McFeely, F.R.

    1976-09-01

    Various problems relating to the interpretation of valence band x-ray photoemission (XPS) spectra of solids are discussed. The experiments and calculations reported herein deal with the following questions: (1) To what extent do many-body effects manifest themselves in an XPS valence band spectrum, and thus invalidate a direct comparison between the photoemission energy distribution, I(E), and the density of states, N(E), calculated on the basis of ground-state one-electron theory. (2) The effect of the binding-energy-dependent photoemission cross section on I(E) at XPS energies. (3) In favorable cases indicated by (1) and (2) we examine the effect of the interaction of the crystal field with the apparent spin-orbit splittings of core levels observed in XPS spectra. (4) The use of tight binding band structure calculations to parameterize the electronic band structure from XPS and other data is described. (5) The use of high energy angle-resolved photoemission on oriented single crystals to gain orbital symmetry information is discussed. (6) The evolution of the shape of the photoemission energy distribution (of polycrystalline Cu) as a function of photon energy from 50 less than or equal h ..omega.. less than or equal 175 is discussed.

  3. Application of Koopmans' theorem for density functional theory to full valence-band photoemission spectroscopy modeling.

    Science.gov (United States)

    Li, Tsung-Lung; Lu, Wen-Cai

    2015-10-01

    In this work, Koopmans' theorem for Kohn-Sham density functional theory (KS-DFT) is applied to the photoemission spectra (PES) modeling over the entire valence-band. To examine the validity of this application, a PES modeling scheme is developed to facilitate a full valence-band comparison of theoretical PES spectra with experiments. The PES model incorporates the variations of electron ionization cross-sections over atomic orbitals and a linear dispersion of spectral broadening widths. KS-DFT simulations of pristine rubrene (5,6,11,12-tetraphenyltetracene) and potassium-rubrene complex are performed, and the simulation results are used as the input to the PES models. Two conclusions are reached. First, decompositions of the theoretical total spectra show that the dissociated electron of the potassium mainly remains on the backbone and has little effect on the electronic structures of phenyl side groups. This and other electronic-structure results deduced from the spectral decompositions have been qualitatively obtained with the anionic approximation to potassium-rubrene complexes. The qualitative validity of the anionic approximation is thus verified. Second, comparison of the theoretical PES with the experiments shows that the full-scale simulations combined with the PES modeling methods greatly enhance the agreement on spectral shapes over the anionic approximation. This agreement of the theoretical PES spectra with the experiments over the full valence-band can be regarded, to some extent, as a collective validation of the application of Koopmans' theorem for KS-DFT to valence-band PES, at least, for this hydrocarbon and its alkali-adsorbed complex. PMID:25974677

  4. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Kozyukhin, S., E-mail: sergkoz@igic.ras.ru [Russian Academy of Science, Institute of General and Inorganic Chemistry (Russian Federation); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Kovalskiy, A. [Lehigh University, Department of Materials Science and Engineering (United States); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Jain, H. [Lehigh University, Department of Materials Science and Engineering (United States)

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  5. Electronic and thermoelectric properties of van der Waals materials with ring-shaped valence bands

    International Nuclear Information System (INIS)

    The valence band of a variety of few-layer, two-dimensional materials consist of a ring of states in the Brillouin zone. The energy-momentum relation has the form of a “Mexican hat” or a Rashba dispersion. The two-dimensional density of states is singular at or near the band edge, and the band-edge density of modes turns on nearly abruptly as a step function. The large band-edge density of modes enhances the Seebeck coefficient, the power factor, and the thermoelectric figure of merit ZT. Electronic and thermoelectric properties are determined from ab initio calculations for few-layer III–VI materials GaS, GaSe, InS, InSe, for Bi2Se3, for monolayer Bi, and for bilayer graphene as a function of vertical field. The effect of interlayer coupling on these properties in few-layer III–VI materials and Bi2Se3 is described. Analytical models provide insight into the layer dependent trends that are relatively consistent for all of these few-layer materials. Vertically biased bilayer graphene could serve as an experimental test-bed for measuring these effects

  6. Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimental–Theoretical Study

    Science.gov (United States)

    2016-01-01

    We report valence and conduction band densities of states measured via ultraviolet and inverse photoemission spectroscopies on three metal halide perovskites, specifically methylammonium lead iodide and bromide and cesium lead bromide (MAPbI3, MAPbBr3, CsPbBr3), grown at two different institutions on different substrates. These are compared with theoretical densities of states (DOS) calculated via density functional theory. The qualitative agreement achieved between experiment and theory leads to the identification of valence and conduction band spectral features, and allows a precise determination of the position of the band edges, ionization energy and electron affinity of the materials. The comparison reveals an unusually low DOS at the valence band maximum (VBM) of these compounds, which confirms and generalizes previous predictions of strong band dispersion and low DOS at the MAPbI3 VBM. This low DOS calls for special attention when using electron spectroscopy to determine the frontier electronic states of lead halide perovskites. PMID:27364125

  7. Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimental-Theoretical Study.

    Science.gov (United States)

    Endres, James; Egger, David A; Kulbak, Michael; Kerner, Ross A; Zhao, Lianfeng; Silver, Scott H; Hodes, Gary; Rand, Barry P; Cahen, David; Kronik, Leeor; Kahn, Antoine

    2016-07-21

    We report valence and conduction band densities of states measured via ultraviolet and inverse photoemission spectroscopies on three metal halide perovskites, specifically methylammonium lead iodide and bromide and cesium lead bromide (MAPbI3, MAPbBr3, CsPbBr3), grown at two different institutions on different substrates. These are compared with theoretical densities of states (DOS) calculated via density functional theory. The qualitative agreement achieved between experiment and theory leads to the identification of valence and conduction band spectral features, and allows a precise determination of the position of the band edges, ionization energy and electron affinity of the materials. The comparison reveals an unusually low DOS at the valence band maximum (VBM) of these compounds, which confirms and generalizes previous predictions of strong band dispersion and low DOS at the MAPbI3 VBM. This low DOS calls for special attention when using electron spectroscopy to determine the frontier electronic states of lead halide perovskites. PMID:27364125

  8. Valence band structure of strained Si/(111)Si1-xGex

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The strained Si techique has been widely adopted in the high-speed and high-performance devices and circuits. Based on the valence band E-k relations of strained Si/(111)Si1-xGex, the valence band and hole effective mass along the [111] and [-110] directions were obtained in this work. In comparison with the relaxed Si, the valence band edge degeneracy was partially lifted, and the significant change was observed band structures along the [111] and [-110] directions, as well as in its corresponding hole effective masses with the increasing Ge fraction. The results obtained can provide valuable references to the investigation concerning the Si-based strained devices enhancement and the conduction channel design related to stress and orientation.

  9. Highly dispersive photonic band-gap prism

    International Nuclear Information System (INIS)

    We propose the concept of a photonic band-gap (PBG) prism based on two-dimensional PBG structures and realize it in the millimeter-wave spectral regime. We recognize the highly nonlinear dispersion of PBG materials near Brillouin zone edges and utilize the dispersion to achieve strong prism action. Such a PBG prism is very compact if operated in the optical regime, ∼20μm in size for λ∼700nm, and can serve as a dispersive element for building ultracompact miniature spectrometers. copyright 1996 Optical Society of America

  10. Highly dispersive photonic band-gap prism.

    Science.gov (United States)

    Lin, S Y; Hietala, V M; Wang, L; Jones, E D

    1996-11-01

    We propose the concept of a photonic band-gap (PBG) prism based on two-dimensional PBG structures and realize it in the millimeter-wave spectral regime. We recognize the highly nonlinear dispersion of PBG materials near Brillouin zone edges and utilize the dispersion to achieve strong prism action. Such a PBG prism is very compact if operated in the optical regime, ~20 mm in size for lambda ~ 700 nm, and can serve as a dispersive element for building ultracompact miniature spectrometers. PMID:19881796

  11. Valence band hybridization in N-rich GaN1-xAsx alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.; Walukiewicz, W.; Yu, K.M.; Denlinger, J.D.; Shan, W.; Ager III, J.W.; Kimura, A.; Tang, H.F.; Kuech, T.F.

    2004-05-04

    We have used photo-modulated transmission and optical absorption spectroscopies to measure the composition dependence of interband optical transitions in N-rich GaN{sub 1-x}As{sub x} alloys with x up to 0.06. The direct bandgap gradually decreases as x increases. In the dilute x limit, the observed band gap approaches 2.8 eV; this limiting value is attributed to a transition between the As localized level, which has been previously observed in As-doped GaN at 0.6 eV above the valence band maximum in As-doped GaN, and the conduction band minimum. The structure of the valence band of GaN{sub 1-x}As{sub x} is explained by the hybridization of the localized As states with the extended valence band states of GaN matrix. The hybridization is directly confirmed by soft x-ray emission experiments. To describe the electronic structure of the GaN{sub 1-x}As{sub x} alloys in the entire composition range a linear interpolation is used to combine the effects of valence band hybridization in N-rich alloys with conduction band anticrossing in As-rich alloys.

  12. Observation of valence band electron emission from n-type silicon field emitter arrays

    Science.gov (United States)

    Ding, Meng; Kim, Han; Akinwande, Akintunde I.

    1999-08-01

    Electron emission from the valence band of n-type Si field emitter arrays is reported. High electrostatic field at the surface of Si was achieved by reducing the radius of the emitter tip. Using oxidation sharpening, 1 μm aperture polycrystalline Si gate, n-type Si field emitter arrays with small tip radius (˜10 nm) were fabricated. Three distinct emission regions were observed: conduction band emission at low gate voltages, saturated current emission from the conduction band at intermediate voltages, and valence band plus conduction band emission at high gate voltages. Emission currents at low and high voltages obey the Fowler-Nordheim theory. The ratio of the slopes of the corresponding Fowler-Nordheim fits for these two regions is 1.495 which is in close agreement with the theoretical value of 1.445.

  13. Rotational bands terminating at maximal spin in the valence space

    Energy Technology Data Exchange (ETDEWEB)

    Ragnarsson, I.; Afanasjev, A.V. [Lund Institute of Technology (Sweden)

    1996-12-31

    For nuclei with mass A {le} 120, the spin available in {open_quotes}normal deformation configurations{close_quotes} is experimentally accessible with present detector systems. Of special interest are the nuclei which show collective features at low or medium-high spin and where the corresponding rotational bands with increasing spin can be followed in a continuous way to or close to a non-collective terminating state. Some specific features in this context are discussed for nuclei in the A = 80 region and for {sup 117,118}Xe.

  14. Valence Band Structure of InAs1-xBix and InSb1-xBix Alloy Semiconductors Calculated Using Valence Band Anticrossing Model

    Directory of Open Access Journals (Sweden)

    D. P. Samajdar

    2014-01-01

    Full Text Available The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs1-xBix and InSb1-xBix alloy systems. It is found that both the heavy/light hole, and spin-orbit split E+ levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E− energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data.

  15. Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Elisa M.; Kroupa, Daniel M.; Zhang, Jianbing; Schulz, Philip; Marshall, Ashley R.; Kahn, Antoine; Lany, Stephan; Luther, Joseph M.; Beard, Matthew C.; Perkins, Craig L.; van de Lagemaat, Jao

    2016-03-22

    We use a high signal-to-noise X-ray photoelectron spectrum of bulk PbS, GW calculations, and a model assuming parabolic bands to unravel the various X-ray and ultraviolet photoelectron spectral features of bulk PbS as well as determine how to best analyze the valence band region of PbS quantum dot (QD) films. X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) are commonly used to probe the difference between the Fermi level and valence band maximum (VBM) for crystalline and thin-film semiconductors. However, we find that when the standard XPS/UPS analysis is used for PbS, the results are often unrealistic due to the low density of states at the VBM. Instead, a parabolic band model is used to determine the VBM for the PbS QD films, which is based on the bulk PbS experimental spectrum and bulk GW calculations. Our analysis highlights the breakdown of the Brillioun zone representation of the band diagram for large band gap, highly quantum confined PbS QDs. We have also determined that in 1,2-ethanedithiol-treated PbS QD films the Fermi level position is dependent on the QD size; specifically, the smallest band gap QD films have the Fermi level near the conduction band minimum and the Fermi level moves away from the conduction band for larger band gap PbS QD films. This change in the Fermi level within the QD band gap could be due to changes in the Pb:S ratio. In addition, we use inverse photoelectron spectroscopy to measure the conduction band region, which has similar challenges in the analysis of PbS QD films due to a low density of states near the conduction band minimum.

  16. Modified Valence Force Field Approach for Phonon Dispersion: from Zinc-Blende Bulk to Nanowires

    OpenAIRE

    Paul, Abhijeet; Luisier, Mathieu; Klimeck, Gerhard

    2010-01-01

    The correct estimation of the thermal properties of ultra-scaled CMOS and thermoelectric semiconductor devices demands for accurate phonon modeling in such structures. This work provides a detailed description of the modified valence force field (MVFF) method to obtain the phonon dispersion in zinc-blende semiconductors. The model is extended from bulk to nanowires after incorpo- rating proper boundary conditions. The computational de- mands by the phonon calculation increase rapidly as the w...

  17. Valence band offsets at Cu(In,Ga)Se{sub 2}/Zn(O,S) interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Tobias; Klein, Andreas [Surface Science Division, Institute of Materials Science, Technische Universitaet Darmstadt, Petersenstrasse 32, 64287, Darmstadt (Germany); Botros, Miriam [Surface Science Division, Institute of Materials Science, Technische Universitaet Darmstadt, Petersenstrasse 32, 64287, Darmstadt (Germany); Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Industriestrasse 6, 70565, Stuttgart (Germany); Witte, Wolfram; Hariskos, Dimitrios; Menner, Richard; Powalla, Michael [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Industriestrasse 6, 70565, Stuttgart (Germany)

    2014-09-15

    The energy band alignment at interfaces between Cu-chalcopyrites and Zn(O,S) buffer layers, which are important for thin-film solar cells, are considered. Valence band offsets derived from X-ray photoelectron spectroscopy for Cu(In,Ga)Se{sub 2} absorber layers with CdS and Zn(O,S) compounds are compared to theoretical predictions. It is shown that the valence band offsets at Cu(In,Ga)Se{sub 2}/Zn(O,S) interfaces approximately follow the theoretical prediction and vary significantly from sample to sample. The integral sulfide content of chemical bath deposited Zn(O,S) is reproducibly found to be 50-70%, fortuitously resulting in a conduction band offset suitable for solar cell applications with Cu(In,Ga)Se{sub 2} absorber materials. The observed variation in offset can neither be explained by variation of the Cu content in the Cu(In,Ga)Se{sub 2} near the interface nor by local variation of the chemical composition. Fermi level pinning induced by high defect concentrations is a possible origin of the variation of band offset. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Convergence of valence bands for high thermoelectric performance for p-type InN

    Science.gov (United States)

    Li, Hai-Zhu; Li, Ruo-Ping; Liu, Jun-Hui; Huang, Ming-Ju

    2015-12-01

    Band engineering to converge the bands to achieve high valley degeneracy is one of effective approaches for designing ideal thermoelectric materials. Convergence of many valleys in the valence band may lead to a high Seebeck coefficient, and induce promising thermoelectric performance of p-type InN. In the current work, we have systematically investigated the electronic structure and thermoelectric performance of wurtzite InN by using the density functional theory combined with semiclassical Boltzmann transport theory. Form the results, it can be found that intrinsic InN has a large Seebeck coefficient (254 μV/K) and the largest value of ZeT is 0.77. The transport properties of p-type InN are better than that of n-type one at the optimum carrier concentration, which mainly due to the large Seebeck coefficient for p-type InN, although the electrical conductivity of n-type InN is larger than that of p-type one. We found that the larger Seebeck coefficient for p-type InN may originate from the large valley degeneracy in the valence band. Moreover, the low minimum lattice thermal conductivity for InN is one key factor to become a good thermoelectric material. Therefore, p-type InN could be a potential material for further applications in the thermoelectric area.

  19. Band width and multiple-angle valence-state mapping of diamond

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, I.; Terminello, L.J.; Sutherland, D.G.J. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The band width may be considered the single most important parameter characterizing the electronic structure of a solid. The ratio of band width and Coulomb repulsion determines how correlated or delocalized an electron system is. Some of the most interesting solids straddle the boundary between localized and delocalized, e.g. the high-temperature superconductors. The bulk of the band calculations available today is based on local density functional (DF) theory. Even though the Kohn-Sham eigenvalues from that theory do not represent the outcome of a band-mapping experiment, they are remarkably similar to the bands mapped via photoemission. Strictly speaking, one should use an excited state calculation that takes the solid`s many-body screening response to the hole created in photoemission into account. Diamond is a useful prototype semiconductor because of its low atomic number and large band width, which has made it a long-time favorite for testing band theory. Yet, the two experimental values of the band width of diamond have error bars of {+-}1 eV and differ by 3.2 eV. To obtain an accurate valence band width for diamond, the authors use a band-mapping method that collects momentum distributions instead of the usual energy distributions. This method has undergone extensive experimental and theoretical tests in determining the band width of lithium fluoride. An efficient, imaging photoelectron spectrometer is coupled with a state-of-the-art undulator beam line at the Advanced Light Source to allow collection of a large number of data sets. Since it takes only a few seconds to take a picture of the photoelectrons emitted into a 84{degrees} cone, the authors can use photon energies as high as 350 eV where the cross section for photoemission from the valence band is already quite low, but the emitted photoelectrons behave free-electron-like. This make its much easier to locate the origin of the inter-band transitions in momentum space.

  20. Pressure variation of the valence band width in Ge: A self-consistent GW study

    DEFF Research Database (Denmark)

    Modak, Paritosh; Svane, Axel; Christensen, Niels Egede;

    2009-01-01

    Analyzing x-ray emission spectra XES of germanium under pressure Struzhkin et al. [Phys. Rev. Lett. 96, 137402 (2006)] found that the valence band width of diamond Ge does not vary with pressure. This contradicts the usual experience and also what is predicted by density-functional calculations....... In the present work we report results of quasiparticle self-consistent GW  (QSGW) band calculations for diamond- as well as β-tin-type Ge under pressure. For both phases we find that the band width increases with pressure. For β-tin Ge this agrees with experiment and density-functional theory, but for diamond Ge...... neither the local density approximation nor the QSGW calculations agree with the conclusions drawn from the XES data....

  1. Valence band mixing versus higher harmonic generation in electric–dipole spin resonance

    International Nuclear Information System (INIS)

    We study resonant transitions between hole states in a cylindrical quantum dot driven by an electric field. We find that the transitions obey selection rules for parities of the components of the Luttinger spinors of the initial and final states involved in the resonant transitions. We show, however, that additional resonances may appear in the spectrum as a result of breaking the transition rules when the initial or final states are close in energy to an another state. We study dots of varied radius-to-length ratios. For the quantum dots of disk-like geometry, the confinement leads to separation of the valence bands, and by proper tuning of the external magnetic field, the transitions between heavy- and light-hole bands can be observed. The increased length of the dot leads to mixing of the valence bands and at the same time results in an appearance of fractional resonances due to strong perturbation of the hole wavefunction by the oscillating field. (paper)

  2. Additional evidence concerning the valence-band offset in HgTe/CdTe

    Science.gov (United States)

    Young, P. M.; Ehrenreich, H.

    1991-05-01

    The consistency of large values of the valence-band offset, Λ, in HgTe/CdTe superlattices with magneto-optical experiments is examined in light of data on a 90-Å HgTe/40-Å CdTe superlattice. The data are shown to be consistent with values Λ=400+/-40 meV rather than the much smaller cited values. This analysis, when considered with photoemission experiments, leaves intact the conclusion that HgTe/CdTe superlattices are best explained by a large offset.

  3. Determination of a natural valence-band offset - The case of HgTe and CdTe

    Science.gov (United States)

    Shih, C. K.; Spicer, W. E.

    1987-01-01

    A method to determine a natural valence-band offset (NVBO), i.e., the change in the valence-band maximum energy which is intrinsic to the bulk band structures of semiconductors is proposed. The HgTe-CdTe system is used as an example in which it is found that the valence-band maximum of HgTe lies 0.35 + or - 0.06 eV above that of CdTe. The NVBO of 0.35 eV is in good agreement with the X-ray photoemission spectroscopy measurement of the heterojunction offset. The procedure to determine the NVBO between semiconductors, and its implication on the heterojunction band lineup and the electronic structures of semiconductor alloys, are discussed.

  4. Valence band localized states in double quantum wells from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Arcesio Castaneda; Gutierrez, Rafael M. [Universidad Antonio Narino, Bogota (Colombia)

    2011-12-15

    The electrostatic potentials and electronic structure of an AlAs/GaAs double quantum well (DQW) heterostructure are determined through ab initio computations. The study of the potentials along the growth direction establishes a clear relation between the microscopic structure and the relevant macroscopic properties of the heterostructure, namely, the DQW dimensions and the band offsets. At nanometric scale, the one electron effective potential energy is a DQW and the valence band edge electronic states are confined along the growth direction. Such states coincide qualitatively with those analytically obtained through the so-called envelope function/effective mass approximation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Partial cross sections and density of states effects in the valence band photoemission from solid nitrogen

    International Nuclear Information System (INIS)

    Photoelectron energy distribution curves from solid nitrogen have been measured for excitation energies ranging from threshold (14.2 eV) to 40 eV using Synchrotron Radiation. The partial cross sections for the emission from the 3sigmasub(g), 1πsub(u) and 2sigmasub(u) derived valence bands show pronounced maxima 3.4 eV, 2.9 eV and 3.0 eV above the vacuum level respectively which we interpret as being due to a high density of conduction band final states. These states are closely related to the πsub(g)* negative-ion shape resonance for molecular nitrogen. (orig.)

  6. Characterization of MBE-grown InAlN/GaN heterostructure valence band offsets with varying In composition

    Science.gov (United States)

    Jiao, Wenyuan; Kong, Wei; Li, Jincheng; Collar, Kristen; Kim, Tong-Ho; Losurdo, Maria; Brown, April S.

    2016-03-01

    Angle-resolved X-ray photoelectron spectroscopy (XPS) is used in this work to experimentally determine the valence band offsets of molecular beam epitaxy (MBE)-grown InAlN/GaN heterostructures with varying indium composition. We find that the internal electric field resulting from polarization must be taken into account when analyzing the XPS data. Valence band offsets of 0.12 eV for In0.18Al0.82N, 0.15 eV for In0.17Al0.83N, and 0.23 eV for In0.098Al0.902N with GaN are obtained. The results show that a compositional-depended bowing parameter is needed in order to estimate the valence band energies of InAlN as a function of composition in relation to those of the binary endpoints, AlN and InN.

  7. Valence Band Splitting on Multilayer MoS2: Mixing of Spin-Orbit Coupling and Interlayer Coupling.

    Science.gov (United States)

    Fan, Xiaofeng; Singh, David J; Zheng, Weitao

    2016-06-16

    Understanding the origin of valence band splitting is important because it governs the unique spin and valley physics in few-layer MoS2. We explore the effects of spin-orbit coupling and interlayer coupling on few-layer MoS2 using first-principles methods. We find spin-orbit coupling has a major contribution to the valence band splitting at K in multilayer MoS2. In double-layer MoS2, the interlayer coupling leads to the widening of the gap between the already spin-orbit split states. This is also the case for the bands of the K-point in bulk MoS2. In triple-layer MoS2, the strength of interlayer coupling of the spin-up channel becomes different from that of spin-down at K. This combined with spin-orbit coupling results in the band splitting in two main valence bands at K. With the increase of pressure, this phenomenon becomes more obvious with a decrease of main energy gap in the splitting valence bands at the K valley. PMID:27225320

  8. The valence band structure of AgxRh1–x alloy nanoparticles

    International Nuclear Information System (INIS)

    The valence band (VB) structures of face-centered-cubic Ag-Rh alloy nanoparticles (NPs), which are known to have excellent hydrogen-storage properties, were investigated using bulk-sensitive hard x-ray photoelectron spectroscopy. The observed VB spectra profiles of the Ag-Rh alloy NPs do not resemble simple linear combinations of the VB spectra of Ag and Rh NPs. The observed VB hybridization was qualitatively reproduced via a first-principles calculation. The electronic structure of the Ag0.5Rh0.5 alloy NPs near the Fermi edge was strikingly similar to that of Pd NPs, whose superior hydrogen-storage properties are well known.

  9. Spin-orbit splitting of valence and conduction bands in HgTe quantum wells near the Dirac point

    Science.gov (United States)

    Minkov, G. M.; Germanenko, A. V.; Rut, O. E.; Sherstobitov, A. A.; Nestoklon, M. O.; Dvoretski, S. A.; Mikhailov, N. N.

    2016-04-01

    Energy spectra both of the conduction and valence bands of the HgTe quantum wells with a width close to the Dirac point were studied experimentally. Simultaneous analysis of the Shubnikov-de Haas oscillations and the Hall effect over a wide range of electron and hole densities yields surprising results: the top of the valence band is strongly split by spin-orbit interaction while the splitting of the conduction band is absent, within experimental accuracy. This holds true for the structures with normal and inverted band ordering. The results obtained are inconsistent with the results of kP calculations, in which the smooth electric field across the quantum well is only reckoned in. It is shown that taking into account the asymmetry of the quantum-well interfaces within a tight-binding method gives reasonable agreement with the experimental data.

  10. Valence band offset and Schottky barrier at amorphous boron and boron carbide interfaces with silicon and copper

    International Nuclear Information System (INIS)

    In order to understand the fundamental charge transport in a-B:H and a-BX:H (X = C, N, P) compound heterostructure devices, X-ray photoelectron spectroscopy has been utilized to determine the valence band offset and Schottky barrier present at amorphous boron compound interfaces formed with (1 0 0) Si and polished poly-crystalline Cu substrates. For interfaces formed by plasma enhanced chemical vapor deposition of a-B4–5C:H on (1 0 0) Si, relatively small valence band offsets of 0.2 ± 0.2 eV were determined. For a-B:H/Cu interfaces, a more significant Schottky barrier of 0.8 ± 0.16 eV was measured. These results are in contrast to those observed for a-BN:H and BP where more significant band discontinuities (>1–2 eV) were observed for interfaces with Si and Cu.

  11. A low-temperature study of manganese-induced ferromagnetism and valence band convergence in tin telluride

    Science.gov (United States)

    Chi, Hang; Tan, Gangjian; Kanatzidis, Mercouri G.; Li, Qiang; Uher, Ctirad

    2016-05-01

    SnTe is renowned for its promise in advancing energy-related technologies based on thermoelectricity and for its topological crystalline insulator character. Here, we demonstrate that each Mn atom introduces ˜4 μB (Bohr magneton) of magnetic moment to Sn1-xMnxTe. The Curie temperature TC reaches ˜14 K for x = 0.12, as observed in the field dependent hysteresis of magnetization and the anomalous Hall effect. In accordance with a modified two-band electronic Kane model, the light L-valence-band and the heavy Σ-valence-band gradually converge in energy with increasing Mn concentration, leading to a decreasing ordinary Hall coefficient RH and a favorably enhanced Seebeck coefficient S at the same time. With the thermal conductivity κ lowered chiefly via point defects associated with the incorporation of Mn, the strategy of Mn doping also bodes well for efficient thermoelectric applications at elevated temperatures.

  12. X-ray photoemission spectroscopy determination of the InN/yttria stabilized cubic-zirconia valence band offset

    International Nuclear Information System (INIS)

    The valence band offset of wurtzite InN(0001)/yttria stabilized cubic-zirconia (YSZ)(111) heterojunctions is determined by x-ray photoemission spectroscopy to be 1.19±0.17 eV giving a conduction band offset of 3.06±0.20 eV. Consequently, a type-I heterojunction forms between InN and YSZ in the straddling arrangement. The low lattice mismatch and high band offsets suggest potential for use of YSZ as a gate dielectric in high-frequency InN-based electronic devices

  13. The valence band electronic structure of the Cu(111) (√3X√3)R30deg-Si interface

    International Nuclear Information System (INIS)

    Full text: The structure and bonding of the copper-silicon interface is of considerable interest from a number of aspects. Firstly as a catalyst in the commercial synthesis of silane polymers, secondly as an anti-corrosion treatment, and thirdly, the formation of a well ordered and reactive silicon layer, which can be oxidised is relevant in the creation of ultra-thin silicon oxide-metal interfaces for electronic devices. Silicon is capable of forming a number of compounds with copper, the most widely studied of which is Cu3Si. Calculations have shown that when silicon impurity atoms are incorporated into a copper solid, there is an interaction between copper 3d levels and the 3s and sp levels of silicon. The silicon 2p orbitals rehybridise with the copper 3d band to form bonding and antibonding states separated by -4 eV. The resulting compounds have metallic, rather than semiconducting nature, there is charge transfer from copper to silicon and there is an increase in electron density into the silicon valence bands, making silicon more reactive. The splitting of the density of states near the Fermi edge has been measured as 4-5 eV in amorphous copper-silicon alloys, using Si Kβ fluorescence spectroscopy and has also been inferred from the 4 eV splitting of the LV V auger lines in Cu-Si compounds and in copper deposited on Si(100) and Si(111) surfaces. In this study we have used high resolution valence band photoemission spectroscopy to investigate the nature of the silicon valence bands in a well ordered silicon-copper interface. By comparing the valence band spectra of the clean surface and those from the silicon interface, we are able to identify three silicon-derived features which are in agreement with other published data. We suggest that these levels are due to emission from the 3s and 3p levels of Si

  14. Valence band gaps and plasma energies for galena, sphalerite, and chalcopyrite natural minerals using differential optical reflectance spectroscopy

    Science.gov (United States)

    Todoran, R.; Todoran, D.; Szakacs, Zs.

    2015-12-01

    The paper presents the determinations of the valence band gaps and plasma energies of the galena, sphalerite and chalcopyrite natural minerals. The work was carried out using differential optical reflectance spectroscopy of the clean mineral surfaces. The determination of the optical properties such as refractive index, real part of the complex dielectric constant and the location of certain van Hove singularities, was carried out using the Kramers-Kronig formalism.

  15. Characterization of MBE-grown InAlN/GaN heterostructure valence band offsets with varying In composition

    Directory of Open Access Journals (Sweden)

    Wenyuan Jiao

    2016-03-01

    Full Text Available Angle-resolved X-ray photoelectron spectroscopy (XPS is used in this work to experimentally determine the valence band offsets of molecular beam epitaxy (MBE-grown InAlN/GaN heterostructures with varying indium composition. We find that the internal electric field resulting from polarization must be taken into account when analyzing the XPS data. Valence band offsets of 0.12 eV for In0.18Al0.82N, 0.15 eV for In0.17Al0.83N, and 0.23 eV for In0.098Al0.902N with GaN are obtained. The results show that a compositional-depended bowing parameter is needed in order to estimate the valence band energies of InAlN as a function of composition in relation to those of the binary endpoints, AlN and InN.

  16. Intra-valence-band mixing in strain-compensated SiGe quantum wells

    Science.gov (United States)

    Tsujino, S.; Borak, A.; Falub, C.; Fromherz, T.; Diehl, L.; Sigg, H.; Grützmacher, D.

    2005-10-01

    We explore the midinfrared absorption of strain-compensated p-Si0.2Ge0.8/Si quantum wells for various well thicknesses and temperatures. Owing to the large band offset due to the large bi-axial strain contrast between the wells and barriers, the intersubband transitions energies from the ground state to the excited heavy hole (HH), light hole (LH), and split-off (SO) hole states up to ˜0.5eV are resolved. When HH2 is within ˜30meV of LH1 or SO1 a partial transfer of the HH1-HH2 oscillator strength to the HH1-LH1 or HH1-SO1 transitions is observed, which is otherwise forbidden for light polarized perpendicular to the plane of the wells. This is a clear sign of mixing between the HH and LH or SO states. A large temperature induced broadening of HH1-HH2 transition peak is observed for narrow wells indicating nonparabolic dispersion of the HH2 states due to the mixing with the LH/SO continuum. We found that the observations are in good agreement with the six-band k•p theory. A possible role of many-body effects in the temperature-induced negative peak shift is discussed.

  17. Precise tuning of the Curie temperature of (Ga,Mn)As-based magnetic semiconductors by hole compensation: Support for valence-band ferromagnetism

    OpenAIRE

    Zhou, Shengqiang; Li, Lin; Yuan, Ye; Rushforth, A.W.; Chen, Lin; Wang, Yutian; Zhao, Jianhua; Edmonds, K. W.; Campion, R. P.; Gallagher, B.L.; Timm, C.; Helm, M.

    2016-01-01

    For the prototype diluted ferromagnetic semiconductor (Ga,Mn)As, there is a fundamental concern about the electronic states near the Fermi level, i.e., whether the Fermi level resides in a well-separated impurity band derived from Mn doping (impurity-band model) or in the valence band that is already merged with the Mn-derived impurity band (valence-band model). We investigate this question by carefully shifting the Fermi level by means of carrier compensation. We use helium-ion implantation,...

  18. Experimental valence-band study of Ti(NiCu) alloys with different compositions and crystal structures

    Science.gov (United States)

    Senkovskiy, B. V.; Usachev, D. Yu.; Fedorov, A. V.; Shelyakov, A. V.; Adamchuk, V. K.

    2012-08-01

    The density of valence-band electronic states of Ti(NiCu) alloys with different crystal structures and elemental compositions has been studied by X-ray photoelectron spectroscopy. It has been established that the change in the crystal state initiated by a martensitic transformation or a transition from the amorphous state to the crystal state does not affect the valence-band electronic state density distribution of the Ti50Ni50 and Ti50Ni25Cu25 alloys. It has been shown that a change in the elemental composition leads to a noticeable redistribution of the electronic density in alloys of the Ti50Ni50 - x Cu x system ( x = 0, 10, 15, 25, 30, 38, 50 at. %). As the copper concentration in the Ti(NiCu) alloys increases, the contribution of the Ni d states in the vicinity of the Fermi level decreases, with the d band of nickel shifting toward higher binding energies, and that of copper, toward lower binding energies.

  19. Modification of valence-band symmetry and Auger threshold energy in biaxially compressed InAs1-xSbx

    International Nuclear Information System (INIS)

    Strained-layer superlattices (SLS's) with biaxially compressed InAs1-xSbx were characterized using magnetophotoluminescence and compared with unstrained InAs1-xSbx alloys. Holes in the SLS exhibited a decrease in effective mass, approaching that of the electrons. In the two-dimensional limit, a large increase in the Auger threshold energy accompanies this strain-induced change in SLS valence-band symmetry. Correspondingly, the activation energy for nonradiative recombination in the SLS's displayed a marked increase compared with that of the unstrained alloys. Strained-layer superlattices and alloy activation energies are in agreement with estimated Auger threshold energies

  20. Irradiation-induced degradation of PTB7 investigated by valence band and S 2p photoelectron spectroscopy

    Science.gov (United States)

    Darlatt, Erik; Muhsin, Burhan; Roesch, Roland; Lupulescu, Cosmin; Roth, Friedrich; Kolbe, Michael; Gottwald, Alexander; Hoppe, Harald; Richter, Mathias

    2016-08-01

    Monochromatic radiation with known absolute radiant power from an undulator at the electron storage ring Metrology Light Source (MLS) was used to irradiate PTB7 (a thieno[3, 4-b]thiophene-alt-benzodithiophene polymer) thin films at wavelengths (photon energies) of 185 nm (6.70 eV), 220 nm (5.64 eV), 300 nm (4.13 eV), 320 nm (3.88 eV), 356 nm (3.48 eV) and 675 nm (1.84 eV) under ultra-high vacuum conditions for the investigation of radiation-induced degradation effects. The characterization of the thin films is focused at ultraviolet photoelectron spectroscopy (UPS) of valence bands and is complemented by S 2p x-ray photoelectron spectroscopy (S 2p XPS) before and after the irradiation procedure. The radiant exposure was determined for each irradiation by means of photodiodes traceably calibrated to the international system of units SI. The valence band spectra show the strongest changes for the shortest wavelengths and no degradation effect at 356 nm and 675 nm even with the highest radiant exposure applied. In the spectral range where the Sun appears bright on the Earth’s surface, no degradation effects are observed.

  1. Impact of [110]/(001) uniaxial stress on valence band structure and hole effective mass of silicon*

    Institute of Scientific and Technical Information of China (English)

    Ma Jianli; Zhang Heming; Song Jianjun; Wang Guanyu; Wang Xiaoyan; Xu Xiaobo

    2011-01-01

    The valence band structure and hole effective mass of silicon under a uniaxial stress in (001) surface along the [110] direction were detailedly investigated in the framework of the k·p theory. The results demonstrated that the splitting energy between the top band and the second band for uniaxial compressive stress is bigger than that of the tensile one at the same stress magnitude, and of all common used crystallographic direction, such as [110],[001], [110] and [100], the effective mass for the top band along [110] crystallographic direction is lower under uniaxial compressive stress compared with other stresses and crystallographic directions configurations. In view of suppressing the scattering and reducing the effective mass, the [110] crystallographic direction is most favorable to be used as transport direction of the charge carrier to enhancement mobility when a uniaxial compressive stress along [110] direction is applied. The obtained results can provide a theory reference for the design and the selective of optimum stress and crystallorgraphic direction configuration of uniaxial strained silicon devices.

  2. Determination of conduction and valence band electronic structure of anatase and rutile TiO2

    Indian Academy of Sciences (India)

    Jakub Szlachetko; Katarzyna Michalow-Mauke; Maarten Nachtegaal; Jacinto Sá

    2014-03-01

    Electronic structures of rutile and anatase polymorph of TiO2 were determined by resonant inelastic X-ray scattering measurements and FEFF9.0 calculations. Difference between crystalline structures led to shifts in the rutile Ti -band to lower energy with respect to anatase, i.e., decrease in band gap. Anatase possesses localized states located in the band gap where electrons can be trapped, which are almost absent in the rutile structure. This could well explain the reported longer lifetimes in anatase. It was revealed that HR-XAS is insufficient to study in-depth unoccupied states of investigated materials because it overlooks the shallow traps.

  3. LDA+DMFT calculations of X-ray absorption and x-ray circular dichroism spectra: Role of valence-band correlations

    Energy Technology Data Exchange (ETDEWEB)

    Sipr, Ondrej; Simunek, Antonin [Institute of Physics AS CR, Cukrovarnicka 10, Prague (Czech Republic); Minar, Jan; Ebert, Hubert [Universitaet Muenchen (Germany)

    2010-07-01

    L{sub 2,3}-edge XAS and XMCD spectra of 3d elements are calculated via a self-consistent LDA+DMFT method (including thus valence-band correlations). It is found that the asymmetry of the calculated XAS white lines increases upon inclusion of the correlations for Fe and Co but not for Ni. The change in the height of the L{sub 3} and L{sub 2} peaks in the XMCD spectra is in a good agreement with the change of the orbital magnetic moment caused by adding the valence-band correlations. As a whole, adding valence-band correlations improves the agreement between the theory and experiment but visible differences still remain. Therefore, a core hole is additionally accounted for via the final state approximation and the impact of such a procedure is assessed.

  4. Determination of the valence-band offset of CdS/CIS solar cell devices by target factor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Niles, D.W.; Contreras, M.; Ramanathan, K.; Noufi, R. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    X-ray photoemission spectroscopy (XPS) is used to determine and compare the valence-band offsets ({Delta}E{sub v}) for CdS grown by chemical bath deposition on single-crystal and thin-film CuInSe{sub 2} (CIS). The thin-film CIS device was suitable for photovoltaic energy production. By sputtering through the CdS/CIS interface and reducing the depth profile with target factor analysis, the magnitude of {Delta}E{sub v} was determined to be {Delta}E{sub v} = 1.06 {+-} 0.15 eV for both the single-crystal and thin-film interfaces. This determination of {Delta}E{sub v} is about 0.25 eV larger than many previously reported estimations CdS grown by physical vapor deposition on CIS and helps explain the record performance of CdS/CIS photovoltaic devices.

  5. Fano effect in the angle-integrated valence band photoemission of the noble metals Cu, Ag, and Au

    International Nuclear Information System (INIS)

    Results of a combined experimental and theoretical investigation on the Fano-effect in the angle-integrated valence band photoemission of the noble metals are presented. In line with the fact that the Fano-effect is caused by the spin-orbit-coupling, the observed spin polarization of the photocurrent was found to be the more pronounced the higher the atomic number of the element investigated. The ratio of the normalized spin difference curves, however, agreed only for Cu and Ag with the ratio of the corresponding spin-orbit coupling strength parameters. The deviation from this expected behavior in the case of Au could be explained by the properties of individual d-p- and d-f-contributions to the total spin difference curves, that were found to be quite different for Au compared to Cu and Ag

  6. 16O + 16O + valence neutrons in molecular orbitals structures of positive- and negative-parity superdeformed bands in 34S

    International Nuclear Information System (INIS)

    The structures of superdeformed (SD) states in 34S are investigated using the antisymmetrized molecular dynamics and generator coordinate method (GCM). The GCM basis wave functions are calculated via energy variation with a constraint on the quadrupole deformation parameter β. By applying the GCM after parity and angular momentum projections, the coexistence of two positive- and one negative-parity SD bands are predicted, and low-lying states and other deformed bands are obtained. The SD bands have structures of 16O + 16O + two valence neutrons in molecular orbitals around the two 16O cores in a cluster picture. The configurations of the two valence neutrons are δ2 and π2 for the positive-parity SD bands and π1δ1 for the negative-parity SD band

  7. AgI alloying in SnTe boosts the thermoelectric performance via simultaneous valence band convergence and carrier concentration optimization

    Science.gov (United States)

    Banik, Ananya; Biswas, Kanishka

    2016-10-01

    SnTe, a Pb-free analogue of PbTe, was earlier assumed to be a poor thermoelectric material due to excess p-type carrier concentration and large energy separation between light and heavy hole valence bands. Here, we report the enhancement of the thermoelectric performance of p-type SnTe by Ag and I co-doping. AgI (1-6 mol%) alloying in SnTe modulates its electronic structure by increasing the band gap of SnTe, which results in decrease in the energy separation between its light and heavy hole valence bands, thereby giving rise to valence band convergence. Additionally, iodine doping in the Te sublattice of SnTe decreases the excess p-type carrier concentration. Due to significant decrease in hole concentration and reduction of the energy separation between light and heavy hole valence bands, significant enhancement in Seebeck coefficient was achieved at the temperature range of 600-900 K for Sn1-xAgxTe1-xIx samples. A maximum thermoelectric figure of merit, zT, of ~1.05 was achieved at 860 K in high quality crystalline ingot of p-type Sn0.95Ag0.05Te0.95I0.05.

  8. Precise tuning of the Curie temperature of (Ga,Mn)As-based magnetic semiconductors by hole compensation: Support for valence-band ferromagnetism

    Science.gov (United States)

    Zhou, Shengqiang; Li, Lin; Yuan, Ye; Rushforth, A. W.; Chen, Lin; Wang, Yutian; Böttger, R.; Heller, R.; Zhao, Jianhua; Edmonds, K. W.; Campion, R. P.; Gallagher, B. L.; Timm, C.; Helm, M.

    2016-08-01

    For the prototype diluted ferromagnetic semiconductor (Ga,Mn)As, there is a fundamental concern about the electronic states near the Fermi level, i.e., whether the Fermi level resides in a well-separated impurity band derived from Mn doping (impurity-band model) or in the valence band that is already merged with the Mn-derived impurity band (valence-band model). We investigate this question by carefully shifting the Fermi level by means of carrier compensation. We use helium-ion implantation, a standard industry technology, to precisely compensate the hole doping of GaAs-based diluted ferromagnetic semiconductors while keeping the Mn concentration constant. We monitor the change of Curie temperature (TC) and conductivity. For a broad range of samples including (Ga,Mn)As and (Ga,Mn)(As,P) with various Mn and P concentrations, we observe a smooth decrease of TC with carrier compensation over a wide temperature range while the conduction is changed from metallic to insulating. The existence of TC below 10 K is also confirmed in heavily compensated samples. Our experimental results are naturally explained within the valence-band picture.

  9. Ionization equilibrium at the transition from valence-band to acceptor-band migration of holes in boron-doped diamond

    Science.gov (United States)

    Poklonski, N. A.; Vyrko, S. A.; Poklonskaya, O. N.; Kovalev, A. I.; Zabrodskii, A. G.

    2016-06-01

    A quasi-classical model of ionization equilibrium in the p-type diamond between hydrogen-like acceptors (boron atoms which substitute carbon atoms in the crystal lattice) and holes in the valence band (v-band) is proposed. The model is applicable on the insulator side of the insulator-metal concentration phase transition (Mott transition) in p-Dia:B crystals. The densities of the spatial distributions of impurity atoms (acceptors and donors) and of holes in the crystal are considered to be Poissonian, and the fluctuations of their electrostatic potential energy are considered to be Gaussian. The model accounts for the decrease in thermal ionization energy of boron atoms with increasing concentration, as well as for electrostatic fluctuations due to the Coulomb interaction limited to two nearest point charges (impurity ions and holes). The mobility edge of holes in the v-band is assumed to be equal to the sum of the threshold energy for diffusion percolation and the exchange energy of the holes. On the basis of the virial theorem, the temperature Tj is determined, in the vicinity of which the dc band-like conductivity of holes in the v-band is approximately equal to the hopping conductivity of holes via the boron atoms. For compensation ratio (hydrogen-like donor to acceptor concentration ratio) K ≈ 0.15 and temperature Tj, the concentration of "free" holes in the v-band and their jumping (turbulent) drift mobility are calculated. Dependence of the differential energy of thermal ionization of boron atoms (at the temperature 3Tj/2) as a function of their concentration N is calculated. The estimates of the extrapolated into the temperature region close to Tj hopping drift mobility of holes hopping from the boron atoms in the charge states (0) to the boron atoms in the charge states (-1) are given. Calculations based on the model show good agreement with electrical conductivity and Hall effect measurements for p-type diamond with boron atom concentrations in the

  10. Valence Band Dependent Charge Transport in Bulk Molecular Electronic Devices Incorporating Highly Conjugated Multi-[(Porphinato)Metal] Oligomers.

    Science.gov (United States)

    Bruce, Robert C; Wang, Ruobing; Rawson, Jeff; Therien, Michael J; You, Wei

    2016-02-24

    Molecular electronics offers the potential to control device functions through the fundamental electronic properties of individual molecules, but realization of such possibilities is typically frustrated when such specialized molecules are integrated into a larger area device. Here we utilize highly conjugated (porphinato)metal-based oligomers (PM(n) structures) as molecular wire components of nanotransfer printed (nTP) molecular junctions; electrical characterization of these "bulk" nTP devices highlights device resistances that depend on PM(n) wire length. Device resistance measurements, determined as a function of PM(n) molecular length, were utilized to evaluate the magnitude of a phenomenological β corresponding to the resistance decay parameter across the barrier; these data show that the magnitude of this β value is modulated via porphyrin macrocycle central metal atom substitution [β(PZn(n); 0.065 Å(-1)) < β(PCu(n); 0.132 Å(-1)) < β(PNi(n); 0.176 Å(-1))]. Cyclic voltammetric data, and ultraviolet photoelectron spectroscopic studies carried out at gold surfaces, demonstrate that these nTP device resistances track with the valence band energy levels of the PM(n) wire, which were modulated via porphyrin macrocycle central metal atom substitution. This study demonstrates the ability to fabricate "bulk" and scalable electronic devices in which function derives from the electronic properties of discrete single molecules, and underscores how a critical device function--wire resistance--may be straightforwardly engineered by PM(n) molecular composition. PMID:26829704

  11. RESONANT ZENER TUNNELING OF ELECTRONS ACROSS THE BAND-GAP BETWEEN BOUND STATES IN THE VALENCE- AND CONDUCTION-BAND QUANTUM WELLS IN A MULTIPLE QUANTUM-WELL STRUCTURE

    OpenAIRE

    Allam, J.; Beltram, F.; Capasso, F; Cho, A.

    1987-01-01

    We report the observation of resonant tunneling effects at high applied fields in a multiple quantum-well P-I-N diode. The Al0.48In0.52As/Ga0.47In0.53As structure shows features in the dark current due to Zener tunneling of electrons from the lowest sub-band in a valence-band quantum well to the first and second sub-bands of an adjacent conduction-band well.

  12. Influence of leaching on surface composition, microstructure, and valence band of single grain icosahedral Al-Cu-Fe quasicrystal

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, M.; McGrath, R.; Sharma, H. R. [Surface Science Research Centre and The Department of Physics, The University of Liverpool, Liverpool L69 3BX (United Kingdom); Yadav, T. P. [Hydrogen Energy Centre, Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Fournée, V.; Ledieu, J. [Institut Jean Lamour (UMR7198 CNRS-Université de Lorraine), Parc de Saurupt, 54011 Nancy Cedex (France)

    2015-03-07

    The use of quasicrystals as precursors to catalysts for the steam reforming of methanol is potentially one of the most important applications of these new materials. To develop application as a technology requires a detailed understanding of the microscopic behavior of the catalyst. Here, we report the effect of leaching treatments on the surface microstructure, chemical composition, and valence band of the icosahedral (i-) Al-Cu-Fe quasicrystal in an attempt to prepare a model catalyst. The high symmetry fivefold surface of a single grain i-Al-Cu-Fe quasicrystal was leached with NaOH solution for varying times, and the resulting surface was characterized by x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The leaching treatments preferentially remove Al producing a capping layer consisting of Fe and Cu oxides. The subsurface layer contains elemental Fe and Cu in addition to the oxides. The quasicrystalline bulk structure beneath remains unchanged. The subsurface gradually becomes Fe{sub 3}O{sub 4} rich with increasing leaching time. The surface after leaching exhibits micron sized dodecahedral cavities due to preferential leaching along the fivefold axis. Nanoparticles of the transition metals and their oxides are precipitated on the surface after leaching. The size of the nanoparticles is estimated by high resolution transmission microscopy to be 5-20 nm, which is in agreement with the AFM results. Selected area electron diffraction (SAED) confirms the crystalline nature of the nanoparticles. SAED further reveals the formation of an interface between the high atomic density lattice planes of nanoparticles and the quasicrystal. These results provide an important insight into the preparation of model catalysts of nanoparticles for steam reforming of methanol.

  13. Tailoring the Valence Band Offset of Al2O3 on Epitaxial GaAs(1-y)Sb(y) with Tunable Antimony Composition.

    Science.gov (United States)

    Liu, Jheng-Sin; Clavel, Michael; Hudait, Mantu K

    2015-12-30

    Mixed-anion, GaAs1-ySby metamorphic materials with tunable antimony (Sb) compositions extending from 0 to 100%, grown by solid source molecular beam epitaxy (MBE), were used to investigate the evolution of interfacial chemistry under different passivation conditions. X-ray photoelectron spectroscopy (XPS) was used to determine the change in chemical state progression as a function of surface preclean and passivation, as well as the valence band offsets, conduction band offsets, energy band parameters, and bandgap of atomic layer deposited Al2O3 on GaAs1-ySby for the first time, which is further corroborated by X-ray analysis and cross-sectional transmission electron microscopy. Detailed XPS analysis revealed that the near midpoint composition, GaAs0.45Sb0.55, passivation scheme exhibits a GaAs-like surface, and that precleaning by HCl and (NH4)2S passivation are mandatory to remove native oxides from the surface of GaAsSb. The valence band offsets, ΔEv, were determined from the difference in the core level to the valence band maximum binding energy of GaAs1-ySby. A valence band offset of >2 eV for all Sb compositions was found, indicating the potential of utilizing Al2O3 on GaAs1-ySby (0 ≤ y ≤ 1) for p-type metal-oxide-semiconductor (MOS) applications. Moreover, Al2O3 showed conduction band offset of ∼2 eV on GaAs1-ySby (0 ≤ y ≤ 1), suggesting Al2O3 dielectric can also be used for n-type MOS applications. The surface passivation of GaAs0.45Sb0.55 materials and the detailed band alignment analysis of Al2O3 high-κ dielectrics on tunable Sb composition, GaAs1-ySby materials, provides a pathway to utilize GaAsSb materials in future microelectronic and optoelectronic applications. PMID:26642121

  14. Anomalous dispersion and band gap reduction in UO2+x and its possible coupling to the coherent polaronic quantum state

    Science.gov (United States)

    Conradson, Steven D.; Andersson, David A.; Bagus, Paul S.; Boland, Kevin S.; Bradley, Joseph A.; Byler, Darrin D.; Clark, David L.; Conradson, Dylan R.; Espinosa-Faller, Francisco J.; Lezama Pacheco, Juan S.; Martucci, Mary B.; Nordlund, Dennis; Seidler, Gerald T.; Valdez, James A.

    2016-05-01

    Hypervalent UO2, UO2(+x) formed by both addition of excess O and photoexcitation, exhibits a number of unusual or often unique properties that point to it hosting a polaronic Bose-Einstein(-Mott) condensate. A more thorough analysis of the O X-ray absorption spectra of UO2, U4O9, and U3O7 shows that the anomalous increase in the width of the spectral features assigned to predominantly U 5f and 6d final states that points to increased dispersion of these bands occurs on the low energy side corresponding to the upper edge of the gap bordered by the conduction or upper Hubbard band. The closing of the gap by 1.5 eV is more than twice as much as predicted by calculations, consistent with the dynamical polaron found by structural measurements. In addition to fostering the excitation that is the proposed mechanism for the coherence, the likely mirroring of this effect on the occupied, valence side of the gap below the Fermi level points to increased complexity of the electronic structure that could be associated with the Fermi topology of BEC-BCS crossover and two band superconductivity.

  15. Photonic Band Structure of Dispersive Metamaterials Formulated as a Hermitian Eigenvalue Problem

    KAUST Repository

    Raman, Aaswath

    2010-02-26

    We formulate the photonic band structure calculation of any lossless dispersive photonic crystal and optical metamaterial as a Hermitian eigenvalue problem. We further show that the eigenmodes of such lossless systems provide an orthonormal basis, which can be used to rigorously describe the behavior of lossy dispersive systems in general. © 2010 The American Physical Society.

  16. Interaction of Cr3+ with valence and conduction bands in the long persistent phosphor ZnGa2O4:Cr3+, studied by ENDOR spectroscopy

    Science.gov (United States)

    Binet, Laurent; Sharma, Suchinder K.; Gourier, Didier

    2016-09-01

    Cr3+-doped zinc gallate ZnGa2O4 is a red-near infrared (IR) long persistent phosphor that can be excited by orange-red light, in the transparency window of living tissues. With this property, persistent luminescence nanoparticles were recently used for in vivo optical imaging of tumors in mice. In order to understand the origin of the excitability of persistent luminescence by visible light in this material, a Q-band ENDOR investigation of 71/69Ga and 53Cr nuclei was performed in ZnGa2O4:Cr3+ to get information on the interaction of Cr3+ with valence and conduction bands. The positive electron spin density at Ga nuclei revealed a dominant interaction of the 4A2 ground state of Cr3+ with the valence band, and a weaker interaction with the conduction band. The latter may occur only in the excited 2E and 4T2 states of Cr3+. It is proposed that when these two interactions are present, pairs of electrons and holes can be generated from excited Cr3+ in distorted sites undergoing local electric field produced by neighboring defects with opposite charges.

