WorldWideScience

Sample records for vagal stimulation maneuvers

  1. Asystole Following Profound Vagal Stimulation During Hepatectomy

    Directory of Open Access Journals (Sweden)

    Preeta John

    2008-01-01

    Full Text Available Asystole in a non laparoscopic upper abdominal surgery following intense vagal stimulation is a rare event. This case report highlights the need for awareness of such a complication when a thoracic epidural anaesthetic has been given in addition to a general anaesthetic for an upper abdominal procedure. A combined thoracic epidural and general anaesthetic was given. The anterior abdominal wall was retracted forty minutes after administration of the epidural bolus. This maneuver resulted in a profound vagal response with bradycardia and asystole. The patient was resuscitated successfully with a cardiac massage, atropine and adrenaline and the surgery was resumed. Surgery lasted eleven hours and was uneventful.

  2. Vagal nerve stimulation therapy: what is being stimulated?

    Science.gov (United States)

    Kember, Guy; Ardell, Jeffrey L; Armour, John A; Zamir, Mair

    2014-01-01

    Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.

  3. Vagal nerve stimulation therapy: what is being stimulated?

    Directory of Open Access Journals (Sweden)

    Guy Kember

    Full Text Available Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.

  4. Vagal stimulation in heart failure.

    Science.gov (United States)

    De Ferrari, Gaetano M

    2014-04-01

    Heart failure (HF) is accompanied by an autonomic imbalance that is almost always characterized by both increased sympathetic activity and withdrawal of vagal activity. Experimentally, vagal stimulation has been shown to exert profound antiarrhythmic activity and to improve cardiac function and survival in HF models. A open-label pilot clinical study in 32 patients with chronic HF has shown safety and tolerability of chronic vagal stimulation associated with subjective (improved quality of life and 6-min walk test) and objective improvements (reduced left ventricular systolic volumes and improved left ventricular ejection fraction). Three larger clinical studies, including a phase III trial are currently ongoing and will evaluate the clinical role of this new approach.

  5. Vagal Nerve Stimulator Malfunction with Change in Neck Position: Case Report and Literature Review.

    Science.gov (United States)

    D'Agostino, Erin; Makler, Vyacheslav; Bauer, David F

    2018-06-01

    Vagal nerve stimulation is a safe and well-tolerated treatment for drug-resistant epilepsy. Complications and failure of the device can result from lead fracture, device malfunction, disconnection, or battery displacement and can result in a variety of symptoms. We present an interesting case of stimulator malfunction with increased impedance change seen only with a change in head position. The patient is a 25-year-old male with a vagal nerve stimulator (VNs) placed for medically refractory epilepsy who presented with neck pain and an electrical pulling sensation in his neck whenever he turned his head to the right. Initial interrogation of the VNs showed normal impedance. Subsequent interrogation with the patient's head turned found increased impedance only when the head was turned to the right. The patient had successful removal and replacement of the device with resolution of his preoperative complaints. Partial lead fracture was seen at explant. VNs malfunction can present in atypical ways. Positional maneuvers may help with its timely diagnosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Modulation of experimental arthritis by vagal sensory and central brain stimulation.

    Science.gov (United States)

    Bassi, Gabriel Shimizu; Dias, Daniel Penteado Martins; Franchin, Marcelo; Talbot, Jhimmy; Reis, Daniel Gustavo; Menezes, Gustavo Batista; Castania, Jaci Airton; Garcia-Cairasco, Norberto; Resstel, Leonardo Barbosa Moraes; Salgado, Helio Cesar; Cunha, Fernando Queiróz; Cunha, Thiago Mattar; Ulloa, Luis; Kanashiro, Alexandre

    2017-08-01

    Articular inflammation is a major clinical burden in multiple inflammatory diseases, especially in rheumatoid arthritis. Biological anti-rheumatic drug therapies are expensive and increase the risk of systemic immunosuppression, infections, and malignancies. Here, we report that vagus nerve stimulation controls arthritic joint inflammation by inducing local regulation of innate immune response. Most of the previous studies of neuromodulation focused on vagal regulation of inflammation via the efferent peripheral pathway toward the viscera. Here, we report that vagal stimulation modulates arthritic joint inflammation through a novel "afferent" pathway mediated by the locus coeruleus (LC) of the central nervous system. Afferent vagal stimulation activates two sympatho-excitatory brain areas: the paraventricular hypothalamic nucleus (PVN) and the LC. The integrity of the LC, but not that of the PVN, is critical for vagal control of arthritic joint inflammation. Afferent vagal stimulation suppresses articular inflammation in the ipsilateral, but not in the contralateral knee to the hemispheric LC lesion. Central stimulation is followed by subsequent activation of joint sympathetic nerve terminals inducing articular norepinephrine release. Selective adrenergic beta-blockers prevent the effects of articular norepinephrine and thereby abrogate vagal control of arthritic joint inflammation. These results reveals a novel neuro-immune brain map with afferent vagal signals controlling side-specific articular inflammation through specific inflammatory-processing brain centers and joint sympathetic innervations. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Exacerbation of electrical storm subsequent to implantation of a right vagal stimulator.

    Science.gov (United States)

    Shalaby, Alaa A; El-Saed, Aiman; Nemec, Jan; Moossy, John J; Balzer, Jeffrey R

    2007-12-01

    A patient with advanced ischemic cardiomyopathy underwent implantation of a vagal stimulator in an attempt to control recurrent drug refractory ventricular arrhythmia. Electrical storm was exacerbated after the implant and continued after neurostimulation was discontinued. The report aims to provide a cautionary note to application of vagal stimulation for control of cardiac arrhythmia.

  8. The antiarrhythmic effect of vagal stimulation after acute coronary occlusion: Role of the heart rate.

    Science.gov (United States)

    Manati, Waheed; Pineau, Julien; Doñate Puertas, Rosa; Morel, Elodie; Quadiri, Timour; Bui-Xuan, Bernard; Chevalier, Philippe

    2018-01-03

    Strong evidence suggests a causal link between autonomic disturbances and ventricular arrhythmias. However, the mechanisms underlying the antiarrhythmic effect of vagal stimulation are poorly understood. The vagal antiarrhythmic effect might be modulated by a decrease in heart rate. the proximal anterior interventricular artery was occluded in 16 pigs by clamping under general anaesthesia. Group 1: heart rates remained spontaneous (n = 6; 12 occlusions); Group 2: heart rates were fixed at 190 beats per minute (bpm) with atrial electrical stimulation (n = 10; 20 occlusions). Each pig received two occlusions, 30 min apart, one without and one with vagal stimulation (10 Hz, 2 ms, 5-20 mA). The antiarrhythmic effect of vagal activation was defined as the time to the appearance of ventricular fibrillation (VF) after occlusion. In Group 1, vagal stimulation triggered a significant decrease in basal heart rate (132 ± 4 vs. 110 ± 17 bpm, p coronary occlusion (1102 ± 85 vs. 925 ± 41 s, p acute coronary occlusion.

  9. Medical Devices; Neurological Devices; Classification of the External Vagal Nerve Stimulator for Headache. Final order.

    Science.gov (United States)

    2017-12-27

    The Food and Drug Administration (FDA or we) is classifying the external vagal nerve stimulator for headache into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the external vagal nerve stimulator for headache's classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  10. Acute Vagal Nerve Stimulation Lowers α2 Adrenoceptor Availability

    DEFF Research Database (Denmark)

    Landau, Anne M.; Dyve, Suzan; Jakobsen, Steen

    2015-01-01

    Background Vagal nerve stimulation (VNS) emerged as an anti-epileptic therapy, and more recently as a potential antidepressant intervention. Objective/hypothesis We hypothesized that salutary effects of VNS are mediated, at least in part, by augmentation of the inhibitory effects of cortical...... monoaminergic neurotransmission at appropriate receptors, specifically adrenoceptors. Our objective was to measure the effect of acute VNS on α2 adrenoceptor binding. Methods Using positron emission tomography (PET), we measured changes in noradrenaline receptor binding associated with acute VNS stimulation...... electrode in minipigs before and within 30 min of the initiation of 1 mA stimulation. Kinetic analysis with the Logan graphical linearization generated tracer volumes of distribution for each condition. We used an averaged value of the distribution volume of non-displaceable ligand (VND), to calculate...

  11. A model-based approach for the evaluation of vagal and sympathetic activities in a newborn lamb.

    Science.gov (United States)

    Le Rolle, Virginie; Ojeda, David; Beuchée, Alain; Praud, Jean-Paul; Pladys, Patrick; Hernández, Alfredo I

    2013-01-01

    This paper proposes a baroreflex model and a recursive identification method to estimate the time-varying vagal and sympathetic contributions to heart rate variability during autonomic maneuvers. The baroreflex model includes baroreceptors, cardiovascular control center, parasympathetic and sympathetic pathways. The gains of the global afferent sympathetic and vagal pathways are identified recursively. The method has been validated on data from newborn lambs, which have been acquired during the application of an autonomic maneuver, without medication and under beta-blockers. Results show a close match between experimental and simulated signals under both conditions. The vagal and sympathetic contributions have been simulated and, as expected, it is possible to observe different baroreflex responses under beta-blockers compared to baseline conditions.

  12. Therapeutic effects of selective atrioventricular node vagal stimulation in atrial fibrillation and heart failure.

    Science.gov (United States)

    Zhang, Youhua; Popović, Zoran B; Kusunose, Kenya; Mazgalev, Todor N

    2013-01-01

    Atrial fibrillation (AF) and heart failure (HF) frequently coexist. We have previously demonstrated that selective atrioventricular node (AVN) vagal stimulation (AVN-VS) can be used to control ventricular rate during AF. Due to withdrawal of vagal activity in HF, the therapeutic effects of AVN-VS may be compromised in the combined condition of AF and HF. Accordingly, this study was designed to evaluate the therapeutic effects of AVN-VS to control ventricular rate in AF and HF. A combined model of AF and HF was created by implanting a dual chamber pacemaker in 24 dogs. A newly designed bipolar electrode was inserted into the ganglionic AVN fat pad and connected to a nerve stimulator for delivering AVN-VS. In all dogs, HF was induced by high rate ventricular pacing at 220 bpm for 4 weeks. AF was then induced and maintained by rapid atrial pacing at 600 bpm after discontinuation of ventricular pacing. These HF + AF dogs were randomized into control (n = 9) and AVN-VS (n = 15) groups. In the latter group, vagal stimulation (310 μs, 20 Hz, 3-7 mA) was delivered continuously for 6 months. Compared with the control, AVN-VS had a consistent effect on ventricular rate slowing (by >50 bpm, all P AVN-VS was well tolerated by the treated animals. AVN-VS achieved consistent rate slowing, which was associated with improved ventricular function in a canine AF and HF model. Thus, AVN-VS may be a novel, effective therapeutic option in the combined condition of AF and HF. © 2012 Wiley Periodicals, Inc.

  13. Differential Activation of Medullary Vagal Nuclei Caused by Stimulation of Different Esophageal Mechanoreceptors

    Science.gov (United States)

    Lang, Ivan M.; Medda, Bidyut K.; Shaker, Reza

    2010-01-01

    Esophageal mechanorecptors, i.e. muscular slowly adapting tension receptors and mucosal rapidly adapting touch receptors, mediate different sets of reflexes. The aim of this study was to determine the medullary vagal nuclei involved in the reflex responses to activation of these receptors. Thirty-three cats were anesthetized with alpha-chloralose and the esophagus was stimulated by slow balloon or rapid air distension. The physiological effects of the stimuli (N=4) were identified by recording responses from the pharyngeal, laryngeal, and hyoid muscles, esophagus, and the lower esophageal sphincter (LES). The effects on the medullary vagal nuclei of the stimuli: slow distension (N=10), rapid distension (N=9), and in control animals (N=10) were identified using the immunohistochemical analysis of c-fos. The experimental groups were stimulated 3 times per minute for 3 hours. After the experiment, the brains were removed and processed for c-fos immunoreactivity or thioinin. We found that slow balloon distension activated the esophago-UES contractile reflex and esophago LES relaxation response, and rapid air injection activated the belch and its component reflexes. Slow balloon distension activated the NTSce, NTSdl, NTSvl, DMNc, DMNr and NAr; and rapid air injection primarily activated AP, NTScd, NTSim, NTSis, NTSdm, NTSvl, NAc and NAr. We concluded that different sets of medullary vagal nuclei mediate different reflexes of the esophagus activated from different sets of mechanoreceptors. The NTScd is the primary NTS subnucleus mediating reflexes from the mucosal rapidly adapting touch receptors, and the NTSce is the primary NTS subnucleus mediating reflexes from the muscular slowly adapting tension receptors. The AP may be involved in mediation of belching. PMID:20971087

  14. Ventricular tachyarrhythmia-related basal cardiomyopathy in rabbits with vagal stimulation--a novel experimental model for inverted Takotsubo-like cardiomyopathy.

    Science.gov (United States)

    Takato, Tetsuya; Ashida, Terunao; Seko, Yoshinori; Fujii, Jun; Kawai, Sachio

    2010-07-01

    Electrical stimulation of the intact (unsectioned) cervical vagus in rabbits frequently provokes ventricular tachyarrhythmias that are often accompanied by mitral regurgitation. Unique pathological lesions often arise on the mitral valve, papillary muscles, and mitral annulus (mitral complex), the latter two of which become swollen and stiffened. These lesions are reversible in nature. Previous studies have essentially ignored the basal portion except for the mitral annulus. Therefore, the present study examined pathological lesions on the left ventricular basal portion in rabbits. The intact right vagal nerves of 20 anesthetized rabbits were repeatedly electrically stimulated under electrocardiographic monitoring. Colloidal carbon (lml) was injected intravenously immediately after the end of the stimulation and all animals were killed 1 week later. Pathological lesions were identified as carbon deposits visible at gross examination. Ventricular bigeminy was induced after vagal stimulation in 15 (75%) of the 20 rabbits. Pathological lesions were evident on the basal portion in 16 (80%) and on the mitral valve and papillary muscles of 15 (75%) of the 20 rabbits. Ventricular bigeminy was closely associated with the development of the pathological lesions, which were rarely observed on the ventricular apex. Cardiomyopathic lesions involving the basal portion and mitral complex were frequently induced in rabbits by vagal stimulation. These lesions bear a close similarity in distribution and reversibility to inverted Takotsubo cardiomyopathy. Copyright 2010 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  15. Differential Activation of Medullary Vagal Nuclei Caused by Stimulation of Different Esophageal Mechanoreceptors

    OpenAIRE

    Lang, Ivan M.; Medda, Bidyut K.; Shaker, Reza

    2010-01-01

    Esophageal mechanorecptors, i.e. muscular slowly adapting tension receptors and mucosal rapidly adapting touch receptors, mediate different sets of reflexes. The aim of this study was to determine the medullary vagal nuclei involved in the reflex responses to activation of these receptors. Thirty-three cats were anesthetized with alpha-chloralose and the esophagus was stimulated by slow balloon or rapid air distension. The physiological effects of the stimuli (N=4) were identified by recordin...

  16. The effects of chronic consumption of heroin on basal and vagal electrical-stimulated gastric acid and pepsin secretion in rat.

    Science.gov (United States)

    Rafsanjani, Fatemeh N; Maghouli, Fatemeh; Vahedian, Jalal; Esmaeili, Farzaneh

    2004-10-01

    Addiction to opium and heroin is not only an important social and individual problem in the world but it also affects the human physiology and multiple systems. The aim of this study is to determine the effects of chronic heroin consumption on basal and vagus electrical-stimulated total gastric acid and pepsin secretion in rats. The study was carried out in the Department of Physiology, Kerman University of Medical Sciences, Iran from August 2002 to June 2003. Both male and female rats weighing 200-250 g were used. Rats received daily doses of heroin intraperitoneally starting from 0.2 mg/kg to 0.1 mg/kg/day up to the maintenance level of 0.7 mg/kg and continued until day 12. After anesthesia, tracheotomy and laparotomy, gastric effluents were collected by washout technique with a 15 minutes interval. The total titrable acid was measured by manual titrator, and the total pepsin content was measured by Anson's method. Vagal electrical stimulation was used to stimulate the secretion of acid and pepsin. Heroin results in a significant decrease in total basal acid and pepsin secretions (4.10 +/- 0.18 mmol/15 minutes versus 2.40 +/- 0.16 mmol/15 minutes for acid, pacid and pepsin secretions in vagotomized condition. Heroin also causes a significant decrease in vagal-electrically stimulated acid and pepsin secretions (14.70 +/- 0.54 mmol/15 minutes versus 4.30 +/- 0.21 mmol/15 minutes for acid, pacid and pepsin secretion, but not in vagotomized condition. Heroin may decrease acid secretion by inhibiting vagal release of acetylcholine within the gastric wall. Other probable mechanisms include: presynaptic inhibition of acetylcholine release or depressing the vagal center, inhibition of pentagastrin induced acid secretion, inhibitory effects via central mechanisms, probably mediated by the opiate receptors. Further studies are needed to recognize the actual mechanism.

  17. Modulation of the masseteric reflex by gastric vagal afferents.

    Science.gov (United States)

    Pettorossi, V E

    1983-04-01

    Several investigations have shown that the vagal nerve can affect the reflex responses of the masticatory muscles acting at level either of trigeminal motoneurons or of the mesencephalic trigeminal nucleus (MTN). The present experiments have been devoted to establish the origin of the vagal afferent fibres involved in modulating the masseteric reflex. In particular, the gastric vagal afferents were taken into consideration and selective stimulations of such fibres were performed in rabbit. Conditioning electrical stimulation of truncus vagalis ventralis (TVV) reduced the excitability of the MTN cells as shown by a decrease of the antidromic response recorded from the semilunar ganglion and elicited by MTN single-shock electrical stimulation. Sympathetic and cardiovascular influences were not involved in these responses. Mechanical stimulation of gastric receptors, by means of gastric distension, clearly diminished the amplitude of twitch tension of masseteric reflex and inhibited the discharge frequency of proprioceptive MTN units. The effect was phasic and depended upon the velocity of distension. Thus the sensory volleys originating from rapid adapting receptors reach the brain stem through vagal afferents and by means of a polysynaptic connection inhibits the masseteric reflex at level of MTN cells.

  18. EFFECTS OF VAGAL SENSORY INPUT ON THE BREATHING RHYTHM OF THE CARP

    NARCIS (Netherlands)

    DEGRAAF, PJF; ROBERTS, BL

    Electrical stimulation of an epibranchial vagal ganglion, which innervates the gill region, had a marked influence on the respiratory rhythm of the carp Cyprinus carpio. Vagal input could initiate ventilation in fish displaying intermittent respiration. In fish breathing steadily, vagal stimuli

  19. Blood pressure control with selective vagal nerve stimulation and minimal side effects

    Science.gov (United States)

    Plachta, Dennis T. T.; Gierthmuehlen, Mortimer; Cota, Oscar; Espinosa, Nayeli; Boeser, Fabian; Herrera, Taliana C.; Stieglitz, Thomas; Zentner, Joseph

    2014-06-01

    Objective. Hypertension is the largest threat to patient health and a burden to health care systems. Despite various options, 30% of patients do not respond sufficiently to medical treatment. Mechanoreceptors in the aortic arch relay blood pressure (BP) levels through vagal nerve (VN) fibers to the brainstem and trigger the baroreflex, lowering the BP. Selective electrical stimulation of these nerve fibers reduced BP in rats. However, there is no technique described to localize and stimulate these fibers inside the VN without inadvertent stimulation of non-baroreceptive fibers causing side effects like bradycardia and bradypnea. Approach. We present a novel method for selective VN stimulation to reduce BP without the aforementioned side effects. Baroreceptor compound activity of rat VN (n = 5) was localized using a multichannel cuff electrode, true tripolar recording and a coherent averaging algorithm triggered by BP or electrocardiogram. Main results. Tripolar stimulation over electrodes near the barofibers reduced the BP without triggering significant bradycardia and bradypnea. The BP drop was adjusted to 60% of the initial value by varying the stimulation pulse width and duration, and lasted up to five times longer than the stimulation. Significance. The presented method is robust to impedance changes, independent of the electrode's relative position, does not compromise the nerve and can run on implantable, ultra-low power signal processors.

  20. Pulmonary vein region ablation in experimental vagal atrial fibrillation: role of pulmonary veins versus autonomic ganglia.

    Science.gov (United States)

    Lemola, Kristina; Chartier, Denis; Yeh, Yung-Hsin; Dubuc, Marc; Cartier, Raymond; Armour, Andrew; Ting, Michael; Sakabe, Masao; Shiroshita-Takeshita, Akiko; Comtois, Philippe; Nattel, Stanley

    2008-01-29

    Pulmonary vein (PV) -encircling radiofrequency ablation frequently is effective in vagal atrial fibrillation (AF), and there is evidence that PVs may be particularly prone to cholinergically induced arrhythmia mechanisms. However, PV ablation procedures also can affect intracardiac autonomic ganglia. The present study examined the relative role of PVs versus peri-PV autonomic ganglia in an experimental vagal AF model. Cholinergic AF was studied under carbachol infusion in coronary perfused canine left atrial PV preparations in vitro and with cervical vagal stimulation in vivo. Carbachol caused dose-dependent AF promotion in vitro, which was not affected by excision of all PVs. Sustained AF could be induced easily in all dogs during vagal nerve stimulation in vivo both before and after isolation of all PVs with encircling lesions created by a bipolar radiofrequency ablation clamp device. PV elimination had no effect on atrial effective refractory period or its responses to cholinergic stimulation. Autonomic ganglia were identified by bradycardic and/or tachycardic responses to high-frequency subthreshold local stimulation. Ablation of the autonomic ganglia overlying all PV ostia suppressed the effective refractory period-abbreviating and AF-promoting effects of cervical vagal stimulation, whereas ablation of only left- or right-sided PV ostial ganglia failed to suppress AF. Dominant-frequency analysis suggested that the success of ablation in suppressing vagal AF depended on the elimination of high-frequency driver regions. Intact PVs are not needed for maintenance of experimental cholinergic AF. Ablation of the autonomic ganglia at the base of the PVs suppresses vagal responses and may contribute to the effectiveness of PV-directed ablation procedures in vagal AF.

  1. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha

    DEFF Research Database (Denmark)

    Brock, C; Brock, B; Aziz, Q

    2017-01-01

    -VNS, there was an increase in cardiac vagal tone and a reduction in tumor necrosis factor-α in comparison to baseline. No change was seen in blood pressure, cardiac sympathetic index or other cytokines. These preliminary data suggest that t-VNS exerts an autonomic and a subtle antitumor necrosis factor-α effect, which...

  2. Preliminary findings of cerebral responses on transcutaneous vagal nerve stimulation on experimental heat pain.

    Science.gov (United States)

    Usichenko, Taras; Laqua, René; Leutzow, Bianca; Lotze, Martin

    2017-02-01

    Transcutaneous vagal nerve stimulation (TVNS) is a promising complementary method of pain relief. However, the neural networks associated with its analgesic effects are still to be elucidated. Therefore, we conducted two functional magnetic resonance imaging (fMRI) sessions, in a randomized order, with twenty healthy subjects who were exposed to experimental heat pain stimulation applied to the right forearm using a Contact Heat-Evoked Potential Stimulator. While in one session TVNS was administered bilaterally to the concha auriculae with maximal, non-painful intensity, the stimulation device was switched off in the other session (placebo condition). Pain thresholds were measured before and after each session. Heat stimulation elicited fMRI activation in cerebral pain processing regions. Activation magnitude in the secondary somatosensory cortex, posterior insula, anterior cingulate and caudate nucleus was associated with heat stimulation without TVNS. During TVNS, this association was only seen for the right anterior insula. TVNS decreased fMRI signals in the anterior cingulate cortex in comparison with the placebo condition; however, there was no relevant pain reducing effect over the group as a whole. In contrast, TVNS compared to the placebo condition showed an increased activation in the primary motor cortex, contralateral to the site of heat stimulation, and in the right amygdala. In conclusion, in the protocol used here, TVNS specifically modulated the cerebral response to heat pain, without having a direct effect on pain thresholds.

  3. The modulatory effects of noradrenaline on vagal control of heart rate in the dogfish, Squalus acanthias.

    Science.gov (United States)

    Agnisola, Claudio; Randall, David J; Taylor, Edwin W

    2003-01-01

    The possible interactions between inhibitory vagal control of the heart and circulating levels of catecholamines in dogfish (Squalus acanthias) were studied using an in situ preparation of the heart, which retained intact its innervation from centrally cut vagus nerves. The response to peripheral vagal stimulation typically consisted of an initial cardiac arrest, followed by an escape beat, leading to renewed beating at a mean heart rate lower than the prestimulation rate (partial recovery). Cessation of vagal stimulation led to a transient increase in heart rate, above the prestimulation rate. This whole response was completely abolished by 10(-4) M atropine (a muscarinic cholinergic antagonist). The degree of vagal inhibition was evaluated in terms of both the initial, maximal cardiac interval and the mean heart rate during partial recovery, both expressed as a percentage of the prestimulation heart rate. The mean prestimulation heart rate of this preparation (36+/-4 beats min(-1)) was not affected by noradrenaline but was significantly reduced by 10(-4) M nadolol (a beta-adrenergic receptor antagonist), suggesting the existence of a resting adrenergic tone arising from endogenous catecholamines. The degree of vagal inhibition of heart rate varied with the rate of stimulation and was increased by the presence of 10(-8) M noradrenaline (the normal in vivo level in routinely active fish), while 10(-7) M noradrenaline (the in vivo level measured in disturbed or deeply hypoxic fish) reduced the cardiac response to vagal stimulation. In the presence of 10(-7) M noradrenaline, 10(-4) M nadolol further reduced the vagal response, while 10(-4) M nadolol + 10(-4) M phentolamine had no effect, indicating a complex interaction between adrenoreceptors, possibly involving presynaptic modulation of vagal inhibition.

  4. Vagal activation by sham feeding improves gastric motility in functional dyspepsia.

    Science.gov (United States)

    Lunding, J A; Nordström, L M; Haukelid, A-O; Gilja, O H; Berstad, A; Hausken, T

    2008-06-01

    Antral hypomotility and impaired gastric accommodation in patients with functional dyspepsia have been ascribed to vagal dysfunction. We investigated whether vagal stimulation by sham feeding would improve meal-induced gastric motor function in these patients. Fourteen healthy volunteers and 14 functional dyspepsia patients underwent a drink test twice, once with and once without simultaneous sham feeding. After ingesting 500 mL clear meat soup (20 kcal, 37 degrees C) in 4 min, sham feeding was performed for 10 min by chewing a sugar-containing chewing gum while spitting out saliva. Using two- and three-dimensional ultrasound, antral motility index (contraction amplitude x frequency) and intragastric volumes were estimated. Without sham feeding, functional dyspepsia patients had lower motility index than healthy volunteers (area under curve 8.0 +/- 1.2 vs 4.4 +/- 1.0 min(-1), P = 0.04). In functional dyspepsia patients, but not in healthy volunteers, motility index increased and intragastric volume tended to increase by sham feeding (P = 0.04 and P = 0.06 respectively). The change in motility index was negatively correlated to the change in pain score (r = -0.59, P = 0.007). In functional dyspepsia patients, vagal stimulation by sham feeding improves antral motility in response to a soup meal. The result supports the view that impaired vagal stimulation is implicated in the pathogenesis of gastric motility disturbances in functional dyspepsia.

  5. Does vagal nerve stimulation affect body composition and metabolism? Experimental study of a new potential technique in bariatric surgery.

    Science.gov (United States)

    Sobocki, Jacek; Fourtanier, Gilles; Estany, Joan; Otal, Phillipe

    2006-02-01

    It has been shown that vagal nerve stimulation (VNS) can affect body mass. The aim of this study was to evaluate effect of VNS on body mass, body composition, metabolic rate, and plasma leptin and IGF-I levels. Eight female pigs were included in the study. Under general anesthesia, a bipolar electrode was implanted on the anterior vagal nerve by laparoscopy. Group A was treated by VNS, and group B was the control. After 4 weeks, stimulation was discontinued in group A and started in group B. The following parameters were evaluated: body mass, body composition, metabolic rate, plasma leptin and IGF-1 levels and intramuscular fat content (IMF). VNS attenuated body weight gain (2.28 +/- 3.47 kg vs 14.04 +/- 6.75 kg; P = .0112, for stimulation and nonstimulation periods, respectively), backfat gain (0.04 +/- 0.26 mm vs 2.31 +/- 1.12 mm) and IMF gain (-3.76 +/- 6.06 mg/g MS vs 7.24 +/- 12.90 mg/g MS; P = .0281). VNS resulted in lower backfat depth/loin muscle area ratio (0.33 +/- 0.017 vs 0.38 +/- 0.35; P = .0476). Lower plasma IGF-I concentration was found after VNS (-3.67 +/- -11.55 ng/mL vs 9.86 +/- 10.74 ng/mL; P = .0312). No significant changes in other parameters were observed. VNS affects body weight mainly at the expense of body fat resources; however, metabolic rate is not affected.

  6. Evidence for a vagal pathophysiology for bulimia nervosa and the accompanying depressive symptoms.

    Science.gov (United States)

    Faris, Patricia L; Eckert, Elke D; Kim, Suck-Won; Meller, William H; Pardo, Jose V; Goodale, Robert L; Hartman, Boyd K

    2006-05-01

    The bilateral vagus nerves (Cranial X) provide both afferent and efferent connections between the viscera and the caudal medulla. The afferent branches increasingly are being recognized as providing significant input to the central nervous system for modulation of complex behaviors. In this paper, we review evidence from our laboratory that increases in vagal afferent activity are involved in perpetuating binge-eating and vomiting in bulimia nervosa. Preliminary findings are also presented which suggest that a subgroup of depressions may have a similar pathophysiology. Two main approaches were used to study the role of vagal afferents. Ondansetron (ONDAN), a 5-HT3 antagonist, was used as a pharmacological tool for inhibiting or reducing vagal afferent neurotransmission. Second, somatic pain detection thresholds were assessed for monitoring a physiological process known to be modulated by vagal afferents, including the gastric branches involved in meal termination and satiety. High levels of vagal activity result in an increase in pain detection thresholds. Depressive symptoms were assessed using the Beck Depression Inventory (BDI). Positron Emission Tomography (PET) was used to identify higher cortical brain areas activated by vagal stimulation produced by proximal gastric distention in normal eating subjects. Double-blind treatment of severe bulimia nervosa subjects with ONDAN resulted in a rapid and significant decrease in binge-eating and vomiting compared to placebo controls. The decrease in abnormal eating episodes was accompanied by a return of normal satiety. Pain detection thresholds measured weekly over the course of the treatment protocol were found to dynamically fluctuate in association with bulimic episodes. Thresholds were the most elevated during periods of short-term abstinence from the behaviors, suggesting that not engaging in a binge/vomit episode is accompanied by an increase in vagal activity. ONDAN also resulted in abolition of the

  7. The role of voice therapy in the treatment of dyspnea and dysphonia in a patient with a vagal nerve stimulation device.

    Science.gov (United States)

    Gillespie, Amanda I; Helou, Leah B; Ingle, John W; Baldwin, Maria; Rosen, Clark A

    2014-01-01

    Vagal nerve stimulators (VNS) are implanted to treat medically refractory epilepsy and depression. The VNS stimulates the vagus nerve in the left neck. Laryngeal side effects are common and include dysphagia, dysphonia, and dyspnea. The current case study represents a patient with severe dyspnea and dysphonia, persisting even with VNS deactivation. The case demonstrates the use of voice and respiratory retraining therapy for the treatment of VNS-induced dysphonia and dyspnea. It also highlights the importance of a multidisciplinary approach, including laryngology, neurology, and speech-language pathology, in the treatment of these challenging patients. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  8. Cholecystokinin regulates satiation idependently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy

    NARCIS (Netherlands)

    Ripken, D.; Wielen, van der N.; Meulen, van der J.; Schuurman, T.; Witkamp, R.F.; Hendriks, H.F.J.; Koopmans, S.J.

    2015-01-01

    The vagal nerve and gut hormones CCK and GLP-1 play important roles in the control of food intake. However, it is not clear to what extent CCK and GLP-1 increase satiation by stimulating receptors located on abdominal vagal nerve endings or via receptors located elsewhere. This study aimed to

  9. Cholecystokinin regulates satiation independently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy

    NARCIS (Netherlands)

    Ripken, D.; Wielen, N. van der; Meulen, J. van der; Schuurman, T.; Witkamp, R.F.; Hendriks, H.F.J.; Koopmans, S.J.

    2015-01-01

    The vagal nerve and gut hormones CCK and GLP-1 play important roles in the control of food intake. However, it is not clear to what extent CCK and GLP-1 increase satiation by stimulating receptors located on abdominal vagal nerve endings or via receptors located elsewhere. This study aimed to

  10. GLP-1 receptor stimulation depresses heart rate variability and inhibits neurotransmission to cardiac vagal neurons.

    Science.gov (United States)

    Griffioen, Kathleen J; Wan, Ruiqian; Okun, Eitan; Wang, Xin; Lovett-Barr, Mary Rachael; Li, Yazhou; Mughal, Mohamed R; Mendelowitz, David; Mattson, Mark P

    2011-01-01

    glucagon-like peptide 1 (GLP-1) is an incretin hormone released from the gut in response to food intake. Whereas GLP-1 acts in the periphery to inhibit glucagon secretion and stimulate insulin release, it also acts in the central nervous system to mediate autonomic control of feeding, body temperature, and cardiovascular function. Because of its role as an incretin hormone, GLP-1 receptor analogs are used as a treatment for type 2 diabetes. Central or peripheral administration of GLP-1 increases blood pressure and heart rate, possibly by activating brainstem autonomic nuclei and increasing vagus nerve activity. However, the mechanism(s) by which GLP-1 receptor stimulation affects cardiovascular function are unknown. We used the long-lasting GLP-1 receptor agonist Exendin-4 (Ex-4) to test the hypothesis that GLP-1 signalling modulates central parasympathetic control of heart rate. using a telemetry system, we assessed heart rate in mice during central Ex-4 administration. Heart rate was increased by both acute and chronic central Ex-4 administration. Spectral analysis indicated that the high frequency and low frequency powers of heart rate variability were diminished by Ex-4 treatment. Finally, Ex-4 decreased both excitatory glutamatergic and inhibitory glycinergic neurotransmission to preganglionic parasympathetic cardiac vagal neurons. these data suggest that central GLP-1 receptor stimulation diminishes parasympathetic modulation of the heart thereby increasing heart rate.

  11. Valsalva's maneuver revisited: a quantitative method yielding insights into human autonomic control

    Science.gov (United States)

    Smith, M. L.; Beightol, L. A.; Fritsch-Yelle, J. M.; Ellenbogen, K. A.; Porter, T. R.; Eckberg, D. L.

    1996-01-01

    Seventeen healthy supine subjects performed graded Valsalva maneuvers. In four subjects, transesophageal echographic aortic cross-sectional areas decreased during and increased after straining. During the first seconds of straining, when aortic cross-sectional area was declining and peripheral arterial pressure was rising, peroneal sympathetic muscle neurons were nearly silent. Then, as aortic cross-sectional area and peripheral pressure both declined, sympathetic muscle nerve activity increased, in proportion to the intensity of straining. Poststraining arterial pressure elevations were proportional to preceding increases of sympathetic activity. Sympathetic inhibition after straining persisted much longer than arterial and right atrial pressure elevations. Similarly, R-R intervals changed in parallel with peripheral arterial pressure, until approximately 45 s after the onset of straining, when R-R intervals were greater and arterial pressures were smaller than prestraining levels. Our conclusions are as follows: opposing changes of carotid and aortic baroreceptor inputs reduce sympathetic muscle and increase vagal cardiac motor neuronal firing; parallel changes of barorsensory inputs provoke reciprocal changes of sympathetic and direct changes of vagal firing; and pressure transients lasting only seconds reset arterial pressure-sympathetic and -vagal response relations.

  12. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation.

    Science.gov (United States)

    Salavatian, Siamak; Beaumont, Eric; Longpré, Jean-Philippe; Armour, J Andrew; Vinet, Alain; Jacquemet, Vincent; Shivkumar, Kalyanam; Ardell, Jeffrey L

    2016-11-01

    Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation (AF) by excessive and heterogeneous activation of intrinsic cardiac (IC) neurons. This study evaluated whether preemptive vagus nerve stimulation (VNS) impacts MNS-induced evoked changes in IC neural network activity to thereby alter susceptibility to AF. IC neuronal activity in the right atrial ganglionated plexus was directly recorded in anesthetized canines (n = 8) using a linear microelectrode array concomitant with right atrial electrical activity in response to: 1) epicardial touch or great vessel occlusion vs. 2) stellate or vagal stimulation. From these stressors, post hoc analysis (based on the Skellam distribution) defined IC neurons so recorded as afferent, efferent, or convergent (afferent and efferent inputs) local circuit neurons (LCN). The capacity of right-sided MNS to modify IC activity in the induction of AF was determined before and after preemptive right (RCV)- vs. left (LCV)-sided VNS (15 Hz, 500 μs; 1.2× bradycardia threshold). Neuronal (n = 89) activity at baseline (0.11 ± 0.29 Hz) increased during MNS-induced AF (0.51 ± 1.30 Hz; P neuronal synchrony increased during neurally induced AF, a local neural network response mitigated by preemptive VNS. These antiarrhythmic effects persisted post-VNS for, on average, 26 min. In conclusion, VNS preferentially targets convergent LCNs and their interactive coherence to mitigate the potential for neurally induced AF. The antiarrhythmic properties imposed by VNS exhibit memory. Copyright © 2016 the American Physiological Society.

  13. Adrenergic receptors and gastric secretion in dogs. Is a "tonic balance" relationship between vagal and beta 2-adrenergic activity a possibility?

    DEFF Research Database (Denmark)

    Gottrup, F; Hovendal, C; Bech, K

    1984-01-01

    The relative influence of adrenergic receptors on gastric acid secretion in the dog stomach with different vagal activity or "tone" is almost unknown. beta-adrenoceptors seem to be most important for the direct effect of adrenergic stimulation on acid secretion. In this study the effects...... acid secretion was not influenced significantly by beta-blockade. Similar dose-response curves were found for non-vagotomized dogs with high beta 2-adrenergic tone and dogs with low vagal tone (vagotomy) after pentagastrin and histamine stimulated acid secretion. This study indicates...... that a counterbalance between beta 2-adrenergic and cholinergic vagal tone exists. A "tonic balance theory" is suggested and is probably involved in the resulting acid secretion after vagotomy....

  14. Anti-inflammatory effects and mechanisms of vagal nerve stimulation combined with electroacupuncture in a rodent model of TNBS-induced colitis.

    Science.gov (United States)

    Jin, Haifeng; Guo, Jie; Liu, Jiemin; Lyu, Bin; Foreman, Robert D; Yin, Jieyun; Shi, Zhaohong; Chen, Jiande D Z

    2017-09-01

    The purpose of this study was to determine the effects and mechanisms of vagal nerve stimulation (VNS) and additive effects of electroacupuncture (EA) on colonic inflammation in a rodent model of IBD. Chronic inflammation in rats was induced by intrarectal TNBS (2,4,6-trinitrobenzenesulfonic acid). The rats were then treated with sham ES (electrical stimulation), VNS, or VNS + EA for 3 wk. Inflammatory responses were assessed by disease activity index (DAI), macroscopic scores and histological scores of colonic tissues, plasma levels of TNFα, IL-1β, and IL-6, and myeloperoxidase (MPO) activity of colonic tissues. The autonomic function was assessed by the spectral analysis of heart rate variability (HRV) derived from the electrocardiogram. It was found that 1 ) the area under curve (AUC) of DAI was substantially decreased with VNS + EA and VNS, with VNS + EA being more effective than VNS ( P < 0.001); 2 ) the macroscopic score was 6.43 ± 0.61 in the sham ES group and reduced to 1.86 ± 0.26 with VNS ( P < 0.001) and 1.29 ± 0.18 with VNS + EA ( P < 0.001); 3 ) the histological score was 4.05 ± 0.58 in the sham ES group and reduced to 1.93 ± 0.37 with VNS ( P < 0.001) and 1.36 ± 0.20 with VNS + EA ( P < 0.001); 4 ) the plasma levels of TNFα, IL-1β, IL-6, and MPO were all significantly decreased with VNS and VNS + EA compared with the sham ES group; and 5 ) autonomically, both VNS + EA and VNS substantially increased vagal activity and decreased sympathetic activity compared with sham EA ( P < 0.001, P < 0.001, respectively). In conclusion, chronic VNS improves inflammation in TNBS-treated rats by inhibiting proinflammatory cytokines via the autonomic mechanism. Addition of noninvasive EA to VNS may enhance the anti-inflammatory effect of VNS. NEW & NOTEWORTHY This is the first study to address and compare the effects of vagal nerve stimulation (VNS), electrical acupuncture (EA) and VNS + EA on TNBS (2,4,6-trinitrobenzenesulfonic acid

  15. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy.

    Science.gov (United States)

    Peters, James H; Gallaher, Zachary R; Ryu, Vitaly; Czaja, Krzysztof

    2013-10-15

    Vagotomy, a severing of the peripheral axons of the vagus nerve, has been extensively utilized to determine the role of vagal afferents in viscerosensory signaling. Vagotomy is also an unavoidable component of some bariatric surgeries. Although it is known that peripheral axons of the vagus nerve degenerate and then regenerate to a limited extent following vagotomy, very little is known about the response of central vagal afferents in the dorsal vagal complex to this type of damage. We tested the hypothesis that vagotomy results in the transient withdrawal of central vagal afferent terminals from their primary central target, the nucleus of the solitary tract (NTS). Sprague-Dawley rats underwent bilateral subdiaphragmatic vagotomy and were sacrificed 10, 30, or 60 days later. Plastic changes in vagal afferent fibers and synapses were investigated at the morphological and functional levels by using a combination of an anterograde tracer, synapse-specific markers, and patch-clamp electrophysiology in horizontal brain sections. Morphological data revealed that numbers of vagal afferent fibers and synapses in the NTS were significantly reduced 10 days following vagotomy and were restored to control levels by 30 days and 60 days, respectively. Electrophysiology revealed transient decreases in spontaneous glutamate release, glutamate release probability, and the number of primary afferent inputs. Our results demonstrate that subdiaphragmatic vagotomy triggers transient withdrawal and remodeling of central vagal afferent terminals in the NTS. The observed vagotomy-induced plasticity within this key feeding center of the brain may be partially responsible for the response of bariatric patients following gastric bypass surgery. Copyright © 2013 Wiley Periodicals, Inc.

  16. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation

    Science.gov (United States)

    Salavatian, Siamak; Beaumont, Eric; Longpré, Jean-Philippe; Armour, J. Andrew; Vinet, Alain; Jacquemet, Vincent; Shivkumar, Kalyanam

    2016-01-01

    Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation (AF) by excessive and heterogeneous activation of intrinsic cardiac (IC) neurons. This study evaluated whether preemptive vagus nerve stimulation (VNS) impacts MNS-induced evoked changes in IC neural network activity to thereby alter susceptibility to AF. IC neuronal activity in the right atrial ganglionated plexus was directly recorded in anesthetized canines (n = 8) using a linear microelectrode array concomitant with right atrial electrical activity in response to: 1) epicardial touch or great vessel occlusion vs. 2) stellate or vagal stimulation. From these stressors, post hoc analysis (based on the Skellam distribution) defined IC neurons so recorded as afferent, efferent, or convergent (afferent and efferent inputs) local circuit neurons (LCN). The capacity of right-sided MNS to modify IC activity in the induction of AF was determined before and after preemptive right (RCV)- vs. left (LCV)-sided VNS (15 Hz, 500 μs; 1.2× bradycardia threshold). Neuronal (n = 89) activity at baseline (0.11 ± 0.29 Hz) increased during MNS-induced AF (0.51 ± 1.30 Hz; P < 0.001). Convergent LCNs were preferentially activated by MNS. Preemptive RCV reduced MNS-induced changes in LCN activity (by 70%) while mitigating MNS-induced AF (by 75%). Preemptive LCV reduced LCN activity by 60% while mitigating AF potential by 40%. IC neuronal synchrony increased during neurally induced AF, a local neural network response mitigated by preemptive VNS. These antiarrhythmic effects persisted post-VNS for, on average, 26 min. In conclusion, VNS preferentially targets convergent LCNs and their interactive coherence to mitigate the potential for neurally induced AF. The antiarrhythmic properties imposed by VNS exhibit memory. PMID:27591222

  17. Vagal gustatory reflex circuits for intraoral food sorting behavior in the goldfish: cellular organization and neurotransmitters.

    Science.gov (United States)

    Ikenaga, Takanori; Ogura, Tatsuya; Finger, Thomas E

    2009-09-20

    The sense of taste is crucial in an animal's determination as to what is edible and what is not. This gustatory function is especially important in goldfish, who utilize a sophisticated oropharyngeal sorting mechanism to separate food from substrate material. The computational aspects of this detection are carried out by the medullary vagal lobe, which is a large, laminated structure combining elements of both the gustatory nucleus of the solitary tract and the nucleus ambiguus. The sensory layers of the vagal lobe are coupled to the motor layers via a simple reflex arc. Details of this reflex circuit were investigated with histology and calcium imaging. Biocytin injections into the motor layer labeled vagal reflex interneurons that have radially directed dendrites ramifying within the layers of primary afferent terminals. Axons of reflex interneurons extend radially inward to terminate onto both vagal motoneurons and small, GABAergic interneurons in the motor layer. Functional imaging shows increases in intracellular Ca++ of vagal motoneurons following electrical stimulation in the sensory layer. These responses were suppressed under Ca(++)-free conditions and by interruption of the axons bridging between the sensory and motor layers. Pharmacological experiments showed that glutamate acting via (+/-)-alpha-amino-3-hydroxy- 5-ethylisoxazole-4-propioinc acid (AMPA)/kainate and N-methyl-D-aspartic acid (NMDA) receptors mediate neurotransmission between reflex interneurons and vagal motoneurons. Thus, the vagal gustatory portion of the viscerosensory complex is linked to branchiomotor neurons of the pharynx via a glutamatergic interneuronal system.

  18. Vagal gustatory reflex circuits for intraoral food sorting behavior in the goldfish Cellular organization and neurotransmitters

    Science.gov (United States)

    Ikenaga, Takanori; Ogura, Tatsuya; Finger, Thomas E.

    2009-01-01

    The sense of taste is crucial in an animal’s determination as to what is edible and what is not. This gustatory function is especially important in goldfish who utilize a sophisticated oropharyngeal sorting mechanism to separate food from substrate material. The computational aspects of this detection are carried out by the medullary vagal lobe which is a large, laminated structure combining elements of both the gustatory nucleus of the solitary tract and the nucleus ambiguus. The sensory layers of the vagal lobe are coupled to the motor layers via a simple reflex arc. Details of this reflex circuit were investigated with histology and calcium imaging. Biocytin injections into the motor layer labeled vagal reflex interneurons which have radially-directed dendrites ramifying within the layers of primary afferent terminals. Axons of reflex interneurons extend radially inward to terminate onto both vagal motoneurons and small, GABAergic interneurons in the motor layer. Functional imaging shows increases in intracellular Ca++ of vagal motoneurons following electrical stimulation in the sensory layer. These responses were suppressed under Ca++-free conditions and by interruption of the axons bridging between the sensory and motor layers. Pharmacological experiments showed that glutamate acting via (±)-α-amino-3-hydroxy-5-ethylisoxazole-4-propioinc acid (AMPA)/kainate and N-methyl-D-aspartic acid (NMDA) receptors mediates neurotransmission between reflex interneurons and vagal motoneurons. Thus the vagal gustatory portion of the viscerosensory complex is linked to branchiomotor neurons of the pharynx via a glutamatergic interneuronal system. PMID:19598285

  19. Vagal tone during infant contingency learning and its disruption.

    Science.gov (United States)

    Sullivan, Margaret Wolan

    2016-04-01

    This study used contingency learning to examine changes in infants' vagal tone during learning and its disruption. The heart rate of 160 five-month-old infants was recorded continuously during the first of two training sessions as they experienced an audiovisual event contingent on their pulling. Maternal reports of infant temperament were also collected. Baseline vagal tone, a measure of parasympathetic regulation of the heart, was related to vagal levels during the infants' contingency learning session, but not to their learner status. Vagal tone levels did not vary significantly over session minutes. Instead, vagal tone levels were a function of both individual differences in learner status and infant soothability. Vagal levels of infants who learned in the initial session were similar regardless of their soothability; however, vagal levels of infants who learned in a subsequent session differed as a function of soothability. Additionally, vagal levels during contingency disruption were significantly higher among infants in this group who were more soothable as opposed to those who were less soothable. The results suggest that contingency learning and disruption is associated with stable vagal tone in the majority of infants, but that individual differences in attention processes and state associated with vagal tone may be most readily observed during the disruption phase. © 2015 Wiley Periodicals, Inc.

  20. Lipid-rich enteral nutrition regulates mucosal mast cell activation via the vagal anti-inflammatory reflex

    NARCIS (Netherlands)

    de Haan, Jacco J.; Hadfoune, M.'hamed; Lubbers, Tim; Hodin, Caroline; Lenaerts, Kaatje; Ito, Akihiko; Verbaeys, Isabelle; Skynner, Michael J.; Cailotto, Cathy; van der Vliet, Jan; de Jonge, Wouter J.; Greve, Jan-Willem M.; Buurman, Wim A.

    2013-01-01

    Nutritional stimulation of the cholecystokinin-1 receptor (CCK-1R) and nicotinic acetylcholine receptor (nAChR)-mediated vagal reflex was shown to reduce inflammation and preserve intestinal integrity. Mast cells are important early effectors of the innate immune response; therefore modulation of

  1. Non-invasive Vagal Nerve Stimulation Effects on Hyperarousal and Autonomic State in Patients with Posttraumatic Stress Disorder and History of Mild Traumatic Brain Injury: Preliminary Evidence

    Directory of Open Access Journals (Sweden)

    Damon G. Lamb

    2017-07-01

    Full Text Available Posttraumatic stress disorder (PTSD is a reaction to trauma that results in a chronic perception of threat, precipitating mobilization of the autonomic nervous system, and may be reflected by chronic disinhibition of limbic structures. A common injury preceding PTSD in veterans is mild traumatic brain injury (mTBI. This may be due to the vulnerability of white matter in these networks and such damage may affect treatment response. We evaluated transcutaneous vagal nerve stimulation (tVNS, a non-invasive, low-risk approach that may alter the functions of the limbo-cortical and peripheral networks underlying the hyperarousal component of PTSD and thus improve patient health and well-being. In this single visit pilot study evaluating the impact of tVNS in 22 combat veterans, we used a between-subjects design in people with either PTSD with preceding mTBI or healthy controls. Participants were randomized into stimulation or sham groups and completed a posturally modulated autonomic assessment and emotionally modulated startle paradigm. The primary measures used were respiratory sinus arrhythmia (high-frequency heart rate variability during a tilt-table procedure derived from an electrocardiogram, and skin conductance changes in response to acoustic startle while viewing emotional images (International Affective Picture System. The stimulation was well tolerated and resulted in improvements in vagal tone and moderation of autonomic response to startle, consistent with modulation of autonomic state and response to stress in this population. Our results suggest that tVNS affects systems underlying emotional dysregulation in this population and, therefore, should be further evaluated and developed as a potential treatment tool for these patients.

  2. Police work stressors and cardiac vagal control.

    Science.gov (United States)

    Andrew, Michael E; Violanti, John M; Gu, Ja K; Fekedulegn, Desta; Li, Shengqiao; Hartley, Tara A; Charles, Luenda E; Mnatsakanova, Anna; Miller, Diane B; Burchfiel, Cecil M

    2017-09-10

    This study examines relationships between the frequency and intensity of police work stressors and cardiac vagal control, estimated using the high frequency component of heart rate variability (HRV). This is a cross-sectional study of 360 officers from the Buffalo New York Police Department. Police stress was measured using the Spielberger police stress survey, which includes exposure indices created as the product of the self-evaluation of how stressful certain events were and the self-reported frequency with which they occurred. Vagal control was estimated using the high frequency component of resting HRV calculated in units of milliseconds squared and reported in natural log scale. Associations between police work stressors and vagal control were examined using linear regression for significance testing and analysis of covariance for descriptive purposes, stratified by gender, and adjusted for age and race/ethnicity. There were no significant associations between police work stressor exposure indices and vagal control among men. Among women, the inverse associations between the lack of support stressor exposure and vagal control were statistically significant in adjusted models for indices of exposure over the past year (lowest stressor quartile: M = 5.57, 95% CI 5.07 to 6.08, and highest stressor quartile: M = 5.02, 95% CI 4.54 to 5.51, test of association from continuous linear regression of vagal control on lack of support stressor β = -0.273, P = .04). This study supports an inverse association between lack of organizational support and vagal control among female but not male police officers. © 2017 Wiley Periodicals, Inc.

  3. Moderate Baseline Vagal Tone Predicts Greater Prosociality in Children

    Science.gov (United States)

    Miller, Jonas G.; Kahle, Sarah; Hastings, Paul D.

    2016-01-01

    Vagal tone is widely believed to be an important physiological aspect of emotion regulation and associated positive behaviors. However, there is inconsistent evidence for relations between children’s baseline vagal tone and their helpful or prosocial responses to others (Hastings & Miller, 2014). Recent work in adults suggests a quadratic association (inverted U-shape curve) between baseline vagal tone and prosociality (Kogan et al., 2014). The present research examined whether this nonlinear association was evident in children. We found consistent evidence for a quadratic relation between vagal tone and prosociality across 3 samples of children using 6 different measures. Compared to low and high vagal tone, moderate vagal tone in early childhood concurrently predicted greater self-reported prosociality (Study 1), observed empathic concern in response to the distress of others and greater generosity toward less fortunate peers (Study 2), and longitudinally predicted greater self-, mother-, and teacher-reported prosociality 5.5 years later in middle childhood (Study 3). Taken together, our findings suggest that moderate vagal tone at rest represents a physiological preparedness or tendency to engage in different forms of prosociality across different contexts. Early moderate vagal tone may reflect an optimal balance of regulation and arousal that helps prepare children to sympathize, comfort, and share with others. PMID:27819463

  4. Relief of fecal incontinence by sacral nerve stimulation linked to focal brain activation

    DEFF Research Database (Denmark)

    Lundby, Lilli; Møller, Arne; Buntzen, Steen

    2011-01-01

    This study aimed to test the hypothesis that sacral nerve stimulation affects afferent vagal projections to the central nervous system associated with frontal cortex activation in patients with fecal incontinence.......This study aimed to test the hypothesis that sacral nerve stimulation affects afferent vagal projections to the central nervous system associated with frontal cortex activation in patients with fecal incontinence....

  5. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats

    Directory of Open Access Journals (Sweden)

    Cao Bing

    2012-06-01

    Full Text Available Abstract Background Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD model with the conditioned place avoidance (CPA paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes. In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK, which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. Results In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593. The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change

  6. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats.

    Science.gov (United States)

    Cao, Bing; Zhang, Xu; Yan, Ni; Chen, Shengliang; Li, Ying

    2012-06-09

    Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD) model with the conditioned place avoidance (CPA) paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC) activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes.In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK), which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593). The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change the nociceptive response (visceral pain

  7. Hypocretin-1 (orexin A) prevents the effects of hypoxia/hypercapnia and enhances the GABAergic pathway from the lateral paragigantocellular nucleus to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Dergacheva, O; Philbin, K; Bateman, R; Mendelowitz, D

    2011-02-23

    Hypocretins (orexins) are hypothalamic neuropeptides that play a crucial role in regulating sleep/wake states and autonomic functions including parasympathetic cardiac activity. We have recently demonstrated stimulation of the lateral paragigantocellular nucleus (LPGi), the nucleus which is thought to play a role in rapid eye movement (REM) sleep control, activates an inhibitory pathway to preganglionic cardiac vagal neurons in the nucleus ambiguus (NA). In this study we test the hypothesis that hypocretin-1 modulates the inhibitory neurotransmission to cardiac vagal neurons evoked by stimulation of the LPGi using whole-cell patch-clamp recordings in an in vitro brain slice preparation from rats. Activation of hypocretin-1 receptors produced a dose-dependent and long-term facilitation of GABAergic postsynaptic currents evoked by electrical stimulation of the LPGi. Hypoxia/hypercapnia diminished LPGi-evoked GABAergic current in cardiac vagal neurons and this inhibition by hypoxia/hypercapnia was prevented by pre-application of hypocretin-1. The action of hypocretin-1 was blocked by the hypocretin-1 receptor antagonist SB-334867. Facilitation of LPGi-evoked GABAergic current in cardiac vagal neurons under both normal condition and during hypoxia/hypercapnia could be the mechanism by which hypocretin-1 affects parasympathetic cardiac function and heart rate during REM sleep. Furthermore, our findings indicate a new potential mechanism that might be involved in the cardiac arrhythmias, bradycardia, and sudden cardiac death that can occur during sleep. Copyright © 2011. Published by Elsevier Ltd.

  8. Loss of vagal tone aggravates systemic inflammation and cardiac impairment in endotoxemic rats.

    Science.gov (United States)

    Schulte, Astrid; Lichtenstern, Christoph; Henrich, Michael; Weigand, Markus A; Uhle, Florian

    2014-05-15

    During the course of sepsis, often myocardial depression with hemodynamic impairment occurs. Acetylcholine, the main transmitter of the parasympathetic Nervus vagus, has been shown to be of importance for the transmission of signals within the immune system and also for a variety of other functions throughout the organism. Hypothesizing a potential correlation between this dysfunction and hemodynamic impairment, we wanted to assess the impact of vagal stimulation on myocardial inflammation and function in a rat model of lipopolysaccharide (LPS)-induced septic shock. As the myocardial tissue is (sparsely) innervated by the N. vagus, there might be an important anti-inflammatory effect in the heart, inhibiting proinflammatory gene expression in cardiomyocytes and improving cardiac function. We performed stimulation of the right cervical branch of the N. vagus in vagotomized, endotoxemic (1 mg/kg body weight LPS, intravenously) rats. Hemodynamic parameters were assessed over time using a left ventricular pressure-volume catheter. After the experiments, hearts and blood plasma were collected, and the expression of proinflammatory cytokines was measured using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. After vagotomy, the inflammatory response was aggravated, measurable by elevated cytokine levels in plasma and ventricular tissue. In concordance, cardiac impairment during septic shock was pronounced in these animals. To reverse both hemodynamic and immunologic effects of diminished vagal tone, even a brief stimulation of the N. vagus was enough during initial LPS infusion. Overall, the N. vagus might play a major role in maintaining hemodynamic stability and cardiac immune homeostasis during septic shock. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The vagal nerve stimulation outcome, and laryngeal effect: Otolaryngologists roles and perspective.

    Science.gov (United States)

    Al Omari, Ahmad I; Alzoubi, Firas Q; Alsalem, Mohammad M; Aburahma, Samah K; Mardini, Diala T; Castellanos, Paul F

    Epilepsy is one of the most common neurologic disorders. Vagus nerve stimulation (VNS), first investigated in 1938 and subsequently studied as a potential therapy for epilepsy. The FDA approved the use of VNS in 1997 as an adjunctive non-pharmacologic symptomatic treatment option for refractory epilepsy for adults and adolescents over 12years. VNS can cause laryngeal and voice side effects that can be managed by otolaryngologists safely and effectively. This study is to review the outcomes of vagal nerve stimulator (VNS) implantation in terms of the surgical procedures, complications, seizure frequency, and the clinical effect on larynx and vocal folds motion. Series of thirty consecutive patients who had VNS implantation between 2007 and 2014 were recruited. Seizure-frequency outcome, surgical complications and device adverse effects of VNS were retrospectively reviewed. Additional evaluation included use of the Voice Handicap Index and Maximum Phonation Time (MPT) were conducted before and after the implantation. Videolaryngoscopy was used to evaluate the vocal fold mobility before and after the VNS implantation. Seizure frequency reduction over a minimum of 2years of follow up demonstrated: 100% in seizure frequency reduction in 1 patient, drastic reduction in seizure frequency (70-90%) in 9 patients, a good reduction in terms of seizure frequency (50%) in 8 patients, a 30% reduction in 5 patients, no response in 6 patients, and 1 patient had increased frequency. The most commonly reported adverse effects after VNS activation were coughing and voice changes with pitch breaks, as well as mild intermittent shortness of breath in 33% of patients. For those patients secondary supraglottic muscle tension and hyper function with reduced left vocal fold mobility were noticed on videolaryngoscopy, though none had aspiration problems. Surgical complications included a wound dehiscence in one patient (3%) which was surgically managed, minor intra-operative bleeding 3%; a

  10. Food-intake dysregulation in type 2 diabetic Goto-Kakizaki rats: hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output.

    Science.gov (United States)

    Zhao, K; Ao, Y; Harper, R M; Go, V L W; Yang, H

    2013-09-05

    Thyrotropin-releasing hormone (TRH), a neuropeptide contained in neural terminals innervating brainstem vagal motor neurons, enhances vagal outflow to modify multisystemic visceral functions and food intake. Type 2 diabetes (T2D) and obesity are accompanied by impaired vagal functioning. We examined the possibility that impaired brainstem TRH action may contribute to the vagal dysregulation of food intake in Goto-Kakizaki (GK) rats, a T2D model with hyperglycemia and impaired central vagal activation by TRH. Food intake induced by intracisternal injection of TRH analog was reduced significantly by 50% in GK rats, compared to Wistar rats. Similarly, natural food intake in the dark phase or food intake after an overnight fast was reduced by 56-81% in GK rats. Fasting (48h) and refeeding (2h)-associated changes in serum ghrelin, insulin, peptide YY, pancreatic polypeptide and leptin, and the concomitant changes in orexigenic or anorexigenic peptide expression in the brainstem and hypothalamus, all apparent in Wistar rats, were absent or markedly reduced in GK rats, with hormone release stimulated by vagal activation, such as ghrelin and pancreatic polypeptide, decreased substantially. Fasting-induced Fos expression accompanying endogenous brainstem TRH action decreased by 66% and 91%, respectively, in the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) in GK rats, compared to Wistar rats. Refeeding abolished fasting-induced Fos-expression in the NTS, while that in the DMV remained in Wistar but not GK rats. These findings indicate that dysfunctional brainstem TRH-elicited vagal impairment contributes to the disturbed food intake in T2D GK rats, and may provide a pathophysiological mechanism which prevents further weight gain in T2D and obesity. Published by Elsevier Ltd.

  11. Motor evoked potential monitoring of the vagus nerve with transcranial electrical stimulation during skull base surgeries.

    Science.gov (United States)

    Ito, Eiji; Ichikawa, Masahiro; Itakura, Takeshi; Ando, Hitoshi; Matsumoto, Yuka; Oda, Keiko; Sato, Taku; Watanabe, Tadashi; Sakuma, Jun; Saito, Kiyoshi

    2013-01-01

    Dysphasia is one of the most serious complications of skull base surgeries and results from damage to the brainstem and/or cranial nerves involved in swallowing. Here, the authors propose a method to monitor the function of the vagus nerve using endotracheal tube surface electrodes and transcranial electrical stimulation during skull base surgeries. Fifteen patients with skull base or brainstem tumors were enrolled. The authors used surface electrodes of an endotracheal tube to record compound electromyographic responses from the vocalis muscle. Motor neurons were stimulated using corkscrew electrodes placed subdermally on the scalp at C3 and C4. During surgery, the operator received a warning when the amplitude of the vagal motor evoked potential (MEP) decreased to less than 50% of the control level. After surgery, swallowing function was assessed clinically using grading criteria. In 5 patients, vagal MEP amplitude permanently deteriorated to less than 50% of the control level on the right side when meningiomas were dissected from the pons or basilar artery, or when a schwannoma was dissected from the vagal rootlets. These 5 patients had postoperative dysphagia. At 4 weeks after surgery, 2 patients still had dysphagia. In 2 patients, vagal MEPs of one side transiently disappeared when the tumors were dissected from the brainstem or the vagal rootlets. After surgery, both patients had dysphagia, which recovered in 4 weeks. In 7 patients, MEP amplitude was consistent, maintaining more than 50% of the control level throughout the operative procedures. After surgery all 7 patients were neurologically intact with normal swallowing function. Vagal MEP monitoring with transcranial electrical stimulation and endotracheal tube electrode recording was a safe and effective method to provide continuous real-time information on the integrity of both the supranuclear and infranuclear vagal pathway. This method is useful to prevent intraoperative injury of the brainstem

  12. Maneuver Automation Software

    Science.gov (United States)

    Uffelman, Hal; Goodson, Troy; Pellegrin, Michael; Stavert, Lynn; Burk, Thomas; Beach, David; Signorelli, Joel; Jones, Jeremy; Hahn, Yungsun; Attiyah, Ahlam; hide

    2009-01-01

    The Maneuver Automation Software (MAS) automates the process of generating commands for maneuvers to keep the spacecraft of the Cassini-Huygens mission on a predetermined prime mission trajectory. Before MAS became available, a team of approximately 10 members had to work about two weeks to design, test, and implement each maneuver in a process that involved running many maneuver-related application programs and then serially handing off data products to other parts of the team. MAS enables a three-member team to design, test, and implement a maneuver in about one-half hour after Navigation has process-tracking data. MAS accepts more than 60 parameters and 22 files as input directly from users. MAS consists of Practical Extraction and Reporting Language (PERL) scripts that link, sequence, and execute the maneuver- related application programs: "Pushing a single button" on a graphical user interface causes MAS to run navigation programs that design a maneuver; programs that create sequences of commands to execute the maneuver on the spacecraft; and a program that generates predictions about maneuver performance and generates reports and other files that enable users to quickly review and verify the maneuver design. MAS can also generate presentation materials, initiate electronic command request forms, and archive all data products for future reference.

  13. Self-esteem fluctuations and cardiac vagal control in everyday life.

    Science.gov (United States)

    Schwerdtfeger, Andreas R; Scheel, Sophie-Marie

    2012-03-01

    It has been proposed that self-esteem buffers threat-responding. The same effect is ascribed to the vagus nerve, which is a primary nerve of the parasympathetic nervous system. Consequently, it has been suggested that self-esteem and cardiac vagal tone are interconnected on a trait, as well as on a state, level. In this study, we examined the relationship of vagal cardiac control and self-esteem fluctuations across a single day using ecological momentary assessment. Eighty-four participants were recruited, and self-esteem, negative affect, and vagal tone were recorded throughout a 22-hour period. Men provided higher self-esteem ratings than women, but the negative relationship between self-esteem and negative affect was stronger in women. Moreover, controlling for potential confounds (e.g., age, BMI, depressive symptoms, smoking status, regular physical activity), we observed that for men, self-esteem was significantly positively associated with cardiac vagal tone, whereas for women it was not. These findings suggest that the relationship between self-esteem and vagal innervation of the heart during daily life is sex-specific and might involve different central-autonomic pathways for men and women, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Breathing exercises with vagal biofeedback may benefit patients with functional dyspepsia.

    Science.gov (United States)

    Hjelland, Ina E; Svebak, Sven; Berstad, Arnold; Flatabø, Geir; Hausken, Trygve

    2007-09-01

    Many patients with functional dyspepsia (FD) have postprandial symptoms, impaired gastric accommodation and low vagal tone. The aim of this study was to improve vagal tone, and thereby also drinking capacity, intragastric volume and quality of life, using breathing exercises with vagal biofeedback. Forty FD patients were randomized to either a biofeedback group or a control group. The patients received similar information and care. Patients in the biofeedback group were trained in breathing exercises, 6 breaths/min, 5 min each day for 4 weeks, using specially designed software for vagal biofeedback. Effect variables included maximal drinking capacity using a drink test (Toro clear meat soup 100 ml/min), intragastric volume at maximal drinking capacity, respiratory sinus arrhythmia (RSA), skin conductance (SC) and dyspepsia-related quality of life scores. Drinking capacity and quality of life improved significantly more in the biofeedback group than in the control group (p=0.02 and p=0.01) without any significant change in baseline autonomic activity (RSA and SC) or intragastric volume. After the treatment period, RSA during breathing exercises was significantly correlated to drinking capacity (r=0.6, p=0.008). Breathing exercises with vagal biofeedback increased drinking capacity and improved quality of life in FD patients, but did not improve baseline vagal tone.

  15. Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract.

    Science.gov (United States)

    Beaumont, Eric; Campbell, Regenia P; Andresen, Michael C; Scofield, Stephanie; Singh, Krishna; Libbus, Imad; KenKnight, Bruce H; Snyder, Logan; Cantrell, Nathan

    2017-08-01

    Vagus nerve stimulation (VNS) currently treats patients with drug-resistant epilepsy, depression, and heart failure. The mild intensities used in chronic VNS suggest that primary visceral afferents and central nervous system activation are involved. Here, we measured the activity of neurons in the nucleus of the solitary tract (NTS) in anesthetized rats using clinically styled VNS. Our chief findings indicate that VNS at threshold bradycardic intensity activated NTS neuron discharge in one-third of NTS neurons. This VNS directly activated only myelinated vagal afferents projecting to second-order NTS neurons. Most VNS-induced activity in NTS, however, was unsynchronized to vagal stimuli. Thus, VNS activated unsynchronized activity in NTS neurons that were second order to vagal afferent C-fibers as well as higher-order NTS neurons only polysynaptically activated by the vagus. Overall, cardiovascular-sensitive and -insensitive NTS neurons were similarly activated by VNS: 3/4 neurons with monosynaptic vagal A-fiber afferents, 6/42 neurons with monosynaptic vagal C-fiber afferents, and 16/21 polysynaptic NTS neurons. Provocatively, vagal A-fibers indirectly activated C-fiber neurons during VNS. Elevated spontaneous spiking was quantitatively much higher than synchronized activity and extended well into the periods of nonstimulation. Surprisingly, many polysynaptic NTS neurons responded to half the bradycardic intensity used in clinical studies, indicating that a subset of myelinated vagal afferents is sufficient to evoke VNS indirect activation. Our study uncovered a myelinated vagal afferent drive that indirectly activates NTS neurons and thus central pathways beyond NTS and support reconsideration of brain contributions of vagal afferents underpinning of therapeutic impacts. NEW & NOTEWORTHY Acute vagus nerve stimulation elevated activity in neurons located in the medial nucleus of the solitary tract. Such stimuli directly activated only myelinated vagal afferents

  16. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  17. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    Science.gov (United States)

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  18. Vagal Blocking for Obesity Control

    DEFF Research Database (Denmark)

    Johannessen, Helene; Revesz, David; Kodama, Yosuke

    2017-01-01

    : VBLOC reduced body weight and food intake, which was associated with increased satiety but not with decreased hunger. Brain activities in response to VBLOC included increased gene expression of leptin and CCKb receptors, interleukin-1β, tumor necrosis factor, and transforming growth factor β1......BACKGROUND: Recently, the US FDA has approved "vagal blocking therapy or vBLoc® therapy" as a new treatment for obesity. The aim of the present study was to study the mechanism-of-action of "VBLOC" in rat models. METHODS: Rats were implanted with VBLOC, an intra-abdominal electrical device...... with leads placed around gastric vagal trunks through an abdominal incision and controlled by wireless device. Body weight, food intake, hunger/satiety, and metabolic parameters were monitored by a comprehensive laboratory animal monitoring system. Brain-gut responses were analyzed physiologically. RESULTS...

  19. Malignant vagal paraganglioma

    DEFF Research Database (Denmark)

    Carlsen, Camilla S; Godballe, Christian; Krogdahl, Annelise S

    2003-01-01

    Approximately 20 cases of malignant vagal paragangliomas (MVP)have been reported in English literature. Malignancy is based on the presence of metastases. A careful preoperative evaluation is necessary to detect multicentricity and/or significant production of catecholamines. A new case of MVP...... treated with embolization and surgery is presented and the literature discussed. It is concluded, that preoperative embolization followed by radical surgical resection is a rational treatment of patients with unilateral MVP....

  20. Constitutive overexpression of muscarinic receptors leads to vagal hyperreactivity.

    Directory of Open Access Journals (Sweden)

    Angelo Livolsi

    Full Text Available BACKGROUND: Alterations in muscarinic receptor expression and acetylcholinesterase (AchE activity have been observed in tissues from Sudden Infant Death Syndrome (SIDS. Vagal overactivity has been proposed as a possible cause of SIDS as well as of vasovagal syncopes. The aim of the present study was to seek whether muscarinic receptor overexpression may be the underlying mechanism of vagal hyperreactivity. Rabbits with marked vagal pauses following injection of phenylephrine were selected and crossed to obtain a vagal hyperreactive strain. The density of cardiac muscarinic receptors and acetylcholinesterase (AchE gene expression were assessed. Blood markers of the observed cardiac abnormalities were also sought. METHODOLOGY/PRINCIPAL FINDINGS: Cardiac muscarinic M(2 and M(3 receptors were overexpressed in hyperreactive rabbits compared to control animals (2.3-fold and 2.5-fold, respectively and the severity of the phenylephrine-induced bradycardia was correlated with their densities. A similar overexpression of M(2 receptors was observed in peripheral mononuclear white blood cells, suggesting that cardiac M(2 receptor expression can be inferred with high confidence from measurements in blood cells. Sequencing of the coding fragment of the M(2 receptor gene revealed a single nucleotide mutation in 83% of hyperreactive animals, possibly contributing for the transcript overexpression. Significant increases in AchE expression and activity were also assessed (AchE mRNA amplification ratio of 3.6 versus normal rabbits. This phenomenon might represent a compensatory consequence of muscarinic receptors overexpression. Alterations in M(2 receptor and AchE expression occurred between the 5th and the 7th week of age, a critical period also characterized by a higher mortality rate of hyperreactive rabbits (52% in H rabbits versus 13% in normal rabbits and preceeded the appearance of functional disorders. CONCLUSIONS/SIGNIFICANCE: The results suggest that

  1. Jugular and vagal paragangliomas: Systematic study of management with surgery and radiotherapy

    NARCIS (Netherlands)

    Suarez, C.; Rodrigo, J.P.; Bodeker, C.C.; Llorente, J.L.; Silver, C.E.; Jansen, J.C.; Takes, R.P.; Strojan, P.; Pellitteri, P.K.; Rinaldo, A.; Mendenhall, W.M.; Ferlito, A.

    2013-01-01

    BACKGROUND: The definitive treatment for head and neck paraganglioma (PG) is surgical excision. Unfortunately, surgery, particularly of vagal paraganglioma (VPG; "glomus vagale") and foramen jugulare ("glomus jugulare") tumors, may be complicated by injuries to the lower cranial nerves, a high price

  2. Vagal modulation of resting heart rate in rats: the role of stress, psychosocial factors and physical exercise

    Directory of Open Access Journals (Sweden)

    Luca eCarnevali

    2014-03-01

    Full Text Available In humans, there are large individual differences in the levels of vagal modulation of resting heart rate. High levels are a recognized index of cardiac health, whereas low levels are considered an important risk factor for cardiovascular morbidity and mortality. Several factors are thought to contribute significantly to this inter-individual variability. While regular physical exercise seems to induce an increase in resting vagal tone, chronic life stress and psychosocial factors such as negative moods and personality traits appear associated with vagal withdrawal. Preclinical research has been attempting to clarify such relationships and to provide insights into the neurobiological mechanisms underlying vagal tone impairment/enhancement. This paper focuses on rat studies that have explored the effects of stress, psychosocial factors and physical exercise on vagal modulation of resting heart rate. Results are discussed with regard to: (i individual differences in resting vagal tone, cardiac stress reactivity and arrhythmia vulnerability; (ii elucidation of the neurobiological determinants of resting vagal tone.

  3. Maneuver from the Air Domain

    Science.gov (United States)

    2016-05-26

    Overload From the previous discussion, cognitive maneuver seeks to degrade the enemy’s capacity for...in all domains, the ability to maneuver from the air domain in the cognitive sense, comes primarily from air power’s unique ability to overload the... cognitive maneuver mechanisms developed in the 1980s as part of broader maneuver warfare theory. The result is a proposed definition of maneuver from

  4. Auditory stimulation with music influences the geometric indices of heart rate variability in response to the postural change maneuver.

    Science.gov (United States)

    de Castro, Bianca C R; Guida, Heraldo L; Roque, Adriano L; de Abreu, Luiz Carlos; Ferreira, Celso; Marcomini, Renata S; Monteiro, Carlos B M; Adami, Fernando; Ribeiro, Viviane F; Fonseca, Fernando L A; Santos, Vilma N S; Valenti, Vitor E

    2014-01-01

    It is poor in the literature the behavior of the geometric indices of heart rate variability (HRV) during the musical auditory stimulation. The objective is to investigate the acute effects of classic musical auditory stimulation on the geometric indexes of HRV in women in response to the postural change maneuver (PCM). We evaluated 11 healthy women between 18 and 25 years old. We analyzed the following indices: Triangular index, Triangular interpolation of RR intervals and Poincarι plot (standard deviation of the instantaneous variability of the beat-to beat heart rate [SD1], standard deviation of long-term continuous RR interval variability and Ratio between the short - and long-term variations of RR intervals [SD1/SD2] ratio). HRV was recorded at seated rest for 10 min. The women quickly stood up from a seated position in up to 3 s and remained standing still for 15 min. HRV was recorded at the following periods: Rest, 0-5 min, 5-10 min and 10-15 min during standing. In the second protocol, the subject was exposed to auditory musical stimulation (Pachelbel-Canon in D) for 10 min at seated position before standing position. Shapiro-Wilk to verify normality of data and ANOVA for repeated measures followed by the Bonferroni test for parametric variables and Friedman's followed by the Dunn's posttest for non-parametric distributions. In the first protocol, all indices were reduced at 10-15 min after the volunteers stood up. In the protocol musical auditory stimulation, the SD1 index was reduced at 5-10 min after the volunteers stood up compared with the music period. The SD1/SD2 ratio was decreased at control and music period compared with 5-10 min after the volunteers stood up. Musical auditory stimulation attenuates the cardiac autonomic responses to the PCM.

  5. Auditory stimulation with music influences the geometric indices of heart rate variability in response to the postural change maneuver

    Directory of Open Access Journals (Sweden)

    Bianca C. R. de Castro

    2014-01-01

    Full Text Available It is poor in the literature the behavior of the geometric indices of heart rate variability (HRV during the musical auditory stimulation. The objective is to investigate the acute effects of classic musical auditory stimulation on the geometric indexes of HRV in women in response to the postural change maneuver (PCM. We evaluated 11 healthy women between 18 and 25 years old. We analyzed the following indices: Triangular index, Triangular interpolation of RR intervals and Poincarι plot (standard deviation of the instantaneous variability of the beat-to beat heart rate [SD1], standard deviation of long-term continuous RR interval variability and Ratio between the short - and long-term variations of RR intervals [SD1/SD2] ratio. HRV was recorded at seated rest for 10 min. The women quickly stood up from a seated position in up to 3 s and remained standing still for 15 min. HRV was recorded at the following periods: Rest, 0-5 min, 5-10 min and 10-15 min during standing. In the second protocol, the subject was exposed to auditory musical stimulation (Pachelbel-Canon in D for 10 min at seated position before standing position. Shapiro-Wilk to verify normality of data and ANOVA for repeated measures followed by the Bonferroni test for parametric variables and Friedman′s followed by the Dunn′s posttest for non-parametric distributions. In the first protocol, all indices were reduced at 10-15 min after the volunteers stood up. In the protocol musical auditory stimulation, the SD1 index was reduced at 5-10 min after the volunteers stood up compared with the music period. The SD1/SD2 ratio was decreased at control and music period compared with 5-10 min after the volunteers stood up. Musical auditory stimulation attenuates the cardiac autonomic responses to the PCM.

  6. Parental Socialization, Vagal Regulation, and Preschoolers' Anxious Difficulties: Direct Mothers and Moderated Fathers

    Science.gov (United States)

    Hastings, Paul D.; Sullivan, Caroline; McShane, Kelly E.; Coplan, Robert J.; Utendale, William T.; Vyncke, Johanna D.

    2008-01-01

    Parental supportiveness and protective overcontrol and preschoolers' parasympathetic regulation were examined as predictors of temperamental inhibition, social wariness, and internalizing problems. Lower baseline vagal tone and weaker vagal suppression were expected to mark poorer dispositional self-regulatory capacity, leaving children more…

  7. Central vagal sensory and motor connections: human embryonic and fetal development.

    Science.gov (United States)

    Cheng, Gang; Zhou, Xiangtian; Qu, Jia; Ashwell, Ken W S; Paxinos, G

    2004-07-30

    The embryonic and fetal development of the nuclear components and pathways of vagal sensorimotor circuits in the human has been studied using Nissl staining and carbocyanine dye tracing techniques. Eight fetal brains ranging from 8 to 28 weeks of development had DiI (1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate) inserted into either the thoracic vagus nerve at the level of the sternal angle (two specimens of 8 and 9 weeks of gestation) or into vagal rootlets at the surface of the medulla (at all other ages), while a further five were used for study of cytoarchitectural development. The first central labeling resulting from peripheral application of DiI to the thoracic vagus nerve was seen at 8 weeks. By 9 weeks, labeled bipolar cells at the ventricular surface around the sulcus limitans (sl) were seen after DiI application to the thoracic vagus nerve. Subnuclear organization as revealed by both Nissl staining and carbocyanine dye tracing was found to be advanced at a relatively early fetal age, with afferent segregation in the medial Sol apparent at 13 weeks and subnuclear organization of efferent magnocellular divisions of dorsal motor nucleus of vagus nerve noticeable at the same stage. The results of the present study also confirm that vagal afferents are distributed to the dorsomedial subnuclei of the human nucleus of the solitary tract, with particular concentrations of afferent axons in the gelatinosus subnucleus. These vagal afferents appeared to have a restricted zone of termination from quite early in development (13 weeks) suggesting that there is no initial exuberance in the termination field of vagal afferents in the developing human nucleus of the solitary tract. On the other hand, the first suggestion of afferents invading 10N from the medial Sol was not seen until 20 weeks and was not well developed until 24 weeks, suggesting that direct monosynaptic connections between the sensory and effector components of the vagal

  8. The vagal innervation of the gut and immune homeostasis.

    Science.gov (United States)

    Matteoli, Gianluca; Boeckxstaens, Guy E

    2013-08-01

    The central nervous system interacts dynamically with the immune system to modulate inflammation through humoral and neural pathways. Recently, in animal models of sepsis, the vagus nerve (VN) has been proposed to play a crucial role in the regulation of the immune response, also referred to as the cholinergic anti-inflammatory pathway. The VN, through release of acetylcholine, dampens immune cell activation by interacting with α-7 nicotinic acetylcholine receptors. Recent evidence suggests that the vagal innervation of the gastrointestinal tract also plays a major role controlling intestinal immune activation. Indeed, VN electrical stimulation potently reduces intestinal inflammation restoring intestinal homeostasis, whereas vagotomy has the reverse effect. In this review, we will discuss the current understanding concerning the mechanisms and effects involved in the cholinergic anti-inflammatory pathway in the gastrointestinal tract. Deeper investigation on this counter-regulatory neuroimmune mechanism will provide new insights in the cross-talk between the nervous and immune system leading to the identification of new therapeutic targets to treat intestinal immune disease.