  17. Polarization dependent hard X-ray photoemission experiments for solids: Efficiency and limits for unraveling the orbital character of the valence band

    Energy Technology Data Exchange (ETDEWEB)

    Weinen, J., E-mail: Jonas.Weinen@cpfs.mpg.de [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Koethe, T.C. [II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln (Germany); Chang, C.F.; Agrestini, S.; Kasinathan, D. [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Liao, Y.F. [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science-Park, Hsinchu 30077, Taiwan (China); Fujiwara, H.; Schüßler-Langeheine, C.; Strigari, F.; Haupricht, T. [II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln (Germany); Panaccione, G. [TASC Laboratory, IOM-CNR, Area Science Park, S.S.14, Km 163.5, I-34149 Trieste (Italy); Offi, F. [CNISM and Dipartimento di Scienze, Università Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Monaco, G.; Huotari, S. [European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); Tsuei, K.-D. [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science-Park, Hsinchu 30077, Taiwan (China); Tjeng, L.H. [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln (Germany)

    2015-01-15

    Highlights: • Efficiency and limits of polarization dependent HAXPES for solid state systems. • The polarization dependence is less than expected from atomic cross-sections. • Still high contrast (∼20–25) for s orbitals. • Quantitative determination of contributions to the valence band. - Abstract: We have investigated the efficiency and limits of polarization dependent hard X-ray photoelectron spectroscopy (HAXPES) in order to establish how well this method can be used to unravel quantitatively the contributions of the orbitals forming the valence band of solids. By rotating the energy analyzer rather than the polarization vector of the light using a phase retarder, we obtained the advantage that the full polarization of the light is available for the investigation. Using NiO, ZnO, and Cu{sub 2}O as examples for solid state materials, we established that the polarization dependence is much larger than in photoemission experiments utilizing ultra-violet or soft X-ray light. Yet we also have discovered that the polarization dependence is less than complete on the basis of atomic calculations, strongly suggesting that the trajectories of the outgoing electrons are affected by appreciable side-scattering processes even at these high kinetic energies. We have found in our experiment that these can be effectively described as a directional spread of ±18° of the photoelectrons. This knowledge allows us to identify, for example, reliably the Ni 3d spectral weight of the NiO valence band and at the same time to demonstrate the importance of the Ni 4s for the chemical stability of the compound.

  18. A multi-band spoof surface plasmon polariton coupling metasurface based on dispersion engineering

    Science.gov (United States)

    Dong, Guoxiang; Shi, Hongyu; Li, Wei; He, Yuchen; Zhang, Anxue; Xu, Zhuo; Wei, Xiaoyong; Xia, Song

    2016-08-01

    We propose a metasurface to achieve multi-band helicity dependent directional spoof surface plasmon polaritons (SPPs) coupling for circular polarized light in the microwave range. Our work shows that the coupling frequencies of spoof SPPs on the gradient metasurface are related to the dispersion relations of the metasurface, which indicate the desired coupling frequency can be manipulated by dispersion engineering. The proposed metasurface has counter-directional phase gradients for different helicity incidents and possesses multiple different dispersion relations by carefully designing the geometric parameters of each unit, which leads to the multi-band helicity-controlled directional spoof SPPs coupling. Both the simulation and experiment show that the multi-band helicity-controlled directional spoof SPPs coupling is achieved with a high efficiency.

  19. Non-Fermi-liquid scattering rates and anomalous band dispersion in ferropnictides

    Science.gov (United States)

    Fink, J.; Charnukha, A.; Rienks, E. D. L.; Liu, Z. H.; Thirupathaiah, S.; Avigo, I.; Roth, F.; Jeevan, H. S.; Gegenwart, P.; Roslova, M.; Morozov, I.; Wurmehl, S.; Bovensiepen, U.; Borisenko, S.; Vojta, M.; Büchner, B.

    2015-11-01

    Angle-resolved photoemission spectroscopy is used to study the band dispersion and the quasiparticle scattering rates in two ferropnictide systems. We find the scattering rate for any given band to depend linearly on energy but to be independent of the control parameter. We demonstrate that the linear energy dependence gives rise to a weakly dispersing band with a strong mass enhancement when the band maximum crosses the chemical potential. The resulting small effective Fermi energy favors a BCS [J. Bardeen et al., Phys. Rev. 108, 1175 (1957), 10.1103/PhysRev.108.1175] -Bose-Einstein [S. N. Bose, Z. Phys. 26, 178 (1924), 10.1007/BF01327326] crossover state in the superconducting phase.

  20. Neutral-Type One-Dimensional Mixed-Valence Halogen-Bridged Platinum Chain Complexes with Large Charge-Transfer Band Gaps.

    Science.gov (United States)

    Otake, Ken-ichi; Otsubo, Kazuya; Sugimoto, Kunihisa; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2016-03-01

    One-dimensional (1D) electronic systems have attracted significant attention for a long time because of their various physical properties. Among 1D electronic systems, 1D halogen-bridged mixed-valence transition-metal complexes (the so-called MX chains) have been thoroughly studied owing to designable structures and electronic states. Here, we report the syntheses, structures, and electronic properties of three kinds of novel neutral MX-chain complexes. The crystal structures consist of 1D chains of Pt-X repeating units with (1R,2R)-(-)-diaminocychlohexane and CN(-) in-plane ligands. Because of the absence of a counteranion, the neutral MX chains have short interchain distances, so that strong interchain electronic interaction is expected. Resonance Raman spectra and diffuse-reflectance UV-vis spectra indicate that their electronic states are mixed-valence states (charge-density-wave state: Pt(2+)···X-Pt(4+)-X···Pt(2+)···X-Pt(4+)-X···). In addition, the relationship between the intervalence charge-transfer (IVCT) band gap and the degree of distortion of the 1D chain shows that the neutral MX chains have a larger IVCT band gap than that of cationic MX-chain complexes. These results provide new insight into the physical and electronic properties of 1D chain compounds. PMID:26901774

  1. The observation of valence band change on resistive switching of epitaxial Pr0.7Ca0.3MnO3 film using removable liquid electrode

    Science.gov (United States)

    Lee, Hong-Sub; Park, Hyung-Ho

    2015-12-01

    The resistive switching (RS) phenomenon in transition metal oxides (TMOs) has received a great deal of attention for non-volatile memory applications. Various RS mechanisms have been suggested as to explain the observed RS characteristics. Many reports suggest that changes of interface and the role of oxygen vacancies originate in RS phenomena; therefore, in this study, we use a liquid drop of mercury as the top electrode (TE), epitaxial Pr0.7Ca0.3MnO3 (PCMO) (110) film of the perovskite manganite family for RS material, and an Nb-doped (0.7 at. %) SrTiO3 (100) single crystal as the substrate to observe changes in the interface between the TE and TMOs. The use of removable liquid electrode Hg drop as TE not only enables observation of the RS characteristic as a bipolar RS curve (counterclockwise) but also facilitates analysis of the valence band of the PCMO surface after resistive switching via photoelectron spectroscopy. The observed I-V behaviors of the low and high resistance states (HRS) are explained with an electrochemical migration model in PCMO film where accumulated oxygen vacancies at the interface between the Hg TE and PCMO (110) surface induce the HRS. The interpreted RS mechanism is directly confirmed via valence band spectrum analysis.

  2. Spin orbit splitting in the valence bands of ZrS{sub x}Se{sub 2−x}: Angle resolved photoemission and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Moustafa, Mohamed, E-mail: moustafa@physik.hu-berlin.de [Institut für Physik, Humboldt Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Faculty of Engineering, Pharos University in Alexandria, Canal El Mahmoudia Str., Alexandria (Egypt); Ghafari, Aliakbar; Paulheim, Alexander; Janowitz, Christoph; Manzke, Recardo [Institut für Physik, Humboldt Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany)

    2013-08-15

    Highlights: ► We performed high resolution ARPES on 1T–ZrS{sub x}Se{sub 2−x}. ► A characteristic splitting of the chalcogen p-derived VB along high symmetry directions was observed. ► The splitting size at the A point of the BZ is found to increase from 0.06 to 0.31 eV from ZrS{sub 2} towards ZrSe{sub 2}. ► Electronic structure calculations based on the DFT were performed using the model of TB–MBJ. ► The calculations show that the splitting is due to SO coupling of the valence bands. -- Abstract: Angle-resolved photoelectron spectroscopy using synchrotron radiation has been performed on 1T–ZrS{sub x}Se{sub 2−x}, where x varies from 0 to 2, in order to study the influence of the spin-orbit interaction in the valence bands. The crystals were grown by chemical vapour transport technique using Iodine as transport agent. A characteristic splitting of the chalcogen p-derived valence bands along high symmetry directions has been observed experimentally. The size of the splitting increases with the increase of the atomic number of the chalcogenide, e.g. at the A point of the Brillouin zone from 0.06 eV to 0.31 eV with an almost linear dependence with x, as progressing from ZrS{sub 2} towards ZrSe{sub 2}, respectively. Electronic structure calculations based on the density functional theory have been performed using the model of Tran–Blaha [1] and the modified version of the exchange potential proposed by Becke and Johnson [2] (TB–MBJ) both with and without spin-orbit (SO) coupling. The calculations show that the splitting is mainly due to spin-orbit coupling and the degeneracy of the valance bands is lifted.

  3. Band dispersion of MgB sub 2 , graphite and diamond from resonant inelastic scattering

    CERN Document Server

    Sokolov, A V; Leitch, S; Moewes, A; Kortus, J; Finkelstein, L D; Skorikov, N A; Xiao, C; Hirose, A

    2003-01-01

    The quantitative band mapping for MgB sub 2 , graphite and diamond are realized using resonant inelastic x-ray scattering (RIXS) measurements. RIXS shows distinct dispersive features when the excitation energy is tuned near B 1s and C 1s thresholds, which are assigned to the calculated energy bands using k sup->-momentum conservation. The agreement between experiment and theory suggests that electron-electron interactions are not important for MgB sub 2 , which behaves like a conventional metal and is well described by band theory.

  4. Pressure effects on the intervalence-transfer band of salts of mixed-valence 1',1'''-disubstituted biferrocenium cations

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, U.; Lowery, M.D.; Ley, W.W.; Drickamer, H.G.; Hendrickson, D.N.

    1988-04-13

    The pressure dependence of the intervalence-transfer (IT) electronic absorption band has been determined for the mixed-valence biferrocenium and 1',1'''-diethylbiferrocenium cations intercalated into a clay and for the following eight microcrystalline compounds: biferrocenium triiodide (1); biferrocenium hexafluorophosphate (2); 1',1'''-diiodobiferrocenium triiodide (3); 1',1'''-diiodobiferrocenium dibromoiodate (4); 1',1'''-dibromobiferrocenium triiodide (5); 1',1'''-dichlorobiferrocenium triiodide hemiiodine (6); 1',1'''-diethylbiferrocenium triiodide (7); 1',1'''-di-n-butylbiferrocenium triiodide (8). Basically three different types of pressure dependencies of the energy of the IT band are seen. Compounds 3-5, which have a solid-state packing arrangement consisting of alternating stacks of cations and anions, exhibit one type of behavior. For these three compounds the IT band shifts blue initially with pressure, and above approx. 80 kbar there is the onset of a rather abrupt reversal where the IT band shifts red with increasing pressure.

  5. HOMO band dispersion of crystalline rubrene: Effects of self-energy corrections within the GW approximation

    Science.gov (United States)

    Yanagisawa, Susumu; Morikawa, Yoshitada; Schindlmayr, Arno

    2013-09-01

    We investigate the band dispersion and relevant electronic properties of rubrene single crystals within the GW approximation. Due to the self-energy correction, the dispersion of the highest occupied molecular orbital (HOMO) band increases by 0.10 eV compared to the dispersion of the Kohn-Sham eigenvalues within the generalized gradient approximation, and the effective hole mass consequently decreases. The resulting value of 0.90 times the electron rest mass along the Γ-Y direction in the Brillouin zone is closer to experimental measurements than that obtained from density-functional theory. The enhanced bandwidth is explained in terms of the intermolecular hybridization of the HOMO(Y) wave function along the stacking direction of the molecules. Overall, our results support the bandlike interpretation of charge-carrier transport in rubrene.

  6. On the combined use of GW approximation and cumulant expansion in the calculations of quasiparticle spectra: The paradigm of Si valence bands

    Science.gov (United States)

    Gumhalter, Branko; Kovač, Vjekoslav; Caruso, Fabio; Lambert, Henry; Giustino, Feliciano

    2016-07-01

    Since the earliest implementations of the various GW approximations and cumulant expansion in the calculations of quasiparticle propagators and spectra, several attempts have been made to combine the advantageous properties and results of these two theoretical approaches. While the GW-plus-cumulant approach has proven successful in interpreting photoemission spectroscopy data in solids, the formal connection between the two methods has not been investigated in detail. By introducing a general bijective integral representation of the cumulants, we can rigorously identify at which point these two approximations can be connected for the paradigmatic model of quasiparticle interaction with the dielectric response of the system that has been extensively exploited in recent interpretations of the satellite structures in photoelectron spectra. We establish a protocol for consistent practical implementation of the thus established GW +cumulant scheme and illustrate it by comprehensive state-of-the-art first-principles calculations of intrinsic angle-resolved photoemission spectra from Si valence bands.

  7. Measurement of valence-band offset at native oxide/BaSi{sub 2} interfaces by hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Ryota; Du, Weijie; Takeuchi, Hiroki; Toko, Kaoru [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Ito, Keita [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Japan Society for the Promotion of Science (JSPS), Chiyoda, Tokyo 102-0083 (Japan); Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Ueda, Shigenori [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), Hyogo 679-5148 (Japan); Quantum Beam Unit, NIMS, Tsukuba, Ibaraki 305-0047 (Japan); Kimura, Akio [Graduate School of Science, Hiroshima University, Higashi-hiroshima 739-8526 (Japan); Suemasu, Takashi [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Japan Science and Technology Agency, CREST, Tokyo 102-0075 (Japan)

    2016-01-14

    Undoped n-type BaSi{sub 2} films were grown on Si(111) by molecular beam epitaxy, and the valence band (VB) offset at the interface between the BaSi{sub 2} and its native oxide was measured by hard x-ray photoelectron spectroscopy (HAXPES) at room temperature. HAXPES enabled us to investigate the electronic states of the buried BaSi{sub 2} layer non-destructively thanks to its large analysis depth. We performed the depth-analysis by varying the take-off angle (TOA) of photoelectrons as 15°, 30°, and 90° with respect to the sample surface and succeeded to obtain the VB spectra of the BaSi{sub 2} and the native oxide separately. The VB maximum was located at −1.0 eV from the Fermi energy for the BaSi{sub 2} and −4.9 eV for the native oxide. We found that the band bending did not occur near the native oxide/BaSi{sub 2} interface. This result was clarified by the fact that the core-level emission peaks did not shift regardless of TOA (i.e., analysis depth). Thus, the barrier height of the native oxide for the minority-carriers in the undoped n-BaSi{sub 2} (holes) was determined to be 3.9 eV. No band bending in the BaSi{sub 2} close to the interface also suggests that the large minority-carrier lifetime in undoped n-BaSi{sub 2} films capped with native oxide is attributed not to the band bending in the BaSi{sub 2}, which pushes away photogenerated minority carriers from the defective surface region, but to the decrease of defective states by the native oxide.

  8. Evaluation of the band alignment and valence plasmonic features of a DIBS grown Ga-doped Mg0.05Zn0.95O/CIGSe heterojunction by photoelectron spectroscopy

    Science.gov (United States)

    Awasthi, Vishnu; Pandey, Sushil Kumar; Kumar, Shailendra; Mukherjee, C.; Gupta, Mukul; Mukherjee, Shaibal

    2015-12-01

    The bandgap alignment of a Ga-doped MgZnO (GMZO)/CIGSe heterojunction exposed to short duration Ar+  ion beam sputtering has been investigated by ultraviolet photoelectron spectroscopy measurement. The offset values at the valence and conduction band of the GMZO/CIGSe hetrojunction are calculated to be 2.69 and  -0.63 eV, respectively. Moreover, the valence band onsets of GMZO and CIGSe thin films before and after few minutes Ar+ ion sputtering have been investigated. The presented study demonstrates the photoelectron-induced generation of resonant valence bulk and surface plasmonic features of various metal and metal oxide nanoclusters embedded within a GMZO matrix. The presence of such nanoclusters is proven to be beneficial in realizing cost-effective, ultra-thin, and high-performance photovoltaics based on the heterojunction.

  9. Evaluation of valence band top and electron affinity of SiO2 and Si-based semiconductors using X-ray photoelectron spectroscopy

    Science.gov (United States)

    Fujimura, Nobuyuki; Ohta, Akio; Makihara, Katsunori; Miyazaki, Seiichi

    2016-08-01

    An evaluation method for the energy level of the valence band (VB) top from the vacuum level (VL) for metals, dielectrics, and semiconductors from the results of X-ray photoelectron spectroscopy (XPS) is presented for the accurate determination of the energy band diagram for materials of interest. In this method, the VB top can be determined by the energy difference between the onset of VB signals and the cut-off energy for secondary photoelectrons by considering the X-ray excitation energy (hν). The energy level of the VB top for three kinds of Si-based materials (H-terminated Si, wet-cleaned 4H-SiC, and thermally grown SiO2) has been investigated by XPS under monochromatized Al Kα radiation (hν = 1486.6 eV). We have also demonstrated the determination of the electron affinity for the samples by this measurement technique in combination with the measured and reported energy bandgaps (E g).

  10. Recovery distances of nestling Bald Eagles banded in Florida and implications for natal dispersal and philopatry

    Science.gov (United States)

    Wood, Petra Bohall

    2009-01-01

    I used band recovery data to examine distances between banding and recovery locations for 154 nestling Florida Bald Eagles and discuss the implications for understanding natal dispersal and philopatry in this species. Band recoveries occurred in 23 U.S. states and five Canadian provinces between 1931–2005. Recovery distance from the natal nest averaged longer for the youngest age classes (ANOVA: F  =  3.59; df  =  5, 153; P  =  0.005), for individuals banded in earlier decades (F  =  1.94; df  =  5, 153; P  =  0.093), and for the months of May through October (F  =  3.10; df  =  12, 153;P old when recovered; range 3.9–36.5 yr), 31 were located within Florida, which suggested a strong degree of philopatry to the natal state. Among 21 mature eagles of known sex with known banding and recovery locations in Florida, females, particularly younger birds, had longer recovery distances (N  =  9, mean  =  93 km, SE  =  22.4) than did males (N  =  12, mean  =  31 km, SE  =  5.3; t  =  2.67, df  =  19, P  =  0.026). The records examined here suggest a high degree of philopatry and relatively short natal dispersal distances, particularly in male Bald Eagles.

  11. Magnetic response of split-ring resonator metamaterials: From effective medium dispersion to photonic band gaps

    Indian Academy of Sciences (India)

    Sangeeta Chakrabarti; S Anantha Ramakrishna

    2012-03-01

    On systematically investigating the electromagnetic response of periodic split-ring resonator (SRR) metamaterials as a function of the size-to-wavelength (/) ratio, we find that the stop bands due to the geometric resonances of the SRR weaken with increasing (/) ratio, and are eventually replaced by stop bands due to Bragg scattering. Our study traces the behaviour of SRR-based metamaterials as the resonance frequency increases and the wavelength of the radiation finally becomes comparable to the size of the unit cell of the metamaterial. In the intermediate stages, the dispersion of the SRR metamaterial can still be described as due to a localized magnetic resonances while Bragg scattering finally becomes the dominant phenomenon as / ∼ 1/2.

  12. Weakly nonlinear dispersion and stop-band effects for periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    , not necessarily small, we consider the effects of weak nonlinearity on the dispersion relation and frequency band-gaps. A novel approach, the Method of Varying Amplitudes [4], is employed. This approach is inspired by the method of direct separation of motions [5], and may be considered a natural continuation......Continua and structures composed of periodically repeated elements (cells) are used in many fields of science and technology. Examples of continua are composite materials, consisting of alternating volumes of substances with different properties, mechanical filters and wave guides. Examples...... of frequency band-gaps, i.e. frequency ranges in which elastic waves cannot propagate. Most existing analytical methods in the field are based on Floquet theory [1]; e.g. this holds for the classical Hill’s method of infinite determinants [1,2], and themethod of space-harmonics [3]. However, application...

  13. Crystal thickness and sphere dispersion dependence of the photonic band gap of silica colloidal crystals

    Institute of Scientific and Technical Information of China (English)

    Yongjun He(何拥军); Zhongchao Wei(韦中超); Yongchun Zhong(钟永春); Jianwei Diao(刁建伟); Hezhou Wang(汪河洲)

    2004-01-01

    Experimental results demonstrate that the band gap of colloidal suspension crystal changes with both the thickness of crystal and the dispersity of micro-spheres.As the thickness decreases,a red shift of band gap is observed,and there is a maximum of red shift.The values of the maximum red shifts are dependent on the standard deviations of micro-spheres.The experimental results are consistent with theoretical calculation.As the colloidal suspension crystal is assembled from micro-spheres with a standard deviation of 8.4% in a thick cell,an incident angles independent broadband is observed,which is explained as an amorphous structure.Two amorphous models are discussed.

  14. First principles electronic band structure and phonon dispersion curves for zinc blend beryllium chalcogenide

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta, E-mail: venu.mankad@gmail.com; Mankad, Venu, E-mail: venu.mankad@gmail.com; Jha, Prafulla K., E-mail: venu.mankad@gmail.com [Department of Physics, Maharaja Krishnakumasinhji Bhavnagar University, Bhavnagar-364001 (India)

    2014-04-24

    A detailed theoretical study of structural, electronic and Vibrational properties of BeX compound is presented by performing ab-initio calculations based on density-functional theory using the Espresso package. The calculated value of lattice constant and bulk modulus are compared with the available experimental and other theoretical data and agree reasonably well. BeX (X = S,Se,Te) compounds in the ZB phase are indirect wide band gap semiconductors with an ionic contribution. The phonon dispersion curves are represented which shows that these compounds are dynamically stable in ZB phase.

  15. Spectral properties of quasi-one-dimensional conductors with a finite transverse band dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Losic, Z Bonacic; Zupanovic, P [Department of Physics, Faculty of Natural Sciences, Mathematics and Kinesiology, University of Split, Teslina 12, 21000 Split (Croatia); Bjelis, A [Department of Physics, Faculty of Science, University of Zagreb, POB 162, 10001 Zagreb (Croatia)], E-mail: agicz@pmfst.hr, E-mail: bjelis@phy.hr

    2008-08-13

    We determine the one-particle spectral function and the corresponding derived quantities for the conducting chain lattice with finite inter-chain hopping t{sub perpendicular} and three-dimensional long-range Coulomb electron-electron interaction. The standard G{sub 0}W{sub 0} approximation is used. It is shown that, due to the optical character of the anisotropic plasmon dispersion caused by the finite t{sub perpendicular}, a low energy quasi-particle {delta}-peak appears in the spectral function in addition to the hump present at energies of the order of the plasmon energy. Particular attention is devoted to the continuous crossover from the non-Fermi liquid regime to the Fermi liquid regime with increasing t{sub perpendicular}. It is shown that the spectral weight of the hump transfers to the quasi-particle as the optical gap in the plasmon dispersion increases together with t{sub perpendicular}, with the quasi-particle residuum Z behaving like -ln t{sub perpendicular}){sup -1} in the limit t{sub perpendicular} {yields}0. Our approach is appropriate for the wide range of energy scales given by the plasmon energy and the width of the conduction band, and is complementary to the Luttinger liquid techniques that are limited to the low energy regime close to the Fermi surface.

  16. Effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli–Euler beam

    DEFF Research Database (Denmark)

    Sorokin, Vladislav S.; Thomsen, Jon Juel

    2016-01-01

    The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli– Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature...

  17. Π Band Dispersion along Conjugated Organic Nanowires Synthesized on a Metal Oxide Semiconductor

    Science.gov (United States)

    2016-01-01

    Surface-confined dehalogenation reactions are versatile bottom-up approaches for the synthesis of carbon-based nanostructures with predefined chemical properties. However, for devices generally requiring low-conductivity substrates, potential applications are so far severely hampered by the necessity of a metallic surface to catalyze the reactions. In this work we report the synthesis of ordered arrays of poly(p-phenylene) chains on the surface of semiconducting TiO2(110) via a dehalogenative homocoupling of 4,4″-dibromoterphenyl precursors. The supramolecular phase is clearly distinguished from the polymeric one using low-energy electron diffraction and scanning tunneling microscopy as the substrate temperature used for deposition is varied. X-ray photoelectron spectroscopy of C 1s and Br 3d core levels traces the temperature of the onset of dehalogenation to around 475 K. Moreover, angle-resolved photoemission spectroscopy and tight-binding calculations identify a highly dispersive band characteristic of a substantial overlap between the precursor’s π states along the polymer, considered as the fingerprint of a successful polymerization. Thus, these results establish the first spectroscopic evidence that atomically precise carbon-based nanostructures can readily be synthesized on top of a transition-metal oxide surface, opening the prospect for the bottom-up production of novel molecule–semiconductor devices. PMID:27115554

  18. Analysis of band structure, transmission properties, and dispersion behavior of THz wave in one-dimensional parabolic plasma photonic crystal

    International Nuclear Information System (INIS)

    The photonic band gap of obliquely incident terahertz electromagnetic waves in a one-dimensional plasma photonic crystal is studied. The periodic structure consists of lossless dielectric and inhomogeneous plasma with a parabolic density profile. The dispersion relation and the THz wave transmittance are analyzed based on the electromagnetic equations and transfer matrix method. The dependence of effective plasma frequency and photonic band gap characteristics on dielectric and plasma thickness, plasma density, and incident angle are discussed in detail. A theoretical calculation for effective plasma frequency is presented and compared with numerical results. Results of these two methods are in good agreement

  19. The observation of valence band change on resistive switching of epitaxial Pr{sub 0.7}Ca{sub 0.3}MnO{sub 3} film using removable liquid electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hong-Sub; Park, Hyung-Ho, E-mail: hhpark@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seodaemun-Ku, Seoul 120-749 (Korea, Republic of)

    2015-12-07

    The resistive switching (RS) phenomenon in transition metal oxides (TMOs) has received a great deal of attention for non-volatile memory applications. Various RS mechanisms have been suggested as to explain the observed RS characteristics. Many reports suggest that changes of interface and the role of oxygen vacancies originate in RS phenomena; therefore, in this study, we use a liquid drop of mercury as the top electrode (TE), epitaxial Pr{sub 0.7}Ca{sub 0.3}MnO{sub 3} (PCMO) (110) film of the perovskite manganite family for RS material, and an Nb-doped (0.7 at. %) SrTiO{sub 3} (100) single crystal as the substrate to observe changes in the interface between the TE and TMOs. The use of removable liquid electrode Hg drop as TE not only enables observation of the RS characteristic as a bipolar RS curve (counterclockwise) but also facilitates analysis of the valence band of the PCMO surface after resistive switching via photoelectron spectroscopy. The observed I-V behaviors of the low and high resistance states (HRS) are explained with an electrochemical migration model in PCMO film where accumulated oxygen vacancies at the interface between the Hg TE and PCMO (110) surface induce the HRS. The interpreted RS mechanism is directly confirmed via valence band spectrum analysis.

  20. Comparisons of the galaxy age, stellar velocity dispersion and K-band luminosity distributions between grouped galaxies and isolated ones

    Science.gov (United States)

    Wu, Ping; Deng, Xin-Fa

    2016-02-01

    In two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we compare the age, stellar velocity dispersion and K-band luminosity distributions of grouped galaxies with those of isolated galaxies, to explore the environmental dependence of these properties of galaxies. It is found that grouped galaxies have preferentially larger stellar velocity dispersions and are preferentially older than isolated galaxies. We also note apparent difference of K-band luminosity distribution at both extremes of density in the luminous volume-limited Main galaxy sample: grouped galaxies are preferentially more luminous than isolated galaxies, while this difference in the faint volume-limited Main galaxy sample is very small.

  1. Chromatic dispersion mitigation in long-haul fiber-optic communication networks by sub-band partitioning.

    Science.gov (United States)

    Malekiha, Mahdi; Tselniker, Igor; Plant, David V

    2015-12-14

    We propose and experimentally demonstrate a novel sub-band multiplexed data architecture for chromatic dispersion (CD) mitigation. We have demonstrated 32 GBaud multi-sub-band (MSB) dual-polarization (DP) 16QAM transmission over 2400 km. Using this approach, the transmitted signal bandwidth is divided into multiple narrow-bandwidth sub-bands, each operating at a lower baud rate. Within each sub-band bandwidth, the CD frequency response can be approximated as a linear-phase band-pass filter, which can be considered as an analog delay that does not require compensation. Therefore, the resulting receiver digital signal processing (DSP) is simplified due to the removal of the CD compensation equalizer. In addition, this leads to efficient parallelization of DSP tasks by deploying multiple independent sub-band processors running at a lower clock rate. The proposed system reduces receiver computational complexity and offers 1 dB higher Kerr-nonlinearity tolerance and 2% extended transmission reach in comparison to the conventional single carrier systems.

  2. Fivefold Symmetric Photonic Quasi-Crystal Fiber for Dispersion Compensation from S- to L-Band and Optimized at 1.55 μm

    Directory of Open Access Journals (Sweden)

    Sivacoumar Rajalingam

    2015-01-01

    Full Text Available A highly dispersive dual core quasi-periodic photonic crystal fiber is proposed for chromatic dispersion compensation. The dispersion for the dual concentric core fiber is optimized to compensate the chromatic dispersion with a high negative dispersion, accomplishing the communication bandwidth from S-band (1460 nm to L-band (1625 nm. By precise control of structural parameter we have achieved a maximum dispersion of −18,838 ps/nm-km with the phase matching wavelength centred around 1.55 μm. We also numerically investigate the influence of structural parameter and doping effects and its response on peak dispersion parameter.

  3. Dispersal of G-band bright points at different longitudinal magnetic field strengths

    CERN Document Server

    Yunfei, Yang; Song, Feng; Hui, Deng; Feng, Wang; Jiaben, Lin

    2015-01-01

    G-band bright points (GBPs) are thought to be the foot-points of magnetic flux tubes. The aim of this paper is to investigate the relation between the diffusion regimes of GBPs and the associated longitudinal magnetic field strengths. Two high resolution observations of different magnetized environments were acquired with the Hinode/Solar Optical Telescope. Each observation was recorded simultaneously with G-band filtergrams and Narrow-band Filter Imager (NFI) Stokes I and V images. GBPs are identified and tracked automatically, and then categorized into several groups by their longitudinal magnetic field strengths, which are extracted from the calibrated NFI magnetograms using a point-by-point method. The Lagrangian approach and the distribution of diffusion indices approach are adopted separately to explore the diffusion regime of GBPs for each group. It is found that the values of diffusion index and diffusion coefficient both decrease exponentially with the increasing longitudinal magnetic field strengths...

  4. Effects of weak nonlinearity on dispersion relations and frequency band-gaps of periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    2015-01-01

    The analysis of the behaviour of linear periodic structures can be traced back over 300 years, to Sir Isaac Newton, and still attracts much attention. An essential feature of periodic struc-tures is the presence of frequency band-gaps, i.e. frequency ranges in which waves cannot propagate...

  5. High dispersion observations of Venus during 1972. The CO2 band at 7820 angstrom

    Science.gov (United States)

    Young, L. D. G.; Young, A. T.; Woszczyk, A.

    1975-01-01

    Photographic plates of Venus which show the spectrum of the carbon dioxide band at 7820A were obtained at Table Mountain Observatory in September-October 1972. These spectra showed a semi-regular 4-day variation in the CO2 abundance over the disk of the planet. Evidence for temporal variations in the rotational temperature of this band and temperature variations over the disk was found. The two quantities, CO2 abundance and temperature, do not show any obvious relationship; however, an increase in the temperature usually is accompanied by a decrease in the abundance of CO2. The average temperature, found from a curve of growth analysis assuming a constant CO2 line of width, is 249 plus or minus 1.4 K (one standard deviation).

  6. Energy-expending behaviour in frightened caribou when dispersed singly or in small bands

    OpenAIRE

    Otto Blehr

    1997-01-01

    The behaviour of single, and small bands of caribou (Rangifer tarandus groenlandicus) when confronted by humans was compared with the energy—saving behaviour zoologists have ascribed to caribou in encounters with non-hunting wolves (Canis lupus). When confronted by me, or upon getting my scent, caribou ran away on all occasions. Their flight was occasionally interrupted by short stops to look back in my direction, but would continue on all occasions until they were out of sight. This be...

  7. Analysis of dispersion and attenuation of surface waves in poroelastic media in the exploration-seismic frequency band

    Science.gov (United States)

    Zhang, Y.; Xu, Y.; Xia, J.

    2011-01-01

    We analyse dispersion and attenuation of surface waves at free surfaces of possible vacuum/poroelastic media: permeable-'open pore', impermeable-'closed pore' and partially permeable boundaries, which have not been previously reported in detail by researchers, under different surface-permeable, viscous-damping, elastic and fluid-flowing conditions. Our discussion is focused on their characteristics in the exploration-seismic frequency band (a few through 200 Hz) for near-surface applications. We find two surface-wave modes exist, R1 waves for all conditions, and R2 waves for closed-pore and partially permeable conditions. For R1 waves, velocities disperse most under partially permeable conditions and least under the open-pore condition. High-coupling damping coefficients move the main dispersion frequency range to high frequencies. There is an f1 frequency dependence as a constant-Q model for attenuation at high frequencies. R1 waves for the open pore are most sensitive to elastic modulus variation, but least sensitive to tortuosities variation. R1 waves for partially permeable surface radiate as non-physical waves (Im(k) coefficients, low Poisson's ratios, and low tortuosities increase the slope of the -f1 dependence. When the attenuation coefficients reach 0, R2 waves for partially permeable surface begin to radiate as non-physical waves. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.

  8. Ultraflattened high negative chromatic dispersion over O+E+S+C+L+U bands of a microstructured optical fiber

    Science.gov (United States)

    Mahmud, Russel Reza; Razzak, S. M. Abdur; Hasan, Md. Imran; Hasanuzzaman, G. K. M.

    2015-09-01

    This paper presents a large negative flattened dispersion with high birefringence for a very wide wavelength range by designing a new high index lead silicate (SF57) soft glass equiangular decagonal spiral microstructured optical fiber (DS-MOF). The bandwidth supports the second and third windows covering the O+E+S+C+L+U bands in the infrared region. The guiding properties of the DS-MOF are investigated by the finite-element method with a perfectly matched layer boundary. The proposed design is a suitable candidate for the application of residual dispersion compensation with maintaining polarization characteristics since it offers a high negative flattened dispersion of -(453±7) psṡnm-1 km-1 with a high birefringence of the order 10-2 for the wide wavelength range of 1.15 to 1.75 μm. The DS-MOF has some circular air holes that make the fabrication process simple. In addition, the effects of changing the structural parameters by up to ±4% are also analyzed to ensure the accuracy during the fabrication process.

  9. Energy-expending behaviour in frightened caribou when dispersed singly or in small bands

    Directory of Open Access Journals (Sweden)

    Otto Blehr

    1997-04-01

    Full Text Available The behaviour of single, and small bands of caribou (Rangifer tarandus groenlandicus when confronted by humans was compared with the energy—saving behaviour zoologists have ascribed to caribou in encounters with non-hunting wolves (Canis lupus. When confronted by me, or upon getting my scent, caribou ran away on all occasions. Their flight was occasionally interrupted by short stops to look back in my direction, but would continue on all occasions until they were out of sight. This behaviour is inconsistent with the one ascribed to caribou by zoologists when the intruder is a wolf instead of a human. In their view, the caribou stop their flight soon after the wolf gives up the chase, and accordingly save energy owing to their ability to distinguish between hunting and non-hunting wolves. However, small bands of caribou, as well as single animals, have never been observed to behave in this manner. On the contrary, the behaviour of caribou in such encounters is known to follow the same pattern as in their encounters with humans. Energy—saving behaviour is, however, sometimes observed when caribou become inquisitive about something in their surroundings. They will then readily approach as well as try to get down-wind of the object. When the object does not induce fear, it may simply be ignored, or charged before the caribou calm down. The effect of this "confirming behaviour" is that energy which would otherwise have been spent in needless flights from non-predators is saved.

  10. Experiment of C-Band Wavelength Conversion in a Silicon Waveguide Pumped by Dispersed Femtosecond Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    GAO Shi-Ming; TIEN En-Kuang; SONG Qi; HUANG Yue-Wang; Salih Kagan KALYONCU

    2010-01-01

    @@ We experimentally demonstrate the C-band wavelength conversion using four-wave mixing in a 17-mm-long silicon-on-insulator waveguide pumped by a dispersed mode-locked femtosecond laser pulse.The idler can be observed with an incident average pump power lower than 4 dBm,and about 35 nm of conversion bandwidth from 1530 nm to 1565 nm js measured by using a 1550-nm pump wavelength.The pulse-pumped efficiency is demonstrated to be higher,by more than 22 dB,than the ew-pumped efficiency.The conversion efficiency variations with respect to the pump and signal powers are also investigated.

  11. A simulation study of the effect of the diverse valence-band offset and the electronic activity at the grain boundaries on the performance of polycrystalline Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Nerat, Marko, E-mail: marko.nerat@fe.uni-lj.si; Smole, Franc; Topic, Marko

    2011-08-31

    The paper presents a two-dimensional simulation study of a polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) solar cell with various shapes of grains inside the CIGS absorber layer. The grain boundaries (GBs) with a diverse valence-band offset (VBO) and the density of defect states (N{sub tA}) are considered so as to evaluate their effects on the performance of the CIGS cell. The numerical simulations show that a CIGS cell with column-like grains can achieve a high conversion efficiency ({eta}), while the {eta} of a CIGS cell with diamond-like grains is low if the VBO at the GBs exceeds 0.4 eV. The VBO at which the {eta} of the CIGS cell with diamond-like grains peaks is found at 0.20-0.27 eV. A favorable VBO mainly depends on the shape of the grains, but it also depends on the N{sub tA}. The simulations of the CIGS cells in the substrate and superstrate configurations showed that their performances change if the VBO is varied. This result also implies that the configuration of the CIGS cell is important and the substrate configuration with larger grains in the space-charge region has a considerable advantage if the VBO ranges from 0 eV to 0.2 eV.

  12. Design of a Very Small Residual Dispersion Fiber System for DWDM Operation Over the Entire C - & L- Bands of EDFA

    Institute of Scientific and Technical Information of China (English)

    Ravi K.Varshney; I.C.Goyal; A.K.Ghatak; Siny Antony C.

    2003-01-01

    We have given design of a very small residual dispersion fiber system consisting of a small dispersion fiber(SDF) with flat modal field and a corresponding dual core coaxial dispersion compensating fiber (DCF).

  13. Coupled valence bond theory

    NARCIS (Netherlands)

    Havenith, R.W.A.

    2005-01-01

    In this Letter, the formulation and implementation of a parallel response property code for non-orthogonal, valence bond wave-functions are described. Test calculations on benzene and cyclobutadiene show that the polarisability and magnetisability tensors obtained using valence bond theory are compa

  14. Band dispersions of the π-bonded-chain reconstruction of Si(111)3x1-Li: A critical evaluation of theory and experiment

    International Nuclear Information System (INIS)

    The surface-state band-structure of the three-domain Si(111)3x1-Li reconstruction has been determined using angle-resolved photoemission. Experimental band dispersions are compared to theoretical calculations for the extended Pandey model and the Seiwatz model. Even though the extended Pandey model is favored on the basis of scanning tunneling microscopy and total-energy considerations, the calculated surface states are inconsistent with experiment. The calculated states for the Seiwatz model are consistent with the experimental dispersion along the main symmetry direction (bar Γ bar A) but serious discrepancies exist in other parts of the Brillouin zone. The disparity between the density-functional-theory calculations and experiment indicate that exchange and correlation in π-bonded Si chains may need to be analyzed beyond the mean-field band-structure approach. copyright 1996 The American Physical Society

  15. Electronic band structure of beryllium oxide

    CERN Document Server

    Sashin, V A; Kheifets, A S; Ford, M J

    2003-01-01

    The energy-momentum resolved valence band structure of beryllium oxide has been measured by electron momentum spectroscopy (EMS). Band dispersions, bandwidths and intervalence bandgap, electron momentum density (EMD) and density of occupied states have been extracted from the EMS data. The experimental results are compared with band structure calculations performed within the full potential linear muffin-tin orbital approximation. Our experimental bandwidths of 2.1 +- 0.2 and 4.8 +- 0.3 eV for the oxygen s and p bands, respectively, are in accord with theoretical predictions, as is the s-band EMD after background subtraction. Contrary to the calculations, however, the measured p-band EMD shows large intensity at the GAMMA point. The measured full valence bandwidth of 19.4 +- 0.3 eV is at least 1.4 eV larger than the theory. The experiment also finds a significantly higher value for the p-to-s-band EMD ratio in a broad momentum range compared to the theory.

  16. Valency and molecular structure

    CERN Document Server

    Cartmell, E

    1977-01-01

    Valency and Molecular Structure, Fourth Edition provides a comprehensive historical background and experimental foundations of theories and methods relating to valency and molecular structures. In this edition, the chapter on Bohr theory has been removed while some sections, such as structures of crystalline solids, have been expanded. Details of structures have also been revised and extended using the best available values for bond lengths and bond angles. Recent developments are mostly noted in the chapter on complex compounds, while a new chapter has been added to serve as an introduction t

  17. Analytic Solution for In-Plane Valence Subbands of Strained SiGe Superlattice

    Institute of Scientific and Technical Information of China (English)

    LU Yan-Wu(吕燕伍); SUN Gregory

    2003-01-01

    Effective mass theory is used to calculate the in-plane valence subbands of strained SiGe superlattice within the 6 × 6 Luttinger model and under a correct boundary condition. The envelope wavefunctions are given analytically as a linear combination of bulk wavefunctions. The boundary conditions imposed on the envelope functions yield a 24 × 24 matrix, and from the zeros of its determinant the in-plane energy dispersion E is obtained as a function of in-plane wavevector kⅡ. We discuss the mixing among the heavy-hole, light-hole and spin-split-off states at finite kⅡ and the dependence of the dispersion on the spin-split-off band and strain.

  18. Weighted nonlinear phase shift with group velocity dispersion to assess the nonlinear penalty in C+L band long-haul fiber optical amplified transmission link

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To assess the penalty due to nonlinear effect in C+L band long-haul optical amplified transmission link,a new parameter of modified nonlinear phase shift (φD) is proposed,which is the accumulated nonlinear phase shift weighted by a normalized group velocity dispersion (GVD).Based on the numerical simulation result of broadband long-haul hybrid Raman/erbium-doped fiber amplified transmission line,it is validated that φD is more reasonable and suitable than the previous proposed nonlinear phase shift (φNL) for broadband applications.

  19. Experimental demonstration of low-complexity fiber chromatic dispersion mitigation for reduced guard-interval OFDM coherent optical communication systems based on digital spectrum sub-band multiplexing.

    Science.gov (United States)

    Malekiha, Mahdi; Tselniker, Igor; Nazarathy, Moshe; Tolmachev, Alex; Plant, David V

    2015-10-01

    We experimentally demonstrate a novel digital signal processing (DSP) structure for reduced guard-interval (RGI) OFDM coherent optical systems. The proposed concept is based on digitally slicing optical channel bandwidth into multiple spectrally disjoint sub-bands which are then processed in parallel. Each low bandwidth sub-band has a smaller delay-spread compared to a full-band signal. This enables compensation of both chromatic dispersion (CD) and polarization mode dispersion using a simple timing and one-tap-per-symbol frequency domain equalizer with a small cyclic prefix overhead. In terms of the DSP architecture, this allows for a highly efficient parallelization of DSP tasks performed over the received signal samples by deploying multiple processors running at a lower clock rate. It should be noted that this parallelization is performed in the frequency domain and it allows for flexible optical transceiver schemes. In addition, the resulting optical receiver is simplified due to the removal of the CD compensation equalizer compared to conventional RGI-OFDM systems. In this paper we experimentally demonstrate digital sub-banding of optical bandwidth. We test the system performance for different modulation formats (QPSK, 16QAM and 32QAM) over various transmission distances and optical launch powers using a 1.5% CP overhead in all scenarios. We also compare the proposed RGI-OFDM architecture performance against common single carrier modulation formats. At the same total data rate and signal bandwidth both systems have similar performance and transmission reach whereas the proposed method allows for a significant reduction of computational complexity due to removal of CD pre/post compensation equalizer. PMID:26480077

  20. Experimental demonstration of low-complexity fiber chromatic dispersion mitigation for reduced guard-interval OFDM coherent optical communication systems based on digital spectrum sub-band multiplexing.

    Science.gov (United States)

    Malekiha, Mahdi; Tselniker, Igor; Nazarathy, Moshe; Tolmachev, Alex; Plant, David V

    2015-10-01

    We experimentally demonstrate a novel digital signal processing (DSP) structure for reduced guard-interval (RGI) OFDM coherent optical systems. The proposed concept is based on digitally slicing optical channel bandwidth into multiple spectrally disjoint sub-bands which are then processed in parallel. Each low bandwidth sub-band has a smaller delay-spread compared to a full-band signal. This enables compensation of both chromatic dispersion (CD) and polarization mode dispersion using a simple timing and one-tap-per-symbol frequency domain equalizer with a small cyclic prefix overhead. In terms of the DSP architecture, this allows for a highly efficient parallelization of DSP tasks performed over the received signal samples by deploying multiple processors running at a lower clock rate. It should be noted that this parallelization is performed in the frequency domain and it allows for flexible optical transceiver schemes. In addition, the resulting optical receiver is simplified due to the removal of the CD compensation equalizer compared to conventional RGI-OFDM systems. In this paper we experimentally demonstrate digital sub-banding of optical bandwidth. We test the system performance for different modulation formats (QPSK, 16QAM and 32QAM) over various transmission distances and optical launch powers using a 1.5% CP overhead in all scenarios. We also compare the proposed RGI-OFDM architecture performance against common single carrier modulation formats. At the same total data rate and signal bandwidth both systems have similar performance and transmission reach whereas the proposed method allows for a significant reduction of computational complexity due to removal of CD pre/post compensation equalizer.

  1. Spectrally resolved white light interferometry to measure material dispersion over a wide spectral band in a single acquisition.

    Science.gov (United States)

    Arosa, Yago; Lago, Elena López; Varela, Luis Miguel; de la Fuente, Raúl

    2016-07-25

    In this paper we apply spectrally resolved white light interferometry to measure refractive and group index over a wide spectral band from 400 to 1000 nm. The output of a Michelson interferometer is spectrally decomposed by a homemade prism spectrometer with a high resolution camera. The group index is determined directly from the phase extracted from the spectral interferogram while the refractive index is estimated once its value at a given wavelength is known. PMID:27464179

  2. Supersymmetric Valence Bond Solid States

    OpenAIRE

    Arovas, Daniel P.; Hasebe, Kazuki; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2009-01-01

    In this work we investigate the supersymmetric version of the valence bond solid (SVBS) state. In one dimension, the SVBS states continuously interpolate between the valence bond states for integer and half-integer spin chains, and they generally describe superconducting valence bond liquid states. Spin and superconducting correlation functions can be computed exactly for these states, and their correlation lengths are equal at the supersymmetric point. In higher dimensions, the wave function...

  3. [Hyperspectral Detection Model for Soil Dispersion in Zhouqu Debris Flow Source Region].

    Science.gov (United States)

    Wang, Qin-jun; Wei, Yong-ming; Chen, Yu; Chen, Jia-ge; Lin, Qi-zhong

    2016-02-01

    Sensitive band positions, models and the principles of soil dispersion detected by hyperspectral remote sensing were firstly discussed according to the results of soil dispersive hyperspectral remote sensing experiment. Results showed that, (1) signals and noises could be separated by Fourier transformation. A finely mineral identification system was developed to remove spectral noises and provide highly accurate data for establishing soil dispersive model; (2) Soil dispersive hyperspectral remote sensing model established by the multiple linear regression method was good at soil dispersion forecasting for the high correlation between sensitive bands and the soil dispersions. (3) According to mineral spectra, soil minerals and their absorbed irons were reflected by sensitive bands which revealed reasons causing soils to be dispersive. Sodium was the closest iron correlated with soil dispersion. The secondary was calcite, montmorillonite and illite. However, the correlation between soil dispersion and chlorite, kaolinite, PH value, quartz, potassium feldspar, plagioclase was weak. The main reason was probably that sodium was low in ionic valence, small ionic radius and strong hydration forces; calcite was high water soluble and illite was weak binding forces between two layers under high pH value. PMID:27209758

  4. Design of a Very Small Residual Dispersion Fiber System for DWDM Operation Over the Entire C -&L-Bands of EDFA

    Institute of Scientific and Technical Information of China (English)

    Ravi; K.; Varshney; I.C.; Goyal; A.K.; Ghatak; Siny; Antony; C.

    2003-01-01

    We have given design of a very small residual dispersion fiber system consisting of a small dispersion fiber (SDF) with flat modal field and a corresponding dual core coaxial dispersion compensating fiber (DCF).

  5. Corrugated flat band as an origin of large thermopower in hole doped PtSb2

    Directory of Open Access Journals (Sweden)

    Kouta Mori

    2012-12-01

    Full Text Available The origin of the recently discovered large thermopower in hole-doped PtSb2 is theoretically analyzed based on a model constructed from first principles band calculation. It is found that the valence band dispersion has an overall flatness combined with some local ups and downs, which gives small Fermi surfaces scattered over the entire Brillouin zone. The Seebeck coefficient is calculated using this model, which gives good agreement with the experiment. We conclude that the good thermoelectric property originates from this “corrugated flat band”, where the coexistence of large Seebeck coefficient and large electric conductivity is generally expected.

  6. A Multidimensional Measure of Work Valences

    Science.gov (United States)

    Porfeli, Erik J.; Lee, Bora; Weigold, Ingrid K.

    2012-01-01

    Work valence is derived from expectancy-valence theory and the literature on children's vocational development and is presumed to be a general appraisal of work that emerges during the childhood period. Work valence serves to promote and inhibit the motivation and tasks associated with vocational development. A measure of work valence, composed of…

  7. Effects of Optical-density and Phase Dispersion of an Imperfect Band-limited Occulting Mask on the Broadband Performance of a TPF Coronagraph

    Science.gov (United States)

    Sidiek, Erkin; Balasubramanian, Kunjithapatham

    2007-01-01

    Practical image-plane occulting masks required by high-contrast imaging systems such as the TPF-Coronagraph introduce phase errors into the transmitting beam., or, equivalently, diffracts the residual starlight into the area of the final image plane used for detecting exo-planets. Our group at JPL has recently proposed spatially Profiled metal masks that can be designed to have zero parasitic phase at the center wavelength of the incoming broadband light with small amounts of' 00 and phase dispersions at other wavelengths. Work is currently underway to design. fabricate and characterize such image-plane masks. In order to gain some understanding on the behaviors of these new imperfect band-limited occulting masks and clarify how such masks utilizing different metals or alloys compare with each other, we carried out some modeling and simulations on the contrast performance of the high-contrast imaging testbed (HCIT) at .JPL. In this paper we describe the details of our simulations and present our results.

  8. Strongly nonparabolic variation of the band gap in In x Al1‑x N with low indium content

    Science.gov (United States)

    Zubialevich, Vitaly Z.; Dinh, Duc V.; Alam, Shahab N.; Schulz, Stefan; O’Reilly, Eoin P.; Parbrook, Peter J.

    2016-02-01

    80–120 nm thick In x Al1‑x N epitaxial layers with 0 growth temperature. The composition dependence of the band gap was estimated from the photoluminescence excitation absorption edge for 0 crystal-field splitting of the highest valence band states. Our results indicate also that the ordering of the valence bands is changed at much lower In contents than one would expect from linear interpolation of the valence band parameters. These findings on band gap bowing and valence band ordering are of direct relevance for the design of InAlN-containing optoelectronic devices.

  9. The Valence Bond Interpretation of Molecular Geometry.

    Science.gov (United States)

    Smith, Derek W.

    1980-01-01

    Presents ways in which the valence bond (VB) theory describes the bonding and geometry of molecules, following directly from earlier principles laid down by Pauling and others. Two other theories (molecular orbital approach and valence shell electron pair repulsion) are discussed and compared to VB. (CS)

  10. Ab initio valence calculations in chemistry

    CERN Document Server

    Cook, D B

    1974-01-01

    Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge

  11. Development of Remote Plutonium Valence State Analyzer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In the Purex process of spent fuel reprocessing, the separation of uranium and plutonium depends on the capability extracting state plutonium ions with various valence by TBP. The separate degree of

  12. Coherent potential approximation treatment of the Sm valence transition in SmS induced by alloying

    International Nuclear Information System (INIS)

    The Sm valence transition, similar to the pressure-induced transition in pure SmS, has been observed in a large number of cases by substituting a trivalent rare earth, B, for Sm, thereby forming isostructural alloys with a lattice constant smaller than that of semiconducting SmS. Such substitutions are expected to exert a 'chemical' pressure which simulates the external pressure. However, divalent substitutions (Yb, Eu and Ca), although having a favourable 'size' factor, do not induce any valence transition. Accordingly, band structure effects, essentially due to the relative position of the conduction bands of SmS and BS, should also be taken into consideration. In order to clarify the role which the lattice constant and the electronic structure play in the valence transition, these alloys have been studied using the coherent potential approximation (CPA) including both the crystal field effect and the Coulomb interaction between localised and itinerant states as driving mechanisms. For Sm, the 'homogeneous' picture is considered, each Sm site having the average valence; then the Smsub(1-x)Bsub(x)S system is reduced to a binary alloy. Charge transfer between the f states of Sm and the alloy conduction band (i.e. Sm valence change) is determined self-consistently. The calculations are consistent with the experimental behaviour and allow us to understand qualitatively the variation of the critical concentration xsub(c) for the transition as a function of the difference Δa between the lattice parameters of SmS and BS. (author)

  13. Masked emotional priming beyond global valence activations

    NARCIS (Netherlands)

    M. Rohr; J. Degner; D. Wentura

    2012-01-01

    An immense body of research demonstrates that emotional facial expressions can be processed unconsciously. However, it has been assumed that such processing takes place solely on a global valence-based level, allowing individuals to disentangle positive from negative emotions but not the specific em

  14. Observation of the anisotropic Dirac cone in the band dispersion of 112-structured iron-based superconductor Ca0.9La0.1FeAs2

    Science.gov (United States)

    Liu, Z. T.; Xing, X. Z.; Li, M. Y.; Zhou, W.; Sun, Y.; Fan, C. C.; Yang, H. F.; Liu, J. S.; Yao, Q.; Li, W.; Shi, Z. X.; Shen, D. W.; Wang, Z.