  9. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms.

    Science.gov (United States)

    Egerod, Kristoffer L; Petersen, Natalia; Timshel, Pascal N; Rekling, Jens C; Wang, Yibing; Liu, Qinghua; Schwartz, Thue W; Gautron, Laurent

    2018-06-01

    G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagal afferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract. Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situ hybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Na v 1.8-expressing afferents. GPCRs for gut hormones that were the most enriched in Na v 1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Na v 1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Na v 1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents. Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  10. VERSATILE, HIGH-RESOLUTION ANTEROGRADE LABELING OF VAGAL EFFERENT PROJECTIONS WITH DEXTRAN AMINES

    Science.gov (United States)

    Walter, Gary C.; Phillips, Robert J.; Baronowsky, Elizabeth A.; Powley, Terry L.

    2009-01-01

    None of the anterograde tracers used to label and investigate vagal preganglionic neurons projecting to the viscera has proved optimal for routine and extensive labeling of autonomic terminal fields. To identify an alternative tracer protocol, the present experiment evaluated whether dextran conjugates, which have produced superior results in the CNS, might yield widespread and effective labeling of long, fine-caliber vagal efferents in the peripheral nervous system. The dextran conjugates that were evaluated proved reliable and versatile for labeling the motor neuron pool in its entirety, for single- and multiple-labeling protocols, for both conventional and confocal fluorescence microscopy, and for permanent labeling protocols for brightfield microscopy of the projections to the gastrointestinal (GI) tract. Using a standard ABC kit followed by visualization with DAB as the chromagen, Golgi-like labeling of the vagal efferent terminal fields in the GI wall was achieved with the biotinylated dextrans. The definition of individual terminal varicosities was so sharp and detailed that it was routinely practical to examine the relationship of putative vagal efferent contacts (by the criteria of high magnification light microscopy) with the dendritic and somatic architecture of counterstained neurons in the myenteric plexus. Overall, dextran conjugates provide high-definition labeling of an extensive vagal motor pool in the GI tract, and offer considerable versatility when multiple-staining protocols are needed to elucidate the complexities of the innervation of the gut. PMID:19056424

  11. Intraperitoneal injections of low doses of C75 elicit a behaviorally specific and vagal afferent-independent inhibition of eating in rats

    Science.gov (United States)

    Mansouri, Abdelhak; Aja, Susan; Moran, Timothy H.; Ronnett, Gabriele; Kuhajda, Francis P.; Arnold, Myrtha; Geary, Nori; Langhans, Wolfgang; Leonhardt, Monika

    2008-01-01

    Central and intraperitoneal C75, an inhibitor of fatty acid synthase and stimulator of carnitine palmitoyl-transferase-1, inhibits eating in mice and rats. Mechanisms involved in feeding inhibition after central C75 have been identified, but little is yet known about how systemic C75 might inhibit eating. One issue is whether intraperitoneal C75 reduces food intake in rats by influencing normal physiological controls of food intake or acts nonselectively, for example by eliciting illness or aversion. Another issue relates to whether intraperitoneal C75 acts centrally or, similar to some other peripheral metabolic controls of eating, activates abdominal vagal afferents to inhibit eating. To further address these questions, we investigated the effects of intraperitoneal C75 on spontaneous meal patterns and the formation of conditioned taste aversion (CTA). We also tested whether the eating inhibitory effect of intraperitoneal C75 is vagally mediated by testing rats after either total subdiaphragmatic vagotomy (TVX) or selective subdiaphragmatic vagal deafferentations (SDA). Intraperitoneal injection of 3.2 and 7.5 mg/kg of C75 significantly reduced food intake 3, 12, and 24 h after injection by reducing the number of meals without affecting meal size, whereas 15 mg/kg of C75 reduced both meal number and meal size. The two smaller doses of C75 failed to induce a CTA, but 15 mg/kg C75 did. The eating inhibitory effect of C75 was not diminished in either TVX or SDA rats. We conclude that intraperitoneal injections of low doses of C75 inhibit eating in a behaviorally specific manner and that this effect does not require abdominal vagal afferents. PMID:18667714

  12. Vagal activity is quadratically related to prosocial traits, prosocial emotions, and observer perceptions of prosociality.

    Science.gov (United States)

    Kogan, Aleksandr; Oveis, Christopher; Carr, Evan W; Gruber, June; Mauss, Iris B; Shallcross, Amanda; Impett, Emily A; van der Lowe, Ilmo; Hui, Bryant; Cheng, Cecilia; Keltner, Dacher

    2014-12-01

    In the present article, we introduce the quadratic vagal activity-prosociality hypothesis, a theoretical framework for understanding the vagus nerve's involvement in prosociality. We argue that vagus nerve activity supports prosocial behavior by regulating physiological systems that enable emotional expression, empathy for others' mental and emotional states, the regulation of one's own distress, and the experience of positive emotions. However, we contend that extremely high levels of vagal activity can be detrimental to prosociality. We present 3 studies providing support for our model, finding consistent evidence of a quadratic relationship between respiratory sinus arrhythmia--the degree to which the vagus nerve modulates the heart rate--and prosociality. Individual differences in vagal activity were quadratically related to prosocial traits (Study 1), prosocial emotions (Study 2), and outside ratings of prosociality by complete strangers (Study 3). Thus, too much or too little vagal activity appears to be detrimental to prosociality. The present article provides the 1st theoretical and empirical account of the nonlinear relationship between vagal activity and prosociality.

  13. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Stephen J Kentish

    Full Text Available Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1 are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice.TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined.Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet.TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.

  14. Spleen vagal denervation inhibits the production of antibodies to circulating antigens.

    Directory of Open Access Journals (Sweden)

    Ruud M Buijs

    Full Text Available BACKGROUND: Recently the vagal output of the central nervous system has been shown to suppress the innate immune defense to pathogens. Here we investigated by anatomical and physiological techniques the communication of the brain with the spleen and provided evidence that the brain has the capacity to stimulate the production of antigen specific antibodies by its parasympathetic autonomic output. METHODOLOGY/PRINCIPAL FINDINGS: This conclusion was reached by successively demonstrating that: 1. The spleen receives not only sympathetic input but also parasympathetic input. 2. Intravenous trinitrophenyl-ovalbumin (TNP-OVA does not activate the brain and does not induce an immune response. 3. Intravenous TNP-OVA with an inducer of inflammation; lipopolysaccharide (LPS, activates the brain and induces TNP-specific IgM. 4. LPS activated neurons are in the same areas of the brain as those that provide parasympathetic autonomic information to the spleen, suggesting a feed back circuit between brain and immune system. Consequently we investigated the interaction of the brain with the spleen and observed that specific parasympathetic denervation but not sympathetic denervation of the spleen eliminates the LPS-induced antibody response to TNP-OVA. CONCLUSIONS/SIGNIFICANCE: These findings not only show that the brain can stimulate antibody production by its autonomic output, it also suggests that the power of LPS as adjuvant to stimulate antibody production may also depend on its capacity to activate the brain. The role of the autonomic nervous system in the stimulation of the adaptive immune response may explain why mood and sleep have an influence on antibody production.

  15. Low vagally-mediated heart rate variability and increased susceptibility to ventricular arrhythmias in rats bred for high anxiety.

    Science.gov (United States)

    Carnevali, Luca; Trombini, Mimosa; Graiani, Gallia; Madeddu, Denise; Quaini, Federico; Landgraf, Rainer; Neumann, Inga D; Nalivaiko, Eugene; Sgoifo, Andrea

    2014-04-10

    In humans, there is a documented association between anxiety disorders and cardiovascular disease. Putative underlying mechanisms may include an impairment of the autonomic nervous system control of cardiac function. The primary objective of the present study was to characterize cardiac autonomic modulation and susceptibility to arrhythmias in genetic lines of rats that differ largely in their anxiety level. To reach this goal, electrocardiographic recordings were performed in high-anxiety behavior (HAB, n=10) and low-anxiety behavior (LAB, n=10) rats at rest, during stressful stimuli and under autonomic pharmacological manipulations, and analyzed by means of time- and frequency-domain indexes of heart rate variability. During resting conditions, HAB rats displayed a reduced heart rate variability, mostly in terms of lower parasympathetic (vagal) modulation compared to LAB rats. In HAB rats, this relatively low cardiac vagal control was associated with smaller heart rate responsiveness to acute stressors compared to LAB counterparts. In addition, beta-adrenergic pharmacological stimulation induced a larger incidence of ventricular tachyarrhythmias in HABs compared to LABs. At sacrifice, a moderate increase in heart-body weight ratio was observed in HAB rats. We conclude that high levels of anxiety-related behavior in rats are associated with signs of i) impaired autonomic modulation of heart rate (low vagally-mediated heart rate variability), ii) poor adaptive heart rate responsiveness to stressful stimuli, iii) increased arrhythmia susceptibility, and iv) cardiac hypertrophy. These results highlight the utility of the HAB/LAB model for investigating the mechanistic basis of the comorbidity between anxiety disorders and cardiovascular disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The Role of Baseline Vagal Tone in Dealing with a Stressor during Face to Face and Computer-Based Social Interactions.

    Science.gov (United States)

    Rigoni, Daniele; Morganti, Francesca; Braibanti, Paride

    2017-01-01

    Facing a stressor involves a cardiac vagal tone response and a feedback effect produced by social interaction in visceral regulation. This study evaluated the contribution of baseline vagal tone and of social engagement system (SES) functioning on the ability to deal with a stressor. Participants ( n = 70) were grouped into a minimized social interaction condition (procedure administered through a PC) and a social interaction condition (procedure administered by an experimenter). The State Trait Anxiety Inventory, the Social Interaction Anxiety Scale, the Emotion Regulation Questionnaire and a debriefing questionnaire were completed by the subjects. The baseline vagal tone was registered during the baseline, stressor and recovery phases. The collected results highlighted a significant effect of the baseline vagal tone on vagal suppression. No effect of minimized vs. social interaction conditions on cardiac vagal tone during stressor and recovery phases was detected. Cardiac vagal tone and the results of the questionnaires appear to be not correlated. The study highlighted the main role of baseline vagal tone on visceral regulation. Some remarks on SES to be deepen in further research were raised.

  17. The Role of Baseline Vagal Tone in Dealing with a Stressor during Face to Face and Computer-Based Social Interactions

    Directory of Open Access Journals (Sweden)

    Daniele Rigoni

    2017-11-01

    Full Text Available Facing a stressor involves a cardiac vagal tone response and a feedback effect produced by social interaction in visceral regulation. This study evaluated the contribution of baseline vagal tone and of social engagement system (SES functioning on the ability to deal with a stressor. Participants (n = 70 were grouped into a minimized social interaction condition (procedure administered through a PC and a social interaction condition (procedure administered by an experimenter. The State Trait Anxiety Inventory, the Social Interaction Anxiety Scale, the Emotion Regulation Questionnaire and a debriefing questionnaire were completed by the subjects. The baseline vagal tone was registered during the baseline, stressor and recovery phases. The collected results highlighted a significant effect of the baseline vagal tone on vagal suppression. No effect of minimized vs. social interaction conditions on cardiac vagal tone during stressor and recovery phases was detected. Cardiac vagal tone and the results of the questionnaires appear to be not correlated. The study highlighted the main role of baseline vagal tone on visceral regulation. Some remarks on SES to be deepen in further research were raised.

  18. Mothers' responses to children's negative emotions and child emotion regulation: the moderating role of vagal suppression.

    Science.gov (United States)

    Perry, Nicole B; Calkins, Susan D; Nelson, Jackie A; Leerkes, Esther M; Marcovitch, Stuart

    2012-07-01

    The current study examined the moderating effect of children's cardiac vagal suppression on the association between maternal socialization of negative emotions (supportive and nonsupportive responses) and children's emotion regulation behaviors. One hundred and ninety-seven 4-year-olds and their mothers participated. Mothers reported on their reactions to children's negative emotions and children's regulatory behaviors. Observed distraction, an adaptive self-regulatory strategy, and vagal suppression were assessed during a laboratory task designed to elicit frustration. Results indicated that children's vagal suppression moderated the association between mothers' nonsupportive emotion socialization and children's emotion regulation behaviors such that nonsupportive reactions to negative emotions predicted lower observed distraction and lower reported emotion regulation behaviors when children displayed lower levels of vagal suppression. No interaction was found between supportive maternal emotion socialization and vagal suppression for children's emotion regulation behaviors. Results suggest physiological regulation may serve as a buffer against nonsupportive emotion socialization. Copyright © 2011 Wiley Periodicals, Inc.

  19. Validation and characterization of a novel method for selective vagal deafferentation of the gut.

    Science.gov (United States)

    Diepenbroek, Charlene; Quinn, Danielle; Stephens, Ricky; Zollinger, Benjamin; Anderson, Seth; Pan, Annabelle; de Lartigue, Guillaume

    2017-10-01

    There is a lack of tools that selectively target vagal afferent neurons (VAN) innervating the gut. We use saporin (SAP), a potent neurotoxin, conjugated to the gastronintestinal (GI) hormone cholecystokinin (CCK-SAP) injected into the nodose ganglia (NG) of male Wistar rats to specifically ablate GI-VAN. We report that CCK-SAP ablates a subpopulation of VAN in culture. In vivo, CCK-SAP injection into the NG reduces VAN innervating the mucosal and muscular layers of the stomach and small intestine but not the colon, while leaving vagal efferent neurons intact. CCK-SAP abolishes feeding-induced c-Fos in the NTS, as well as satiation by CCK or glucagon like peptide-1 (GLP-1). CCK-SAP in the NG of mice also abolishes CCK-induced satiation. Therefore, we provide multiple lines of evidence that injection of CCK-SAP in NG is a novel selective vagal deafferentation technique of the upper GI tract that works in multiple vertebrate models. This method provides improved tissue specificity and superior separation of afferent and efferent signaling compared with vagotomy, capsaicin, and subdiaphragmatic deafferentation. NEW & NOTEWORTHY We develop a new method that allows targeted lesioning of vagal afferent neurons that innervate the upper GI tract while sparing vagal efferent neurons. This reliable approach provides superior tissue specificity and selectivity for vagal afferent over efferent targeting than traditional approaches. It can be used to address questions about the role of gut to brain signaling in physiological and pathophysiological conditions. Copyright © 2017 the American Physiological Society.

  20. Parenting Stressors and Young Adolescents’ Depressive Symptoms: Does High Vagal Suppression Offer Protection?

    Science.gov (United States)

    Fletcher, Anne C.; Buehler, Cheryl; Buchanan, Christy M.; Weymouth, Bridget B.

    2017-01-01

    Grounded in a dual-risk, biosocial perspective of developmental psychopathology, this study examined the role of higher vagal suppression in providing young adolescents protection from four parenting stressors. It was expected that lower vagal suppression would increase youth vulnerability to the deleterious effects of these parenting stressors. Depressive symptoms were examined as a central marker of socioemotional difficulties during early adolescence. The four parenting stressors examined were interparental hostility, maternal use of harsh discipline, maternal inconsistent discipline, and maternal psychological control. Participants were 68 young adolescents (Grade 6) and their mothers. Greater vagal suppression provided protection (i.e., lower depressive symptoms) from interparental hostility, harsh discipline, and maternal psychological control for boys but not for girls. PMID:27979628

  1. Cassini-Huygens maneuver automation for navigation

    Science.gov (United States)

    Goodson, Troy; Attiyah, Amy; Buffington, Brent; Hahn, Yungsun; Pojman, Joan; Stavert, Bob; Strange, Nathan; Stumpf, Paul; Wagner, Sean; Wolff, Peter; hide

    2006-01-01

    Many times during the Cassini-Huygens mission to Saturn, propulsive maneuvers must be spaced so closely together that there isn't enough time or workforce to execute the maneuver-related software manually, one subsystem at a time. Automation is required. Automating the maneuver design process has involved close cooperation between teams. We present the contribution from the Navigation system. In scope, this includes trajectory propagation and search, generation of ephemerides, general tasks such as email notification and file transfer, and presentation materials. The software has been used to help understand maneuver optimization results, Huygens probe delivery statistics, and Saturn ring-plane crossing geometry. The Maneuver Automation Software (MAS), developed for the Cassini-Huygens program enables frequent maneuvers by handling mundane tasks such as creation of deliverable files, file delivery, generation and transmission of email announcements, generation of presentation material and other supporting documentation. By hand, these tasks took up hours, if not days, of work for each maneuver. Automated, these tasks may be completed in under an hour. During the cruise trajectory the spacing of maneuvers was such that development of a maneuver design could span about a month, involving several other processes in addition to that described, above. Often, about the last five days of this process covered the generation of a final design using an updated orbit-determination estimate. To support the tour trajectory, the orbit determination data cut-off of five days before the maneuver needed to be reduced to approximately one day and the whole maneuver development process needed to be reduced to less than a week..

  2. Inhibition of reflex vagal bradycardia by a central action of 5-hydroxytryptophan.

    OpenAIRE

    Tadepalli, A. S.

    1980-01-01

    1 Vagally mediated reflex bradycardia was elicited in spinal cats with intravenous pressor doses of noradrenaline. Administration of 5-hydroxytryptophan (1.5 and 3 mg total dose) into the fourth cerebral ventricle reduced the reflex bradycardia. 2 Inhibition of central amino acid decarboxylase with R044602 prevented the effects of 5-hydroxytryptophan. After intravenous administration of 5-hydroxytryptophan, vagal reflex bradycardia was not affected. 3 Results suggest that 5-hydroxytryptophan ...

  3. Parenting stressors and young adolescents' depressive symptoms: Does high vagal suppression offer protection?

    Science.gov (United States)

    Fletcher, Anne C; Buehler, Cheryl; Buchanan, Christy M; Weymouth, Bridget B

    2017-03-01

    Grounded in a dual-risk, biosocial perspective of developmental psychopathology, this study examined the role of higher vagal suppression in providing young adolescents protection from four parenting stressors. It was expected that lower vagal suppression would increase youth vulnerability to the deleterious effects of these parenting stressors. Depressive symptoms were examined as a central marker of socioemotional difficulties during early adolescence. The four parenting stressors examined were interparental hostility, maternal use of harsh discipline, maternal inconsistent discipline, and maternal psychological control. Participants were 68 young adolescents (Grade 6) and their mothers. Greater vagal suppression provided protection (i.e., lower depressive symptoms) from interparental hostility, harsh discipline, and maternal psychological control for boys but not for girls. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Exercise-induced ventricular arrhythmias and vagal dysfunction in Chagas disease patients with no apparent cardiac involvement

    Directory of Open Access Journals (Sweden)

    Henrique Silveira Costa

    2015-04-01

    Full Text Available INTRODUCTION : Exercise-induced ventricular arrhythmia (EIVA and autonomic imbalance are considered as early markers of heart disease in Chagas disease (ChD patients. The objective of the present study was to verify the differences in the occurrence of EIVA and autonomic maneuver indexes between healthy individuals and ChD patients with no apparent cardiac involvement. METHODS : A total of 75 ChD patients with no apparent cardiac involvement, aged 44.7 (8.5 years, and 38 healthy individuals, aged 44.0 (9.2 years, were evaluated using echocardiography, symptom-limited treadmill exercise testing and autonomic function tests. RESULTS : The occurrence of EIVA was higher in the chagasic group (48% than in the control group (23.7% during both the effort and the recovery phases. Frequent ventricular contractions occurred only in the patient group. Additionally, the respiratory sinus arrhythmia index was significantly lower in the chagasic individuals compared with the control group. CONCLUSIONS : ChD patients with no apparent cardiac involvement had a higher frequency of EIVA as well as more vagal dysfunction by respiratory sinus arrhythmia. These results suggest that even when asymptomatic, ChD patients possess important arrhythmogenic substrates and subclinical disease.

  5. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons

    Science.gov (United States)

    Babic, Tanja; Troy, Amanda E; Fortna, Samuel R; Browning, Kirsteen N

    2012-01-01

    Background Intestinal glucose induces gastric relaxation via vagally mediated sensory-motor reflexes. Glucose can alter the activity of gastrointestinal (GI) vagal afferent (sensory) neurons directly, via closure of ATP-sensitive potassium channels, as well as indirectly, via the release of 5-hydroxytryptamine (5-HT) from mucosal enteroendocrine cells. We hypothesized that glucose may also be able to modulate the ability of GI vagal afferent neurons to respond to the released 5-HT, via regulation of neuronal 5-HT3 receptors. Methods Whole cell patch clamp recordings were made from acutely dissociated GI-projecting vagal afferent neurons exposed to equiosmolar Krebs’ solution containing different concentrations of D-glucose (1.25–20mM) and the response to picospritz application of 5-HT assessed. The distribution of 5-HT3 receptors in neurons exposed to different glucose concentrations was also assessed immunohistochemically. Key Results Increasing or decreasing extracellular D-glucose concentration increased or decreased, respectively, the 5-HT-induced inward current as well as the proportion of 5-HT3 receptors associated with the neuronal membrane. These responses were blocked by the Golgi-disrupting agent Brefeldin-A (5µM) suggesting involvement of a protein trafficking pathway. Furthermore, L-glucose did not mimic the response of D-glucose implying that metabolic events downstream of neuronal glucose uptake are required in order to observe the modulation of 5-HT3 receptor mediated responses. Conclusions & Inferences These results suggest that, in addition to inducing the release of 5-HT from enterochromaffin cells, glucose may also increase the ability of GI vagal sensory neurons to respond to the released 5-HT, providing a means by which the vagal afferent signal can be amplified or prolonged. PMID:22845622

  6. Clonidine, an alpha2-receptor agonist, diminishes GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Philbin, Kerry E; Bateman, Ryan J; Mendelowitz, David

    2010-08-06

    In hypertension, there is an autonomic imbalance in which sympathetic activity dominates over parasympathetic control. Parasympathetic activity to the heart originates from cardiac vagal neurons located in the nucleus ambiguus. Presympathetic neurons that project to sympathetic neurons in the spinal cord are located in the ventral brainstem in close proximity to cardiac vagal neurons, and many of these presympathetic neurons are catecholaminergic. In addition to their projection to the spinal cord, many of these presympathetic neurons have axon collaterals that arborize into neighboring cardiorespiratory locations and likely release norepinephrine onto nearby neurons. Activation of alpha(2)-adrenergic receptors in the central nervous system evokes a diverse range of physiological effects, including reducing blood pressure. This study tests whether clonidine, an alpha(2)-adrenergic receptor agonist, alters excitatory glutamatergic, and/or inhibitory GABAergic or glycinergic synaptic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Cardiac vagal neurons were identified in an in vitro brainstem slice preparation, and synaptic events were recording using whole cell voltage clamp methodologies. Clonidine significantly inhibited GABAergic neurotransmission but had no effect on glycinergic or glutamatergic pathways to cardiac vagal neurons. This diminished inhibitory GABAergic neurotransmission to cardiac vagal neurons would increase parasympathetic activity to the heart, decreasing heart rate and blood pressure. The results presented here provide a cellular substrate for the clinical use of clonidine as a treatment for hypertension as well as a role in alleviating posttraumatic stress disorder by evoking an increase in parasympathetic cardiac vagal activity, and a decrease in heart rate and blood pressure. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Interactions Between Epinephrine, Ascending Vagal Fibers and Central Noradrenergic Systems in Modulating Memory for Emotionally Arousing Events.

    Directory of Open Access Journals (Sweden)

    Cedric L. Williams

    2012-06-01

    Full Text Available It is well established that exposure to emotionally laden events initiates secretion of the arousal related hormone epinephrine in the periphery. These neuroendocrine changes and the subsequent increase in peripheral physiological output play an integral role in modulating brain systems involved in memory formation. The impermeability of the blood brain barrier to epinephrine represents an important obstacle in understanding how peripheral hormones initiate neurochemical changes in the brain that lead to effective memory formation. This obstacle necessitated the identity of a putative pathway capable of conveying physiological changes produced by epinephrine to limbic structures that incorporate arousal and affect related information into memory. A major theme of the proposed studies is that ascending fibers of the vagus nerve may represent such a mechanism. This hypothesis was tested by evaluating the contribution of ascending vagal fibers in modulating memory for responses learned under behavioral conditions that produce emotional arousal by manipulating appetitive stimuli. A combination of electrophysiological recording of vagal afferent fibers and in vivo microdialysis was employed in a second study to simultaneously assess how elevations in peripheral levels of epinephrine affect vagal nerve discharge and the subsequent potentiation of norepinephrine release in the basolateral amygdala. The final study used double immunohistochemistry labeling of c-fos and dopamine beta hydroxylase, the enzyme for norepinephrine synthesis to determine if epinephrine administration alone or stimulation of the vagus nerve at an intensity identical to that which improved memory in Experiment 1 produces similar patterns of neuronal activity in brain areas involved in processing memory for emotional events. Findings emerging from this collection of studies establish the importance of ascending fibers of the vagus nerve as an essential pathway for conveying the

  8. Relationship between vagal tone, cortisol, TNF-alpha, epinephrine and negative affects in Crohn's disease and irritable bowel syndrome.

    Science.gov (United States)

    Pellissier, Sonia; Dantzer, Cécile; Mondillon, Laurie; Trocme, Candice; Gauchez, Anne-Sophie; Ducros, Véronique; Mathieu, Nicolas; Toussaint, Bertrand; Fournier, Alicia; Canini, Frédéric; Bonaz, Bruno

    2014-01-01

    Crohn's disease (CD) and irritable bowel syndrome (IBS) involve brain-gut dysfunctions where vagus nerve is an important component. The aim of this work was to study the association between vagal tone and markers of stress and inflammation in patients with CD or IBS compared to healthy subjects (controls). The study was performed in 73 subjects (26 controls, 21 CD in remission and 26 IBS patients). The day prior to the experiment, salivary cortisol was measured at 8:00 AM and 10:00 PM. The day of the experiment, subjects completed questionnaires for anxiety (STAI) and depressive symptoms (CES-D). After 30 min of rest, ECG was recorded for heart rate variability (HRV) analysis. Plasma cortisol, epinephrine, norepinephrine, TNF-alpha and IL-6 were measured in blood samples taken at the end of ECG recording. Compared with controls, CD and IBS patients had higher scores of state-anxiety and depressive symptomatology. A subgroup classification based on HRV-normalized high frequency band (HFnu) as a marker of vagal tone, showed that control subjects with high vagal tone had significantly lower evening salivary cortisol levels than subjects with low vagal tone. Such an effect was not observed in CD and IBS patients. Moreover, an inverse association (r =  -0.48; p<0.05) was observed between the vagal tone and TNF-alpha level in CD patients exclusively. In contrast, in IBS patients, vagal tone was inversely correlated with plasma epinephrine (r =  -0.39; p<0.05). No relationship was observed between vagal tone and IL-6, norepinephrine or negative affects (anxiety and depressive symptomatology) in any group. In conclusion, these data argue for an imbalance between the hypothalamus-pituitary-adrenal axis and the vagal tone in CD and IBS patients. Furthermore, they highlight the specific homeostatic link between vagal tone and TNF-alpha in CD and epinephrine in IBS and argue for the relevance of vagus nerve reinforcement interventions in those diseases.

  9. Relationship between vagal tone, cortisol, TNF-alpha, epinephrine and negative affects in Crohn's disease and irritable bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Sonia Pellissier

    Full Text Available Crohn's disease (CD and irritable bowel syndrome (IBS involve brain-gut dysfunctions where vagus nerve is an important component. The aim of this work was to study the association between vagal tone and markers of stress and inflammation in patients with CD or IBS compared to healthy subjects (controls. The study was performed in 73 subjects (26 controls, 21 CD in remission and 26 IBS patients. The day prior to the experiment, salivary cortisol was measured at 8:00 AM and 10:00 PM. The day of the experiment, subjects completed questionnaires for anxiety (STAI and depressive symptoms (CES-D. After 30 min of rest, ECG was recorded for heart rate variability (HRV analysis. Plasma cortisol, epinephrine, norepinephrine, TNF-alpha and IL-6 were measured in blood samples taken at the end of ECG recording. Compared with controls, CD and IBS patients had higher scores of state-anxiety and depressive symptomatology. A subgroup classification based on HRV-normalized high frequency band (HFnu as a marker of vagal tone, showed that control subjects with high vagal tone had significantly lower evening salivary cortisol levels than subjects with low vagal tone. Such an effect was not observed in CD and IBS patients. Moreover, an inverse association (r =  -0.48; p<0.05 was observed between the vagal tone and TNF-alpha level in CD patients exclusively. In contrast, in IBS patients, vagal tone was inversely correlated with plasma epinephrine (r =  -0.39; p<0.05. No relationship was observed between vagal tone and IL-6, norepinephrine or negative affects (anxiety and depressive symptomatology in any group. In conclusion, these data argue for an imbalance between the hypothalamus-pituitary-adrenal axis and the vagal tone in CD and IBS patients. Furthermore, they highlight the specific homeostatic link between vagal tone and TNF-alpha in CD and epinephrine in IBS and argue for the relevance of vagus nerve reinforcement interventions in those diseases.

  10. Experimental visualization of rapid maneuvering fish

    Science.gov (United States)

    Daigh, S.; Techet, A. H.

    2003-11-01

    A freshwater tropical fish, Danio aequippinatus, is studied undergoing rapid turning and fast starting maneuvers. This agile species of fish is ideal for this study as it is capable of quick turning and darting motions up to 5g's. The fgish studied are 4-5 cm in length. The speed and kinematics of the maneuvering is determined by video analysis. Planar and stereo Particle Image Velocimetry (PIV) is used to map the vortical patterns in the wake of the maneuvering fish. PIV visualizations reveal that during C-shaped maneuvers a ring shaped jet vortex is formed. Fast starting behavior is also presented. PIV data is used to approixmate the thrust vectoring force produced during each maneuver.

  11. Expression of Sex Steroid Hormone Receptors in Vagal Motor Neurons Innervating the Trachea and Esophagus in Mouse

    International Nuclear Information System (INIS)

    Mukudai, Shigeyuki; Ichi Matsuda, Ken; Bando, Hideki; Takanami, Keiko; Nishio, Takeshi; Sugiyama, Yoichiro; Hisa, Yasuo; Kawata, Mitsuhiro

    2016-01-01

    The medullary vagal motor nuclei, the nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMV), innervate the respiratory and gastrointestinal tracts. We conducted immunohistochemical analysis of expression of the androgen receptor (AR) and estrogen receptor α (ERα), in relation to innervation of the trachea and esophagus via vagal motor nuclei in mice. AR and ERα were expressed in the rostral NA and in part of the DMV. Tracing experiments using cholera toxin B subunit demonstrated that neurons of vagal motor nuclei that innervate the trachea and esophagus express AR and ERα. There was no difference in expression of sex steroid hormone receptors between trachea- and esophagus-innervating neurons. These results suggest that sex steroid hormones may act on vagal motor nuclei via their receptors, thereby regulating functions of the trachea and esophagus

  12. Effects of vasoactive intestinal polypeptide on heart rate in relation to vagal cardioacceleration in conscious dogs

    NARCIS (Netherlands)

    Roossien, A; Brunstig, J.R; Nijmeijer, A; Zaagsma, Hans; Zijlstra, W.G

    Objective: The vagal cardiac accelerator (VCA) system takes part in the nervous control of the heart rate. In the present study we tried to adduce evidence that vasoactive intestinal polypeptide (VLP) contributes to vagally induced cardioacceleration. Methods: The effect of VIP on heart rate and

  13. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and substance P in neural areas mediating motion-induced emesis: Effects of vagal stimulation on GAD immunoreactivity

    Science.gov (United States)

    Damelio, F.; Gibbs, M. A.; Mehler, W. R.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid (GABA) by means of its biosynthetic enzyme glutamic acid decarboxylase (GAD) and the neuropeptide substance P in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), and gelatinous nucleus (GEL). In addition, electrical stimulation was applied to the night vagus nerve at the cervical level to assess the effects on GAD-immunoreactivity (GAR-IR). GAD-IR terminals and fibers were observed in the AP, ASP, NTS, and GEL. They showed pronounced density at the level of the ASP and gradual decrease towards the solitary complex. Nerve cells were not labelled in our preparations. Ultrastructural studies showed symmetric or asymmetric synaptic contracts between labelled terminals and non-immunoreactive dendrites, axons, or neurons. Some of the labelled terminals contained both clear- and dense-core vesicles. Our preliminary findings, after electrical stimulation of the vagus nerve, revealed a bilateral decrease of GAD-IR that was particularly evident at the level of the ASP. SP-immunoreactive (SP-IR) terminals and fibers showed varying densities in the AP, ASP, NTS, and GEL. In our preparations, the lateral sub-division of the NTS showed the greatest accumulation. The ASP showed medium density of immunoreactive varicosities and terminals and the AP and GEL displayed scattered varicose axon terminals. The electron microscopy revealed that all immunoreactive terminals contained clear-core vesicles which make symmetric or asymmetric synaptic contact with unlabelled dendrites. It is suggested that the GABAergic terminals might correspond to vagal afferent projections and that GAD/GABA and substance P might be co-localized in the same terminal allowing the possibility of a regulated release of the transmitters in relation to demands.

  14. 33 CFR 84.23 - Maneuvering light.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Maneuvering light. 84.23 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.23 Maneuvering light. Notwithstanding the provisions of § 84.03(f), the maneuvering light described in Rule 34(b) shall be placed...

  15. Malignant Transformation of Vagal Nerve Schwannoma in to ...

    African Journals Online (AJOL)

    Vagal schwannomas are benign, rare peripheral nerve sheath tumors in the head and neck region. Some physicians opt to closely observe cases of schwannoma of the neck on an outpatient basis rather than to perform radical surgery. However, there is a possibility, albeit rare, of malignant transformation of a.

  16. Sluggish vagal brake reactivity to physical exercise challenge in children with selective mutism.

    Science.gov (United States)

    Heilman, Keri J; Connolly, Sucheta D; Padilla, Wendy O; Wrzosek, Marika I; Graczyk, Patricia A; Porges, Stephen W

    2012-02-01

    Cardiovascular response patterns to laboratory-based social and physical exercise challenges were evaluated in 69 children and adolescents, 20 with selective mutism (SM), to identify possible neurophysiological mechanisms that may mediate the behavioral features of SM. Results suggest that SM is associated with a dampened response of the vagal brake to physical exercise that is manifested as reduced reactivity in heart rate and respiration. Polyvagal theory proposes that the regulation of the vagal brake is a neurophysiological component of an integrated social engagement system that includes the neural regulation of the laryngeal and pharyngeal muscles. Within this theoretical framework, sluggish vagal brake reactivity may parallel an inability to recruit efficiently the structures involved in speech. Thus, the findings suggest that dampened autonomic reactivity during mobilization behaviors may be a biomarker of SM that can be assessed independent of the social stimuli that elicit mutism.

  17. Peakonsul Jaanus Kirikmäe andis teenetemärgi praost Thomas Vagale / Airi Vaga ; foto: Harold Karu

    Index Scriptorium Estoniae

    Vaga, Airi, 1940-

    2008-01-01

    President Toomas Hendrik Ilves annetas iseseisvuspäeva puhul USA I praostkonna praostile Thomas Vagale Valgetähe IV klassi teenetemärgi. Teenetemärgi andis Thomas Vagale üle Eesti Vabariigi peakonsul Jaanus Kirikmäe

  18. Relationship between Vagal Tone, Cortisol, TNF-Alpha, Epinephrine and Negative Affects in Crohn’s Disease and Irritable Bowel Syndrome

    Science.gov (United States)

    Pellissier, Sonia; Dantzer, Cécile; Mondillon, Laurie; Trocme, Candice; Gauchez, Anne-Sophie; Ducros, Véronique; Mathieu, Nicolas; Toussaint, Bertrand; Fournier, Alicia; Canini, Frédéric; Bonaz, Bruno

    2014-01-01

    Crohn’s disease (CD) and irritable bowel syndrome (IBS) involve brain-gut dysfunctions where vagus nerve is an important component. The aim of this work was to study the association between vagal tone and markers of stress and inflammation in patients with CD or IBS compared to healthy subjects (controls). The study was performed in 73 subjects (26 controls, 21 CD in remission and 26 IBS patients). The day prior to the experiment, salivary cortisol was measured at 8∶00 AM and 10∶00 PM. The day of the experiment, subjects completed questionnaires for anxiety (STAI) and depressive symptoms (CES-D). After 30 min of rest, ECG was recorded for heart rate variability (HRV) analysis. Plasma cortisol, epinephrine, norepinephrine, TNF-alpha and IL-6 were measured in blood samples taken at the end of ECG recording. Compared with controls, CD and IBS patients had higher scores of state-anxiety and depressive symptomatology. A subgroup classification based on HRV-normalized high frequency band (HFnu) as a marker of vagal tone, showed that control subjects with high vagal tone had significantly lower evening salivary cortisol levels than subjects with low vagal tone. Such an effect was not observed in CD and IBS patients. Moreover, an inverse association (r = −0.48; p<0.05) was observed between the vagal tone and TNF-alpha level in CD patients exclusively. In contrast, in IBS patients, vagal tone was inversely correlated with plasma epinephrine (r = −0.39; p<0.05). No relationship was observed between vagal tone and IL-6, norepinephrine or negative affects (anxiety and depressive symptomatology) in any group. In conclusion, these data argue for an imbalance between the hypothalamus-pituitary-adrenal axis and the vagal tone in CD and IBS patients. Furthermore, they highlight the specific homeostatic link between vagal tone and TNF-alpha in CD and epinephrine in IBS and argue for the relevance of vagus nerve reinforcement interventions in those diseases. PMID

  19. Transcranial direct-current stimulation as treatment in epilepsy.

    Science.gov (United States)

    Gschwind, Markus; Seeck, Margitta

    2016-12-01

    Neuromodulation (NM) is a complementary therapy for patients with drug-resistant epilepsy. Vagal nerve stimulation and deep brain stimulation of the anterior thalamus are established techniques and have shown their efficacy in lowering seizure frequency, but they are invasive and rarely render patients seizure-free. Non-invasive NM techniques are therefore increasingly investigated in a clinical context. Areas covered: Current knowledge about transcranial direct-current stimulation (tDCS) and other non-invasive NM in patients with epilepsy, based on the available animal and clinical studies from PubMed search. Expert commentary: tDCS modulates neuronal membrane potentials, and consequently alters cortical excitability. Cathodal stimulation leads to cortical inhibition, which is of particular importance in epilepsy treatment. The antiepileptic efficacy is promising but still lacks systematic studies. The beneficial effect, seen in ~20%, outlasts the duration of stimulation, indicating neuronal plasticity and is therefore of great interest to obtain long-term effects.

  20. Cardiac vagal tone, a non-invasive measure of parasympathetic tone, is a clinically relevant tool in Type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Brock, C; Jessen, N; Brock, B

    2017-01-01

    AIMS: To compare a novel index of parasympathetic tone, cardiac vagal tone, with established autonomic variables and to test the hypotheses that (1) cardiac vagal tone would be associated with established time and frequency domain measures of heart rate and (2) cardiac vagal tone would be lower...... identification of people with Type 1 diabetes who should undergo formal autonomic function testing....

  1. Dexmedetomidine decreases inhibitory but not excitatory neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Sharp, Douglas B; Wang, Xin; Mendelowitz, David

    2014-07-29

    Dexmedetomidine, an α2 adrenergic agonist, is a useful sedative but can also cause significant bradycardia. This decrease in heart rate may be due to decreased central sympathetic output as well as increased parasympathetic output from brainstem cardiac vagal neurons. In this study, using whole cell voltage clamp methodology, the actions of dexmedetomidine on excitatory glutamatergic and inhibitory GABAergic and glycinergic neurotransmission to parasympathetic cardiac vagal neurons in the rat nucleus ambiguus was determined. The results indicate that dexmedetomidine decreases both GABAergic and glycinergic inhibitory input to cardiac vagal neurons, with no significant effect on excitatory input. These results provide a mechanism for dexmedetomidine induced bradycardia and has implications for the management of this potentially harmful side effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Vagal withdrawal during endoscopic retrograde cholangiopancreatography

    DEFF Research Database (Denmark)

    Christensen, M; Rasmussen, Verner; Schulze, S

    2000-01-01

    BACKGROUND: Patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) are at risk of developing cardiorespiratory complications, but the mechanism is still unknown. Treatment with metoprolol 2 h before the endoscopy has been shown to decrease the incidence of myocardial ischaemia......: The existence of a defence-like reaction ('vagal withdrawal') during ERCP has been shown. Metoprolol given 2 h before the procedure did not affect the occurrence of this phenomenon. The interaction of other periendoscopic factors is still unclear and should be studied further....

  3. Low Vagal Tone Magnifies the Association Between Psychosocial Stress Exposure and Internalizing Psychopathology in Adolescents

    Science.gov (United States)

    McLaughlin, Katie A.; Rith-Najarian, Leslie; Dirks, Melanie A.; Sheridan, Margaret A.

    2014-01-01

    Vagal tone is a measure of cardiovascular function that facilitates adaptive responses to environmental challenge. Low vagal tone is associated with poor emotional and attentional regulation in children and has been conceptualized as a marker of sensitivity to stress. We investigated whether the associations of a wide range of psychosocial stressors with internalizing and externalizing psychopathology were magnified in adolescents with low vagal tone. Resting heart period data were collected from a diverse community sample of adolescents (ages 13–17; N =168). Adolescents completed measures assessing internalizing and externalizing psychopathology and exposure to stressors occurring in family, peer, and community contexts. Respiratory sinus arrhythmia (RSA) was calculated from the interbeat interval time series. We estimated interactions between RSA and stress exposure in predicting internalizing and externalizing symptoms and evaluated whether interactions differed by gender. Exposure to psychosocial stressors was associated strongly with psychopathology. RSA was unrelated to internalizing or externalizing problems. Significant interactions were observed between RSA and child abuse, community violence, peer victimization, and traumatic events in predicting internalizing but not externalizing symptoms. Stressors were positively associated with internalizing symptoms in adolescents with low RSA but not in those with high RSA. Similar patterns were observed for anxiety and depression. These interactions were more consistently observed for male than female individuals. Low vagal tone is associated with internalizing psychopathology in adolescents exposed to high levels of stressors. Measurement of vagal tone in clinical settings might provide useful information about sensitivity to stress in child and adolescent clients. PMID:24156380

  4. 14 CFR 27.337 - Limit maneuvering load factor.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factor. 27.337... Limit maneuvering load factor. The rotorcraft must be designed for— (a) A limit maneuvering load factor... load factor not less than 2.0 and any negative limit maneuvering load factor of not less than −0.5 for...

  5. 14 CFR 29.337 - Limit maneuvering load factor.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factor. 29.337... Limit maneuvering load factor. The rotorcraft must be designed for— (a) A limit maneuvering load factor... load factor not less than 2.0 and any negative limit maneuvering load factor of not less than −0.5 for...

  6. Neonatal morbidity associated with shoulder dystocia maneuvers.

    Science.gov (United States)

    Spain, Janine E; Frey, Heather A; Tuuli, Methodius G; Colvin, Ryan; Macones, George A; Cahill, Alison G

    2015-03-01

    We sought to examine neonatal morbidity associated with different maneuvers used among term patients who experience a shoulder dystocia. We conducted a retrospective cohort study of all women who experienced a clinically diagnosed shoulder dystocia at term requiring obstetric maneuvers at a single tertiary care hospital from 2005 through 2008. We excluded women with major fetal anomaly, intrauterine death, multiple gestation, and preterm. Women exposed to Rubin maneuver, Wood's screw maneuver, or delivery of the posterior arm were compared to women delivered by McRoberts/suprapubic pressure only, which served as the reference group. The primary outcome was a composite morbidity of neonatal injury (defined as clavicular or humeral fracture or brachial plexus injury) and neonatal depression (defined as Apgar dystocia, defined as time from delivery of fetal head to delivery of shoulders. Among the 231 women who met inclusion criteria, 135 were delivered by McRoberts/suprapubic pressure alone (57.9%), 83 women were exposed to Rubin maneuver, 53 women were exposed to Wood's screw, and 36 women were exposed to delivery of posterior arm. Individual maneuvers were not associated with composite morbidity, neonatal injury, or neonatal depression after adjusting for nulliparity and duration of shoulder dystocia. We found no association between shoulder dystocia maneuvers and neonatal morbidity after adjusting for duration, a surrogate for severity. Our results demonstrate that clinicians should utilize the maneuver most likely to result in successful delivery. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. 23 CFR 660.517 - Maneuver area roads.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Maneuver area roads. 660.517 Section 660.517 Highways... PROGRAMS (DIRECT FEDERAL) Defense Access Roads § 660.517 Maneuver area roads. (a) Claims by a highway agency for costs incurred to restore, to their former condition, roads damaged by maneuvers involving a...

  8. Roles for gut vagal sensory signals in determining energy availability and energy expenditure.

    Science.gov (United States)

    Schwartz, Gary J

    2018-08-15

    The gut sensory vagus transmits a wide range of meal-related mechanical, chemical and gut peptide signals from gastrointestinal and hepatic tissues to the central nervous system at the level of the caudal brainstem. Results from studies using neurophysiological, behavioral physiological and metabolic approaches that challenge the integrity of this gut-brain axis support an important role for these gut signals in the negative feedback control of energy availability by limiting food intake during a meal. These experimental approaches have now been applied to identify important and unanticipated contributions of the vagal sensory gut-brain axis to the control of two additional effectors of overall energy balance: the feedback control of endogenous energy availability through hepatic glucose production and metabolism, and the control of energy expenditure through brown adipose tissue thermogenesis. Taken together, these studies reveal the pleiotropic influences of gut vagal meal-related signals on energy balance, and encourage experimental efforts aimed at understanding how the brainstem represents, organizes and coordinates gut vagal sensory signals with these three determinants of energy homeostasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Flight Test Maneuvers for Efficient Aerodynamic Modeling

    Science.gov (United States)

    Morelli, Eugene A.

    2011-01-01

    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  10. Estimating maneuvers for precise relative orbit determination using GPS

    Science.gov (United States)

    Allende-Alba, Gerardo; Montenbruck, Oliver; Ardaens, Jean-Sébastien; Wermuth, Martin; Hugentobler, Urs

    2017-01-01

    Precise relative orbit determination is an essential element for the generation of science products from distributed instrumentation of formation flying satellites in low Earth orbit. According to the mission profile, the required formation is typically maintained and/or controlled by executing maneuvers. In order to generate consistent and precise orbit products, a strategy for maneuver handling is mandatory in order to avoid discontinuities or precision degradation before, after and during maneuver execution. Precise orbit determination offers the possibility of maneuver estimation in an adjustment of single-satellite trajectories using GPS measurements. However, a consistent formulation of a precise relative orbit determination scheme requires the implementation of a maneuver estimation strategy which can be used, in addition, to improve the precision of maneuver estimates by drawing upon the use of differential GPS measurements. The present study introduces a method for precise relative orbit determination based on a reduced-dynamic batch processing of differential GPS pseudorange and carrier phase measurements, which includes maneuver estimation as part of the relative orbit adjustment. The proposed method has been validated using flight data from space missions with different rates of maneuvering activity, including the GRACE, TanDEM-X and PRISMA missions. The results show the feasibility of obtaining precise relative orbits without degradation in the vicinity of maneuvers as well as improved maneuver estimates that can be used for better maneuver planning in flight dynamics operations.

  11. Meal parameters and vagal gastrointestinal afferents in mice that experienced early postnatal overnutrition.

    Science.gov (United States)

    Biddinger, Jessica E; Fox, Edward A

    2010-08-04

    Early postnatal overnutrition results in a predisposition to develop obesity due in part to hypothalamic and sympathetic dysfunction. Potential involvement of another major regulatory system component--the vagus nerve--has not been examined. Moreover, feeding disturbances have rarely been investigated prior to development of obesity when confounds due to obesity are minimized. To examine these issues, litters were culled on the day of birth to create small litters (SL; overnutrition), or normal size litters (NL; normal nutrition). Body weight, fat pad weight, meal patterns, and vagal sensory duodenal innervation were compared between SL and NL adult mice prior to development of obesity. Meal patterns were studied 18 h/day for 3 weeks using a balanced diet. Then vagal mechanoreceptors were labeled using anterograde transport of wheatgerm agglutinin-horseradish peroxidase injected into the nodose ganglion and their density and morphology were examined. Between postnatal day 1 and weaning, body weight of SL mice was greater than for NL mice. By young adulthood it was similar in both groups, whereas SL fat pad weight was greater in males, suggesting postnatal overnutrition produced a predisposition to obesity. SL mice exhibited increased food intake, decreased satiety ratio, and increased first meal rate (following mild food deprivation) compared to NL mice, suggesting postnatal overnutrition disrupted satiety. The density and structure of intestinal IGLEs appeared similar in SL and NL mice. Thus, although a vagal role cannot be excluded, our meal parameter and anatomical findings provided no evidence for significant postnatal overnutrition effects on vagal gastrointestinal afferents. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Less Empathic and More Reactive: The Different Impact of Childhood Maltreatment on Facial Mimicry and Vagal Regulation.

    Directory of Open Access Journals (Sweden)

    Martina Ardizzi

    Full Text Available Facial mimicry and vagal regulation represent two crucial physiological responses to others' facial expressions of emotions. Facial mimicry, defined as the automatic, rapid and congruent electromyographic activation to others' facial expressions, is implicated in empathy, emotional reciprocity and emotions recognition. Vagal regulation, quantified by the computation of Respiratory Sinus Arrhythmia (RSA, exemplifies the autonomic adaptation to contingent social cues. Although it has been demonstrated that childhood maltreatment induces alterations in the processing of the facial expression of emotions, both at an explicit and implicit level, the effects of maltreatment on children's facial mimicry and vagal regulation in response to facial expressions of emotions remain unknown. The purpose of the present study was to fill this gap, involving 24 street-children (maltreated group and 20 age-matched controls (control group. We recorded their spontaneous facial electromyographic activations of corrugator and zygomaticus muscles and RSA responses during the visualization of the facial expressions of anger, fear, joy and sadness. Results demonstrated a different impact of childhood maltreatment on facial mimicry and vagal regulation. Maltreated children did not show the typical positive-negative modulation of corrugator mimicry. Furthermore, when only negative facial expressions were considered, maltreated children demonstrated lower corrugator mimicry than controls. With respect to vagal regulation, whereas maltreated children manifested the expected and functional inverse correlation between RSA value at rest and RSA response to angry facial expressions, controls did not. These results describe an early and divergent functional adaptation to hostile environment of the two investigated physiological mechanisms. On the one side, maltreatment leads to the suppression of the spontaneous facial mimicry normally concurring to empathic understanding of

  13. Resection of cervical vagal schwannoma via a post-auricular approach.

    Science.gov (United States)

    Roh, Jong-Lyel

    2006-03-01

    Cervical vagal schwannomas are extremely rare and gross total resection is the standard treatment modality. However, because the conventional cervical approach leaves an incision scar in a visible area, other approaches need to be developed for young women who want the postoperative scar to be invisible. A 28-year-old female underwent complete resection of a 4x4 cm tumor in her right upper neck via a post-auricular approach using an inverted V-shaped incision along the post-auricular sulcus and hairline. The tumor was a schwannoma originating from the right cervical vagus nerve. Postoperatively, right vocal cord paralysis developed despite careful dissection but completely recovered within 6 months after surgery. The patient was satisfied with an invisible external scar which was hidden by her auricle and hair. A cervical vagal schwannoma can be successfully removed by making an incision in a potentially invisible area.

  14. General and Specific Strategies Used to Facilitate Locomotor Maneuvers.

    Directory of Open Access Journals (Sweden)

    Mengnan Wu

    Full Text Available People make anticipatory changes in gait patterns prior to initiating a rapid change of direction. How they prepare will change based on their knowledge of the maneuver. To investigate specific and general strategies used to facilitate locomotor maneuvers, we manipulated subjects' ability to anticipate the direction of an upcoming lateral "lane-change" maneuver. To examine specific anticipatory adjustments, we observed the four steps immediately preceding a maneuver that subjects were instructed to perform at a known time in a known direction. We hypothesized that to facilitate a specific change of direction, subjects would proactively decrease margin of stability in the future direction of travel. Our results support this hypothesis: subjects significantly decreased lateral margin of stability by 69% on the side ipsilateral to the maneuver during only the step immediately preceding the maneuver. This gait adaptation may have improved energetic efficiency and simplified the control of the maneuver. To examine general anticipatory adjustments, we observed the two steps immediately preceding the instant when subjects received information about the direction of the maneuver. When the maneuver direction was unknown, we hypothesized that subjects would make general anticipatory adjustments that would improve their ability to actively initiate a maneuver in multiple directions. This second hypothesis was partially supported as subjects increased step width and stance phase hip flexion during these anticipatory steps. These modifications may have improved subjects' ability to generate forces in multiple directions and maintain equilibrium during the onset and execution of the rapid maneuver. However, adapting these general anticipatory strategies likely incurred an additional energetic cost.

  15. Determining cardiac vagal threshold from short term heart rate complexity

    Directory of Open Access Journals (Sweden)

    Hamdan Rami Abou

    2016-09-01

    Full Text Available Evaluating individual aerobic exercise capacity is fundamental in sports and exercise medicine but associated with organizational and instrumental effort. Here, we extract an index related to common performance markers, the aerobic and anaerobic thresholds enabling the estimation of exercise capacity from a conventional sports watch supporting beatwise heart rate tracking. Therefore, cardiac vagal threshold (CVT was determined in 19 male subjects performing an incremental maximum exercise test. CVT varied around the anaerobic threshold AnT with mean deviation of 7.9 ± 17.7 W. A high correspondence of the two thresholds was indicated by Bland-Altman plots with limits of agreement −27.5 W and 43.4 W. Additionally, CVT was strongly correlated AnT (rp = 0.86, p < 0.001 and reproduced this marker well (rc = 0.81. We conclude, that cardiac vagal threshold derived from compression entropy time course can be useful to assess physical fitness in an uncomplicated way.

  16. Getting to the Heart of Masculinity Stressors: Masculinity Threats Induce Pronounced Vagal Withdrawal During a Speaking Task.

    Science.gov (United States)

    Kramer, Brandon L; Himmelstein, Mary S; Springer, Kristen W

    2017-12-01

    Previous work has found that traditional masculinity ideals and behaviors play a crucial role in higher rates of morbidity and mortality for men. Some studies also suggest that threatening men's masculinity can be stressful. Over time, this stress can weigh on men's cardiovascular and metabolic systems, which may contribute to men's higher rates of cardiometabolic health issues. The purpose of this study is to explore how masculinity threats affect men's heart rate and heart rate variability reactivity (i.e., vagal withdrawal) to masculinity feedback on a social speaking task. Two hundred and eighty-five undergraduate males were randomly assigned to one of six conditions during a laboratory-based speech task. They received one of two feedback types (masculinity or control) and one of three feedback levels (low, high, or dropping) in order to assess whether masculinity threats influence heart rate reactivity and vagal withdrawal patterns during the speech task. Men who receive low masculinity feedback during the speech task experienced more pronounced vagal withdrawal relative to those who received the control. Masculinity threats can induce vagal withdrawal that may accumulate over the life course to contribute to men's relatively worse cardiometabolic health.

  17. Architecture of vagal motor units controlling striated muscle of esophagus: peripheral elements patterning peristalsis?

    Science.gov (United States)

    Powley, Terry L; Mittal, Ravinder K; Baronowsky, Elizabeth A; Hudson, Cherie N; Martin, Felecia N; McAdams, Jennifer L; Mason, Jacqueline K; Phillips, Robert J

    2013-12-01

    Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n=78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are "hardwired," in the peripheral architecture of esophageal motor units. © 2013.

  18. 46 CFR 109.564 - Maneuvering characteristics.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Maneuvering characteristics. 109.564 Section 109.564 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.564 Maneuvering characteristics. (a) The master or person in charge of each...

  19. Managing Lafora body disease with vagal nerve stimulation.

    Science.gov (United States)

    Mikati, Mohamad A; Tabbara, Faysal

    2017-03-01

    A 17-year-old female, of consanguineous parents, presented with a history of seizures and cognitive decline since the age of 12 years. She had absence, focal dyscognitive, generalized myoclonic, and generalized tonic-clonic seizures, all of which were drug resistant. The diagnosis of Lafora body disease was made based on a compatible clinical, EEG, seizure semiology picture and a disease-causing homozygous mutation in the EPM2A gene. A vagus nerve stimulator (VNS) was inserted and well tolerated with a steady decrease and then stabilization in seizure frequency during the six months following insertion (months 1-6). At follow-up, at 12 months after VNS insertion, there was a persistent improvement. Seizure frequency during months 7-12, compared to pre-VNS, was documented as follows: the absence seizures observed by the family had decreased from four episodes per month to 0 per month, the focal dyscognitive seizures from 300 episodes per month to 90 per month, the generalized myoclonic seizures from 90 clusters per month to eight per month, and the generalized tonic-clonic seizures from 30 episodes per month to 1.5 per month on average. To our knowledge, this is the second case reported in the literature showing efficacy of VNS in the management of seizures in Lafora body disease.

  20. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity.

    Science.gov (United States)

    Sen, Tanusree; Cawthon, Carolina R; Ihde, Benjamin Thomas; Hajnal, Andras; DiLorenzo, Patricia M; de La Serre, Claire B; Czaja, Krzysztof

    2017-05-01

    Obesity is one of the major health issues in the United States. Consumption of diets rich in energy, notably from fats and sugars (high-fat/high-sugar diet: HF/HSD) is linked to the development of obesity and a popular dietary approach for weight loss is to reduce fat intake. Obesity research traditionally uses low and high fat diets and there has been limited investigation of the potential detrimental effects of a low-fat/high-sugar diet (LF/HSD) on body fat accumulation and health. Therefore, in the present study, we investigated the effects of HF/HSD and LF/HSD on microbiota composition, gut inflammation, gut-brain vagal communication and body fat accumulation. Specifically, we tested the hypothesis that LF/HSD changes the gut microbiota, induces gut inflammation and alters vagal gut-brain communication, associated with increased body fat accumulation. Sprague-Dawley rats were fed an HF/HSD, LF/HSD or control low-fat/low-sugar diet (LF/LSD) for 4weeks. Body weight, caloric intake, and body composition were monitored daily and fecal samples were collected at baseline, 1, 6 and 27days after the dietary switch. After four weeks, blood and tissues (gut, brain, liver and nodose ganglia) were sampled. Both HF/HSD and LF/HSD-fed rats displayed significant increases in body weight and body fat compared to LF/LSD-fed rats. 16S rRNA sequencing showed that both HF/HSD and LF/HSD-fed animals exhibited gut microbiota dysbiosis characterized by an overall decrease in bacterial diversity and an increase in Firmicutes/Bacteriodetes ratio. Dysbiosis was typified by a bloom in Clostridia and Bacilli and a marked decrease in Lactobacillus spp. LF/HSD-fed animals showed a specific increase in Sutterella and Bilophila, both Proteobacteria, abundances of which have been associated with liver damage. Expression of pro-inflammatory cytokines, such as IL-6, IL-1β and TNFα, was upregulated in the cecum while levels of tight junction protein occludin were downregulated in both HF

  1. Vagal and sympathetic activity in burnouts during a mentally demanding workday

    NARCIS (Netherlands)

    Zanstra, Ydwine J.; Schellekens, Jan M. H.; Schaap, Cas; Kooistra, Libbe

    2006-01-01

    Objective: We study differences in task performance and related sympathetic-vagal reaction patterns between burnouts and controls during a mentally demanding workday. Method: Thirty-nine adults with burnout and 40 healthy controls performed mental tasks during a simulated workday. At pretest, just

  2. Exposure to a high fat diet during the perinatal period alters vagal motoneurone excitability, even in the absence of obesity.

    Science.gov (United States)

    Bhagat, Ruchi; Fortna, Samuel R; Browning, Kirsteen N

    2015-01-01

    Obesity is recognized as being multifactorial in origin, involving both genetic and environmental factors. The perinatal period is known to be critically important in the development of neural circuits responsible for energy homeostasis and the integration of autonomic reflexes. Diet-induced obesity alters the biophysical, pharmacological and morphological properties of vagal neurocircuits regulating upper gastrointestinal tract functions, including satiety. Less information is available, however, regarding the effects of a high fat diet (HFD) itself on the properties of vagal neurocircuits. The present study was designed to test the hypothesis that exposure to a HFD during the perinatal period alters the electrophysiological, pharmacological and morphological properties of vagal efferent motoneurones innervating the stomach. Our data indicate that perinatal HFD decreases the excitability of gastric-projecting dorsal motor nucleus neurones and dysregulates neurotransmitter release from synaptic inputs and that these alterations occur prior to the development of obesity. These findings represent the first direct evidence that exposure to a HFD modulates the processing of central vagal neurocircuits even in the absence of obesity. The perinatal period is critically important to the development of autonomic neural circuits responsible for energy homeostasis. Vagal neurocircuits are vital to the regulation of upper gastrointestinal functions, including satiety. Diet-induced obesity modulates the excitability and responsiveness of both peripheral vagal afferents and central vagal efferents but less information is available regarding the effects of diet per se on vagal neurocircuit functions. The aims of this study were to investigate whether perinatal exposure to a high fat diet (HFD) dysregulated dorsal motor nucleus of the vagus (DMV) neurones, prior to the development of obesity. Whole cell patch clamp recordings were made from gastric-projecting DMV neurones in thin

  3. IN VITRO EXAMINATION OF ONTOGENESIS OF DEVELOPING NEURONAL CELLS IN VAGAL NUCLEI IN MEDULLA OBLONGATA IN NEWBORNS

    Science.gov (United States)

    Islami, Hilmi; Shabani, Ragip; Bexheti, Sadi; Behluli, Ibrahim; Šukalo, Aziz; Raka, Denis; Koliqi, Rozafa; Haliti, Naim; Dauti, Hilmi; Krasniqi, Shaip; Disha, Mentor

    2008-01-01

    The development of neuron cells in vagal nerve nuclei in medulla oblongata was studied in vitro in live newborns and stillborns from different cases. Morphological changes were studied in respiratory nuclei of dorsal motor centre (DMNV) and nucleus tractus solitarius (NTS) in medulla oblongata. The material from medulla oblongata was fixated in 10μ buffered formalin solution. Fixated material was cut in series of 10μ thickness, with starting point from obex in ± 4 mm thickness. Special histochemical and histoenzymatic methods for central nervous system were used: cresyl echt violet coloring, tolyidin blue, Sevier-Munger modification and Grimelius coloring. In immature newborns (abortions and immature) in dorsal motor nucleus of the vagus (DMNV) population stages S1, S2, S3 are dominant. In neuron population in vagal sensory nuclei (NTS) stages S1, S2 are dominant. In more advanced stages of development of newborns (premature), in DMNV stages S3 and S4 are seen and in NTS stages S2 and S3 are dominant. In mature phase of newborns (maturity) in vagal nucleus DMNV stages S5 and S6 are dominant, while in sensory nucleus NTS stages S4 and S5 are dominant. These data suggest that neuron population in dorsal motor nucleus of the vagus (DMNV) are more advanced in neuronal maturity in comparison with sensory neuron population of vagal sensory nucleus NTS. This occurrence shows that phylogenetic development of motor complex is more advanced than the sensory one, which is expected to take new information’s from the extra uterine life after birth (extra uterine vagal phenotype) PMID:19125713

  4. Exercise training preserves vagal preganglionic neurones and restores parasympathetic tonus in heart failure.

    Science.gov (United States)

    Ichige, Marcelo H A; Santos, Carla R; Jordão, Camila P; Ceroni, Alexandre; Negrão, Carlos E; Michelini, Lisete C

    2016-11-01

    Heart Failure (HF) is accompanied by reduced ventricular function, activation of compensatory neurohormonal mechanisms and marked autonomic dysfunction characterized by exaggerated sympathoexcitation and reduced parasympathetic activity. With 6 weeks of exercise training, HF-related loss of choline acetyltransferase (ChAT)-positive vagal preganglionic neurones is avoided, restoring the parasympathetic tonus to the heart, and the immunoreactivity of dopamine β-hydroxylase-positive premotor neurones that drive sympathetic outflow to the heart is reduced. Training-induced correction of autonomic dysfunction occurs even with the persistence of abnormal ventricular function. Strong positive correlation between improved parasympathetic tonus to the heart and increased ChAT immunoreactivity in vagal preganglionic neurones after training indicates this is a crucial mechanism to restore autonomic function in heart failure. Exercise training is an efficient tool to attenuate sympathoexcitation, a hallmark of heart failure (HF). Although sympathetic modulation in HF is widely studied, information regarding parasympathetic control is lacking. We examined the combined effects of sympathetic and vagal tonus to the heart in sedentary (Sed) and exercise trained (ET) HF rats and the contribution of respective premotor and preganglionic neurones. Wistar rats submitted to coronary artery ligation or sham surgery were assigned to training or sedentary protocols for 6 weeks. After haemodynamic, autonomic tonus (atropine and atenolol i.v.) and ventricular function determinations, brains were collected for immunoreactivity assays (choline acetyltransferase, ChATir; dopamine β-hydroxylase, DBHir) and neuronal counting in the dorsal motor nucleus of vagus (DMV), nucleus ambiguus (NA) and rostroventrolateral medulla (RVLM). HF-Sed vs. SHAM-Sed exhibited decreased exercise capacity, reduced ejection fraction, increased left ventricle end diastolic pressure, smaller positive and negative

  5. Baroreflex deficiency induces additional impairment of vagal tone, diastolic function and calcium handling proteins after myocardial infarction

    Science.gov (United States)

    Mostarda, Cristiano; Rodrigues, Bruno; Medeiros, Alessandra; Moreira, Edson D; Moraes-Silva, Ivana C; Brum, Patricia C; Angelis, Katia De; Irigoyen, Maria-Cláudia

    2014-01-01

    Baroreflex dysfunction has been considered an important mortality predictor after myocardial infarction (MI). However, the impact of baroreflex deficiency prior to MI on tonic autonomic control and cardiac function, and on the profile of proteins associated with intracellular calcium handling has not yet been studied. The aim of the present study was to analyze how the impairment of baroreflex induced by sinoaortic denervation (SAD) prior to MI in rats affects the tonic autonomic control, ventricular function and cardiomyocyte calcium handling proteins. After 15 days of following or SAD surgery, rats underwent MI. Echocardiographic, hemodynamic, autonomic and molecular evaluations were performed 90 days after MI. Baroreflex impairment led to additional damage on: left ventricular remodeling, diastolic function, vagal tonus and intrinsic heart rate after MI. The loss of vagal component of the arterial baroreflex and vagal tonus were correlated with changes in the cardiac proteins involved in intracellular calcium homeostasis. Furthermore, additional increase in sodium calcium exchanger expression levels was associated with impaired diastolic function in experimental animals. Our findings strongly suggest that previous arterial baroreflex deficiency may induce additional impairment of vagal tonus, which was associated with calcium handling proteins abnormalities, probably triggering ventricular diastolic dysfunction after MI in rats. PMID:24936224

  6. Clonidine, an α2 receptor agonist, diminishes GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus

    OpenAIRE

    Philbin, Kerry E.; Bateman, Ryan J.; Mendelowitz, David

    2010-01-01

    In hypertension there is an autonomic imbalance in which sympathetic activity dominates over parasympathetic control. Parasympathetic activity to the heart originates from cardiac vagal neurons located in the nucleus ambiguus. Pre-sympathetic neurons that project to sympathetic neurons in the spinal cord are located in the ventral brainstem in close proximity to cardiac vagal neurons, and many of these pre-sympathetic neurons are catecholaminergic. In addition to their projection to the spina...

  7. Review about hiperventilation test and Valsalva Maneuver

    Directory of Open Access Journals (Sweden)

    Eduardo Antonio MENA-DOMÍNGUEZ

    2018-04-01

    Full Text Available Introduction and objective: With this paper, we pretend to explain the characteristics and the field of application of two clinical explorations used in the patient with suspected vestibular pathology, the hyperventilation maneuver and the Valsalva maneuver. Methodology: Narrative review. Results: Through different neurophysiological mechanisms, hyperventilation can induce nystagmus in cases of vestibular asymmetry, both peripheral and central. The Valsalva maneuver may also trigger nystagmus and vertigo because of direct transmission of internal ear pressure in cases of perilymphatic fistula, anomalies of the cranio-cervical junction (Arnold-Chiari malformation, and other ossicles, oval window and saccule pathologies. Discussion and conclusions: Both the hyperventilation test and the Valsalva maneuver should be included in the battery of tests for patients with vestibular pathology to, depending on the results obtained, anatomically locate the site of the lesion and justify the use of imaging techniques.

  8. Adaptive Maneuvering Frequency Method of Current Statistical Model

    Institute of Scientific and Technical Information of China (English)

    Wei Sun; Yongjian Yang

    2017-01-01

    Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.

  9. Maneuver Planning for Conjunction Risk Mitigation with Ground-track Control Requirements

    Science.gov (United States)

    McKinley, David

    2008-01-01

    The planning of conjunction Risk Mitigation Maneuvers (RMM) in the presence of ground-track control requirements is analyzed. Past RMM planning efforts on the Aqua, Aura, and Terra spacecraft have demonstrated that only small maneuvers are available when ground-track control requirements are maintained. Assuming small maneuvers, analytical expressions for the effect of a given maneuver on conjunction geometry are derived. The analytical expressions are used to generate a large trade space for initial RMM design. This trade space represents a significant improvement in initial maneuver planning over existing methods that employ high fidelity maneuver models and propagation.

  10. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication.

    Science.gov (United States)

    Bercik, P; Park, A J; Sinclair, D; Khoshdel, A; Lu, J; Huang, X; Deng, Y; Blennerhassett, P A; Fahnestock, M; Moine, D; Berger, B; Huizinga, J D; Kunze, W; McLean, P G; Bergonzelli, G E; Collins, S M; Verdu, E F

    2011-12-01

    The probiotic Bifidobacterium longum NCC3001 normalizes anxiety-like behavior and hippocampal brain derived neurotrophic factor (BDNF) in mice with infectious colitis. Using a model of chemical colitis we test whether the anxiolytic effect of B. longum involves vagal integrity, and changes in neural cell function. Methods  Mice received dextran sodium sulfate (DSS, 3%) in drinking water during three 1-week cycles. Bifidobacterium longum or placebo were gavaged daily during the last cycle. Some mice underwent subdiaphragmatic vagotomy. Behavior was assessed by step-down test, inflammation by myeloperoxidase (MPO) activity and histology. BDNF mRNA was measured in neuroblastoma SH-SY5Y cells after incubation with sera from B. longum- or placebo-treated mice. The effect of B. longum on myenteric neuron excitability was measured using intracellular microelectrodes. Chronic colitis was associated with anxiety-like behavior, which was absent in previously vagotomized mice. B. longum normalized behavior but had no effect on MPO activity or histological scores. Its anxiolytic effect was absent in mice with established anxiety that were vagotomized before the third DSS cycle. B. longum metabolites did not affect BDNF mRNA expression in SH-SY5Y cells but decreased excitability of enteric neurons. In this colitis model, anxiety-like behavior is vagally mediated. The anxiolytic effect of B. longum requires vagal integrity but does not involve gut immuno-modulation or production of BDNF by neuronal cells. As B. longum decreases excitability of enteric neurons, it may signal to the central nervous system by activating vagal pathways at the level of the enteric nervous system. © 2011 Blackwell Publishing Ltd.

  11. Cardiac vagal regulation in infancy predicts executive function and social competence in preschool: Indirect effects through language.

    Science.gov (United States)

    Whedon, Margaret; Perry, Nicole B; Calkins, Susan D; Bell, Martha A

    2018-05-21

    Parasympathetic nervous system functioning in infancy may serve a foundational role in the development of cognitive and socioemotional skills (Calkins, 2007). In this study (N = 297), we investigated the potential indirect effects of cardiac vagal regulation in infancy on children's executive functioning and social competence in preschool via expressive and receptive language in toddlerhood. Vagal regulation was assessed at 10 months during two attention conditions (social, nonsocial) via task-related changes in respiratory sinus arrhythmia (RSA). A path analysis revealed that decreased RSA from baseline in the nonsocial condition and increased RSA in the social condition were related to larger vocabularies in toddlerhood. Additionally, children's vocabulary sizes were positively related to their executive function and social competence in preschool. Indirect effects from vagal regulation in both contexts to both 4-year outcomes were significant, suggesting that early advances in language may represent a mechanism through which biological functioning in infancy impacts social and cognitive functioning in childhood. © 2018 Wiley Periodicals, Inc.

  12. Improved Maneuver Criteria Evaluation Program

    Science.gov (United States)

    1979-11-01

    If the rotor rpm breakpoint (OMGBL2) is le :-s than the mininum rotor rpm (OMEGMN), then the rpm bleed :ate (OMGBDI) will be the only bleed rate used...VCP =60 PSU 1 EEF = 1 OMGBD1=2 OMGBD3=0 OMGRC2=0 VERR = 2 MPRINT= 1 OMEGMN=300 OMGBL.2=4 OMGBL4=0 OMGRD2=0 MUF = 1 BINERT:2860 TRPMMN= 0 OMGBD2=0 OMGBD4...height is within 2 feet of the measured height. These comparisons show that the MCEP maneuvers are accurate for simulating these types of maneuvers

  13. Aqua/Aura Updated Inclination Adjust Maneuver Performance Prediction Model

    Science.gov (United States)

    Boone, Spencer

    2017-01-01

    This presentation will discuss the updated Inclination Adjust Maneuver (IAM) performance prediction model that was developed for Aqua and Aura following the 2017 IAM series. This updated model uses statistical regression methods to identify potential long-term trends in maneuver parameters, yielding improved predictions when re-planning past maneuvers. The presentation has been reviewed and approved by Eric Moyer, ESMO Deputy Project Manager.

  14. An overview of Suomi NPP VIIRS calibration maneuvers

    Science.gov (United States)

    Butler, James J.; Xiong, Xiaoxiong; Barnes, Robert A.; Patt, Frederick S.; Sun, Junqiang; Chiang, Kwofu

    2012-09-01

    The first Visible Infrared Imager Radiometer Suite (VIIRS) instrument was successfully launched on-board the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on October 28, 2011. Suomi NPP VIIRS observations are made in 22 spectral bands, from the visible (VIS) to the long-wave infrared (LWIR), and are used to produce 22 Environmental Data Records (EDRs) with a broad range of scientific applications. The quality of these VIIRS EDRs strongly depends on the quality of its calibrated and geo-located Sensor Date Records (SDRs). Built with a strong heritage to the NASA's EOS MODerate resolution Imaging Spectroradiometer (MODIS) instrument, the VIIRS is calibrated on-orbit using a similar set of on-board calibrators (OBC), including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the reflective solar bands (RSB) and a blackbody (BB) for the thermal emissive bands (TEB). Onorbit maneuvers of the SNPP spacecraft provide additional calibration and characterization data from the VIIRS instrument which cannot be obtained pre-launch and are required to produce the highest quality SDRs. These include multiorbit yaw maneuvers for the characterization of SD and SDSM screen transmission, quasi-monthly roll maneuvers to acquire lunar observations to track sensor degradation in the visible through shortwave infrared, and a driven pitch-over maneuver to acquire multiple scans of deep space to determine TEB response versus scan angle (RVS). This paper provides an overview of these three SNPP calibration maneuvers. Discussions are focused on their potential calibration and science benefits, pre-launch planning activities, and on-orbit scheduling and implementation strategies. Results from calibration maneuvers performed during the Intensive Calibration and Validation (ICV) period for the VIIRS sensor are illustrated. Also presented in this paper are lessons learned regarding the implementation of calibration spacecraft maneuvers on follow

  15. Helicopter Pilot Performance for Discrete-maneuver Flight Tasks

    Science.gov (United States)

    Heffley, R. K.; Bourne, S. M.; Hindson, W. S.

    1984-01-01

    This paper describes a current study of several basic helicopter flight maneuvers. The data base consists of in-flight measurements from instrumented helicopters using experienced pilots. The analysis technique is simple enough to apply without automatic data processing, and the results can be used to build quantitative matah models of the flight task and some aspects of the pilot control strategy. In addition to describing the performance measurement technqiue, some results are presented which define the aggressiveness and amplitude of maneuvering for several lateral maneuvers including turns and sidesteps.

  16. Planar reorientation maneuvers of space multibody systems using internal controls

    Science.gov (United States)

    Reyhanoglu, Mahmut; Mcclamroch, N. H.

    1992-01-01

    In this paper a reorientation maneuvering strategy for an interconnection of planar rigid bodies in space is developed. It is assumed that there are no exogeneous torques, and torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero in this paper. The maneuver strategy uses the nonintegrability of the expression for the angular momentum. We demonstrate that large-angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is briefly summarized. Specifications and computer simulations of a specific reorientation maneuver, and the corresponding control strategies, are described.

  17. Low to high frequency ratio of heart rate variability spectra fails to describe sympatho-vagal balance in cardiac patients.

    Science.gov (United States)

    Milicević, Goran

    2005-06-01

    Heart rate variability (HRV) reflects an influence of autonomic nervous system on heart work. In healthy subjects, ratio between low and high frequency components (LF/HF ratio) of HRV spectra represents a measure of sympatho-vagal balance. The ratio was defined by the authorities as an useful clinical tool, but it seems that it fails to summarise sympatho-vagal balance in a clinical setting. Value of the method was re-evaluated in several categories of cardiac patients. HRV was analysed from 24-hour Holter ECGs in 132 healthy subjects, and 2159 cardiac patients dichotomised by gender, median of age, diagnosis of myocardial infarction or coronary artery surgery, left ventricular systolic function and divided by overall HRV into several categories. In healthy subjects, LF/HF ratio correlated with overall HRV negatively, as expected. The paradoxical finding was obtained in cardiac patients; the lower the overall HRV and the time-domain indices of vagal modulation activity were the lower the LF/HF ratio was. If used as a measure of sympatho-vagal balance, long-term recordings of LF/HF ratio contradict to clinical finding and time-domain HRV indices in cardiac patients. The ratio cannot therefore be used as a reliable marker of autonomic activity in a clinical setting.

  18. Research on alteration of neurons in vagal nuclei in medulla oblongata in newborns with respiratory distress.

    Science.gov (United States)

    Islami, Hilmi; Shabani, Ragip; Shabani, Driton; Dacaj, Ramadan; Manxhuka, Suzana; Azemi, Mehmedali; Krasniqi, Shaip; Kurtishi, Ilir

    2011-01-01

    Neuronal and axonal degenerative changes in motor vagal neurons (DMNV) and sensory vagal neurons (nTS) in the medulla oblongata in newborns were studied. Material was taken from the autopsies of newborns, live and dead newborns, in different gestational weeks (aborted, immature, premature and mature). 46 cases were studied. Material for research was taken from the medulla oblongata and lung tissue. Serial horizontal incisions were made in the medulla oblongata (± 4 mm), commencing from the obex, where the DMNV and nTS vagal nuclei were explored. Fixed cuttings in buffered formalin (10%) were used for histochemical staining. Serial cuttings were done with a microtome (7 µm). Pulmonary infections, being significant (p medulla oblongata in newborns in different gestational weeks are more emphasized in matures in comparison to aborted and immature (p < 0.05). Depending on the lifetime of dead newborns, neuronal morphological changes in vagus nerve nuclei are significant (p < 0.05). Therefore, it can be concluded that pulmonary infections are often caused due to dramatic respiratory distress in newborns, while hypoxaemic changes in the population of vagus nerve neurons in respiratory distress are more emphasized in matures.

  19. Vasoactive intestinal polypeptide (VIP) in the pig pancreas

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1984-01-01

    Vasoactive intestinal polypeptide (VIP) in the pig pancreas is localized to nerves, many of which travel along the pancreatic ducts. VIP stimulates pancreatic fluid and bicarbonate secretion like secretin. Electrical vagal stimulation in the pig causes an atropine-resistant profuse secretion...... of bicarbonate-rich pancreatic juice. In an isolated perfused preparation of the pig pancreas with intact vagal nerve supply, electrical vagal stimulation caused an atropine-resistant release of VIP, which accurately parallelled the exocrine secretion of juice and bicarbonate. Perfusion of the pancreas...... with a potent VIP-antiserum inhibited the effect of vagal stimulation on the exocrine secretion. It is concluded, that VIP is responsible for (at least part of) the neurally controlled fluid and bicarbonate secretion from the pig pancreas....

  20. Optimizing interplanetary trajectories with deep space maneuvers

    Science.gov (United States)

    Navagh, John

    1993-09-01

    Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.

  1. Gastrin release: Antrum microdialysis reveals a complex neural control

    DEFF Research Database (Denmark)

    Ericsson, P; Håkanson, R; Rehfeld, Jens F.

    2010-01-01

    We used microdialysis to monitor local gastrin release in response to food, acid blockade and acute vagal excitation. For the first time, gastrin release has been monitored continuously in intact conscious rats in a physiologically relevant experimental setting in a fashion that minimizes...... in serum regardless of the prandial state. The rats were conscious during microdialysis except when subjected to electrical vagal stimulation. Acid blockade (omeprazole treatment of freely fed rats for 4 days), or bilateral sectioning of the abdominal vagal trunks (fasted, 3 days post-op.), raised...... the gastrin concentration in blood as well as microdialysate. The high gastrin concentration following omeprazole treatment was not affected by vagotomy. Vagal excitation stimulated the G cells: electrical vagal stimulation and pylorus ligation (fasted rats) raised the gastrin concentration transiently...

  2. Linking spatial and dynamic models for traffic maneuvers

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter; Wisniewski, Rafal

    2015-01-01

    For traffic maneuvers of multiple vehicles on highways we build an abstract spatial and a concrete dynamic model. In the spatial model we show the safety (collision freedom) of lane-change maneuvers. By linking the spatial and dynamic model via suitable refinements of the spatial atoms to distance...

  3. THE DUBINS TRAVELING SALESMAN PROBLEM WITH CONSTRAINED COLLECTING MANEUVERS

    Directory of Open Access Journals (Sweden)

    Petr Váňa

    2016-11-01

    Full Text Available In this paper, we introduce a variant of the Dubins traveling salesman problem (DTSP that is called the Dubins traveling salesman problem with constrained collecting maneuvers (DTSP-CM. In contrast to the ordinary formulation of the DTSP, in the proposed DTSP-CM, the vehicle is requested to visit each target by specified collecting maneuver to accomplish the mission. The proposed problem formulation is motivated by scenarios with unmanned aerial vehicles where particular maneuvers are necessary for accomplishing the mission, such as object dropping or data collection with sensor sensitive to changes in vehicle heading. We consider existing methods for the DTSP and propose its modifications to use these methods to address a variant of the introduced DTSP-CM, where the collecting maneuvers are constrained to straight line segments.