    2016-07-01

    CaFeAs2 is a parent compound of recently discovered 112-type iron-based superconductors. It is predicted to be a staggered intercalation compound that naturally integrates both quantum spin Hall insulating and superconducting layers and an ideal system for the realization of Majorana modes. We performed a systematical angle-resolved photoemission spectroscopy and first-principles calculation study of the slightly electron-doped CaFeAs2. We found that the zigzag As chain of 112-type iron-based superconductors play a considerable role in the low-energy electronic structure, resulting in the characteristic Dirac-cone like band dispersion as the prediction. Our experimental results further confirm that these Dirac cones only exist around the X but not Y points in the Brillouin zone, breaking the S4 symmetry at iron sites. Our findings present the compelling support to the theoretical prediction that the 112-type iron-based superconductors might host the topological nontrivial edge states. The slightly electron doped CaFeAs2 would provide us a unique opportunity to realize and explore Majorana fermion physics.

  15. Silicene Nano-Ribbons: Strong Resistance Towards Oxidation due to sp2 Hybridization of the Si Valence Orbitals

    Science.gov (United States)

    Le Lay, Guy; de Padova, Paola; Quaresima, Claudio; Olivieri, Bruno; Perfetti, Paolo

    2011-03-01

    We have synthesized for the first time silicene, that is, a new silicon allotrope analogous to graphene recently theoretically predicted, in the form of a massively parallel array of quantized zigzag nano-ribbons with a common ``magic'' width of 1.6 nm. They display characteristic linear band dispersions similar to the Dirac cones of graphene, in correspondence with their hexagonal arrangement seen in STM imaging. Here we show, through the angle-dependence of REEL spectra taken at the Si L2 , 3 edge, the typical signatures of 2p --> π * and 2p --> σ * transitions associated with sp 2 hybridization of the Si valence orbitals. We further show through high-resolution synchrotron radiation Si 2p core-level spectroscopy measurements that the afore mentioned silicene grating is very resistant toward oxidation. Typically, the oxygen uptake starts at about 104 higher doses than on the clean Si(111)7x7 surface. Indeed, this striking behavior is directly related to the sp 2 bonding, an additional confirmation of the silicene (i.e., graphene-like) nature of the nano-ribbons.

  16. Valence Fluctuations in La2-xSrxCuO4

    NARCIS (Netherlands)

    Groot, R.A. de; Gutfreund, H.; Weger, M.

    1987-01-01

    Ab-initio electronic band structure calculations are presented for the perovskite La2CuO4 and for this material doped with Sr for a supercell of composition La3SrCu2O8. This material is close to the high Tc superconductor La2-xSrxCuO4 discovered recently. The Sr doping gives rise to strong valence f

  17. Flat Bands Under Correlated Perturbations

    OpenAIRE

    Bodyfelt, Joshua D.; Leykam, Daniel; Danieli, Carlo; Yu, Xiaoquan; Flach, Sergej

    2014-01-01

    Flat band networks are characterized by coexistence of dispersive and flat bands. Flat bands (FB) are generated by compact localized eigenstates (CLS) with local network symmetries, based on destructive interference. Correlated disorder and quasiperiodic potentials hybridize CLS without additional renormalization, yet with surprising consequencies: (i) states are expelled from the FB energy $E_{FB}$, (ii) the localization length of eigenstates vanishes as $\\xi \\sim 1 / \\ln (E- E_{FB})$, (iii)...

  18. Thermoelectric, band structure, chemical bonding and dispersion of optical constants of new metal chalcogenides Ba{sub 4}CuGa{sub 5}Q{sub 12} (Q=S, Se)

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Azam, Sikander, E-mail: sikander.physicst@gmail.com [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic)

    2014-08-01

    The electronic structure and dispersion of optical constants of the Ba{sub 4}CuGa{sub 5}S{sub 12} and Ba{sub 4}CuGa{sub 5}Se{sub 12} compounds were calculated by the first-principles full-potential linearized augmented plane wave (FPLAPW) method. We employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel–Vosko GGA (EVGGA) to calculate the electronic structures, Fermi surface, thermoelectric, chemical bonding and dispersion of optical constants of these compounds. By investigating the influence of replacing S by Se, it has been found that the charge density around ‘Ga’ is greater in Ba{sub 4}CuGa{sub 5}Se{sub 12} than Ba{sub 4}CuGa{sub 5}S{sub 12}. Fermi surface of Ba{sub 4}CuGa{sub 5}S{sub 12} consists of an electronic sheet only because there is no empty region while Ba{sub 4}CuGa{sub 5}Se{sub 12} contains both holes and electronic sheets because this compound contains both empty and shaded region. As we replace S by Se the heights of the peaks decreases as a results the reflectivity also decreases. It is noticed that the reflectivity is over 68% (60%) for Ba{sub 4}CuGa{sub 5}S{sub 12} (Ba{sub 4}CuGa{sub 5}Se{sub 12}) compounds within the energy range studied. This implies that the material will serve as a good reflector. By replacing S by Se the figure of merit values increases from 0.97 to 1.0, which shows the good thermoelectric behavior of both compounds. - Highlights: • DFT-FPLAPW method used for calculating the properties. • For predicting the chemical bonding the charge density behavior is studied in 2D. • The optical properties were also calculated and analyzed. • The Fermi surface is composed of two bands crossing along the EF level. • The thermoelectric properties have also been calculated.

  19. Evaluative conditioning induces changes in sound valence

    Directory of Open Access Journals (Sweden)

    Anna C. Bolders

    2012-04-01

    Full Text Available Evaluative Conditioning (EC has hardly been tested in the auditory domain, but it is a potentially valuable research tool. In Experiment 1 we investigated whether the affective evaluation of short environmental sounds can be changed using affective words as unconditioned stimuli (US. Congruence effects on an affective priming task (APT for conditioned sounds demonstrated successful EC. Subjective ratings for sounds paired with negative words changed accordingly. In Experiment 2 we investigated whether the acquired valence remains stable after repeated presentation of the conditioned sound without the US or whether extinction occurs. The acquired affective value remained present, albeit weaker, even after 40 extinction trials. These results warrant the use of EC to study processing of short environmental sounds with acquired valence, even if this requires repeated stimulus presentations. This paves the way for studying processing of affective environmental sounds while effectively controlling low level-stimulus properties.

  20. Neutron inelastic scattering from mixed valence materials

    International Nuclear Information System (INIS)

    Paramagnetic scattering from mixed valence materials is reviewed. Some of the early measurements identified a broad quasielastic spectral distribution (e.g. a Lorentzian centered on zero energy with large, practically Q-independent widths (half-width approx.5-30 MeV) which remain finite as T → OK. More recent measurements using high energy neutrons on several mixed valance systems reveal inelastic peaks superposed on the broad quasielastic spectrum at low temperatures. These inelastic peaks progressively melt away with increasing temperature, accompanied possibly by some softening, and disappear almost completely around the temperature of the maximum in the susceptibility. Several possible mechanisms could semi-qualitatively account for the observed spectral response, a deeper insight into whose origin would aid in understanding the mixed valence phenomena

  1. Janus Nematic Colloids with Designable Valence

    Directory of Open Access Journals (Sweden)

    Simon Čopar

    2014-05-01

    Full Text Available Generalized Janus nematic colloids based on various morphologies of particle surface patches imposing homeotropic and planar surface anchoring are demonstrated. By using mesoscopic numerical modeling, multiple types of Janus particles are explored, demonstrating a variety of novel complex colloidal structures. We also show binding of Janus particles to a fixed Janus post in the nematic cell, which acts as a seed and a micro-anchor for the colloidal structure. Janus colloidal structures reveal diverse topological defect configurations, which are effectively combinations of surface boojum and bulk defects. Topological analysis is applied to defects, importantly showing that topological charge is not a well determined topological invariant in such patchy nematic Janus colloids. Finally, this work demonstrates colloidal structures with designable valence, which could allow for targeted and valence-conditioned self-assembly at micro- and nano-scale.

  2. Electron magnetic scattering on valence nucleon orbits

    International Nuclear Information System (INIS)

    Cross-sections for elastic electron scattering by the magnetization distribution of 49Ti, 51V, 59Co, 87Sr and 93Nb have been measured in the range of momentum transfer 1.7 - 3.3 fm-1. The results are interpreted in terms of radial distribution of the unpaired proton or neutron. Meson exchange and core polarisation effects are investigated. The valence nucleon radii obtained are compared with Hartree-Fock predictions

  3. Effects of valence in decision making

    OpenAIRE

    Noh, Zamira; Goddard, Paul

    2014-01-01

    Background/Aim:- A study of voting decisions in The Weakest Link TV game show has shown the contestants tend to avoid their nearest neighbours (Goddard, Hylton, Parke & Noh, 2013), presumably this is because the vote carries negative connotations. Therefore, the aim of this study was to test whether vote valence affects voting behaviour in other voting scenarios. Procedure:- Participants were undergraduate Psychology students (n=233) attending an orientation lecture during their first inducti...

  4. Valence force field analysis of tetracyanoethylene

    Science.gov (United States)

    Michaelian, K. H.; Rieckhoff, K. E.; Voigt, E. M.

    1982-09-01

    A valence force field calculation for the out-of-plane modes of tetracyanoethylene is reported, which makes possible a straightforward assignment of the low-frequency vibrations, including several in-plane modes which previously could not be assigned with certainty. The present set of assignments is consistent with observed vibrational spectra, both for uncomplexed and for complexed tetracyanoethylene, and, for the planar vibrations, is supported by recently published force constant calculations.

  5. 5th International Conference on Valence Fluctuations

    CERN Document Server

    Malik, S

    1987-01-01

    During the Koln meeting (August 28-31, 1984), Irdia was chosen as the venue for the next International Conference on Valence Fluctuations. lhis was in recognition ard appreciation of the work done, both experimental ard theoretical, by the Irdian scientists in this area during the last decade. We decided to hold this Conference in the month of January, 1987 at Bangalore. lhe subject of Valence Fluctuations has kept itself alive ard active as it has provided many shocks ard suprises particularly among the Ce- ard U-based intermetallies. lhe richness of many interesting physical phenomena occurring in mixed valent materials, the flexibility of modifying their physical properties (by alloying, for example) ard the possibility of synthesizing a wide variety of new such materials seem to be the key factors in this regard. Barely six months before this Conference, an International Conference on Anomalous Rare Earths and Actinides (ICAREA) had been held at Grenoble (July, 1986) which also focussed on mixed valence a...

  6. Precision calculations of atoms with few valence electrons

    CERN Document Server

    Kozlov, M G

    2003-01-01

    We discuss the possibility of using pair-equations for the construction of the effective Hamiltonian $H_{\\rm eff}$ for valence electrons of an atom. The low-energy part of atomic spectrum is found by solving the eigenvalue problem for $H_{\\rm eff}$. In this way it is possible to account efficiently for the valence-valence and core-valence correlations. We tested this method on a toy model of a four-electron atom with the core $1s^2$. The spectrum obtained with $H_{\\rm eff}$ for two valence electrons is in a perfect agreement with the full configuration interaction for all four electrons.

  7. Quasiparticle Band Structure of BaS

    Institute of Scientific and Technical Information of China (English)

    LU Tie-Yu; CHEN De-Yan; HUANG Mei-Chun

    2006-01-01

    @@ We calculate the band structure of BaS using the local density approximation and the GW approximation (GWA),i.e. in combination of the Green function G and the screened Coulomb interaction W. The Ba 4d states are treated as valence states. We find that BaS is a direct band-gap semiconductor. The result shows that the GWA band gap (Eg-Gw = 3.921 eV) agrees excellently with the experimental result (Eg-EXPT = 3.88 eV or 3.9eV).

  8. Multidimensional X-Ray Spectroscopy of Valence and Core Excitations in Cysteine

    CERN Document Server

    Biggs, Jason D; Healion, Daniel; Mukamel, Shaul

    2013-01-01

    Several nonlinear spectroscopy experiments which employ broadband x-ray pulses to probe the coupling between localized core and delocalized valence excitation are simulated for the amino acid cysteine at the K-edges of oxygen and nitrogen and the K and L-edges of sulfur. We focus on two dimensional (2D) and 3D signals generated by two- and three-pulse stimulated x-ray Raman spectroscopy (SXRS) with frequency-dispersed probe. We show how the four-pulse x-ray signals $\\boldsymbol{k}_\\mathrm{I}=-\\boldsymbol{k}_1+\\boldsymbol{k}_2+\\boldsymbol{k}_3$ and $\\boldsymbol{k}_\\mathrm{II}=\\boldsymbol{k}_1-\\boldsymbol{k}_2+\\boldsymbol{k}_3$ can give new 3D insight into the SXRS signals. The coupling between valence- and core-excited states can be visualized in three dimensional plots, revealing the origin of the polarizability that controls the simpler pump-probe SXRS signals.

  9. Valence of 'divalent' rare earth metals

    International Nuclear Information System (INIS)

    It is generally recognized that light rare earths change their valence from 2 to 3 when forming a bulk metal while remaining divalent at the surface. However, performed DFT calculations ultimately indicate that the higher-binding-energy peaks in photoemission spectra (like the -5.3 eV peak for Sm), characteristic of the trivalent 4fn-15d1 configuration, correspond not to the ground state, but to excited states induced by radiation. This means that the trivalent state is not inherent for the bulk of divalent rare earths, and therefore they do not become trivalent.

  10. Thermal Recombination: Beyond the Valence Quark Approximation

    CERN Document Server

    Müller, B; Bass, S A

    2005-01-01

    Quark counting rules derived from recombination models agree well with data on hadron production at intermediate transverse momenta in relativistic heavy-ion collisions. They convey a simple picture of hadrons consisting only of valence quarks. We discuss the inclusion of higher Fock states that add sea quarks and gluons to the hadron structure. We show that, when recombination occurs from a thermal medium, hadron spectra remain unaffected by the inclusion of higher Fock states. However, the quark number scaling for elliptic flow is somewhat affected. We discuss the implications for our understanding of data from the Relativistic Heavy Ion Collider.

  11. A study of the valence shell electronic structure of uracil and the methyluracils

    Energy Technology Data Exchange (ETDEWEB)

    Holland, D.M.P. [Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)], E-mail: d.m.p.holland@dl.ac.uk; Potts, A.W. [Department of Physics, King' s College, Strand, London WC2R 2LS (United Kingdom); Karlsson, L. [Department of Physics, Uppsala University, Box 530, SE-751 21 Uppsala (Sweden); Zaytseva, I.L.; Trofimov, A.B. [Laboratory of Quantum Chemistry, Irkutsk State University, Karl-Marx Street 1, 664003 Irkutsk (Russian Federation); Schirmer, J. [Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2008-11-03

    The valence shell photoelectron spectra of uracil, 1-methyluracil and 6-methyluracil have been studied experimentally and theoretically. Synchrotron radiation has been used to record spectra at photon energies of 40 and 80 eV. Photoelectron angular distributions have been determined and these provide an experimental means of distinguishing between {sigma}- and {pi}-type orbitals. Vertical ionization energies and spectral intensities have been evaluated using the many-body Green's function approach, thereby enabling theoretical photoelectron spectra to be derived. The calculated spectra display a satisfactory agreement with the experimental data and this has allowed most of the photoelectron bands to be assigned. Two of the outer-valence vertical ionization energies are similar to one another and the vibrational progressions associated with these transitions overlap strongly. Vibronic interaction between these states, induced through the excitation of out-of-plane vibrational modes, may lead to nonadiabatic effects. Preliminary theoretical investigation of this interaction has been performed.

  12. How fast is optically induced electron transfer in organic mixed valence systems?

    Science.gov (United States)

    Lambert, C; Moos, M; Schmiedel, A; Holzapfel, M; Schäfer, J; Kess, M; Engel, V

    2016-07-28

    The rate of thermally induced electron transfer in organic mixed valence compounds has thoroughly been investigated by e.g. temperature dependent ESR spectroscopy. However, almost nothing is known about the dynamics of optically induced electron transfer processes in such systems. Therefore, we investigated these processes in mixed valence compounds based on triphenylamine redox centres bridged by conjugated spacers by NIR transient absorption spectroscopy with fs-time resolution. These experiments revealed an internal conversion (IC) process to be on the order of 50-200 fs which is equivalent to the back electron transfer after optical excitation into the intervalence charge transfer band. This IC is followed by ultrafast cooling to the ground state within 1 ps. Thus, in the systems investigated optically induced electron transfer is about 3-4 orders of magnitude faster than thermally induced ET. PMID:27376572

  13. New materials for intermediate band photovoltaic cells. A theoretical and experimental approach

    OpenAIRE

    Wahnón Benarroch, Perla; Palacios Clemente, Pablo; Aguilera Bonet, Irene; Seminóvski Pérez, Yohanna; Conesa, Jose Carlos; Lucena, Raquel

    2010-01-01

    Density functional theory calculations of certain transition-metal doped semiconductors show a partially occupied relatively narrow band located between valence band and conduction band. These novel systems, containing the metallic band, are called intermediate-band materials. They have enhanced optoelectronic properties which allow an increase in solar energy conversion efficiency of conventional solar cells. We previously proposed III-V, chalcopyrite and sulfide derived compounds show...

  14. Human Amygdala Represents the Complete Spectrum of Subjective Valence

    OpenAIRE

    Jin, Jingwen; Zelano, Christina; Gottfried, Jay A.; Mohanty, Aprajita

    2015-01-01

    Although the amygdala is a major locus for hedonic processing, how it encodes valence information is poorly understood. Given the hedonic potency of odor stimuli and the amygdala's anatomical proximity to the peripheral olfactory system, we combined high-resolution fMRI with pattern-based multivariate techniques to examine how valence information is encoded in the amygdala. Ten human subjects underwent fMRI scanning while smelling 9 odorants that systematically varied in perceived valence. Re...

  15. A study of the valence shell electronic structure and photoionisation dynamics of para-dichlorobenzene and para-bromochlorobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Powis, I. [School of Chemistry, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Trofimov, A.B. [Laboratory of Quantum Chemistry, Irkutsk State University, 664003 Irkutsk (Russian Federation); A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk (Russian Federation); Bodzuk, I.L. [Laboratory of Quantum Chemistry, Irkutsk State University, 664003 Irkutsk (Russian Federation); Holland, D.M.P., E-mail: david.holland@stfc.ac.uk [Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD (United Kingdom); Potts, A.W. [Department of Physics, King’s College, Strand, London WC2R 2LS (United Kingdom); Karlsson, L. [Department of Physics, Uppsala University, Box 530, SE-751 21 Uppsala (Sweden)

    2013-03-29

    Highlights: ► Electronic structure and photoionisation dynamics of pDCB and pBCB have been studied. ► Dynamics affected by halogen atom Cooper minimum. ► Many-body effects influence inner valence shell ionisation. - Abstract: The valence shell electronic structure and photoionisation dynamics of para-dichlorobenzene and para-bromochlorobenzene have been investigated both experimentally and theoretically. High resolution photoelectron spectra of the outer valence orbitals have been recorded with HeI radiation and the observed structure has been interpreted using calculated ionisation energies and spectral intensities. The theoretical predictions for the single-hole ionic states due to outer valence ionisation agree satisfactorily with the experimental results. Ionisation from the inner valence orbitals is strongly influenced by many-body effects and the with a particular orbital is spread amongst numerous satellites. Some of the photoelectron bands exhibit vibrational progressions and tentative assignments have been proposed. The photoionisation dynamics of the outer valence orbitals of para-dichlorobenzene have been investigated theoretically by using the continuum multiple scattering approach to calculate photoionisation partial cross-sections and photoelectron anisotropy parameters. The results show that ionisation from some of the orbitals is affected by the Cooper minimum associated with the chlorine atom. Synchrotron radiation has been used to record angle resolved photoelectron spectra of the entire valence shell, for photon energies between threshold and ∼100 eV, and these have allowed the corresponding experimental data to be derived. A comparison between the predicted and measured anisotropy parameters confirms the influence of the Cooper minimum in those orbitals related to the chlorine lone-pairs.

  16. Constraints to the flat band potential of hematite photo-electrodes.

    Science.gov (United States)

    Hankin, A; Alexander, J C; Kelsall, G H

    2014-08-14

    We revisit the fundamental constraints that apply to flat band potential values at semiconductor photo-electrodes. On the physical scale, the Fermi level energy of a non-degenerate semiconductor at the flat band condition, EF(FB), is constrained to a position between the conduction band, EC, and the valence band, EV,: |EC| flat band potentials appear to lie outside these fundamental boundaries. In order to assess the validity of any determined flat band potential, the boundaries set by the conduction band and the valence band must be computed on both scales a priori, where possible. This is accomplished with the aid of an analytical reconstruction of the semiconductor|electrolyte interface in question. To illustrate this approach, we provide a case study based on synthetic hematite, α-Fe2O3. The analysis of this particular semiconductor is motivated by the large variance in the flat band potential values reported in the literature.

  17. Bulk band gaps in divalent hexaborides

    Energy Technology Data Exchange (ETDEWEB)

    Denlinger, Jonathan; Clack, Jules A.; Allen, James W.; Gweon, Gey-Hong; Poirier, Derek M.; Olson, Cliff G.; Sarrao, John L.; Bianchi, Andrea D.; Fisk, Zachary

    2002-08-01

    Complementary angle-resolved photoemission and bulk-sensitive k-resolved resonant inelastic x-ray scattering of divalent hexaborides reveal a >1 eV X-point gap between the valence and conduction bands, in contradiction to the band overlap assumed in several models of their novel ferromagnetism. This semiconducting gap implies that carriers detected in transport measurements arise from defects, and the measured location of the bulk Fermi level at the bottom of the conduction band implicates boron vacancies as the origin of the excess electrons. The measured band structure and X-point gap in CaB6 additionally provide a stringent test case for proper inclusion of many-body effects in quasi-particle band calculations.

  18. Seniority Number in Valence Bond Theory.

    Science.gov (United States)

    Chen, Zhenhua; Zhou, Chen; Wu, Wei

    2015-09-01

    In this work, a hierarchy of valence bond (VB) methods based on the concept of seniority number, defined as the number of singly occupied orbitals in a determinant or an orbital configuration, is proposed and applied to the studies of the potential energy curves (PECs) of H8, N2, and C2 molecules. It is found that the seniority-based VB expansion converges more rapidly toward the full configuration interaction (FCI) or complete active space self-consistent field (CASSCF) limit and produces more accurate PECs with smaller nonparallelity errors than its molecular orbital (MO) theory-based analogue. Test results reveal that the nonorthogonal orbital-based VB theory provides a reverse but more efficient way to truncate the complete active Hilbert space by seniority numbers.

  19. Modulus of unbounded valence subdivision rules

    CERN Document Server

    Rushton, Brian

    2011-01-01

    Cannon, Floyd and Parry have studied the modulus of finite subdivision rules extensively. We investigate the properties of the modulus of subdivision rules with linear and exponential growth at every vertex, using barycentric subdivision and a subdivision rule for the Borromean rings as examples. We show that the subdivision rule arising from the Borromean rings is conformal, and conjecture that the subdivision rules for all alternating links are conformal. We show that the 1,2,3-tile criterion of Cannon, Floyd, and Parry is sufficient to prove conformality for linear growth, but not exponential growth. We show that the criterion gives a weaker form of conformality for subdivision rules of exponential growth at each vertex. We contrast this with the known, bounded-valence case, and illustrate our results with circle packings using Ken Stephenson's Circlepack.

  20. Spatial dispersion effects upon local excitation of extrinsic plasmons in a graphene micro-disk

    Science.gov (United States)

    Mencarelli, D.; Bellucci, S.; Sindona, A.; Pierantoni, L.

    2015-11-01

    Excitation of surface plasmon waves in extrinsic graphene is studied using a full-wave electromagnetic field solver as analysis engine. Particular emphasis is placed on the role played by spatial dispersion due to the finite size of the two-dimensional material at the micro-scale. A simple instructive set up is considered where the near field of a wire antenna is held at sub-micrometric distance from a disk-shaped graphene patch. The key-input of the simulation is the graphene conductivity tensor at terahertz frequencies, being modeled by the Boltzmann transport equation for the valence and conduction electrons at the Dirac points (where a linear wave-vector dependence of the band energies is assumed). The conductivity equation is worked out in different levels of approximations, based on the relaxation time ansatz with an additional constraint for particle number conservation. Both drift and diffusion currents are shown to significantly contribute to the spatially dispersive anisotropic features of micro-scale graphene. More generally, spatial dispersion effects are predicted to influence not only plasmon propagation free of external sources, but also typical scanning probe microscopy configurations. The paper sets the focus on plasmon excitation phenomena induced by near field probes, being a central issue for the design of optical devices and photonic circuits.

  1. Gastric Banding

    Science.gov (United States)

    ... gastric banding before deciding to have the procedure. Advertisements for a device or procedure may not include ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  2. Abnormal physics of group-II telluride system:valence contribution of d electrons

    Institute of Scientific and Technical Information of China (English)

    Duan He; Dong You-Zhong; Huang Yan; Chen Xiao-Shuang

    2011-01-01

    The physical trend of group-II tellurides is unexpected and contrary to the conventional wisdom. The present firstprinciples calculations give fundamental insights into the extent to which group-II telluride compounds present special properties upon mixing the d valence character.Our results provide explanations for the unexpected experimental observations based on the abnormal binding ordering of metal d electrons and their strong perturbation to the band edge states. The insights into the binary tellurides are useful for the study and control of the structural and chemical perturbation in their ternary alloys and heterostructures.

  3. Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

    Science.gov (United States)

    Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.

    2016-04-01

    We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.

  4. Hole-ion Mixed Conduction of Orientation-Controlled BaPrO3-δ Thin Film with Mixed Valence States

    Science.gov (United States)

    Higuchi, Tohru; Oda, Asuka; Tsuchiya, Takashi; Suetsugu, Takaaki; Suzuki, Naoya; Yamaguchi, Shohei; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi

    2015-11-01

    An in-plane-oriented BaPrO3-δ thin film with mixed valence states has been prepared on an Al2O3(0001) substrate by RF magnetron sputtering. With increasing crystallization temperature (Tsub), the lattice constant decreases and the orientation changes from the a-axis to the b-axis. The thin film prepared above Tsub = 800 °C exhibits a higher proton conductivity than bulk ceramics. The conductivity below 400 °C decreases with oxygen gas partial pressure, indicating the existence of hole-ion mixed conduction. The valence band consists of O 2p states hybridized with the Pr4+ (4f0) and Pr3+ (4f1L) states, which are closely related to the mixed conduction. The energy difference between the top of the valence band and the Fermi level corresponds to the activation energy of holes for the total conductivity below 400 °C.

  5. Spectroscopic and redox studies of valence-delocalized [Fe2S2](+) centers in thioredoxin-like ferredoxins.

    Science.gov (United States)

    Subramanian, Sowmya; Duin, Evert C; Fawcett, Sarah E J; Armstrong, Fraser A; Meyer, Jacques; Johnson, Michael K

    2015-04-01

    Reduced forms of the C56S and C60S variants of the thioredoxin-like Clostridium pasteurianum [Fe2S2] ferredoxin (CpFd) provide the only known examples of valence-delocalized [Fe2S2](+) clusters, which constitute a fundamental building block of all higher nuclearity Fe-S clusters. In this work, we have revisited earlier work on the CpFd variants and carried out redox and spectroscopic studies on the [Fe2S2](2+,+) centers in wild-type and equivalent variants of the highly homologous and structurally characterized Aquifex aeolicus ferredoxin 4 (AaeFd4) using EPR, UV-visible-NIR absorption, CD and variable-temperature MCD, and protein-film electrochemistry. The results indicate that the [Fe2S2](+) centers in the equivalent AaeFd4 and CpFd variants reversibly interconvert between similar valence-localized S = 1/2 and valence-delocalized S = 9/2 forms as a function of pH, with pKa values in the range 8.3-9.0, because of protonation of the coordinated serinate residue. However, freezing high-pH samples results in partial or full conversion from valence-delocalized S = 9/2 to valence-localized S = 1/2 [Fe2S2](+) clusters. MCD saturation magnetization data for valence-delocalized S = 9/2 [Fe2S2](+) centers facilitated determination of transition polarizations and thereby assignments of low-energy MCD bands associated with the Fe-Fe interaction. The assignments provide experimental assessment of the double exchange parameter, B, for valence-delocalized [Fe2S2](+) centers and demonstrate that variable-temperature MCD spectroscopy provides a means of detecting and investigating the properties of valence-delocalized S = 9/2 [Fe2S2](+) fragments in higher nuclearity Fe-S clusters. The origin of valence delocalization in thioredoxin-like ferredoxin Cys-to-Ser variants and Fe-S clusters in general is discussed in light of these results. PMID:25790339

  6. New Kronig-Penney Equation Emphasizing the Band Edge Conditions

    Science.gov (United States)

    Szmulowicz, Frank

    2008-01-01

    The Kronig-Penney problem is a textbook example for discussing band dispersions and band gap formation in periodic layered media. For example, in photonic crystals, the behaviour of bands next to the band edges is important for further discussions of such effects as inhibited light emission, slow light and negative index of refraction. However,…

  7. Valence XPS structure and chemical bond in Cs2UO2Cl4

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2016-01-01

    Full Text Available Quantitative analysis was done of the valence electrons X-ray photoelectron spectra structure in the binding energy (BE range of 0 eV to ~35 eV for crystalline dicaesium tetrachloro-dioxouranium (VI (Cs2UO2Cl4. This compound contains the uranyl group UO2. The BE and structure of the core electronic shells (~35 eV-1250 eV, as well as the relativistic discrete variation calculation results for the UO2Cl4(D4h cluster reflecting U close environment in Cs2UO2Cl4 were taken into account. The experimental data show that many-body effects due to the presence of cesium and chlorine contribute to the outer valence (0-~15 eV BE spectral structure much less than to the inner valence (~15 eV-~35 eV BE one. The filled U5f electronic states were theoretically calculated and experimentally confirmed to be present in the valence band of Cs2UO2Cl4. It corroborates the suggestion on the direct participation of the U5f electrons in the chemical bond. Electrons of the U6p atomic orbitals participate in formation of both the inner (IVMO and the outer (OVMO valence molecular orbitals (bands. The filled U6p and the O2s, Cl3s electronic shells were found to make the largest contributions to the IVMO formation. The molecular orbitals composition and the sequence order in the binding energy range 0 eV-~35 eV in the UO2Cl4 cluster were established. The experimental and theoretical data allowed a quantitative molecular orbitals scheme for the UO2Cl4 cluster in the BE range 0-~35 eV, which is fundamental for both understanding the chemical bond nature in Cs2UO2Cl4 and the interpretation of other X-ray spectra of Cs2UO2Cl4. The contributions to the chemical binding for the UO2Cl4 cluster were evaluated to be: the OVMO contribution - 76%, and the IVMO contribution - 24 %.

  8. Hetero-gate-dielectric double gate junctionless transistor (HGJLT) with reduced band-to-band tunnelling effects in subthreshold regime

    International Nuclear Information System (INIS)

    We propose a hetero-gate-dielectric double gate junctionless transistor (HGJLT), taking high-k gate insulator at source side and low-k gate insulator at drain side, which reduces the effects of band-to-band tunnelling (BTBT) in the sub-threshold region. A junctionless transistor (JLT) is turned off by the depletion of carriers in the highly doped thin channel (device layer) which results in a significant band overlap between the valence band of the channel region and the conduction band of the drain region, due to off-state drain bias, that triggers electrons to tunnel from the valence band of the channel region to the conduction band of the drain region leaving behind holes in the channel. These effects of band-to-band tunnelling increase the sub-threshold leakage current, and the accumulation of holes in the channel forms a parasitic bipolar junction transistor (n–p–n BJT for channel JLT) in the lateral direction by the source (emitter), channel (base) and drain (collector) regions in JLT structure in off-state. The proposed HGJLT reduces the subthreshold leakage current and suppresses the parasitic BJT action in off-state by reducing the band-to-band tunnelling probability. (semiconductor devices)

  9. An Ag3PO4/nitridized Sr2Nb2O7 composite photocatalyst with adjustable band structures for efficient elimination of gaseous organic pollutants under visible light irradiation.

    Science.gov (United States)

    Guo, Jianjun; Zhou, Han; Ouyang, Shuxin; Kako, Tetsuya; Ye, Jinhua

    2014-07-01

    A new Ag3PO4/nitridized Sr2Nb2O7 (N: 0-6.18 wt%) heterojunction was designed to eliminate gaseous pollutants under visible light irradiation. The phase compositions, optical properties, and morphologies of the heterojunction photocatalysts were systematically investigated via powder X-ray diffraction, UV-visible absorption spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Calculations of the electronic structure indicated that the top of the valance band of Sr2Nb2O7 could be raised by nitrogen doping. Therefore, the electronic structure of the Ag3PO4/nitridized Sr2Nb2O7 composite photocatalysts could be continually changed by controlling the amount of nitrogen in nitridized Sr2Nb2O7. Photocatalytic degradation of isopropyl alcohol (IPA) was carried out to test the photocatalytic activity of the heterojunction. The highest activity (CO2 evolution rate, 10.32 ppm h(-1)) was observed over the Ag3PO4/nitridized Sr2Nb2O7 heterojunction prepared by nitridation of Sr2Nb2O7 (SNO) at 1023 K. The CO2 evolution rate over the heterojunction was about 40 times higher than that over pure Ag3PO4 (CO2 evolution rate, 0.26 ppm h(-1)) under visible light irradiation. An investigation of the energy-band structure via valence band X-ray photoelectron spectroscopy indicated that the conduction band (CB) and valence band (VB) of Ag3PO4 are both more positive than those of nitridized Sr2Nb2O7, which facilitates the separation and transfer of photogenerated electrons and holes between the two photocatalysts. By continually adjusting the electronic structures, an optimal band gap for the nitridized Sr2Nb2O7 of 2.15 eV was obtained, and the potential of the valance band was +1.88 eV. PMID:24847986

  10. VALENCY AND SYNTACTICAL RELATION IN BIMANESS

    Directory of Open Access Journals (Sweden)

    Made Sri Satyawati

    2012-11-01

    Full Text Available This study presents the findings and descriptions of the replies to severalproblems that have not been completely and deeply discussed in the researchespreviously conducted on Bimanese. The problems are related to micro-linguistic factors,namely valency and syntactical relation in Bimanese. Both deductive and inductiveapproaches were applied to obtain satisfactory results. The main theory employed in thisstudy is Role and Reference Grammar Theory (RRG by Van Valin and J. Lapolla. It wasemployed to completely analyze the collected data in accordance with the problemsproposed in this research, and the inductive approach was employed to analyze the datain order to get novelties.In this study, clause structure is given the first priority to discuss, followed by thediscussion on operator, voice markers, nominalizers, and definiteness. Based on thepredicate category, the clause in Bimanese can be constructed with the constituents thatare under the categories of verb, noun, adjective, number, and adverb (prepositionalphrase. Based on the clause analysis, it has been found that in Bimanese there are severaloperators, each of which has different functional boundary in marking the clausemeaning. One operator may only sign nucleus, core (nucleus and argument, or core andperiphery. Bimanese has also been identified to have four linguistic states expressed byverbs that are made to make sense based on state (Aktisontrat, achievement, andaccomplishment. RRG classifies verbs into ten instead of four. However, in this study, tomake the analysis easier, verbs are classified into four. The predicate in Bimanese can beboth serial verbs and secondary verbs. It has also been found that the mechanism ofchange in valency is marked by the attachment of markers to the verbs resulting incausativity, applicativity, and resultivity. From those syntactical constructions, thesyntactical relation in Bimanese can be clearly identified. The discussion on syntacticalrelation

  11. Mulliken-Hush analysis of a bis(triarylamine) mixed-valence system with a N...N distance of 28.7 A.

    Science.gov (United States)

    Heckmann, Alexander; Amthor, Stephan; Lambert, Christoph

    2006-07-28

    An organic mixed valence compound with a spacer length of 25 unsaturated bonds separating two amine redox centres was synthesised and the electron transfer behaviour was investigated in the context of a Mulliken-Hush analysis in order to estimate the longest redox centre separation for which an intervalence charge transfer band can be observed.

  12. Band offsets at the CdS/CuInSe[sub 2] heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Wei, S.; Zunger, A. (National Renewable Energy Laboratory, Golden, Colorado 80401 (United States))

    1993-11-01

    The traditional explanation for the successful electron-hole separation in CdS/CuInSe[sub 2] solar cells rests on the assumption of a type-II band lineup: The conduction-band minimum is assumed to be on the CdS window while the valence-band maximum is assumed to be localized on the CuInSe[sub 2] absorber. This picture of negative conduction-band offset [Delta][ital E][sub [ital c

  13. Broadband dispersion compensation using microstructure fibers

    Institute of Scientific and Technical Information of China (English)

    Xia Zhang; Xiaomin Ren; Yongzhao Xu; Zinan Wang; Yongqing Huang; Xue Chen

    2007-01-01

    Beijing University of Posts and Telecommunications, Beijing 100876Dispersion and dispersion slope compensation of 10-Gb/s pulses using microstructure fibers (MFs) is demonstrated experimentally. A 26-m MF is used to compensate the dispersion of 2-km standard singe mode fiber in a 20-nm range in C band. The experimental results show that a significant improvement can be achieved in the quality of the observed pulses with the dispersion compensation. Moreover, the further research shows that the MF can compensate the anomalous dispersion of a single mode fiber within ±0.27 ps/(nm·km) over a 50-nm wavelength range from 1520 to 1570 nm.

  14. Photoinduced mixed valency in zinc porphyrin dimer of triruthenium cluster dyads.

    Science.gov (United States)

    Henderson, Jane; Kubiak, Clifford P

    2014-10-20

    The preparation, electrochemistry, and spectroscopic characterization of three new species, (ZnTPPpy)Ru3O(OAc)6(CO)-pz-Ru3O(OAc)6(CO)L, where ZnTPPpy = zinc(II) 5-(4-pyridyl)-10,15,20-triphenylporphyin, L = pyridyl ligand, and pz = pyrazine, are reported. These porphyrin-coordinated Ru3O–BL–Ru3O (BL = bridging ligand) dyads are capable of undergoing intramolecular electron transfer from the photoexcited Zn porphyrin to Ru3O donor–bridge–acceptor dimer systems. Seven reversible redox processes are observed in the cyclic voltammograms of the newly synthesized dyads, showing no significant electrochemical interaction between the redox active porphyrin and the pyrazine-bridged ruthenium dimer of Ru3O trimers. From the electrochemical behavior of the dyads, large comproportionation constants (Kc = 6.0 × 10(7) for L = dmap) were calculated from the reduction potentials of the Ru(III)Ru(III)Ru(II) clusters, indicating a stable mixed-valence state. Electronic absorption spectra of the singly reduced mixed-valence species show two intervalence charge transfer (IVCT) bands assigned within the Brunschwig–Creutz–Sutin semiclassical three-state model as metal-to-bridge and metal-to-metal in character. The progression from most to least delocalized mixed-valence dimer ions, as determined by the divergence of the IVCT bands and in agreement with electrochemical data, follows the order of L = 4-dimethylaminopyridine (dmap) > pyridine (py) > 4-cyanopyridine (cpy). These systems show dynamic coalescence of the infrared spectra in the ν(CO) region of the singly reduced state. This sets the time scale of electron exchange at dimer is predicted to be thermodynamically favorable, with ΔGFET(0) ranging from −0.54 eV for L = dmap to −0.62 eV for L = cpy. Observation of IVCT band growth under continual photolysis (λexc = 568 nm) confirms a phototriggered intramolecular electron transfer process resulting in a strongly coupled singly reduced mixed-valence species.

  15. Valence electron theory of graphite spheroidizing in primary crystallization

    Institute of Scientific and Technical Information of China (English)

    刘志林; 孙振国; 李志林

    1995-01-01

    Bond-length-difference (BLD) analysis results show that austenrte and cementite containing Mg, Zr. S have very different valence electron structures from Fe -C austenite and cementite. We find that this difference is the tie of absorption hypothesis, surface tension hypothesis, undercooling hypothesis in graphite spheroidizing theory. By using "the model of valence electron theory of drag-like effect" in our previous paper in crystallization theory, the spheroidizing effect of Mg and Zr and the anti-spheroidizing effect of S can be explained with the valence electron structure data of phases. Therefore, electron theory of graphite spheroidizing can be advanced.

  16. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.

    2016-01-01

    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil biodeg

  17. Eu valence and Fermi-surface development in EuX{sub 2}Si{sub 2} (X = Co, Rh, Ir) systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetze, K. [Hochfeld-Magnetlabor Dresden, Helmholtz-Zentrum Dresden-Rossendorf (Germany); TU Dresden, Institut fuer Festkoerperphysik (Germany); Seiro, S.; Geibel, C.; Rosner, H.; Petzold, V. [MPI for Chemical Physics of Solids (Germany); Polyakov, A.; Wosnitza, J. [Hochfeld-Magnetlabor Dresden, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Sheikin, I. [LNCMI-Grenoble (France); Suslov, A. [National High Magnetic Field Laboratory, Tallahassee (United States)

    2013-07-01

    The valence-fluctuating Eu systems EuX{sub 2}Si{sub 2}, with X being the transition metal Co, Ir, or Rh, show different types of ground states, strongly depending on X. The instability of the Eu 4f shell underlies this phenomenon and leads among other effects to different valence states ranging from Eu{sup 2+} over mixed valence and intermediate valence behavior to Eu{sup 3+}. Investigations on the structure and the magnetic behavior of EuCo{sub 2}Si{sub 2}, EuIr{sub 2}Si{sub 2}, and EuRh{sub 2}Si{sub 2} have revealed their Eu valence. Further experiments on specific heat and resistivity gave insights to magnetic ordering, electronic correlations, and possible valence fluctuations. We report about a systematic de Haas-van Alphen study on the Fermi-surface development of the EuX{sub 2}Si{sub 2} compounds in magnetic fields up to 35 T. High-quality single crystals were available for the first time. We focus on the Fermi-surface topology obtained by angle dependent measurements and discuss a comparison to band-structure calculations.

  18. Core and valence thermal vibrations in diamond, silicon, and germanium

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, R. (School of Physics, Madurai Kamaraj Univ. (India)); Balamurugan, P. (School of Physics, Madurai Kamaraj Univ. (India)); Mohanlal, S.K. (School of Physics, Madurai Kamaraj Univ. (India))

    1994-08-01

    An analysis is made using published X-ray data, for the thermal vibrations in diamond, silicon, and germanium. The overall thermal vibration is split into core and valence contributions, because valence electrons can oscillate with different phase and amplitude than core electrons due to bond polarizability. Using indigenously developed computer programs the published data are analyzed. In the first phase, the overall Debye-Waller factor of diamond, Si, and Ge together with scaling and extinction factors are refined using the method of least squares. In the second phase, the core and valence contributions of the harmonic temperature factor are evaluated. Finally, in the third phase, the core and valence contributions of the anharmonic temperature factor are evaluated. The error in the fitting procedure is less than 1% for Si and Ge and about 3% for diamond. (orig.)

  19. Photodissociation of carbon dioxide in singlet valence electronic states. II. Five state absorption spectrum and vibronic assignment

    CERN Document Server

    Grebenshchikov, Sergy Yu

    2013-01-01

    The absorption spectrum of CO$_2$ in the wavelength range 120\\,nm --- 160\\,nm is analyzed by means of quantum mechanical calculations performed using vibronically coupled PESs of five singlet valence electronic states and the coordinate dependent transition dipole moment vectors. The thermally averaged spectrum, calculated for T=190\\,K via Boltzmann averaging of optical transitions from many initial rotational states, accurtely reproduces the experimental spectral envelope, consisting of a low and a high energy band, the positions of the absorption maxima, their FWHMs, peak intensities, and frequencies of diffuse structures in each band. Contributions of the vibronic interactions due to Renner-Teller coupling, conical intersections, and the Herzberg-Teller effect are isolated and the calculated bands are assigned in terms of adiabatic electronic states. Finally, diffuse structures in the calculated bands are vibronically assigned using wave functions of the underlying resonance states. It is demonstrated that...

  20. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    Science.gov (United States)

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  1. Mn 3s exchange splitting in mixed-valence manganites.

    Energy Technology Data Exchange (ETDEWEB)

    Galakhov, V. R.; Demeter, M.; Bartkowski, S.; Neumann, M.; Ovechkina, N. A.; Kurmaev, E. Z.; Lobachevskaya, N. I.; Mukovskii, Ya. M.; Mitchell, J.; Ederer, D. L.; Russian Academy of Sciences; Univ. of Osnabruck; Moscow State Steel and Alloys Inst.; Tulane Univ.

    2002-03-15

    We present Mn 3s x-ray photoelectron spectra of manganese oxides with the Mn formal valency from 2+ to 4+. We found that the Sr{sup 2+} doping or cation deficiency in manganites do not change the Mn 3s splitting in manganites with the Mn formal valency from 3.0+ to 3.3+. We suggest that doping holes are localized in O 2p states.

  2. Complex verbs, simple alternations: valency and verb classes in Jaminjung.

    OpenAIRE

    Schultze-Berndt, Eva

    2012-01-01

    This chapter investigates valency patterns in Jaminjung, a language of the small Jaminjungan (or Western Mirndi) subgroup of the geographically discontinuous Mirndi language family of Northern Australia. Jaminjung is a typical “Non-Pama-Nyungan” language in that grammatical roles are indicated both by case markers and by pronominal indices (for subject and object) on inflecting verbs. Its most interesting property from the point of view of investigating valency, however, is the prevalence of ...

  3. Input-specific contributions to valence processing in the amygdala.

    Science.gov (United States)

    Correia, Susana S; Goosens, Ki A

    2016-10-01

    Reward and punishment are often thought of as opposing processes: rewards and the environmental cues that predict them elicit approach and consummatory behaviors, while punishments drive aversion and avoidance behaviors. This framework suggests that there may be segregated brain circuits for these valenced behaviors. The basolateral amygdala (BLA) is one brain region that contributes to both types of motivated behavior. Individual neurons in the BLA can favor positive over negative valence, or vice versa, but these neurons are intermingled, showing no anatomical segregation. The amygdala receives inputs from many brain areas and current theories posit that encoding of positive versus negative valence by BLA neurons is determined by the wiring of each neuron. Specifically, many projections from other brain areas that respond to positive and negative valence stimuli and predictive cues project strongly to the BLA and likely contribute to valence processing within the BLA. Here we review three of these areas, the basal forebrain, the dorsal raphe nucleus and the ventral tegmental area, and discuss how these may promote encoding of positive and negative valence within the BLA. PMID:27634144

  4. Emotional valence and the free-energy principle.

    Directory of Open Access Journals (Sweden)

    Mateus Joffily

    Full Text Available The free-energy principle has recently been proposed as a unified Bayesian account of perception, learning and action. Despite the inextricable link between emotion and cognition, emotion has not yet been formulated under this framework. A core concept that permeates many perspectives on emotion is valence, which broadly refers to the positive and negative character of emotion or some of its aspects. In the present paper, we propose a definition of emotional valence in terms of the negative rate of change of free-energy over time. If the second time-derivative of free-energy is taken into account, the dynamics of basic forms of emotion such as happiness, unhappiness, hope, fear, disappointment and relief can be explained. In this formulation, an important function of emotional valence turns out to regulate the learning rate of the causes of sensory inputs. When sensations increasingly violate the agent's expectations, valence is negative and increases the learning rate. Conversely, when sensations increasingly fulfil the agent's expectations, valence is positive and decreases the learning rate. This dynamic interaction between emotional valence and learning rate highlights the crucial role played by emotions in biological agents' adaptation to unexpected changes in their world.

  5. Emotional valence and the free-energy principle.

    Science.gov (United States)

    Joffily, Mateus; Coricelli, Giorgio

    2013-01-01

    The free-energy principle has recently been proposed as a unified Bayesian account of perception, learning and action. Despite the inextricable link between emotion and cognition, emotion has not yet been formulated under this framework. A core concept that permeates many perspectives on emotion is valence, which broadly refers to the positive and negative character of emotion or some of its aspects. In the present paper, we propose a definition of emotional valence in terms of the negative rate of change of free-energy over time. If the second time-derivative of free-energy is taken into account, the dynamics of basic forms of emotion such as happiness, unhappiness, hope, fear, disappointment and relief can be explained. In this formulation, an important function of emotional valence turns out to regulate the learning rate of the causes of sensory inputs. When sensations increasingly violate the agent's expectations, valence is negative and increases the learning rate. Conversely, when sensations increasingly fulfil the agent's expectations, valence is positive and decreases the learning rate. This dynamic interaction between emotional valence and learning rate highlights the crucial role played by emotions in biological agents' adaptation to unexpected changes in their world.

  6. Valence fluctuation in CeMo{sub 2}Si{sub 2}C

    Energy Technology Data Exchange (ETDEWEB)

    Paramanik, U.B.; Anupam [Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India); Burkhardt, U. [Max-Planck Institute for Chemical Physics of Solids, 01187 Dresden (Germany); Prasad, R. [Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India); Geibel, C. [Max-Planck Institute for Chemical Physics of Solids, 01187 Dresden (Germany); Hossain, Z., E-mail: zakir@iitk.ac.in [Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India)

    2013-12-15

    Highlights: •Evidence for valence fluctuation of Ce ions. •XAS provides average formal LIII valence of Ce. •Kadowaki Woods ratio and Sommerfeld Wilson ratio indicate Fermi-liquid behavior. •DFT calculations reveal strong hybridization between Ce 4f and Mo 4d states. -- Abstract: We report on the valence fluctuation of Ce in CeMo{sub 2}Si{sub 2}C as studied by means of magnetic susceptibility χ(T), specific heat C(T), electrical resistivity ρ(T) and X-ray absorption spectroscopy. Powder X-ray diffraction revealed that CeMo{sub 2}Si{sub 2}C crystallizes in CeCr{sub 2}Si{sub 2}C-type layered tetragonal crystal structure (space group P4/mmm). The unit cell volume of CeMo{sub 2}Si{sub 2}C deviates from the expected lanthanide contraction, indicating non-trivalent state of Ce ions in this compound. The observed weak temperature dependence of the magnetic susceptibility and its low value indicate that Ce ions are in valence fluctuating state. The formal L{sub III} Ce valence in CeMo{sub 2}Si{sub 2}C〈ν{sup ∼}〉=3.14 as determined from X-ray absorption spectroscopy measurement is well below the value 〈ν{sup ∼}〉≃3.4 in tetravalent Ce compound CeO{sub 2}. The temperature dependence of specific heat does not show any anomaly down to 1.8 K which rules out any magnetic ordering in the system. The Sommerfeld coefficient obtained from the specific heat data is γ = 23.4 mJ/mol K{sup 2}. The electrical resistivity follows the T{sup 2} behavior in the low temperature range below 35 K confirming a Fermi liquid behavior. Accordingly both the Kadowaki Woods ratio A/γ{sup 2} and the Sommerfeld Wilson ratio χ(0)/γ are in the range expected for Fermi-liquid systems. In order to get some information on the electronic states, we calculated the band structure within the density functional theory, eventhough this approach is not able to treat 4f electrons accurately. The non-f electron states crossing the Fermi level have mostly Mo 4d character. They provide the

  7. Multiplet-Splitting of the Quasi-Atomic-Like Core-Valence-Valence Auger Spectra of Zinc Metal

    Institute of Scientific and Technical Information of China (English)

    YUAN Jian-Min

    2001-01-01

    Multiplet-splitting of the quasi-atomic-like core-valence-valence (CVV) Auger spectra of zinc metal is calculated by explicitly considering the so-called hole-hole interaction in the final valence states of the Auger transition. We assume that before the Auger transition occurs, the occupied valence states relax to screen the core-hole which results in a redistribution of the valence electrons, in particular within the atom that contains a hole in the core. The supercell method is used to calculate the electronic states concerned by the Auger transition, which is accomplished by the self-consistent full-potential linearized augmented plane wave method. In each supercell, one atom is considered to have a core-hole and many others without it. Due to relaxation and screening, the valence states at the site of the Auger transition are more localized compared with those in the ground-state metal. The multiplet peaks of the quasi-atomic-like CVV Auger spectra of zinc metal are obtained by calculating the Auger transition matrix elements between the referred states.

  8. High-pressure synchrotron Mössbauer and X-ray diffraction studies: Exploring the structure-related valence fluctuation in EuNi2P2

    Science.gov (United States)

    Li, Chunyu; Yu, Zhenhai; Bi, Wenli; Zhao, Jiyong; Hu, Michael Y.; Zhao, Jinggeng; Wu, Wei; Luo, Jianlin; Yan, Hao; Alp, Esen E.; Liu, Haozhe

    2016-11-01

    The high-pressure effect on valence fluctuation of the ThCr2Si2-type intermetallic compound EuNi2P2 has been investigated using in situ synchrotron Mössbauer spectroscopy (SMS). The isomer shift of 151Eu in EuNi2P2 increases monotonically with increasing pressure up to 50 GPa, suggesting a valence transition of the Eu from mixed toward trivalent. The synchrotron angle-dispersive X-ray diffraction (AD-XRD) experiment shows that EuNi2P2 remains in the tetragonal structure up to 32.5 GPa at room temperature. We propose that the evolutions of bonding distance with pressure have an obvious effect on the valence fluctuation.

  9. Geometry of magnetic rotational (MR) band-crossing in MR phenomenon

    International Nuclear Information System (INIS)

    In this work, a schematic model base on semiclassical (SC) approach of Macchiavelli et.al was proposed to explain MR band-crossing. The MR band-crossing occurs due to the alignment of a pair of valence nucleon and the shear blades re-open to build up a new shear band. Due to the above interpretation of MR band-crossing, the B(M1) value can be calculated when the band changes its structure during crossing. In the present paper, we report semiclassical model to calculate the B(M1) value in the MR band-crossing region

  10. The acoustic correlates of valence depend on emotion family.

    Science.gov (United States)

    Belyk, Michel; Brown, Steven

    2014-07-01

    The voice expresses a wide range of emotions through modulations of acoustic parameters such as frequency and amplitude. Although the acoustics of individual emotions are well understood, attempts to describe the acoustic correlates of broad emotional categories such as valence have yielded mixed results. In the present study, we analyzed the acoustics of emotional valence for different families of emotion. We divided emotional vocalizations into "motivational," "moral," and "aesthetic" families as defined by the OCC (Ortony, Clore, and Collins) model of emotion. Subjects viewed emotional scenarios and were cued to vocalize congruent exclamations in response to them, for example, "Yay!" and "Damn!". Positive valence was weakly associated with high-pitched and loud vocalizations. However, valence interacted with emotion family for both pitch and amplitude. A general acoustic code for valence does not hold across families of emotion, whereas family-specific codes provide a more accurate description of vocal emotions. These findings are consolidated into a set of "rules of expression" relating vocal dimensions to emotion dimensions.

  11. Space-Valence Priming with Subliminal and Supraliminal Words

    Directory of Open Access Journals (Sweden)

    Ulrich eAnsorge

    2013-02-01

    Full Text Available To date it is unclear whether (1 awareness-independent non-evaluative semantic processes influence affective semantics and whether (2 awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked primes and visible targets in a space-valence across-category congruence effect. In line with (1, we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1: Classifications were faster with a congruent prime (e.g., the prime ‘up’ before the target ‘happy’ than with an incongruent prime (e.g., the prime ‘up’ before the target ‘sad’. In contrast to (2, no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2. Control conditions showed that standard masked response-priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1 that awareness-independent non-evaluative semantic priming influences valence judgments.

  12. Valence quark distributions in nucleon at low Q sup 2 in QCD

    CERN Document Server

    Ioffe, B L

    2003-01-01

    Valence u- and d-quarks distributions in proton are calculated in QCD at low Q sup 2 and intermediate x, basing on the operator product expansion (OPE). The imaginary part of the virtual photon scattering amplitude on quark current with proton quantum numbers is considered. The initial and final virtualities p sup 2 sub 1 and p sup 2 sub 2 of the currents are assumed to be large, negative and different, p sup 2 sub 1 not =p sup 2 sub 2. The OPE in p sup 2 sub 1 , p sup 2 sub 2 up to dimension 6 operators was performed. Double dispersion representations in p sup 2 sub 1 , p sup 2 sub 2 of the amplitudes in terms of physical states contributions are used. Putting them to be equal to those calculated in QCD, the sum rules for quark distributions are found. The double Borel transformations are applied to the sum rules. Leading order perturbative corrections are accounted. Valence quark distributions are found: u(x) sub v at 0.15

  13. Modified Cr valence in symmetric oxygen ion conducting half cells with ion flow

    Science.gov (United States)

    Finsterbusch, Martin; Lussier, Alexandre; Negusse, Ezana; Idzerda, Yves

    2010-03-01

    The degradation mechanisms in ion conducting materials, including solid oxide fuel cells (SOFC), are still of high interest in current energy research, especially with regards to material and interface stability, fuel impurities and impurities originating from sealing or interconnect materials. A common practice is the use of symmetric half-cells (e.g. cathode/electrolyte/cathode) to determine interface stability via cross section Energy Dispersive x-ray Spectroscopy line scans and overpotential magnitude and degradation via AC-impedance spectroscopy. Using these electrically driven half-cells, we have developed a new method to directly measure degradation due to oxygen ion flow through ion conducting materials and their associated interface structures. By using X-ray absorption spectroscopy of cells before and after oxygen ion flow (800 C for 100 hours), we determined that the valence state of Cr that migrated from a metallic interconnect into the porous cathode changes in valence from +3 (Cr2O3) to +6 (CrO3), depending on the direction of the oxygen ion flow. This observation is strong evidence of the influence of the oxygen ion flux on the degradation mechanisms of ion conducting materials.

  14. Nonequilibrium Green's function formulation of intersubband absorption for nonparabolic single-band effective mass Hamiltonian

    Science.gov (United States)

    Kolek, Andrzej

    2015-05-01

    The formulas are derived that enable calculations of intersubband absorption coefficient within nonequilibrium Green's function method applied to a single-band effective-mass Hamiltonian with the energy dependent effective mass. The derivation provides also the formulas for the virtual valence band components of the two-band Green's functions which can be used for more exact estimation of the density of states and electrons and more reliable treatment of electronic transport in unipolar n-type heterostructure semiconductor devices.

  15. Topological Structure of Phase Vortex in Resonating Valence Bond Superconductivity

    Institute of Scientific and Technical Information of China (English)

    SHI Xu-Guang; DUAN Yi-Shi

    2006-01-01

    In this paper, based on the Schrodinger equation and the ψ-mapping theory, the accurate expression for the gradient of resonating valence bond superconducting phase Θs is found. The expression of (△→)Θs is just the velocity flow (V) without considering the coefficient. The curl of (△→)Θs is where the vortex lies, and has important relation to δ2(ψ) and an important relation to the zero points of resonating valence bond superconducting order parameter ψ. The topological structure of the vortex is characterized by the ψ-mapping topological numbers Hopf-index and Brouwer degrees. The Ginzberg-Landau equation in resonating valence bond state also is discussed in this theory. The magnetic property is discussed also.

  16. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy

    Science.gov (United States)

    Seidel, Robert; Winter, Bernd; Bradforth, Stephen E.

    2016-05-01

    The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway.

  17. Circulant Double Coverings of a Circulant Graph of Valency Five

    Institute of Scientific and Technical Information of China (English)

    Rong Quan FENG; Jin Ho KWAK

    2007-01-01

    Enumerating the isomorphism classes of several types of graph covering projections is one of the central research topics in enumerative topological graph theory. A covering of G is called circulant if its covering graph is circulant. Recently, the authors [Discrete Math., 277, 73-85 (2004)]enumerated the isomorphism classes of circulant double coverings of a certain type, called a typicalcovering, and showed that no double covering of a circulant graph of valency three is circulant. Also, in [Graphs and Combinatorics, 21, 386-400 (2005)], the isomorphism classes of circulant double coverings of a circulant graph of valency four are enumerated. In this paper, the isomorphism classes of circulant double coverings of a circulant graph of valency five are enumerated.

  18. Recognizing the emotional valence of names: an ERP study.

    Science.gov (United States)

    Wang, Lin; Zhu, Zude; Bastiaansen, Marcel; Hagoort, Peter; Yang, Yufang

    2013-04-01

    Unlike common nouns, person names refer to unique entities and generally have a referring function. We used event-related potentials to investigate the time course of identifying the emotional meaning of nouns and names. The emotional valence of names and nouns were manipulated separately. The results show early N1 effects in response to emotional valence only for nouns. This might reflect automatic attention directed towards emotional stimuli. The absence of such an effect for names supports the notion that the emotional meaning carried by names is accessed after word recognition and person identification. In addition, both names with negative valence and emotional nouns elicited late positive effects, which have been associated with evaluation of emotional significance. This positive effect started earlier for nouns than for names, but with similar durations. Our results suggest that distinct neural systems are involved in the retrieval of names' and nouns' emotional meaning.

  19. Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey

    Directory of Open Access Journals (Sweden)

    Ee Wah Lim

    2015-09-01

    Full Text Available Resistive switching effect in transition metal oxide (TMO based material is often associated with the valence change mechanism (VCM. Typical modeling of valence change resistive switching memory consists of three closely related phenomena, i.e., conductive filament (CF geometry evolution, conduction mechanism and temperature dynamic evolution. It is widely agreed that the electrochemical reduction-oxidation (redox process and oxygen vacancies migration plays an essential role in the CF forming and rupture process. However, the conduction mechanism of resistive switching memory varies considerably depending on the material used in the dielectric layer and selection of electrodes. Among the popular observations are the Poole-Frenkel emission, Schottky emission, space-charge-limited conduction (SCLC, trap-assisted tunneling (TAT and hopping conduction. In this article, we will conduct a survey on several published valence change resistive switching memories with a particular interest in the I-V characteristic and the corresponding conduction mechanism.

  20. Fully automated incremental evaluation of MP2 and CCSD(T) core, core-valence and valence correlation energies

    International Nuclear Information System (INIS)

    Graphical abstract: Core- and core-valence correlation contributions are often neglected in studies of larger systems with many cores. The reason is mostly the computational effort, not the insignificance of the neglected effects. The so-called incremental scheme offers a simple way to evaluate these contributions with quantum chemical standard codes. A recently proposed coupled cluster evaluation of core-core and core-valence correlation effects within the incremental scheme has been extended to perturbative treatments. The accuracy of the approach is demonstrated at the MP2 and CCSD(T) level of theory. - Abstract: A recently proposed coupled cluster evaluation of core-core and core-valence correlation effects within the incremental scheme has been extended to perturbative treatments. The accuracy of the approach is demonstrated at the MP2 and CCSD(T) level of theory for various systems from different areas of chemistry, i.e. a binuclear titanium complex, a diallylmagnesium compound, a Hg4 cluster and various hydration complexes of the sodium cation. Besides the convergence of individual correlation contributions arising from the core and/or valence electron systems the basis set dependence of the contributions was also monitored. Results within chemical accuracy of 1 kcal/mol in the total energies are typically obtained at third order of the incremental expansion. Furthermore a few reasonable simplifications of the incremental core-valence treatment are proposed, which allow a large number of individual calculations to be omitted a priori without a significant loss of accuracy.

  1. Bond—Valence Sum and Distortion of Coordination Polyhedra

    Institute of Scientific and Technical Information of China (English)

    章礼明

    1993-01-01

    By using the Lagrange's intermediate value theorem,it is derived mathematically that the structur-al distortion of a coordination polyhedron may lead to an increase in bond-valence sum of the cen-tral atom of ion .The applicabilities of the bond-valence model are discussed in the following two cases:the modeling of crystal structure ,and the indication of distortion degree of a coordination polyhedron.Also it is shown that a distorted polyhedron should be in favor of a longer average bond length or a smaller coordination number.

  2. Superconductivity mechanism in metal oxides with variable valency

    International Nuclear Information System (INIS)

    In the present paper it is shown, that the metals with the mixed valency can have the subsystem of the local electron pairs. The local pairs may appreciably change the optical elastic modulus and the lattice parameters. The additions to the elastic modulus and the lattice parameters depend on concentration of the local pairs and temperature. The peculiarity of these dependences is the extrema. The concentration and temperature dependences of the additions are determined by intercentre correlations and pair delocalisation (pair transfer) in the subsystem of the local pairs. These results were used for the construction of the high-temperature superconductivity mechanism for the metals with the mixed valency

  3. Dispersion-Enhanced Laser Gyroscope

    Science.gov (United States)

    Smith, David D.; Chang, Hongrok; Arissian, L.; Diels, J. C.

    2008-01-01

    We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the output modulation to determine the conditions for enhanced gyroscopic sensitivities. The element is treated as both a phase and amplitude filter, and the time-dependence of the cavity field is considered. Both atomic gases (two-level and multi-level) and optical resonators (single and coupled) are considered and compared as dispersive elements. We find that it is possible to simultaneously enhance the gyro scale factor sensitivity and suppress the dead band by using an element with anomalous dispersion that has greater loss at the carrier frequency than at the side-band frequencies, i.e., an element that simultaneously pushes and intensifies the perturbed cavity modes, e.g. a two-level absorber or an under-coupled optical resonator. The sensitivity enhancement is inversely proportional to the effective group index, becoming infinite at a group index of zero. However, the number of round trips required to reach a steady-state also becomes infinite when the group index is zero (or two). For even larger dispersions a steady-state cannot be achieved, and nonlinear dynamic effects such as bistability and periodic oscillations are predicted in the gyro response.

  4. Phonon anomalies at the valence transition of SmS : An inelasticX-ray scattering study under pressure

    OpenAIRE

    Raymond, S.; Rueff, J. P.; D'Astuto, M.; D. Braithwaite; Krisch, M; Flouquet, J.

    2002-01-01

    The phonon dispersion curve of SmS under pressure was studied by inelastic x-ray scattering around the pressure-induced valence transition. A significant softening of the longitudinal acoustic modes propagating along the [111] direction was observed spanning a wide $q$ region from ($\\frac{2\\pi}{3a},\\frac{2\\pi}{3a},\\frac{2\\pi}{3a}$) up to the zone boundary as SmS becomes metallic. The largest softening occurs at the zone boundary and stays stable up to the highest measured pressure of 80 kbar ...

  5. Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    With the development of monochromators for (scanning) transmission electron microscopes, valence electron energy-loss spectroscopy (VEELS) is developing into a unique technique to study the band structure and optical properties of nanoscale materials. This article discusses practical aspects of spatially resolved VEELS performed in scanning transmission mode and the alignments necessary to achieve the current optimum performance of ∼0.15 eV energy resolution with an electron probe size of ∼1 nm. In particular, a collection of basic concepts concerning the acquisition process, the optimization of the energy resolution, the spatial resolution and the data processing are provided. A brief study of planar defects in a Y1Ba2Cu3O7-δ high-temperature superconductor illustrates these concepts and shows what kind of information can be accessed by VEELS

  6. Cranked-Hartree-Fock-Bogoliubov analysis at the valence maximum: Yrast behaviour of 66170Dy104

    International Nuclear Information System (INIS)

    Cranked Hartree-Fock Bogoliubov calculations have been performed for the doubly-mid-shell, N=104, Z=66 nucleus 170Dy. Assuming the usual spherical magic shell gaps at nucleon numbers 50, 82 and 126, this represents the nucleus with the maximum number of valence nucleons below 208Pb and as such, might naively be thought to exhibit one of the largest low-lying collectivities in the entire Segre chart. The results of our calculations suggest a robust quadrupole deformation, with very little deviation from axial symmetry up to high spins. These results are compared with other recent calculations performed by us on this nucleus which suggest a favoured, K=6+ (neutron) 2-quasiparticle state which should have an extended decay lifetime (of the order of hours) into the ground state band. (author)

  7. Compounds with mixed and intermediate sulfur valences in pyrite from the Amelia Mine, Southwest Wisconsin

    Science.gov (United States)

    Kucha, H.; Barnes, H. L.

    1995-02-01

    Compounds with mixed and intermediate sulfur valences form cloudy small inclusions in banded pyrite and 2 4 mm large rounded aggregates in pyrite stalactites. Such areas under high magnification of SEM appear to be a mixture of FeS2 with FeS2O3. Some of the microareas of 40 50 μm are homogeneous and can be identified by reflected light microscopy, microprobe and soft X-ray spectroscopy as Fe-thiosulphate, FeS2O3 or (Fe, Pb)2S3O7 with this compound having one sulfur -2 and two sulfurs +6. The intermediate sulfur compounds are enriched in Pb, Ni, Co and As.

  8. Temperature dependence of photoinduced valence changes in rubidium manganese hexacyanoferrate probed by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fukaya, R; Nakajima, M; Suemoto, T [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Tokoro, H; Ohkoshi, S, E-mail: fukaya@issp.u-tokyo.ac.j [Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2009-02-01

    Temperature dependence of the photoinduced charge transfer process in Rb{sub 0.94}Mn[Fe(CN){sub 6}]{sub 0.98}centre dot0.2H{sub 2}O was investigated by observing the pair valence states of adjacent metal ions by Raman spectroscopy. After irradiation by 395 nm light in resonance with ligand-to-metal charge transfer band (CN{sup -} -> Fe(III)), the photoinduced phase containing low-temperature-like phase was generated as a result of the charge transfer from Mn(II) to Fe(III). Since this process was suppressed upon cooling, it was suggested that the charge transfer process was assisted by a thermal-activated process.

  9. Dispersed Indeterminacy

    CERN Document Server

    Fayngold, Moses

    2013-01-01

    A state of a single particle can be represented by a quantum blob in the corresponding phase space, or a patch (granule) in its 2-D subspace. Its area is frequently stated to be no less than, implying that such a granule is an indivisible quantum of the 2-D phase space. But this is generally not true, as is evident, for instance, from representation of some states in the basis of innately discrete observables like angular momentum. Here we consider some dispersed states involving the evanescent waves different from that in the total internal reflection. Such states are represented by a set of separated granules with individual areas, but with the total indeterminacy . An idealized model has a discrete Wigner function and is described by a superposition of eigenstates with eigenvalues and forming an infinite periodic array of dots on the phase plane. The question about the total indeterminacy in such state is discussed. We argue that the eigenstates corresponding to the considered EW cannot be singled out by a...

  10. Protected Fe valence in quasi-two-dimensional α-FeSi2

    Science.gov (United States)

    Miiller, W.; Tomczak, J. M.; Simonson, J. W.; Smith, G.; Kotliar, G.; Aronson, M. C.

    2015-05-01

    We report the first comprehensive study of the high temperature form (α-phase) of iron disilicide. Measurements of the magnetic susceptibility, magnetization, heat capacity and resistivity were performed on well characterized single crystals. With a nominal iron d6 configuration and a quasi-two-dimensional crystal structure that strongly resembles that of LiFeAs, α-FeSi2 is a potential candidate for unconventional superconductivity. Akin to LiFeAs, α-FeSi2 does not develop any magnetic order and we confirm its metallic state down to the lowest temperatures (T = 1.8 K). However, our experiments reveal that paramagnetism and electronic correlation effects in α-FeSi2 are considerably weaker than in the pnictides. Band theory calculations yield small Sommerfeld coefficients of the electronic specific heat γ = Ce/T that are in excellent agreement with experiment. Additionally, realistic many-body calculations further corroborate that quasi-particle mass enhancements are only modest in α-FeSi2. Remarkably, we find that the natural tendency to vacancy formation in the iron sublattice has little influence on the iron valence and the density of states at the Fermi level. Moreover, Mn doping does not significantly change the electronic state of the Fe ion. This suggests that the iron valence is protected against hole doping and indeed the substitution of Co for Fe causes a rigid-band like response of the electronic properties. As a key difference from the pnictides, we identify the smaller inter-iron layer spacing, which causes the active orbitals near the Fermi level to be of a different symmetry in α-FeSi2. This change in orbital character might be responsible for the lack of superconductivity in this system, providing constraints on pairing theories in the iron based pnictides and chalcogenides.

  11. Regional versus Global Entanglement in Resonating-Valence-Bond states

    CERN Document Server

    Chandran, A; Sen, A; Sen, U; Vedral, V; Chandran, Anushya; Kaszlikowski, Dagomir; Sen, Aditi; Sen, Ujjwal; Vedral, Vlatko

    2007-01-01

    We investigate the entanglement properties of resonating valence bond states on two and higher dimensional lattices, which play an important role in the theory of conductivity. We show that these states are genuinely multipartite entangled, while there is only a negligible amount of two-site entanglement. We comment on possible physical implications of our findings.

  12. Recognizing the Emotional Valence of Names: An ERP Study

    Science.gov (United States)

    Wang, Lin; Zhu, Zude; Bastiaansen, Marcel; Hagoort, Peter; Yang, Yufang

    2013-01-01

    Unlike common nouns, person names refer to unique entities and generally have a referring function. We used event-related potentials to investigate the time course of identifying the emotional meaning of nouns and names. The emotional valence of names and nouns were manipulated separately. The results show early N1 effects in response to emotional…

  13. Raman Sideband Cooling of Two-Valence-Electron Fermionic Atoms

    Institute of Scientific and Technical Information of China (English)

    LI Guo-Hui; XU Xin-Ye

    2011-01-01

    We propose a method for laser cooling two-valence-electron fermionic atoms. Our protocol employs resolved-sideband cooling on the stimulated Raman transition between the two magnetic sublevels (m = F and m = F - 1) of the ground state with total anguiar momentum F. The optical pumping from m = F - 1 to 1 Pi are used to decouple atoms in the m = F - 1 state. We calculate the Raman coupling generated by an engineered optical lattice. The result shows that it is possible to laser cool the two-valence-electron fermionic atoms to the ground state. The atoms in the ground state provide a new system for quantum optics.%@@ We propose a method for laser cooling two-valence-electron fermionic atoms.Our protocol employs resolved- sideband cooling on the stimulated Raman transition between the two magnetic sublevels (m=F and m = F- 1) of the ground state with total angular momentum F.The optical pumping from m = F - 1 to p are used to decouple atoms in the m = F - 1 state.We calculate the Raman coupling generated by an engineered optical lattice.The result shows that it is possible to laser cool the two-valence-electron fermionic atoms to the ground state.The atoms in the ground state provide a new system for quantum optics.

  14. "Plug-and-go" strategy to manipulate streptavidin valencies.

    Science.gov (United States)

    Sun, Xun; Montiel, Daniel; Li, Hao; Yang, Haw

    2014-08-20

    The streptavidin-biotin set is one of the most widely utilized conjugation pairs in biotechnological applications. The tetravalent nature of streptavidin and its homologues, however, tends to result in such undesirable complications as cross-linking or ill-defined stoichiometry. Here, we describe a mutagenesis-free strategy to manipulate the valencies of wild-type streptavidin that only requires commercially available reagents. The basic idea is simple: one obtains the desired streptavidin valency by blocking off unwanted binding sites using ancillary biotin ("plug"); this way, the extraordinary fM-biotin-binding affinity is fully retained for the remaining sites in streptavidin. In the present implementation, the ancillary biotin is attached to an auxiliary separation handle, negatively charged DNA or His-tagged protein, via a photochemically or enzymatically cleavable linker. Mixing streptavidin with the ancillary biotin construct produces a distribution of streptavidin valencies. The subsequent chromatographic separation readily isolates the construct of desired streptavidin valency, and the auxiliary handles are easily removed afterward ("go"). We demonstrate how this "plug-and-go" strategy allows a precise control for the compositions of streptavidin-biotin conjugates at the single-molecule level. This low-entry-barrier protocol could further expand the application scope of the streptavidin technology.

  15. Tagging Multiple Emotional Stimuli: Negative Valence Has Little Benefit

    Science.gov (United States)

    Watson, Derrick G.; Blagrove, Elisabeth

    2012-01-01

    Six experiments examined the influence of emotional valence on the tagging and enumeration of multiple targets. Experiments 1, 5 and 6 found that there was no difference in the efficiency of tagging/enumerating multiple negative or positive stimuli. Experiment 2 showed that, when neutral-expression face distractors were present, enumerating…

  16. Valence orbital momentum distributions in s-triazine

    International Nuclear Information System (INIS)

    Valence orbital momentum distributions, rho(q), are obtained for s-triazine, C3H3N3, from (e,2e) spectroscopy and split valence SCFMO calculations. The separation energy spectrum simulated using the calculated rho(q) and ionization energies from Green's function calculations is in good agreement with experiment from 9--20 eV, but at higher energy the simulated spectrum has higher intensity than experiment, indicating that the Green's function calculation underestimates the complexity of the inner valence region. The calculated momentum distributions have their maxima at higher values than observed experimentally for the outermost valence orbitals, but the difference in momentum distributions between the antisymmetric 4e' N2p lone pair orbital of s-triazine and the N2p lone pair orbital of ammonia is reproduced well by the calculations. Similarly, calculated and experimental differences of Fourier transformed rho(q) for the 4e' and 3a/sup prime/1 N2p lone pair orbitals of triazine are in agreement and can be interpreted using plots of 4e' and 3a/sup /1 orbital averages and differences from the SCFMO calculations. The Fourier transformed momentum distribution of the 4e' orbital clearly shows the presence of both nearest-neighbor C and second-nearest-neighbor N interactions

  17. Electronic Band Structures of TiO2 with Heavy Nitrogen Doping

    Institute of Scientific and Technical Information of China (English)

    XUE Jinbo; LI Qi; LIANG Wei; SHANG Jianku

    2008-01-01

    The first-principles density-functional calculation was conducted to investigate the electronic band structures of titanium dioxide with heavy nitrogen doping (TiO2-xNx).The calculation results indicate that when x≤0.25,isolated N 2p states appear above the valence-band maximum of TiO2 without a band-gap narrowing between O 2p and Ti 3d states.When x≥0.50,an obvious band gap narrowing between O 2p and Ti 3d states was observed along with the existence of isolated N 2p states above the valence-band of TiO2,indicating that the mechanism proposed by Asahi et al operates under heavy nitrogen doping condition.

  18. Increasing efficiency in intermediate band solar cells with overlapping absorptions

    Science.gov (United States)

    Krishna, Akshay; Krich, Jacob J.

    2016-07-01

    Intermediate band (IB) materials are promising candidates for realizing high efficiency solar cells. In IB photovoltaics, photons are absorbed in one of three possible electronic transitions—valence to conduction band, valence to intermediate band, or intermediate to conduction band. With fully concentrated sunlight, when the band gaps have been chosen appropriately, the highest efficiency IB solar cells require that these three absorptions be non-overlapping, so absorbed photons of fixed energy contribute to only one transition. The realistic case of overlapping absorptions, where the transitions compete for photons, is generally considered to be a source of loss. We show that overlapping absorptions can in fact lead to significant improvements in IB solar cell efficiencies, especially for IB that are near the middle of the band gap. At low to moderate concentration, the highest efficiency requires overlapping absorptions. We use the detailed-balance method and indicate how much overlap of the absorptions is required to achieve efficiency improvements, comparing with some known cases. These results substantially broaden the set of materials that can be suitable for high-efficiency IB solar cells.

  19. Role of d-d and p-d hybridization in CoTi-based magnetic semiconductors with 21 and 26 valence electrons

    International Nuclear Information System (INIS)

    We have found that CoTiFeP, CoTiFeAs and CoTiFeSb with 26 valence electrons are magnetic semiconductors by first-principles calculations. The electronic structure, magnetic propeties and origin of the band gap are investigated and compared with the magnetic semiconductor CoTiVAl with 21 valence electrons. It has been found that the magnetic moment in CoTiVAl mainly originates from the large exchange splitting effect of the V atom, which carries the largest magnetic moment of 2.14 μ B, parallel to those of Co and Ti, while in CoTiFeZ (Z = P, As, Sb) compounds, the moments mainly originate from Co and Fe atoms. The atomic moments of Co and Fe are in an antiparallel arrangement with the moments of their nearest neighbors’ Ti atoms at the B site due to the strong hybridization between Co-3d, Fe-3d and Ti-3d electrons. Based on the classical molecular orbital hybridization theory, different origins of the gap in 21 and 26 valence electrons are analyzed. It is confirmed that p-d hybridization is significant for opening up the band gap, for adjusting the position of the Fermi level and the width of the band gap in our magnetic semiconductors. This will provide practical guidance for searching for new magnetic semiconducting materials. (paper)

  20. The anatomy of th e relatedness means:Valency theory revisited and compared

    OpenAIRE

    Med HAFSI

    2013-01-01

    The purpose of the present study was to review the author's valency theory inorder toclarify some important issues neglected in previous studies. First I have discussed therelationship between valency theory and drive theory. Drives were integrated asindependent elements whose role is to energize and activate the valency structure.Their content and goal is determined by the nature of valency structure. Unlike Freud,I do not thus conceive of them as the ultimate or primary motivational force. ...

  1. Simulations with different lattice Dirac operators for valence and sea quarks

    OpenAIRE

    Baer, O.; Rupak, G.; Shoresh, N

    2002-01-01

    We discuss simulations with different lattice Dirac operators for sea and valence quarks. A goal of such a "mixed" action approach is to probe deeper the chiral regime of QCD by enabling simulations with light valence quarks. This is achieved by using chiral fermions as valence quarks while computationally inexpensive fermions are used in the sea sector. Specifically, we consider Wilson sea quarks and Ginsparg-Wilson valence quarks. The local Symanzik action for this mixed theory is derived t...

  2. Electronic band structure of ZnO-rich highly mismatched ZnO1−xTex alloys

    International Nuclear Information System (INIS)

    We synthesized ZnO1−xTex alloys with Te composition x < 0.23 by using pulsed laser deposition. Alloys with x < 0.06 are crystalline with a columnar growth structure while samples with higher Te content are polycrystalline with random grain orientation. Electron microscopy images show a random distribution of Te atoms with no observable clustering. We found that the incorporation of a small concentration of Te (x ∼ 0.003) redshifts the ZnO optical absorption edge by more than 1 eV. The minimum band gap obtained in this work is 1.8 eV for x = 0.23. The optical properties of the alloys are explained by the modification of the valence band of ZnO, due to the anticrossing interactions of the localized Te states with the ZnO valence band extended states. Hence, the observed large band gap reduction is primarily originating from the upward shift of the valence band edge. We show that the optical data can be explained by the band anticrossing model with the localized level of Te located at 0.95 eV above the ZnO valence band and the band anticrossing coupling constant of 1.35 eV. These parameters allow the prediction of the compositional dependence of the band gap as well as the conduction and the valence band offsets in the full composition range of ZnO1−xTex alloys

  3. Developmental Reversals in False Memory: Effects of Emotional Valence and Arousal

    Science.gov (United States)

    Brainerd, C. J.; Holliday, R. E.; Reyna, V. F.; Yang, Y.; Toglia, M. P.

    2010-01-01

    Do the emotional valence and arousal of events distort children's memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can…

  4. Work Valence as a Predictor of Academic Achievement in the Family Context

    Science.gov (United States)

    Porfeli, Erik; Ferrari, Lea; Nota, Laura

    2013-01-01

    This study asserts a theoretical model of academic and work socialization within the family setting. The presumed associations between parents' work valences, children's work valences and valence perceptions, and children's academic interest and achievement are tested. The results suggest that children's perceptions of parents…

  5. Hybrid interlayer excitons with tunable dispersion relation

    Science.gov (United States)

    Skinner, Brian

    When two semiconducting materials are layered on top of each other, interlayer excitons can be formed by the Coulomb attraction of an electron in one layer to a hole in the opposite layer. The resulting exciton is a composite boson with a dispersion relation that is a hybrid between the dispersion relations of the electron and the hole separately. In this talk I show how such hybridization is particularly interesting when one layer has a ``Mexican hat''-shaped dispersion relation and the other has a conventional parabolic dispersion. In this case the interlayer exciton can have a range of qualitatively different dispersion relations, which can be continuously altered by an external field. This tunability in principle allows one to continuously tune a collection of interlayer excitons between different quantum many-body phases, including Bose-Einstein condensate, Wigner crystal, and fermion-like ``moat band'' phases.

  6. Diet after gastric banding

    Science.gov (United States)

    Gastric banding surgery - your diet; Obesity - diet after banding; Weight loss - diet after banding ... about any problems you are having with your diet, or about other issues related to your surgery ...

  7. Iliotibial band syndrome - aftercare

    Science.gov (United States)

    IT band syndrome - aftercare; Iliotibial band friction syndrome - aftercare ... If you have iliotibial band syndrome you may notice: Mild pain on the outside of your knee when you begin to exercise, which goes ...

  8. Radiative thermal escape in intermediate band solar cells

    Directory of Open Access Journals (Sweden)

    A. Luque

    2011-06-01

    Full Text Available To achieve high efficiency, the intermediate band (IB solar cell must generate photocurrent from sub-bandgap photons at a voltage higher than that of a single contributing sub-bandgap photon. To achieve the latter, it is necessary that the IB levels be properly isolated from the valence and conduction bands. We prove that this is not the case for IB cells formed with the confined levels of InAs quantum dots (QDs in GaAs grown so far due to the strong density of internal thermal photons at the transition energies involved. To counteract this, the QD must be smaller.

  9. Band Structure Modifications in Deformed InP Quantum Wires

    Directory of Open Access Journals (Sweden)

    V.V. Kuryliuk

    2014-11-01

    Full Text Available The work describes the features of the band structure of deformed InP nanowires with different diameters. It is shown that the bending of quantum wires is capable of creating local minima in the conduction and valence bands which are separated from the surface of the cylindrical wire. This result opens up new possibilities for controlling both the lifetime of photoexcited carriers by keeping them at these minima and the magnitude of the photovoltage in solar energy conversion devices based on quantum wires. The work lies within a common goal aiming to develop new methods of functionalization of nanostructured surfaces using mechanical deformations.

  10. Spin Dynamics and Magnetic Ordering in Mixed Valence Systems

    DEFF Research Database (Denmark)

    Shapiro, S. M.; Bjerrum Møller, Hans; Axe, J. D.;

    1978-01-01

    Neutron scattering measurements are reported on the mixed valence compounds Ce//1// minus //xTh//x and TmSe. The chi double prime (Q, omega ) as derived from the inelastic spectra of Ce//0//. //7//4Th//0//. //2//6 shows a peak in the gamma phase near 20. 0 meV and shifts abruptly to greater than 70....... 2 K. The magnetic phase diagram is understood as a successive domain reorientation and a metamagnetic phase transition for T less than 3 K with increasing field. The mixed valence nature manifests itself in a reduced moment and a markedly altered crystal field. Another sample of TmSe with a lattice...

  11. Realistic estimate of valence transversity distributions from inclusive dihadron production

    CERN Document Server

    Radici, Marco; Bacchetta, Alessandro; Guagnelli, Marco

    2015-01-01

    We present an updated extraction of the transversity parton distribution based on the analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets in collinear factorization. Data for proton and deuteron targets make it possible to perform a flavor separation of the valence components of the transversity distribution, using di-hadron fragmentation functions taken from the semi-inclusive production of two pion pairs in back-to-back jets in e+e- annihilation. The e+e- data from Belle have been reanalyzed using the replica method and a more realistic estimate of the uncertainties on the chiral-odd interference fragmentation function has been obtained. Then, the transversity distribution has been extracted by using the most recent and more precise COMPASS data for deep-inelastic scattering off proton targets. Our results represent the most accurate estimate of the uncertainties on the valence components of the transversity distribution currently available.

  12. Realistic estimate of valence transversity from dihadron production

    CERN Document Server

    Radici, Marco

    2015-01-01

    We have updated our extraction of the transversity parton distribution based on the analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets in collinear factorization. The most recent COMPASS data for proton and deuteron targets, complemented by previous HERMES data on the proton, make it possible to perform a flavor separation of the valence components of the transversity distribution, using di-hadron fragmentation functions taken from the semi-inclusive production of two pion pairs in back-to-back jets in $e^+ e^-$ annihilation. The $e^+ e^-$ data from BELLE have been reanalyzed to reach a more realistic estimate of the uncertainties on the chiral-odd interference fragmentation function. Our results represent the most accurate estimate of the uncertainties on the valence components of the transversity distribution currently available.

  13. Theoretical calculations of valence states in Fe-Mo compounds

    International Nuclear Information System (INIS)

    The half-metallic ferromagnetic double perovskite compound Sr2FeMoO6 is considered as an important material for spintronic applications. It appears to be fundamental to understand the role of electronic parameters controlling the half-metallic ground state. Fe-Mo double perovskites usually present some degree of Fe/Mo disorder which generally increases with doping. In this work, we study the valence states of Fe-Mo cations in the off-stoichiometric system Sr2Fe1+xMo1−xO6 (−1 ≤ x ≤ 1/3) with disorder. Our results for Fe and Mo valence states are obtained using the Green functions and the renormalization perturbation expansion method. The model is based on a correlated electron picture with localized Fe-spins and conduction Mo-electrons interacting with the local spins via a double-exchange-type mechanism

  14. Attosecond photoionization dynamics with stimulated core-valence transitions

    Science.gov (United States)

    You, Jhih-An; Rohringer, Nina; Dahlström, Jan Marcus

    2016-03-01

    We investigate ionization of neon atoms by an isolated attosecond pump pulse in the presence of two coherent extreme ultraviolet or x-ray probe fields. The probe fields are tuned to a core-valence transition in the residual ion and induce spectral shearing of the photoelectron distributions. We show that the photoelectron-ion coincidence signal contains an interference pattern that depends on the temporal structure of the attosecond pump pulse and the stimulated core-valence transition. Many-body perturbation theory is used to compute "atomic response times" for the processes and we find strikingly different behavior for stimulation to the outer-core hole (2 p ↔2 s ) and stimulation to the inner-core hole (2 p ↔1 s ). The response time of the inner-core transition is found to be comparable to that of state-of-the-art laser-based characterization techniques for attosecond pulses.

  15. Interchannel coupling effects in the valence photoionization of SF6

    Science.gov (United States)

    Jose, Jobin; Lucchese, Robert; Rescigno, Tom

    2014-05-01

    The complex Kohn and polyatomic Schwinger variational techniques have been employed to illustrate the interchannel coupling correlation effects in the valence photoionization dynamics of SF6. Partial photoionization cross sections and asymmetry parameters of six valence subshells (1t1 g, 5t1 u, 1t2 u, 3eg, 1t2 g, 4t1 u) are discussed in the framework of several theoretical and experimental studies. The complex Kohn results are in rather good agreement with experimental results, indicative of the fact that the interchannel coupling effects alter the photoionization dynamics significantly. We find that the dominant effect of interchannel coupling is to reduce the magnitude of shape resonant cross sections near threshold and to induce resonant features in other channels to which resonances are coupled.

  16. Energy-band diagram configuration of Al2O3/oxygen-terminated p-diamond metal-oxide-semiconductor

    Science.gov (United States)

    Maréchal, A.; Aoukar, M.; Vallée, C.; Rivière, C.; Eon, D.; Pernot, J.; Gheeraert, E.

    2015-10-01

    Diamond metal-oxide-semiconductor capacitors were prepared using atomic layer deposition at 250 °C of Al2O3 on oxygen-terminated boron doped (001) diamond. Their electrical properties were investigated in terms of capacitance and current versus voltage measurements. Performing X-ray photoelectron spectroscopy based on the measured core level energies and valence band maxima, the interfacial energy band diagram configuration of the Al2O3/O-diamond is established. The band diagram alignment is concluded to be of type I with valence band offset Δ E v of 1.34 ± 0.2 eV and conduction band offset Δ E c of 0.56 ± 0.2 eV considering an Al2O3 energy band gap of 7.4 eV. The agreement with electrical measurement and the ability to perform a MOS transistor are discussed.

  17. Tunable Band Alignment with Unperturbed Carrier Mobility of On-Surface Synthesized Organic Semiconducting Wires.

    Science.gov (United States)

    Basagni, Andrea; Vasseur, Guillaume; Pignedoli, Carlo A; Vilas-Varela, Manuel; Peña, Diego; Nicolas, Louis; Vitali, Lucia; Lobo-Checa, Jorge; de Oteyza, Dimas G; Sedona, Francesco; Casarin, Maurizio; Ortega, J Enrique; Sambi, Mauro

    2016-02-23

    The tunable properties of molecular materials place them among the favorites for a variety of future generation devices. In addition, to maintain the current trend of miniaturization of those devices, a departure from the present top-down production methods may soon be required and self-assembly appears among the most promising alternatives. On-surface synthesis unites the promises of molecular materials and of self-assembly, with the sturdiness of covalently bonded structures: an ideal scenario for future applications. Following this idea, we report the synthesis of functional extended nanowires by self-assembly. In particular, the products correspond to one-dimensional organic semiconductors. The uniaxial alignment provided by our substrate templates allows us to access with exquisite detail their electronic properties, including the full valence band dispersion, by combining local probes with spatial averaging techniques. We show how, by selectively doping the molecular precursors, the product's energy level alignment can be tuned without compromising the charge carrier's mobility. PMID:26841052

  18. Effects of musical valence on the cognitive processing of lyrics

    OpenAIRE

    Fiveash, Anna

    2014-01-01

    The effects of music on the brain have been extensively researched, and numerous connections have been found between music and language, music and emotion, and music and cognitive processing. Despite this work, these three research areas have never before been drawn together in a single research paradigm. This is significant as their combination could lead to valuable insights into the effects of musical valence on the cognitive processing of lyrics. Based on the feelings-as-information theor...

  19. Nuclear effects on valence quark distributions and sea quark distributions

    International Nuclear Information System (INIS)

    A method is presented to get nuclear effect functions RvA(xt) and Rsa(xt) on valence quark distributions and sea quark distributions from the data of 1-A DIS process and nuclear Drell-Yan process. Both the functions may be used to test the theoretical models explaining the nuclear effects. As a example, RvFe(xt) and RsFe(xt) of the iron nucleus were obtained by this method

  20. EEG study on affective valence elicited by novel and familiar pictures using ERD/ERS and SVM-RFE.

    Science.gov (United States)

    Hidalgo-Muñoz, A R; López, M M; Galvao-Carmona, A; Pereira, A T; Santos, I M; Vázquez-Marrufo, M; Tomé, A M

    2014-02-01

    EEG signals have been widely explored in emotional processing analyses, both in time and frequency domains. However, in such studies, habituation phenomenon is barely considered in the discrimination of different emotional responses. In this work, spectral features of the event-related potentials (ERPs) are studied by means of event-related desynchronization/synchronization computation. In order to determine the most relevant ERP features for distinguishing how positive and negative affective valences are processed within the brain, support vector machine-recursive feature elimination is employed. The proposed approach was applied for investigating in which way the familiarity of stimuli affects the affective valence processing as well as which frequency bands and scalp regions are more involved in this process. In a group composed of young adult women, results prove that parietooccipital region and theta band are especially involved in the processing of novelty in emotional stimuli. Furthermore, the proposed method has shown to perform successfully using a moderated number of trials. PMID:24257836

  1. Effects of valence-valence, core-valence, and core-core correlations on the fine-structure energy levels in Al-like ions

    International Nuclear Information System (INIS)

    This paper reports on multiconfiguration Dirac-Hartree-Fock calculations for both allowed and intercombination transitions and fine structure referring to the levels of a term in highly charged aluminum like ions. Results for fine-structure energy levels, the term splitting, the wavelengths, transition rates, and thereby the branching ratios and lifetimes for the Al-like 3s23p-3s3p2 transitions in the ions Fe XIV-Au LXVII are reported and compared with other theories and experiments, using the codes GRASP2K. Our calculated fine-structure energy levels are in excellent agreement with the experimental results and the experimentally compiled energy values of the National Institute for Standards and Technology wherever available. The calculated values including core-valence correlation are found to be similar and to compare very well with other theoretical and experimental values for medium-Z ions. For higher Z the inclusion of the valence correlation gives results in excellent agreement with those from many-body perturbation theory. We believe that our extensive calculated values can guide experimentalists in identifying the fine-structure levels in their future work. From our radiative decay rates we have also calculated radiative lifetimes of some fine-structure levels. In this calculation we also predict new data for several fine-structure levels where no other theoretical and/or experimental results are available.

  2. The valence and spectral properties of rare-earth clusters

    CERN Document Server

    Peters, L; Litsarev, M S; Katsnelson, A Delin M I; Kirilyuk, A; Johansson, B; Sanyal, B; Eriksson, O

    2016-01-01

    The rare-earths are known to have intriguing changes of the valence, depending on chemical surrounding or geometry. Here we make predictions from theory that combines density functional theory with atomic multiplet-theory, on the transition of valence when transferring from the atomic divalent limit to the trivalent bulk, passing through different sized clusters, of selected rare-earths. We predict that Tm clusters show an abrupt change from pure divalent to pure trivalent at a size of 6 atoms, while Sm and Tb clusters are respectively pure divalent and trivalent up to 8 atoms. Larger Sm clusters are argued to likely make a transition to a mixed valent, or trivalent, configuration. The valence of all rare-earth clusters, as a function of size, is predicted from interpolation of our calculated results. We argue that the here predicted behavior is best analyzed by spectroscopic measurements, and provide theoretical spectra, based on dynamical mean field theory, in the Hubbard-I approximation, to ease experiment...

  3. Optoelectronic properties of valence-state-controlled amorphous niobium oxide

    Science.gov (United States)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-01

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

  4. Basic features of the pion valence-quark distribution function

    CERN Document Server

    Chang, Lei; Moutarde, Hervé; Roberts, Craig D; Rodríguez-Quintero, Jose; Tandy, Peter C

    2014-01-01

    The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow-ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables a realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, $q^\\pi(x)$; namely, at a characteristic hadronic scale, $q^\\pi(x) \\sim (1-x)^2$ for $x\\gtrsim 0.85$; and the valence-quarks carry approximately two-thirds o...

  5. Chromium valences in ureilite olivine and implications for ureilite petrogenesis

    Science.gov (United States)

    Goodrich, C. A.; Sutton, S. R.; Wirick, S.; Jercinovic, M. J.

    2013-12-01

    Ureilites are a group of ultramafic achondrites commonly thought to be residues of partial melting on a carbon-rich asteroid. They show a large variation in FeO content (olivine Fo values ranging from ∼74 to 95) that cannot be due to igneous fractionation and suggests instead variation in oxidation state. The presence of chromite in only a few of the most ferroan (Fo 75-76) samples appears to support such a model. MicroXANES analyses were used in this study to determine the valence states of Cr (previously unknown) in olivine cores of 11 main group ureilites. The goal of this work was to use a method that is independent of Fo to determine the oxidation conditions under which ureilites formed, in order to evaluate whether the ureilite FeO-variation is correlated with oxidation state, and whether it is nebular or planetary in origin. Two of the analyzed samples, LEW 88774 (Fo 74.2) and NWA 766 (Fo 76.7) contain primary chromite; two others, LAP 03587 (Fo 74.4) and CMS 04048 (Fo 76.2) contain sub-micrometer-sized exsolutions of chromite + Ca-rich pyroxene in olivine; and one, EET 96328 (Fo 85.2) contains an unusual chromite grain of uncertain origin. No chromite has been observed in the remaining six samples (Fo 77.4-92.3). Chromium in olivine in all eleven samples was found to be dominated by the divalent species, with valences ranging from 2.10 ± 0.02 (1σ) to 2.46 ± 0.04. The non-chromite-bearing ureilites have the most reduced Cr, with a weighted mean valence of 2.12 ± 0.01, i.e., Cr2+/Cr3+ = 7.33. All low-Fo chromite-bearing ureilites have more oxidized Cr, with valences ranging from 2.22 ± 0.03 to 2.46 ± 0.04. EET 96328, whose chromite grain we interpret as a late-crystallizing phase, yielded a reduced Cr valence of 2.15 ± 0.07, similar to the non-chromite-bearing samples. Based on the measured Cr valences, magmatic (1200-1300 °C) oxygen fugacities (fO2) of the non-chromite-bearing samples were estimated to be in the range IW-1.9 to IW-2.8 (assuming

  6. Basic features of the pion valence-quark distribution function

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Lei [CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005 (Australia); Mezrag, Cédric; Moutarde, Hervé [Centre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette (France); Roberts, Craig D. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Rodríguez-Quintero, Jose [Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, Huelva E-21071 (Spain); Tandy, Peter C. [Center for Nuclear Research, Department of Physics, Kent State University, Kent, OH 44242 (United States)

    2014-10-07

    The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables a realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, q{sup π}(x); namely, at a characteristic hadronic scale, q{sup π}(x)∼(1−x){sup 2} for x≳0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.

  7. Predicting the Valence of a Scene from Observers' Eye Movements.

    Science.gov (United States)

    R-Tavakoli, Hamed; Atyabi, Adham; Rantanen, Antti; Laukka, Seppo J; Nefti-Meziani, Samia; Heikkilä, Janne

    2015-01-01

    Multimedia analysis benefits from understanding the emotional content of a scene in a variety of tasks such as video genre classification and content-based image retrieval. Recently, there has been an increasing interest in applying human bio-signals, particularly eye movements, to recognize the emotional gist of a scene such as its valence. In order to determine the emotional category of images using eye movements, the existing methods often learn a classifier using several features that are extracted from eye movements. Although it has been shown that eye movement is potentially useful for recognition of scene valence, the contribution of each feature is not well-studied. To address the issue, we study the contribution of features extracted from eye movements in the classification of images into pleasant, neutral, and unpleasant categories. We assess ten features and their fusion. The features are histogram of saccade orientation, histogram of saccade slope, histogram of saccade length, histogram of saccade duration, histogram of saccade velocity, histogram of fixation duration, fixation histogram, top-ten salient coordinates, and saliency map. We utilize machine learning approach to analyze the performance of features by learning a support vector machine and exploiting various feature fusion schemes. The experiments reveal that 'saliency map', 'fixation histogram', 'histogram of fixation duration', and 'histogram of saccade slope' are the most contributing features. The selected features signify the influence of fixation information and angular behavior of eye movements in the recognition of the valence of images. PMID:26407322

  8. Shell structure, emerging collectivity, and valence p-n interactions

    Directory of Open Access Journals (Sweden)

    Cakirli R.B.

    2014-03-01

    Full Text Available The structure of atomic nuclei depends on the interactions of its constituents, protons and neutrons. These interactions play a key role in the development of configuration mixing and in the onset of collectivity and deformation, in changes to the single particle energies and magic numbers, and in the microscopic origins of phase transitional behavior. Particularly important are the valence proton-neutron interactions which can be studied experimentally using double differences of binding energies extracted from high-precision mass measurements. The resulting quantities, called δVpn, are average interaction strengths between the last two protons and the last two neutrons. Focusing on the Z=50-82, N=82-126 shells, we have considered a number of aspects of these interactions, ranging from their relation to the underlying orbits, their behaviour near close shells and throughout major shells, their relation to the onset of collectivity and deformation, and the appearance of unexpected spikes in δVpn values for a special set of heavy nuclei with nearly equal numbers of valence protons and neutrons. We have calculated spatial overlaps between proton and neutron Nilsson orbits and compared these with the experimental results. Finally we also address the relation between masses (separation energies, changes in structure and valence nucleon number.

  9. Optoelectronic properties of valence-state-controlled amorphous niobium oxide.

    Science.gov (United States)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-29

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications. PMID:27168317

  10. Sketching the pion's valence-quark generalised parton distribution

    CERN Document Server

    Mezrag, C; Moutarde, H; Roberts, C D; Rodriguez-Quintero, J; Sabatie, F; Schmidt, S M

    2014-01-01

    In order to learn effectively from measurements of generalised parton distributions (GPDs), it is desirable to compute them using a framework that can potentially connect empirical information with basic features of the Standard Model. We sketch an approach to such computations, based upon a rainbow-ladder (RL) truncation of QCD's Dyson-Schwinger equations and exemplified via the pion's valence dressed-quark GPD, $H_\\pi^{\\rm v}(x,\\xi,t)$. Our analysis focuses primarily on $\\xi=0$, although we also capitalise on the symmetry-preserving nature of the RL truncation by connecting $H_\\pi^{\\rm v}(x,\\xi=\\pm 1,t)$ with the pion's valence-quark parton distribution amplitude. We explain that the impulse-approximation used hitherto to define the pion's valence dressed-quark GPD is generally invalid owing to omission of contributions from the gluons which bind dressed-quarks into the pion. A simple correction enables us to identify a practicable improvement to the approximation for $H_\\pi^{\\rm v}(x,0,t)$, expressed as th...

  11. Band Structure Analysis of La0.7Sr0.3MnO3 Perovskite Manganite Using a Synchrotron

    Directory of Open Access Journals (Sweden)

    Hong-Sub Lee

    2015-01-01

    Full Text Available Oxide semiconductors and their application in next-generation devices have received a great deal of attention due to their various optical, electric, and magnetic properties. For various applications, an understanding of these properties and their mechanisms is also very important. Various characteristics of these oxides originate from the band structure. In this study, we introduce a band structure analysis technique using a soft X-ray energy source to study a La0.7Sr0.3MnO3 (LSMO oxide semiconductor. The band structure is formed by a valence band, conduction band, band gap, work function, and electron affinity. These can be determined from secondary electron cut-off, valence band spectrum, O 1s core electron, and O K-edge measurements using synchrotron radiation. A detailed analysis of the band structure of the LSMO perovskite manganite oxide semiconductor thin film was established using these techniques.

  12. Fast dispersive beam deflectors and modulators

    DEFF Research Database (Denmark)

    Filinski, Ignacy; Skettrup, Torben

    1982-01-01

    A new method for one-dimensional light scanning is proposed. It is based on the use of ordinary dispersive optical components like prisms, gratings, etc. By electrooptic tuning of the output wavelength of broad-band lasers, fast scanners (up to 10 gigapixels/s) can be constructed. Deflection angles...

  13. Density of States for Warped Energy Bands

    Science.gov (United States)

    Mecholsky, Nicholas A.; Resca, Lorenzo; Pegg, Ian L.; Fornari, Marco

    2016-02-01

    Warping of energy bands can affect the density of states (DOS) in ways that can be large or subtle. Despite their potential for significant practical impacts on materials properties, these effects have not been rigorously demonstrated previously. Here we rectify this using an angular effective mass formalism that we have developed. To clarify the often confusing terminology in this field, “band warping” is precisely defined as pertaining to any multivariate energy function E(k) that does not admit a second-order differential at an isolated critical point in k-space, which we clearly distinguish from band non-parabolicity. We further describe band “corrugation” as a qualitative form of band warping that increasingly deviates from being twice differentiable at an isolated critical point. These features affect the density-of-states and other parameters ascribed to band warping in various ways. We demonstrate these effects, providing explicit calculations of DOS and their effective masses for warped energy dispersions originally derived by Kittel and others. Other physical and mathematical examples are provided to demonstrate fundamental distinctions that must be drawn between DOS contributions that originate from band warping and contributions that derive from band non-parabolicity. For some non-degenerate bands in thermoelectric materials, this may have profound consequences of practical interest.

  14. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction

    KAUST Repository

    Chiu, Ming-Hui

    2015-07-16

    The emergence of two-dimensional electronic materials has stimulated proposals of novel electronic and photonic devices based on the heterostructures of transition metal dichalcogenides. Here we report the determination of band offsets in the heterostructures of transition metal dichalcogenides by using microbeam X-ray photoelectron spectroscopy and scanning tunnelling microscopy/spectroscopy. We determine a type-II alignment between MoS2 and WSe2 with a valence band offset value of 0.83 eV and a conduction band offset of 0.76 eV. First-principles calculations show that in this heterostructure with dissimilar chalcogen atoms, the electronic structures of WSe2 and MoS2 are well retained in their respective layers due to a weak interlayer coupling. Moreover, a valence band offset of 0.94 eV is obtained from density functional theory, consistent with the experimental determination.

  15. Influence of the sequence on the ab initio band structures of single and double stranded DNA models

    International Nuclear Information System (INIS)

    The solid state physical approach is widely used for the characterization of electronic properties of DNA. In the simplest case the helical symmetry is explicitly utilized with a repeat unit containing only a single nucleotide or nucleotide pair. This model provides a band structure that is easily interpretable and reflects the main characteristic features of the single nucleotide or a nucleotide pair chain, respectively. The chemical variability of the different DNA chains is, however, almost completely neglected in this way. In the present work we have investigated the effect of the different sequences on the band structure of periodic DNA models. For this purpose we have applied the Hartree–Fock crystal orbital method for single and double stranded DNA chains with two different subsequent nucleotides in the repeat unit of former and two different nucleotide pairs in the latter case, respectively. These results are compared to simple helical models with uniform sequences. The valence and conduction bands related to the stacked nucleotide bases of single stranded DNA built up only from guanidine as well as of double stranded DNA built up only from guanidine–cytidine pairs showed special properties different from the other cases. Namely, they had higher conduction and lower valence band positions and this way larger band gaps and smaller widths of these bands. With the introduction of non-uniform guanidine containing sequences band structures became more similar to each other and to the band structures of other sequences without guanidine. The maximal bandwidths of the non-uniform sequences are considerably smaller than in the case of uniform sequences implying smaller charge carrier mobilities both in the conduction and valence bands. - Highlights: • HF Energy bands in DNA. • The role of aperiodicity in the DNA band structure. • Hole mobilities in quasi-periodic DNA with broader valence bands

  16. On valence electron density, energy dissipation and plasticity of bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pang, J.J.; Tan, M.J. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 Singapore (Singapore); Liew, K.M., E-mail: kmliew@cityu.edu.hk [Department of Civil and Architectural Engineering, City University of Hong Kong, Kowloon (Hong Kong)

    2013-11-15

    Highlights: ► Relationship between valence electron density and plasticity of metallic glasses. ► Poisson's ratio increases as electron density decreases. ► Energy dissipation proposed to understand plasticity. ► Low electron density indicates small activation energy. -- Abstract: In conventional crystalline alloys, valence electron density (VED) is one of the most significant factors in determining their phase stability and mechanical properties. Extending the concept to metallic glasses (MGs), it is found, not totally surprisingly, that their mechanical properties are VED-dependent as in crystalline alloys. Interestingly, the whole VED region can be separated into two zones: Zone 1 consists of Mg-, Ca-, and RE-based (RE for rare earth) alloys; Zone 2 consists of the rest of MGs. In either zone, for each type of MGs, Poisson's ratio generally decreases as VED increases. From the energy dissipation viewpoint proposed recently, the amorphous plasticity is closely related to the activation energy for the operation of shear-transformation-zones (STZs). Smaller STZ activation energy suggests higher ductility because STZs with lower activation energy are able to convert deformation work more efficiently into configurational energy rather than heat, which yields mechanical softening and advances the growth of shear bands (SBs). Following this model, it is revealed that the activation energies for STZ operation and crystallization are certainly proportional to VED. Thus, it is understood that, in Zone 2, MGs have a smaller VED and hence lower activation energies which are favorable for ductility and Poisson's ratio. In Zone 1, MGs have the lowest VED but apparent brittleness because either of low glass transition temperature and poor resistance to oxidation or of a large fraction of covalent bonds.