  4. Impact of gonadectomy on sympatho-vagal balance in male and female normotensive rat

    NARCIS (Netherlands)

    Pijacka, Wioletta; Clifford, Bethan; Walas, Dawid; Tilburgs, Chantal; Joles, Jaap A; McMullen, Sarah; Langley-Evans, Simon C

    OBJECTIVE: It is well established that autonomic nervous system and sympatho-vagal balance plays an important role in maintaining arterial blood pressure (ABP) (Salman IM., 2016) and that autonomic regulation of ABP differs between males and females (Hart EC et al., 2014). We hypothesised that sex

  5. Ship maneuvering digital simulator; Simulador digital de manobras de navios

    Energy Technology Data Exchange (ETDEWEB)

    Souza Junior, Jesse Rebello; Tannuri, Eduardo Aoun; Oshiro, Anderson Takehiro [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Naval e Oceanica

    2008-07-01

    This paper reports on two case studies making use of a digital simulator to investigate the maneuvering motions of ships in canals with shallow and restricted waters. The first case study corresponds to a maneuvering analysis conducted for the Port of Rio Grande (RS - Brazil), whose aim was to assess the potential impact upon maneuvers of the presence of a large offshore platform (the PETROBRAS P-53) which is to remain docked for several months at the Port to complete its construction. The second study made use of the simulator to evaluate the maneuvering conditions along the approach route and maneuvering basin of the Port of Ponta do Felix (PR - Brazil). The simulator includes a complete mathematical model of the ship dynamics in the horizontal plane when subjected to wind and current forces. It also comprises detailed models for the action of thrusters and propellers, both fixed and azimuth, employed to control maneuvers and dynamically position ships, as well as rudders and tugboats. He models used by the simulator allow for the effects of shallow and restricted waters, including the increase in resistance and lateral forces, increase in additional mass and the appearance of lateral and vertical suction (squatting). The simulator is implemented via an interactive interface through which the user is able to apply control actions (rudder angle, main engine, thrusters and tugboats) in real time during maneuvers, thereby reproducing to some extent the action of a pilot. (author)

  6. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge.

    Science.gov (United States)

    Schelegle, Edward S; Walby, William F

    2012-05-31

    Brown-Norway rats (n=113) sensitized and challenged with nDer f 1 allergen were used to examine the contribution of lung sensory nerves to ozone (O(3)) exacerbation of asthma. Prior to their third challenge rats inhaled 1.0ppm O(3) for 8h. There were three groups: (1) control; (2) vagus perineural capsaicin treatment (PCT) with or without hexamethonium; and (3) vagotomy. O(3) inhalation resulted in a significant increase in lung resistance (R(L)) and an exaggerated response to subsequent allergen challenge. PCT abolished the O(3)-induced increase in R(L) and significantly reduced the increase in R(L) induced by a subsequent allergen challenge, while hexamethonium treatment reestablished bronchoconstriction induced by allergen challenge. Vagotomy resulted in a significant increase in the bronchoconstriction induced by O(3) inhalation and subsequent challenge with allergen. In this model of O(3) exacerbation of asthma, vagal C-fibers initiate reflex bronchoconstriction, vagal myelinated fibers initiate reflex bronchodilation, and mediators released within the airway initiate bronchoconstriction. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. The Relationship between a New Biomarker of Vagal Neuroimmunomodulation and Survival in Two Fatal Cancers

    Directory of Open Access Journals (Sweden)

    Y. Gidron

    2018-01-01

    Full Text Available Background. The vagus nerve may slow tumor progression because it inhibits inflammation. This study examined the relationship between a new vagal neuroimmunomodulation (NIM index and survival in fatal cancers. Method. We retroactively derived markers of vagal nerve activity indexed by heart rate variability (HRV, specifically the root mean square of successive differences (RMSSD, from patients’ electrocardiograms near diagnosis. The NIM index was the ratio of RMSSD to C-reactive protein levels (RMSSD/CRP. Sample 1 included 202 Belgian patients with advanced pancreatic cancer (PC, while sample 2 included 71 Belgian patients with non-small cell lung cancer (NSCLC. In both samples, we examined the overall survival, while in sample 2, we additionally examined the survival time in deceased patients. Results. In PC patients, in a multivariate Cox regression controlling for confounders, the NIM index had a protective relative risk (RR of 0.68 and 95% confidence interval (95% CI of 0.51–0.92. In NSCLC patients, the NIM index also had a protective RR of 0.53 and 95% CI of 0.32–0.88. Finally, in NSCLC, patients with a higher NIM index survived more days (475.2 than those with lower NIM (285.1 (p<0.05. Conclusions. The NIM index, reflecting vagal modulation of inflammation, may be a new independent prognostic biomarker in fatal cancers.

  8. Electroacupuncture improves burn-induced impairment in gastric motility mediated via the vagal mechanism in rats.

    Science.gov (United States)

    Song, J; Yin, J; Sallam, H S; Bai, T; Chen, Y; Chen, J D Z

    2013-10-01

    Delayed gastric emptying (GE) is common in patients with severe burns. This study was designed to investigate effects and mechanisms of electroacupuncture (EA) on gastric motility in rats with burns. Male rats (intact and vagotomized) were implanted with gastric electrodes, chest and abdominal wall electrodes for investigating the effects of EA at ST-36 (stomach-36 or Zusanli) on GE, gastric slow waves, autonomic functions, and plasma interleukin 6 (IL-6) 6 and 24 h post severe burns. (i) Burn delayed GE (P Electroacupuncture improved GE 6 and 24 h post burn (P Electroacupuncture improved burn-induced gastric dysrhythmia. The percentage of normal slow waves was increased with EA 6 and 24 h post burn (P = 0.02). (iii) Electroacupuncture increased vagal activity assessed by the spectral analysis of heart rate variability (HRV). The high-frequency component reflecting vagal component was increased with EA 6 (P = 0.004) and 24 h post burn (P = 0.03, vs sham-EA). (iv) Electroacupuncture attenuated burn-induced increase in plasma IL-6 at both 6 (P = 0.03) and 24 h post burn (P = 0.003). Electroacupuncture at ST-36 improves gastric dysrhythmia and accelerates GE in rats with burns. The improvement seems to be mediated via the vagal pathway involving the inflammatory cytokine IL-6. © 2013 John Wiley & Sons Ltd.

  9. Exploring precrash maneuvers using classification trees and random forests.

    Science.gov (United States)

    Harb, Rami; Yan, Xuedong; Radwan, Essam; Su, Xiaogang

    2009-01-01

    Taking evasive actions vis-à-vis critical traffic situations impending to motor vehicle crashes endows drivers an opportunity to avoid the crash occurrence or at least diminish its severity. This study explores the drivers, vehicles, and environments' characteristics associated with crash avoidance maneuvers (i.e., evasive actions or no evasive actions). Rear-end collisions, head-on collisions, and angle collisions are analyzed separately using decision trees and the significance of the variables on the binary response variable (evasive actions or no evasive actions) is determined. Moreover, the random forests method is employed to rank the importance of the drivers/vehicles/environments characteristics on crash avoidance maneuvers. According to the exploratory analyses' results, drivers' visibility obstruction, drivers' physical impairment, drivers' distraction are associated with crash avoidance maneuvers in all three types of accidents. Moreover, speed limit is associated with rear-end collisions' avoidance maneuvers and vehicle type is correlated with head-on collisions and angle collisions' avoidance maneuvers. It is recommended that future research investigates further the explored trends (e.g., physically impaired drivers, visibility obstruction) using driving simulators which may help in legislative initiatives and in-vehicle technology recommendations.

  10. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones.

    Science.gov (United States)

    Browning, Kirsteen N; Fortna, Samuel R; Hajnal, Andras

    2013-05-01

    Diet-induced obesity (DIO) has been shown to alter the biophysical properties and pharmacological responsiveness of vagal afferent neurones and fibres, although the effects of DIO on central vagal neurones or vagal efferent functions have never been investigated. The aims of this study were to investigate whether high-fat diet-induced DIO also affects the properties of vagal efferent motoneurones, and to investigate whether these effects were reversed following weight loss induced by Roux-en-Y gastric bypass (RYGB) surgery. Whole-cell patch-clamp recordings were made from rat dorsal motor nucleus of the vagus (DMV) neurones in thin brainstem slices. The DMV neurones from rats exposed to high-fat diet for 12-14 weeks were less excitable, with a decreased membrane input resistance and decreased ability to fire action potentials in response to direct current pulse injection. The DMV neurones were also less responsive to superfusion with the satiety neuropeptides cholecystokinin and glucagon-like peptide 1. Roux-en-Y gastric bypass reversed all of these DIO-induced effects. Diet-induced obesity also affected the morphological properties of DMV neurones, increasing their size and dendritic arborization; RYGB did not reverse these morphological alterations. Remarkably, independent of diet, RYGB also reversed age-related changes of membrane properties and occurrence of charybdotoxin-sensitive (BK) calcium-dependent potassium current. These results demonstrate that DIO also affects the properties of central autonomic neurones by decreasing the membrane excitability and pharmacological responsiveness of central vagal motoneurones and that these changes were reversed following RYGB. In contrast, DIO-induced changes in morphological properties of DMV neurones were not reversed following gastric bypass surgery, suggesting that they may be due to diet, rather than obesity. These findings represent the first direct evidence for the plausible effect of RYGB to improve vagal

  11. At the heart of morality lies neuro-visceral integration: lower cardiac vagal tone predicts utilitarian moral judgment

    Science.gov (United States)

    Kappes, Andreas; Rho, Yeojin; Van Bavel, Jay J.

    2016-01-01

    To not harm others is widely considered the most basic element of human morality. The aversion to harm others can be either rooted in the outcomes of an action (utilitarianism) or reactions to the action itself (deontology). We speculated that the human moral judgments rely on the integration of neural computations of harm and visceral reactions. The present research examined whether utilitarian or deontological aspects of moral judgment are associated with cardiac vagal tone, a physiological proxy for neuro-visceral integration. We investigated the relationship between cardiac vagal tone and moral judgment by using a mix of moral dilemmas, mathematical modeling and psychophysiological measures. An index of bipolar deontology-utilitarianism was correlated with resting heart rate variability (HRV)—an index of cardiac vagal tone—such that more utilitarian judgments were associated with lower HRV. Follow-up analyses using process dissociation, which independently quantifies utilitarian and deontological moral inclinations, provided further evidence that utilitarian (but not deontological) judgments were associated with lower HRV. Our results suggest that the functional integration of neural and visceral systems during moral judgments can restrict outcome-based, utilitarian moral preferences. Implications for theories of moral judgment are discussed. PMID:27317926

  12. Optimal Autonomous Spacecraft Resiliency Maneuvers Using Metaheuristics

    Science.gov (United States)

    2014-09-15

    This work was accepted for published by the American Institute of Aeronautics and Astronautics (AIAA) Journal of Spacecraft and Rockets in July 2014...publication in the AIAA Journal of Spacecraft and Rockets . Chapter 5 introduces an impulsive maneuvering strategy to deliver a spacecraft to its final...upon arrival r2 and v2 , respectively. The variable T2 determines the time of flight needed to make the maneuver, and the variable θ2 determines the

  13. Mars Exploration Rovers Propulsive Maneuver Design

    Science.gov (United States)

    Potts, Christopher L.; Raofi, Behzad; Kangas, Julie A.

    2004-01-01

    The Mars Exploration Rovers Spirit and Opportunity successfully landed respectively at Gusev Crater and Meridiani Planum in January 2004. The rovers are essentially robotic geologists, sent on a mission to search for evidence in the rocks and soil pertaining to the historical presence of water and the ability to possibly sustain life. In order to conduct NASA's 'follow the water' strategy on opposite sides of the planet Mars, an interplanetary journey of over 300 million miles culminated with historic navigation precision. Rigorous trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites. The propulsive maneuver design challenge was to meet or exceed these requirements while preserving the necessary design margin to accommodate additional project concerns. Landing site flexibility was maintained for both missions after launch, and even after the first trajectory correction maneuver for Spirit. The final targeting strategy was modified to improve delivery performance and reduce risk after revealing constraining trajectory control characteristics. Flight results are examined and summarized for the six trajectory correction maneuvers that were planned for each mission.

  14. Critical Airway Compromise due to a Massive Vagal Schwannoma

    LENUS (Irish Health Repository)

    McDermott, AM

    2016-05-01

    We describe the case of a 37-year-old man with a slowly enlarging neck lump and compressive symptoms. He presented to a separate institution 10 years prior where an observational approach was advocated. Following preoperative investigations and embolization, an 11cm vagal schwannoma was excised and vagus nerve was sacrificed. Although conservative management is appropriate for a select patient population, surgical excision is treatment of choice for cervical neurogenic tumours and paraganglionomas and must be considered in young patients or rapidly expanding tumours to avoid compressive symptoms, as in this case.

  15. A safe-repositioning maneuver for the management of benign paroxysmal positional vertigo: Gans vs. Epley maneuver; a randomized comparative clinical trial.

    Science.gov (United States)

    Saberi, Alia; Nemati, Shadman; Sabnan, Salah; Mollahoseini, Fatemeh; Kazemnejad, Ehsan

    2017-08-01

    Benign paroxysmal positional vertigo (BPPV) is the most common cause of peripheral vertigo. Some repositioning maneuvers have been described for its management. The aim of this study was comparing the therapeutic effect of Epley and Gans maneuvers in BPPV. This randomized clinical trial was performed from September to December 2015. 73 patients with true vertigo diagnosed as BPPV enrolled the study. They randomly assigned in quadripartite blocks to modified Epley maneuver group (E) or Gans maneuver group (G). 1 day and 1 week after intervention, the objective and subjective responses to treatment were assessed. Statistical analysis was performed using the Chi-square test and regression model in the SPSS software version 21. Thirty patients enrolled each group with a mean age of 46.9 ± 13.4 (E group) and 46.7 ± 7.5 year (G group). 23.3 % of E group and 26.7 % of G group were men (p = 0.766). In E and G groups in the first day, subjective outcomes revealed 86.7 and 60 % rate of success (p = 0.02); and 86.7 and 56.7 % of patients exhibited objective improvement, respectively (p = 0.01). After 1 week, the subjective and objective outcomes revealed improvement among 70 % of E group and 46.7 % of G group (p = 0.067). The only complication with significant difference was cervical pain with a higher rate in E group (23.3 vs. 0.0 %, p = 0.005). These results revealed the similar long-term efficacy of Epley and Gans maneuver for the treatment of BPPV. Cervical pain was most frequent complication of Epley maneuver.

  16. Dynamic sensor tasking and IMM EKF estimation for tracking impulsively maneuvering satellites

    Science.gov (United States)

    Lace, Arthur A.

    In order to efficiently maintain space situational awareness, care must be taken to optimally allocate expensive observation resources. In most situations the available sensors capable of tracking spacecraft have their time split between many different monitoring responsibilities. Tracking maneuvering spacecraft can be especially difficult as the schedule of maneuvers may not be known and will often throw off previous orbital models. Effectively solving this tasking problem is an ongoing focus of research in the area of space situational awareness. Most methods of automated tasking do not make use of interacting multiple model extended Kalman filter techniques to better track satellites during maneuvers. This paper proposes a modification to a Fisher information gain and estimated state covariance based sensor tasking method to take maneuver probability and multiple model dynamics into account. By incorporating the probabilistic maneuvering model, sensor tasking can be improved during satellite maneuvers using constrained resources. The proposed methods are verified through the use of numerical simulations with multiple maneuvering satellites and both orbital and ground-based sensors.

  17. Applying Dynamical Systems Theory to Optimize Libration Point Orbit Stationkeeping Maneuvers for WIND

    Science.gov (United States)

    Brown, Jonathan M.; Petersen, Jeremy D.

    2014-01-01

    NASA's WIND mission has been operating in a large amplitude Lissajous orbit in the vicinity of the interior libration point of the Sun-Earth/Moon system since 2004. Regular stationkeeping maneuvers are required to maintain the orbit due to the instability around the collinear libration points. Historically these stationkeeping maneuvers have been performed by applying an incremental change in velocity, or (delta)v along the spacecraft-Sun vector as projected into the ecliptic plane. Previous studies have shown that the magnitude of libration point stationkeeping maneuvers can be minimized by applying the (delta)v in the direction of the local stable manifold found using dynamical systems theory. This paper presents the analysis of this new maneuver strategy which shows that the magnitude of stationkeeping maneuvers can be decreased by 5 to 25 percent, depending on the location in the orbit where the maneuver is performed. The implementation of the optimized maneuver method into operations is discussed and results are presented for the first two optimized stationkeeping maneuvers executed by WIND.

  18. Radiofrequency Catheter Ablation for Atrial Fibrillation Elicited "Jackhammer Esophagus": A New Complication Due to Vagal Nerve Stimulation?

    Science.gov (United States)

    Tolone, Salvatore; Savarino, Edoardo; Docimo, Ludovico

    2015-10-01

    Radiofrequency catheter ablation (RFCA) is a potentially curative method for treatment of highly symptomatic and drug-refractory atrial fibrillation (AF). However, this technique can provoke esophageal and nerve lesion, due to thermal injury. To our knowledge, there have been no reported cases of a newly described motor disorder, the Jackhammer esophagus (JE) after RFCA, independently of GERD. We report a case of JE diagnosed by high-resolution manometry (HRM), in whom esophageal symptoms developed 2 weeks after RFCA, in absence of objective evidence of GERD. A 65-year-old male with highly symptomatic, drug-refractory paroxysmal AF was candidate to complete electrical pulmonary vein isolation with RFCA. Prior the procedure, the patient underwent HRM and impedance-pH to rule out GERD or hiatal hernia presence. All HRM parameters, according to Chicago classification, were within normal limits. No significant gastroesophageal reflux was documented at impedance pH monitoring. Patient underwent RFCA with electrical disconnection of pulmonary vein. After two weeks, patient started to complain of dysphagia for solids, with acute chest-pain. The patient repeated HRM and impedance-pH monitoring 8 weeks after RFCA. HRM showed in all liquid swallows the typical spastic hypercontractile contractions consistent with the diagnosis of JE, whereas impedance-pH monitoring resulted again negative for GERD. Esophageal dysmotility can represent a possible complication of RFCA for AF, probably due to a vagal nerve injury, and dysphagia appearance after this procedure must be timely investigated by HRM.

  19. Dynamic Cerebral Autoregulation Changes during Sub-Maximal Handgrip Maneuver

    Science.gov (United States)

    Nogueira, Ricardo C.; Bor-Seng-Shu, Edson; Santos, Marcelo R.; Negrão, Carlos E.; Teixeira, Manoel J.; Panerai, Ronney B.

    2013-01-01

    Purpose We investigated the effect of handgrip (HG) maneuver on time-varying estimates of dynamic cerebral autoregulation (CA) using the autoregressive moving average technique. Methods Twelve healthy subjects were recruited to perform HG maneuver during 3 minutes with 30% of maximum contraction force. Cerebral blood flow velocity, end-tidal CO2 pressure (PETCO2), and noninvasive arterial blood pressure (ABP) were continuously recorded during baseline, HG and recovery. Critical closing pressure (CrCP), resistance area-product (RAP), and time-varying autoregulation index (ARI) were obtained. Results PETCO2 did not show significant changes during HG maneuver. Whilst ABP increased continuously during the maneuver, to 27% above its baseline value, CBFV raised to a plateau approximately 15% above baseline. This was sustained by a parallel increase in RAP, suggestive of myogenic vasoconstriction, and a reduction in CrCP that could be associated with metabolic vasodilation. The time-varying ARI index dropped at the beginning and end of the maneuver (p<0.005), which could be related to corresponding alert reactions or to different time constants of the myogenic, metabolic and/or neurogenic mechanisms. Conclusion Changes in dynamic CA during HG suggest a complex interplay of regulatory mechanisms during static exercise that should be considered when assessing the determinants of cerebral blood flow and metabolism. PMID:23967113

  20. Dynamic cerebral autoregulation changes during sub-maximal handgrip maneuver.

    Directory of Open Access Journals (Sweden)

    Ricardo C Nogueira

    Full Text Available PURPOSE: We investigated the effect of handgrip (HG maneuver on time-varying estimates of dynamic cerebral autoregulation (CA using the autoregressive moving average technique. METHODS: Twelve healthy subjects were recruited to perform HG maneuver during 3 minutes with 30% of maximum contraction force. Cerebral blood flow velocity, end-tidal CO₂ pressure (PETCO₂, and noninvasive arterial blood pressure (ABP were continuously recorded during baseline, HG and recovery. Critical closing pressure (CrCP, resistance area-product (RAP, and time-varying autoregulation index (ARI were obtained. RESULTS: PETCO₂ did not show significant changes during HG maneuver. Whilst ABP increased continuously during the maneuver, to 27% above its baseline value, CBFV raised to a plateau approximately 15% above baseline. This was sustained by a parallel increase in RAP, suggestive of myogenic vasoconstriction, and a reduction in CrCP that could be associated with metabolic vasodilation. The time-varying ARI index dropped at the beginning and end of the maneuver (p<0.005, which could be related to corresponding alert reactions or to different time constants of the myogenic, metabolic and/or neurogenic mechanisms. CONCLUSION: Changes in dynamic CA during HG suggest a complex interplay of regulatory mechanisms during static exercise that should be considered when assessing the determinants of cerebral blood flow and metabolism.

  1. Avaliando a atividade vagal cardíaca na eletrocardiografia convencional Evaluating cardiac vagal activity on a conventional electrocardiogram

    Directory of Open Access Journals (Sweden)

    Flávia P. Teixeira

    2007-04-01

    Full Text Available OBJETIVO: Determinar a viabilidade da utilização de traçado convencional de eletrocardiografia (ECG para avaliação da atividade vagal cardíaca (AVC. MÉTODOS: Foram analisados, retrospectivamente, 1.395 indivíduos (995 homens, na faixa de idade de 46 + 17,2 anos (média ± desvio padrão, com traçados de ECG convencional para medida do Delta RR, que representa a diferença, em ms, entre o maior e o menor intervalo RR, e com resultados da avaliação autonômica parassimpática, o teste de exercício de quatro segundos (T4s, que quantifica a AVC por meio do índice vagal cardíaco (IVC. Foram obtidas curvas ROC para determinar os valores de Delta RR com melhor relação entre sensibilidade e especificidade para os pontos de corte de baixa e alta AVC, respectivamente, de 1,20 e 1,95. RESULTADOS: Os valores de delta RR correlacionaram-se significativamente com os de IVC (r = 0,40; p 120 ms como os melhores pontos de corte para baixa e alta AVC, com sensibilidade de 75% e 57%, especificidade de 62% e 79% e áreas das curvas ROC de 0,76 e 0,74, respectivamente. CONCLUSÃO: A medida visual do delta RR em um traçado de ECG parece ser válida para a avaliação clínica preliminar e rápida da AVC, podendo ser útil em consultórios, emergências ou situações nas quais o uso de métodos mais sofisticados de avaliação autonômica não seja viável, oportuno ou conveniente.OBJECTIVE: To determine the viability of using a conventional electrocardiogram (ECG tracing for assessment of CVA. METHODS: We retrospectively analyzed 1395 individuals (995 males, aged 46 ± 17.2 years (mean ± standard deviation with conventional ECG tracings to measure the delta RR (which represents the difference in milliseconds (ms between the greatest and smallest RR interval and results of a second autonomic parasympathetic evaluation, the 4-second exercise test (T4s, that quantifies CVA by the cardiac vagal index (CVI. ROC curves were obtained to determine the

  2. 14 CFR 23.155 - Elevator control force in maneuvers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Elevator control force in maneuvers. 23.155 Section 23.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Controllability and Maneuverability § 23.155 Elevator control force in maneuvers. (a) The elevator control force...

  3. Cases requiring increased number of repositioning maneuvers in benign paroxysmal positional vertigo

    Directory of Open Access Journals (Sweden)

    Mukadder Korkmaz

    Full Text Available ABSTRACT INTRODUCTION: Benign paroxysmal positional vertigo (BPPV is a clinical syndrome that is proposed to be caused by dislocated utricular debris into semicircular canals. Although the majority of patients are treated by one or two repositioning maneuvers, some of the patients need repeated maneuvers for relief. OBJECTIVE: The goal of this study was to investigate the factors associated with patients with benign paroxysmal positional vertigo who required multiple repositioning procedures for treatment. METHODS: Data were obtained from the clinical records of 153 patients diagnosed with benign paroxysmal positional vertigo. Patients were treated by repositioning maneuvers. Demographic data and the factors including age, sex, canal type, duration of symptoms, comorbidities and number of repositioning maneuvers for relief were documented for statistical analysis. RESULTS: Age, sex, canal type and the duration of symptoms had no impact on the number of maneuvers. The most common comorbidity was spine problems. Hypertension was the only comorbidity that significantly associated with increased number of maneuvers. CONCLUSION: The presence of hypertension is a risk factor for repeated maneuvers in benign paroxysmal positional vertigo treatment. Physicians should be aware of the increased probability of repeated repositioning maneuvers in these group of patients. The role of comorbidities and vascular factors need to be further clarified in the course of benign paroxysmal positional vertigo.

  4. Cases requiring increased number of repositioning maneuvers in benign paroxysmal positional vertigo.

    Science.gov (United States)

    Korkmaz, Mukadder; Korkmaz, Hakan

    2016-01-01

    Benign paroxysmal positional vertigo (BPPV) is a clinical syndrome that is proposed to be caused by dislocated utricular debris into semicircular canals. Although the majority of patients are treated by one or two repositioning maneuvers, some of the patients need repeated maneuvers for relief. The goal of this study was to investigate the factors associated with patients with benign paroxysmal positional vertigo who required multiple repositioning procedures for treatment. Data were obtained from the clinical records of 153 patients diagnosed with benign paroxysmal positional vertigo. Patients were treated by repositioning maneuvers. Demographic data and the factors including age, sex, canal type, duration of symptoms, comorbidities and number of repositioning maneuvers for relief were documented for statistical analysis. Age, sex, canal type and the duration of symptoms had no impact on the number of maneuvers. The most common comorbidity was spine problems. Hypertension was the only comorbidity that significantly associated with increased number of maneuvers. The presence of hypertension is a risk factor for repeated maneuvers in benign paroxysmal positional vertigo treatment. Physicians should be aware of the increased probability of repeated repositioning maneuvers in these group of patients. The role of comorbidities and vascular factors need to be further clarified in the course of benign paroxysmal positional vertigo. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  5. At the heart of morality lies neuro-visceral integration: lower cardiac vagal tone predicts utilitarian moral judgment.

    Science.gov (United States)

    Park, Gewnhi; Kappes, Andreas; Rho, Yeojin; Van Bavel, Jay J

    2016-10-01

    To not harm others is widely considered the most basic element of human morality. The aversion to harm others can be either rooted in the outcomes of an action (utilitarianism) or reactions to the action itself (deontology). We speculated that the human moral judgments rely on the integration of neural computations of harm and visceral reactions. The present research examined whether utilitarian or deontological aspects of moral judgment are associated with cardiac vagal tone, a physiological proxy for neuro-visceral integration. We investigated the relationship between cardiac vagal tone and moral judgment by using a mix of moral dilemmas, mathematical modeling and psychophysiological measures. An index of bipolar deontology-utilitarianism was correlated with resting heart rate variability (HRV)-an index of cardiac vagal tone-such that more utilitarian judgments were associated with lower HRV. Follow-up analyses using process dissociation, which independently quantifies utilitarian and deontological moral inclinations, provided further evidence that utilitarian (but not deontological) judgments were associated with lower HRV. Our results suggest that the functional integration of neural and visceral systems during moral judgments can restrict outcome-based, utilitarian moral preferences. Implications for theories of moral judgment are discussed. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Distinct projection targets define subpopulations of mouse brainstem vagal neurons that express the autism-associated MET receptor tyrosine kinase.

    Science.gov (United States)

    Kamitakahara, Anna; Wu, Hsiao-Huei; Levitt, Pat

    2017-12-15

    Detailed anatomical tracing and mapping of the viscerotopic organization of the vagal motor nuclei has provided insight into autonomic function in health and disease. To further define specific cellular identities, we paired information based on visceral connectivity with a cell-type specific marker of a subpopulation of neurons in the dorsal motor nucleus of the vagus (DMV) and nucleus ambiguus (nAmb) that express the autism-associated MET receptor tyrosine kinase. As gastrointestinal disturbances are common in children with autism spectrum disorder (ASD), we sought to define the relationship between MET-expressing (MET+) neurons in the DMV and nAmb, and the gastrointestinal tract. Using wholemount tissue staining and clearing, or retrograde tracing in a MET EGFP transgenic mouse, we identify three novel subpopulations of EGFP+ vagal brainstem neurons: (a) EGFP+ neurons in the nAmb projecting to the esophagus or laryngeal muscles, (b) EGFP+ neurons in the medial DMV projecting to the stomach, and (b) EGFP+ neurons in the lateral DMV projecting to the cecum and/or proximal colon. Expression of the MET ligand, hepatocyte growth factor (HGF), by tissues innervated by vagal motor neurons during fetal development reveal potential sites of HGF-MET interaction. Furthermore, similar cellular expression patterns of MET in the brainstem of both the mouse and nonhuman primate suggests that MET expression at these sites is evolutionarily conserved. Together, the data suggest that MET+ neurons in the brainstem vagal motor nuclei are anatomically positioned to regulate distinct portions of the gastrointestinal tract, with implications for the pathophysiology of gastrointestinal comorbidities of ASD. © 2017 Wiley Periodicals, Inc.

  7. The role of cardiac vagal tone and inhibitory control in pre-schoolers' listening comprehension.

    Science.gov (United States)

    Scrimin, Sara; Patron, Elisabetta; Florit, Elena; Palomba, Daniela; Mason, Lucia

    2017-12-01

    This study investigated the role of basal cardiac activity and inhibitory control at the beginning of the school year in predicting oral comprehension at the end of the year in pre-schoolers. Forty-three, 4-year-olds participated in the study. At the beginning of the school year children's electrocardiogram at rest was registered followed by the assessment of inhibitory control as well as verbal working memory and verbal ability. At the end of the year all children were administered a listening comprehension ability measure. A stepwise regression showed a significant effect of basal cardiac vagal tone in predicting listening comprehension together with inhibitory control and verbal ability. These results are among the first to show the predictive role of basal cardiac vagal tone and inhibitory control in pre-schoolers' oral text comprehension, and offer new insight into the association between autonomic regulation of the heart, inhibitory control, and cognitive activity at a young age. © 2017 Wiley Periodicals, Inc.

  8. The Heart´s rhythm 'n' blues: Sex differences in circadian variation patterns of vagal activity vary by depressive symptoms in predominantly healthy employees.

    Science.gov (United States)

    Jarczok, Marc N; Aguilar-Raab, Corina; Koenig, Julian; Kaess, Michael; Borniger, Jeremy C; Nelson, Randy J; Hall, Martica; Ditzen, Beate; Thayer, Julian F; Fischer, Joachim E

    2018-03-15

    Successful regulation of emotional states is positively associated to mental health, while difficulties in regulating emotions are negatively associated to overall mental health and in particular associated with anxiety or depression symptoms. A key structure associated to socio-emotional regulatory processes is the central autonomic network. Activity in this structure is associated to vagal activity can be indexed noninvasively and simply by measures of peripheral cardiac autonomic modulations such as heart rate variability. Vagal activity exhibits a circadian variation pattern, with a maximum during nighttime. Depression is known to affect chronobiology. Also, depressive symptoms are known to be associated with decreased resting state vagal activity, but studies investigating the association between circadian variation pattern of vagal activity and depressive symptoms are scarce. We aim to examine these patterns in association to symptom severity of depression using chronobiologic methods. Data from the Manheim Industrial Cohort Studies (MICS) were used. A total of 3,030 predominantly healthy working adults underwent, among others, ambulatory 24-h hear rate-recordings, detailed health examination and online questionnaires and were available for this analysis. The root mean sum of successive differences (RMSSD) was used as an indicator of vagally mediated heart rate variability. Three individual-level cosine function parameters (MESOR, amplitude, acrophase) were estimated to quantify circadian variation pattern. Multivariate linear regression models including important covariates such as age, sex, and lifestyle factors as well as an interaction effect of sex with depressive symptoms were used to estimate the association of circadian variation pattern of vagal activity with depressive symptoms simultaneously. The analysis sample consisted of 20.2% females and an average age 41 with standard deviation of 11 years. Nonparametric bivariate analysis revealed

  9. oVEMP as an objective indicator of successful repositioning maneuver.

    Science.gov (United States)

    Asal, Samir; Sobhy, Osama; Balbaa, Amany

    Benign paroxysmal positioning vertigo (BPPV) is the most common peripheral vestibular disorder. Canalolithiasis in the posterior semi-circular canal is the most common underlying pathology that can be treated effectively by repositioning maneuvers. Our hypothesis suggested that successful maneuvers can lead to repositioning of dislodged otoconia to the utricle. Air conducted oVEMP, which is thought to originate from the contra-lateral utricular organ was measured in twenty patients with unilateral BPPV and we compared n1-p1 peak to peak amplitude of the affected ears in 3 separate intervals: on pre-treatment when typical nystagmus was confirmed, immediately after, and 1 week after repositioning maneuvers to assess change, if any, in amplitude. This study showed significant increase of oVEMP amplitude in the affected ears after successful repositioning maneuver that was more significant after 1 week. oVEMP can be used as a reliable objective test for ensuring a successful maneuver rather than subjective dependence on the patient's symptoms, which may be misleading due to a remission. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  10. A general method for closed-loop inverse simulation of helicopter maneuver flight

    Directory of Open Access Journals (Sweden)

    Wei WU

    2017-12-01

    Full Text Available Maneuverability is a key factor to determine whether a helicopter could finish certain flight missions successfully or not. Inverse simulation is commonly used to calculate the pilot controls of a helicopter to complete a certain kind of maneuver flight and to assess its maneuverability. A general method for inverse simulation of maneuver flight for helicopters with the flight control system online is developed in this paper. A general mathematical describing function is established to provide mathematical descriptions of different kinds of maneuvers. A comprehensive control solver based on the optimal linear quadratic regulator theory is developed to calculate the pilot controls of different maneuvers. The coupling problem between pilot controls and flight control system outputs is well solved by taking the flight control system model into the control solver. Inverse simulation of three different kinds of maneuvers with different agility requirements defined in the ADS-33E-PRF is implemented based on the developed method for a UH-60 helicopter. The results show that the method developed in this paper can solve the closed-loop inverse simulation problem of helicopter maneuver flight with high reliability as well as efficiency. Keywords: Closed-loop, Flying quality, Helicopters, Inverse simulation, Maneuver flight

  11. Daith Piercing in a Case of Chronic Migraine: A Possible Vagal Modulation

    Directory of Open Access Journals (Sweden)

    Angelo Cascio Rizzo

    2017-11-01

    Full Text Available Daith piercing is an ear piercing located at the crus of the helix, bilaterally. It is getting great consent on social media as alternative treatment in chronic migraine. No data about its efficacy and action are available in scientific literature so far. We present the case of a 54-year-old male patient suffering from refractory chronic migraine with medication-overuse, who substantially improved after bilateral ear daith piercing. His migraine was refractory to symptomatic as well as prophylactic therapies. He used to treat headaches with up to five symptomatic drugs per attack and had attempted several pharmacological preventive therapies, including Onabotulinumtoxin A. He also underwent detoxification treatments with intravenous steroids and diazepam, without durable benefit. At the time of daith piercing, the headache-related disability measures showed a HIT-6 score of 64, a MIDAS-score of 70, and a 11-point Box scale of 5. On his own free will, he decided to get a “daith piercing.” After that, he experienced a reduction of migraine attacks, which became very rare, and infrequent, less disabling episodes of tension-type headache (HIT-6 score of 56; MIDAS score of 27, 11-point Box scale of 3. Painkiller assumption has much decreased: he takes only one tablet of indomethacin 50 mg to treat tensive headaches, about four times per month. Beyond a placebo effect, we can speculate a vagal modulation as the action mechanism of daith piercing: a nociceptive sensory stimulus applied to trigeminal and vagal areas of the ear can activate ear vagal afferents, which can modulate pain pathways by means of projections to the caudal trigeminal nucleus, to the locus coeruleus and to the nucleus raphe magnus. Currently, daith piercing cannot be recommended as migraine treatment because of the lack of scientific evidence, the unquantified rate of failure and the associated risks with insertion. However, given the increasing but anecdotal evidence, we

  12. The Art and Science of Operational Maneuver,

    Science.gov (United States)

    1988-05-04

    Classification) The Art and Science of Operational Maneuver (U) 12. PERSONAL AUTHOR(S) MAJ Joseph Schroedel 13a. TYPE OF REPORT 13b. TIME COVERED 14...CLASSIFICATION OF THIS PAGE VA) CL LA S F1 EP {fJE ART ANQ SCIENCE OlF OPERAIl NAL MANUVER By6 Mal or Josepi~ Schroeci, L U. S. Arm~y H Aciv -darILC Ced M ili t...Studies ,nIgz’raph ApprovwA. Name of Student: Major Jonevh Schroedel. U.S. Army Title ot Monograph: The Art and Science of Operational Maneuver Approved By

  13. The effect of vagal nerve blockade using electrical impulses on glucose metabolism in nondiabetic subjects

    Directory of Open Access Journals (Sweden)

    Sathananthan M

    2014-07-01

    Full Text Available Matheni Sathananthan,1 Sayeed Ikramuddin,2 James M Swain,3,6 Meera Shah,1 Francesca Piccinini,4 Chiara Dalla Man,4 Claudio Cobelli,4 Robert A Rizza,1 Michael Camilleri,5 Adrian Vella1 1Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA; 2Division of General Surgery, University of Minnesota, Minneapolis, MN, USA; 3Division of General Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA; 4Department of Information Engineering, University of Padua, Padua, Italy; 5Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA; 6Scottsdale Healthcare Bariatric Center, Scottsdale, AZ, USA Purpose: Vagal interruption causes weight loss in humans and decreases endogenous glucose production in animals. However, it is unknown if this is due to a direct effect on glucose metabolism. We sought to determine if vagal blockade using electrical impulses alters glucose metabolism in humans. Patients and methods: We utilized a randomized, cross-over study design where participants were studied after 2 weeks of activation or inactivation of vagal nerve blockade (VNB. Seven obese subjects with impaired fasting glucose previously enrolled in a long-term study to examine the effect of VNB on weight took part. We used a standardized triple-tracer mixed meal to enable measurement of the rate of meal appearance, endogenous glucose production, and glucose disappearance. The 550 kcal meal was also labeled with 111In-diethylene triamine pentaacetic acid (DTPA to measure gastrointestinal transit. Insulin action and ß-cell responsivity indices were estimated using the minimal model. Results: Integrated glucose, insulin, and glucagon concentrations did not differ between study days. This was also reflected in a lack of effect on β-cell responsivity and insulin action. Furthermore, fasting and postprandial endogenous glucose production, integrated meal appearance, and glucose

  14. Associating crash avoidance maneuvers with driver attributes and accident characteristics: a mixed logit model approach.

    Science.gov (United States)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    The current study focuses on the propensity of drivers to engage in crash avoidance maneuvers in relation to driver attributes, critical events, crash characteristics, vehicles involved, road characteristics, and environmental conditions. The importance of avoidance maneuvers derives from the key role of proactive and state-aware road users within the concept of sustainable safety systems, as well as from the key role of effective corrective maneuvers in the success of automated in-vehicle warning and driver assistance systems. The analysis is conducted by means of a mixed logit model that represents the selection among 5 emergency lateral and speed control maneuvers (i.e., "no avoidance maneuvers," "braking," "steering," "braking and steering," and "other maneuvers) while accommodating correlations across maneuvers and heteroscedasticity. Data for the analysis were retrieved from the General Estimates System (GES) crash database for the year 2009 by considering drivers for which crash avoidance maneuvers are known. The results show that (1) the nature of the critical event that made the crash imminent greatly influences the choice of crash avoidance maneuvers, (2) women and elderly have a relatively lower propensity to conduct crash avoidance maneuvers, (3) drowsiness and fatigue have a greater negative marginal effect on the tendency to engage in crash avoidance maneuvers than alcohol and drug consumption, (4) difficult road conditions increase the propensity to perform crash avoidance maneuvers, and (5) visual obstruction and artificial illumination decrease the probability to carry out crash avoidance maneuvers. The results emphasize the need for public awareness campaigns to promote safe driving style for senior drivers and warning about the risks of driving under fatigue and distraction being comparable to the risks of driving under the influence of alcohol and drugs. Moreover, the results suggest the need to educate drivers about hazard perception, designing

  15. Safety analysis of passing maneuvers using extreme value theory

    Directory of Open Access Journals (Sweden)

    Haneen Farah

    2017-04-01

    The results indicate that this is a promising approach for safety evaluation. On-going work of the authors will attempt to generalize this method to other safety measures related to passing maneuvers, test it for the detailed analysis of the effect of demographic factors on passing maneuvers' crash probability and for its usefulness in a traffic simulation environment.

  16. Boosting recovery rather than buffering reactivity: Higher stress-induced oxytocin secretion is associated with increased cortisol reactivity and faster vagal recovery after acute psychosocial stress.