  17. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    Energy Technology Data Exchange (ETDEWEB)

    Cieplicka-Oryńczak, N. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Fornal, B.; Szpak, B. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Leoni, S.; Bottoni, S. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Bazzacco, D. [Dipartimento di Fisica e Astronomia dell’Università, I-35131 Padova (Italy); INFN Sezione di Padova, I-35131 Padova (Italy); Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T. [Institute Laue-Langevin, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Bocchi, G. [Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); France, G. de [GANIL, Bd. Becquerel, BP 55027, 14076 CAEN Cedex 05 (France); Simpson, G. [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, F-38026 Grenoble Cedex (France); Ur, C. [INFN Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Urban, W. [Faculty of Physics, University of Warsaw, ul. Hoża 69, 02-681, Warszawa (Poland)

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility of testing the calculations involving the core excitations.

  18. Spectroscopic investigation of the Dergaon meteorite with reference to 10 m and 20 m bands

    Indian Academy of Sciences (India)

    A Gohain Barua; B R Boruah; S Bhattacharyya; G D Baruah

    2003-01-01

    Analysis of a part of the meteorite which fell at Dergaon (India) on March 2, 16.40 local time (2001) is presented with the help of FTIR, absorption and atomic spectra. The FTIR spectrum exhibits prominent absorption bands in the region 800–1100 cm-1, originating from the valence vibration of SiO4, a basic component of the silicate lattice.

  19. Crystal structure and band gap determination of HfO2 thin films

    NARCIS (Netherlands)

    Cheynet, M.C.; Pokrant, S.; Tichelaar, F.D.; Rouvière, J.L.

    2007-01-01

    Valence electron energy loss spectroscopy (VEELS) and high resolution transmission electron microscopy (HRTEM) are performed on three different HfO2 thin films grown on Si (001) by chemical vapor deposition (CVD) or atomic layer deposition (ALD). For each sample the band gap (Eg) is determined by lo

  20. Temperature dependent band offsets in PbSe/PbEuSe quantum well heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Simma, M.; Bauer, G.; Springholz, G. [Institut fuer Halbleiter und Festkoerperphysik, Johannes Kepler Universitaet, A-4040 Linz (Austria)

    2012-10-22

    The band offsets of PbSe/Pb{sub 1-x}Eu{sub x}Se multi-quantum wells grown by molecular beam epitaxy are determined as a function of temperature and europium content using temperature-modulated differential transmission spectroscopy. The confined quantum well states in the valence and conduction bands are analyzed using a k{center_dot}p model with envelope function approximation. From the fit of the experimental data, the normalized conduction band offset is determined as 0.45{+-}0.15 of the band gap difference, independently of Eu content up to 14% and temperature from 20 to 300 K.

  1. The complex band structure for armchair graphene nanoribbons

    Institute of Scientific and Technical Information of China (English)

    Zhang Liu-Jun; Xia Tong-Sheng

    2010-01-01

    Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N= 3M-1. The band gap is almost unchanged for N = 3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nmaoribbons, and is also classified into three classes.

  2. Landau-Zener Bloch Oscillations with Perturbed Flat Bands.

    Science.gov (United States)

    Khomeriki, Ramaz; Flach, Sergej

    2016-06-17

    Sinusoidal Bloch oscillations appear in band structures exposed to external fields. Landau-Zener (LZ) tunneling between different bands is usually a counteracting effect limiting Bloch oscillations. Here we consider a flat band network with two dispersive and one flat band, e.g., for ultracold atoms and optical waveguide networks. Using external synthetic gauge and gravitational fields we obtain a perturbed yet gapless band structure with almost flat parts. The resulting Bloch oscillations consist of two parts-a fast scan through the nonflat part of the dispersion structure, and an almost complete halt for substantial time when the atomic or photonic wave packet is trapped in the original flat band part of the unperturbed spectrum, made possible due to LZ tunneling.

  3. Spectroscopic Study of Band Alignment in Alternative High-k MOS Dielectric Stacks

    Science.gov (United States)

    Bersch, E.; Rangan, S.; Garfunkel, E.; Bartynski, R. A.

    2007-03-01

    The study of high-k dielectrics and metal gate electrodes is critical to next generation MOSFETs. We have measured the band offsets of alternative MOS stacks using photoemission and inverse photoemission in the same chamber as well as synchrotron photoemission. At Rutgers, we have measured the valence and conduction band densities of states (DOS) and edges with UV photoemission and inverse photoemission, respectively, in situ. Using synchrotron photoemission we have measured the core level positions as well as the valence band DOS of clean and metallized dielectric/Si systems. The measurement of the chemical shifts of the core levels upon metallization enables us to evaluate the conduction band offset at the metal/dielectric interface. For Hf(x)Si(1-x)O(2), we find the conduction band offset (CBO) does not change as x is varied from 1 to 0.8, but the valence band offset increases by 0.4 eV. Titanium, aluminum and ruthenium were chosen as gate metals because of their prospective use as low and high workfunction metals in dual metal gate CMOS devices. We measured the CBO for the Ti, Al and Ru/Hf(x)Si(1-x)O(2) interfaces and found barriers involving Ti and Ru to be in good agreement with the interface gap state model, whereas the barrier involving Al deviated substantially from it due to the formation of an AlO(X) layer at the interface.

  4. Relaxation of femtosecond photoexcited electrons in a polar indirect band-gap semiconductor nanoparticle

    Indian Academy of Sciences (India)

    Navinder Singh

    2005-01-01

    A model calculation is given for the energy relaxation of a non-equilibrium distribution of hot electrons (holes) prepared in the conduction (valence) band of a polar indirect band-gap semiconductor, which has been subjected to homogeneous photoexcitation by a femtosecond laser pulse. The model assumes that the pulsed photoexcitation creates two distinct but spatially interpenetrating electron and hole non-equilibrium subsystems that initially relax non-radiatively through the electron (hole)–phonon processes towards the conduction (valence) band minimum (maximum), and finally radiatively through the phonon-assisted electron–hole recombination across the band-gap, which is a relatively slow process. This leads to an accumulation of electrons (holes) at the conduction (valence) band minimum (maximum). The resulting peaking of the carrier density and the entire evolution of the hot electron (hole) distribution has been calculated. The latter may be time resolved by a pump-probe study. The model is particularly applicable to a divided (nanometric) polar indirect band-gap semiconductor with a low carrier concentration and strong electron–phonon coupling, where the usual two-temperature model [1–4] may not be appropriate.

  5. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy

    OpenAIRE

    Coehoorn, R.; Haas, C.; Dijkstra, J.; Flipse, C.J.F.; de Groot, R. A.; Wold, A.

    1987-01-01

    The band structures of the semiconducting layered compounds MoSe2, MoS2, and WSe2 have been calculated self-consistently with the augmented-spherical-wave method. Angle-resolved photoelectron spectroscopy of MoSe2 using He I, He II, and Ne I radiation, and photon-energy-dependent normal-emission photoelectron spectroscopy using synchrotron radiation, show that the calculational results give a good description of the valence-band structure. At about 1 eV below the top of the valence band a dis...

  6. 16O + 16O molecular structures of positive- and negative-parity superdeformed bands in 34S

    Directory of Open Access Journals (Sweden)

    Taniguchi Yasutaka

    2016-01-01

    Full Text Available The structures of excited states in 34S are investigated using the antisymmetrized molecular dynamics and generator coordinate method(GCM. The GCM basis wave functions are calculated via energy variation with a constraint on the quadrupole deformation parameter β. By applying the GCM after parity and angular momentum projections, the coexistence of two positive- and one negative-parity super de formed(SD bands are predicted, and low-lying states and other deformed bands are obtained. The SD bands have structures of 16O + 16O + two valence neutrons in molecular orbitals around the two 16O cores in a cluster picture. The configurations of the two valence neutrons are δ2 and π2 for the positive-parity SD bands and π1δ1 for the negative parity SD band.

  7. Band alignment of vanadium oxide as an interlayer in a hafnium oxide-silicon gate stack structure

    Science.gov (United States)

    Zhu, Chiyu; Kaur, Manpuneet; Tang, Fu; Liu, Xin; Smith, David J.; Nemanich, Robert J.

    2012-10-01

    Vanadium oxide (VO2) is a narrow band gap material (Eg = 0.7 eV) with a thermally induced insulator-metal phase transition at ˜343 K and evidence of an electric field induced transition at T oxidized Si(100) surface and a 2 nm hafnium oxide (HfO2) layer. The layer structure was confirmed with high resolution transmission electron microscopy. The electronic properties were characterized with x-ray and ultraviolet photoemission spectroscopy, and the band alignment was deduced on both n-type and p-type Si substrates. The valence band offset between VO2 and SiO2 is measured to be 4.0 eV. The valence band offset between HfO2 and VO2 is measured to be ˜3.4 eV. The band relation developed from these results demonstrates the potential for charge storage and switching for the embedded VO2 layer.

  8. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  9. Band structures of TiO2 doped with N, C and B

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result.Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing.

  10. 8-band k·p modelling of mid-infrared intersubband absorption in Ge quantum wells

    Science.gov (United States)

    Paul, D. J.

    2016-07-01

    The 8-band k.p parameters which include the direct band coupling between the conduction and the valence bands are derived and used to model optical intersubband transitions in Ge quantum well heterostructure material grown on Si substrates. Whilst for Si rich quantum wells the coupling between the conduction bands and valence bands is not important for accurate modelling, the present work demonstrates that the inclusion of such coupling is essential to accurately determine intersubband transitions between hole states in Ge and Ge-rich Si1-xGex quantum wells. This is due to the direct bandgap being far smaller in energy in Ge compared to Si. Compositional bowing parameters for a range of the key modelling input parameters required for Ge/SiGe heterostructures, including the Kane matrix elements, the effective mass of the Γ 2 ' conduction band, and the Dresselhaus parameters for both 6- and 8-band k.p modelling, have been determined. These have been used to understand valence band intersubband transitions in a range of Ge quantum well intersubband photodetector devices in the mid-infrared wavelength range.

  11. Dispersing powders in liquids

    CERN Document Server

    Nelson, RD

    1988-01-01

    This book provides powder technologists with laboratory procedures for selecting dispersing agents and preparing stable dispersions that can then be used in particle size characterization instruments. Its broader goal is to introduce industrial chemists and engineers to the phenomena, terminology, physical principles, and chemical considerations involved in preparing and handling dispersions on a commercial scale. The book introduces novices to: - industrial problems due to improper degree of dispersion; - the nomenclature used in describing particles; - the basic physica

  12. Neutron scattering studies of mixed-valence semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mignot, J.M. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Alekseev, P.A. [Kurchatov Institute, Moscow (Russian Federation)

    1994-12-31

    Neutron scattering experiments on the mixed-valence (MV) compounds SmB{sub 6} are reported. The inelastic magnetic response of SmB{sub 6} at T = 2 K, measured on a double-isotope single crystal,displays a strongly damped peak at 35 meV corresponding to the inter multiplet transition of Sm{sup 2+}. At lower energies ( h.{omega} {approx_equal} 14 meV), a narrow magnetic excitation is observed, with remarkable scattering-vector and temperature dependences of its intensity. This novel feature is discussed in terms of recent theoretical works describing the formation of an anisotropic local bound state in semiconducting MV materials. If the average samarium valence is decreased by substituting La for Sm, a peak is found to appear at high energies. The elastic magnetic form factor of SmB{sub 6} was determined using polarised neutrons and no significant difference is observed in its Q-dependence with respect to that of pure divalent samarium. This surprising behaviour is constant with previous measurements on the gold (high-pressure) phase of SmS. The above results are compared to those already reported for other MV materials. In particular existing information for TmSe is supplemented by recent inelastic scattering measurements carried out on a large stoichiometric single crystal. (author). 44 refs., 7 figs.

  13. Coupled-cluster based basis sets for valence correlation calculations

    Science.gov (United States)

    Claudino, Daniel; Gargano, Ricardo; Bartlett, Rodney J.

    2016-03-01

    Novel basis sets are generated that target the description of valence correlation in atoms H through Ar. The new contraction coefficients are obtained according to the Atomic Natural Orbital (ANO) procedure from CCSD(T) (coupled-cluster singles and doubles with perturbative triples correction) density matrices starting from the primitive functions of Dunning et al. [J. Chem. Phys. 90, 1007 (1989); ibid. 98, 1358 (1993); ibid. 100, 2975 (1993)] (correlation consistent polarized valence X-tuple zeta, cc-pVXZ). The exponents of the primitive Gaussian functions are subject to uniform scaling in order to ensure satisfaction of the virial theorem for the corresponding atoms. These new sets, named ANO-VT-XZ (Atomic Natural Orbital Virial Theorem X-tuple Zeta), have the same number of contracted functions as their cc-pVXZ counterparts in each subshell. The performance of these basis sets is assessed by the evaluation of the contraction errors in four distinct computations: correlation energies in atoms, probing the density in different regions of space via (-3 ≤ n ≤ 3) in atoms, correlation energies in diatomic molecules, and the quality of fitting potential energy curves as measured by spectroscopic constants. All energy calculations with ANO-VT-QZ have contraction errors within "chemical accuracy" of 1 kcal/mol, which is not true for cc-pVQZ, suggesting some improvement compared to the correlation consistent series of Dunning and co-workers.

  14. Aggression proneness: Transdiagnostic processes involving negative valence and cognitive systems.

    Science.gov (United States)

    Verona, Edelyn; Bresin, Konrad

    2015-11-01

    Aggressive behavior is observed in persons with various mental health problems and has been studied from the perspectives of neuroscience and psychophysiology. The present research reviews some of the extant experimental literature to help clarify the interplay between domains of functioning implicated in aggression proneness. We then convey a process-oriented model that elucidates how the interplay of the Negative Valence and Cognitive System domains of NIMH's Research Domain Criteria (RDoC) helps explain aggression proneness, particularly reactive aggression. Finally, we report on a study involving event-related potential (ERP) indices of emotional and inhibitory control processing during an emotional-linguistic go/no-go task among 67 individuals with histories of violence and criminal offending (30% female, 44% African-American) who reported on their aggressive tendencies using the Buss-Perry Aggression Questionnaire. Results provide evidence that tendencies toward angry and aggressive behavior relate to reduced inhibitory control processing (no-go P3) specifically during relevant threat-word blocks, suggesting deterioration of cognitive control by acute or sustained threat sensitivity. These findings highlight the value of ERP methodologies for clarifying the interplay of Negative Valence and Cognitive System processes in aggression proneness.

  15. +2 Valence Metal Concentrations in Lion Creek, Oakland, California

    Science.gov (United States)

    Vazquez, P.; Zedd, T.; Chagolla, R.; Dutton-Starbuck, M.; Negrete, A.; Jinham, M.; Lapota, M.

    2012-12-01

    Seven major creeks exist within the City of Oakland, California. These creeks all flow in the southwest direction from forested hills down through densely populated streets where they become susceptible to urban runoff. Lion Creek has been diverted to engineered channels and underground culverts and runs directly under our school (Roots International) before flowing into the San Leandro Bay. One branch of the creek begins near an abandoned sulfur mine. Previous studies have shown that extremely high levels of lead, arsenic and iron exist in this portion of the creek due to acid mine drainage. In this study +2 valence heavy metals concentration data was obtained from samples collected from a segment of the creek located approximately 2.8 miles downstream from the mine. Concentrations in samples collected at three different sites along this segment ranged between 50 ppb and 100 ppb. We hypothesize that these levels are related to the high concentration of +2 valence heavy metals at the mining site. To test this hypothesis, we have obtained samples from various locations along the roughly 3.75 miles of Lion Creek that are used to assess changes in heavy metals concentration levels from the mining site to the San Leandro Bay.

  16. Microscopic theoretical model study of band gap opening in AA-stacked bi-layer graphene

    Science.gov (United States)

    Sahu, Sivabrata; Parashar, S. K. S.; Rout, G. C.

    2016-05-01

    We address here a tight-binding theoretical model calculation for AA-stacked bi-layer graphene taking into account of a biased potential between two layers to study the density of states and the band dispersion within the total Brillouin zone. We have calculated the electronic Green's function for electron operator corresponding to A and B sub lattices by Zubarev's Green's function technique from which the electronic density of states and the electron band energy dispersion are calculated. The numerically computed density of states and band energy dispersions are investigated by tuning the biased potential to exhibit the band gap by varying the different physical parameters.

  17. Processing negative valence of word pairs that include a positive word.

    Science.gov (United States)

    Itkes, Oksana; Mashal, Nira

    2016-09-01

    Previous research has suggested that cognitive performance is interrupted by negative relative to neutral or positive stimuli. We examined whether negative valence affects performance at the word or phrase level. Participants performed a semantic decision task on word pairs that included either a negative or a positive target word. In Experiment 1, the valence of the target word was congruent with the overall valence conveyed by the word pair (e.g., fat kid). As expected, response times were slower in the negative condition relative to the positive condition. Experiment 2 included target words that were incongruent with the overall valence of the word pair (e.g., fat salary). Response times were longer for word pairs whose overall valence was negative relative to positive, even though these word pairs included a positive word. Our findings support the Cognitive Primacy Hypothesis, according to which emotional valence is extracted after conceptual processing is complete. PMID:26008637

  18. First-Order Structural Change Accompanied by Yb Valence Transition in YbInCu4

    Science.gov (United States)

    Tsutsui, Satoshi; Sugimoto, Kunihisa; Tsunoda, Ryoma; Hirose, Yusuke; Mito, Takeshi; Settai, Rikio; Mizumaki, Masaichiro

    2016-06-01

    A diffraction experiment using high-energy X-rays was carried out on YbInCu4. Below the Yb valence transition temperature, the splitting of Bragg peaks was detected in high-order reflections. No superlattice reflections accompanying the valence ordering were found below the transition temperature. These experimental findings indicate that a structural change from a cubic structure to a tetragonal structure without valence ordering occurs at the transition temperature. Such a structural change free from any valence ordering is difficult to understand only in terms of Yb valence degrees of freedom. This means that the structural change may be related to electronic symmetries such as quadrupolar degrees of freedom as well as to the change in Yb valence.

  19. Expertise in video game playing is associated with reduced valence-concordant emotional expressivity.

    Science.gov (United States)

    Weinreich, André; Strobach, Tilo; Schubert, Torsten

    2015-01-01

    In carefully selected groups of video game playing (VGP) experts and nonexperts, we examined valence-concordant emotional expressivity. We measured electromyographic (EMG) activity over the corrugator supercilii muscle while participants viewed pleasant, neutral, and unpleasant pictures. Potential group differences concerning valence-concordant expressivity may arise from differences concerning the participants' emotional reactivity. To control for such differences, we concomitantly measured skin conductance response (SCR) and, in a separate affect misattribution procedure (AMP), valence transfer from the same set of stimuli. Importantly, we found attenuated valence-concordant EMG activity over the corrugator supercilii muscle in VGP experts compared to nonexperts, but no differences were evident concerning SCR or valence transfer in the AMP. The findings suggest that expertise in VGP is particularly associated with reduced valence-concordant emotional expressivity.

  20. Virtual Distance and Soundstage, and their Impacts on Experienced Emotional Valence

    DEFF Research Database (Denmark)

    Christensen, Justin

    2015-01-01

    Research from animal ethology and affective neuroscience suggest that a listener’s perceived distance from a signal source can alter their experienced emotional valence of the music. Furthermore, appraisal theories of emotion suggest that emotionally valenced responses will diverge according...... to the type of emotion presented. For these exploratory investigations, subjects listen to selected musical excerpts on speakers in combination with a tactile transducer attached to their chair. The listening sessions are recorded on EEG supported by subject feedback responses. My hypothesis is that musical...... stimuli should cause stronger valenced responses in the nearfield than at a distance. Thus, music experienced as being negatively valenced at a distance should be more negatively valenced in nearfield, and music that is experienced as having a positive valence at a distance should be more positively...

  1. A continuous mapping between space and valence with left- and right-handers.

    Science.gov (United States)

    Freddi, Sébastien; Brouillet, Thibaut; Cretenet, Joël; Heurley, Loïc P; Dru, Vincent

    2016-06-01

    In this research, we examined whether emotional valence could correspond to a continuous lateral bias in space, according to a mental metaphor that establishes the mapping between a concrete domain (space) and an abstract one (valence). Because acting with one's dominant hand is associated with fluency and positive valence (the bodily specificity hypothesis, or BSH), we asked strong right- and left-handers to perform two spatial location tasks using emotional faces with seven levels of valence. We hypothesized and showed through two studies that, according to the BSH, extreme valenced stimuli (as compared to moderate and weak ones) would be located more at the extremity of a horizontal line, according to the correspondences between handedness and the different valences of the stimuli. This research establishes that spatial and continuous mapping of emotions was obtained while controlling for motivational direction. PMID:26428669

  2. Dispersion y dinamica poblacional

    Science.gov (United States)

    Dispersal behavior of fruit flies is appetitive. Measures of dispersion involve two different parameter: the maximum distance and the standard distance. Standard distance is a parameter that describes the probalility of dispersion and is mathematically equivalent to the standard deviation around ...

  3. 紧束缚近似方法在计算石墨烯能带中的应用%Application of the Tight-binding Method in Calculating Graphene Band Structure

    Institute of Scientific and Technical Information of China (English)

    施仲诚; 房鸿

    2011-01-01

    通过引入紧束缚近似理论,使用Matlab计算了石墨烯的能带和π能带图.结果表明,考虑最近邻原子影响,在K-T-M-K方向的全能带图中,观察到了能带的简并特性及能带间的跳跃,与其他方法(如第一原理)相符.在正交基矢下,π能带(价带和导带)具有完全的对称性,加入轨道重叠后(即非正交基矢),对称性被破坏,表现为价带靠近费米面,导带远离费米面,从能量的位移上可以发现,远离比靠近的趋势更为明显.%In this paper,the band structure and the rc-band dispersion of graphene is are calculated by means of the nearest neighbor atom tight - binding method. The results show that in the K-P-M-K direction,the properties of the band structure are in agreement with what is calculated by the ab intio method, and the degeneracy and hopping phenomenon are observed. In the framework of orthogonal basis,the ;r-band structure is symmetric, but the addition of the orbital overlap breaks the symmetry, which means that the valence band goes close to the Fermi surface while the conduction band goes away from the Fermi surface. It can be observed from the energy shift that the latter tendency is more obvious than the former.

  4. Robust Dirac-cone band structure in the molecular kagome compound (EDT-TTF-CONH2)6[Re6Se8(CN)6].

    Science.gov (United States)

    Carlsson, Sandra; Zorina, Leokadiya; Allan, David R; Attfield, J Paul; Canadell, Enric; Batail, Patrick

    2013-03-18

    (EDT-TTF-CONH2)6[Re6Se8(CN)6] is a molecular solid with R3 space group symmetry and has the remarkable feature of exhibiting hybrid donor layers with a kagome topology which sustain metallic conductivity. We report a detailed study of the structural evolution of the system as a function of temperature and pressure. This rhombohedral phase is maintained on cooling down to 220 K or up to 0.7 GPa pressure, beyond which a symmetry-breaking transition to a triclinic P1 phase drives a metal to insulator transition. Band structures calculated from the structural data lead to a clear description of the effects of temperature and pressure on the structural and electronic properties of this system. Linear energy dispersion is calculated at the zero-gap Fermi level where valence and conduction bands touch for the rhombohedral phase. (EDT-TTF-CONH2)6[Re6Se8(CN)6] thus exhibits a regular (right circular) Dirac-cone like that of graphene at the Fermi level, which has not been reported previously in a molecular solid. The Dirac-cone is robust over the stability region of the rhombohedral phase, and may result in exotic electronic transport and optical properties.

  5. Developmental Reversals in False Memory: Effects of Emotional Valence and Arousal

    OpenAIRE

    Brainerd, C. J.; Holliday, R. E.; Reyna, V. F.; Yang, Y.; Toglia, M. P.

    2010-01-01

    Do the emotional valence and arousal of events distort children’s memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can be manipulated factorially. False memories increased with age for unpresented semantic associates of word lists, and net accuracy (the ratio of true...

  6. In-Medium Pion Valence Distributions in a Light-Front Model

    CERN Document Server

    de Melo, J P B C; Ahmed, I

    2016-01-01

    Pion valence distributions in nuclear medium and vacuum are studied in a light-front constituent quark model. The in-medium input for studying the pion properties is calculated by the quark-meson coupling model. We find that the in-medium pion valence distribution, as well as the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.

  7. Developmental changes in effects of risk and valence on adolescent decision-making

    OpenAIRE

    Wolf, L.K.; Kilford, E. J.; Blakemore, S-J; Wright, N. D.; Dolan, R. J.

    2013-01-01

    Recent research on risky decision-making in adults has shown that both the risk in potential outcomes and their valence (i.e., whether those outcomes involve gains or losses) exert dissociable influences on decisions. We hypothesised that the influences of these two crucial decision variables (risk and valence) on decision-making would vary developmentally during adolescence. We adapted a risk-taking paradigm that provides precise metrics for the impacts of risk and valence. Decision-making i...

  8. Band parameters of phosphorene

    DEFF Research Database (Denmark)

    Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.;

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory are co...

  9. Flat Band Quastiperiodic Lattices

    Science.gov (United States)

    Bodyfelt, Joshua; Flach, Sergej; Danieli, Carlo

    2014-03-01

    Translationally invariant lattices with flat bands (FB) in their band structure possess irreducible compact localized flat band states, which can be understood through local rotation to a Fano structure. We present extension of these quasi-1D FB structures under incommensurate lattices, reporting on the FB effects to the Metal-Insulator Transition.

  10. Relationship between irradiation swelling behaviour of alloys and their valence electron structure

    International Nuclear Information System (INIS)

    The relationship between valence electron structure of alloys and their irradiation swelling behaviour has been investigated on basis of results of valence electron structure calculated by means of the empirical electron theory. The difference of the irradiation swelling behaviour among three prior candidate alloys has been explained by their different valence electron structure, and the intrinsic relation between nickel content of iron-nickel-based alloys and their irradiation swelling behaviour has been clarified. From the viewpoint of valence electron structure, intermetallic compounds are potential structural materials with excellent resistance to irradiation swelling. (4 tabs.)

  11. Dispersion analysis with inverse dielectric function modelling.

    Science.gov (United States)

    Mayerhöfer, Thomas G; Ivanovski, Vladimir; Popp, Jürgen

    2016-11-01

    We investigate how dispersion analysis can profit from the use of a Lorentz-type description of the inverse dielectric function. In particular at higher angles of incidence, reflectance spectra using p-polarized light are dominated by bands from modes that have their transition moments perpendicular to the surface. Accordingly, the spectra increasingly resemble inverse dielectric functions. A corresponding description can therefore eliminate the complex dependencies of the dispersion parameters, allow their determination and facilitate a more accurate description of the optical properties of single crystals. PMID:27294550

  12. Mixed valence Creutz-Taube ion analogues incorporating thiacrowns: synthesis, structure, physical properties, and computational studies.

    Science.gov (United States)

    Adams, Harry; Costa, Paulo J; Newell, Mike; Vickers, Steven J; Ward, Michael D; Félix, Vítor; Thomas, Jim A

    2008-12-15

    A series of nine new complexes incorporating [Ru(II)Cl([n]aneS(3))] (n = 12, 14, 16) metal centers bridged by three ditopic ligands containing two monodentate sites (pyrazine, 4,4'-bipyridine, and 3,6-bis(4-pyridyl)-1,2,4,5-tetrazine) have been synthesized and fully characterized. The solid-state structures of three of the complexes have been further characterized by X-ray crystallography studies. Intermetallic interactions within the new systems have been probed using electrochemistry and optical spectroscopy. Cyclic voltammetry reveals that the three pyrazine bridged systems display two separate Ru(III)/(II) redox couples. Using spectroelectrochemistry, we have investigated the optical properties of these mixed valence, Creutz-Taube ion analogues. An analysis of the intervalence charge transfer bands for the complexes revealed that, despite possessing the same donor sets, the electronic delocalization within these systems is modulated by the nature of the coordinated thiacrown. Computational modeling using density function theory offers further evidence of interaction between metal centers and provides insights into how these interactions are mediated. PMID:19012395

  13. Metal-insulator transition of valence-controlled VO2 thin film prepared by RF magnetron sputtering using oxygen radical

    Science.gov (United States)

    Suetsugu, Takaaki; Shimazu, Yuichi; Tsuchiya, Takashi; Kobayashi, Masaki; Minohara, Makoto; Sakai, Enju; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru

    2016-06-01

    We have prepared b-axis-oriented VO2 thin films by RF magnetron sputtering using oxygen radicals as the reactive gas. The VO2 thin films consist of a mixed-valence V3+/V4+ state formed by oxygen vacancies. The V3+ ratio strongly depends on the film thickness and the oxygen partial pressure of the radical gun during deposition. The lattice constant of the b-axis increases and the metal-insulator transition (MIT) temperature decreases with decreasing V3+ ratio, although the VO2 thin films with a high V3+ ratio of 42% do not exhibit MIT. The bandwidths and spectral weights of V 3d a1g and \\text{e}\\text{g}σ bands at around the Fermi level, which correspond to the insulating phase at 300 K, are smaller in the VO2 thin films with a low V3+ ratio. These results indicate that the control of the mixed-valence V3+/V4+ state is important for the MIT of b-axis-oriented VO2 thin films.

  14. Band Alignment Engineering at Cu2O/ZnO Heterointerfaces.

    Science.gov (United States)

    Siol, Sebastian; Hellmann, Jan C; Tilley, S David; Graetzel, Michael; Morasch, Jan; Deuermeier, Jonas; Jaegermann, Wolfram; Klein, Andreas

    2016-08-24

    Energy band alignments at heterointerfaces play a crucial role in defining the functionality of semiconductor devices, yet the search for material combinations with suitable band alignments remains a challenge for numerous applications. In this work, we demonstrate how changes in deposition conditions can dramatically influence the functional properties of an interface, even within the same material system. The energy band alignment at the heterointerface between Cu2O and ZnO was studied using photoelectron spectroscopy with stepwise deposition of ZnO onto Cu2O and vice versa. A large variation of energy band alignment depending on the deposition conditions of the substrate and the film is observed, with valence band offsets in the range ΔEVB = 1.45-2.7 eV. The variation of band alignment is accompanied by the occurrence or absence of band bending in either material. It can therefore be ascribed to a pinning of the Fermi level in ZnO and Cu2O, which can be traced back to oxygen vacancies in ZnO and to metallic precipitates in Cu2O. The intrinsic valence band offset for the interface, which is not modified by Fermi level pinning, is derived as ΔEVB ≈ 1.5 eV, being favorable for solar cell applications. PMID:27452037

  15. Observation of localized flat-band modes in a one-dimensional photonic rhombic lattice

    CERN Document Server

    Mukherjee, Sebabrata

    2015-01-01

    We experimentally demonstrate the photonic realization of a dispersionless flat-band in a one-dimensional photonic rhombic lattice fabricated by ultrafast laser inscription. In the nearest neighbor tight binding approximation the lattice supports two dispersive and a non-dispersive (flat) band. We experimentally excite a superposition of flat-band eigen modes at the input of the photonic lattice and show the diffractionless propagation of the input modes due to their infinite effective mass.

  16. Theoretical Magnon Dispersion Curves for Gd

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Harmon, B. N.; Freeman, A. J.

    1975-01-01

    The magnon dispersion curve of Gd metal has been determined from first principles by use of augmented-plane-wave energy bands and wave functions. The exchange matrix elements I(k⃗, k⃗′) between the 4f electrons and the conduction electrons from the first six energy bands were calculated under the...... assumption of an unscreened Coulomb interaction. The results are in good overall agreement with experiment provided the I(k⃗, k⃗′) are diminished by a constant scale factor of about 2 which may be caused by screening....

  17. Chromatic Dispersion Compensation Using Photonic Crystal Fibers with Hexagonal Distribution

    Directory of Open Access Journals (Sweden)

    Erick E. Reyes-Vera

    2013-11-01

    Full Text Available In this paper we show various configurations of photonic crystal fiber with hexagonal holes distribution for compensation of chromatic dispersion in optical communications links. The vectorial finite element method with scattering boundary condition was used for the analysis of the fibers. From these results it was estimated variation of the dispersion and the dispersion slope with respect to change in the diameter of the holes in the microstructure. With the above was possible to obtain values of dispersion in the C and L bands of telecommunications close to -850 ps / nm * km, with confinement losses 10-3 dB / km

  18. Investigation of phonon anomalies in intermediate valence compounds SmS and Sm0.75Y0.25S

    International Nuclear Information System (INIS)

    Phonon anomalies in two intermediate valence compounds (IVC), SmS and Sm0.75Y0.25S have been investigated using breathing shell model (BSM). The BSM includes breathing motion of electron shells of the rare earth atom due to f - d hybridization. The phonon dispersion curves of IVC, calculated from the present model, agree well with the measured data. One-phonon density of states calculated from the present model compares well with the Raman spectra. (author). 20 refs., 4 figs., 2 tabs

  19. Band-to-band tunneling distance analysis in the heterogate electron–hole bilayer tunnel field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain); Palomares, A. [Departamento de Matemática Aplicada, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain); Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2016-01-28

    In this work, we analyze the behavior of the band-to-band tunneling distance between electron and hole subbands resulting from field-induced quantum confinement in the heterogate electron–hole bilayer tunnel field-effect transistor. We show that, analogously to the explicit formula for the tunneling distance that can be easily obtained in the semiclassical framework where the conduction and valence band edges are allowed states, an equivalent analytical expression can be derived in the presence of field-induced quantum confinement for describing the dependence of the tunneling distance on the body thickness and material properties of the channel. This explicit expression accounting for quantum confinement holds valid provided that the potential wells for electrons and holes at the top and bottom of the channel can be approximated by triangular profiles. Analytical predictions are compared to simulation results showing very accurate agreement.

  20. First-principles calculation of the electronic band of ZnO doped with C

    Institute of Scientific and Technical Information of China (English)

    Si Panpan; Su Xiyu; Hou Qinying; Li Yadong; Cheng Wei

    2009-01-01

    Using the first-principles approach based upon the density functional theory (DFT), we have studied the electronic structure of wurtzite ZnO systems doped with C at different sites. When Zn is substituted by C, the system turns from a direct band gap semiconductor into an indirect band gap semiconductor, and donor levels are formed. When O is substituted by C, acceptor levels are formed near the top of the valence band, and thus a p-type transformation of the system is achieved. When the two kinds of substitution coexist, the acceptor levels are compensated for all cases, which is unfavorable for the p-type transformation of the system.

  1. Time delay in valence shell photoionization of noble gas atoms

    CERN Document Server

    Kheifets, A S

    2013-01-01

    We use the non-relativistic random phase approximation with exchange to perform calculations of valence shell photoionization of Ne, Ar, Kr and Xe from their respective thresholds to photon energy of 200 eV. The energy derivative of the complex phase of the photoionization matrix elements is converted to the photoelectron group delay that can be measured in attosecond streaking or two-photon transitions interference experiments. Comparison with reported time delay measurements in Ne and Ar at a few selected photon energies is made. Systematic mapping of time delay across a wide range of photon energies in several atomic targets allows to highlight important aspects of fundamental atomic physics that can be probed by attosecond time delay measurements.

  2. Plaquette valence bond theory of high-temperature superconductivity

    Science.gov (United States)

    Harland, Malte; Katsnelson, Mikhail I.; Lichtenstein, Alexander I.

    2016-09-01

    We present a strong-coupling approach to the theory of high-temperature superconductivity based on the observation of a quantum critical point in the plaquette within the t ,t' Hubbard model. The crossing of ground-state energies in the N =2 -4 sectors occurs for parameters close to the optimal doping. The theory predicts the maximum of the dx2-y2-wave order parameter at the border between localized and itinerant electron behaviors and gives a natural explanation for the pseudogap formation via the soft-fermion mode related to local singlet states of the plaquette in the environment. Our approach follows the general line of resonating valence-bond theory stressing a crucial role of singlets in the physics of high-Tc superconductors but focuses on the formation of local singlets, similar to phenomena observed in frustrated one-dimensional quantum spin models.

  3. A role of valence particles number equal to 20

    International Nuclear Information System (INIS)

    The importance of the NpNn parametrization was first demonstrated by Casten in connection with the role of the proton-neutron interaction in the growth of deformation away from shell closures, and there have subsequently been many developments in this theme. The symbols Np and Nn are number of valence particles/holes of protons and neutrons, respectively (where nucleons are counted as holes beyond the middle of a major shell). The observables which reflect collective structure in the deformed mass region for even-even nuclei such as E(2+), R4/2 ≡ E(4+)/E(2+) and B(E2) have behaved smoothly with NpNn

  4. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.

  5. Valence-quark distribution functions in the kaon and pion

    CERN Document Server

    Chen, Chen; Roberts, Craig D; Wan, Shaolong; Zong, Hong-Shi

    2016-01-01

    We describe expressions for pion and kaon dressed-quark distribution functions that incorporate contributions from gluons which bind quarks into these mesons and hence overcome a flaw of the commonly used handbag approximation. The distributions therewith obtained are purely valence in character, ensuring that dressed-quarks carry all a meson's momentum at a characteristic hadronic scale and vanishing as $(1-x)^2$ when Bjorken-$x\\to 1$. Comparing such distributions within the pion and kaon, it is apparent that the size of SU(3)-flavour symmetry breaking in meson parton distribution functions is modulated by the flavour dependence of dynamical chiral symmetry breaking. Corrections to these leading-order formulae may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we build an algebraic framework that is capable of expressing the principal impact of both classes of corrections. This enables a realistic comparison...

  6. The application of cholesky decomposition in valence bond calculation.

    Science.gov (United States)

    Gong, Xiping; Chen, Zhenhua; Wu, Wei

    2016-09-01

    The Cholesky decomposition (CD) technique, used to approximate the two-electron repulsion integrals (ERIs), is applied to the valence bond self-consistent field (VBSCF) method. Test calculations on ethylene, C2 n H2 n +2 , and C2 n H4 n -2 molecules (n = 1-7) show that the performance of the VBSCF method is much improved using the CD technique, and thus, the integral transformation from basis functions to VB orbitals is no longer the bottleneck in VBSCF calculations. The errors of the CD-based ERIs and of the total energy are controlled by the CD threshold, for which a value of 10(-6) ensures to control the total energy error within 10(-6) Hartree. © 2016 Wiley Periodicals, Inc. PMID:27377531

  7. Nature of the Frequency Shift of Hydrogen Valence Vibrations

    CERN Document Server

    Zhyganiuk, I V

    2015-01-01

    The physical nature of a frequency shift of hydrogen valence vibrations in a water molecule due to its interaction with neighbor molecules has been studied. Electrostatic forces connected with the multipole moments of molecules are supposed to give a dominating contribution to the intermolecular interaction. The frequency shift was calculated in the case where two neighbor molecules form a dimer. The obtained result is in qualitative agreement with the frequency shifts observed for water vapor, hexagonal ice, and liquid water, as well as for aqueous solutions of alcohols. This fact testifies to the electrostatic nature of H-bonds used to describe both the specific features of the intermolecular interaction in water and the macroscopic properties of the latter.

  8. Kaon semileptonic decay form factors with HISQ valence quarks

    CERN Document Server

    Gamiz, E; Bazavov, A; Bernard, C; Bouchard, C; DeTar, C; Du, D; El-Khadra, A X; Foley, J; Freeland, E D; Gottlieb, Steven; Heller, U M; Kim, J; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Neil, E T; Oktay, M B; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, R

    2012-01-01

    We report on the status of our kaon semileptonic form factor calculations using the highly-improved staggered quark (HISQ) formulation to simulate the valence fermions. We present results for the form factor f_+^{K \\pi}(0) on the asqtad N_f=2+1 MILC configurations, discuss the chiral-continuum extrapolation, and give a preliminary estimate of the total error. We also present a more preliminary set of results for the same form factor but with the sea quarks also simulated with the HISQ action; these results include data at the physical light quark masses. The improvements that we expect to achieve with the use of the HISQ configurations and simulations at the physical quark masses are briefly discussed.

  9. Valence quark polarization in the nucleon and the deuteron data

    Science.gov (United States)

    Arash, Firooz; Taghavi-Shahri, Fatemeh

    2008-10-01

    Within the framework of the so-called valon model, we argue that a substantial part of the nucleon spin, about 40%, is carried by the polarized valence quarks. The remaining is the result of cancelations between gluon polarization and the orbital angular momentum, where the gluon polarization is the dominant one. It is shown that the sea quark contributions to the spin of any hadron is simply marginal and consistent with zero. Our findings point to a substantially smaller value for a8 than inferred from hyperon β decay, suggesting that full SU (3) symmetric assumption needs to be reconsidered. New and emerging experimental data tend to support this finding. Finally, we show that within the model presented here the experimental data on the polarized structure functions g1p,n,d are reproduced.

  10. Isotopic exchange in mixed valence compounds in the solid state

    International Nuclear Information System (INIS)

    This work aims at the determination of isotopic exchange kinetics and mechanism in two mixed valence compounds: Cs10(Sbsup(V)Cl6) (Sbsup(III)Cl6)3 and Tl3sup(I)(Tlsup(III)Cl6). The synthesis of the first compound is very difficult because in most of the cases mixtures of chloroantimoniates are obtained. Exchange in Tl4Cl6 labelled on Tlsup(III) is studied in detail by radiochemical analysis and physical techniques: ionic conductivity and positon annihilation. Cation vacancies are easily created in the lattice with formation enthalpy of 0.35 eV and migration enthalpy of 0.52 eV. Isochronic and isothermal exchange curves are described by a kinetic based on species diffusion. Models are given. Exchange is increased by grinding probably because extrinseque defects are introduced

  11. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    FAN; ChangZeng

    2007-01-01

    The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.……

  12. Resonating Valence Bond states for low dimensional S=1 antiferromagnets

    Science.gov (United States)

    Liu, Zheng-Xin; Zhou, Yi; Ng, Tai-Kai

    2014-03-01

    We study S = 1 spin liquid states in low dimensions. We show that the resonating-valence-bond (RVB) picture of S = 1 / 2 spin liquid state can be generalized to S = 1 case. For S = 1 system, a many-body singlet (with even site number) can be decomposed into superposition of products of two-body singlets. In other words, the product states of two-body singlets, called the singlet pair states (SPSs), are over complete to span the Hilbert space of many-body singlets. Furthermore, we generalized fermionic representation and the corresponding mean field theory and Gutzwiller projected stats to S = 1 models. We applied our theory to study 1D anti-ferromagnetic bilinear-biquadratic model and show that both the ground states (including the phase transition point) and the excited states can be understood excellently well within the framework. Our method can be applied to 2D S = 1 antiferromagnets.

  13. Nanostructured high valence silver oxide produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dellasega, D.; Facibeni, A.; Di Fonzo, F.; Russo, V. [Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica ' G. Natta' , NEMAS - Center for NanoEngineered MAterials and Surfaces, and IIT-Italian Institute of Technology, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Conti, C. [ICVBC-CNR, Via Cozzi 54, 20125 Milano (Italy); Ducati, C. [University of Cambridge, Department of Materials Science and Metallurgy, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Casari, C.S. [Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica ' G. Natta' , NEMAS - Center for NanoEngineered MAterials and Surfaces, and IIT-Italian Institute of Technology, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Li Bassi, A. [Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica ' G. Natta' , NEMAS - Center for NanoEngineered MAterials and Surfaces, and IIT-Italian Institute of Technology, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)], E-mail: andrea.libassi@polimi.it; Bottani, C.E. [Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica ' G. Natta' , NEMAS - Center for NanoEngineered MAterials and Surfaces, and IIT-Italian Institute of Technology, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2009-03-01

    Among silver oxides, Ag{sub 4}O{sub 4}, i.e. high valence Ag(I)Ag(III) oxide, is interesting for applications in high energy batteries and for the development of antimicrobial coatings. We here show that ns UV pulsed laser deposition (PLD) in an oxygen containing atmosphere allows the synthesis of pure Ag{sub 4}O{sub 4} nanocrystalline thin films, permitting at the same time to control the morphology of the material at the sub-micrometer scale. Ag{sub 4}O{sub 4} films with a crystalline domain size of the order of tens of nm can be deposited provided the deposition pressure is above a threshold (roughly 4 Pa pure O{sub 2} or 20 Pa synthetic air). The formation of this particular high valence silver oxide is explained in terms of the reactions occurring during the expansion of the ablated species in the reactive atmosphere. In particular, expansion of the PLD plasma plume is accompanied by formation of low stability Ag-O dimers and atomic oxygen, providing reactive species at the substrate where the film grows. Evidence of reactive collisions in the expanding ablation plume is obtained by analysis of the plume visible shape in inert and reactive atmospheres. In addition, we show how the dimensionless deposition parameter L, relating the target-to-substrate distance to the ablation plume maximum expansion length, can be used to classify different growth regimes. It is thus possible to vary the stoichiometry and the morphology of the films, from compact and columnar to foam-like, by controlling both the gas pressure and the target-to-substrate distance.

  14. A density functional for core-valence correlation energy.

    Science.gov (United States)

    Ranasinghe, Duminda S; Frisch, Michael J; Petersson, George A

    2015-12-01

    A density functional, εCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of εLY P (corr)(ρc), εV WN5 (corr)(ρc, ρv), εPBE (corr)(ρc, ρv), εSlater (ex)(ρc, ρv), εHCTH (ex)(ρc, ρv), εHF (ex)(ρc, ρv), and FCV-DFTNi,Zi, a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from εCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the εCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory. PMID:26646873

  15. A density functional for core-valence correlation energy

    Science.gov (United States)

    Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A.

    2015-12-01

    A density functional, ɛCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of ɛLY Pcorr(ρc), ɛV WN5corr(ρc, ρv), ɛPBEcorr(ρc, ρv), ɛSlaterex(ρc, ρv), ɛHCTHex(ρc, ρv), ɛHFex(ρc, ρv), and F CV -DFT (" separators=" N i , Z i ) , a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from ɛCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the ɛCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory.

  16. Fractional Band Filling in an Atomic Chain Structure

    Science.gov (United States)

    Crain, J. N.; Kirakosian, A.; Altmann, K. N.; Bromberger, C.; Erwin, S. C.; McChesney, J. L.; Lin, J.-L.; Himpsel, F. J.

    2003-05-01

    A new chain structure of Au is found on stepped Si(111) which exhibits a 1/4-filled band and a pair of ≥1/2-filled bands with a combined filling of 4/3. Band dispersions and Fermi surfaces for Si(553)-Au are obtained by photoemission and compared to that of Si(557)-Au. The dimensionality of both systems is determined using a tight binding fit. The fractional band filling makes it possible to preserve metallicity in the presence of strong correlations.

  17. A theoretical approach to the design of reduced band gap noncorrosive electrodes for photoelectrochemical solar cells

    International Nuclear Information System (INIS)

    Preliminary results from our charge self-consistent LCAO band structure (CSCBS) calculations with Bloch sums as the basis reveal that a noncorrosive reduced band gap electrode for photoelectrochemical solar cells may be produced from a (1:1) mixture of β-PbO2 and TiO2 (both rutile). The band gaps for the constituents (β-PbO2 and TiO2) and the 1:1 mixture are calculated and a detailed characterization of the valence and the conduction bands is undertaken to offer a possible mechanism for the reduction of the band gap of the mixture. The band gap for the perovskite PbTiO3 is also calculated to offer a guideline for selecting from the competing pathways to the fabrication of noncorrosive photoelectrochemical electrodes

  18. Band offsets for biaxially and uniaxially stressed silicon-germanium layers with arbitrary substrate and channel orientations

    Science.gov (United States)

    Eneman, Geert; Roussel, Philippe; Brunco, David Paul; Collaert, Nadine; Mocuta, Anda; Thean, Aaron

    2016-08-01

    The conduction and valence band offsets between a strained silicon-germanium layer and a silicon-germanium substrate are reported for arbitrary substrate and channel crystal orientations. The offsets are calculated both for the case of biaxial stress, corresponding approximately to the stress state of a thin strained channel in a planar field-effect transistor (FET), and for uniaxial stress, which is the approximate stress state for strained channels in a FinFET configuration. Significant orientation dependence is found for the conduction band offset, overall leading to the strongest electron quantum confinement in biaxial-tensile stressed channels on {100}-oriented substrates, and uniaxial-tensile stressed channels in the ⟨100⟩ and ⟨110⟩ directions. For biaxially stressed layers on {111} substrates, the conduction band offset is significantly smaller than for {100} or {110} directions. For the valence band offset, the dependence on crystal orientation is found to be small.

  19. Band Interaction between Chiral Doublet Bands

    Institute of Scientific and Technical Information of China (English)

    QI Bin; ZHANG Shuang-Quan; WANG Shou-Yu; MENG Jie

    2010-01-01

    @@ Band interaction between the chiral doublet bands based on πh11/2(×) vh-111/2 configuration is investigated in the particle rotor model with different triaxial deformation γ. The variation of chiral partner states with γvalues is understood qualitatively based on the basic picture of two interaction levels, which is confirmed further by the calculated overlap integral of wave functions at different γ values. It is found that the interaction strengths ofchiral partner states are obvionsly different for odd spins and even ones.

  20. Pressure and irradiation effects on transport properties of samarium compounds with instable valence

    International Nuclear Information System (INIS)

    Electron transport properties in samarium compounds with instable valence are studied in this thesis: from SmS in its integer valence phases at common pressure to SmB6 compound IV at common pressure through SmSsub(1-x)Psub(x) (x6 is presented

  1. Identifying Facial Emotions: Valence Specific Effects and an Exploration of the Effects of Viewer Gender

    Science.gov (United States)

    Jansari, Ashok; Rodway, Paul; Goncalves, Salvador

    2011-01-01

    The valence hypothesis suggests that the right hemisphere is specialised for negative emotions and the left hemisphere is specialised for positive emotions (Silberman & Weingartner, 1986). It is unclear to what extent valence-specific effects in facial emotion perception depend upon the gender of the perceiver. To explore this question 46…

  2. Valence-Bond Concepts in Coordination Chemistry and the Nature of Metal-Metal Bonds.

    Science.gov (United States)

    Pauling, Linus; Herman, Zelek S.

    1984-01-01

    Discusses the valence-bond method, applying it to some coordination compounds of metals, especially those involving metal-metal bonds. Suggests that transition metals can form as many as nine covalent bonds, permitting valence-theory to be extended to transition metal compounds in a more effective way than has been possible before. (JN)

  3. Group Motivation and Group Task Performance: The Expectancy-Valence Theory Approach.

    Science.gov (United States)

    Nakanishi, Masayuki

    1988-01-01

    Investigated effects of group motivation on group task performance. Created two levels of valence, expectancy and instrumentality. Valence variable reflected on group productivity on unstructured and task persistence measures. Expectancy variable's effect was on task persistence measure. Instrumentality affected group productivity on structured…

  4. Age influences the relation between subjective valence ratings and emotional word use during autobiographical memory retrieval.

    Science.gov (United States)

    Ford, Jaclyn H; DiGirolamo, Marissa A; Kensinger, Elizabeth A

    2016-09-01

    Recent research reveals an age-related increase in positive autobiographical memory retrieval using a number of positivity measures, including valence ratings and positive word use. It is currently unclear whether the positivity shift in each of these measures co-occurs, or if age uniquely influences multiple components of autobiographical memory retrieval. The current study examined the correspondence between valence ratings and emotional word use in young and older adults' autobiographical memories. Positive word use in narratives was associated with valence ratings only in young adults' narratives. Older adults' narratives contained a consistent level of positive word use regardless of valence rating, suggesting that positive words and concepts may be chronically accessible to older adults during memory retrieval, regardless of subjective valence. Although a relation between negative word use in narratives and negative valence ratings was apparent in both young and older adults, it was stronger in older adults' narratives. These findings confirm that older adults do vary their word use in accordance with subjective valence, but they do so in a way that is different from young adults. The results also point to a potential dissociation between age-related changes in subjective valence and in positive word use. PMID:26274398

  5. Development of an Analytical System for Rapid, Remote Determining Concentration and Valence of Uranium and Plutonium

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Concentrations and valence of U and Pu directly shows whether the Purex process is under normal conditions or not. It is necessary to monitor concentrations and valence of U and Pu in real-time.Purposes of this work is to develop an analytical

  6. Dissociable modulation of overt visual attention in valence and arousal revealed by topology of scan path.

    Directory of Open Access Journals (Sweden)

    Jianguang Ni

    Full Text Available Emotional stimuli have evolutionary significance for the survival of organisms; therefore, they are attention-grabbing and are processed preferentially. The neural underpinnings of two principle emotional dimensions in affective space, valence (degree of pleasantness and arousal (intensity of evoked emotion, have been shown to be dissociable in the olfactory, gustatory and memory systems. However, the separable roles of valence and arousal in scene perception are poorly understood. In this study, we asked how these two emotional dimensions modulate overt visual attention. Twenty-two healthy volunteers freely viewed images from the International Affective Picture System (IAPS that were graded for affective levels of valence and arousal (high, medium, and low. Subjects' heads were immobilized and eye movements were recorded by camera to track overt shifts of visual attention. Algebraic graph-based approaches were introduced to model scan paths as weighted undirected path graphs, generating global topology metrics that characterize the algebraic connectivity of scan paths. Our data suggest that human subjects show different scanning patterns to stimuli with different affective ratings. Valence salient stimuli (with neutral arousal elicited faster and larger shifts of attention, while arousal salient stimuli (with neutral valence elicited local scanning, dense attention allocation and deep processing. Furthermore, our model revealed that the modulatory effect of valence was linearly related to the valence level, whereas the relation between the modulatory effect and the level of arousal was nonlinear. Hence, visual attention seems to be modulated by mechanisms that are separate for valence and arousal.

  7. Band alignment and defects of the diamond zinc oxide heterojunction; Bandstruktur und Defekte der Diamant-Zinkoxid-Heterostruktur

    Energy Technology Data Exchange (ETDEWEB)

    Geithner, Peter

    2008-09-12

    Zinc oxide films were grown on diamond single crystals by rf sputtering of zinc oxide. The valence and conduction band offset was determined by photoelectron spectroscopy. A deep defect occurring in the zinc oxide films on diamond was characterized by cathodoluminescence spectroscopy. (orig.)

  8. One-band density of states for various fourfold-coordinated random networks with periodic boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guttman, L.

    1975-01-15

    Three different types of random networks were generated by computer simulation, starting from crystalline arrangements. All are perfectly fourfold coordinated, and satisfy periodic boundary conditions. The valence-band densities of electronic states of the various types are far from featureless and can clearly be distinguished from each other. (auth)

  9. Synchrotron Studies of Narrow Band and Low-Dimensional Materials. Final Report for July 1, 1990 --- December 31, 2002

    International Nuclear Information System (INIS)

    This report summarizes a 12-year program of various kinds of synchrotron spectroscopies directed at the electronic structures of narrow band and low-dimensional materials that display correlated electron behaviors such as metal-insulator transitions, mixed valence, superconductivity, Kondo moment quenching, heavy Fermions, and non-Fermi liquid properties

  10. A model for the direct-to-indirect band-gap transition in monolayer MoSe2 under strain

    Indian Academy of Sciences (India)

    Ruma Das; Priya Mahadevan

    2015-06-01

    A monolayer of MoSe2 is found to be a direct band-gap semiconductor. We show, within ab-initio electronic structure calculations, that a modest biaxial tensile strain of 3% can drive it into an indirect band-gap semiconductor with the valence band maximum (VBM) shifting from point to point. An analysis of the charge density reveals that while Mo–Mo interactions contribute to the VBM at 0% strain, Mo–Se interactions contribute to the highest occupied band at point. A scaling of the hopping interaction strengths within an appropriate tight binding model can capture the transition.

  11. Dispersant field monitoring procedures

    Energy Technology Data Exchange (ETDEWEB)

    Hillman, S. O.; Hood, S. D. [Alyeska Pipeline Service Co. (United States); Bronson, M. T.; Shufelt, G. [EMCON, Alaska,Inc., Anchorage, AK (United States)

    1997-10-01

    Alyeska Pipeline Service Company`s (APSC) dispersant response capability in the Port of Valdez, Prince William Sound, and in the Gulf of Alaska was described. APSC provides dispersal equipment, aerial spray delivery systems, helibucket delivery systems, vessel delivery systems, along with a minimum of 600,000 gallon stockpile of the dispersant Corexit 9527. Effectiveness and effects are monitored by visual observation. In addition, fluorometer and water sample analysis are also used to provide field analytical data indicative of the environmental effects of dispersant applications. The field monitoring plan was field tested in December 1996. Details of the monitoring procedures are outlined in this paper. 18 refs., 5 tabs.

  12. One-man band

    OpenAIRE

    Stillman, R.

    2013-01-01

    This website presents practice-based research related to solo simultaneous instrumental performance ('one-man band'). The site was conceived as a creative and widely accessible platform for music and ideas resulting from one-man band activates carried out between 2008 and 2013. Central to this project is an interest in how one-man band technique informs compositional process, including studio production. Through presentation and analysis of the author’s own creative practice, the site exp...

  13. Examining the role of emotional valence of mind wandering: All mind wandering is not equal.

    Science.gov (United States)

    Banks, Jonathan B; Welhaf, Matthew S; Hood, Audrey V B; Boals, Adriel; Tartar, Jaime L

    2016-07-01

    To evaluate the role of emotional valence on the impact of mind wandering on working memory (WM) and sustained attention, we reanalyzed data from three independently conducted studies that examined the impact of stress on WM (Banks & Boals, 2016; Banks, Welhaf, & Srour, 2015) and sustained attention (Banks, Tartar, & Welhaf, 2014). Across all studies, participants reported the content of their thoughts at random intervals during the WM or sustained attention task. Thought probes in all studies included a core set of response options for task-unrelated thoughts (TUTs) that were negatively, positively, or neutrally emotionally valenced. In line with theories of emotional valenced stimuli on capture of attention, results suggest negatively valenced TUTs, but not positively valenced TUTs, were related to poorer WM and sustained attention in two studies. Neutral TUTs were related to poorer WM but not sustained attention performance. Implications for models of mind wandering are discussed.

  14. Emotions and language about motion: Differentiating affective dominance with syntax from valence with semantics.

    Science.gov (United States)

    Freddi, Sébastien; Esteban, José; Dru, Vincent

    2015-12-15

    Motion as encoded in linguistic cues is used to differentiate affective valence and dominance. Participants were invited to rate their affective responses to different words along valence and dominance scales. The words were nouns describing static cues and verbs describing motion, connected to DOWN/UP and Avoidance/Approach cues. The results of three studies showed that valence and dominance could be differentiated through syntax and semantics of motion. On one hand, dominance feelings, compared to valence ones, are particularly influenced by motion encoded in syntactic classes (verbs vs. nouns). On the other hand, valence feelings, compared to dominance ones, are influenced by a semantics of motion through DOWN/UP and Avoidance/Approach cues, considered as polarities. A polarity correspondence effect is proposed to explain these results.

  15. Band offsets at the crystalline / hydrogenated amorphous silicon interface from first-principles

    Science.gov (United States)

    Hazrati, Ebrahim; Jarolimek, Karol; de Wijs, Gilles A.; InstituteMolecules; Materials Team

    2015-03-01

    The heterojunction formed between crystalline silicon (c-Si) and hydrogenated amorphous silicon (a-Si:H) is a key component of a new type of high-efficiency silicon solar cell. Since a-Si:H has a larger band gap than c-Si, band offsets are formed at the interface. A band offset at the minority carrier band will mitigate recombination and lead to an increased efficiency. Experimental values of band offsets scatter in a broad range. However, a recent meta-analysis of the results (W. van Sark et al.pp. 405, Springer 2012) gives a larger valence offset (0.40 eV) than the conduction offset (0.15 eV). In light of the conflicting reports our goal is to calculate the band offsets at the c-Si/a-Si:H interface from first-principles. We have prepared several atomistic models of the interface. The crystalline part is terminated with (111) surfaces on both sides. The amorphous structure is generated by simulating an annealing process at 1100 K, with DFT molecular dynamics. Once the atomistic is ready it can be used to calculate the electronic structure of the interface. Our preliminary results show that the valence offset is larger than the conduction band offset.

  16. Band alignment of atomic layer deposited (HfZrO{sub 4}){sub 1−x}(SiO{sub 2}){sub x} gate dielectrics on Si (100)

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Sung [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 16419 (Korea, Republic of); Tahir, Dahlang [Department of Physics, Hasanuddin University, Makassar 90245 (Indonesia); Chung, Jae Gwan; Lee, Jae Cheol; Kim, KiHong; Lee, Junho; Lee, Hyung-Ik; Park, Gyeong Su [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678 (Korea, Republic of); Oh, Suhk Kun; Kang, Hee Jae, E-mail: hjkang@cbu.ac.kr [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Choi, Pyungho; Choi, Byoung-Deog, E-mail: bdchoi@skku.edu [College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 16419 (Korea, Republic of)

    2015-11-02

    The band alignment of atomic layer deposited (HfZrO{sub 4}){sub 1−x}(SiO{sub 2}){sub x} (x = 0, 0.10, 0.15, and 0.20) gate dielectric thin films grown on Si (100) was obtained by using X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy. The band gap, valence band offset, and conduction band offset values for HfZrO{sub 4} silicate increased from 5.4 eV to 5.8 eV, from 2.5 eV to 2.75 eV, and from 1.78 eV to 1.93 eV, respectively, as the mole fraction (x) of SiO{sub 2} increased from 0.1 to 0.2. This increase in the conduction band and valence band offsets, as a function of increasing SiO{sub 2} mole fraction, decreased the gate leakage current density. As a result, HfZrO{sub 4} silicate thin films were found to be better for advanced gate stack applications because they had adequate band gaps to ensure sufficient conduction band offsets and valence band offsets to Si.

  17. Dispersion relations in heavily-doped nanostructures

    CERN Document Server

    Ghatak, Kamakhya Prasad

    2016-01-01

    This book presents the dispersion relation in heavily doped nano-structures. The materials considered are III-V, II-VI, IV-VI, GaP, Ge, Platinum Antimonide, stressed, GaSb, Te, II-V, HgTe/CdTe superlattices and Bismuth Telluride semiconductors. The dispersion relation is discussed under magnetic quantization and on the basis of carrier energy spectra. The influences of magnetic field, magneto inversion, and magneto nipi structures on nano-structures is analyzed. The band structure of optoelectronic materials changes with photo-excitation in a fundamental way according to newly formulated electron dispersion laws. They control the quantum effect in optoelectronic devices in the presence of light. The measurement of band gaps in optoelectronic materials in the presence of external photo-excitation is displayed. The influences of magnetic quantization, crossed electric and quantizing fields, intense electric fields on the on the dispersion relation in heavily doped semiconductors and super-lattices are also disc...

  18. Dispersal and migration

    Directory of Open Access Journals (Sweden)

    Schwarz, C.

    2004-06-01

    overlay maps of effort to try and remove any induced artefacts in the data. Differences in timing or the route of migration has often been studies separately. Lokki and Saurola (Lokki & Saurola, 2004 develop an omnibus procedure to test if the migration timing and/or route differ among two populations of birds (e.g. males vs females. It uses a randomization test to calibrate the test statistic. However, it makes the key assumptions about equal recovery effort in time and space so that the method may be most applicable to comparison among species with similar migration timing and movement to keep differential sighting/recovery rates from affecting the result. Of course, it is in these cases where it is most difficulty to separate the groups which will require substantial samples to have good performance. Thorup and Rahbek (Thorup & Rahbek, 2004 provide a framework for accounting for unequal spatial recovery probability investigating the geometric influence of ocean and sea on observed migratory patterns. Taking the data set of Pied Flycatchers (Ficedula hypoleuca ringed as nestlings in Scandinavia and recovered en route on their initial migration and using a model based on the clock–and–compass innate navigation hypothesis they are showing that geometric constraints explain quite a bit of the variation in ring–recoveries. The model also shows that ring recovery patterns do reflect the migratory patterns, and that they are suitable for an analysis of the concentration of the migratory route which is important for the general use of ringing data in studies of migration. This is important for the general use of ringing data in studies of migration and dispersal. The new approach has also implications for understanding the migratory orientation program. The compiled papers highlight some novel ideas of how to analyse band recoveries to investigate migration routes and migration behaviour as well as dispersal patterns among birds and dolphins. Multistate modeling appears

  19. Electronic pairing mechanism due to band modification in a two-band model: Tc evaluation

    International Nuclear Information System (INIS)

    Following the electronic model developed by us previously (Mizia and Romanowski, Mizia) we estimate the superconducting transition temperature in a simple electronic two-band model for materials characterized by a broad superconducting band and a narrow level within the same energy range. A large electron deformation coupling constant and large electron correlation effects are assumed. It is shown that high-temperature superconductivity is entirely possible within a range of reasonable electronic parameters. This model does not assume any artificial interactions to obtain a negative pairing potential. Instead, the negative part of the electronic interaction potential comes from the modification of the electron dispersion relation with growing number of superconducting pairs. Such a modification is possible in soft electronic systems, i.e. in systems partial to band modification due to large internal stresses, strong electronic correlation effects and broad band narrow level charge transfer during the superconducting transition. (orig.)

  20. Interband interaction between bulk and surface resonance bands of a Pb-adsorbed Ge(001) surface

    Science.gov (United States)

    Sakata, Tomohiro; Takeda, Sakura N.; Kitagawa, Kosuke; Daimon, Hiroshi

    2016-08-01

    We investigated the valence band structure of a Pb-adsorbed Ge(001) surface by angle-resolved photoelectron spectroscopy. Three Ge bands, G1, G2, and G3, were observed in a Ge(001) 2 × 1 clean surface. In addition to these three bands, a fourth band (R band) is found on the surface with 2 ML of Pb. The R band continuously appeared even when the surface superstructure was changed. The position of the R band does not depend on Pb coverage. These results indicate that the R band derives from Ge subsurface states, known as surface resonance states. Furthermore, the effective mass of G3 is significantly reduced when the R band exists. We found that this reduction of G3 effective mass was explained by the interaction of the G3 and R bands. Consequently, the surface resonance band is considered to penetrate into the Ge subsurface region affecting the Ge bulk states. We determine the hybridization energy to be 0.068 eV by fitting the observed bands.

  1. Exciton dispersion in molecular solids

    International Nuclear Information System (INIS)

    The investigation of the exciton dispersion (i.e. the exciton energy dependence as a function of the momentum carried by the electron–hole pair) is a powerful approach to identify the exciton character, ranging from the strongly localised Frenkel to the delocalised Wannier–Mott limiting cases. We illustrate this possibility at the example of four prototypical molecular solids (picene, pentacene, tetracene and coronene) on the basis of the parameter-free solution of the many-body Bethe–Salpeter equation. We discuss the mixing between Frenkel and charge-transfer excitons and the origin of their Davydov splitting in the framework of many-body perturbation theory and establish a link with model approaches based on molecular states. Finally, we show how the interplay between the electronic band dispersion and the exchange electron–hole interaction plays a fundamental role in setting the nature of the exciton. This analysis has a general validity holding also for other systems in which the electron wavefunctions are strongly localized, as in strongly correlated insulators. (topical review)

  2. First-principle natural band alignment of GaN / dilute-As GaNAs alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Chee-Keong, E-mail: ckt209@lehigh.edu; Tansu, Nelson, E-mail: tansu@lehigh.edu [Center for Photonics and Nanoelectronics, Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015 (United States)

    2015-01-15

    Density functional theory (DFT) calculations with the local density approximation (LDA) functional are employed to investigate the band alignment of dilute-As GaNAs alloys with respect to the GaN alloy. Conduction and valence band positions of dilute-As GaNAs alloy with respect to the GaN alloy on an absolute energy scale are determined from the combination of bulk and surface DFT calculations. The resulting GaN / GaNAs conduction to valence band offset ratio is found as approximately 5:95. Our theoretical finding is in good agreement with experimental observation, indicating the upward movements of valence band at low-As content dilute-As GaNAs are mainly responsible for the drastic reduction of the GaN energy band gap. In addition, type-I band alignment of GaN / GaNAs is suggested as a reasonable approach for future device implementation with dilute-As GaNAs quantum well, and possible type-II quantum well active region can be formed by using InGaN / dilute-As GaNAs heterostructure.

  3. Visualizing Dispersion Interactions

    Science.gov (United States)

    Gottschalk, Elinor; Venkataraman, Bhawani

    2014-01-01

    An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…

  4. Dispersal from Microbial Biofilms.

    Science.gov (United States)

    Barraud, Nicolas; Kjelleberg, Staffan; Rice, Scott A

    2015-12-01

    One common feature of biofilm development is the active dispersal of cells from the mature biofilm, which completes the biofilm life cycle and allows for the subsequent colonization of new habitats. Dispersal is likely to be critical for species survival and appears to be a precisely regulated process that involves a complex network of genes and signal transduction systems. Sophisticated molecular mechanisms control the transition of sessile biofilm cells into dispersal cells and their coordinated detachment and release in the bulk liquid. Dispersal cells appear to be specialized and exhibit a unique phenotype different from biofilm or planktonic bacteria. Further, the dispersal population is characterized by a high level of heterogeneity, reminiscent of, but distinct from, that in the biofilm, which could potentially allow for improved colonization under various environmental conditions. Here we review recent advances in characterizing the molecular mechanisms that regulate biofilm dispersal events and the impact of dispersal in a broader ecological context. Several strategies that exploit the mechanisms controlling biofilm dispersal to develop as applications for biofilm control are also presented. PMID:27337281

  5. Valence Tautomerism in One-Dimensional Coordination Polymers.

    Science.gov (United States)

    Drath, Olga; Gable, Robert W; Moubaraki, Boujemaa; Murray, Keith S; Poneti, Giordano; Sorace, Lorenzo; Boskovic, Colette

    2016-05-01

    The combination of the divergent bis-pyridyl linking ligands 1,2-bis(4-pyridyl)ethane (1,2-bpe), 4,4'-trans-azopyridine (azpy), and 1,3-bis(4-pyridyl)propane (1,3-bpp) with cobalt and 3,5-di-tert-butyldioxolene (3,5-dbdiox) ligands has afforded the complexes [Co(3,5-dbdiox)2(1,2-bpe)]∞ (1), [Co(3,5-dbdiox)2(azpy)]∞ (2), [trans-Co(3,5-dbdiox)2(1,3-bpp)]∞ (3a), and [cis-Co(3,5-dbdiox)2(1,3-bpp)]∞ (3b). All species are 1D coordination polymers that crystallize as solvated forms; the geometric isomers 3a,b cocrystallize. Complexes 1, 2, and 3a exhibit around the Co centers a trans disposition of the N-donor atoms from the pyridyl linkers, while an unusual cis disposition is evident in 3b. Single-crystal X-ray structural analysis at 100 or 130 K of solvated forms of these complexes indicates that all complexes possess the {Co(III)(3,5-dbcat)(3,5-dbsq)} (3,5-dbcat = 3,5-di-tert-butylcatecholate; 3,5-dbsq = 3,5-di-tert-butylsemiquinonate) charge distribution at the temperature of data collection. Variable-temperature magnetic susceptibility studies reveal that 1, 1·1.5MeCN·2H2O, 2·2EtOH, and 3·MeCN·H2O (3 = 3a·3b) all exhibit thermally induced valence tautomeric (VT) transitions above 200 K. Multiple heating and cooling cycles indicate that in some cases the behavior is strongly dependent on desolvation processes. Most notably, further desolvation of 1·1.5MeCN·2H2O above 340 K affords χmT values that suggest unusual ferromagnetic coupling in the {hs-Co(II)(3,5-dbsq)2} valence tautomer. Compound 3·MeCN·H2O exhibits a two-step VT transition that may be ascribed to the presence of the cis and trans geometric isomers. Compounds 1, 1·1.5MeCN·2H2O, 2·2EtOH, and 3·MeCN·H2O all also exhibit a single photoinduced VT transition, comparable to those generally observed for nonpolymeric cobalt-dioxolene complexes. PMID:27058604

  6. Evolution of dispersal distance.

    Science.gov (United States)

    Durrett, Rick; Remenik, Daniel

    2012-03-01

    The problem of how often to disperse in a randomly fluctuating environment has long been investigated, primarily using patch models with uniform dispersal. Here, we consider the problem of choice of seed size for plants in a stable environment when there is a trade off between survivability and dispersal range. Ezoe (J Theor Biol 190:287-293, 1998) and Levin and Muller-Landau (Evol Ecol Res 2:409-435, 2000) approached this problem using models that were essentially deterministic, and used calculus to find optimal dispersal parameters. Here we follow Hiebeler (Theor Pop Biol 66:205-218, 2004) and use a stochastic spatial model to study the competition of different dispersal strategies. Most work on such systems is done by simulation or nonrigorous methods such as pair approximation. Here, we use machinery developed by Cox et al. (Voter model perturbations and reaction diffusion equations 2011) to rigorously and explicitly compute evolutionarily stable strategies.

  7. Perfect Dispersive Medium

    CERN Document Server

    Gupta, Shulabh

    2015-01-01

    Dispersion is at the heart of all ultrafast real-time signal processing systems across the entire electromagnetic spectrum ranging from radio-frequencies to optics. However, following Kramer-Kronig relations, these signal processing systems have been plagued with the parasitic amplitude distortions due to frequency dependent, and non-flat amplitude transmission of naturally dispersive media. This issue puts a serious limitation on the applicability and performance of these signal processing systems. To solve the above mentioned issue, a perfect dispersive medium is proposed in this work, which artificially violates the Kramer-Kronig relations, while satisfying all causality requirements. The proposed dispersive metamaterial is based on loss-gain metasurface pairs and exhibit a perfectly flat transmission response along with arbitrary dispersion in a broad bandwidth, thereby solving a seemingly unavoidable issue in all ultrafast signal processing systems. Such a metamaterial is further shown using sub-waveleng...

  8. ZEBRAFISH CHROMOSOME-BANDING

    NARCIS (Netherlands)

    PIJNACKER, LP; FERWERDA, MA

    1995-01-01

    Banding techniques were carried out on metaphase chromosomes of zebrafish (Danio rerio) embryos. The karyotypes with the longest chromosomes consist of 12 metacentrics, 26 submetacentrics, and 12 subtelocentrics (2n = 50). All centromeres are C-band positive. Eight chromosomes have a pericentric C-b

  9. Stretch Band Exercise Program

    Science.gov (United States)

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  10. Flat Chern band in a two-dimensional organometallic framework.

    Science.gov (United States)

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng

    2013-03-01

    By combining exotic band dispersion with nontrivial band topology, an interesting type of band structure, namely, the flat Chern band, has recently been proposed to spawn high-temperature fractional quantum Hall states. Despite the proposal of several theoretical lattice models, however, it remains doubtful whether such a "romance of flatland" could exist in a real material. Here, we present a first-principles design of a two-dimensional indium-phenylene organometallic framework that realizes a nearly flat Chern band right around the Fermi level by combining lattice geometry, spin-orbit coupling, and ferromagnetism. An effective four-band model is constructed to reproduce the first-principles results. Our design, in addition, provides a general strategy to synthesize topologically nontrivial materials by virtue of organic chemistry and nanotechnology.

  11. Dual-band bandpass filter using composite metamaterial resonator

    Science.gov (United States)

    Jin, Yu-Ting; Si, Li-Ming; Zhang, Qing-Le; Wu, Yu-Ming; Lv, Xin

    2016-03-01

    A dual-band bandpass filter at X-band is proposed using composite metamaterial resonator consisting of an outer square closed-ring resonator (SCRR) and two inner electric inductance-capacitance (ELC) resonators. Numerical simulation and microwave measurement reveal that the filter exhibits two passbands centered at 8.76 GHz and 11.04 GHz, with 3 dB bandwidths of 130 MHz and 290 MHz, respectively. The complex dispersion relation of the filter is further derived based on the effective medium theory, where two balanced composite right-/left-handed bands are found, i.e. lines exhibiting two left-handed and two right-handed bands alternating. The proposed filter may find useful in dual-band or multi-band wireless communication systems.

  12. Doping dependent plasmon dispersion in 2 H -transition metal dichalcogenides

    Science.gov (United States)

    Müller, Eric; Büchner, Bernd; Habenicht, Carsten; König, Andreas; Knupfer, Martin; Berger, Helmuth; Huotari, Simo

    2016-07-01

    We report the behavior of the charge carrier plasmon of 2 H -transition metal dichalcogenides (TMDs) as a function of intercalation with alkali metals. Intercalation and concurrent doping of the TMD layers have a substantial impact on plasmon energy and dispersion. While the plasmon energy shifts are related to the intercalation level as expected within a simple homogeneous electron gas picture, the plasmon dispersion changes in a peculiar manner independent of the intercalant and the TMD materials. Starting from a negative dispersion, the slope of the plasmon dispersion changes sign and grows monotonously upon doping. Quantitatively, the increase of this slope depends on the orbital character (4 d or 5 d ) of the conduction bands, which indicates a decisive role of band structure effects on the plasmon behavior.

  13. Valence atom with bohmian quantum potential: the golden ratio approach

    Directory of Open Access Journals (Sweden)

    Putz Mihai V

    2012-11-01

    Full Text Available Abstract Background The alternative quantum mechanical description of total energy given by Bohmian theory was merged with the concept of the golden ratio and its appearance as the Heisenberg imbalance to provide a new density-based description of the valence atomic state and reactivity charge with the aim of clarifying their features with respect to the so-called DFT ground state and critical charge, respectively. Results The results, based on the so-called double variational algorithm for chemical spaces of reactivity, are fundamental and, among other issues regarding chemical bonding, solve the existing paradox of using a cubic parabola to describe a quadratic charge dependency. Conclusions Overall, the paper provides a qualitative-quantitative explanation of chemical reactivity based on more than half of an electronic pair in bonding, and provide new, more realistic values for the so-called “universal” electronegativity and chemical hardness of atomic systems engaged in reactivity (analogous to the atoms-in-molecules framework.

  14. Electrochemical modification of Surface valence - Cr precipitates on LSCF surfaces

    Science.gov (United States)

    Finsterbusch, Martin; Schaefer, J. A.; Eigenbrodt, B. C.; Walker, R. A.; Lussier, A.; Idzerda, Y. U.

    2010-10-01

    Interactions of gaseous Cr contaminants with the perovskite material LSCF (La0.6Sr0.4Co0.2Fe0.8O3) commonly used as cathode for Solid Oxide Fuel Cells (SOFC) were investigated by means of X-ray absorption Spectroscopy (XAS) and Raman Spectroscopy. The setup consisted of a model cell with a GDC (Gd0.1Ce0.9O2) electrolyte pellet with a LSCF cathode on both sides in a Cr containing sample holder. The chemical structure and valency of the precipitate were found to depend on the electrochemical conditions of the surface, particularly on the bias voltage and not the total current density present in the cell. Cr^6+ spinels were found to form under high bias voltage, while under low bias voltage mostly Cr2O3 was formed. The influence of the contact material (Au vs. Ag) and the effect of quenching were investigated by Raman Spectroscopy under operating conditions (800 C in air). XAS unlike EDS, XRD or XPS is a precise and valuable tool for the direct measurement of the oxidation state of transition metals in compounds if the concentration is low (contamination) and the substrate is porous.

  15. Valence Topological Charge-Transfer Indices for Dipole Moments

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2003-01-01

    Full Text Available New valence topological charge-transfer indices are applied to the calculation of dipole moments. The algebraic and vector semisum charge-transfer indices are defined. The combination of the charge-transfer indices allows the estimation of the dipole moments. The model is generalized for molecules with heteroatoms. The ability of the indices for the description of the molecular charge distribution is established by comparing them with the dipole moments of a homologous series of phenyl alcohols. Linear and non-linear correlation models are obtained. The new charge-transfer indices improve the multivariable non-linear regression equations for the dipole moment. When comparing with previous results, the variance decreases 92%. No superposition of the corresponding Gk–Jk and GkV – JkV pairs is observed. This diminishes the risk of co-linearity. Inclusion of the oxygen atom in the p-electron system is beneficial for the description of the dipole moment, owing to either the role of the additional p orbitals provided by the heteroatom or the role of steric factors in the p-electron conjugation. Linear and non-linear correlations between the fractal dimension and various descriptors point not only to a homogeneous molecular structure but also to the ability to predict and tailor drug properties.

  16. Delocalization and Valence Tautomerism in Vanadium Tris(iminosemiquinone) Complexes.

    Science.gov (United States)

    Bendix, Jesper; Clark, Kensha Marie

    2016-02-18

    To survey the noninnocence of bis(arylimino) acenaphthene (BIAN) ligands (L) in complexes with early metals, the homoleptic vanadium complex, [V(L)3 ] (1), and its monocation, [V(L)3 ]PF6 (2), were synthesized. These complexes were found to have a very rich electronic behavior, whereby 1 displays strong electronic delocalization and 2 can be observed in unprecedented valence tautomeric forms. The oxidation states of the metal and ligand components in these complexes were assigned by using spectroscopic, crystallographic, and magnetic analyses. Complex 1 was identified as [V(IV) (L(red) )(L(.) )2 ] (L(red) =N,N'-bis(3,5-dimethylphenylamido)acenaphthylene; L(.) =N,N'-bis(3,5-dimethylphenylimino)acenaphthenesemiquinonate). Complex 2 was determined to be [V(V) (L(red) )(L(.) )2 ](+) at T150 K. Cyclic voltammetry experiments reveal six quasi-reversible processes, thus indicating the potential of this metal-ligand combination in catalysis or materials applications. PMID:26799365

  17. [XPS study on the influence of calcination conditions to cerium ion valence].

    Science.gov (United States)

    Mei, Yan; Yan, Jian-ping; Nie, Zuo-ren

    2010-01-01

    For the system of Ce(NO3)2.6H2O and urea solution during homogeneous precipitation method, X-ray diffraction (XRD), infrared spectrum (IR) and especially X-ray photoelectron spectroscopy (XPS) were used to study and characterize the product structure, variety of cerium ion valence, compound surface character and kernel electronic configurations. The results of XRD and IR showed that calcination temperature had a great effect on the cerium ion valence. The products are orthorhombic Ce2 O(CO3)2.H2O with valence III by using homogeneous precipitation method directly. When heated from the temperature 200 degrees C to 250 degrees C, the product of CeO(CO3)2.H2O with valence VI was finally changed into stable CeO2 with valence IV. XPS was used to study the surface character and kernel electronic configurations of the three different compounds through fine scanning of O(1s), Ce(3d) and Ce(4d) apices, and the results approved that the compounds with different valences are caused by the different valence electronic configurations of the products.

  18. Lying about the valence of affective pictures: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Tatia M C Lee

    Full Text Available The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception.

  19. Valence Scaling of Dynamic Facial Expressions Is Altered in High-Functioning Subjects with Autism Spectrum Disorders: An FMRI Study

    Science.gov (United States)

    Rahko, Jukka S.; Paakki, Jyri-Johan; Starck, Tuomo H.; Nikkinen, Juha; Pauls, David L.; Katsyri, Jari V.; Jansson-Verkasalo, Eira M.; Carter, Alice S.; Hurtig, Tuula M.; Mattila, Marja-Leena; Jussila, Katja K.; Remes, Jukka J.; Kuusikko-Gauffin, Sanna A.; Sams, Mikko E.; Bolte, Sven; Ebeling, Hanna E.; Moilanen, Irma K.; Tervonen, Osmo; Kiviniemi, Vesa

    2012-01-01

    FMRI was performed with the dynamic facial expressions fear and happiness. This was done to detect differences in valence processing between 25 subjects with autism spectrum disorders (ASDs) and 27 typically developing controls. Valence scaling was abnormal in ASDs. Positive valence induces lower deactivation and abnormally strong activity in ASD…

  20. Positively valenced stimuli facilitate creative novel metaphoric processes by enhancing medial prefrontal cortical activation.

    Science.gov (United States)

    Subramaniam, Karuna; Beeman, Mark; Faust, Miriam; Mashal, Nira

    2013-01-01

    A metaphor is a figure of speech in which a subject is symbolic of another unrelated object. In the present study, we examined neural patterns associated with both novel unfamiliar and conventional familiar metaphoric processing, and how these patterns are modulated by affective valence. Prior to fMRI scanning, participants received a list of word pairs (novel unfamiliar metaphors as well as conventional familiar metaphors) and were asked to denote the valence (positive, negative, or neutral) of each word pair. During scanning, participants had to decide whether the word pairs formed meaningful or meaningless expressions. Results indicate that participants were faster and more accurate at deciding that positively valenced metaphors were meaningful compared to neutral metaphors. These behavioral findings were accompanied by increased activation in the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and the right inferior parietal lobe (RIPL). Specifically, positively valenced novel unfamiliar metaphors elicited activation in these brain regions in addition to the left superior temporal gyrus when compared to neutral novel metaphors. We also found that the mPFC and PCC mediated the processing of positively valenced metaphors when compared to negatively valenced metaphors. Positively valenced conventional metaphors, however, elicited different neural signatures when contrasted with either neutral or negatively valenced conventional metaphors. Together, our results indicate that positively valenced stimuli facilitate creative metaphoric processes (specifically novel metaphoric processes) by mediating attention and cognitive control processes required for the access, integration, and selection of semantic associations via modulation of the mPFC. The present study is important for the development of neural accounts of emotion-cognition interactions required for creativity, language, and successful social functioning in general.

  1. First principles study and empirical parametrization of twisted bilayer MoS2 based on band-unfolding

    CERN Document Server

    Tan, Yaohua; Ghosh, Avik

    2016-01-01

    We explore the band structure and ballistic electron transport in twisted bilayer $\\textrm{MoS}_2$ using Density Functional Theory (DFT). The sphagetti like bands are unfolded to generate band structures in the primitive unit cell of the original un-twisted $\\textrm{MoS}_2$ bilayer and projected onto an individual layer. The corresponding twist angle dependent indirect bandedges are extracted from the unfolded band structures. Based on a comparison within the same primitive unit cell, an efficient two band effective mass model for indirect conduction and valence valleys is created and parameterized by fitting the unfolded band structures. With the two band effective mass model, transport properties - specifically, we calculate the ballistic transmission in arbitrarily twisted bilayer $\\textrm{MoS}_2$.

  2. A scalable synthesis of highly stable and water dispersible Ag 44(SR)30 nanoclusters

    KAUST Repository

    AbdulHalim, Lina G.

    2013-01-01

    We report the synthesis of atomically monodisperse thiol-protected silver nanoclusters [Ag44(SR)30] m, (SR = 5-mercapto-2-nitrobenzoic acid) in which the product nanocluster is highly stable in contrast to previous preparation methods. The method is one-pot, scalable, and produces nanoclusters that are stable in aqueous solution for at least 9 months at room temperature under ambient conditions, with very little degradation to their unique UV-Vis optical absorption spectrum. The composition, size, and monodispersity were determined by electrospray ionization mass spectrometry and analytical ultracentrifugation. The produced nanoclusters are likely to be in a superatom charge-state of m = 4-, due to the fact that their optical absorption spectrum shares most of the unique features of the intense and broadly absorbing nanoparticles identified as [Ag44(SR) 30]4- by Harkness et al. (Nanoscale, 2012, 4, 4269). A protocol to transfer the nanoclusters to organic solvents is also described. Using the disperse nanoclusters in organic media, we fabricated solid-state films of [Ag44(SR)30]m that retained all the distinct features of the optical absorption spectrum of the nanoclusters in solution. The films were studied by X-ray diffraction and photoelectron spectroscopy in order to investigate their crystallinity, atomic composition and valence band structure. The stability, scalability, and the film fabrication method demonstrated in this work pave the way towards the crystallization of [Ag44(SR)30]m and its full structural determination by single crystal X-ray diffraction. Moreover, due to their unique and attractive optical properties with multiple optical transitions, we anticipate these clusters to find practical applications in light-harvesting, such as photovoltaics and photocatalysis, which have been hindered so far by the instability of previous generations of the cluster. © 2013 The Royal Society of Chemistry.

  3. Fermi level stabilization and band edge energies in Cd{sub x}Zn{sub 1−x}O alloys

    Energy Technology Data Exchange (ETDEWEB)

    Detert, Douglas M.; Tom, Kyle B.; Dubon, Oscar D. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Battaglia, Corsin; Javey, Ali [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Denlinger, Jonathan D. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lim, Sunnie H. N. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Anders, André [Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Yu, Kin M.; Walukiewicz, Wladek [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-06-21

    We have measured the band edge energies of Cd{sub x}Zn{sub 1−x}O thin films as a function of composition by three independent techniques: we determine the Fermi level stabilization energy by pinning the Fermi level with ion irradiation, measure the binding energy of valence band states and core levels by X-ray photoelectron spectroscopy, and probe shifts in the conduction band and valence band density of states using soft X-ray absorption and emission spectroscopy, respectively. The three techniques find consensus in explaining the origin of compositional trends in the optical-bandgap narrowing upon Cd incorporation in wurtzite ZnO and widening upon Zn incorporation in rocksalt CdO. The conduction band minimum is found to be stationary for both wurtzite and rocksalt alloys, and a significant upward rise of the valence band maximum accounts for the majority of these observed bandgap changes. Given these band alignments, alloy disorder scattering is found to play a negligible role in decreasing the electron mobility for all alloys. These band alignment details, combined with the unique optical and electrical properties of the two phase regimes, make CdZnO alloys attractive candidates for photoelectrochemical water splitting applications.

  4. Band Alignment for Ambipolar-Doping of SnxZn1-x Te Alloys

    Institute of Scientific and Technical Information of China (English)

    袁小娟; 刘建哲; 宁锋; 张勇; 唐黎明

    2012-01-01

    Using the first-principles band-structure method and a special quasirandom structure(SQS) approach,we have systematically calculated the alloy bowing coefficients and the nature band offsets of SnxZn1-x Te alloys.We show that the bowing coefficients and band gaps of these alloys are sensitively composition dependent.Due to wave functions full overlapping and delocalization of the Sn outermost p orbits and Zn s orbits,the coupling between these states is very strong,resulting in a significant downshift of conduction band edge with the increase of the Sn concentration x,While the valence band edge keeps almost unchanged compared with that of the binary ZnTe,thus improving the possibility for ambipolar-doping.

  5. Dispersive hydrodynamics: Preface

    Science.gov (United States)

    Biondini, G.; El, G. A.; Hoefer, M. A.; Miller, P. D.

    2016-10-01

    This Special Issue on Dispersive Hydrodynamics is dedicated to the memory and work of G.B. Whitham who was one of the pioneers in this field of physical applied mathematics. Some of the papers appearing here are related to work reported on at the workshop "Dispersive Hydrodynamics: The Mathematics of Dispersive Shock Waves and Applications" held in May 2015 at the Banff International Research Station. This Preface provides a broad overview of the field and summaries of the various contributions to the Special Issue, placing them in a unified context.

  6. CzEngVallex: a Bilingual Czech-English Valency Lexicon

    Directory of Open Access Journals (Sweden)

    Urešová Zdeňka

    2016-04-01

    Full Text Available This paper introduces a new bilingual Czech-English verbal valency lexicon (called CzEng-Vallex representing a relatively large empirical database. It includes 20,835 aligned valency frame pairs (i.e., verb senses which are translations of each other and their aligned arguments. This new lexicon uses data from the Prague Czech-English Dependency Treebank and also takes advantage of the existing valency lexicons for both languages: the PDT-Vallex for Czech and the EngVallex for English. The CzEngVallex is available for browsing as well as for download in the LINDAT/CLARIN repository.

  7. Valency state changes in lanthanide-contained systems under high pressure

    International Nuclear Information System (INIS)

    Changes in valency state induced by pressure in samarium sulphide SmS remind one of alchemy, as the mat black initial substance shines golden after the electron transition. The alchemist's dream is of course not realized, however the compound does exhibit an unusually interesting behaviour in the new state. The valency state of samarium as newly appeared fluctuated very rapidly between two electron configurations. Manipulation of the valency state by pressure or chemical substitution can basically change the physical properties of systems containing lanthanides. The phenomena are described and discussed in the following survey. (orig.)

  8. Band-like transport in highly crystalline graphene films from defective graphene oxides

    Science.gov (United States)

    Negishi, R.; Akabori, M.; Ito, T.; Watanabe, Y.; Kobayashi, Y.

    2016-01-01

    The electrical transport property of the reduced graphene oxide (rGO) thin-films synthesized from defective GO through thermal treatment in a reactive ethanol environment at high temperature above 1000 °C shows a band-like transport with small thermal activation energy (Ea~10 meV) that occurs during high carrier mobility (~210 cm2/Vs). Electrical and structural analysis using X-ray absorption fine structure, the valence band photo-electron, Raman spectra and transmission electron microscopy indicate that a high temperature process above 1000 °C in the ethanol environment leads to an extraordinary expansion of the conjugated π-electron system in rGO due to the efficient restoration of the graphitic structure. We reveal that Ea decreases with the increasing density of states near the Fermi level due to the expansion of the conjugated π-electron system in the rGO. This means that Ea corresponds to the energy gap between the top of the valence band and the bottom of the conduction band. The origin of the band-like transport can be explained by the carriers, which are more easily excited into the conduction band due to the decreasing energy gap with the expansion of the conjugated π-electron system in the rGO. PMID:27364116

  9. Band-like transport in highly crystalline graphene films from defective graphene oxides

    Science.gov (United States)

    Negishi, R.; Akabori, M.; Ito, T.; Watanabe, Y.; Kobayashi, Y.

    2016-07-01

    The electrical transport property of the reduced graphene oxide (rGO) thin-films synthesized from defective GO through thermal treatment in a reactive ethanol environment at high temperature above 1000 °C shows a band-like transport with small thermal activation energy (Ea~10 meV) that occurs during high carrier mobility (~210 cm2/Vs). Electrical and structural analysis using X-ray absorption fine structure, the valence band photo-electron, Raman spectra and transmission electron microscopy indicate that a high temperature process above 1000 °C in the ethanol environment leads to an extraordinary expansion of the conjugated π-electron system in rGO due to the efficient restoration of the graphitic structure. We reveal that Ea decreases with the increasing density of states near the Fermi level due to the expansion of the conjugated π-electron system in the rGO. This means that Ea corresponds to the energy gap between the top of the valence band and the bottom of the conduction band. The origin of the band-like transport can be explained by the carriers, which are more easily excited into the conduction band due to the decreasing energy gap with the expansion of the conjugated π-electron system in the rGO.

  10. Iliotibial band friction syndrome.

    Science.gov (United States)

    Lavine, Ronald

    2010-07-20

    Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for iliotibial band friction syndrome; and (4) the rationale behind these methods and the clinical outcome studies that support their efficacy.

  11. Determination of band offsets in strained-Si heterolayers

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, C.K.; Samanta, S.K.; Chatterjee, S.; Dalapati, G.K.; Bhattacharya, S.; Armstrong, B.M.; Gamble, H.S.; McCarthy, J.; Perova, T.S.; Moore, R.A

    2004-09-01

    Strained-Si/SiGe/Si structures are of increasing importance for microelectronic applications. A fully relaxed-SiGe buffer layer is required for growing strained-Si for applications towards high performance field effect transistors (FETs) having strained-Si as the channel. Preparation of epitaxial strained-Si layers on relaxed-SiGe (001) heterostructures using low pressure chemical vapor deposition (LPCVD) is reported. Gas source molecular beam epitaxy (GSMBE) grown strained-Si films are used to compare with LPCVD strained-Si films. Characterization of the strained-Si layers has been performed using AFM, TEM and Raman spectroscopy. Conduction and valence band offsets of strained-Si on relaxed-SiGe heterostructures have been extracted from measured capacitance-voltage (C-V) profiling of MOS capacitors fabricated on strained-Si using SiO{sub 2} as the dielectric. Extracted experimental values of the valence and conduction band offsets are in good agreement with theoretical predictions.

  12. The Optimization of Dispersion Properties of Photonic Crystal Fibers Using a Real-Coded Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    YIN Guo-Bing; LI Shu-Guang; LIU Shuo; WANG Xiao-Yan

    2011-01-01

    @@ A real-coded genetic algorithm (GA) combined with a fully vectorial effective index method (FVEIM) is employed to design structures of photonic crystal fibers (PCFs) with user defined dispersion properties theoretically.The structures of PCFs whose solid cores axe doped GeO with zero-dispersions at 0.7-3.9μm are optimized and the flat dispersion ranges through the R+L+C band and the negative dispersion is -1576.26 ps.km·nm at 1.55μm.Analyses show that the zero-dispersion wavelength (ZDW) could be one of many ZDWs for the same fiber structure; PCFs couM alter the dispersion to be flattened through the R+L+C band with a single air-hole diameter; and negative dispersion requires high air filling rate at 1.55μm.The method is proved to be elegant for solving this inverse problem.

  13. Laparoscopic gastric banding

    Science.gov (United States)

    ... make the band tighter or looser any time after you have this surgery. It may be tightened or ... Having problems eating Not losing enough weight Vomiting after you eat Outlook (Prognosis) The final weight loss with ...

  14. CSF oligoclonal banding - slideshow

    Science.gov (United States)

    ... presentations/100145.htm CSF oligoclonal banding - series—Normal anatomy ... Overview The cerebrospinal fluid (CSF) serves to supply nutrients to the central nervous system (CNS) and collect waste products, as well as ...

  15. Perfect Dispersive Medium

    OpenAIRE

    Gupta, Shulabh; Caloz, Christophe

    2015-01-01

    Dispersion lies at the heart of real-time signal processing systems across the entire electromagnetic spectrum from radio to optics. However, the performance and applicability of such systems have been severely plagued by distortions due to the frequency dependent nature of the amplitude response of the dispersive media used for processing. This frequency dependence is a fundamental consequence of the causality constraint, incarnated by Kramers-Kronig relations or, equivalently, by the Bode r...

  16. Acoustic dispersive prism

    OpenAIRE

    Hussein Esfahlani; Sami Karkar; Herve Lissek; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic ...

  17. Evidence for equilibrium gels of valence-limited particles.

    Science.gov (United States)

    Dudukovic, Nikola A; Zukoski, Charles F

    2014-10-21

    We explore the formation and structure of gels produced from solutions of the aromatic dipeptide derivative molecule fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) in dimethyl sulfoxide (DMSO). Mixing these solutions with water results in the self-assembly of Fmoc-FF molecules into space-filling fibrous networks, exhibiting mechanical properties characteristic of gels. Using confocal fluorescence microscopy, we observe the gel transition in situ and find that, upon the addition of water, the solution undergoes a rapid transition to a non-equilibrium state forming ∼ 2 μm spheres, followed by the formation of fibers 5-10 nm in diameter, nucleating at a sphere surface and expanding into the solution as the remaining spheres dissolve, extending the network. The gel aging process is associated with the network becoming increasingly uniform through apparent redissolution/reaggregation of the Fmoc-FF molecules, corresponding to the observed increase in the elastic modulus to a plateau value. We demonstrate that this increase in uniformity and elastic modulus can be expedited by controlling the temperature of the system, as well as that these gels are thermally reversible, further indicating that the system is in equilibrium in its fibrous network state. X-ray scattering information suggests that the packing of the molecules within a fiber is based on π-π stacking of β-sheets, consistent with models proposed in the literature for similar systems, implying that each particle (molecule) possesses a limited number of interaction sites. These observations provide experimental evidence that these low molecular weight gelator molecules can be considered valence-limited "patchy" particles, which associate at low enough temperature to form equilibrium gels. PMID:25155031

  18. Valence, arousal, and task effects in emotional prosody processing

    Directory of Open Access Journals (Sweden)

    Silke ePaulmann

    2013-06-01

    Full Text Available Previous research suggests that emotional prosody processing is a highly rapid and complex process. In particular, it has been shown that different basic emotions can be differentiated in an early event-related brain potential (ERP component, the P200. Often, the P200 is followed by later long lasting ERPs such as the late positive complex (LPC. The current experiment set out to explore in how far emotionality and arousal can modulate these previously reported ERP components. In addition, we also investigated the influence of task demands (implicit vs. explicit evaluation of stimuli. Participants listened to pseudo-sentences (sentences with no lexical content spoken in six different emotions or in a neutral tone of voice while they either rated the arousal level of the speaker or their own arousal level. Results confirm that different emotional intonations can first be differentiated in the P200 component, reflecting a first emotional encoding of the stimulus possibly including a valence tagging process. A marginal significant arousal effect was also found in this time-window with high arousing stimuli eliciting a stronger P200 than low arousing stimuli. The P200 component was followed by a long lasting positive ERP between 400 and 750 ms. In this late time-window, both emotion and arousal effects were found. No effects of task were observed in either time-window. Taken together, results suggest that emotion relevant details are robustly decoded during early processing and late processing stages while arousal information is only reliably taken into consideration at a later stage of processing.

  19. The Band Pass Filter

    OpenAIRE

    Christiano, Lawrence J.; Terry J. Fitzgerald

    1999-01-01

    The `ideal' band pass filter can be used to isolate the component of a time series that lies within a particular band of frequencies. However, applying this filter requires a dataset of infinite length. In practice, some sort of approximation is needed. Using projections, we derive approximations that are optimal when the time series representations underlying the raw data have a unit root, or are stationary about a trend. We identify one approximation which, though it is only optimal for one...

  20. Iliotibial band friction syndrome

    OpenAIRE

    Lavine, Ronald

    2010-01-01

    Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for ili...

  1. Fickian dispersion is anomalous

    Science.gov (United States)

    Cushman, John H.; O'Malley, Dan

    2015-12-01

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  2. A direct evidence of allocating yellow luminescence band in undoped GaN by two-wavelength excited photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Julkarnain, M., E-mail: s13ds053@mail.saitama-u.ac.jp, E-mail: jnain.apee@ru.ac.bd [Department of Functional Materials Science, Saitama University, Saitama 338-8570 (Japan); Department of Applied Physics and Electronic Engineering, University of Rajshahi, Rajshahi 6205 (Bangladesh); Fukuda, T.; Kamata, N. [Department of Functional Materials Science, Saitama University, Saitama 338-8570 (Japan); Arakawa, Y. [Institute of Industrial Science, University of Tokyo, Tokyo 153-8505 (Japan)

    2015-11-23

    The behavior of below-gap luminescence of undoped GaN grown by MOCVD has been studied by the scheme of two-wavelength-excited photoluminescence. The emission intensity of shallow donor to valence band transition (I{sub OX}) increased while intensities of donor-acceptor pair transition and the Yellow Luminescence band (YLB) decreased after the irradiation of a below-gap excitation source of 1.17 eV. The conventional energy schemes and recombination models have been considered to explain our experimental result but only one model in which YLB is the transition of a shallow donor to a deep state placed at ∼1 eV above the valence band maximum satisfies our result. The defect related parameters that give a qualitative insight in the samples have been evaluated by systematically solving the rate equations and fitting the result with the experiment.

  3. Band structure of TiO sub 2 -doped yttria-stabilized zirconia probed by soft-x-ray spectroscopy

    CERN Document Server

    Higuchi, T; Kobayashi, K; Yamaguchi, S; Fukushima, A; Shin, S

    2003-01-01

    The electronic structure of TiO sub 2 -doped yttria-stabilized zirconia (YSZ) has been studied by soft-X-ray emission spectroscopy (SXES) and X-ray absorption spectroscopy (XAS). The valence band is mainly composed of the O 2p state. The O 1s XAS spectrum exhibits the existence of the Ti 3d unoccupied state under the Zr 4d conduction band. The intensity of the Ti 3d unoccupied state increases with increasing TiO sub 2 concentration. The energy separation between the top of the valence band and the bottom of the Ti 3d unoccupied state is in accord with the energy gap, as expected from dc-polarization and total conductivity measurements. (author)

  4. Localized and mixed valence state of Ce 4 f in superconducting and ferromagnetic CeO1 -xFxBiS2 revealed by x-ray absorption and photoemission spectroscopy

    Science.gov (United States)

    Sugimoto, T.; Ootsuki, D.; Paris, E.; Iadecola, A.; Salome, M.; Schwier, E. F.; Iwasawa, H.; Shimada, K.; Asano, T.; Higashinaka, R.; Matsuda, T. D.; Aoki, Y.; Saini, N. L.; Mizokawa, T.

    2016-08-01

    We have performed Ce L3-edge x-ray absorption spectroscopy (XAS) and Ce 4 d -4 f resonant photoemission spectroscopy (PES) on single crystals of CeO1 -xFxBiS2 for x =0.0 and 0.5 in order to investigate the Ce 4 f electronic states. In Ce L3-edge XAS, a mixed valence of Ce was found in the x =0.0 sample, and F doping suppressed it, which is consistent with the results on polycrystalline samples. As for resonant PES, we found that the Ce 4 f electrons in both x =0.0 and 0.5 systems respectively formed a flat band at 1.0 and 1.4 eV below the Fermi level and there was no contribution to the Fermi surfaces. Interestingly, Ce valence in CeOBiS2 deviates from Ce3 + even though Ce 4 f electrons are localized, indicating the Ce valence is not in a typical valence fluctuation regime. We assume that localized Ce 4 f in CeOBiS2 is mixed with unoccupied Bi 6 pz , which is consistent with a previous local structural study. Based on the analysis of the Ce L3-edge XAS spectra using Anderson's impurity model calculation, we found that the transfer integral becomes smaller, increasing the number of Ce 4 f electrons upon the F substitution for O.

  5. Determination of the bulk cobalt valence state of co-perovskites containing surface-adsorbed impurities.

    Science.gov (United States)

    Haas, O; Ludwig, Chr; Wokaun, A

    2006-10-15

    We used thermogravimetric hydrogen reduction and iodometric titration to determine the bulk valence state of cobalt in Co-perovskites containing surface carbonate hydroxide or hydroxyl groups. It could be shown that thermogravimetric hydrogen reduction experiments are very sensitive to volatile surface groups, but due to their volatility, they can be specified and the bulk valence state of cobalt can still be deduced from these experiments. The iodometric titration is less sensitive to small volatile surface impurities, but precaution has to be taken that oxygen or iodine does not escape from the solution during dissolution of the sample. Best results were obtained if the sample was titrated during dissolution in a closed argon floated titration apparatus. We tested the two methods using LaCoO3 perovskite as a sample with a known valence state. Both methods delivered satisfactory results, and the valence state could be determined with an accuracy of better than 1%.

  6. Effects of valence, geometry and electronic correlations on transport in transition metal benzene sandwich molecules

    OpenAIRE

    Karolak, M.; Jacob, D.

    2016-01-01

    We study the impact of the valence and the geometry on the electronic structure and transport properties of different transition metal-benzene sandwich molecules bridging the tips of a Cu nanocontact. Our density-functional calculations show that the electronic transport properties of the molecules depend strongly on the molecular geometry which can be controlled by the nanocontact tips. Depending on the valence of the transition metal center certain molecules can be tuned in and out of half-...

  7. Age-related Alterations in Simple Declarative Memory and the Effect of Negative Stimulus Valence

    OpenAIRE

    Murty, Vishnu P.; Sambataro, Fabio; Das, Saumitra; Tan, Hao-Yang; Callicott, Joseph H.; Goldberg, Terry E.; Meyer-Lindenberg, Andreas; Weinberger, Daniel R.; Mattay, Venkata S.

    2009-01-01

    Healthy aging has been shown to modulate the neural circuitry underlying simple declarative memory; however, the functional impact of negative stimulus valence on these changes has not been fully investigated. Using BOLD fMRI, we explored the effects of aging on behavioral performance, neural activity, and functional coupling during the encoding and retrieval of novel aversive and neutral scenes. Behaviorally, there was a main effect of valence with better recognition performance for aversive...

  8. Music, emotion, and time perception: the influence of subjective emotional valence and arousal?

    OpenAIRE

    SYLVIE eDROIT-VOLET; danilo eRamos; Lino Jose Bueno; Emmanuel eBigand

    2013-01-01

    The present study used a temporal bisection task with short (< 2 s) and long (> 2 s) stimulus durations to investigate the effect on time estimation of several musical parameters associated with emotional changes in affective valence and arousal. In order to manipulate the positive and negative valence of music, Experiments 1 and 2 contrasted the effect of musical structure with pieces played normally and backwards, which were judged to be pleasant and unpleasant, respectively. This eff...

  9. Emotional Valence, Arousal, and Threat Ratings of 160 Chinese Words among Adolescents

    OpenAIRE

    Ho, Samuel M. Y.; Mak, Christine W. Y.; Dannii Yeung; Wenjie Duan; Sandy Tang; June C Yeung; Rita Ching

    2015-01-01

    This study was conducted to provide ratings of valence/pleasantness, arousal/excitement, and threat/potential harm for 160 Chinese words. The emotional valence classification (positive, negative, or neutral) of all of the words corresponded to that of the equivalent English language words. More than 90% of the participants, junior high school students aged between 12 and 17 years, understood the words. The participants were from both mainland China and Hong Kong, thus the words can be applied...

  10. The right-hemisphere and valence hypotheses: could they both be right (and sometimes left)?

    OpenAIRE

    Killgore, William Dale; Yurgelun-Todd, Deborah

    2007-01-01

    The two halves of the brain are believed to play different roles in emotional processing, but the specific contribution of each hemisphere continues to be debated. The right-hemisphere hypothesis suggests that the right cerebrum is dominant for processing all emotions regardless of affective valence, whereas the valence specific hypothesis posits that the left hemisphere is specialized for processing positive affect while the right hemisphere is specialized for negative affect. Here, healthy ...

  11. Taking a deeper look at online reviews: The asymmetric effect of valence intensity on shopping behaviour

    OpenAIRE

    Floh, A.; Koller, Monika; Zauner, Alexander

    2013-01-01

    This study tests the asymmetric effect of user-generated, open-ended online reviews on online shopping behaviour (intention-to-buy, intention-to-recommend, and willingness-to-pay). Three online experiments involving manipulating the valence intensity of online reviews for hotels, books, and running shoes (overall customer sample of n=818) provide empirical support for the proposed relationship. The valence intensity of online reviews moderates the effect of online reviews on purchase intentio...