    Science.gov (United States)

    Engert, Veronika; Koester, Anna M; Riepenhausen, Antje; Singer, Tania

    2016-12-01

    Animal models and human studies using paradigms designed to stimulate endogenous oxytocin release suggest a stress-buffering role of oxytocin. We here examined the involvement of stress-induced peripheral oxytocin secretion in reactivity and recovery phases of the human psychosocial stress response. Healthy male and female participants (N=114) were subjected to a standardized laboratory stressor, the Trier Social Stress Test. In addition to plasma oxytocin, cortisol was assessed as a marker of hypothalamic-pituitary-adrenal (HPA-) axis activity, alpha-amylase and heart rate as markers of sympathetic activity, high frequency heart rate variability as a marker of vagal tone and self-rated anxiety as an indicator of subjective stress experience. On average, oxytocin levels increased by 51% following psychosocial stress. The stress-induced oxytocin secretion, however, did not reduce stress reactivity. To the contrary, higher oxytocin secretion was associated with greater cortisol reactivity and peak cortisol levels in both sexes. In the second phase of the stress response the opposite pattern was observed, with higher oxytocin secretion associated with faster vagal recovery. We suggest that after an early stage of oxytocin and HPA-axis co-activation, the stress-reducing action of oxytocin unfolds. Due to the time lag it manifests as a recovery-boosting rather than a reactivity-buffering effect. By reinforcing parasympathetic autonomic activity, specifically during stress recovery, oxytocin may provide an important protective function against the health-compromising effects of sustained stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats.

    Science.gov (United States)

    Rasmussen, Brittany A; Breen, Danna M; Luo, Ping; Cheung, Grace W C; Yang, Clair S; Sun, Biying; Kokorovic, Andrea; Rong, Weifang; Lam, Tony K T

    2012-04-01

    The duodenum senses nutrients to maintain energy and glucose homeostasis, but little is known about the signaling and neuronal mechanisms involved. We tested whether duodenal activation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) is sufficient and necessary for cholecystokinin (CCK) signaling to trigger vagal afferent firing and regulate glucose production. In rats, we selectively activated duodenal PKA and evaluated changes in glucose kinetics during the pancreatic (basal insulin) pancreatic clamps and vagal afferent firing. The requirement of duodenal PKA signaling in glucose regulation was evaluated by inhibiting duodenal activation of PKA in the presence of infusion of the intraduodenal PKA agonist (Sp-cAMPS) or CCK1 receptor agonist (CCK-8). We also assessed the involvement of a neuronal network and the metabolic impact of duodenal PKA activation in rats placed on high-fat diets. Intraduodenal infusion of Sp-cAMPS activated duodenal PKA and lowered glucose production, in association with increased vagal afferent firing in control rats. The metabolic and neuronal effects of duodenal Sp-cAMPS were negated by coinfusion with either the PKA inhibitor H89 or Rp-CAMPS. The metabolic effect was also negated by coinfusion with tetracaine, molecular and pharmacologic inhibition of NR1-containing N-methyl-d-aspartate (NMDA) receptors within the dorsal vagal complex, or hepatic vagotomy in rats. Inhibition of duodenal PKA blocked the ability of duodenal CCK-8 to reduce glucose production in control rats, whereas duodenal Sp-cAMPS bypassed duodenal CCK resistance and activated duodenal PKA and lowered glucose production in rats on high-fat diets. We identified a neural glucoregulatory function of duodenal PKA signaling. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Deep Brain Stimulation as a Treatment for Refractory Epilepsy: Review of the Current State-of-the-Art.

    Science.gov (United States)

    Ganguli, Malika P; Upton, Adrian R M; Kamath, Markad V

    2017-01-01

    Epilepsy affects ∼ 1% of the global population, and 33% of patients are nonresponsive to medication and must seek alternative treatment options. Alternative options such as surgery and ablation exist but are not appropriate treatment plans for some patients. Neurostimulation methods such as vagal nerve stimulation, responsive neural stimulation, and deep brain stimulation (DBS) are viable alternatives for medically refractory patients. DBS stimulation has been used in the treatment of Parkinson's disease, dystonia, and pain management. For the treatment of epilepsy, DBS has been found to be an effective treatment plan, with promising results of reduced seizure frequency and intensity. In this review, we discuss DBS surgery and equipment, mechanisms of DBS for epilepsy, and efficacy, technological specifications, and suggestions for future research. We also review a historical summary of experiments involving DBS for epilepsy. Our literature review suggests that further studies are warranted for medically refractory epilepsy using DBS.

  19. Anterograde Tracing Method using DiI to Label Vagal Innervation of the Embryonic and Early Postnatal Mouse Gastrointestinal Tract

    Science.gov (United States)

    Murphy, Michelle C.; Fox, Edward A.

    2007-01-01

    The mouse is an extremely valuable model for studying vagal development in relation to strain differences, genetic variation, gene manipulations, or pharmacological manipulations. Therefore, a method using 1, 1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) was developed for labeling vagal innervation of the gastrointestinal (GI) tract in embryonic and postnatal mice. DiI labeling was adapted and optimized for this purpose by varying several facets of the method. For example, insertion and crushing of DiI crystals into the nerve led to faster DiI diffusion along vagal axons and diffusion over longer distances as compared with piercing the nerve with a micropipette tip coated with dried DiI oil. Moreover, inclusion of EDTA in the fixative reduced leakage of DiI out of nerve fibers that occurred with long incubations. Also, mounting labeled tissue in PBS was superior to glycerol with n-propyl gallate, which resulted in reduced clarity of DiI labeling that may have been due to DiI leaking out of fibers. Optical sectioning of flattened wholemounts permitted examination of individual tissue layers of the GI tract wall. This procedure aided identification of nerve ending types because in most instances each type innervates a different tissue layer. Between embryonic day 12.5 and postnatal day 8, growth of axons into the GI tract, formation and patterning of fiber bundles in the myenteric plexus and early formation of putative afferent and efferent nerve terminals were observed. Thus, the DiI tracing method developed here has opened up a window for investigation during an important phase of vagal development. PMID:17418900

  20. Constellation Mission Operation Working Group: ESMO Maneuver Planning Process Review

    Science.gov (United States)

    Moyer, Eric

    2015-01-01

    The Earth Science Mission Operation (ESMO) Project created an Independent Review Board to review our Conjunction Risk evaluation process and Maneuver Planning Process to identify improvements that safely manages mission conjunction risks, maintains ground track science requirements, and minimizes overall hours expended on High Interest Events (HIE). The Review Board is evaluating the current maneuver process which requires support by multiple groups. In the past year, there have been several changes to the processes although many prior and new concerns exist. This presentation will discuss maneuver process reviews and Board comments, ESMO assessment and path foward, ESMO future plans, recent changes and concerns.

  1. Automated Robust Maneuver Design and Optimization

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is seeking improvements to the current technologies related to Position, Navigation and Timing. In particular, it is desired to automate precise maneuver...

  2. Cassini Solstice Mission Maneuver Experience: Year Two

    Science.gov (United States)

    Arrieta, Juan; Ballard, Christopher G.; Hahn, Yungsun

    2012-01-01

    The Cassini Spacecraft was launched in October 1997 on a mission to observe Saturn and its moons; it entered orbit around Saturn in July 2004 for a nominal four-year Prime Mission, later augmented by two extensions: the Equinox Mission, from July 2008 through September 2010, and the Solstice Mission, from October 2010 through September 2017. This paper provides an overview of the maneuver activities from August 2011 through June 2012 which include the design of 38 Orbit Trim Maneuvers--OTM-288 through OTM-326-- for attaining 14 natural satellite encounters: seven with Titan, six with Enceladus, and one with Dione.

  3. Intelligent Prediction of Ship Maneuvering

    Directory of Open Access Journals (Sweden)

    Miroslaw Lacki

    2016-09-01

    Full Text Available In this paper the author presents an idea of the intelligent ship maneuvering prediction system with the usage of neuroevolution. This may be also be seen as the ship handling system that simulates a learning process of an autonomous control unit, created with artificial neural network. The control unit observes input signals and calculates the values of required parameters of the vessel maneuvering in confined waters. In neuroevolution such units are treated as individuals in population of artificial neural networks, which through environmental sensing and evolutionary algorithms learn to perform given task efficiently. The main task of the system is to learn continuously and predict the values of a navigational parameters of the vessel after certain amount of time, regarding an influence of its environment. The result of a prediction may occur as a warning to navigator to aware him about incoming threat.

  4. Development of power change maneuvering method for BWR

    International Nuclear Information System (INIS)

    Fukuzaki, Takaharu; Yamada, Naoyuki; Kiguchi, Takashi; Sakurai, Mikio.

    1985-01-01

    A power change maneuvering method for BWR has been proposed to generate an optimal power control maneuver, which realizes the power change operation closest to a power change demand pattern under operating constraints. The method searches for the maneuver as an optimization problem, where the variables are thermal power levels sampled from the demand pattern, the performance index is defined to express the power mismatch between demand and feasible patterns, and the constraints are limit lines on the thermal power-core flow rate map and limits on keeping fuel integrity. The usable feasible direction method is utilized as the optimization algorithm, with newly developed techniques for initial value generation and step length determination, which apply one-dimensional search and inverse-interpolation methods, respectively, to realize the effective search of the optimal solution. Simulation results show that a typical computing time is about 5 min by a general purpose computer and the method has been verified to be practical even for on-line use. (author)

  5. On spacecraft maneuvers control subject to propellant engine modes.

    Science.gov (United States)

    Mazinan, A H

    2015-09-01

    The paper attempts to address a new control approach to spacecraft maneuvers based upon the modes of propellant engine. A realization of control strategy is now presented in engine on mode (high thrusts as well as further low thrusts), which is related to small angle maneuvers and engine off mode (specified low thrusts), which is also related to large angle maneuvers. There is currently a coarse-fine tuning in engine on mode. It is shown that the process of handling the angular velocities are finalized via rate feedback system in engine modes, where the angular rotations are controlled through quaternion based control (QBCL)strategy in engine off mode and these ones are also controlled through an optimum PID (OPIDH) strategy in engine on mode. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Determination of the optimal conditions for inclination maneuvers using a Swing-by

    Science.gov (United States)

    Moura, O.; Celestino, C. C.; Prado, A. F. B. A.

    2018-05-01

    The search for methods to reduce the fuel consumption in orbital transfers is something relevant and always current in astrodynamics. Therefore, the maneuvers assisted by the gravity, also called Swing-by maneuvers, can be an advantageous option to save fuel. The proposal of the present research is to explore the influence of some parameters in a Swing-by of an artificial satellite orbiting a planet with one of the moons of this mother planet, with the goal of changing the inclination of the artificial satellite around the main body of the system. The fuel consumption of this maneuver is compared with the required consumption to perform the same change of inclination using the classical approach of impulsive maneuvers.

  7. Using the Two-Burn Escape Maneuver for Fast Transfers in the Solar System and Beyond

    Science.gov (United States)

    Adams, Robert B.; Richardson, Georgia A.

    2010-01-01

    The two-burn maneuver to escape the gravitational pull of a central body is described. The maneuver, originally suggested by Hermann Oberth, improves efficiency considerably for a wide range of missions of interest in space exploration and scientific investigation. A clear delineation of when the maneuver is more effective is given, as are methods to extract the most advantage when using the maneuver. Some examples are given of how this maneuver can enable exploration of the outer solar system, near interstellar space, and crewed missions to Mars and beyond. The maneuver has the potential to halve the required infrastructure associated with a crewed mission to Mars and achieve increased solar escape velocities with existing spacecraft technologies.

  8. Chronic intermittent hypoxia-hypercapnia blunts heart rate responses and alters neurotransmission to cardiac vagal neurons.

    Science.gov (United States)

    Dyavanapalli, Jhansi; Jameson, Heather; Dergacheva, Olga; Jain, Vivek; Alhusayyen, Mona; Mendelowitz, David

    2014-07-01

    Patients with obstructive sleep apnoea experience chronic intermittent hypoxia-hypercapnia (CIHH) during sleep that elicit sympathetic overactivity and diminished parasympathetic activity to the heart, leading to hypertension and depressed baroreflex sensitivity. The parasympathetic control of heart rate arises from pre-motor cardiac vagal neurons (CVNs) located in nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMNX). The mechanisms underlying diminished vagal control of heart rate were investigated by studying the changes in blood pressure, heart rate, and neurotransmission to CVNs evoked by acute hypoxia-hypercapnia (H-H) and CIHH. In vivo telemetry recordings of blood pressure and heart rate were obtained in adult rats during 4 weeks of CIHH exposure. Retrogradely labelled CVNs were identified in an in vitro brainstem slice preparation obtained from adult rats exposed either to air or CIHH for 4 weeks. Postsynaptic inhibitory or excitatory currents were recorded using whole cell voltage clamp techniques. Rats exposed to CIHH had increases in blood pressure, leading to hypertension, and blunted heart rate responses to acute H-H. CIHH induced an increase in GABAergic and glycinergic neurotransmission to CVNs in NA and DMNX, respectively; and a reduction in glutamatergic neurotransmission to CVNs in both nuclei. CIHH blunted the bradycardia evoked by acute H-H and abolished the acute H-H evoked inhibition of GABAergic transmission while enhancing glycinergic neurotransmission to CVNs in NA. These changes with CIHH inhibit CVNs and vagal outflow to the heart, both in acute and chronic exposures to H-H, resulting in diminished levels of cardioprotective parasympathetic activity to the heart as seen in OSA patients. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  9. Qualitative analysis of the Dix-Hallpike maneuver in multi-canal BPPV using a biomechanical model: Introduction of an expanded Dix-Hallpike maneuver for enhanced diagnosis of multi-canal BPPV

    Directory of Open Access Journals (Sweden)

    Henri Traboulsi

    2017-09-01

    Conclusion: The Dix–Hallpike maneuver may cause simultaneous movement of otoliths present in multiple canals and create an obstacle to accurate diagnosis in multi-canal BPPV. An expanded Dix-Hallpike maneuver is described which adds intermediate steps with the head positioned to the right and left in the horizontal position before head-hanging. This expanded maneuver has helped to isolate affected semi-circular canals for individual assessment in multiple canal BPPV.

  10. Effects of autonomic nerve stimulation on colorectal motility in rats

    Science.gov (United States)

    Tong, Wei Dong; Ridolfi, Timothy J.; Kosinski, Lauren; Ludwig, Kirk; Takahashi, Toku

    2010-01-01

    Background Several disease processes of the colon and rectum, including constipation and incontinence, have been associated with abnormalities of the autonomic nervous system. However, the autonomic innervation to the colon and rectum are not fully understood. The aims of this study were to investigate the effect of stimulation of vagus nerves, pelvic nerves (PN) and hypogastric nerves (HGN) on colorectal motility in rats. Methods Four strain gauge transducers were implanted on the proximal colon, mid colon, distal colon and rectum to record circular muscle contractions in rats. Electrical stimulation was administered to the efferent distal ends of the cervical vagus nerve, PN and HGN. Motility index (MI) was evaluated before and during stimulation. Key Results Electrical stimulation (5–20 Hz) of the cervical vagus elicited significant contractions in the mid colon and distal colon, whereas less pronounced contractions were observed in the proximal colon. PN stimulation elicited significant contractions in the rectum as well as the mid colon and distal colon. Atropine treatment almost completely abolished the contractions induced by vagus nerve and PN stimulation. HGN stimulation caused relaxations in the rectum, mid colon and distal colon. The relaxations in response to HGN stimulation were abolished by propranolol. Conclusions & Inferences Vagal innervation extends to the distal colon, while the PN has projections in the distribution of the rectum through the mid colon. This suggests a pattern of dual parasympathetic innervation in the left colon. Parasympathetic fibers regulate colorectal contractions via muscarinic receptors. The HGN mainly regulates colorectal relaxations via beta-adrenoceptors. PMID:20067587

  11. Mechanical Constraints on Flight at High Elevation Decrease Maneuvering Performance of Hummingbirds.

    Science.gov (United States)

    Segre, Paolo S; Dakin, Roslyn; Read, Tyson J G; Straw, Andrew D; Altshuler, Douglas L

    2016-12-19

    High-elevation habitats offer ecological advantages including reduced competition, predation, and parasitism [1]. However, flying organisms at high elevation also face physiological challenges due to lower air density and oxygen availability [2]. These constraints are expected to affect the flight maneuvers that are required to compete with rivals, capture prey, and evade threats [3-5]. To test how individual maneuvering performance is affected by elevation, we measured the free-flight maneuvers of male Anna's hummingbirds in a large chamber translocated to a high-elevation site and then measured their performance at low elevation. We used a multi-camera tracking system to identify thousands of maneuvers based on body position and orientation [6]. At high elevation, the birds' translational velocities, accelerations, and rotational velocities were reduced, and they used less demanding turns. To determine how mechanical and metabolic constraints independently affect performance, we performed a second experiment to evaluate flight maneuvers in an airtight chamber infused with either normoxic heliox, to lower air density, or nitrogen, to lower oxygen availability. The hypodense treatment caused the birds to reduce their accelerations and rotational velocities, whereas the hypoxic treatment had no significant effect on maneuvering performance. Collectively, these experiments reveal how aerial maneuvering performance changes with elevation, demonstrating that as birds move up in elevation, air density constrains their maneuverability prior to any influence of oxygen availability. Our results support the hypothesis that changes in competitive ability at high elevations are the result of mechanical limits to flight performance [7]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Thermally-Constrained Fuel-Optimal ISS Maneuvers

    Science.gov (United States)

    Bhatt, Sagar; Svecz, Andrew; Alaniz, Abran; Jang, Jiann-Woei; Nguyen, Louis; Spanos, Pol

    2015-01-01

    Optimal Propellant Maneuvers (OPMs) are now being used to rotate the International Space Station (ISS) and have saved hundreds of kilograms of propellant over the last two years. The savings are achieved by commanding the ISS to follow a pre-planned attitude trajectory optimized to take advantage of environmental torques. The trajectory is obtained by solving an optimal control problem. Prior to use on orbit, OPM trajectories are screened to ensure a static sun vector (SSV) does not occur during the maneuver. The SSV is an indicator that the ISS hardware temperatures may exceed thermal limits, causing damage to the components. In this paper, thermally-constrained fuel-optimal trajectories are presented that avoid an SSV and can be used throughout the year while still reducing propellant consumption significantly.

  13. A Maneuvering Flight Noise Model for Helicopter Mission Planning

    Science.gov (United States)

    Greenwood, Eric; Rau, Robert; May, Benjamin; Hobbs, Christopher

    2015-01-01

    A new model for estimating the noise radiation during maneuvering flight is developed in this paper. The model applies the Quasi-Static Acoustic Mapping (Q-SAM) method to a database of acoustic spheres generated using the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique. A method is developed to generate a realistic flight trajectory from a limited set of waypoints and is used to calculate the quasi-static operating condition and corresponding acoustic sphere for the vehicle throughout the maneuver. By using a previously computed database of acoustic spheres, the acoustic impact of proposed helicopter operations can be rapidly predicted for use in mission-planning. The resulting FRAME-QS model is applied to near-horizon noise measurements collected for the Bell 430 helicopter undergoing transient pitch up and roll maneuvers, with good agreement between the measured data and the FRAME-QS model.

  14. Investigation of piloting aids for manual control of hypersonic maneuvers

    Science.gov (United States)

    Raney, David L.; Phillips, Michael R.; Person, Lee H., Jr.

    1995-01-01

    An investigation of piloting aids designed to provide precise maneuver control for an air-breathing hypersonic vehicle is described. Stringent constraints and nonintuitive high-speed flight effects associated with maneuvering in the hypersonic regime raise the question of whether manual control of such a vehicle should even be considered. The objectives of this research were to determine the extent of manual control that is desirable for a vehicle maneuvering in this regime and to identify the form of aids that must be supplied to the pilot to make such control feasible. A piloted real-time motion-based simulation of a hypersonic vehicle concept was used for this study, and the investigation focused on a single representative cruise turn maneuver. Piloting aids, which consisted of an auto throttle, throttle director, autopilot, flight director, and two head-up display configurations, were developed and evaluated. Two longitudinal control response types consisting of a rate-command/attitude-hold system and a load factor-rate/load-factor-hold system were also compared. The complete set of piloting aids, which consisted of the autothrottle, throttle director, and flight director, improved the average Cooper-Harper flying qualities ratings from 8 to 2.6, even though identical inner-loop stability and control augmentation was provided in all cases. The flight director was determined to be the most critical of these aids, and the cruise turn maneuver was unachievable to adequate performance specifications in the absence of this flight director.

  15. An approach to contouring the dorsal vagal complex for radiotherapy planning

    Energy Technology Data Exchange (ETDEWEB)

    O' Steen, Lillie; Amdur, Robert J., E-mail: amdurr@shands.ufl.edu

    2016-04-01

    Multiple studies suggest that radiation dose to the area of the brainstem called the “dorsal vagal complex (DVC)” influences the frequency of nausea and vomiting during radiotherapy. The purpose of this didactic article is to describe the step-by-step process that we use to contour the general area of the DVC on axial computed tomography (CT) images as would be done for radiotherapy planning. The contouring procedure that we describe for contouring the area of the DVC is useful to medical dosimetrists and radiation oncologists.

  16. Extracellular pH monitoring for use in closed-loop vagus nerve stimulation

    Science.gov (United States)

    Cork, Simon C.; Eftekhar, Amir; Mirza, Khalid B.; Zuliani, Claudio; Nikolic, Konstantin; Gardiner, James V.; Bloom, Stephen R.; Toumazou, Christofer

    2018-02-01

    Objective. Vagal nerve stimulation (VNS) has shown potential benefits for obesity treatment; however, current devices lack physiological feedback, which limit their efficacy. Changes in extracellular pH (pHe) have shown to be correlated with neural activity, but have traditionally been measured with glass microelectrodes, which limit their in vivo applicability. Approach. Iridium oxide has previously been shown to be sensitive to fluctuations in pH and is biocompatible. Iridium oxide microelectrodes were inserted into the subdiaphragmatic vagus nerve of anaesthetised rats. Introduction of the gut hormone cholecystokinin (CCK) or distension of the stomach was used to elicit vagal nerve activity. Main results. Iridium oxide microelectrodes have sufficient pH sensitivity to readily detect changes in pHe associated with both CCK and gastric distension. Furthermore, a custom-made Matlab script was able to use these changes in pHe to automatically trigger an implanted VNS device. Significance. This is the first study to show pHe changes in peripheral nerves in vivo. In addition, the demonstration that iridium oxide microelectrodes are sufficiently pH sensitive as to measure changes in pHe associated with physiological stimuli means they have the potential to be integrated into closed-loop neurostimulating devices.

  17. Huang's three-step maneuver shortens the learning curve of laparoscopic spleen-preserving splenic hilar lymphadenectomy.

    Science.gov (United States)

    Huang, Chang-Ming; Huang, Ze-Ning; Zheng, Chao-Hui; Li, Ping; Xie, Jian-Wei; Wang, Jia-Bin; Lin, Jian-Xian; Jun, Lu; Chen, Qi-Yue; Cao, Long-Long; Lin, Mi; Tu, Ru-Hong

    2017-12-01

    The goal of this study was to investigate the difference between the learning curves of different maneuvers in laparoscopic spleen-preserving splenic hilar lymphadenectomy for advanced upper gastric cancer. From January 2010 to April 2014, 53 consecutive patients who underwent laparoscopic spleen-preserving splenic hilar lymphadenectomy via the traditional-step maneuver (group A) and 53 consecutive patients via Huang's three-step maneuver (group B) were retrospectively analyzed. No significant difference in patient characteristics were found between the two groups. The learning curves of groups A and B were divided into phase 1 (1-43 cases and 1-30 cases, respectively) and phase 2 (44-53 cases and 31-53 cases, respectively). Compared with group A, the dissection time, bleeding loss and vascular injury were significantly decreased in group B. No significant differences in short-term outcomes were found between the two maneuvers. The multivariate analysis indicated that the body mass index, short gastric vessels, splenic artery type and maneuver were significantly associated with the dissection time in group B. No significant difference in the survival curve was found between the maneuvers. The learning curve of Huang's three-step maneuver was shorter than that of the traditional-step maneuver, and the former represents an ideal maneuver for laparoscopic spleen-preserving splenic hilar lymphadenectomy.To shorten the learning curve at the beginning of laparoscopic spleen-preserving splenic hilar lymphadenectomy, beginners should beneficially use Huang's three-step maneuver and select patients with advanced upper gastric cancer with a body mass index of less than 25 kg/m 2 and the concentrated type of splenic artery. Copyright © 2017. Published by Elsevier Ltd.

  18. Morphology, muscle capacity, skill, and maneuvering ability in hummingbirds.

    Science.gov (United States)

    Dakin, Roslyn; Segre, Paolo S; Straw, Andrew D; Altshuler, Douglas L

    2018-02-09

    How does agility evolve? This question is challenging because natural movement has many degrees of freedom and can be influenced by multiple traits. We used computer vision to record thousands of translations, rotations, and turns from more than 200 hummingbirds from 25 species, revealing that distinct performance metrics are correlated and that species diverge in their maneuvering style. Our analysis demonstrates that the enhanced maneuverability of larger species is explained by their proportionately greater muscle capacity and lower wing loading. Fast acceleration maneuvers evolve by recruiting changes in muscle capacity, whereas fast rotations and sharp turns evolve by recruiting changes in wing morphology. Both species and individuals use turns that play to their strengths. These results demonstrate how both skill and biomechanical traits shape maneuvering behavior. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. The Effect of Sham Feeding on Neurocardiac Regulation in Healthy Human Volunteers

    Directory of Open Access Journals (Sweden)

    Markad V Kamath

    2007-01-01

    Full Text Available BACKGROUND: Distension and electrical stimuli in the esophagus alter heart rate variability (HRV consistent with activation of vagal afferent and efferent pathways. Sham feeding stimulates gastric acid secretion by means of vagal efferent pathways. It is not known, however, whether activation of vagal efferent pathways is organ- or stimulus-specific.

  20. Doppler ultrasonography measurement of hepatic hemodynamics during Valsalva maneuver: healthy volunteer study

    Directory of Open Access Journals (Sweden)

    Dong-Ho Bang

    2015-01-01

    Full Text Available Purpose: The aim of our study was to assess the hemodynamic change of liver during the Valsalva maneuver using Doppler ultrasonography. Methods: Thirty healthy men volunteers were enrolled (mean age, 25.5±3.64 years. The diameter, minimal and maximal velocities, and volume flow of intrahepatic inferior vena cava (IVC, middle hepatic vein (MHV, and right main portal vein (RMPV was measured during both rest and Valsalva maneuver. These changes were compared using paired t-test. Results: The mean diameters (cm of the intrahepatic IVC at rest and Valsalva maneuver were 1.94±0.40 versus 0.56±0.66 (P<0.001. The mean diameter (cm, minimal velocity (cm/sec, maximal velocity (cm/sec, and volume flow (mL/min of MHV at rest and Valsalva maneuver were 0.60±0.15 versus 0.38±0.20 (P<0.001, -7.98±5.47 versus 25.74±13.13 (P<0.001, 21.34±6.89 versus 35.12±19.95 (P=0.002, and 106.94±97.65 versus 153.90±151.80 (P=0.014, respectively. Those of RMPV at rest and Valsalva maneuver were 0.78±0.21 versus 0.76±0.20 (P=0.485, 20.21±8.22 versus 18.73±7.43 (P=0.351, 26.79±8.85 versus 24.93±9.91 (P=0.275, and 391.52±265.63 versus 378.43±239.36 (P=0.315, respectively. Conclusion: The blood flow velocity and volume flow of MHV increased significantly during Valsalva maneuver. These findings suggest that hepatic vein might play an important role to maintain venous return to the heart during the maneuver.

  1. Doppler ultrasonography measuement of hepatic hemodynamics during Valsalva maneuver: healthy volunteers study

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Dong Ho; Son, Young Jin; Lee, Young Hwan; Yoon, Kwon Ha [Dept. of Radiology, Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    2015-01-15

    The aim of our study was to assess the hemodynamic change of liver during the Valsalva maneuver using Doppler ultrasonography. Thirty healthy men volunteers were enrolled (mean age, 25.5±3.64 years). The diameter, minimal and maximal velocities, and volume flow of intrahepatic inferior vena cava (IVC), middle hepatic vein (MHV), and right main portal vein (RMPV) was measured during both rest and Valsalva maneuver. These changes were compared using paired t-test. The mean diameters (cm) of the intrahepatic IVC at rest and Valsalva maneuver were 1.94±0.40 versus 0.56±0.66 (P<0.001). The mean diameter (cm), minimal velocity (cm/sec), maximal velocity (cm/sec), and volume flow (mL/min) of MHV at rest and Valsalva maneuver were 0.60±0.15 versus 0.38±0.20 (P<0.001), -7.98±5.47 versus 25.74±13.13 (P<0.001), 21.34±6.89 versus 35.12±19.95 (P=0.002), and 106.94±97.65 versus 153.90±151.80 (P=0.014), respectively. Those of RMPV at rest and Valsalva maneuver were 0.78±0.21 versus 0.76±0.20 (P=0.485), 20.21±8.22 versus 18.73±7.43 (P=0.351), 26.79±8.85 versus 24.93±9.91 (P=0.275), and 391.52±265.63 versus 378.43±239.36 (P=0.315), respectively. The blood flow velocity and volume flow of MHV increased significantly during Valsalva maneuver. These findings suggest that hepatic vein might play an important role to maintain venous return to the heart during the maneuver.

  2. 32 CFR 552.38 - Acquisition of maneuver agreements for Army commanders.

    Science.gov (United States)

    2010-07-01

    ... Real Estate and Interest Therein § 552.38 Acquisition of maneuver agreements for Army commanders. (a... specific areas desired for use. (b) Real estate coverage. Real estate coverage will be in the form of agreements with landowners, granting the right to conduct maneuvers at a given time or periodically. Short...

  3. Multiple Maneuvering Target Tracking by Improved Particle Filter Based on Multiscan JPDA

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2012-01-01

    Full Text Available The multiple maneuvering target tracking algorithm based on a particle filter is addressed. The equivalent-noise approach is adopted, which uses a simple dynamic model consisting of target state and equivalent noise which accounts for the combined effects of the process noise and maneuvers. The equivalent-noise approach converts the problem of maneuvering target tracking to that of state estimation in the presence of nonstationary process noise with unknown statistics. A novel method for identifying the nonstationary process noise is proposed in the particle filter framework. Furthermore, a particle filter based multiscan Joint Probability Data Association (JPDA filter is proposed to deal with the data association problem in a multiple maneuvering target tracking. In the proposed multiscan JPDA algorithm, the distributions of interest are the marginal filtering distributions for each of the targets, and these distributions are approximated with particles. The multiscan JPDA algorithm examines the joint association events in a multiscan sliding window and calculates the marginal posterior probability based on the multiscan joint association events. The proposed algorithm is illustrated via an example involving the tracking of two highly maneuvering, at times closely spaced and crossed, targets, based on resolved measurements.

  4. A Comparison of Obstetric Maneuvers for the Acute Management of Shoulder Dystocia

    Science.gov (United States)

    Hoffman, Matthew K; Bailit, Jennifer L; Branch, D. Ware; Burkman, Ronald T; Van Veldhusien, Paul; Lu, Li; Kominiarek, Michelle A.; Hibbard, Judith U; Landy, Helain J; Haberman, Shoshana; Wilkins, Isabelle; Gonzalez Quintero, Victor H; Gregory, Kimberly D; Hatjis, Christos G; Ramirez, Mildred M; Reddy, Uma M.; Troendle, James; Zhang, Jun

    2011-01-01

    Objective To assess the efficacy of obstetric maneuvers for resolving shoulder dystocia, and the effect that these maneuvers have on neonatal injury when shoulder dystocia occurs. Methods Using an electronic database encompassing 206,969 deliveries, we identified all women with a vertex fetus beyond 34 0/7 weeks of gestation who incurred a shoulder dystocia during the process of delivery. Women whose fetuses had a congenital anomaly and women with an antepartum stillbirth were excluded. Medical records of all cases were reviewed by trained abstractors. Cases involving neonatal injury (defined as brachial plexus injury, clavicular or humerus fracture, or hypoxic ischemic encephalopathy or intrapartum neonatal death attributed to the shoulder dystocia) were compared to those without injury. RESULTS Among 132,098 women who delivered a term cephalic liveborn fetus vaginally, 2,018 incurred a shoulder dystocia (1.5%), and 101 (5.2%) of these incurred a neonatal injury. Delivery of the posterior shoulder was associated with the highest rate of delivery when compared to other maneuvers (84.4% compared with 24.3% to 72.0% for other maneuvers; Pdystocia. The need for additional maneuvers was associated with higher rates of neonatal injury. PMID:21555962

  5. Use of Lung Opening Maneuver in Patients with Acute Respiratory Failure After Cardiosurgical Operations

    Directory of Open Access Journals (Sweden)

    A. A. Yeremenko

    2006-01-01

    Full Text Available Postoperative respiratory failure is a most common complication and a main cause of postoperative death. The lung opening maneuver is a most effective method of respiratory therapy for this syndrome.Objective. To evaluate the impact of recruiting maneuver on gas exchange parameters, the biomechanical properties of the lung, and hemodynamic parameters. To determine whether the lung opening maneuver can be fully performed in patients undergoing cardiac surgery.Materials and methods. The study covered 19 patients aged 53 to 70 years who had postoperative failure. The indication for the recruiting maneuver was a decrease in the oxygenation index below 250 mm Hg during assisted ventilation (AV with FiO2>0.5, an inspiratory-expira-tory phase ratio of 1:1 to 3:1, and a positive end-expiratory pressure of 5—10 cm H2O.Results. A decrease in the oxygenation index to 139±36 mm Hg was observed before the recruiting maneuver was applied. Cd;n. averaged 41.1±8.4 ml/cm H2O. After use of the recruiting maneuver, there were increases in the oxygenation index up to 371±121 mm Hg and in Cd;n. up to 64.3±10 ml/cm H2O in all the patients. When the recruiting maneuver was employed, 14 patients were observed to have elevated blood pressures corrected with a vasopressor. One patient developed pneumothorax that was drained in proper time.Conclusion. The application of the lung opening maneuver leads to a considerable improvement of gas exchange parameters and lung mechanical properties.

  6. Structural remodeling of the heart and its premotor cardioinhibitory vagal neurons following T(5) spinal cord transection.

    Science.gov (United States)

    Lujan, Heidi L; Janbaih, Hussein; DiCarlo, Stephen E

    2014-05-01

    Midthoracic spinal cord injury (SCI) is associated with enhanced cardiac sympathetic activity and reduced cardiac parasympathetic activity. The enhanced cardiac sympathetic activity is associated with sympathetic structural plasticity within the stellate ganglia, spinal cord segments T1-T4, and heart. However, changes to cardiac parasympathetic centers rostral to an experimental SCI are relatively unknown. Importantly, reduced vagal activity is a predictor of high mortality. Furthermore, this autonomic dysregulation promotes progressive left ventricular (LV) structural remodeling. Accordingly, we hypothesized that midthoracic spinal cord injury is associated with structural plasticity in premotor (preganglionic parasympathetic neurons) cardioinhibitory vagal neurons located within the nucleus ambiguus as well as LV structural remodeling. To test this hypothesis, dendritic arborization and morphology (cholera toxin B immunohistochemistry and Sholl analysis) of cardiac projecting premotor cardioinhibitory vagal neurons located within the nucleus ambiguus were determined in intact (sham transected) and thoracic level 5 transected (T5X) rats. In addition, LV chamber size, wall thickness, and collagen content (Masson trichrome stain and structural analysis) were determined. Midthoracic SCI was associated with structural changes within the nucleus ambiguus and heart. Specifically, following T5 spinal cord transection, there was a significant increase in cardiac parasympathetic preganglionic neuron dendritic arborization, soma area, maximum dendritic length, and number of intersections/animal. This parasympathetic structural remodeling was associated with a profound LV structural remodeling. Specifically, T5 spinal cord transection increased LV chamber area, reduced LV wall thickness, and increased collagen content. Accordingly, results document a dynamic interaction between the heart and its parasympathetic innervation.

  7. Demonstrative Maneuvers for Aircraft Agility Predictions

    Science.gov (United States)

    2008-03-01

    AIAA Paper 1996-3741. 19. Raymer , Daniel P. Aircraft Design: A Conceptual Approach. American Institute of Aeronautics and Astronautics, Inc., 3rd...Shaw, Robert L. Fighter Combat: Tactics and Maneuvering. Naval Institute Press, Annapolis, MD, 1985. 25. Smith, Steven W. The Scientist and

  8. Prevention of shoulder dystocia: A randomized controlled trial to evaluate an obstetric maneuver.

    Science.gov (United States)

    Poujade, Olivier; Azria, Elie; Ceccaldi, Pierre-François; Davitian, Carine; Khater, Carine; Chatel, Paul; Pernin, Emilie; Aflak, Nizar; Koskas, Martin; Bourgeois-Moine, Agnès; Hamou-Plotkine, Laurence; Valentin, Morgane; Renner, Jean-Paul; Roy, Carine; Estellat, Candice; Luton, Dominique

    2018-08-01

    Shoulder dystocia is a major obstetric emergency defined as a failure of delivery of the fetal shoulder(s). This study evaluated whether an obstetric maneuver, the push back maneuver performed gently on the fetal head during delivery, could reduce the risk of shoulder dystocia. We performed a multicenter, randomized, single-blind trial to compare the push back maneuver with usual care in parturient women at term. The primary outcome, shoulder dystocia, was considered to have occurred if, after delivery of the fetal head, any additional obstetric maneuver, beginning with the McRoberts maneuver, other than gentle downward traction and episiotomy was required. We randomly assigned 522 women to the push back maneuver group (group P) and 523 women to the standard vaginal delivery group (group S). Finally, 473 women assigned to group P and 472 women assigned to group S delivered vaginally. The rate of shoulder dystocia was significantly lower in group P (1·5%) than in group S (3·8%) (odds ratio [OR] 0·38 [0·16-0·92]; P = 0·03). After adjustment for predefined main risk factors, dystocia remained significantly lower in group P than in group S. There were no significant between-group differences in neonatal complications, including brachial plexus injury, clavicle fracture, hematoma and generalized asphyxia. In this trial in 945 women who delivered vaginally, the push back maneuver significantly decreased the risk of shoulder dystocia, as compared with standard vaginal delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A Fuel-Efficient Conflict Resolution Maneuver for Separation Assurance

    Science.gov (United States)

    Bowe, Aisha Ruth; Santiago, Confesor

    2012-01-01

    Automated separation assurance algorithms are envisioned to play an integral role in accommodating the forecasted increase in demand of the National Airspace System. Developing a robust, reliable, air traffic management system involves safely increasing efficiency and throughput while considering the potential impact on users. This experiment seeks to evaluate the benefit of augmenting a conflict detection and resolution algorithm to consider a fuel efficient, Zero-Delay Direct-To maneuver, when resolving a given conflict based on either minimum fuel burn or minimum delay. A total of twelve conditions were tested in a fast-time simulation conducted in three airspace regions with mixed aircraft types and light weather. Results show that inclusion of this maneuver has no appreciable effect on the ability of the algorithm to safely detect and resolve conflicts. The results further suggest that enabling the Zero-Delay Direct-To maneuver significantly increases the cumulative fuel burn savings when choosing resolution based on minimum fuel burn while marginally increasing the average delay per resolution.

  10. Colisional Cloud Debris and Propelled Evasive Maneuvers

    Science.gov (United States)

    Ferreira, L. S.; Jesus, A. D. C.; Carvalho, T. C. F.; Sousa, R. R.

    2017-10-01

    Space debris clouds exist at various altitudes in the environment outside the Earth. Fragmentation of debris and/or collision between the debris of a cloud increases the amount of debris, producing smaller debris. This event also increases significantly the chances of collision with operational vehicles in orbit. In this work we study clouds of debris that are close to a spacecraft in relation to its distance from the center of the Earth. The results show several layers of colliding debris depending on their size over time of evasive maneuvers of the vehicle. In addition, we have tested such maneuvers for propulsion systems with a linear and exponential mass variation model. The results show that the linear propulsion system is more efficient.

  11. Infant diet, gender and the development of vagal tone stability during the first two years of life

    Science.gov (United States)

    Postnatal nutrition influences neurodevelopment, including autonomic nervous system components associated with cardiac control. In this study resting vagal tone (V) was measured quarterly during infancy and at 2 years in 146 breast-fed, 143 milk formula-fed, and 137 soy formula-fed infants. Stabilit...

  12. Effect of Conflict Resolution Maneuver Execution Delay on Losses of Separation

    Science.gov (United States)

    Cone, Andrew C.

    2010-01-01

    This paper examines uncertainty in the maneuver execution delay for data linked conflict resolution maneuvers. This uncertainty could cause the previously cleared primary conflict to reoccur or a secondary conflict to appear. Results show that the likelihood of a primary conflict reoccurring during a horizontal conflict resolution maneuver increases with larger initial turn-out angles and with shorter times until loss of separation. There is also a significant increase in the probability of a primary conflict reoccurring when the time until loss falls under three minutes. Increasing horizontal separation by an additional 1.5 nmi lowers the risk, but does not completely eliminate it. Secondary conflicts were shown to have a small probability of occurring in all tested configurations.

  13. Evaluation of Mathematical Models for Tankers’ Maneuvering Motions

    Directory of Open Access Journals (Sweden)

    Erhan AKSU

    2017-03-01

    Full Text Available In this study, the maneuvering performance of two tanker ships, KVLCC1 and KVLCC2 which have different stern forms are predicted using a system-based method. Two different 3 DOF (degrees of freedom mathematical models based on the MMG(Maneuvering Modeling Group concept areappliedwith the difference in representing lateral force and yawing moment by second and third order polynomials respectively. Hydrodynamic coefficients and related parameters used in the mathematical models of the same scale models of KVLCC1 and KVLCC2 ships are estimated by using experimental data of NMRI (National Maritime Research Institute. The simulations of turning circle with rudder angle ±35o , zigzag(±10o /±10o and zigzag (±20o /±20o maneuvers are carried out and compared with free running model test data of MARIN (Maritime Research Institute Netherlands in this study. As a result of the analysis, it can be summarised that MMG model based on the third order polynomial is superior to the one based on the second order polynomial in view of estimation accuracy of lateral hull force and yawing moment.

  14. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function.

    Science.gov (United States)

    Ardell, Jeffrey L; Rajendran, Pradeep S; Nier, Heath A; KenKnight, Bruce H; Armour, J Andrew

    2015-11-15

    Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. Copyright © 2015 the American Physiological Society.

  15. Study on zigzag maneuver characteristics of V-U very large crude oil (VLCC) tankers

    Science.gov (United States)

    Jaswar, Maimun, A.; Wahid, M. A.; Priyanto, A.; Zamani, Pauzi, Saman

    2012-06-01

    The Department of Marine Technology at the Faculty of Mechanical Engineering, University Teknologi Malaysia has recently developed an Ship Maneuverability tool which intends to upgrade student's level understanding the application of fluid dynamic on interaction between hull, propeller, and rudder during maneuvering. This paper discusses zigzag maneuver for conventional Very Large Crude Oil (VLCC) ships with the same principal dimensions but different stern flame shape. 10/10 zigzag maneuver characteristics of U and V types of VLCC ships are investigated. Simulation results for U-type show a good agreement with the experimental data, but V-type not good agreement with experimental one. Further study on zigzag maneuver characteristics are required.

  16. Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects

    Science.gov (United States)

    Koh, J.; Brown, T. E.; Beightol, L. A.; Ha, C. Y.; Eckberg, D. L.

    1994-01-01

    1. We studied eight young men (age range: 20-37 years) with chronic, clinically complete high cervical spinal cord injuries and ten age-matched healthy men to determine how interruption of connections between the central nervous system and spinal sympathetic motoneurones affects autonomic cardiovascular control. 2. Baseline diastolic pressures and R-R intervals (heart periods) were similar in the two groups. Slopes of R-R interval responses to brief neck pressure changes were significantly lower in tetraplegic than in healthy subjects, but slopes of R-R interval responses to steady-state arterial pressure reductions and increases were comparable. Plasma noradrenaline levels did not change significantly during steady-state arterial pressure reductions in tetraplegic patients, but rose sharply in healthy subjects. The range of arterial pressure and R-R interval responses to vasoactive drugs (nitroprusside and phenylephrine) was significantly greater in tetraplegic than healthy subjects. 3. Resting R-R interval spectral power at respiratory and low frequencies was similar in the two groups. During infusions of vasoactive drugs, low-frequency R-R interval spectral power was directly proportional to arterial pressure in tetraplegic patients, but was unrelated to arterial pressure in healthy subjects. Vagolytic doses of atropine nearly abolished both low- and respiratory-frequency R-R interval spectral power in both groups. 4. Our conclusions are as follows. First, since tetraplegic patients have significant levels of low-frequency arterial pressure and R-R interval spectral power, human Mayer arterial pressure waves may result from mechanisms that do not involve stimulation of spinal sympathetic motoneurones by brainstem neurones. Second, since in tetraplegic patients, low-frequency R-R interval spectral power is proportional to arterial pressure, it is likely to be mediated by a baroreflex mechanism. Third, since low-frequency R-R interval rhythms were nearly abolished

  17. Rendezvous maneuvers using Genetic Algorithm

    International Nuclear Information System (INIS)

    Dos Santos, Denílson Paulo Souza; De Almeida Prado, Antônio F Bertachini; Teodoro, Anderson Rodrigo Barretto

    2013-01-01

    The present paper has the goal of studying orbital maneuvers of Rendezvous, that is an orbital transfer where a spacecraft has to change its orbit to meet with another spacecraft that is travelling in another orbit. This transfer will be accomplished by using a multi-impulsive control. A genetic algorithm is used to find the transfers that have minimum fuel consumption

  18. Adaptive ISAR Imaging of Maneuvering Targets Based on a Modified Fourier Transform.

    Science.gov (United States)

    Wang, Binbin; Xu, Shiyou; Wu, Wenzhen; Hu, Pengjiang; Chen, Zengping

    2018-04-27

    Focusing on the inverse synthetic aperture radar (ISAR) imaging of maneuvering targets, this paper presents a new imaging method which works well when the target's maneuvering is not too severe. After translational motion compensation, we describe the equivalent rotation of maneuvering targets by two variables-the relative chirp rate of the linear frequency modulated (LFM) signal and the Doppler focus shift. The first variable indicates the target's motion status, and the second one represents the possible residual error of the translational motion compensation. With them, a modified Fourier transform matrix is constructed and then used for cross-range compression. Consequently, the imaging of maneuvering is converted into a two-dimensional parameter optimization problem in which a stable and clear ISAR image is guaranteed. A gradient descent optimization scheme is employed to obtain the accurate relative chirp rate and Doppler focus shift. Moreover, we designed an efficient and robust initialization process for the gradient descent method, thus, the well-focused ISAR images of maneuvering targets can be achieved adaptively. Human intervention is not needed, and it is quite convenient for practical ISAR imaging systems. Compared to precedent imaging methods, the new method achieves better imaging quality under reasonable computational cost. Simulation results are provided to validate the effectiveness and advantages of the proposed method.

  19. An Analytical Solution for Yaw Maneuver Optimization on the International Space Station and Other Orbiting Space Vehicles

    Science.gov (United States)

    Dobrinskaya, Tatiana

    2015-01-01

    This paper suggests a new method for optimizing yaw maneuvers on the International Space Station (ISS). Yaw rotations are the most common large maneuvers on the ISS often used for docking and undocking operations, as well as for other activities. When maneuver optimization is used, large maneuvers, which were performed on thrusters, could be performed either using control moment gyroscopes (CMG), or with significantly reduced thruster firings. Maneuver optimization helps to save expensive propellant and reduce structural loads - an important factor for the ISS service life. In addition, optimized maneuvers reduce contamination of the critical elements of the vehicle structure, such as solar arrays. This paper presents an analytical solution for optimizing yaw attitude maneuvers. Equations describing pitch and roll motion needed to counteract the major torques during a yaw maneuver are obtained. A yaw rate profile is proposed. Also the paper describes the physical basis of the suggested optimization approach. In the obtained optimized case, the torques are significantly reduced. This torque reduction was compared to the existing optimization method which utilizes the computational solution. It was shown that the attitude profiles and the torque reduction have a good match for these two methods of optimization. The simulations using the ISS flight software showed similar propellant consumption for both methods. The analytical solution proposed in this paper has major benefits with respect to computational approach. In contrast to the current computational solution, which only can be calculated on the ground, the analytical solution does not require extensive computational resources, and can be implemented in the onboard software, thus, making the maneuver execution automatic. The automatic maneuver significantly simplifies the operations and, if necessary, allows to perform a maneuver without communication with the ground. It also reduces the probability of command

  20. 32 CFR 644.137 - Maneuver agreements.

    Science.gov (United States)

    2010-07-01

    ... planning and acquires rights to use land and other facilities for Department of the Army exercises. The... and, after the maneuver is completed, will be responsible for negotiating restoration settlements and... director at field level whereby the command will assume responsibility for settlement of real estate...

  1. Tongue-Driven Wheelchair Out-Maneuvers the Competition

    Science.gov (United States)

    ... 2, 2014 Tongue-Driven Wheelchair Out-Maneuvers the Competition Researchers funded by the National Institute of Biomedical ... significant step towards vastly improving the independence and quality of life of individuals with tetraplegia, and is ...

  2. Vagally mediated effects of brain stem dopamine on gastric tone and phasic contractions of the rat.

    Science.gov (United States)

    Anselmi, L; Toti, L; Bove, C; Travagli, R A

    2017-11-01

    Dopamine (DA)-containing fibers and neurons are embedded within the brain stem dorsal vagal complex (DVC); we have shown previously that DA modulates the membrane properties of neurons of the dorsal motor nucleus of the vagus (DMV) via DA1 and DA2 receptors. The vagally dependent modulation of gastric tone and phasic contractions, i.e., motility, by DA, however, has not been characterized. With the use of microinjections of DA in the DVC while recording gastric tone and motility, the aims of the present study were 1 ) assess the gastric effects of brain stem DA application, 2 ) identify the DA receptor subtype, and, 3 ) identify the postganglionic pathway(s) activated. Dopamine microinjection in the DVC decreased gastric tone and motility in both corpus and antrum in 29 of 34 rats, and the effects were abolished by ipsilateral vagotomy and fourth ventricular treatment with the selective DA2 receptor antagonist L741,626 but not by application of the selective DA1 receptor antagonist SCH 23390. Systemic administration of the cholinergic antagonist atropine attenuated the inhibition of corpus and antrum tone in response to DA microinjection in the DVC. Conversely, systemic administration of the nitric oxide synthase inhibitor nitro-l-arginine methyl ester did not alter the DA-induced decrease in gastric tone and motility. Our data provide evidence of a dopaminergic modulation of a brain stem vagal neurocircuit that controls gastric tone and motility. NEW & NOTEWORTHY Dopamine administration in the brain stem decreases gastric tone and phasic contractions. The gastric effects of dopamine are mediated via dopamine 2 receptors on neurons of the dorsal motor nucleus of the vagus. The inhibitory effects of dopamine are mediated via inhibition of the postganglionic cholinergic pathway. Copyright © 2017 the American Physiological Society.

  3. Review of Tracktable for Satellite Maneuver Detection

    Energy Technology Data Exchange (ETDEWEB)

    Acquesta, Erin C.S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Valicka, Christopher G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hinga, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ehn, Carollan Beret [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    As a tool developed to translate geospatial data into geometrical descriptors, Tracktable offers a highly efficient means to detect anomalous flight and maritime behavior. Following the success of using geometrical descriptors for detecting anomalous trajectory behavior, the question of whether Tracktable could be used to detect satellite maneuvers arose. In answering this question, this re- port will introduce a brief description of how Tracktable has been used in the past, along with an introduction to the fundamental properties of astrodynamics for satellite trajectories. This will then allow us to compare the two problem spaces, addressing how easily the methods used by Tracktable will translate to orbital mechanics. Based on these results, we will then be able to out- line the current limitations as well as possible path forward for using Tracktable to detect satellite maneuvers.

  4. A Computer Simulation of the System-Wide Effects of Parallel-Offset Route Maneuvers

    Science.gov (United States)

    Lauderdale, Todd A.; Santiago, Confesor; Pankok, Carl

    2010-01-01

    Most aircraft managed by air-traffic controllers in the National Airspace System are capable of flying parallel-offset routes. This paper presents the results of two related studies on the effects of increased use of offset routes as a conflict resolution maneuver. The first study analyzes offset routes in the context of all standard resolution types which air-traffic controllers currently use. This study shows that by utilizing parallel-offset route maneuvers, significant system-wide savings in delay due to conflict resolution of up to 30% are possible. It also shows that most offset resolutions replace horizontal-vectoring resolutions. The second study builds on the results of the first and directly compares offset resolutions and standard horizontal-vectoring maneuvers to determine that in-trail conflicts are often more efficiently resolved by offset maneuvers.

  5. Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity

    DEFF Research Database (Denmark)

    Frøkjaer, J B; Bergmann, S; Brock, C

    2016-01-01

    algometry, conditioned pain modulation using a cold pressor test and a liquid meal ultrasonographic gastroduodenal motility test were performed. KEY RESULTS: Cardiac vagal tone increased during active treatment with t-VNS and DSB compared to sham (p = 0.009). In comparison to sham, thresholds to bone pain...... increased (p = 0.001), frequency of antral contractions increased (p = 0.004) and gastroduodenal motility index increased (p = 0.016) with active treatment. However, no effect on muscle pain thresholds and conditioned pain modulation was seen. CONCLUSIONS & INFERENCES: This experimental study suggests...

  6. High-Resolution Manometry Evaluation of Pressures at the Pharyngo-upper Esophageal Area in Patients with Oropharyngeal Dysphagia Due to Vagal Paralysis.

    Science.gov (United States)

    Pinna, Bruno Rezende; Herbella, Fernando A M; de Biase, Noemi; Vaiano, Thays C G; Patti, Marco G

    2017-10-01

    The motility of the pharynx, upper esophageal sphincter (UES), and proximal esophagus in patients with oropharyngeal dysphagia is still not entirely understood. High-resolution manometry (HRM) was recently added to the armamentarium for the study of this area. This study aims to describe HRM findings in patients with vagal paralysis. Sixteen patients (mean age 54 years, 69% females) with oropharyngeal dysphagia due to unilateral vagal paralysis were prospectively studied. All patients underwent HRM. Motility of the UES and at the topography of the velopharynx and epiglottis were recorded. (1) UES relaxation is compromised in a minority of patients, (2) epiglottis pressure does not follow a specific pattern, (3) vellum is hypotonic in half of the patients, (4) dysphagia is related to a low pharyngeal pressure, not to a flow obstruction at the level of the UES, and (5) aspiration is related to low pressures at the level of the UES and epiglottis and higher pressures at the level of the vellum. Pharyngeal motility is significantly impaired in patients with oropharyngeal dysphagia and unilateral vagal paralysis. In half of the cases, UES resting pressure is preserved due to unilateral innervation and relaxation is normal in most patients. Dysphagia therapy in these patients must be directed toward improvement in the oropharyngeal motility not at the UES.

  7. Urotensin II promotes vagal-mediated bradycardia by activating cardiac-projecting parasympathetic neurons of nucleus ambiguus.

    Science.gov (United States)

    Brailoiu, Gabriela Cristina; Deliu, Elena; Rabinowitz, Joseph E; Tilley, Douglas G; Koch, Walter J; Brailoiu, Eugen

    2014-05-01

    Urotensin II (U-II) is a cyclic undecapeptide that regulates cardiovascular function at central and peripheral sites. The functional role of U-II nucleus ambiguus, a key site controlling cardiac tone, has not been established, despite the identification of U-II and its receptor at this level. We report here that U-II produces an increase in cytosolic Ca(2+) concentration in retrogradely labeled cardiac vagal neurons of nucleus ambiguus via two pathways: (i) Ca(2+) release from the endoplasmic reticulum via inositol 1,4,5-trisphosphate receptor; and (ii) Ca(2+) influx through P/Q-type Ca(2+) channels. In addition, U-II depolarizes cultured cardiac parasympathetic neurons. Microinjection of increasing concentrations of U-II into nucleus ambiguus elicits dose-dependent bradycardia in conscious rats, indicating the in vivo activation of the cholinergic pathway controlling the heart rate. Both the in vitro and in vivo effects were abolished by the urotensin receptor antagonist, urantide. Our findings suggest that, in addition, to the previously reported increase in sympathetic outflow, U-II activates cardiac vagal neurons of nucleus ambiguus, which may contribute to cardioprotection. © 2014 International Society for Neurochemistry.

  8. Dynamic changes in parent affect and adolescent cardiac vagal regulation: a real-time analysis.

    Science.gov (United States)

    Cui, Lixian; Morris, Amanda Sheffield; Harrist, Amanda W; Larzelere, Robert E; Criss, Michael M

    2015-04-01

    The current study explored the role of parents' negative and positive affect in adolescent respiratory sinus arrhythmia (RSA) reactivity during a parent-adolescent conflict discussion task and the moderating effects of adolescent sex and age. Questionnaire data were collected from 206 adolescents (10-18 years of age; M = 13.37 years) and their primary caregivers (83.3% biological mothers). Electrocardiogram and respiration data were collected from adolescents, and RSA variables were computed. Parent affect was coded during the conflict discussion task. Multilevel modeling was used to distinguish the between- and within-individual effects of parent affect on adolescent RSA. Results indicated that observed within-parent-teen dyad anger was negatively associated with adolescent RSA, controlling for previous-minute RSA level, particularly among adolescents 13 years and older. In addition, observed between-dyad positive affect was positively linked to RSA for both boys and girls when previous-minute RSA level was controlled. Within-dyad positive affect was positively related to girl's RSA only. These findings suggest that expressions of positive affect may be related to better vagal regulation (RSA increases), whereas expressions of anger may be related to poor vagal regulation (RSA decreases) during social engagement. (c) 2015 APA, all rights reserved).

  9. [Effects of recruitment maneuver in prone position on hemodynamics in patients with severe pulmonary infection].

    Science.gov (United States)

    Fan, Yuan-hua; Liu, Yuan-fei; Zhu, Hua-yong; Zhang, Min

    2012-02-01

    To evaluate effects of recruitment maneuver in prone position on hemodynamics in patients with severe pulmonary infection, based on the protective pulmonary ventilation strategy. Ninety-seven cases with severe pulmonary infection admitted to intensive care unit (ICU) of Ganzhou City People's Hospital undergoing mechanical ventilation were involved. Volume controlled ventilation mode with small tidal volume (8 ml/kg) and positive end-expiratory pressure (PEEP) of 6 cm H(2)O [1 cm H(2)O = 0.098 kPa] was conducted. Each patient underwent recruitment maneuver in supine position and then in prone position [PEEP 20 cm H(2)O+pressure control (PC) 20 cm H(2)O]. Heart rate (HR), mean arterial pressure (MAP), pulse oxygen saturation [SpO(2)] and blood gas analysis data were recorded before and after recruitment maneuver in either position. A double-lumen venous catheter was inserted into internal jugular vein or subclavian vein, and a pulse index contour cardiac output (PiCCO) catheter was introduced into femoral artery. Cardiac index (CI), stroke volume index (SVI), systemic vascular resistance index (SVRI), intra-thoracic blood volume index (ITBVI), extra vascular lung water index (EVLWI), global end-diastolic volume index (GEDVI), global ejection fraction (GEF), stroke volume variation (SVV) and central vein pressure (CVP) were monitored. (1) Compared with data before recruitment maneuver, there were no significant differences in HR and MAP after supine position and prone position recruitment maneuver, but significant differences in SpO(2) were found between before and after recruitment maneuver when patients' position was changed (supine position: 0.954 ± 0.032 vs. 0.917 ± 0.025, P recruitment maneuver (P recruitment maneuver, CI [L×min(-1)×m(-2)], SVI (ml/m(2)), GEDVI (ml/m(2)) and GEF were decreased significantly during recruitment maneuver (supine position: CI 3.2 ± 0.4 vs. 3.8 ± 0.6, SVI 32.4 ± 5.6 vs. 38.8 ± 6.5, GEDVI 689 ± 44 vs. 766 ± 32, GEF 0.267 ± 0

  10. Integrated detection, estimation, and guidance in pursuit of a maneuvering target

    Science.gov (United States)

    Dionne, Dany

    The thesis focuses on efficient solutions of non-cooperative pursuit-evasion games with imperfect information on the state of the system. This problem is important in the context of interception of future maneuverable ballistic missiles. However, the theoretical developments are expected to find application to a broad class of hybrid control and estimation problems in industry. The validity of the results is nevertheless confirmed using a benchmark problem in the area of terminal guidance. A specific interception scenario between an incoming target with no information and a single interceptor missile with noisy measurements is analyzed in the form of a linear hybrid system subject to additive abrupt changes. The general research is aimed to achieve improved homing accuracy by integrating ideas from detection theory, state estimation theory and guidance. The results achieved can be summarized as follows. (i) Two novel maneuver detectors are developed to diagnose abrupt changes in a class of hybrid systems (detection and isolation of evasive maneuvers): a new implementation of the GLR detector and the novel adaptive- H0 GLR detector. (ii) Two novel state estimators for target tracking are derived using the novel maneuver detectors. The state estimators employ parameterized family of functions to described possible evasive maneuvers. (iii) A novel adaptive Bayesian multiple model predictor of the ballistic miss is developed which employs semi-Markov models and ideas from detection theory. (iv) A novel integrated estimation and guidance scheme that significantly improves the homing accuracy is also presented. The integrated scheme employs banks of estimators and guidance laws, a maneuver detector, and an on-line governor; the scheme is adaptive with respect to the uncertainty affecting the probability density function of the filtered state. (v) A novel discretization technique for the family of continuous-time, game theoretic, bang-bang guidance laws is introduced. The

  11. Maneuver Acoustic Flight Test of the Bell 430 Helicopter

    Science.gov (United States)

    Watts, Michael E.; Snider, Royce; Greenwood, Eric; Baden, Joel

    2012-01-01

    A cooperative flight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July, 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 data points over 10 test days and compiled an extensive data base of dynamic maneuver measurements. Three microphone configurations with up to 31 microphones in each configuration were used to acquire acoustic data. Aircraft data included DGPS, aircraft state and rotor state information. This paper provides an overview of the test.

  12. Foot reflexology can increase vagal modulation, decrease sympathetic modulation, and lower blood pressure in healthy subjects and patients with coronary artery disease.

    Science.gov (United States)

    Lu, Wan-An; Chen, Gau-Yang; Kuo, Cheng-Deng

    2011-01-01

    Complementary and alternative medicine (CAM) has long been used by people to postpone the aging process and to reverse disease progression. Reflexology is a CAM method that involves massage to reflex areas in the feet and hands. This study investigated the effect of foot reflexology (FR) on the autonomic nervous modulation in patients with coronary artery disease (CAD) by using heart rate variability analysis. Seventeen people with angiographically patent coronary arteries and 20 patients with CAD scheduled for coronary artery bypass graft surgery were recruited as the control and CAD groups, respectively. The normalized high-frequency power (nHFP) was used as the index of vagal modulation and the normalized very low-frequency power (nVLFP) as the index of vagal withdrawal and renin-angiotensin modulation. In both control and CAD groups, the nHFP was increased significantly whereas the nVLFP was decreased significantly 30 and 60 minutes after FR, as compared with those before FR. The systolic, diastolic, mean arterial, and pulse pressures were significantly decreased after FR in both groups of participants. In the CAD group, the percentage change in heart rate 30 and 60 minutes after FR was smaller than that in the control, and the percentage change in nVLFP 60 minutes after FR was smaller than that in the control. In conclusion, a higher vagal modulation, lower sympathetic modulation, and lower blood pressure can be observed following 60 minutes of FR in both controls and CAD patients. The magnitude of change in the autonomic nervous modulation in CAD patients was slightly smaller than that in the controls. FR may be used as an efficient adjunct to the therapeutic regimen to increase the vagal modulation and decrease blood pressure in both healthy people and CAD patients.

  13. Neural control of left ventricular contractility in the dog heart: synaptic interactions of negative inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine hydroxylase immunoreactive terminals.

    Science.gov (United States)

    Massari, V J; Dickerson, L W; Gray, A L; Lauenstein, J M; Blinder, K J; Newsome, J T; Rodak, D J; Fleming, T J; Gatti, P J; Gillis, R A

    1998-08-17

    Recent physiological evidence indicates that vagal postganglionic control of left ventricular contractility is mediated by neurons found in a ventricular epicardial fat pad ganglion. In the dog this region has been referred to as the cranial medial ventricular (CMV) ganglion [J.L. Ardell, Structure and function of mammalian intrinsic cardiac neurons, in: J.A. Armour, J.L. Ardell (Eds.). Neurocardiology, Oxford Univ. Press, New York, 1994, pp. 95-114; B.X. Yuan, J.L. Ardell, D.A. Hopkins, A.M. Losier, J.A. Armour, Gross and microscopic anatomy of the canine intrinsic cardiac nervous system, Anat. Rec., 239 (1994) 75-87]. Since activation of the vagal neuronal input to the CMV ganglion reduces left ventricular contractility without influencing cardiac rate or AV conduction, this ganglion contains a functionally selective pool of negative inotropic parasympathetic postganglionic neurons. In the present report we have defined the light microscopic distribution of preganglionic negative inotropic neurons in the CNS which are retrogradely labeled from the CMV ganglion. Some tissues were also processed for the simultaneous immunocytochemical visualization of tyrosine hydroxylase (TH: a marker for catecholaminergic neurons) and examined with both light microscopic and electron microscopic methods. Histochemically visualized neurons were observed in a long slender column in the ventrolateral nucleus ambiguus (NA-VL). The greatest number of retrogradely labeled neurons were observed just rostral to the level of the area postrema. TH perikarya and dendrites were commonly observed interspersed with vagal motoneurons in the NA-VL. TH nerve terminals formed axo-dendritic synapses upon negative inotropic vagal motoneurons, however the origin of these terminals remains to be determined. We conclude that synaptic interactions exist which would permit the parasympathetic preganglionic vagal control of left ventricular contractility to be modulated monosynaptically by

  14. Effects of the Eccentricity of a Perturbing Third Body on the Orbital Correction Maneuvers of a Spacecraft

    Directory of Open Access Journals (Sweden)

    R. C. Domingos

    2014-01-01

    Full Text Available The fuel consumption required by the orbital maneuvers when correcting perturbations on the orbit of a spacecraft due to a perturbing body was estimated. The main goals are the measurement of the influence of the eccentricity of the perturbing body on the fuel consumption required by the station keeping maneuvers and the validation of the averaged methods when applied to the problem of predicting orbital maneuvers. To study the evolution of the orbits, the restricted elliptic three-body problem and the single- and double-averaged models are used. Maneuvers are made by using impulsive and low thrust maneuvers. The results indicated that the averaged models are good to make predictions for the orbital maneuvers when the spacecraft is in a high inclined orbit. The eccentricity of the perturbing body plays an important role in increasing the effects of the perturbation and the fuel consumption required for the station keeping maneuvers. It is shown that the use of more frequent maneuvers decreases the annual cost of the station keeping to correct the orbit of a spacecraft. An example of an eccentric planetary system of importance to apply the present study is the dwarf planet Haumea and its moons, one of them in an eccentric orbit.

  15. The effects of betahistine in addition to epley maneuver in posterior canal benign paroxysmal positional vertigo.

    Science.gov (United States)

    Guneri, Enis Alpin; Kustutan, Ozge

    2012-01-01

    The purpose of this study is to evaluate the effects of betahistine in addition to Epley maneuver on the quality of life of patients with posterior semicircular canal benign paroxysmal positional vertigo (BPPV) of the canalithiasis type. Double-blind, randomized, controlled clinical trial. Academic university hospital. Seventy-two patients were enrolled in the study. The first group was treated with Epley maneuver only. The second group received placebo drug 2 times daily for 1 week in addition to Epley maneuver, and the third group received 24 mg betahistine 2 times daily for 1 week in addition to Epley maneuver. The effectiveness of the treatments was assessed in each group as well as between them by analyzing and comparing data of 4 different vertigo symptom scales. Epley maneuver, alone or combined with betahistine or placebo, was found to be very effective with a primary success rate of 86.2%. The symptoms were significantly reduced in group 3 patients overall, and those patients younger or older than 50 years of age who had hypertension, with symptom onset <1 month, and with attack duration of less than a minute did significantly better with the combination of betahistine 48 mg daily. Betahistine in addition to Epley maneuver is more effective than Epley maneuver alone or combined with placebo with regard to improvement of symptoms in certain patients. However, future clinical studies covering more patients to investigate the benefit of medical treatments in addition to Epley maneuver are needed.

  16. Know Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models

    Science.gov (United States)

    2015-04-01

    features/index.htm. Accessed: 2014-09-30. [3] Google self driving car . http://en.wikipedia.org/wiki/ Google driverless car . Accessed: 2014-10-11. [4...and outside the car , GPS, and speed information, with lane and driving maneuver annotations. II. RELATED WORK Assistive features for vehicles . Recent...made driving safer over the last decade. They prepare vehicles for unsafe road conditions and alert drivers if they perform a dangerous maneuver

  17. Effects-Based Operations: The End of Dominant Maneuver?

    National Research Council Canada - National Science Library

    Cheek, Gary

    2002-01-01

    ... without dominant ground maneuver. The paper concludes that such thinking misreads a historical warfare lethality trend in a potentially dangerous effort to vindicate the Air Force doctrine of strategic attack...

  18. Closeup of STS-26 Discovery, OV-103, orbital maneuvering system (OMS) leak

    Science.gov (United States)

    1988-01-01

    Closeup of STS-26 Discovery, Orbiter Vehicle (OV) 103, orbital maneuvering system (OMS) reaction control system (RCS) nitrogen tetroxide gas leak was captured by a Cobra borescope and displayed on a video monitor. The borescope has a miniature videocamera at the end of a flexible rubber tube and is able to be maneuvered into other inaccessible locations.

  19. Acute physiological and electrical accentuation of vagal tone has no effect on pain or gastrointestinal motility in chronic pancreatitis

    DEFF Research Database (Denmark)

    Juel, Jacob; Brock, Christina; Olesen, Soren S.

    2017-01-01

    derived parameters of autonomic tone, quantitative sensory testing of bone and muscle pain pressure, conditioned pain modulation (CPM) and assessments of gastroduodenal motility with ultrasound were performed. Results: In comparison to sham, t-VNS and DSB increased cardiac vagal tone (CVT) (P

  20. Close Proximity Robotic Maneuvering through Flux Pinning Manipulation

    Data.gov (United States)

    National Aeronautics and Space Administration — Non-contacting actuation technology like flux pinning has never been demonstrated in space. The development of a nonphysical joint is critical for maneuvers such as...

  1. Maneuver Analysis and Targeting Strategy for the Stardust Re-Entry Capsule

    Science.gov (United States)

    Helfrich, Cliff; Bhat, Ramachand S.; Kangas, Julie A.; Wilson, Roby S.; Wong, Mau C.; Potts, Christopher L.; Williams, Kenneth E.

    2006-01-01

    The Stardust Sample Return Capsule (SRC) returned to Earth on January 15, 2006 after seven years of collecting interstellar and comet particles over three heliocentric revolutions, as shown in Figure 1. The SRC was carried on board the Stardust spacecraft, as shown in Figure 2. Because the spacecraft was built with unbalanced thrusters, turns and attitude control maintenance resulted in undesirable delta-v being imparted to the trajectory. As a result, a carefully planned maneuver strategy was devised to accurately target the Stardust capsule to the Utah Test and Training Range (UTTR). This paper provides an overview of the Stardust spacecraft and mission and describes the maneuver strategy that was employed to achieve the stringent targeting requirements for landing in Utah. In addition, an overview of Stardust maneuver analysis tools and techniques will also be presented.

  2. Efficacy of Epley’s Maneuver in Treating BPPV Patients: A Prospective Observational Study

    Directory of Open Access Journals (Sweden)

    Sushil Gaur

    2015-01-01

    Full Text Available Vertigo and balance disorders are among the most common symptoms encountered in patients who visit ENT outpatient department. This is associated with risk of falling and is compounded in elderly persons with other neurologic deficits and chronic medical problems. BPPV is the most common cause of peripheral vertigo. BPPV is a common vestibular disorder leading to significant morbidity, psychosocial impact, and medical costs. The objective of Epley’s maneuver, which is noninvasive, inexpensive, and easily administered, is to move the canaliths out of the canal to the utricle where they no longer affect the canal dynamics. Our study aims to analyze the response to Epley’s maneuver in a series of patients with posterior canal BPPV and compares the results with those treated exclusively by medical management alone. Even though many studies have been conducted to prove the efficacy of this maneuver, this study reinforces the validity of Epley’s maneuver by comparison with the medical management.

  3. CFD Analysis of a Maneuvering F/A-18E Super Hornet

    Science.gov (United States)

    2016-10-12

    tools for aircraft, ships, and radio - frequency antenna design and analysis. The resulting program is called the Computational Research and Engineering...accurately predicting the forces and moments on the F/A-18E Super Hornet while performing several complicated maneuvers. Past F/A-18E computational studies... predicting the forces and moments on the F/A-18E Super Hornet while performing several complicated maneuvers. Past F/A-18E computational studies have

  4. Trajectory Control of Rendezvous with Maneuver Target Spacecraft

    Science.gov (United States)

    Zhou, Zhinqiang

    2012-01-01

    In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.

  5. Helicopter noise footprint prediction in unsteady maneuvers

    NARCIS (Netherlands)

    Gennaretti, Massimo; Bernardini, Giovanni; Serafini, Jacopo; Anobile, A.; Hartjes, S.

    2017-01-01

    This paper investigates different methodologies for the evaluation of the acoustic disturbance emitted by helicopter’s main rotors during unsteady maneuvers. Nowadays, the simulation of noise emitted by helicopters is of great interest to designers, both for the assessment of the acoustic impact

  6. 47 CFR 25.282 - Orbit raising maneuvers.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Orbit raising maneuvers. 25.282 Section 25.282 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS... geostationary satellite orbit under this part is also authorized to transmit in connection with short-term...

  7. Five surgical maneuvers on nasal mucosa movement in cleft palate repair: A cadaver study.

    Science.gov (United States)

    Nguyen, Dennis C; Patel, Kamlesh B; Parikh, Rajiv P; Skolnick, Gary B; Woo, Albert S

    2016-06-01

    This biomechanical study aims to characterize the nasal mucosa during palatoplasty, thereby describing the soft tissue attachments at different zones and quantifying movement following their release. Palatal nasal mucosa was exposed and divided in the midline in 10 adult cadaver heads. Five consecutive maneuvers were performed: (1) elevation of nasal mucosa off the maxilla, (2) dissection of nasal mucosa from soft palate musculature, (3) separation of nasal mucosa from palatine aponeurosis, (4) release of mucosa at the pterygopalatine junction, and (5) mobilization of vomer flaps. The mucosal movements across the midline at the midpalate (MP) and posterior nasal spine (PNS) following each maneuver were measured. At the MP, maneuvers 1-4 cumulatively provided 3.8 mm (36.9%), 4.9 mm (47.6%), 6.1 mm (59.2%), and 10.3 mm, respectively. Vomer flap (10.5 mm) elevation led to mobility equivalent to that of maneuvers 1-4 (p = 0.72). At the PNS, cumulative measurements after maneuvers 1-4 were 1.3 mm (10%), 2.4 mm (18.6%), 5.7 mm (44.2%), and 12.9 mm. Here, vomer flaps (6.5 mm) provided less movement (p < 0.001). Maneuver 4 yielded the greatest amount of movement of the lateral nasal mucosa at both MP (4.2 mm, 40.8%) and PNS (7.2 mm, 55.8%). At the MP, complete release of the lateral nasal mucosa achieves as much movement as the vomer flap. At the hard-soft palate junction, the maneuvers progressively add to the movement of the lateral nasal mucosa. The most powerful step is release of attachments along the posterior aspect of the medial pterygoid. Published by Elsevier Ltd.

  8. A unified flight control methodology for a compound rotorcraft in fundamental and aerobatic maneuvering flight

    Science.gov (United States)

    Thorsen, Adam

    This study investigates a novel approach to flight control for a compound rotorcraft in a variety of maneuvers ranging from fundamental to aerobatic in nature. Fundamental maneuvers are a class of maneuvers with design significance that are useful for testing and tuning flight control systems along with uncovering control law deficiencies. Aerobatic maneuvers are a class of aggressive and complex maneuvers with more operational significance. The process culminating in a unified approach to flight control includes various control allocation studies for redundant controls in trim and maneuvering flight, an efficient methodology to simulate non-piloted maneuvers with varying degrees of complexity, and the setup of an unconventional control inceptor configuration along with the use of a flight simulator to gather pilot feedback in order to improve the unified control architecture. A flight path generation algorithm was developed to calculate control inceptor commands required for a rotorcraft in aerobatic maneuvers. This generalized algorithm was tailored to generate flight paths through optimization methods in order to satisfy target terminal position coordinates or to minimize the total time of a particular maneuver. Six aerobatic maneuvers were developed drawing inspiration from air combat maneuvers of fighter jet aircraft: Pitch-Back Turn (PBT), Combat Ascent Turn (CAT), Combat Descent Turn (CDT), Weaving Pull-up (WPU), Combat Break Turn (CBT), and Zoom and Boom (ZAB). These aerobatic maneuvers were simulated at moderate to high advance ratios while fundamental maneuvers of the compound including level accelerations/decelerations, climbs, descents, and turns were investigated across the entire flight envelope to evaluate controller performance. The unified control system was developed to allow controls to seamlessly transition between manual and automatic allocations while ensuring that the axis of control for a particular inceptor remained constant with flight

  9. Concurrent image-based visual servoing with adaptive zooming for non-cooperative rendezvous maneuvers

    Science.gov (United States)

    Pomares, Jorge; Felicetti, Leonard; Pérez, Javier; Emami, M. Reza

    2018-02-01

    An image-based servo controller for the guidance of a spacecraft during non-cooperative rendezvous is presented in this paper. The controller directly utilizes the visual features from image frames of a target spacecraft for computing both attitude and orbital maneuvers concurrently. The utilization of adaptive optics, such as zooming cameras, is also addressed through developing an invariant-image servo controller. The controller allows for performing rendezvous maneuvers independently from the adjustments of the camera focal length, improving the performance and versatility of maneuvers. The stability of the proposed control scheme is proven analytically in the invariant space, and its viability is explored through numerical simulations.

  10. Propulsion System and Orbit Maneuver Integration in CubeSats: Trajectory Control Strategies Using Micro Ion Propulsion

    Science.gov (United States)

    Hudson, Jennifer; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.

  11. Assessment of Diaphragm and External Intercostals Fatigue from Surface EMG using Cervical Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Ya-Ju Chang

    2008-03-01

    Full Text Available This study was designed: (1 to test the reliability of surface electromyography (sEMG recording of the diaphragm and external intercostals contractions response to cervical magnetic stimulation (CMS, (2 to examine the amount and the types of inspiratory muscle fatigue that developed after maximum voluntary ventilation (MVV maneuvers.Ten male college students without physical disability (22.1±2.0 years old participated in the study and each completed a control (quiet breathing trial and a fatigue (MVV maneuvers trial sequentially. In the quiet breathing trial, the subjects maintained quiet breathing for five minutes. The subjects performed five maximal static inspiratory efforts and received five CMS before and after the quiet breathing. In the MVV trial, subjects performed five maximal inspiratory efforts and received five CMS before, immediately after, and ten minutes after two sets of MVV maneuvers performed five minutes apart. Maximal inspiratory pressure (PImax, sEMG of diaphragm and external intercostals during maximal static inspiratory efforts and during CMS were recorded. In the quiet breathing trial, high intraclass correlation coefficients (ICC=0.95-0.99 were observed in all the variables. In the MVV trial, the PImax, the EMG amplitude and the median power frequency during maximal static inspiratory efforts significantly decreased in both the diaphragm and the external intercostals immediately after the MVV maneuvers Sensors 2008, 8 2175 (P 0.05. It is concluded that the sEMG recordings of the diaphragm during maximal static inspiratory efforts and in response to CMS allow reproducible sequential assessment of diaphragm contractility. MVV maneuvers resulted in inspiratory muscles fatigue, possibly central fatigue.

  12. About avatars and maneuvering in virtual environments

    NARCIS (Netherlands)

    Delleman, N.

    2006-01-01

    This paper is about the use of avatars and maneuvering in virtual environments for simulation-based design ergonomics. An avatar is a digital human model driven by an instrumented human who is immersed in a virtual environment. A presentation on locomotion devices is followed by descriptions of

  13. The Pringle maneuver reduces the infusion rate of rocuronium required to maintain surgical muscle relaxation during hepatectomy.

    Science.gov (United States)

    Kajiura, Akira; Nagata, Osamu; Sanui, Masamitsu

    2018-04-27

    We investigated the continuous infusion rates of rocuronium necessary to obtain the surgical muscle relaxation before, during, and after the Pringle maneuver on patients who underwent hepatectomy. Fifteen patients were induced by total intravenous anesthesia with propofol. After obtaining the calibration of acceleromyography, the patient was intubated with rocuronium 0.6 mg/kg. Fifteen minutes after initial rocuronium injection, the continuous infusion was started at 7.5 µg/kg/min. The infusion rate was adjusted every 15 min so that the first twitch height (% T1) might become from 3 to 10% of control. The infusion rates at the time when the state of surgical muscle relaxation was achieved for more than 15 min were recorded before, during and after the Pringle maneuver. The 25% recovery time was measured after discontinuing the continuous infusion. The infusion rate of rocuronium before, during, and after the Pringle maneuver was 7.2 ± 1.8, 4.2 ± 1.4, and 4.7 ± 1.5 µg/kg/min (mean ± SD), respectively. The rocuronium infusion rate during the Pringle maneuver was decreased about 40% compared to that before this maneuver, and that after completion of the Pringle maneuver was not recovered to that before the Pringle maneuver. The 25% recovery time was 20 ± 7 min. In case of continuous administration of rocuronium during surgery performing the Pringle maneuver, it was considered necessary to regulate the administration of rocuronium using muscle relaxant monitoring in order to deal with the decrease in muscle relaxant requirement by the Pringle maneuver.