  12. Identifying facial emotions: valence specific effects and an exploration of the effects of viewer gender

    OpenAIRE

    Jansari, Ashok S.; Rodway, P.; Goncalves, Salvador

    2011-01-01

    The valence hypothesis suggests that the right hemisphere is specialised for negative emotions and the left hemisphere is specialised for positive emotions (Silberman & Weingartner, 1986). It is unclear to what extent valence-specific effects in facial emotion perception depend upon the gender of the perceiver. To explore this question 46 participants completed a free view lateralised emotion perception task which involved judging which of two faces expressed a particular emotion. Eye fixatio...

  13. A general valence asymmetry in similarity: Good is more alike than bad.

    Science.gov (United States)

    Koch, Alex; Alves, Hans; Krüger, Tobias; Unkelbach, Christian

    2016-08-01

    The density hypothesis (Unkelbach, Fiedler, Bayer, Stegmüller, & Danner, 2008) claims a general higher similarity of positive information to other positive information compared with the similarity of negative information to other negative information. This similarity asymmetry might explain valence asymmetries on all levels of cognitive processing. The available empirical evidence for this general valence asymmetry in similarity suffers from a lack of direct tests, low representativeness, and possible confounding variables (e.g., differential valence intensity, frequency, familiarity, or concreteness of positive and negative stimuli). To address these problems, Study 1 first validated the spatial arrangement method (SpAM) as a similarity measure. Using SpAM, Studies 2-6 found the proposed valence asymmetry in large, representative samples of self- and other-generated words (Studies 2a/2b), for words of consensual and idiosyncratic valence (Study 3), for words from 1 and many independent information sources (Study 4), for real-life experiences (Study 5), and for large data sets of verbal (i.e., ∼14,000 words reported by Warriner, Kuperman, & Brysbaert, 2013) and visual information (i.e., ∼1,000 pictures reported in the IAPS; Lang, Bradley, & Cuthbert, 2005; Study 6). Together, these data support a general valence asymmetry in similarity, namely that good is more alike than bad. (PsycINFO Database Record PMID:26866655

  14. The power of emotional valence – From cognitive to affective processes in reading

    Directory of Open Access Journals (Sweden)

    Ulrike eAltmann

    2012-06-01

    Full Text Available The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1 the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM, and (2 the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a 3 Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simulatiously liked, selectively engaged the medial prefrontal cortex (mPFC, which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy.

  15. The power of emotional valence-from cognitive to affective processes in reading.

    Science.gov (United States)

    Altmann, Ulrike; Bohrn, Isabel C; Lubrich, Oliver; Menninghaus, Winfried; Jacobs, Arthur M

    2012-01-01

    The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1) the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM), and (2) the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a three Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simultaneously liked, engaged the medial prefrontal cortex (mPFC), which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy. PMID:22754519

  16. A general valence asymmetry in similarity: Good is more alike than bad.

    Science.gov (United States)

    Koch, Alex; Alves, Hans; Krüger, Tobias; Unkelbach, Christian

    2016-08-01

    The density hypothesis (Unkelbach, Fiedler, Bayer, Stegmüller, & Danner, 2008) claims a general higher similarity of positive information to other positive information compared with the similarity of negative information to other negative information. This similarity asymmetry might explain valence asymmetries on all levels of cognitive processing. The available empirical evidence for this general valence asymmetry in similarity suffers from a lack of direct tests, low representativeness, and possible confounding variables (e.g., differential valence intensity, frequency, familiarity, or concreteness of positive and negative stimuli). To address these problems, Study 1 first validated the spatial arrangement method (SpAM) as a similarity measure. Using SpAM, Studies 2-6 found the proposed valence asymmetry in large, representative samples of self- and other-generated words (Studies 2a/2b), for words of consensual and idiosyncratic valence (Study 3), for words from 1 and many independent information sources (Study 4), for real-life experiences (Study 5), and for large data sets of verbal (i.e., ∼14,000 words reported by Warriner, Kuperman, & Brysbaert, 2013) and visual information (i.e., ∼1,000 pictures reported in the IAPS; Lang, Bradley, & Cuthbert, 2005; Study 6). Together, these data support a general valence asymmetry in similarity, namely that good is more alike than bad. (PsycINFO Database Record

  17. Dispersion effects on infrared spectra in attenuated total reflection

    Science.gov (United States)

    Belali, Rabah; Vigoureux, Jean-Marie; Morvan, Joseph

    1995-12-01

    A potential problem with the attenuated total reflection that is used to measure infrared spectra is described. The problem is the possibility that the anomalous dispersion associated with an infrared absorption band may cause the experimental configuration to move from the attenuated total reflection regime to the specular reflection regime, with consequent distortion of the apparent absorption bands and consequent error in the interpretation of the bands if the problem is not recognized. Key infrared spectra, attenuated total reflection, specular reflection, polyethylene terephtalate. Copyright (c) 1995 Optical Society of America

  18. Device Physics Analysis of Parasitic Conduction Band Barrier Formation in SiGe HBTs

    Science.gov (United States)

    Roenker, K. P.; Alterovitz, S. A.

    2000-01-01

    This paper presents a physics-based model describing the current-induced formation of a parasitic barrier in the conduction band at the base collector heterojunction in npn SiGe heterojunction bipolar transistors (HBTs). Due to the valence band discontinuity DELTA E(sub v), hole injection into the collector at the onset of base pushout is impeded, which gives rise to formation of a barrier to electron transport which degrades the device's high frequency performance. In this paper, we present results from an analytical model for the height of the barrier calculated from the device's structure as a function of the collector junction bias and collector current density.

  19. Band alignment of semiconductors from density-functional theory and many-body perturbation theory

    Science.gov (United States)

    Hinuma, Yoyo; Grüneis, Andreas; Kresse, Georg; Oba, Fumiyasu

    2014-10-01

    The band lineup, or alignment, of semiconductors is investigated via first-principles calculations based on density functional theory (DFT) and many-body perturbation theory (MBPT). Twenty-one semiconductors including C, Si, and Ge in the diamond structure, BN, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe in the zinc-blende structure, and GaN and ZnO in the wurtzite structure are considered in view of their fundamental and technological importance. Band alignments are determined using the valence and conduction band offsets from heterointerface calculations, the ionization potential (IP) and electron affinity (EA) from surface calculations, and the valence band maximum and conduction band minimum relative to the branch point energy, or charge neutrality level, from bulk calculations. The performance of various approximations to DFT and MBPT, namely the Perdew-Burke-Ernzerhof (PBE) semilocal functional, the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, and the GW approximation with and without vertex corrections in the screened Coulomb interaction, is assessed using the GWΓ1 approximation as a reference, where first-order vertex corrections are included in the self-energy. The experimental IPs, EAs, and band offsets are well reproduced by GWΓ1 for most of the semiconductor surfaces and heterointerfaces considered in this study. The PBE and HSE functionals show sizable errors in the IPs and EAs, in particular for group II-VI semiconductors with wide band gaps, but are much better in the prediction of relative band positions or band offsets due to error cancellation. The performance of the GW approximation is almost on par with GWΓ1 as far as relative band positions are concerned. The band alignments based on average interfacial band offsets for all pairs of 17 semiconductors and branch point energies agree with explicitly calculated interfacial band offsets with small mean absolute errors of both ˜0.1eV, indicating a

  20. When is dispersal for dispersal? Unifying marine and terrestrial perspectives.

    Science.gov (United States)

    Burgess, Scott C; Baskett, Marissa L; Grosberg, Richard K; Morgan, Steven G; Strathmann, Richard R

    2016-08-01

    Recent syntheses on the evolutionary causes of dispersal have focused on dispersal as a direct adaptation, but many traits that influence dispersal have other functions, raising the question: when is dispersal 'for' dispersal? We review and critically evaluate the ecological causes of selection on traits that give rise to dispersal in marine and terrestrial organisms. In the sea, passive dispersal is relatively easy and specific morphological, behavioural, and physiological adaptations for dispersal are rare. Instead, there may often be selection to limit dispersal. On land, dispersal is relatively difficult without specific adaptations, which are relatively common. Although selection for dispersal is expected in both systems and traits leading to dispersal are often linked to fitness, systems may differ in the extent to which dispersal in nature arises from direct selection for dispersal or as a by-product of selection on traits with other functions. Our analysis highlights incompleteness of theories that assume a simple and direct relationship between dispersal and fitness, not just insofar as they ignore a vast array of taxa in the marine realm, but also because they may be missing critically important effects of traits influencing dispersal in all realms. PMID:26118564

  1. Broad-band hard X-ray reflectors

    DEFF Research Database (Denmark)

    Joensen, K.D.; Gorenstein, P.; Hoghoj, P.;

    1997-01-01

    Interest in optics for hard X-ray broad-band application is growing. In this paper, we compare the hard X-ray (20-100 keV) reflectivity obtained with an energy-dispersive reflectometer, of a standard commercial gold thin-film with that of a 600 bilayer W/Si X-ray supermirror. The reflectivity of ...

  2. Band structures in Sierpinski triangle fractal porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  3. Photonic band gap materials

    Science.gov (United States)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  4. Dispersion in nulling interferometry for exoplanet detection: experimental validation

    NARCIS (Netherlands)

    Spronck, J.F.P.; Los, J.W.N.; Pereira, S.F.

    2009-01-01

    It is well known that dispersion affects the performance of a wide-band nulling interferometer, since it induces wavelength-dependent phase differences between the arms of the interferometer. This property is used to create achromatic phase shift by combining several dielectric plates. In this paper

  5. Compensation and optimization of dispersion in nulling interferometry

    NARCIS (Netherlands)

    Spronck, J.F.P.; Los, J.W.N.; Pereira, S.F.

    2008-01-01

    The optical properties of materials are wavelength-dependent. This property, called dispersion, affects the performance of a wide-band nulling interferometer by inducing wavelength-dependent phase differences between the arms of the interferometer. In this paper, we analyze the influence of dispersi

  6. Origin of the 10deg Solar System Dust Bands

    Science.gov (United States)

    Grogan, K.; Dermott, S. F.; Xu, Y. L.; Jayaraman, S.

    1996-09-01

    The Solar System dust bands discovered by IRAS are toroidal distributions of dust particles with common proper inclinations. It is impossible for particles with high eccentricity (approximately 0.2 or greater) to maintain a near constant proper inclination as they precess, and therefore the dust bands must be composed of material having a low eccentricity, pointing to an asteroidal origin. The mechanism of dust band production could involve either a continual communution of material associated with the major Hirayama asteroid families (Dermott et al, Nature, 312, 505-509, 1984), the equilibrium model, or random disruptions in the asteroid belt of small, single asteroids (Sykes and Greenberg, Icarus, 65, 51-69, 1986). The IRAS observations of the zodiacal cloud from which we isolate the dust band profiles have excellent resolution, and the manner in which these profiles change around the sky should allow us to determine the origin of the bands, their radial extent, the size-frequency distribution of the material and the optical properites of the dust itself. The equilibrium model of the dust bands suggests Eos as the parent of the 10deg band pair. In this paper we present results from detailed numerical modeling of the 10deg band pair. We demonstrate that a model composed of dust particles having mean semi-major axis, proper eccentricity and proper inclination equal to those of the Eos family member asteroids, but with a dispersion in proper inclination of 2.5deg , produces a convincing match with observations. Indeed, it is impossible to reproduce the observed profiles of the 10deg band pair without imposing such a dispersion on the dust band material. This result is strong evidence in favor of the equilibrium model.

  7. Band alignment of HfO2/AlN heterojunction investigated by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Ye, Gang; Wang, Hong; Ji, Rong

    2016-04-01

    The band alignment between AlN and Atomic-Layer-Deposited (ALD) HfO2 was determined by X-ray photoelectron spectroscopy (XPS). The shift of Al 2p core-levels to lower binding energies with the decrease of take-off angles θ indicated upward band bending occurred at the AlN surface. Based on the angle-resolved XPS measurements combined with numerical calculations, valence band discontinuity ΔEV of 0.4 ± 0.2 eV at HfO2/AlN interface was determined by taking AlN surface band bending into account. By taking the band gap of HfO2 and AlN as 5.8 eV and 6.2 eV, respectively, a type-II band line-up was found between HfO2 and AlN.

  8. Low-Dispersion Fibre Bragg Gratings Written Using the Polarization Control Method

    DEFF Research Database (Denmark)

    Deyerl, Hans Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm;

    2002-01-01

    We present two fibre Bragg gratings with reduced in-band dispersion for DWDM applications. The gratings were designed by the inverse scattering method and fabricated using the novel polarization control method for UV-writing of advanced gratings.......We present two fibre Bragg gratings with reduced in-band dispersion for DWDM applications. The gratings were designed by the inverse scattering method and fabricated using the novel polarization control method for UV-writing of advanced gratings....

  9. SOLID DISPERSIONS: A REVIEW

    Directory of Open Access Journals (Sweden)

    D. Praveen Kumar

    2012-06-01

    Full Text Available The solubility behaviour of drugs remains one of the most challenging aspects in formulation development. Currently only 8% of the new drug molecules have high solubility and permeability. The solubility behaviour of a drug is key determinant to its oral bioavailability and it is the rate limiting step to absorption of drugs from the gastrointestinal tract. This results in important products not reaching the market or not achieving their full potential. Solid dispersions have attracted considerable interest as an efficient means of improving the dissolution rate and bioavailability of a range of hydrophobic drugs. This article reviews the various preparation techniques for solid dispersion, types of solid dispersions based on molecular arrangement and other aspects such as selection of carriers and methods of characterization and their applications have been discussed.

  10. Atmospheric dispersion and the implications for phase calibration

    CERN Document Server

    Curtis, Emily I; Richer, John S; Pardo, Juan R

    2009-01-01

    The success of any ALMA phase-calibration strategy, which incorporates phase transfer, depends on a good understanding of how the atmospheric path delay changes with frequency (e.g. Holdaway & Pardo 2001). We explore how the wet dispersive path delay varies for realistic atmospheric conditions at the ALMA site using the ATM transmission code. We find the wet dispersive path delay becomes a significant fraction (>5 per cent) of the non-dispersive delay for the high-frequency ALMA bands (>160 GHz, Bands 5 to 10). Additionally, the variation in dispersive path delay across ALMA's 4-GHz contiguous bandwidth is not significant except in Bands 9 and 10. The ratio of dispersive path delay to total column of water vapour does not vary significantly for typical amounts of water vapour, water vapour scale heights and ground pressures above Chajnantor. However, the temperature profile and particularly the ground-level temperature are more important. Given the likely constraints from ALMA's ancillary calibration devi...

  11. Dirac Dispersion in Two-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    C. T. Chan

    2012-01-01

    Full Text Available We show how one may obtain conical (Dirac dispersions in photonic crystals, and in some cases, such conical dispersions can be used to create a metamaterial with an effective zero refractive index. We show specifically that in two-dimensional photonic crystals with C4v symmetry, we can adjust the system parameters to obtain accidental triple degeneracy at Γ point, whose band dispersion comprises two linear bands that generate conical dispersion surfaces and an additional flat band crossing the Dirac-like point. If this triply degenerate state is formed by monopole and dipole excitations, the system can be mapped to an effective medium with permittivity and permeability equal to zero simultaneously, and this system can transport wave as if the refractive index is effectively zero. However, not all the triply degenerate states can be described by monopole and dipole excitations and in those cases, the conical dispersion may not be related to an effective zero refractive index. Using multiple scattering theory, we calculate the Berry phase of the eigenmodes in the Dirac-like cone to be equal to zero for modes in the Dirac-like cone at the zone center, in contrast with the Berry phase of π for Dirac cones at the zone boundary.

  12. Banded transformer cores

    Science.gov (United States)

    Mclyman, C. W. T. (Inventor)

    1974-01-01

    A banded transformer core formed by positioning a pair of mated, similar core halves on a supporting pedestal. The core halves are encircled with a strap, selectively applying tension whereby a compressive force is applied to the core edge for reducing the innate air gap. A dc magnetic field is employed in supporting the core halves during initial phases of the banding operation, while an ac magnetic field subsequently is employed for detecting dimension changes occurring in the air gaps as tension is applied to the strap.

  13. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  14. About measuring velocity dispersions

    Science.gov (United States)

    Fellhauer, M.

    A lot of our knowledge about the dynamics and total masses of pressure dominated stellar systems relies on measuring the internal velocity disper- sion of the system. We assume virial equilibrium and that we are able to measure only the bound stars of the system without any contamination. This article shows how likely it is to measure the correct velocity dispersion in reality. It will show that as long as we have small samples of velocity mea- surements the distribution of possible outcomes can be very large and as soon as we have a source of error the velocity dispersion can wrong by several standard deviations especially in large samples.

  15. Coping with power dispersion?

    DEFF Research Database (Denmark)

    2014-01-01

    how the actors involved cope with the new configurations. In this introduction, we discuss the conceptualization of power dispersion and highlight the ways in which the contributions add to this research agenda. We then outline some general conclusions and end by indicating future avenues of research....... Taken together, the collection contributes some answers to the challenge of defining and measuring – in a comparative way – the control and co-ordination mechanisms which power dispersion generates. It also explores the tension between political actors' quest for autonomy and the acknowledgement of...

  16. Optical properties of Eu{sup 2+}/Eu{sup 3+} mixed valence, silicon nitride based materials

    Energy Technology Data Exchange (ETDEWEB)

    Kate, Otmar M. ten, E-mail: o.m.tenkate@tudelft.nl [Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven (Netherlands); Fundamental Aspects of Materials and Energy, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Vranken, Thomas [Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven (Netherlands); Kolk, Erik van der [Fundamental Aspects of Materials and Energy, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Jansen, Antonius P.J.; Hintzen, Hubertus T. [Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven (Netherlands)

    2014-05-01

    Eu{sub 2}SiN{sub 3}, a mixed valence europium nitridosilicate, has been prepared via solid-state reaction synthesis and its oxidation behavior and optical properties have been determined. Furthermore, the stability of several isostructural compounds of the type M{sup 2+}L{sup 3+}SiN{sub 3} has been predicted by using the density functional theory calculations, and verified by the actual synthesis of CaLaSiN{sub 3}, CaEuSiN{sub 3} and EuLaSiN{sub 3}. The band gap of CaLaSiN{sub 3} was found around 3.2 eV giving the material its yellow color. Eu{sub 2}SiN{sub 3} on the other hand is black due to a combination of the 4f–5d absorption band of Eu{sup 2+} and the charge transfer band of Eu{sup 3+}. Thermogravimetric analysis and Raman spectroscopic study of Eu{sub 2}SiN{sub 3} revealed that oxidation of this compound in dry air takes place via a nitrogen retention complex. - Graphical abstract: Energy level scheme of Eu{sub 2}SiN{sub 3} showing the occupied N{sup 3−} 2p band (blue rectangle), unoccupied Eu{sup 2+} 5d band (white rectangle), occupied Eu{sup 2+} 4f ground states (filled red circles) and unoccupied Eu{sup 2+} ground states (open red circles). - Highlights: • Density functional theory calculations on the stability of M{sup 2+}L{sup 3+}SiN{sub 3} compounds. • Solid-state reaction synthesis of Eu{sub 2}SiN{sub 3}, CaLaSiN{sub 3}, EuLaSiN{sub 3} and CaEuSiN{sub 3}. • Determination of the Eu{sup 2+} 4f–5d and Eu{sup 3+} CT transitions in M{sup 2+}L{sup 3+}SiN{sub 3} compounds. • Oxidation of Eu{sub 2}SiN{sub 3} in dry air takes place via a nitrogen retention complex.

  17. Dispersion Synthesis with Multi-Ordered Metatronic Filters

    CERN Document Server

    Li, Yue; Engheta, Nader

    2016-01-01

    We propose the synthesis of frequency dispersion of layered structures based on the design of multi-ordered optical filters using nanocircuit concepts. Following the well known insertion loss method commonly employed in the design of electronic and microwave filters, here we theoretically show how we can tailor optical dispersion as we carry out the design of several low-pass, high-pass, band-pass and band-stop filters of different order with a (maximally flat) Butterworth response. We numerically demonstrate that these filters can be designed by combining metasurfaces made of one or two materials acting as optical lumped elements, and, hence, leading to simple, easy to apply, design rules. The theoretical results based on this circuital approach are validated with full-wave numerical simulations. The results presented here can be extended to virtually any frequency dispersion synthesis, filter design procedure and/or functionality, thus opening up exciting possibilities in the design of composite materials w...

  18. The scaling of the effective band gaps in indium-arsenide quantum dots and wires.

    Science.gov (United States)

    Wang, Fudong; Yu, Heng; Jeong, Sohee; Pietryga, Jeffrey M; Hollingsworth, Jennifer A; Gibbons, Patrick C; Buhro, William E

    2008-09-23

    Colloidal InAs quantum wires having diameters in the range of 5-57 nm and narrow diameter distributions are grown from Bi nanoparticles by the solution-liquid-solid (SLS) mechanism. The diameter dependence of the effective band gaps (DeltaE(g)s) in the wires is determined from photoluminescence spectra and compared to the experimental results for InAs quantum dots and rods and to the predictions of various theoretical models. The DeltaE(g) values for InAs quantum dots and wires are found to scale linearly with inverse diameter (d(-1)), whereas the simplest confinement models predict that DeltaE(g) should scale with inverse-square diameter (d(-2)). The difference in the observed and predicted scaling dimension is attributed to conduction-band nonparabolicity induced by strong valence-band-conduction-band coupling in the narrow-gap InAs semiconductor.

  19. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra

    Science.gov (United States)

    Wei, Xiaojun; Tanaka, Takeshi; Yomogida, Yohei; Sato, Naomichi; Saito, Riichiro; Kataura, Hiromichi

    2016-10-01

    Experimental band structure analyses of single-walled carbon nanotubes have not yet been reported, to the best of our knowledge, except for a limited number of reports using scanning tunnelling spectroscopy. Here we demonstrate the experimental determination of the excitonic band structures of single-chirality single-walled carbon nanotubes using their circular dichroism spectra. In this analysis, we use gel column chromatography combining overloading selective adsorption with stepwise elution to separate 12 different single-chirality enantiomers. Our samples show higher circular dichroism intensities than the highest values reported in previous works, indicating their high enantiomeric purity. Excitonic band structure analysis is performed by assigning all observed Eii and Eij optical transitions in the circular dichroism spectra. The results reproduce the asymmetric structures of the valence and conduction bands predicted by density functional theory. Finally, we demonstrate that an extended empirical formula can estimate Eij optical transition energies for any (n,m) species.

  20. Removal of OH Absorption Bands Due to Pyrohydrolysis Reactions in Fluoride-Containing Borosilicate Glasses

    Science.gov (United States)

    Kobayashi, Keiji

    1997-05-01

    The purpose of this study is to decrease and to remove OH ions and H2O in borosilicate glasses. Fluoride-containing borosilicate glasses followed by dry-air-bubbling showed the significant decrease of OH absorption bands around 3500 cm-1. The decrease of OH absorption bands was elucidated by the use of pyrohydrolysis reactions in these glasses where fluoride ions react with OH ions or H2O during melting. The rates of the decrease of OH absorption bands substantially depend on high valence cations of fluorides. Particularly, the decrease rates of OH absorption coefficients were in the order of ZrF4-containing glass>AlF3-containing glass>ZnF2-containing glass. ZrF4-containing glass treated by dry-air-bubbling showed a good capability to remove OH absorption band. Fluoride-containing glasses showed the low flow point in comparison with fluoride-free glasses.

  1. Detailed balance limit efficiency of silicon intermediate band solar cells

    Institute of Scientific and Technical Information of China (English)

    Cao Quan; Ma Zhi-Hua; Xue Chun-Lai; Zuo Yu-Hua; Wang Qi-Ming

    2011-01-01

    The detailed balance method is used to study the potential of the intermediate band solar cell (IBSC),which can improve the efficiency of the Si-based solar cell with a bandgap between 1.1 eV to 1.7 eV. It shows that a crystalline silicon solar cell with an intermediate band located at 0.36 eV below the conduction band or above the valence band can reach a limiting efficiency of 54% at the maximum light concentration,improving greatly than 40.7% of the Shockley-Queisser limit for the single junction Si solar cell. The simulation also shows that the limiting efficiency of the siliconbased solar cell increases as the bandgap increases from 1.1 eV to 1.7 eV,and the amorphous Si solar cell with a bandgap of 1.7 eV exhibits a radiative limiting efficiency of 62.47%,having a better potential.

  2. Natal and breeding dispersal of northern spotted owls

    Science.gov (United States)

    Forsman, E.D.; Anthony, R.G.; Reid, J.A.; Loschl, P.J.; Sovern, S.G.; Taylor, M.; Biswell, B.L.; Ellingson, A.; Meslow, E.C.; Miller, G.S.; Swindle, K.A.; Thrailkill, J.A.; Wagner, F.F.; Seaman, D.E.

    2002-01-01

    We studied the dispersal behavior of 1,475 northern spotted owls (Strix occidentalis caurina) during banding and radio-telemetry studies in Oregon and Washington in 1985-1996. The sample included 324 radio-marked juveniles and 1,151 banded individuals (711 juveniles, 440 non-juveniles) that were recaptured or resighted after dispersing from the initial banding location. Juveniles typically left the nest during the last week in May and the first two weeks in June (x?? ?? SE = 8 June ?? 0.53 days, n = 320, range = 15 May-1 July), and spent an average of 103.7 days in the natal territory after leaving the nest (SE = 0.986 days, n = 137, range = 76-147 days). The estimated mean date that juveniles began to disperse was 19 September in Oregon (95% CI = 17-21 September) and 30 September in Washington (95% CI = 25 September-4 October). Mean dispersal dates did not differ between males and females or among years. Siblings dispersed independently. Dispersal was typically initiated with a series of rapid movements away from the natal site during the first few days or weeks of dispersal. Thereafter, most juveniles settled into temporary home ranges in late October or November and remained there for several months. In February-April there was a second pulse of dispersal activity, with many owls moving considerable distances before settling again in their second summer. Subsequent dispersal patterns were highly variable, with some individuals settling permanently in their second summer and others occupying a series of temporary home ranges before eventually settling on territories when they were 2-5 years old. Final dispersal distances ranged from 0.6-111.2 km for banded juveniles and 1.8-103.5 km for radio-marked juveniles. The distribution of dispersal distances was strongly skewed towards shorter distances, with only 8.7% of individuals dispersing more than 50 km. Median natal dispersal distances were 14.6 km for banded males, 13.5 km for radio-marked males, 24.5 km for

  3. Colloquium: Topological band theory

    Science.gov (United States)

    Bansil, A.; Lin, Hsin; Das, Tanmoy

    2016-04-01

    The first-principles band theory paradigm has been a key player not only in the process of discovering new classes of topologically interesting materials, but also for identifying salient characteristics of topological states, enabling direct and sharpened confrontation between theory and experiment. This review begins by discussing underpinnings of the topological band theory, which involve a layer of analysis and interpretation for assessing topological properties of band structures beyond the standard band theory construct. Methods for evaluating topological invariants are delineated, including crystals without inversion symmetry and interacting systems. The extent to which theoretically predicted properties and protections of topological states have been verified experimentally is discussed, including work on topological crystalline insulators, disorder and interaction driven topological insulators (TIs), topological superconductors, Weyl semimetal phases, and topological phase transitions. Successful strategies for new materials discovery process are outlined. A comprehensive survey of currently predicted 2D and 3D topological materials is provided. This includes binary, ternary, and quaternary compounds, transition metal and f -electron materials, Weyl and 3D Dirac semimetals, complex oxides, organometallics, skutterudites, and antiperovskites. Also included is the emerging area of 2D atomically thin films beyond graphene of various elements and their alloys, functional thin films, multilayer systems, and ultrathin films of 3D TIs, all of which hold exciting promise of wide-ranging applications. This Colloquium concludes by giving a perspective on research directions where further work will broadly benefit the topological materials field.

  4. Antisymmetric double exchange in trimeric mixed-valence clusters

    International Nuclear Information System (INIS)

    The theory of antisymmetric double exchange (AS DE) interaction is developed for the mixed-valence (MV) trimeric [dn-dn-dn±1] clusters of orbitally non-degenerate ions. Strong isotropic double exchange (DE) and Heisenberg exchange interactions (t-J model) form isotropic trigonal states 2S+1Γi (Γi=A1, A2, E) of the MV trimers. Taking into account the spin-orbit coupling results in the vector-type AS DE interaction in these clusters. For the MV trimers with si=1/2, the Hamiltonian of the AS DE coupling has the form HASDEZ=2iΣαβKαβZT-circumflexαβ(SβZ-SαZ), where KαβZ is the antisymmetric (K→ij=-K→ji) vector parameter of the AS DE interaction and Tαβ is the isotropic transfer operator. The operator HASDEZ describes the vector-type spin-transfer interaction induced by the spin-orbit coupling. The microscopic consideration of the AS DE coupling shows that the vector AS DE parameter K→ij is linearly proportional to the spin-orbit coupling constant λ and electron transfer parameter t. The AS DE coupling results in the new effect: the linear AS DE splittings Δ of the 2S+1E DE terms, Δ are proportional to the cluster AS DE parameter KZ=(KabZ+KbcZ+KcaZ)/3. The vector of the AS DE interaction is directed along the trigonal Z-axis: KZ≠0, KX=KY=0. For the delocalized [d9-d10-d10] ([Cu(II)Cu2(I)]) cluster, the linear AS DE fine splitting Δ=2KZ√3 of the ground 2E DE term determines strong anisotropy of the Zeeman splitting, axial anisotropy of g-factors, and magnetic properties. The AS DE coupling mixes the 2S+1A1 and 2S'+1A2, 2S+1E and 2S'+1E' DE terms, ΔS=0,±1. The mixing of the DE levels 2S+1Γi by the AS DE coupling and Dzialoshinsky-Moriya AS exchange (HDM=ΣαβG→αβ[S→αxS→β]) determines the second-order AS contributions {∼[(n1KZ+n2GZ)2/(n3t+n4J)], KZ>>GZ, GZ=(GabZ+GbcZ+GcaZ)/3} to the cluster zero-field splitting (ZFS) parameters DS(2S+1Γi) of the axial anisotropy (HAN=DS(2S+1Γi)[Sz2-S(S+1)/3], DSZ). The second-order AS DE

  5. Direct measurement of band offset at the interface between CdS and Cu{sub 2}ZnSnS{sub 4} using hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Shin; Kataoka, Keita; Takahashi, Naoko; Kimoto, Yasuji; Fukano, Tatsuo; Hasegawa, Masaki; Hazama, Hirofumi [Toyota Central Research and Development Laboratories, Inc., Nagakute, Aichi 480-1192 (Japan)

    2013-12-09

    We directly and non-destructively measured the valence band offset at the interface between CdS and Cu{sub 2}ZnSnS{sub 4} (CZTS) using hard X-ray photoelectron spectroscopy (HAXPES), which can measure the electron state of the buried interface because of its large analysis depth. These measurements were made using the following real devices; CZTS(t = 700 nm), CdS(t = 100 nm)/CZTS(t = 700 nm), and CdS(t = 5 nm)/CZTS(t = 700 nm) films formed on Mo coated glass. The valence band spectra were measured by HAXPES using an X-ray photon energy of 8 keV. The value of the valence band offset at the interface between CdS and CZTS was estimated as 1.0 eV by fitting the spectra. The conduction band offset could be deduced as 0.0 eV from the obtained valence band offset and the band gap energies of CdS and CZTS.

  6. DUAL BAND MONOPOLE ANTENNA DESIGN

    Directory of Open Access Journals (Sweden)

    P. Jithu

    2013-06-01

    Full Text Available The WLAN and Bluetooth applications become popular in mobile devices, integrating GSM and ISM bands operation in one compact antenna, can reduce the size of mobile devices. Recently, lot many investigations are carried out in designing a dual band antennas with operating frequencies in GSM band and in ISM band for mobile devices. Printed monopoles are under this investigation. In this paper, dual-band printed monopoles are presented to operate at GSM band i.e. 900 MHz and ISM band i.e. 2.4 GHz. We intend to observe the antenna characteristics on the network analyzer and verify the theoretical results with the practical ones.

  7. The dispersive properties of a dielectricrod loaded waveguide immersed in a magnetized annular plasma

    Institute of Scientific and Technical Information of China (English)

    Li Wei; Gong Ma-Li; Wei Yan-Yu; Xie Hong-Quan

    2004-01-01

    @@ Propagation properties of electromagnetic waves in a dielectric-rod waveguide immersed in a magnetized annular plasma are presented in this paper. The dispersion relations are derived and calculated. The results show that the dielectric-rod loading can make the structure less dispersive and the transmission frequency-band broadened.

  8. Analytical Solution and Numerical Simulation of Real-Time Dispersion Monitoring Using Tone Subcarrier

    Institute of Scientific and Technical Information of China (English)

    HUANG He; CHEN Fushen; JIANG Yi

    2003-01-01

    A method for online dispersion monitoring by adding a single in-band subcarrier tone is introduced. According to the theoretical analysis, the dispersion monitor and measurement range are determined by the specific frequency of the subcarrier tone. By using simulation tools, figures about relationship between power of subcarrier tone and transmission distance in ideal condition are shown.

  9. Octave spanning wedge dispersive mirrors with low dispersion oscillations.

    Science.gov (United States)

    Habel, Florian; Shirvanyan, Vage; Trubetskov, Michael; Burger, Christian; Sommer, Annkatrin; Kling, Matthias F; Schultze, Martin; Pervak, Vladimir

    2016-05-01

    A novel concept for octave spanning dispersive mirrors with low spectral dispersion oscillations is presented. The key element of the so-called wedge dispersive mirror is a slightly wedged layer which is coated on a specially optimized dispersive multilayer stack by a common sputter coating process. The group delay dispersion (GDD) of a pulse reflected on a wedge dispersive mirror is nearly free of oscillations. Fabricated mirrors with negative GDD demonstrate the compression of a pulse down to 3.8 fs as good as double angled mirrors optimized for the same bandwidth. PMID:27137538

  10. Robust flat bands in R Co5 (R = rare earth) compounds

    Science.gov (United States)

    Ochi, Masayuki; Arita, Ryotaro; Matsumoto, Munehisa; Kino, Hiori; Miyake, Takashi

    2015-04-01

    The mechanism to realize the peculiar flat bands generally existing in R Co5 (R = rare earth) compounds is clarified by analyzing the first-principles band structures and the tight-binding model. These flat bands are constructed from the localized eigenstates, the existence of which is guaranteed by the destructive interference of the intersite hopping among the Co -3 d states at the kagome sites and those between the kagome and honeycomb sites. Their relative positions to other bands can be controlled by varying the lattice parameters keeping their dispersion almost flat, which suggests the possibility of flat-band engineering.

  11. Photonic band structures in one-dimensional photonic crystals containing Dirac materials

    International Nuclear Information System (INIS)

    We have investigated the band structures of one-dimensional photonic crystals (1DPCs) composed of Dirac materials and ordinary dielectric media. It is found that there exist an omnidirectional passing band and a kind of special band, which result from the interaction of the evanescent and propagating waves. Due to the interface effect and strong dispersion, the electromagnetic fields inside the special bands are strongly enhanced. It is also shown that the properties of these bands are invariant upon the lattice constant but sensitive to the resonant conditions

  12. Experimental Constraints on the Partitioning and Valence of V and Cr in Garnet and Coexisting Glass

    Science.gov (United States)

    Righter, K.; Sutton, S.; Berthet, S.; Newville, M.

    2008-01-01

    A series of experiments with garnet and coexisting melt have been carried out across a range of oxygen fugacities (near hematite-magnetite (HM) to below the iron-wustite (IW) buffers) at 1.7 GPa to study the partitioning and valence of Cr and V in both phases. Experiments were carried out in a non end loaded piston cylinder apparatus, and the run products were analyzed with electron microprobe and xray absorption near edge structure (XANES) analysis at beamline 13-ID at the Advanced Photon Source of Argonne National Lab. The valence of vanadium and chromium were determined using the position and intensity of the Ka pre-edge peaks, calibrated on a series of Cr and Vbearing standard glasses. This technique has been applied to V and Cr in glasses and V in spinels previously, and in these isotropic phases there are no orientational effects on the XANES spectra (Righter et al., 2006, Amer. Mineral. 91, 1643-1656). We also now demonstrate this to be true for V and Cr in garnet. Also, previous work has shown that V has a higher valence in the glass (or melt) than in the coexisting spinel. This is also true for V in garnet-glass pairs in this study. Vanadium valence in garnets varies from 2.7 below the IW buffer to 3.7 near HM, and for coexisting glass it varies from 3.2 to 4.3. Vanadium valence measured in some natural garnets from mantle localities indicates V in the more reduced range at 2.5. Comparisons will be made between fO2 estimated from V valence and other methods for garnet-bearing mantle samples. In contrast, Cr valence measured in garnet and coexisting glass for all experimental and natural samples is 2.9- 3.0, suggesting that the valence of Cr does not vary within either phase across a large fO2 range. These results demonstrate that while V varies from 2+ to 3+ to 4+ in garnet-melt systems, Cr does not, and this will ultimately affect the partitioning behavior of these two elements in natural systems. Garnet/melt D(Cr) are between 12 and 17 across this range

  13. The influence of valence and arousal on reasoning: Affective priming in the semantic verification task

    Directory of Open Access Journals (Sweden)

    Orlić Ana

    2014-01-01

    Full Text Available The aim of the present study was to examine the effects of affective valence and arousal on the reasoning process. Reasoning was measured using a semantic verification task and the influence of valence and arousal was tracked using the affective priming paradigm. Primes were photographs varied on two dimensions - emotional valence (positive, neutral, negative and arousal (high, low. Forty-nine psychology students participated in the experiment. Results showed that reaction time needed for semantic verification was significantly faster for positive-high arousing in comparison to positive-low arousing condition and for neutral high arousing in comparison to neutral-low arousing condition, but there were no significant differences in negative low and high arousing conditions. Also, significant differences were found among all three valences in high arousing conditions and there were no such differences in low arousing conditions. These results reveal the importance of both arousal and valence in the research on the influence of emotions on the reasoning process. [Projekat Ministarstva nauke Republike Srbije, br. 179033

  14. The temporal dynamics of reversal learning: P3 amplitude predicts valence-specific behavioral adjustment.

    Science.gov (United States)

    Donaldson, Kayla R; Ait Oumeziane, Belel; Hélie, Sebastien; Foti, Dan

    2016-07-01

    Adapting behavior to dynamic stimulus-reward contingences is a core feature of reversal learning and a capacity thought to be critical to socio-emotional behavior. Impairment in reversal learning has been linked to multiple psychiatric outcomes, including depression, Parkinson's disorder, and substance abuse. A recent influential study introduced an innovative laboratory reversal-learning paradigm capable of disentangling the roles of feedback valence and expectancy. Here, we sought to use this paradigm in order to examine the time-course of reward and punishment learning using event-related potentials among a large, representative sample (N=101). Three distinct phases of processing were examined: initial feedback evaluation (reward positivity, or RewP), allocation of attention (P3), and sustained processing (late positive potential, or LPP). Results indicate a differential pattern of valence and expectancy across these processing stages: the RewP was uniquely related to valence (i.e., positive vs. negative feedback), the P3 was uniquely associated with expectancy (i.e., unexpected vs. expected feedback), and the LPP was sensitive to both valence and expectancy (i.e., main effects of each, but no interaction). The link between ERP amplitudes and behavioral performance was strongest for the P3, and this association was valence-specific. Overall, these findings highlight the potential utility of the P3 as a neural marker for feedback processing in reversal-based learning and establish a foundation for future research in clinical populations. PMID:27059320

  15. Differential Activation of Amygdala Arc Expression By Positive and Negatively Valenced Emotional Learning Conditions

    Directory of Open Access Journals (Sweden)

    Erica eYoung

    2013-12-01

    Full Text Available Norepinephrine is released in the amygdala following negatively arousing learning conditions. This event initiates a cascade of changes including the transcription of activity-regulated cytoskeleton-associated protein (Arc expression, an early-immediate gene associated with memory encoding. Recent evidence suggests that the valence of emotionally laden encounters may generate lateralized, as opposed to symmetric release of this transmitter in the right or left amygdala. It is currently not clear if valence-induced patterns of selective norepinephrine output across hemispheres are also reproduced in downstream pathways of cellular signaling necessary for memory formation. This question was addressed by determining if Arc expression is differentially distributed across the right and left amygdala following exposure to positively or negatively valenced learning conditions respectively. Male Sprague Dawley rats were randomly assigned to groups exposed to the Homecage only, 5 auditory tones only, or 5 auditory tones paired with footshock (0.35mA during Pavlovian fear conditioning. Western blot analysis revealed that Arc expression in the right amygdala was elevated significantly above that observed in the left amygdala 60 and 90 minutes following fear conditioning. Similarly, subjects exposed to a a negatively valenced outcome consisting of an unexpected reduction in food rewards showed a greater level of Arc expression in only the right, but not left basolateral amygdala. Presenting a positively valenced event involving an unexpected increase in food reward magnitude following bar pressing, resulted in significantly greater Arc expression in the left, but not right basolateral amygdala (p

  16. Music, Emotion and Time Perception: The influence of subjective emotional valence and arousal?

    Directory of Open Access Journals (Sweden)

    SYLVIE eDROIT-VOLET

    2013-07-01

    Full Text Available The present study used a temporal bisection task with short (< 2 s and long (> 2 s stimulus durations to investigate the effect on time estimation of several musical parameters associated with emotional changes in affective valence and arousal. In order to manipulate the positive and negative valence of music, Experiments 1 and 2 contrasted the effect of musical structure with pieces played normally and backwards, which were judged to be pleasant and unpleasant, respectively. This effect of valence was combined with a subjective arousal effect by changing the tempo of the musical pieces (fast vs. slow (Experiment 1 or their instrumentation (orchestral vs. piano pieces. The musical pieces were indeed judged more arousing with a fast than with a slow tempo and with an orchestral than with a piano timbre. In Experiment 3, affective valence was also tested by contrasting the effect of tonal (pleasant versus atonal (unpleasant versions of the same musical pieces. The results showed that the effect of tempo in music, associated with a subjective arousal effect, was the major factor that produced time distortions with time being judged longer for fast than for slow tempi. When the tempo was held constant, no significant effect of timbre on the time judgment was found although the orchestral music was judged to be more arousing than the piano music. Nevertheless, emotional valence did modulate the tempo effect on time perception, the pleasant music being judged shorter than the unpleasant music.

  17. Rare beryllium icosahedra in the intermediate valence compound CeBe13.

    Science.gov (United States)

    Wilson, Zakiya S; Macaluso, Robin T; Bauer, E D; Smith, J L; Thompson, J D; Fisk, Z; Stanley, George G; Chan, Julia Y

    2004-11-01

    Single-crystal X-ray diffraction experiments show that the Be atoms in CeBe13 form a Be12 icosahedra, which is a very unusual structural feature due, in part, to the remarkably low valence electron count of Be. Magnetization studies show that CeBe13 displays intermediate valence behavior, in which valence fluctuations between the Ce 4f0 and 4f1 states give rise to enhanced electronic specific heat and magnetic susceptibility. Calculations using ab initio theory were used to determine the electronic structure and bonding and to give insight into the relationship between the crystal structure, the bonding, and the intermediate valence behavior of CeBe13. The hybridization between the localized f electrons and the conduction electrons is responsible for the large values of the electronic specific heat coefficient (gamma approximately 100 mJ/mol K2) and magnetic susceptibility (chi approximately 1 x 10-3 emu/mol), which is in marked contrast to those of ordinary metals that have gamma approximately 1 mJ/mol K2 and chi approximately 1 x 10-5 emu/mol values. The magnetic susceptibility, chi = M/H versus T, of a single crystal of CeBe13 exhibits a broad maximum at Tmax approximately 130 K and is typical of intermediate valence systems with an unusually large energy scale (Kondo), TK approximately 500 K.

  18. Cerium valence change in the solid solutions Ce(Rh1-xRux)Sn

    International Nuclear Information System (INIS)

    The solid solutions Ce(Rh1-xRux)Sn were investigated by means of susceptibility measurements, specific heat, electrical resistivity, X-ray absorption spectroscopy (XAS), and 119Sn Moessbauer spectroscopy. Magnetic measurements as well as XAS data show a cerium valence change in dependence on the ruthenium content. Higher ruthenium content causes an increase from 3.22 to 3.45 at 300 K. Furthermore χ and χ-1 data indicate valence fluctuation for cerium as a function of temperature. For example, Ce(Rh0.8Ru0.2)Sn exhibits valence fluctuations between 3.42 and 3.32 in the temperature range of 10 to 300 K. This could be proven by using the interconfiguration fluctuation (ICF) model introduced by Sales and Wohlleben. Cerium valence change does not influence the tin atoms as proven by 119Sn Moessbauer spectroscopy, but it influences the electrical properties. Ce(Rh0.9Ru0.1)Sn behaves like a typical valence fluctuating compound, and higher ruthenium content causes an increase of the metallic behavior. (orig.)

  19. Gender differences in preferences for coaching as an occupation: the role of self-efficacy, valence, and perceived barriers.

    Science.gov (United States)

    Everhart, C B; Chelladurai, P

    1998-06-01

    This study investigated gender differences in the role of self-efficacy, occupational valence, valence of coaching, and perceived barriers in preference to coach at the high school, 2-year college, Division III, Division II, and Division I levels. The participants, 191 Big Ten university basketball players (94 men, 97 women), responded to a specially constructed instrument. The genders did not differ in their coaching self-efficacy, preferred occupational valence, and perceived barriers. Relative to men, women perceived greater valence in coaching (p coach perceived greater valence in coaching (p coach. Perceived self-efficacy and preferred occupational valence were differentially related to the desire to coach at various levels. Working Hours most negatively affected the desire to coach at every level (R > .20). PMID:9635332

  20. Electronic structure of KCa2Nb3O10 as envisaged by density functional theory and valence electron energy loss spectroscopy

    Science.gov (United States)

    Virdi, Kulpreet Singh; Kauffmann, Yaron; Ziegler, Christian; Ganter, Pirmin; Lotsch, Bettina V.; Kaplan, Wayne D.; Blaha, Peter; Scheu, Christina

    2013-03-01

    KCa2Nb3O10 is a layered Dion-Jacobson-type perovskite important for a number of applications such as photocatalysis and as a building block for heteronanostructures. Despite this, some of its central electronic properties such as the band gap and dielectric function are not well understood. In this report we have attempted to determine the band gap and understand the electronic structure of KCa2Nb3O10 using density functional theory. Simultaneously, the band gap and loss function have been determined experimentally using valence electron energy loss spectroscopy. The theoretical results indicate that KCa2Nb3O10 is a direct band gap semiconductor with a sparse density of states close to the onset of the conduction band. The calculated band gap value of 3.1 eV is in excellent agreement with the 3.2±0.1 eV measured experimentally. The loss functions computed and experimentally determined show good agreement up to 20 eV, but the theoretical peak positions at higher energy do not agree with the experimental electron energy loss spectrum. These transitions originate from K-3p, Ca-3p, and Nb-4p semicore states and their positions are not well described by Kohn-Sham eigenvalues. After a scissors shift of transitions due to these states by about 2.5 eV to higher energies we obtain good agreement with the experimental loss function and can thus explain the origin of all the features seen in the experimental electron energy loss spectrum.

  1. Diffuse interstellar absorption bands

    Institute of Scientific and Technical Information of China (English)

    XIANG FuYuan; LIANG ShunLin; LI AiGen

    2009-01-01

    The diffuse interstellar bands (DIBs) are a large number of absorption bands that are superposed on the interstellar extinction curve and are of interstellar origin. Since the discovery of the first two DIBs in the 1920s, the exact nature of DIBs still remains unclear. This article reviews the history of the detec-tions of DIBs in the Milky Way and external galaxies, the major observational characteristics of DIBs, the correlations or anti-correlations among DIBs or between DIBs and other interstellar features (e.g. the prominent 2175 Angstrom extinction bump and the far-ultraviolet extinction rise), and the proposed candidate carriers. Whether they are also present in circumstellar environments is also discussed.

  2. Diffuse interstellar absorption bands

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The diffuse interstellar bands(DIBs) are a large number of absorption bands that are superposed on the interstellar extinction curve and are of interstellar origin. Since the discovery of the first two DIBs in the 1920s,the exact nature of DIBs still remains unclear. This article reviews the history of the detections of DIBs in the Milky Way and external galaxies,the major observational characteristics of DIBs,the correlations or anti-correlations among DIBs or between DIBs and other interstellar features(e.g. the prominent 2175 Angstrom extinction bump and the far-ultraviolet extinction rise),and the proposed candidate carriers. Whether they are also present in circumstellar environments is also discussed.

  3. Electronic structure of InTe, SnAs and PbSb: Valence-skip compound or not?

    Science.gov (United States)

    Hase, Izumi; Yasutomi, Kouki; Yanagisawa, Takashi; Odagiri, Kousuke; Nishio, Taichiro

    2016-08-01

    InTe, SnAs and PbSb formally have unusual valence states, In2+, Sn3+ and Pb3+. All of them have B1 crystal structure at some pressure range. They are candidates of the valence-skip compound, which may have negative effective Coulomb interaction Ueff electronic structures by ab-initio calculations, and calculated the number of s-electrons at the cation site. We found that InTe is favorable to emerge valence skip, while PbSb is not favorable for valence skip. SnAs is between these two. These findings well agree with the experimental results.

  4. Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar.

    Science.gov (United States)

    Ranasinghe, Duminda S; Frisch, Michael J; Petersson, George A

    2015-12-01

    We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mEh) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies. PMID:26646872

  5. Mixed valency and site-preference chemistry for cerium and its compounds: A predictive density-functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Aftab [Ames Laboratory; Johnson, Duane D. [Ames Laboratory

    2014-06-01

    Cerium and its technologically relevant compounds are examples of anomalous mixed valency, originating from two competing oxidation states—itinerant Ce4+ and localized Ce3+. Under applied stress, anomalous transitions are observed but not well understood. Here we treat mixed valency as an “alloy” problem involving two valences with competing and numerous site-occupancy configurations. We use density-functional theory with Hubbard U (i.e., DFT+U) to evaluate the effective valence and predict properties, including controlling the valence by pseudoternary alloying. For Ce and its compounds, such as (Ce,La)2(Fe,Co)14B permanent magnets, we find a stable mixed-valent α state near the spectroscopic value of νs=3.53. Ce valency in compounds depends on its steric volume and local chemistry. For La doping, Ce valency shifts towards γ-like Ce3+, as expected from steric volume; for Co doping, valency depends on local Ce-site chemistry and steric volume. Our approach captures the key origins of anomalous valency and site-preference chemistry in complex compounds.

  6. Achromatic metasurface optical components by dispersive phase compensation

    CERN Document Server

    Aieta, Francesco; Genevet, Patrice; Capasso, Federico

    2014-01-01

    The replacement of bulk refractive elements with flat ones enables the miniaturization of optical components required for integrated optical systems. This process comes with the limitation that planar optics suffers from large chromatic aberrations due to the dispersion of the phase accumulated by light during propagation. We show that this limitation can be overcome by compensating the dispersion of the propagation phase with the wavelength-dependent phase shift imparted by a metasurface. We demonstrate dispersion-free multi-wavelength dielectric metasurface deflectors in the near-infrared and design an achromatic flat lens in the same spectral region. Our design is based on low-loss coupled dielectric resonators, which introduce a dense spectrum of modes to enable dispersive phase compensation. Achromatic metasurfaces will find applications as multi-band-pass filters, lightweight collimators, and chromatically-corrected imaging lenses.

  7. AB INITIO STUDY ON VALENCE INDICES AND REACTIVITIES OF SOME BORAENS

    Institute of Scientific and Technical Information of China (English)

    曹阳; 王友良

    1991-01-01

    In the pressnt paper, 3-21G ab initio molecular orbital calculations arc performed on diborane B2H6 and the substituted bridged-atom species H4B2X2(X=F, C1, OH, NH2, CH3),and these geometries are optimized with the energy gradient technique. According to the quantum chemical definition of atomic valence, the valences of the bridged-atoms are calculated to studtd the characteristion of the bridging bond B-X-B. Some larger boranes B4H10, B5H9, and B5H11 are also calculated to discuss the valence indices and analyze the reactiveities of the bridged-atoms.

  8. Orbital momentum distributions and binding energies for the complete valence shell of molecular iodine

    International Nuclear Information System (INIS)

    The complete valence shell binding energy spectrum (8-43eV) of I2 has been measured by using electron momentum spectroscopy at 1000eV. The complete inner valence region, corresponding to ionization from the 10 σu and 10 σg orbitals, has been measured for the first time and shows extensive splitting of the ionization strength due to electron correlation effects in the ion. Many-body calculations using the Green's function method have been carried out and are compared with the data. Momentum distributions, measured in both the outer and inner valence regions, are compared with those given by SCF orbital wave functions calculated with a number of different basis sets. Computed orbital position and momentum density maps for oriented I2 molecules are discussed in comparison with the measured and calculated spherically averaged momentum distributions

  9. f_K/f_pi in Full QCD with Domain Wall Valence Quarks

    CERN Document Server

    Beane, S R; Orginos, K; Savage, M J

    2006-01-01

    We compute the ratio of pseudoscalar decay constants f_K/f_pi using domain-wall valence quarks and rooted improved Kogut-Susskind sea quarks. By employing continuum chiral perturbation theory, we extract the Gasser-Leutwyler low-energy constant L_5, and extrapolate f_K/f_pi to the physical point. We find: f_K/f_pi = 1.218 (+- 0.002) (+0.011 -0.024) where the first error is statistical and the second error is an estimate of the systematic due to chiral extrapolation and fitting procedures. This value agrees within the uncertainties with the determination by the MILC collaboration, calculated using Kogut-Susskind valence quarks, indicating that systematic errors arising from the choice of lattice valence quark are small.

  10. Emotional valence, sense of agency and responsibility: A study using intentional binding.

    Science.gov (United States)

    Christensen, J F; Yoshie, M; Di Costa, S; Haggard, P

    2016-07-01

    We investigated how the emotional valence of an action outcome influences the experience of control, in an intentional binding experiment. Voluntary actions were followed by emotionally positive or negative human vocalisations, or by neutral tones. We used mental chronometry to measure a retrospective component of sense of agency (SoA), triggered by the occurrence of the action outcome, and a prospective component, driven by the expectation that the outcome will occur. Positive outcomes enhanced the retrospective component of SoA, but only when both occurrence and the valence of the outcome were unexpected. When the valence of outcomes was blocked - and therefore predictable - we found a prospective component of SoA when neutral tones were expected but did not actually occur. This prospective binding was absent, and reversed, for positive and negative expected outcomes. Emotional expectation counteracts the prospective component of SoA, suggesting a distancing effect. PMID:27174794

  11. The use of symmetrized valence and relative motion coordinates for crystal potentials

    DEFF Research Database (Denmark)

    McMurry, H. L.; Hansen, Flemming Yssing

    1980-01-01

    Symmetrized valence coordinates are linear combinations of conventional valence coordinates which display the symmetry of a set of atoms bound by the valence bonds. Relative motion coordinates are relative translations, or relative rotations, of two or more strongly bonded groups of atoms among...... which relatively weak forces act. They are useful for expressing interactions between molecules in molecular crystals and should be chosen, also, to reflect the symmetry of the interacting groups. Since coordinates defined by these procedures possess elements of symmetry in common with the bonding...... interaction constants coupling coordinates of unlike symmetry with regard to the crystal point group are necessarily zero. They may be small, also, for coordinates which belong to different representations of the local symmetry when this is not the same as for the crystal. Procedures are given for defining...

  12. Emotional Valence, Arousal, and Threat Ratings of 160 Chinese Words among Adolescents

    Science.gov (United States)

    Ho, Samuel M. Y.; Mak, Christine W. Y.; Yeung, Dannii; Duan, Wenjie; Tang, Sandy; Yeung, June C.; Ching, Rita

    2015-01-01

    This study was conducted to provide ratings of valence/pleasantness, arousal/excitement, and threat/potential harm for 160 Chinese words. The emotional valence classification (positive, negative, or neutral) of all of the words corresponded to that of the equivalent English language words. More than 90% of the participants, junior high school students aged between 12 and 17 years, understood the words. The participants were from both mainland China and Hong Kong, thus the words can be applied to adolescents familiar with either simplified (e.g. in mainland China) or traditional Chinese (e.g. in Hong Kong) with a junior secondary school education or higher. We also established eight words with negative valence, high threat, and high arousal ratings to facilitate future research, especially on attentional and memory biases among individuals prone to anxiety. Thus, the new emotional word list provides a useful source of information for affective research in the Chinese language. PMID:26226604

  13. Emotional Valence, Arousal, and Threat Ratings of 160 Chinese Words among Adolescents.

    Directory of Open Access Journals (Sweden)

    Samuel M Y Ho

    Full Text Available This study was conducted to provide ratings of valence/pleasantness, arousal/excitement, and threat/potential harm for 160 Chinese words. The emotional valence classification (positive, negative, or neutral of all of the words corresponded to that of the equivalent English language words. More than 90% of the participants, junior high school students aged between 12 and 17 years, understood the words. The participants were from both mainland China and Hong Kong, thus the words can be applied to adolescents familiar with either simplified (e.g. in mainland China or traditional Chinese (e.g. in Hong Kong with a junior secondary school education or higher. We also established eight words with negative valence, high threat, and high arousal ratings to facilitate future research, especially on attentional and memory biases among individuals prone to anxiety. Thus, the new emotional word list provides a useful source of information for affective research in the Chinese language.

  14. Experimental and calculated momentum densities for the complete valence orbitals of the antimicrobial agent diacetyl

    Institute of Scientific and Technical Information of China (English)

    Su Guo-Lin; Ren Xue-Guang; Zhang Shu-Feng; Ning Chuan-Gang; Zhou Hui; Li Bin; Li Gui-Qin; Deng Jing-Kang

    2005-01-01

    The first electronic structural study of the complete valence shell binding energy spectra of the antimicrobial agent diacetyl, encompassing both the outer and inner valence regions, is reported. The binding energy spectra as well as the individual orbital momentum profiles have been measured by using a high resolution (e, 2e) electron momentum spectrometer (EMS) at an impact energy of 1200eV plus the binding energy, and using symmetric noncoplanar kinematics.The experimental orbital electron momentum profiles are compared with self-consistent field (SCF) theoretical profiles calculated using the Hartree-Fock approximation and Density Functional theory predictions in the target Kohn-Sham approximation which includes some treatment of correlation via the exchange and correlation potentials with a range of basis sets. The pole strengths of the main ionization peaks from the inner valence orbitals are estimated.

  15. Analysis of valence XPS and AES of (PP, P4VP, PVME, PPS, PTFE) polymers by DFT calculations using the model molecules

    Science.gov (United States)

    Endo, Kazunaka; Shimada, Shingo; Kato, Nobuhiko; Ida, Tomonori

    2016-10-01

    We simulated valence X-ray photoelectron spectra (VXPS) of five [(CH2CH(CH3))n {poly(propyrene) PP}, ((CH2CH(C5NH4))n {poly(4-vinyl-pyridine) P4VP}, (CH2CHO(CH3))n {poly(vinyl methyl ether) PVME}, (C6H4S)n {poly(phenylene) sulphide PPS}, (CF2CF2)n {poly(tetrafluoroethylene) PTFE}] polymers by density-functional theory (DFT) calculations using the model oligomers. The spectra reflect the differences in the chemical structures between each polymer, since the peak intensities of valence band spectra are seen to be due to photo-ionization cross-section of (C, N, O, S, F) atoms by considering the orbital energies and cross-section values of the polymer models, individually. In the Auger electron spectra (AES) simulations, theoretical kinetic energies of the AES are obtained with our modified calculation method. The modified kinetic energies correspond to two final-state holes at the ground state and at the transition-state in DFT calculations, respectively. Experimental peaks of (C, N, O)- KVV, and S L2,3VV AES for each polymer are discussed in detail by our modified calculation method.

  16. Micromechanics of shear banding

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, J.J.

    1992-08-01

    Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.

  17. Dispersion in Alluvial River

    OpenAIRE

    Ferdousi, Amena

    2014-01-01

    River pollution is the contamination of river water by pollutant being discharged directly or indirectly on it. Depending on the degree of pollutant concentration, subsequent negative environmental effects such as oxygen depletion and severe reductions in water quality may occur which affect the whole environment. River pollution can then cause a serious threat for fresh water and as well as the entire living creatures. Dispersion in natural stream is the ability of a stream to dilute soluble...

  18. SOLID DISPERSIONS: A REVIEW

    OpenAIRE

    D. Praveen Kumar; Arora Vandana

    2012-01-01

    The solubility behaviour of drugs remains one of the most challenging aspects in formulation development. Currently only 8% of the new drug molecules have high solubility and permeability. The solubility behaviour of a drug is key determinant to its oral bioavailability and it is the rate limiting step to absorption of drugs from the gastrointestinal tract. This results in important products not reaching the market or not achieving their full potential. Solid dispersions have attracted consid...

  19. Disabling Radiological Dispersal Terror

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M

    2002-11-08

    Terror resulting from the use of a radiological dispersal device (RDD) relies upon an individual's lack of knowledge and understanding regarding its significance. Disabling this terror will depend upon realistic reviews of the current conservative radiation protection regulatory standards. It will also depend upon individuals being able to make their own informed decisions merging perceived risks with reality. Preparation in these areas will reduce the effectiveness of the RDD and may even reduce the possibility of its use.

  20. Prediction and observation of II-VI/CuInSe[sub 2] heterojunction band offsets

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Art J.; Niles, D.W.; Schwerdtfeger, C.R.; Wei, Su-Huai; Zunger, Alex (National Renewable Energy Lab., Golden, CO (United States)); Hoechst, H. (Synchrotron Radiation Center, Univ. of Wisconsin-Madison, Stoughton, WI (United States))

    1994-05-06

    First-principles band structure calculations show that II-VI/CuInSe[sub 2] heterojunctions have significant band offsets which challenge the traditional explanation of device operation. In the case of ZnSe, these large valence band offsets demonstrate the failure of the 'common anion rule'. This is traced to a stronger Cu,d-Se,p level repulsion in CuInSe[sub 2] than the Zn,d-Se,p repulsion in ZnSe. Formation of the ZnSe/CuInSe[sub 2] and CdS/CuInSe[sub 2] heterojunctions were studied by synchrotron radiation soft X-ray photoemission spectroscopy. The II-VI overlayers were sequentially grown in steps on both CuInSe[sub 2](112) single-crystals and polycrystalline thin-films. In situ photoemission measurements were acquired after each growth in order to observe changes in the valence band electronic structure as well as changes in the appropriate core lines. Results of these measurements reveal that the offsets are in good agreement with the first-principles predictions and that the traditional device model with [Delta]E[sub c]<0 must be abandoned

  1. Band offsets between amorphous La2Hf2O7 and silicon

    Institute of Scientific and Technical Information of China (English)

    CHENG Xuerui; WANG Yongqiang; QI Zeming; ZHANG Guobin; WANG Yuyin; SHAO Tao; ZHANG Wenhua

    2012-01-01

    Amorphous La2Hf2O7 films were grown on Si(100) by pulsed laser deposition method.The valence and conduction band offsets between amorphous La2Hf2O7 film and silicon were determined by using synchrotron radiation photoemission spectroscopy.The energy band gap of amorphous La2Hf2O7 film was measured from the energy-loss spectra of O 1s photoelectrons.The band gap of amorphous La2Hf2O7 film was determined to be 5.4±0.2 eV.The valence and the conduction-band offsets of amorphous La2Hf2O7 film to Si were obtained to be 2.7±0.2 and 1.6±0.2 eV,respectively.These results indicated that the amorphous La2Hf2O7 film could be one promising candidate for high-k gate dielectrics.

  2. Electronic structure and band alignment at an epitaxial spinel/perovskite heterojunction.

    Science.gov (United States)

    Qiao, Liang; Li, Wei; Xiao, Haiyan; Meyer, Harry M; Liang, Xuelei; Nguyen, N V; Weber, William J; Biegalski, Michael D

    2014-08-27

    The electronic properties of solid-solid interfaces play critical roles in a variety of technological applications. Recent advances of film epitaxy and characterization techniques have demonstrated a wealth of exotic phenomena at interfaces of oxide materials, which are critically dependent on the alignment of their energy bands across the interface. Here we report a combined photoemission and electrical investigation of the electronic structures across a prototypical spinel/perovskite heterojunction. Energy-level band alignment at an epitaxial Co3O4/SrTiO3(001) heterointerface indicates a chemically abrupt, type I heterojunction without detectable band bending at both the film and substrate. The unexpected band alignment for this typical p-type semiconductor on SrTiO3 is attributed to its intrinsic d-d interband excitation, which significantly narrows the fundamental band gap between the top of the valence band and the bottom of the conduction band. The formation of the type I heterojunction with a flat-band state results in a simultaneous confinement of both electrons and holes inside the Co3O4 layer, thus rendering the epitaxial Co3O4/SrTiO3(001) heterostructure to be a very promising material for high-efficiency luminescence and optoelectronic device applications. PMID:25075939

  3. Strain effects on band structure of wurtzite ZnO: a GGA + U study

    International Nuclear Information System (INIS)

    Band structures in wurtzite bulk ZnO/Zn1−xMgxO are calculated using first-principles based on the framework of generalized gradient approximation to density functional theory with the introduction of the on-site Coulomb interaction. Strain effects on band gap, splitting energies of valence bands, electron and hole effective masses in strained bulk ZnO are discussed. According to the results, the band gap increases gradually with increasing stress in strained ZnO as an Mg content of Zn1−xMgxO substrate less than 0.3, which is consistent with the experimental results. It is further demonstrated that electron mass of conduction band (CB) under stress increases slightly. There are almost no changes in effective masses of light hole band (LHB) and heavy hole band (HHB) along [00k] and [k00] directions under stress, and stress leads to an obvious decrease in effective masses of crystal splitting band (CSB) along the same directions. (semiconductor materials)

  4. Modification of Band Gap of β-SiC by N-Doping

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-Sheng; FANG Xiao-Yong; SONG Wei-Li; HOU Zhi-Ling; LU Ran; YUAN Jie; CAO Mao-Sheng

    2009-01-01

    The geometrical and electronic structures of nitrogen-doped β-SiC are investigated by employing the first principles of plane wave ultra-soft pseudo-potential technology based on density functional theory.The structures of SiC1-xNx (x=0,1/32,1/16,1/8,1/4) with different doping concentrations are optimized.The results reveal that the band gap of β-SiC transforms from an indirect band gap to a direct band gap with band gap shrinkage after carbon atoms are replaced by nitrogen atoms.The Fermi level shifts from valence band top to conduction band by doping nitrogen in pure β-SiC,and the doped β-SiC becomes metallic.The degree of Fermi levels entering into the conduction band increases with the increment of doping concentration;however,the band gap becomes narrower.This is attributed to defects with negative electricity occurring in surrounding silicon atoms.With the increase of doping concentration,more residual electrons,more easily captured by the 3p orbit in the silicon atom,will be provided by nitrogen atoms to form more defects with negative electricity.

  5. First-principles study of Cu{sub 2}ZnSnS{sub 4} and the related band offsets for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Nagoya, A; Asahi, R [Toyota Central R and D Laboratories, Incorporated, Nagakute, Aichi 480-1192 (Japan); Kresse, G, E-mail: e1405@mosk.tytlabs.co.jp [Faculty of Physics, Universitaet Wien and Center for Computational Materials Science, Sensengasse 8/12, A-1090, Wien (Austria)

    2011-10-12

    First-principles calculations of the band offsets between Cu{sub 2}ZnSnS{sub 4} (CZTS) and XS (X = Cd, Zn) are performed. While the interface dipole contribution for the band offsets is calculated using the Perdew-Burke-Ernzerhof functional, the Heyd-Scuseria-Ernzerhof hybrid functional is employed to introduce the quasiparticle corrections to the band offsets. The calculated conduction band offset between CZTS and CdS is 0.2 eV, validating CdS for the buffer layer of the CZTS solar cell. The small conduction band offset stems from the band gap narrowing of CdS under the interface strain caused by the lattice misfit with CZTS. A large valence band offset over 0.9 eV between CZTS and ZnS indicates that precipitated ZnS is regarded as an inactive insulator phase in CZTS absorbers.

  6. Generalized oscillator strengths for some higher valence-shell excitations of krypton atom

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The valence-shell excitations of krypton atom have been investigated by fast electron impact with an angle-resolved electron-energy-loss spectrometer. The generalized oscillator strengths for some higher mixed valence-shell excitations in 4d, 4f, 5p, 5d, 6s, 6p, 7s ← 4p of krypton atom have been determined. Their profiles are discussed, and the generalized oscillator strengths for the electric monopole and quadrupole excitations in 5p ← 4p are compared with the calculations of Amusia et al. (Phys. Rev. A 67 022703 (2003)). The differences between the experimental results and theoretical calculations show that more studies are needed.

  7. High-Resolution Conversion Electron Spectroscopy of Valence Electron Configurations (CESVEC) in Solids

    CERN Multimedia

    2002-01-01

    First measurements with the Zurich $\\beta$-spectrometer on sources from ISOLDE have demonstrated that high resolution spectroscopy of conversion electrons from valence shells is feasible.\\\\ \\\\ This makes possible a novel type of electron spectroscopy (CESVEC) on valence-electron configurations of tracer elements in solids. Thus the density of occupied electron states of impurities in solids has been measured for the first time. Such data constitute a stringent test of state-of-the-art calculations of impurity properties. Based on these results, we are conducting a systematic investigation of impurities in group IV and III-V semiconductors.

  8. Time-resolved imaging of purely valence-electron dynamics during a chemical reaction

    DEFF Research Database (Denmark)

    Hockett, Paul; Bisgaard, Christer Z.; Clarkin, Owen J.;

    2011-01-01

    Chemical reactions are manifestations of the dynamics of molecular valence electrons and their couplings to atomic motions. Emerging methods in attosecond science can probe purely electronic dynamics in atomic and molecular systems(1-6). By contrast, time-resolved structural-dynamics methods......,17): in both cases, this sensitivity derives from the ionization-matrix element(18,19). Here we demonstrate a time-resolved molecular-frame photoelectron-angular-distribution (TRMFPAD) method for imaging the purely valence-electron dynamics during a chemical reaction. Specifically, the TRMFPADs measured during...

  9. Distribution Functions of the Nucleon and Pion in the Valence Region

    OpenAIRE

    Holt, Roy J.; Roberts, Craig D.

    2010-01-01

    We provide an experimental and theoretical perspective on the behavior of unpolarized distribution functions for the nucleon and pion on the valence-quark domain; namely, Bjorken-x \\gtrsim 0.4. This domain is key to much of hadron physics; e.g., a hadron is defined by its flavor content and that is a valence-quark property. Furthermore, its accurate parametrization is crucial to the provision of reliable input for large collider experiments. We focus on experimental extractions of distributio...

  10. Band alignment of TiO2/FTO interface determined by X-ray photoelectron spectroscopy: Effect of annealing

    International Nuclear Information System (INIS)

    The energy band alignment between pulsed-laser-deposited TiO2 and FTO was firstly characterized using high-resolution X-ray photoelectron spectroscopy. A valence band offset (VBO) of 0.61 eV and a conduction band offset (CBO) of 0.29 eV were obtained across the TiO2/FTO heterointerface. With annealing process, the VBO and CBO across the heterointerface were found to be -0.16 eV and 1.06 eV, respectively, with the alignment transforming from type-I to type-II. The difference in the band alignment is believed to be dominated by the core level down-shift of the FTO substrate, which is a result of the oxidation of Sn. Current-voltage test has verified that the band alignment has a significant effect on the current transport of the heterojunction

  11. Band alignment of TiO2/FTO interface determined by X-ray photoelectron spectroscopy: Effect of annealing

    Directory of Open Access Journals (Sweden)

    Haibo Fan

    2016-01-01

    Full Text Available The energy band alignment between pulsed-laser-deposited TiO2 and FTO was firstly characterized using high-resolution X-ray photoelectron spectroscopy. A valence band offset (VBO of 0.61 eV and a conduction band offset (CBO of 0.29 eV were obtained across the TiO2/FTO heterointerface. With annealing process, the VBO and CBO across the heterointerface were found to be -0.16 eV and 1.06 eV, respectively, with the alignment transforming from type-I to type-II. The difference in the band alignment is believed to be dominated by the core level down-shift of the FTO substrate, which is a result of the oxidation of Sn. Current-voltage test has verified that the band alignment has a significant effect on the current transport of the heterojunction.

  12. Band alignment of TiO{sub 2}/FTO interface determined by X-ray photoelectron spectroscopy: Effect of annealing

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Haibo, E-mail: hbfan@nwu.edu.cn, E-mail: liusz@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); School of Physics, Northwest University, Xi’an 710069 (China); Yang, Zhou; Ren, Xianpei; Gao, Fei [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Yin, Mingli [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); School of Science, Xi’an Technological University, Xi’an, Shaanxi 710062 (China); Liu, Shengzhong, E-mail: hbfan@nwu.edu.cn, E-mail: liusz@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023 (China)

    2016-01-15

    The energy band alignment between pulsed-laser-deposited TiO{sub 2} and FTO was firstly characterized using high-resolution X-ray photoelectron spectroscopy. A valence band offset (VBO) of 0.61 eV and a conduction band offset (CBO) of 0.29 eV were obtained across the TiO{sub 2}/FTO heterointerface. With annealing process, the VBO and CBO across the heterointerface were found to be -0.16 eV and 1.06 eV, respectively, with the alignment transforming from type-I to type-II. The difference in the band alignment is believed to be dominated by the core level down-shift of the FTO substrate, which is a result of the oxidation of Sn. Current-voltage test has verified that the band alignment has a significant effect on the current transport of the heterojunction.

  13. Band-gap narrowing in Mn-doped GaAs probed by room-temperature photoluminescence

    Science.gov (United States)

    Prucnal, S.; Gao, K.; Skorupa, I.; Rebohle, L.; Vines, L.; Schmidt, H.; Khalid, M.; Wang, Y.; Weschke, E.; Skorupa, W.; Grenzer, J.; Hübner, R.; Helm, M.; Zhou, S.

    2015-12-01

    The electronic band structure of the (Ga,Mn)As system has been one of the most intriguing problems in solid state physics over the past two decades. Determination of the band structure evolution with increasing Mn concentration is a key issue to understand the origin of ferromagnetism. Here, we present room-temperature photoluminescence and ellipsometry measurements of G a100 %-xM nxAs alloy. The upshift of the valence band is proven by the redshift of the room temperature near band-gap emission from the G a100 %-xM nxAs alloy with increasing Mn content. It is shown that even a doping by 0.02% of Mn affects the valence-band edge, and it merges with the impurity band for a Mn concentration as low as 0.6%. Both x-ray diffraction pattern and high-resolution cross-sectional transmission electron microscopy images confirmed full recrystallization of the implanted layer and GaMnAs alloy formation.

  14. Ultra-dispersive adaptive prism

    OpenAIRE

    Sautenkov, Vladimir A.; Li, Hebin; Rostovtsev, Yuri V.; Scully, Marlan O.

    2007-01-01

    We have experimentally demonstrated an ultra-dispersive optical prism made from coherently driven Rb atomic vapor. The prism possesses spectral angular dispersion that is six orders of magnitude higher than that of a prism made of optical glass; it is the highest spectral angular dispersion that has ever been shown (such angular dispersion allows one to spatially resolve light beams with different frequencies separated by a few kHz). The prism operates near the resonant frequency of atomic va...

  15. Nonlinear lattice relaxation of photogenerated charge-transfer excitation in halogen-bridged mixed-valence metal complexes. II. Polaron channel

    Science.gov (United States)

    Mishima, A.; Nasu, K.

    1989-03-01

    The one-dimensional extended Peierls-Hubbard model with half-filled-band electrons is studied in order to clarify the lattice relaxation path of the photogenerated charge-transfer excitation in halogen-bridged mixed-valence metal complexes. The ground and excited states are calculated within mean-field theory for electrons and the adiabatic approximation for phonons. It is concluded that the main origin of the photoinduced absorption is a distant pair of the hole-polaron and the electron-polaron. This distant pair is created not from the ground state of the self-trapped exciton (STE), but from the excited states of the STE through their autodissociation. This is consistent with the experiment on the excitation energy dependence of the photoinduced absorption yield.

  16. INVESTIGATION ON THE VALENCE STATE OF Ce ATOM IN BULK AND NANOCRYSTAL CeO2 BY X-RAY ABSORPTION AND PHOTOEMISSION

    Institute of Scientific and Technical Information of China (English)

    K. Ibrahim; Z.Y. Wu; J. Zhang; M.I. Abbas; F.Q. Liu; H.J. Qian

    2001-01-01

    Valence band photoemission spectra (PES) for both bulk and nanocrystal CeO2 have been measured on and off resonance of Ce 4d 4f absorption edge. The PES show that the bulk and nanocrystal CeO2 of diameter ranging from 8nm to 50nm exhibit a peak near Fermi edge with binding energy of about 1.8eV. The 1.8eVpeak shows a strong dependence on excitation energy, although it looks like the contribution of Ce3+ ion following the data reported in literatures. However, according to the results of resonance photoemission and X-ray absorption spectra at O 1s edge, this electronic structure may be associated to the intermediate state charge transfer effects.

  17. Validity condition of separating dispersion of PCFs into material dispersion and geometrical dispersion

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Lantian Hou; Zhaolun Liu; Guiyao Zhou

    2009-01-01

    When using normalized dispersion method for the dispersion design of photonic crystal fibers(PCFs),it is vital that the group velocity dispersion of PCF can be seen as the sum of geometrical dispersion and material dispersion.However,the error induced by this way of calculation will deteriorate the final results.Taking 5 ps/(km·nm)and 5% as absolute error and relative error limits,respectively,the structure parameter boundaries of PCFs about when separating total dispersion into geometrical and material components is valid are provided for wavelength shorter than 1700 nm.By using these two criteria together,it is adequate to evaluate the simulatcd dispersion of PCFs when normalized dispersion method is employed.

  18. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K

    2013-01-01

    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  19. Band-Notched Ultrawide Band Planar Inverted-F Antenna

    Directory of Open Access Journals (Sweden)

    H. T. Chattha

    2012-01-01

    Full Text Available A novel ultrawide band planar inverted-F antenna with band-notched characteristics is presented in this paper. The planar inverted-F antenna uses two parasitic elements to enhance the bandwidth to cover the ultrawide band. The band-notched feature is added by inserting a W-shaped slot on the top radiating element of the antenna with a band rejection from 5.08 to 6 GHz (measured. Both the measured and simulated results are obtained to draw the conclusions.

  20. Developing a dispersant spraying capability

    Energy Technology Data Exchange (ETDEWEB)

    Gill, S.D.

    1979-01-01

    In developing a national dispersant spraying capability, the Canadian Coast Guard (CCG) has undertaken a modification program to enable the conventional offshore spraying gear to be mounted on almost any vessel of convenience. Smaller, more versatile inshore spraying vessels and pumps have been designed and built. With the popularization of concentrated dispersants, the inshore pumping equipment can be used aboard hovercraft for special application situations. A program of acquiring mobile dispersant storage tanks has been undertaken with auxiliary equipment that will facilitate the shipment of dispersants in bulk by air freight. Work also has commenced on extending the dispersant application program to include the CCG fleet of helicopters.

  1. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  2. Amplification and chromosomal dispersion of human endogenous retroviral sequences

    International Nuclear Information System (INIS)

    Endogenous retroviral sequences have undergone amplification events involving both viral and flanking cellular sequences. The authors cloned members of an amplified family of full-length endogenous retroviral sequences. Genomic blotting, employing a flanking cellular DNA probe derived from a member of this family, revealed a similar array of reactive bands in both humans and chimpanzees, indicating that an amplification event involving retroviral and associated cellular DNA sequences occurred before the evolutionary separation of these two primates. Southern analyses of restricted somatic cell hybrid DNA preparations suggested that endogenous retroviral segments are widely dispersed in the human genome and that amplification and dispersion events may be linked

  3. The Oxygen a Band

    Science.gov (United States)

    Benner, D. Chris; Devi, V. Malathy; Hoo, Jiajun; Hodges, Joseph; Long, David A.; Sung, Keeyoon; Drouin, Brian; Okumura, Mitchio; Bui, Thinh Quoc; Rupasinghe, Priyanka

    2014-06-01

    The oxygen A band is used for numerous atmospheric experiments, but spectral line parameters that sufficiently describe the spectrum to the level required by OCO2 and other high precision/accuracy experiments are lacking. Fourier transform spectra from the Jet Propulsion Laboratory and cavity ring down spectra from the National Institute of Standards and Technology were fitted simultaneously using the William and Mary multispectrum nonlinear least squares fitting technique into a single solution including the entire band. In addition, photoacoustic spectra already available from the California Institute of Technology will be added to the solution. The three types of spectrometers are complementary allowing the strengths of each to fill in the weaknesses of the others. With this technique line positions, intensities, widths, shifts, line mixing, Dicke narrowing, temperature dependences and collision induced absorption have been obtained in a single physically consistent fit. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. Atkins, JQSRT 1995;53:705-21. Part of the research described in this paper was performed at The College of William and Mary, the, Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration and the Jet Propulsion Laboratory. Support for the National Institute of Standards and Technology was provided by the NIST Greenhouse Gas Measurements and Climate Research Program and a NIST Innovations in Measurement Science (IMS) award.

  4. Electron momentum distributions and binding energies for the valence orbitals of hydrogen bromide and hydrogen iodide

    International Nuclear Information System (INIS)

    The electron binding energy spectra and momentum distributions have been obtained for the valence orbitals of HBr and HI using noncoplanar symmetric electron coincidence spectroscopy at 1200eV. The weakly bonding inner valence ns orbitals, which have not been previously observed, have their spectroscopic (pole) strength severely split among a number of ion states. For HBr the strength of the main inner valence (ns) transition is 0.42 0.03 whereas for HI it is 0.37 0.04, in close agreement with that observed for the valence s orbitals of the corresponding isoelectronic inert gas atoms. The spectroscopic strength for the two outermost orbitals is found to be close to unity, in agreement with many body Green's function calculations. The measured momentum distributions are compared with several spherically averaged MO momentum distributions, as well as (for HBr) with a Green's function calculation of the generalized overlap amplitude (GOA). The GOA momentum distributions are in excellent agreement with the HBr data, both in shape and relative magnitude. Not all of the MO momentum distributions are in reasonable agreement with the data. Comparison is also made with the calculated momentum distributions for Kr, Br, Xe and I

  5. Valence-based age differences in medial prefrontal activity during impression formation.

    Science.gov (United States)

    Cassidy, Brittany S; Leshikar, Eric D; Shih, Joanne Y; Aizenman, Avigael; Gutchess, Angela H

    2013-01-01

    Reports of age-related changes to medial prefrontal cortex (mPFC) activity during socio-cognitive tasks have shown both age-equivalence and under recruitment. Emotion work illustrates selective mPFC response dependent on valence, such that negative emotional images evoke increased ventral mPFC activity for younger adults, while older adults recruit vmPFC more for positive material. By testing whether this differential age-related response toward valenced material is also present for the social task of forming impressions, we may begin to understand inconsistencies regarding when age differences are present vs. absent in the literature. Using fMRI, participants intentionally formed impressions of positive and negative face-behavior pairs in anticipation of a memory task. Extending previous findings to a social task, valence-based reversals were present in dorsal and ventral mPFC, and posterior cingulate cortex. Younger adults elicited increased activity when forming negative impressions, while older adults had more recruitment when forming positive impressions. This suggests an age-related shift toward emphasizing positive social information may be reflected in the recruitment of regions supporting forming impressions. Overall, the results indicate an age-related shift in neural response to socio-cognitive stimuli that is valence dependent rather than a general age-related reduction in activity, in part informing prior inconsistencies within the literature.

  6. Voice and Valence-Altering Operations in Falam Chin: A Role and Reference Grammar Approach

    Science.gov (United States)

    King, Deborah

    2010-01-01

    This dissertation describes and analyzes voice and valence-altering operations in Falam Chin, a Tibeto-Burman language of Burma. The data is explained within the framework of Role and Reference Grammar (RRG), which supplies several key concepts particularly useful for generalizing the behavior of the Falam Chin operations. The first is RRG's…

  7. Calculation of the valence electron structures of alloying cementite and its biphase interface

    Institute of Scientific and Technical Information of China (English)

    刘志林; 李志林; 刘伟东

    2001-01-01

    The valence electron structures of alloying cementite θ-(Fe, M)3C and ε-(Fe, M)3C andthose of the biphase interfaces between them and α-Fe are calculated with Yu's empirical electrontheory of solid and molecules. The calculation results accord with the actual behavior of alloys.

  8. Core and Valence Structures in K beta X-ray Emission Spectra of Chromium Materials

    NARCIS (Netherlands)

    Torres Deluigi, Maria; de Groot, Frank M. F.; Lopez-Diaz, Gaston; Tirao, German; Stutz, Guillermo; Riveros de la Vega, Jose

    2014-01-01

    We analyze the core and valence transitions in chromium in a series of materials with a number of different ligands and including the oxidation states: Cr-II, Cr-III, Cr-IV, and Cr-VI. To study the core-to-core transitions we employ the CTM4XAS program and investigate the shapes, widths, intensities

  9. The effect of an extinction cue on ABA-renewal: Does valence matter?

    NARCIS (Netherlands)

    Dibbets, P.; Maes, J.H.R.

    2011-01-01

    The present human fear conditioning study examined whether the valence of an extinction cue has a differential effect on attenuating renewal that is induced by removal of the extinction context. Additionally, the study aimed to assess whether such attenuating effect is based on a modulatory or safet

  10. The Effect of an Extinction Cue on ABA-Renewal: Does Valence Matter?

    Science.gov (United States)

    Dibbets, Pauline; Maes, Joseph H. R.

    2011-01-01

    The present human fear conditioning study examined whether the valence of an extinction cue has a differential effect on attenuating renewal that is induced by removal of the extinction context. Additionally, the study aimed to assess whether such attenuating effect is based on a modulatory or safety-signal role of the cue. In acquisition,…

  11. Brain activations to emotional pictures are differentially associated with valence and arousal ratings

    Directory of Open Access Journals (Sweden)

    Antje B M Gerdes

    2010-10-01

    Full Text Available Several studies have investigated the neural responses triggered by emotional pictures, but the specificity of the involved structures such as the amygdala or the ventral striatum is still under debate. Furthermore, only few studies examined the association of stimuli’s valence and arousal and the underlying brain responses. Therefore, we investigated brain responses with functional magnetic resonance imaging of 17 healthy subjects to pleasant and unpleasant affective pictures with comparable arousal levels and afterwards assessed ratings of valence and arousal. As expected, unpleasant pictures strongly activated the right and left amygdala, the right hippocampus, and the medial occipital lobe, whereas pleasant pictures elicited significant activations in left occipital regions, and in parts of the medial temporal lobe. The direct comparison of unpleasant and pleasant pictures which were comparable in arousal clearly indicated stronger amygdala activation in response to the unpleasant pictures. Most important, correlational analyses revealed on the one hand that the arousal of unpleasant pictures was significantly associated with activations in the right amygdala and the left caudate body. On the other hand, valence of pleasant pictures was significantly correlated with activations in the right caudate head, extending to the nucleus accumbens (NAcc and the left dorso-lateral prefrontal cortex. These findings support the notion that the amygdala is primarily involved in processing of unpleasant stimuli, and the stronger the more arousing the stimuli are, whereas reward-related structures like the NAcc primarily responds to pleasant stimuli, the stronger the more positive the valence of these stimuli is.

  12. Electric-field-driven electron-transfer in mixed-valence molecules

    Science.gov (United States)

    Blair, Enrique P.; Corcelli, Steven A.; Lent, Craig S.

    2016-07-01

    Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate the electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.

  13. Pion's valence-quark GPD and its extension beyond DGLAP region

    CERN Document Server

    Mezrag, C; Rodríguez-Quintero, J

    2015-01-01

    We briefly report on a recent computation, with the help of a fruitful algebraic model, sketching the pion valence dressed-quark generalized parton distribution and, very preliminary, discuss on a possible avenue to get reliable results in both Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) and Efremov-Radyushkin-Brodsky-Lepage (ERBL) kinematial regions.

  14. Comparison of moments from the valence structure function with QCD predictions

    International Nuclear Information System (INIS)

    Moments (both ordinary and Nachtmann) of the nucleon valence structure function measured in high Q2 γFe scattering are presented, supplemented by data from deep inelastic eD scattering. These data seem to agree with QCD predictions for vector gluons. The QCD parameter Λ is found to be of the order 0.5 GeV. (Auth.)

  15. XPEEM valence state imaging of mineral micro-intergrowths with a spatial resolution of 100nm

    Science.gov (United States)

    Smith, A. D.; Schofield, P. F.; Scholl, A.; Pattrick, R. A. D.; Bridges, J. C.

    2003-03-01

    The crystal chemistry and textural relationships of minerals hold a vast amount of information relating to the formation, history and stability of natural materials. The application of soft X-ray spectroscopy to mineralogical material has revealed that 2p (L{2,3}) spectra provide a sensitive fingerprint of the electronic states of 3d metals. In bulk powdered samples much of the textural and microstructural information is lost, but the area-selectivity capability of X-ray Photo-Emission Electron Microscopy (XPEEM) provides the ability to obtain valence state information from mineral intergrowths with a submicron spatial resolution. Using the state-of-the-art PEEM2 facility on beamline 7.3.1.1 at the Advanced Light Source, Berkeley, USA, a range of minerals, mineral intergrowths and mineralogical textures have been studied for a broad suite of geological, planetary and environmental science materials. High-quality, multi-element valence images have been obtained showing the distribution/variation of the metal valence states across single grains or mineral intergrowths/textures at the l00 nm scale and quantitative valence state ratios can be obtained from areas of 0.01 μ m^2.

  16. Talking about alcohol consumption: health campaigns, conversational valence, and binge drinking intentions

    NARCIS (Netherlands)

    H. Hendriks; G.-J. de Bruijn; B. van den Putte

    2012-01-01

    Objectives. Although research has shown that whether people talk about health issues influences health campaign effects, no evidence exists on whether conversational valence fulfils a mediating role within health campaign effects. In the context of alcohol consumption, this two-wave experimental res

  17. Memory transfer for emotionally valenced words between identities in dissociative identity disorder

    NARCIS (Netherlands)

    Huntjens, Rafaele J. C.; Peters, Madelon L.; Woertman, Liesbeth; van der Hart, Onno; Postma, Albert

    2007-01-01

    The present study aimed to determine interidentity retrieval of emotionally valenced words in dissociative identity disorder (DID). Twenty-two DID patients participated together with 25 normal controls and 25 controls instructed to simulate DID. Two wordlists A and B were constructed including neutr

  18. Exploratory spectrum calculations using overlap valence quarks on a staggered sea

    OpenAIRE

    UKQCD Collaboration; Bowler, K. C.; Joó, B.; Kenway, R.D.; Maynard, C.M.; Tweedie, R. J.

    2004-01-01

    We present exploratory results for the hadron mass spectrum and pseudoscalar meson decay constants using mixed actions. We use improved staggered sea quarks and HYP-smeared overlap valence quarks. We obtain good signals on 10 configurations at one lattice spacing and two different sets of sea quark masses.

  19. Cheminoes: A Didactic Game to Learn Chemical Relationships between Valence, Atomic Number, and Symbol

    Science.gov (United States)

    Moreno, Luis F.; Hincapié, Gina; Alzate, María Victoria

    2014-01-01

    Cheminoes is a didactic game that enables the meaningful learning of some relations between concepts such as chemical element, valence, atomic number, and chemical symbol for the first 36 chemical elements of the periodic system. Among the students who have played the game, their opinions of the activity were positive, considering the game to be a…

  20. Electric-field-driven electron-transfer in mixed-valence molecules.

    Science.gov (United States)

    Blair, Enrique P; Corcelli, Steven A; Lent, Craig S

    2016-07-01

    Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate the electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted. PMID:27394108

  1. Valence-based age differences in medial prefrontal activity during impression formation.

    Science.gov (United States)

    Cassidy, Brittany S; Leshikar, Eric D; Shih, Joanne Y; Aizenman, Avigael; Gutchess, Angela H

    2013-01-01

    Reports of age-related changes to medial prefrontal cortex (mPFC) activity during socio-cognitive tasks have shown both age-equivalence and under recruitment. Emotion work illustrates selective mPFC response dependent on valence, such that negative emotional images evoke increased ventral mPFC activity for younger adults, while older adults recruit vmPFC more for positive material. By testing whether this differential age-related response toward valenced material is also present for the social task of forming impressions, we may begin to understand inconsistencies regarding when age differences are present vs. absent in the literature. Using fMRI, participants intentionally formed impressions of positive and negative face-behavior pairs in anticipation of a memory task. Extending previous findings to a social task, valence-based reversals were present in dorsal and ventral mPFC, and posterior cingulate cortex. Younger adults elicited increased activity when forming negative impressions, while older adults had more recruitment when forming positive impressions. This suggests an age-related shift toward emphasizing positive social information may be reflected in the recruitment of regions supporting forming impressions. Overall, the results indicate an age-related shift in neural response to socio-cognitive stimuli that is valence dependent rather than a general age-related reduction in activity, in part informing prior inconsistencies within the literature. PMID:23998453

  2. Spin dynamics of the intermediate-valence compound EuCu2Si2

    NARCIS (Netherlands)

    Alekseev, P. A.; Mignot, J.-M.; Nemkovski, K. S.; Lazukov, V. N.; Nefeodova, E. V.; Menushenkov, A. P.; Kuznetsov, A. V.; Bewley, R. I.; Gribanov, A. V.

    2007-01-01

    The dynamic magnetic response of the intermediate-valence compound EuCu2Si2 has been studied using inelastic neutron scattering. At low temperatures, strong renormalization of the F-7(0) -> F-7(1) spin-orbit transition energy is detected; it is likely to be related to partial delocalization of the f

  3. Electron spectroscopy of valence and core states of U intermetallic compounds

    International Nuclear Information System (INIS)

    Examples of valence and core level spectra of uranium intermetallic compounds are analyzed using different theoretical models. The shortcomings of the different approximations are discussed and it is pointed out how these models have to be extended for a realistic description of U compounds. (orig.)

  4. Neural modulation of directed forgetting by valence and arousal: An event-related potential study.

    Science.gov (United States)

    Gallant, Sara N; Dyson, Benjamin J

    2016-10-01

    Intentional forgetting benefits memory by removing no longer needed information and promoting processing of more relevant materials. This study sought to understand how the behavioural and neurophysiological representation of intentional forgetting would be impacted by emotion. We took a novel approach by examining the unique contribution of both valence and arousal on emotional directed forgetting. Participants completed an item directed forgetting task for positive, negative, and neutral words at high and lower levels of arousal while brain activity was recorded using electroencephalography (EEG). Behaviourally, recognition of to-be-remembered (TBR) and to-be-forgotten (TBF) items varied as a function of valence and arousal with reduced directed forgetting for high arousing negative and neutral words. In the brain, patterns of frontal and posterior activation in response to TBF and TBR cues respectively replicated prior EEG evidence to support involvement of inhibitory and selective rehearsal mechanisms in item directed forgetting. Interestingly, emotion only impacted cue-related posterior activity, which varied depending on specific interactions between valence and arousal. Together, results suggest that the brain handles valence and arousal differently and highlights the importance of considering in a collective manner the multidimensional nature of emotion in experimentation. PMID:27507422

  5. Oxidation States of GRIM Glasses in EET79001 Based on Vanadium Valence

    Science.gov (United States)

    Sutton, S. R.; Rao, M. N.; Nyquist, L. E.

    2010-03-01

    Mean vanadium valences determined by microXANES for gas-rich impact-melt (GRIM) glasses in EET79001 ranged from 3.0 to 3.6. Mean fO2 ranged from IW-1.2 to IW+1.4. Variable oxidation state is consistent with impact reduction of regolith precursors.

  6. Reproducing affective norms with lexical co-occurrence statistics : Predicting valence, arousal, and dominance

    NARCIS (Netherlands)

    Louwerse, M.M.; Recchia, G.

    2014-01-01

    Human ratings of valence, arousal, and dominance are frequently used to study the cognitive mechanisms of emotional attention, word recognition, and numerous other phenomena in which emotions are hypothesized to play an important role. Collecting such norms from human raters is expensive and time co

  7. Unconscious Processing of Facial Emotional Valence Relation: Behavioral Evidence of Integration between Subliminally Perceived Stimuli

    Science.gov (United States)

    Jou, Jerwen; Cui, Qian; Zhao, Guang; Qiu, Jiang; Tu, Shen

    2016-01-01

    Although a few studies have investigated the integration between some types of unconscious stimuli, no research has yet explored the integration between unconscious emotional stimuli. This study was designed to provide behavioral evidence for the integration between unconsciously perceived emotional faces (same or different valence relation) using a modified priming paradigm. In two experiments, participants were asked to decide whether two faces in the target, which followed two subliminally presented faces of same or different emotional expressions, were of the same or different emotional valence. The interstimulus interval (ISI) between the prime and the target was manipulated (0, 53, 163 ms). In Experiment 1, prime visibility was assessed post-experiment. In Experiment 2, it was assessed on each trial. Interestingly, in both experiments, unconsciously processed valence relation of the two faces in the prime generated a negative priming effect in the response to the supraliminally presented target, independent of the length of ISI. Further analyses suggested that the negative priming was probably caused by a motor response incongruent relation between the subliminally perceived prime and the supraliminally perceived target. The visual feature incongruent relation across the prime and target was not found to play a role in the negative priming. Because the negative priming was found at short ISI, an attention mechanism as well as a motor inhibition mechanism were proposed in the generation of the negative priming effect. Overall, this study indicated that the subliminal valence relation was processed, and that integration between different unconsciously perceived stimuli could occur. PMID:27622600

  8. Spurious dispersion effects at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Prat, Eduard

    2009-07-15

    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)

  9. Spurious dispersion effects at FLASH

    International Nuclear Information System (INIS)

    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)

  10. Effects of chemical dispersants on oil physical properties and dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Khelifa, A.; Fingas, M.; Hollebone, B.P.; Brown, C.E. [Environment Canada, Ottawa, ON (Canada). ; Pjontek, D. [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering

    2007-07-01

    Laboratory and field testing have shown that the dispersion of oil spilled in water is influenced by chemical dispersants via the modification of the interfacial properties of the oil, such as oil-brine interfacial tension (IFT). This study focused on new laboratory experiments that measured the effects on the physical properties and dispersion of oil, with particular reference to the effects of chemical dispersants on IFT and oil viscosity and the subsequent effects on oil droplet formation. Experiments were conducted at 15 degrees C using Arabian Medium, Alaska North Slope and South Louisiana crude and Corexit 9500 and Corexit 9527 chemical dispersants. The dispersants were denser than the 3 oils. The effect of IFT reduction on oil dispersion was measured and showed substantial reduction in the size and enhancement of the concentration of oil droplets in the water column. It was shown that the brine-oil IFT associated with the 3 crudes reduced to less than 3.6 mN/m with the application of the chemical dispersants, even at a low dispersant-to-oil ratio (DOR) value of 1:200. The use of chemical dispersants increased the viscosity of the dispersant-oil mixture up to 40 per cent over the neat crude oil. It was shown that for each mixing condition, an optimum value of DOR exists that provides for maximal dispersant effectiveness. The IFT reaches maximum reduction at optimum DOR. It was suggested that oil spill modelling can be improved with further study of IFT reduction with DOR and variations of critical micelle concentration with the type and solubility of chemical dispersant, oil type and oil to water ratio. 13 refs., 3 tabs., 7 figs.

  11. Band structures of carbon nanotube with spin-orbit coupling interaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hong, E-mail: liuhong3@njnu.edu.c [Physics Department, Nanjing Normal University, Nanjing 210046 (China)

    2011-01-01

    We explore the band structures of single-walled carbon nanotubes (SWCNTs) with two types of spin-orbit couplings. The obtained results indicate that weak Rashba spin-orbit coupling interaction can lead to the breaking of four-fold degeneracy in all tubes even though without the intrinsic SO coupling. The asymmetric splitting between conduction bands and valence bands is caused by both SO couplings at the same time. When the ratio of Rashba spin-orbit coupling to the intrinsic spin-orbit coupling is larger than 3, metallic zigzag nanotube is always metallic conductor, on the contrary it becomes semiconducting properties. However, only when this ratio is equal to about 3 or the intrinsic spin-orbit coupling is much weak, the metallic armchair nanotube still holds the metallic behavior in transport.

  12. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching

    Science.gov (United States)

    Özçelik, V. Ongun; Azadani, Javad G.; Yang, Ce; Koester, Steven J.; Low, Tony

    2016-07-01

    We present a comprehensive study of the band alignments of two-dimensional (2D) semiconducting materials and highlight the possibilities of forming momentum-matched type I, II, and III heterostructures, an enticing possibility being atomic heterostructures where the constituent monolayers have band edges at the zone center, i.e., Γ valley. Our study, which includes the group IV and III-V compound monolayer materials, group V elemental monolayer materials, transition-metal dichalcogenides, and transition-metal trichalcogenides, reveals that almost half of these materials have conduction and/or valence band edges residing at the zone center. Using first-principles density functional calculations, we present the type of the heterostructure for 903 different possible combinations of these 2D materials which establishes a periodic table of heterostructures.

  13. Validity of rigid band approximation of PbTe thermoelectric materials

    Directory of Open Access Journals (Sweden)

    Yoshiki Takagiwa

    2013-07-01

    Full Text Available The tuning of carrier concentration through chemical doping is very important for the optimization of thermoelectric materials. Traditionally, a rigid band model is used to understand and guide doping in such semiconductors, but it is not clear whether such an approximation is valid. This letter focuses on the changes in the electronic density of states (DOS near the valence band maximum for different p-type dopants (Na, K, Tl, or vacancy on Pb site maintaining the high symmetry of the NaCl structure. Na- and K-doped, and vacancy-introduced PbTe show a clear rigid-band like change in DOS unlike that concluded from supercell based calculations.

  14. Band structure engineering and vacancy induced metallicity at the GaAs-AlAs interface

    KAUST Repository

    Upadhyay Kahaly, M.

    2011-09-20

    We study the epitaxial GaAs-AlAs interface of wide gap materials by full-potential density functional theory. AlAsthin films on a GaAs substrate and GaAsthin films on an AlAs substrate show different trends for the electronic band gap with increasing film thickness. In both cases, we find an insulating state at the interface and a negligible charge transfer even after relaxation. Differences in the valence and conduction band edges suggest that the energy band discontinuities depend on the growth sequence. Introduction of As vacancies near the interface induces metallicity, which opens great potential for GaAs-AlAs heterostructures in modern electronics.

  15. High Valence, Normal Valence and Unknown Valence

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul

    homoleptic iridium dithiolene complexes. When the complexes [M(mnt)3]3􀀀, M = Rh and Co are chemically oxidized, they decompose to yield dinuclear complexes with the metal still in oxidation state III. This is not the case for the corresponding Ir complex which can be oxidized and the oxidation...... that the coordination of Ag(I) has no perceivable eect on the Ir ligand eld. Chapter 6 details the synthesis of new terminal ruthenium carbide complexes by ligand substitution on the Ru center. This approach to new, rationally tuned carbide complexes is virtually unexplored. The reaction of the known carbide complex...... of for instance incorporating the carbide functionality into other systems. Several chapters and papers include X-ray spectroscopy measurements and a very brief introduction to the techniques is given in Appendix A. Throughout the thesis computational studies of various kinds have been used to help...

  16. Determination of the surface band bending in InxGa1−xN films by hard x-ray photoemission spectroscopy

    Directory of Open Access Journals (Sweden)

    Mickael Lozac'h, Shigenori Ueda, Shitao Liu, Hideki Yoshikawa, Sang Liwen, Xinqiang Wang, Bo Shen, Kazuaki Sakoda, Keisuke Kobayashi and Masatomo Sumiya

    2013-01-01

    Full Text Available Core-level and valence band spectra of InxGa1−xN films were measured using hard x-ray photoemission spectroscopy (HX-PES. Fine structure, caused by the coupling of the localized Ga 3d and In 4d with N 2s states, was experimentally observed in the films. Because of the large detection depth of HX-PES (~20 nm, the spectra contain both surface and bulk information due to the surface band bending. The InxGa1−xN films (x = 0–0.21 exhibited upward surface band bending, and the valence band maximum was shifted to lower binding energy when the mole fraction of InN was increased. On the other hand, downward surface band bending was confirmed for an InN film with low carrier density despite its n-type conduction. Although the Fermi level (EF near the surface of the InN film was detected inside the conduction band as reported previously, it can be concluded that EF in the bulk of the film must be located in the band gap below the conduction band minimum.

  17. Dispersion and current measurements

    International Nuclear Information System (INIS)

    A model for the simulation of particle movements in water should incorporate the mutual distance dependent correlation. As long as reliable data are given accessible a model can be created of the dispersion in a given area from a statistical description of turbulence. Current measurements have been performed in an area north of the Swedish nuclear power plant Barsebaeck, and statistical time series analysis have made it possible to estimate multivariate autoregressive moving-average (ARMA) models for these data using the Box-Jenkins method. The correlation structure for the area has been investigated in detail. Transport and dispersion models for the marine environment are used in estimating doses to the population from the aquatic food chain. Some of these models are described with special emphasis on the time and length scales they cover. Furthermore, to illustrate the background of the simulation model, short introductuions are given to health physics, time series analysis, and turbulence theory. Analysis of the simulation model shows the relative importance of the different parameters. The model can be expanded to conditional simulation, where the current measurements are used directly to simulate the movement of one of the particles. Results from the model are also compared to results from a sampling of bioindicators (Fucus vesiculosus) along the Danish coast. The reliability of bioindicators in this kind of experiment is discussed. (author)

  18. Quantum optical rotatory dispersion

    Science.gov (United States)

    Tischler, Nora; Krenn, Mario; Fickler, Robert; Vidal, Xavier; Zeilinger, Anton; Molina-Terriza, Gabriel

    2016-01-01

    The phenomenon of molecular optical activity manifests itself as the rotation of the plane of linear polarization when light passes through chiral media. Measurements of optical activity and its wavelength dependence, that is, optical rotatory dispersion, can reveal information about intricate properties of molecules, such as the three-dimensional arrangement of atoms comprising a molecule. Given a limited probe power, quantum metrology offers the possibility of outperforming classical measurements. This has particular appeal when samples may be damaged by high power, which is a potential concern for chiroptical studies. We present the first experiment in which multiwavelength polarization-entangled photon pairs are used to measure the optical activity and optical rotatory dispersion exhibited by a solution of chiral molecules. Our work paves the way for quantum-enhanced measurements of chirality, with potential applications in chemistry, biology, materials science, and the pharmaceutical industry. The scheme that we use for probing wavelength dependence not only allows one to surpass the information extracted per photon in a classical measurement but also can be used for more general differential measurements. PMID:27713928

  19. X-ray absorption spectroscopy on La{sub 0.7}Ce{sub 0.3}MnO{sub 3} films: a critical view on valencies

    Energy Technology Data Exchange (ETDEWEB)

    Raisch, Christoph; Nagel, Mathias; Peisert, Heiko; Chasse, Thomas [Universitaet Tuebingen, Institut fuer Physikalische Chemie (Germany); Werner, Robert; Koelle, Dieter; Kleiner, Reinhold [Universitaet Tuebingen, Physikalisches Institut - Experimentalphysik II, Tuebingen (Germany)

    2008-07-01

    Strongly correlated electrons, lattice distortions and ordering phenomena lead to a highly interesting interplay between spin, charge and orbital degrees of freedom in the doped perovskite manganites R{sub 1-x}A{sub x}MnO{sub 3}. Here we report on temperature-dependent XAS and PES measurements on La{sub 0.7}Ce{sub 0.3}MnO{sub 3} films with varying oxygen content grown by PLD on SrTiO{sub 3}. The measurements were in part performed at the soft X-ray beamline WERA at ANKA in surface sensitive total electron yield (TEY) and bulk sensitive fluorescence yield (FY) mode. We studied the O K, the Mn L{sub 2,3} and the Ce M{sub 4,5} edges, both above and below T{sub C}. Significant differences were found between TEY and FY modes even after thorough self-absorption correction. While the surface signal consists solely of tetravalent cerium and a mixture of di- and trivalent manganese, the fluorescence yield measurements show quite some amount of Ce{sup 3+} and only minor amounts of the Mn{sup 2+} species. The valency of manganese is directly related to the kind of doping, electrons or holes, and thus the properties of the sample. The films were further examined with PES of the valence band region and the manganese states. The results are discussed with regard to valency and oxygen content.

  20. Facial and semantic emotional interference: A pilot study on the behavioral and cortical responses to the dual valence association task

    Directory of Open Access Journals (Sweden)

    Petroni Agustín

    2011-04-01

    Full Text Available Abstract Background Integration of compatible or incompatible emotional valence and semantic information is an essential aspect of complex social interactions. A modified version of the Implicit Association Test (IAT called Dual Valence Association Task (DVAT was designed in order to measure conflict resolution processing from compatibility/incompatibly of semantic and facial valence. The DVAT involves two emotional valence evaluative tasks which elicits two forms of emotional compatible/incompatible associations (facial and semantic. Methods Behavioural measures and Event Related Potentials were recorded while participants performed the DVAT. Results Behavioural data showed a robust effect that distinguished compatible/incompatible tasks. The effects of valence and contextual association (between facial and semantic stimuli showed early discrimination in N170 of faces. The LPP component was modulated by the compatibility of the DVAT. Conclusions Results suggest that DVAT is a robust paradigm for studying the emotional interference effect in the processing of simultaneous information from semantic and facial stimuli.