  14. The influence of airway supporting maneuvers on glottis view in pediatric fiberoptic bronchoscopy

    Directory of Open Access Journals (Sweden)

    Tarik Umutoglu

    2015-10-01

    Full Text Available ABSTRACTINTRODUCTION:Flexible fiber optic bronchoscopy is a valuable intervention for evaluation and management of respiratory diseases in both infants, pediatric and adult patients. The aim of this study is to investigate the influence of the airway supporting maneuvers on glottis view during pediatric flexible fiberoptic bronchoscopy.MATERIALS AND METHODS:In this randomized, controlled, crossover study; patients aged between 0 and 15 years who underwent flexible fiberoptic bronchoscopy procedure having American Society of Anesthesiologists I---II risk score were included. Patients having risk of difficult intubation, intubated or patients with tracheostomy, and patients with reduced neck mobility or having cautions for neck mobility were excluded from this study. After obtaining best glottic view at the neutral position, patients were positioned jaw trust with open mouth, jaw trust with teeth prottution, head tilt chin lift and triple airway maneuvers and best glottis scores were recorded.RESULTS:Total of 121 pediatric patients, 57 girls and 64 boys, were included in this study. Both jaw trust with open mouth and jaw trust with teeth prottution maneuvers improved the glottis view compared with neutral position (p 0.05. Head tilt chin lift and triple airway maneuvers improved glottis view when compared with both jaw trust with open mouth and jaw trust with teeth prottution maneuvers and neutral position (p 0.05.

  15. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multi-Scale Mission (MMS) Formation

    Science.gov (United States)

    Chai, Dean; Queen, Steve; Placanica, Sam

    2015-01-01

    NASA's Magnetospheric Multi-Scale (MMS) mission successfully launched on March 13, 2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers---specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per-second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  16. Effect of a hybrid maneuver in treating posterior canal benign paroxysmal positional vertigo.

    Science.gov (United States)

    Badawy, Wanees M A; Gad El-Mawla, Ebtessam K; Chedid, Ahmed E F; Mustafa, Ahmed H A

    2015-02-01

    Benign paroxysmal positional vertigo (BPPV) is the most common disorder of the vestibular system of the inner ear, which is a vital part of maintaining balance. Although the efficacy of the Epley maneuver-also known as the canalith repositioning maneuver (CRM)-is well established, data comparing CRM versus a hybrid treatment are lacking. The purpose of this study was to determine the effect of a hybrid treatment, the Gans repositioning maneuver (GRM) either with or without postmaneuver restrictions, compared with CRM on treatment of posterior canal BPPV (PC-BPPV). Study design was a randomized controlled trial. A total of 45 patients (30 males and 15 females) with unilateral PC-BPPV were randomly allocated to one of three equal groups on the basis of the date of the first visit with matched assignment for gender: a GRMR group (GRM with postmaneuver restrictions), a GRM group, and a CRM group. Patients received weekly administration of the maneuver until resolution of symptoms. The Dix-Hallpike test was performed before treatment at every appointment, and finally after 1 mo from the last maneuver. Nystagmus duration and vertigo intensity were recorded. The supine roll test was performed in case the Dix-Hallpike test was negative to test otoconial migration. Data were analyzed with repeated-measures analysis of variance, paired t-tests with a Bonferroni correction, and the Spearman rank correlation coefficient. All patients showed improvement within the groups, and PC-BPPV symptoms were resolved by an average of 2, 1.7, and 1.6 maneuvers for GRMR, GRM, and CRM, respectively, with no statistical differences among the three groups (p > 0.05). Only two patients had recurrence, and one patient had horizontal BPPV at 1 mo follow-up. We demonstrated that the GRM as a new treatment is effective in treating PC-BPPV with no benefits to postmaneuver restrictions. American Academy of Audiology.

  17. Space Objects Maneuvering Detection and Prediction via Inverse Reinforcement Learning

    Science.gov (United States)

    Linares, R.; Furfaro, R.

    This paper determines the behavior of Space Objects (SOs) using inverse Reinforcement Learning (RL) to estimate the reward function that each SO is using for control. The approach discussed in this work can be used to analyze maneuvering of SOs from observational data. The inverse RL problem is solved using the Feature Matching approach. This approach determines the optimal reward function that a SO is using while maneuvering by assuming that the observed trajectories are optimal with respect to the SO's own reward function. This paper uses estimated orbital elements data to determine the behavior of SOs in a data-driven fashion.

  18. Virtual simulation of maneuvering captive tests for a surface vessel

    Directory of Open Access Journals (Sweden)

    Ahmad Hajivand

    2015-09-01

    Full Text Available Hydrodynamic derivatives or coefficients are required to predict the maneuvering characteristics of a marine vehicle. These derivatives are obtained numerically for a DTMB 5512 model ship by virtual simulating of captive model tests in a CFD environment. The computed coefficients are applied to predict the turning circle and zigzag maneuvers of the model ship. The comparison of the simulated results with the available experimental data shows a very good agreement among them. The simulations show that the CFD is precise and affordable tool at the preliminary design stage to obtain maneuverability performance of a marine vehicles.

  19. Cases requiring increased number of repositioning maneuvers in benign paroxysmal positional vertigo

    OpenAIRE

    Korkmaz, Mukadder; Korkmaz, Hakan

    2016-01-01

    ABSTRACT INTRODUCTION: Benign paroxysmal positional vertigo (BPPV) is a clinical syndrome that is proposed to be caused by dislocated utricular debris into semicircular canals. Although the majority of patients are treated by one or two repositioning maneuvers, some of the patients need repeated maneuvers for relief. OBJECTIVE: The goal of this study was to investigate the factors associated with patients with benign paroxysmal positional vertigo who required multiple repositioning proced...

  20. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    Science.gov (United States)

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  1. Decisive Army Strategic and Expeditionary Maneuver

    Science.gov (United States)

    2015-05-01

    emerging changes will impact strategic maneuver by 2025. For example, a rapid transition is occurring in the commercial air cargo market where 777...more readily available in the international defense market and in the inventories of potential adversaries. In short, the study team believes HPMs... Cisco Visual Networking Index (VNI), available at: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index- vni

  2. High job control enhances vagal recovery in media work.

    Science.gov (United States)

    Lindholm, Harri; Sinisalo, Juha; Ahlberg, Jari; Jahkola, Antti; Partinen, Markku; Hublin, Christer; Savolainen, Aslak

    2009-12-01

    Job strain has been linked to increased risk of cardiovascular diseases. In modern media work, time pressures, rapidly changing situations, computer work and irregular working hours are common. Heart rate variability (HRV) has been widely used to monitor sympathovagal balance. Autonomic imbalance may play an additive role in the development of cardiovascular diseases. To study the effects of work demands and job control on the autonomic nervous system recovery among the media personnel. From the cross-sectional postal survey of the employees in Finnish Broadcasting Company (n = 874), three age cohorts (n = 132) were randomly selected for an analysis of HRV in 24 h electrocardiography recordings. In the middle-aged group, those who experienced high job control had significantly better vagal recovery than those with low or moderate control (P work rather than low demands seemed to enhance autonomic recovery in middle-aged media workers. This was independent of poor health habits such as smoking, physical inactivity or alcohol consumption.

  3. A general method for closed-loop inverse simulation of helicopter maneuver flight

    OpenAIRE

    Wei WU

    2017-01-01

    Maneuverability is a key factor to determine whether a helicopter could finish certain flight missions successfully or not. Inverse simulation is commonly used to calculate the pilot controls of a helicopter to complete a certain kind of maneuver flight and to assess its maneuverability. A general method for inverse simulation of maneuver flight for helicopters with the flight control system online is developed in this paper. A general mathematical describing function is established to provid...

  4. Evasive Maneuvers in Space Debris Environment and Technological Parameters

    Directory of Open Access Journals (Sweden)

    Antônio D. C. Jesus

    2012-01-01

    Full Text Available We present a study of collisional dynamics between space debris and an operational vehicle in LEO. We adopted an approach based on the relative dynamics between the objects on a collisional course and with a short warning time and established a semianalytical solution for the final trajectories of these objects. Our results show that there are angular ranges in 3D, in addition to the initial conditions, that favor the collisions. These results allowed the investigation of a range of technological parameters for the spacecraft (e.g., fuel reserve that allow a safe evasive maneuver (e.g., time available for the maneuver. The numerical model was tested for different values of the impact velocity and relative distance between the approaching objects.

  5. Atrial natriuretic peptide stimulates salt secretion by shark rectal gland by releasing VIP

    Energy Technology Data Exchange (ETDEWEB)

    Silva, P.; Stoff, J.S.; Solomon, R.J.; Lear, S.; Kniaz, D.; Greger, R.; Epstein, F.H.

    1987-01-01

    Salt secretion by the isolated perfused rectal gland of the spiny dogfish shark, Squalus acanthias, is stimulated by synthetic rat atrial natriuretic peptide (ANP II) as well as extracts of shark heart, but not by 8-bromo-cyclic guanosine 5'-monophosphate. Cardiac peptides have no effect on isolated rectal gland cells or perfused tubules, suggesting that stimulation requires an intact gland. The stimulation of secretion by ANP II is eliminated by maneuvers that block neurotransmitter release. Cardiac peptides stimulate the release of vasoactive intestinal peptide (VIP), known to be present in rectal glands nerves, into the venous effluent of perfused glands in parallel with their stimulation of salt secretion, but the release of VIP induced by ANP II is prevented by perfusion with procaine. VIP was measured by radioimmunoassay. Cardiac peptides thus appear to regulate rectal gland secretion by releasing VIP from neural stores within the gland. It is possible that other physiological effects of these hormones might be explained by an action to enhanced local release of neurotransmitters.

  6. Atrial natriuretic peptide stimulates salt secretion by shark rectal gland by releasing VIP

    International Nuclear Information System (INIS)

    Silva, P.; Stoff, J.S.; Solomon, R.J.; Lear, S.; Kniaz, D.; Greger, R.; Epstein, F.H.

    1987-01-01

    Salt secretion by the isolated perfused rectal gland of the spiny dogfish shark, Squalus acanthias, is stimulated by synthetic rat atrial natriuretic peptide (ANP II) as well as extracts of shark heart, but not by 8-bromo-cyclic guanosine 5'-monophosphate. Cardiac peptides have no effect on isolated rectal gland cells or perfused tubules, suggesting that stimulation requires an intact gland. The stimulation of secretion by ANP II is eliminated by maneuvers that block neurotransmitter release. Cardiac peptides stimulate the release of vasoactive intestinal peptide (VIP), known to be present in rectal glands nerves, into the venous effluent of perfused glands in parallel with their stimulation of salt secretion, but the release of VIP induced by ANP II is prevented by perfusion with procaine. VIP was measured by radioimmunoassay. Cardiac peptides thus appear to regulate rectal gland secretion by releasing VIP from neural stores within the gland. It is possible that other physiological effects of these hormones might be explained by an action to enhanced local release of neurotransmitters

  7. Tracking Maneuvering Group Target with Extension Predicted and Best Model Augmentation Method Adapted

    Directory of Open Access Journals (Sweden)

    Linhai Gan

    2017-01-01

    Full Text Available The random matrix (RM method is widely applied for group target tracking. The assumption that the group extension keeps invariant in conventional RM method is not yet valid, as the orientation of the group varies rapidly while it is maneuvering; thus, a new approach with group extension predicted is derived here. To match the group maneuvering, a best model augmentation (BMA method is introduced. The existing BMA method uses a fixed basic model set, which may lead to a poor performance when it could not ensure basic coverage of true motion modes. Here, a maneuvering group target tracking algorithm is proposed, where the group extension prediction and the BMA adaption are exploited. The performance of the proposed algorithm will be illustrated by simulation.

  8. Capturing and analyzing wheelchair maneuvering patterns with mobile cloud computing.

    Science.gov (United States)

    Fu, Jicheng; Hao, Wei; White, Travis; Yan, Yuqing; Jones, Maria; Jan, Yih-Kuen

    2013-01-01

    Power wheelchairs have been widely used to provide independent mobility to people with disabilities. Despite great advancements in power wheelchair technology, research shows that wheelchair related accidents occur frequently. To ensure safe maneuverability, capturing wheelchair maneuvering patterns is fundamental to enable other research, such as safe robotic assistance for wheelchair users. In this study, we propose to record, store, and analyze wheelchair maneuvering data by means of mobile cloud computing. Specifically, the accelerometer and gyroscope sensors in smart phones are used to record wheelchair maneuvering data in real-time. Then, the recorded data are periodically transmitted to the cloud for storage and analysis. The analyzed results are then made available to various types of users, such as mobile phone users, traditional desktop users, etc. The combination of mobile computing and cloud computing leverages the advantages of both techniques and extends the smart phone's capabilities of computing and data storage via the Internet. We performed a case study to implement the mobile cloud computing framework using Android smart phones and Google App Engine, a popular cloud computing platform. Experimental results demonstrated the feasibility of the proposed mobile cloud computing framework.

  9. A multinomial-logit ordered-probit model for jointly analyzing crash avoidance maneuvers and crash severity

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    ' propensity to engage in various corrective maneuvers in the case of the critical event of vehicle travelling. Five lateral and speed control maneuvers are considered: “braking”, “steering”, “braking & steering”, and “other maneuvers”, in addition to a “no action” option. The analyzed data are retrieved from...... the United States National Automotive Sampling System General Estimates System (GES) crash database for the years 2005-2009. Results show (i) the correlation between crash avoidance maneuvers and crash severity, and (ii) the link between drivers' attributes, risky driving behavior, road characteristics...

  10. Infant diet, gender and the normative development of vagal tone and heart period during the first two years of life

    Science.gov (United States)

    Relationships between early postnatal diet and the development of cardiac regulation were studied using resting vagal tone and heart period measures obtained quarterly during infancy and at 2 years in 158 breast-fed, 159 milk formula-fed, and 148 soy formula-fed infants. Both measures increased acro...

  11. Is pancreatic polypeptide response to food ingestion a reliable index of vagal function in type 1 diabetes?

    DEFF Research Database (Denmark)

    Damholt, M B; Arlien-Soeborg, P; Hilsted, L

    2006-01-01

    The diagnosis of autonomic neuropathy in diabetic patients is based on cardiovascular reflex tests. Since cardiac function may be affected by arteriosclerosis and cardiomyopathy in type 1 diabetes mellitus, alternative tests reflecting vagal nerve function, in other organ systems, are needed....... In this study the pancreatic polypeptide (PP) response to a mixed meal was evaluated in healthy subjects and in recently diagnosed type 1 diabetic patients....

  12. Statistical study of overvoltages by maneuvering in switches in high voltage using EMTP-RV

    International Nuclear Information System (INIS)

    Dominguez Herrera, Diego Armando

    2013-01-01

    The transient overvoltages produced by maneuvering of switches are studied in a statistical way and through a variation the sequential closing times of switches in networks larger than 230 kV. This study is performed according to time delays and typical deviation ranges, using the tool EMTP- RV (ElectroMagnetic Trasient Program Restructured Version). A conceptual framework related with the electromagnetic transients by maneuver is developed in triphasic switches installed in nominal voltages higher than 230 kV. The methodology established for the execution of statistical studies of overvoltages by switch maneuver is reviewed and evaluated by simulating two fictitious cases in EMTP-RV [es

  13. Analysis of LFM-waveform Libraries for Cognitive Tracking Maneuvering Targets

    Directory of Open Access Journals (Sweden)

    Wang Hongyan

    2016-01-01

    Full Text Available Based on the idea of the waveform agility in cognitive radars,the waveform libraries for maneuvering target tracking are discussed. LFM-waveform libraries are designed according to different combinations of chirp parameters and FrFT rotation angles. By applying the interact multiple model (IMM algorithm in tracking maneuvering targets, transmitted waveform is called real time from the LFM-waveform libraries. The waveforms are selected from the library according to the criterion of maximum mutual information between the current state of knowledge of the model and the measurement. Simulation results show that waveform library containing certain amount LFM-waveforms can improve the performance of cognitive tracking radar.

  14. ESBWR power maneuvering via feedwater temperature control

    International Nuclear Information System (INIS)

    Saha, P.; Marquino, W.; Tucker, L. J.

    2008-01-01

    The ESBWR is a Generation III+ Boiling Water Reactor (BWR) driven by natural circulation. For a given geometry/hardware, system pressure, downcomer water level and feedwater temperature, the core flow rate in the ESBWR is only a function of reactor power, controlled through the control blade movement. In order to provide operational flexibility, another method of core-wide or global power maneuvering via feedwater temperature control has been developed. This is independent of power maneuvering via control blade movement, and it lowers the linear heat generation rate (LHGR) changes near the tip of control blades, which improves fuel reliability. All required stability, anticipated operational occurrences (AOOs), infrequent events, special events including anticipated transients without scram (ATWS), and loss-of-coolant accident (LOCA) analyses have been performed for the 4500 MWt ESBWR. Based on the results of these analyses at 'high', nominal and 'low' feedwater temperatures, a safe Power - Feedwater Temperature operating domain has been developed. This paper summarizes the results of these analyses and presents the ESBWR Power - Feedwater Temperature operating domain or map. (authors)

  15. State Estimation for Landing Maneuver on High Performance Aircraft

    Science.gov (United States)

    Suresh, P. S.; Sura, Niranjan K.; Shankar, K.

    2018-01-01

    State estimation methods are popular means for validating aerodynamic database on aircraft flight maneuver performance characteristics. In this work, the state estimation method during landing maneuver is explored for the first of its kind, using upper diagonal adaptive extended Kalman filter (UD-AEKF) with fuzzy based adaptive tunning of process noise matrix. The mathematical model for symmetrical landing maneuver consists of non-linear flight mechanics equation representing Aircraft longitudinal dynamics. The UD-AEKF algorithm is implemented in MATLAB environment and the states with bias is considered to be the initial conditions just prior to the flare. The measurement data is obtained from a non-linear 6 DOF pilot in loop simulation using FORTRAN. These simulated measurement data is additively mixed with process and measurement noises, which are used as an input for UD-AEKF. Then, the governing states that dictate the landing loads at the instant of touch down are compared. The method is verified using flight data wherein, the vertical acceleration at the aircraft center of gravity (CG) is compared. Two possible outcome of purely relying on the aircraft measured data is highlighted. It is observed that, with the implementation of adaptive fuzzy logic based extended Kalman filter tuned to adapt for aircraft landing dynamics, the methodology improves the data quality of the states that are sourced from noisy measurements.

  16. Computing and Visualizing Reachable Volumes for Maneuvering Satellites

    Science.gov (United States)

    Jiang, M.; de Vries, W.; Pertica, A.; Olivier, S.

    2011-09-01

    Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the "point-cloud" of the virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe the main implementation issues encountered during our development process. Finally, we will present some of the results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites.

  17. Computing and Visualizing Reachable Volumes for Maneuvering Satellites

    International Nuclear Information System (INIS)

    Jiang, M.; de Vries, W.H.; Pertica, A.J.; Olivier, S.S.

    2011-01-01

    Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the 'point-cloud' of the virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe the main implementation issues encountered during our development process. Finally, we will present some of the results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites.

  18. Muscarinic M1 receptor inhibition reduces gastroduodenal bicarbonate secretion and promotes gastric prostaglandin E2 synthesis in healthy volunteers

    DEFF Research Database (Denmark)

    Mertz-Nielsen, A; Hillingsø, Jens; Eskerod, O

    1995-01-01

    stimulated gastric and basal duodenal bicarbonate secretion by about 50% (p basal and vagally stimulated PGE2 output increased significantly (p ...The selective muscarinic M1 receptor antagonist, pirenzepine, considerably stimulates duodenal mucosal bicarbonate secretion in the rat and increases gastric luminal release of prostaglandin E2 (PGE2) in humans. This study, therefore, looked at the effect of pirenzepine on bicarbonate secretion...... sham feeding and acid exposure (HCl 0.1 M; 20 ml; 5 min) of the duodenal bulb increased mucosal bicarbonate secretion from 191 (14) mumol/cm x h to 266 (27) mumol/cm x h (p basal and vagally...

  19. Maintenance Maneuver Automation for an Adapted Cylindrical Shape TEC

    Directory of Open Access Journals (Sweden)

    Rafael Morales

    2016-09-01

    Full Text Available Several manufacturers have developed devices with which to harness tidal/current power in areas where the depth does not exceed 40 m. These are the so-called first generation Tidal Energy Converters (TEC, and they are usually fixed to the seabed by gravity. When carrying out maintenance tasks on these devices it is, therefore, necessary to remove the nacelles from their bases and raise them to the surface of the sea. They must subsequently be placed back on their bases. These tasks require special high performance ships, signifying high maintenance costs. The automation of emersion and immersion maneuvers will undoubtedly lead to lower costs, given that ships with less demanding requirements will be required for the aforementioned maintenance tasks. This research presents a simple two degrees of freedom dynamic model that can be used to control a first generation TEC that has been conceived of to harness energy from marine currents. The control of the system is carried out by means of a water ballast system located inside the nacelle of the main power unit and is used as an actuator to produce buoying vertical forces. A nonlinear control law based on a decoupling term for the closed loop depth and/or orientation control is also proposed in order to ensure adequate behavior when the TEC performs emersion and immersion maneuvers with only hydrostatic buoyancy forces. The control scheme is composed of an inner loop consisting of a linear and decoupled input/output relationship and the vector of friction and compressibility terms and an outer loop that operates with the tracking error vector in order to ensure the asymptotically exponential stability of the TEC posture. Finally, the effectiveness of the dynamic model and the controller approach is demonstrated by means of numerical simulations when the TEC is carrying out an emersion maneuver for the development of general maintenance tasks and an emersion maneuver for blade-cleaning maintenance

  20. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research – Recommendations for Experiment Planning, Data Analysis, and Data Reporting

    Science.gov (United States)

    Laborde, Sylvain; Mosley, Emma; Thayer, Julian F.

    2017-01-01

    Psychophysiological research integrating heart rate variability (HRV) has increased during the last two decades, particularly given the fact that HRV is able to index cardiac vagal tone. Cardiac vagal tone, which represents the contribution of the parasympathetic nervous system to cardiac regulation, is acknowledged to be linked with many phenomena relevant for psychophysiological research, including self-regulation at the cognitive, emotional, social, and health levels. The ease of HRV collection and measurement coupled with the fact it is relatively affordable, non-invasive and pain free makes it widely accessible to many researchers. This ease of access should not obscure the difficulty of interpretation of HRV findings that can be easily misconstrued, however, this can be controlled to some extent through correct methodological processes. Standards of measurement were developed two decades ago by a Task Force within HRV research, and recent reviews updated several aspects of the Task Force paper. However, many methodological aspects related to HRV in psychophysiological research have to be considered if one aims to be able to draw sound conclusions, which makes it difficult to interpret findings and to compare results across laboratories. Those methodological issues have mainly been discussed in separate outlets, making difficult to get a grasp on them, and thus this paper aims to address this issue. It will help to provide psychophysiological researchers with recommendations and practical advice concerning experimental designs, data analysis, and data reporting. This will ensure that researchers starting a project with HRV and cardiac vagal tone are well informed regarding methodological considerations in order for their findings to contribute to knowledge advancement in their field. PMID:28265249

  1. Importance of back blow maneuvers in a 6 month old patient with sudden upper airway obstruction

    Directory of Open Access Journals (Sweden)

    Pinar Gencpinar

    2015-12-01

    Full Text Available Foreign body aspiration in children under four years old is one of the most frequently observed reasons for accident related deaths. It is more common in this age group due to inadequate swallowing functions and exploration of objects with the mouth. The most frequently encountered foreign bodies are food and toy parts. Life threatening complete laryngeal obstruction is rarely observed. Dyspnea, hypersalivation, cough and cyanosis can be seen. The basic and life-saving treatment approach is complete removal of foreign body maneuvers in the sudden onset of total obstruction. Here we report a six-month old male, who ingested a foreign body and was treated with back blow maneuvers successfully. In this case we emphasized the importance of back blow maneuvers. Keywords: Upper airway obstruction, Child, Back blows maneuvers

  2. Novel Fractional Order Calculus Extended PN for Maneuvering Targets

    Directory of Open Access Journals (Sweden)

    Jikun Ye

    2017-01-01

    Full Text Available Based on the theory of fractional order calculus (FOC, a novel extended proportional guidance (EPN law for intercepting the maneuvering target is proposed. In the first part, considering the memory function and filter characteristic of FOC, the novel extended PN guidance algorithm is developed based on the conventional PN after introducing the properties and operation rules of FOC. Further, with the help of FOC theory, the average load and ballistics characteristics of proposed guidance law are analyzed. Then, using the small offset kinematic model, the robustness of the new guidance law against autopilot parameters is studied theoretically by analyzing the sensitivity of the closed loop guidance system. At last, representative numerical results show that the designed guidance law obtains a better performance than the traditional PN for maneuvering target.

  3. Analysis of risk factors influencing the outcome of the Epley maneuver.

    Science.gov (United States)

    Domínguez-Durán, E; Domènech-Vadillo, E; Álvarez-Morujo de Sande, M G; González-Aguado, R; Guerra-Jiménez, G; Ramos-Macías, Á; Morales-Angulo, C; Martín-Mateos, A J; Figuerola-Massana, E; Galera-Ruiz, H

    2017-10-01

    Benign paroxysmal positional vertigo (BPPV) is the most frequent type of vertigo. The treatment of canalithiasis of the posterior semicircular canal consists in performing a particle-repositioning maneuver, such as the Epley maneuver (EM). However, the EM is not effective in all cases. The objective of this study is to identify risk factors, which predict the EM failure, among the clinical variables recorded in anamnesis and patient examination. This is an observational prospective multicentric study. All patients presenting with BPPV were recruited and applied the EM and appointed for a follow-up visit 7 days later. The following variables were recorded: sex, age, arterial hypertension, diabetes, hyperlipidemia, smoking habit, alcohol consumption, migraine, osteoporosis, diseases of the inner ear, previous ipsilateral BPPV, previous traumatic brain injury, previous sudden head deceleration, time of evolution, sulpiride or betahistine treatment, experienced symptoms, outcome of the Halmagyi maneuver, laterality, cephalic hyperextension of the neck, intensity of nystagmus, intensity of vertigo, duration of nystagmus, occurrence of orthotropic nystagmus, symptoms immediately after the EM, postural restrictions, and symptoms 7 days after the EM. Significant differences in the rate of loss of nystagmus were found for six variables: hyperlipidemia, previous ipsilateral BPPV, intensity of nystagmus, duration of nystagmus, post-maneuver sweating, and subjective status. The most useful significant variables in the clinical practice to predict the success of the EM are previous BPPV and intensity of nystagmus. In the other significant variables, no physiopathological hypothesis can be formulated or differences between groups are too small.

  4. Ground Track Acquisition and Maintenance Maneuver Modeling for Low-Earth Orbit Satellite

    Directory of Open Access Journals (Sweden)

    Byoung-Sun Lee

    1997-12-01

    Full Text Available This paper presents a comprehensive analytical approach for determining key maneuver parameters associated with the acquisition and maintenance of the ground track for a low-earth orbit. A livearized model relating changes in the drift rate of the ground track directly to changes in the orbital semi-major axis is also developed. The effect of terrestrial atmospheric drag on the semi-major axis is also explored, being quantified through an analytical expression for the decay rate as a function of density. The non-singular Lagrange planetary equations, further simplified for nearly circular orbits, provide the desired relationships between the corrective in-plane impulsive velocity increments and the corresponding effects on the orbit elements. The resulting solution strategy offers excellent insight into the dynamics affecting the timing, magnitude, and frequency of these maneuvers. Simulations are executed for the ground track acquisition and maintenance maneuver as a pre-flight planning and analysis.

  5. Kristeller maneuvers or fundal pressure and maternal/neonatal morbidity: obstetric and judicial literature review.

    Science.gov (United States)

    Malvasi, Antonio; Zaami, Simona; Tinelli, Andrea; Trojano, Giuseppe; Montanari Vergallo, Gianluca; Marinelli, Enrico

    2018-02-21

    A significant amount of data concerning maternal-fetal damage arising from the exertion of Kristeller maneuvers (KMs) or fundal pressure (FP) go unreleased due to medicolegal implications. For this reason, the paper gathers information as to the real magnitude of litigation related to FP-induced damages and injuries. The authors have undertaken a research in order to include general search engines (PubMed-Medline, Cochrane, Embase, Google, GyneWeb) and legal databases (De Jure, Italian database of jurisprudence daily update; Westlaw, Thomson Reuters, American ruling database and Bailii, UK Court Ruling Database). Results confirm said phenomenon to be more wide ranging than it appears through official channels. Several courts of law, both in the United States of America (USA) and in European Union (EU) Member States as well, have ruled against the use of the maneuver itself, assuming a stance conducive to a presumption of guilt against those doctors and healthcare providers who resorted to KMs or FP during deliveries. Given how rife FP is in mainstream obstetric practice, it is as if there were a wide gap between obstetric real-life and what official jurisprudence and healthcare institutions-sanctioned official practices are. The authors think that it would be desirable to draft specifically targeted guidelines or recommendations on maneuvers during vaginal delivery, in which to point out exactly what kinds of maneuvering techniques are to be absolutely banned and what maneuvers are to be allowed, and under what conditions their application can be considered appropriate.

  6. Adolescents with HIV and facial lipoatrophy: response to facial stimulation

    Directory of Open Access Journals (Sweden)

    Jesus Claudio Gabana-Silveira

    2014-08-01

    Full Text Available OBJECTIVES: This study evaluated the effects of facial stimulation over the superficial muscles of the face in individuals with facial lipoatrophy associated with human immunodeficiency virus (HIV and with no indication for treatment with polymethyl methacrylate. METHOD: The study sample comprised four adolescents of both genders ranging from 13 to 17 years in age. To participate in the study, the participants had to score six or less points on the Facial Lipoatrophy Index. The facial stimulation program used in our study consisted of 12 weekly 30-minute sessions during which individuals received therapy. The therapy consisted of intra- and extra-oral muscle contraction and stretching maneuvers of the zygomaticus major and minor and the masseter muscles. Pre- and post-treatment results were obtained using anthropometric static measurements of the face and the Facial Lipoatrophy Index. RESULTS: The results suggest that the therapeutic program effectively improved the volume of the buccinators. No significant differences were observed for the measurements of the medial portion of the face, the lateral portion of the face, the volume of the masseter muscle, or Facial Lipoatrophy Index scores. CONCLUSION: The results of our study suggest that facial maneuvers applied to the superficial muscles of the face of adolescents with facial lipoatrophy associated with HIV improved the facial area volume related to the buccinators muscles. We believe that our results will encourage future research with HIV patients, especially for patients who do not have the possibility of receiving an alternative aesthetic treatment.

  7. β adrenergic receptor modulation of neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Bateman, R J; Boychuk, C R; Philbin, K E; Mendelowitz, D

    2012-05-17

    β-adrenergic receptors are a class of G protein-coupled receptors that have essential roles in regulating heart rate, blood pressure, and other cardiorespiratory functions. Although the role of β adrenergic receptors in the peripheral nervous system is well characterized, very little is known about their role in the central nervous system despite being localized in many brain regions involved in autonomic activity and regulation. Since parasympathetic activity to the heart is dominated by cardiac vagal neurons (CVNs) originating in the nucleus ambiguus (NA), β adrenergic receptors localized in the NA represent a potential target for modulating cardiac vagal activity and heart rate. This study tests the hypothesis that activation of β adrenergic receptors alters the membrane properties and synaptic neurotransmission to CVNs. CVNs were identified in brainstem slices, and membrane properties and synaptic events were recorded using the whole-cell voltage-clamp technique. The nonselective β agonist isoproterenol significantly decreased inhibitory GABAergic and glycinergic as well as excitatory glutamatergic neurotransmission to CVNs. In addition, the β(1)-selective receptor agonist dobutamine, but not β(2) or β(3) receptor agonists, significantly decreased inhibitory GABAergic and glycinergic and excitatory glutamatergic neurotransmission to CVNs. These decreases in neurotransmission to CVNs persisted in the presence of tetrodotoxin (TTX). These results provide a mechanism by which activation of adrenergic receptors in the brainstem can alter parasympathetic activity to the heart. Likely physiological roles for this adrenergic receptor activation are coordination of parasympathetic-sympathetic activity and β receptor-mediated increases in heart rate upon arousal. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Mueller-Hillis maneuver and angle of progression: Are they correlated?

    Directory of Open Access Journals (Sweden)

    Sofia Mendes

    Full Text Available Summary Objective: Mueller-Hillis maneuver (MHM and angle of progression (AOP measured by transperineal ultrasound have been used to assess fetal head descent during the second stage of labor. We aimed to assess whether AOP correlates with MHM in the second stage of labor. Method: A prospective observational study including women with singleton pregnancy in the second stage of labor was performed. The AOP was measured immediately after the Mueller-Hillis maneuver. A receiver-operating characteristics (ROC curve analysis was performed to determine the best discriminatory AOP cut-off for the identification of a positive MHM. A p-value less than 0.05 was considered statistically significant. Results: One hundred and sixty-six (166 women were enrolled in the study and 81.3% (n=135 had a positive MHM. The median AOP was 143º (106º to 210º. The area under the curve for the prediction of a positive maneuver was 0.619 (p=0.040. Derived from the ROC curve, an AOP of 138.5º had the best diagnostic performance for the identification of a positive MHM (specificity of 65% and a sensitivity of 67%. Conclusion: An AOP of 138º seems to be associated with a positive MHM in the second stage of labor.

  9. Maintaining Aura's Orbit Requirements While Performing Orbit Maintenance Maneuvers Containing an Orbit Normal Delta-V Component

    Science.gov (United States)

    Johnson, Megan R.; Petersen, Jeremy D.

    2014-01-01

    The Earth Observing System (EOS) Afternoon Constellation consists of five member missions (GCOM-W1, Aqua, CALIPSO, CloudSat, and Aura), each of which maintain a frozen, sun-synchronous orbit with a 16-day repeating ground track that follows the Worldwide Reference System-2 (WRS-2). Under nominal science operations for Aura, the propulsion system is oriented such that the resultant thrust vector is aligned 13.493 degrees away from the velocity vector along the yaw axis. When performing orbit maintenance maneuvers, the spacecraft performs a yaw slew to align the thrust vector in the appropriate direction. A new Drag Make Up (DMU) maneuver operations scheme has been implemented for Aura alleviating the need for the 13.493 degree yaw slew. The focus of this investigation is to assess the impact that no-slew DMU maneuver operations will have on Aura's Mean Local Time (MLT) which drives the required along track separation between Aura and the constellation members, as well as Aura's frozen orbit properties, eccentricity and argument of perigee. Seven maneuver strategies were analyzed to determine the best operational approach. A mirror pole strategy, with maneuvers alternating at the North and South poles, was implemented operationally to minimize impact to the MLT. Additional analysis determined that the mirror pole strategy could be further modified to include frozen orbit maneuvers and thus maintain both MLT and the frozen orbit properties under noslew operations.

  10. Near Earth Asteroid redirect missions based on gravity assist maneuver

    Science.gov (United States)

    Ledkov, Anton; Shustov, Boris M.; Eismont, Natan; Boyarsky, Michael; Nazirov, Ravil; Fedyaev, Konstantin

    During last years several events attracted world community attention to the hazards of hitting the Earth by sky objects. One of these objects is Apophis asteroid what was expected with nonzero probability to hit the Earth in 2036. Luckily after more precise measurements this event is considered as practically improbable. But the other object has really reached the Earth, entered the atmosphere in the Chelyabinsk area and caused vast damages. After this the hazardous near Earth objects problem received practical confirmation of the necessity to find the methods of its resolution. The methods to prevent collision of the dangerous sky object with the Earth proposed up to now look not practical enough if one mentions such as gravitational tractor or changing the reflectivity of the asteroid surface. Even the method supposing the targeting of the spacecraft to the hazardous object in order to deflect it from initial trajectory by impact does not work because its low mass as compared with the mass of asteroid to be deflected. For example the mass of the Apophis is estimated to be about 40 million tons but the spacecraft which can be launched to intercept the asteroid using contemporary launchers has the mass not more than 5 tons. So the question arises where to find the heavier projectile which is possible to direct to the dangerous object? The answer proposed in our paper is very simple: to search it among small near Earth asteroids. As small ones we suppose those which have the cross section size not more than 12-15 meters and mass not exceeding 1500 -1700 tons. According to contemporary estimates the number of such asteroids is not less than 100000. The other question is how to redirect such asteroid to the dangerous one. In the paper the possibilities are studied to use for that purpose gravity assist maneuvers near Earth. It is shown that even among asteroids included in contemporary catalogue there are the ones which could be directed to the trajectory of the

  11. Identifying tacit strategies in aircraft maneuvers

    Science.gov (United States)

    Lewis, Charles M.; Heidorn, P. B.

    1991-01-01

    Two machine-learning methods are presently used to characterize the avoidance strategies used by skilled pilots in simulated aircraft encounters, and a general framework for the characterization of the strategic components of skilled behavior via qualitative representation of situations and responses is presented. Descriptions of pilot maneuvers that were 'conceptually equivalent' were ascertained by a concept-learning algorithm in conjunction with a classifier system that employed a generic algorithm; satisficing and 'buggy' strategies were thereby revealed.

  12. Effect of esophageal distention on basal and stimulated gastric acid secretion in rats

    Directory of Open Access Journals (Sweden)

    Mohammad Kazem Gharib Nasery

    2007-02-01

    Full Text Available Background: It is well established that the esophageal distention leads to gastric relaxation, partly by vago-vagal reflex but till now, the effect of esophageal distention on gastric acid secretion has not been investigated. The aim of this study was to investigate the effect of esophageal distention (ED on basal and stimulated gastric acid secretion. Methods: Adult male Wistar rats (200-240g were deprived of food but not water for 24 hrs before the experiments. Under urethane anesthesia (1.2 g/kg, i.p., animals underwent tracheostomy and laparotomy. A catheter was inserted in the stomach through duodenum for gastric distention and gastric washout and the esophagus was cannulated with a distensible balloon orally to distend esophagus (0.3 ml, 10 min. Gastric acid secretion was stimulated by gastric distention, carbachol (4 µg/kg, i.p. or histamine (5 mg/kg, s.c.. Effects of vagotomy, L-NAME (10 mg/kg, i.v., L-arginine (500 mg/kg, i.p. and hexamethonium were also investigated. Results: Esophageal distention reduces basal and gastric distention, carbachol and histamine stimulated acid secretion (P<0.05, P<0.0001, P<0.01 and P<0.02, respectively. Vagotomy reduced the inhibitory effect of the esophagus distention on gastric distention-induced acid secretion (P<0.05. Conclusion: These results indicate that vagus nerve involves in the inhibitory effect of the esophageal distention on the basal and stimulated gastric acid secretion. Nitric oxide (NO may also be involved.

  13. Anatomical basis of the liver hanging maneuver.

    Science.gov (United States)

    Trotovsek, Blaz; Belghiti, Jacques; Gadzijev, Eldar M; Ravnik, Dean; Hribernik, Marija

    2005-01-01

    The anterior approach to right hepatectomy using the liver hanging maneuver without liver mobilization claims to be anatomically evaluated. During this procedure a 4 to 6-cm blind dissection between the inferior vena cava and the liver is performed. Short subhepatic veins, entering the inferior vena cava could be torn and a hemorrhage, difficult to control, could occur. On 100 corrosive casts of livers the anterior surface of the inferior vena cava was studied to evaluate the position, diameter and draining area of short subhepatic veins and inferior right hepatic vein. The width of the narrowest point on the planned route of blind dissection was determined. The average value of the narrowest point on the planned route of blind dissection was 8.7+/-2.3mm (range 2-15mm). The ideal angle of dissection being 0 degrees was found in 93% of cases. In 7% we found the angle of 5 degrees toward the right border of inferior vena cava to be the better choice. Our results show that liver hanging maneuver is a safe procedure. With the dissection in the proposed route the risk of disrupting short subhepatic veins is low (7%).

  14. Effect of different body postures on the pressures generated during an L-1 maneuver.

    Science.gov (United States)

    Williams, C A; Lind, A R; Wiley, R L; Douglas, J E; Miller, G

    1988-10-01

    Changes in blood pressure, intrathoracic pressure, heart rate and the electromyographic activity of various muscle groups were determined while nine male subjects performed 15-s L-1 straining maneuvers at four spine-to-thigh angles (70, 84, 94, and 105 degrees) and two seatback angles (30 and 60 degrees). There was no significant difference between the changes in these variables due to the different body positions. At the onset of the L-1, arterial pressure immediately increased to 195 +/- 5 mm Hg, but fell progressively during the next 5 s to 160 +/- 5 mm Hg. It remained constant during the next 5 s of the maneuver and then recovered to 180 +/- mm Hg during the last 5 s of the maneuver. Esophageal pressure followed essentially the same pattern of response, but heart rate progressively increased during the entire L-1. No one muscle group was utilized more than another. Inflation of an anti-G suit to 4 PSI had no effect on the variables measured. Generation of high arterial pressures during L-1 maneuvers is transitory and not affected either positively or negatively by altering subject body position.

  15. Catheter Entrapment During Posterior Mitral Leaflet Pushing Maneuver for MitraClip Implantation.

    Science.gov (United States)

    Castrodeza, Javier; Amat-Santos, Ignacio J; Tobar, Javier; Varela-Falcón, Luis H

    2016-06-01

    MitraClip (Abbott Vascular) therapy has been reported to be an effective procedure for mitral regurgitation, especially in high-risk patients. Recently, the novel pushing maneuver technique has been described for approaching restricted and short posterior leaflets with a pigtail catheter in order to facilitate grasping of the clip. However, complications or unexpected situations may occur. We report the case of an 84-year-old patient who underwent MitraClip implantation wherein the pushing maneuver was complicated by the clip accidentally gripping the pigtail catheter along with the two leaflets.

  16. Evaluation of lung recruitment maneuvers in acute respiratory distress syndrome using computer simulation.

    Science.gov (United States)

    Das, Anup; Cole, Oana; Chikhani, Marc; Wang, Wenfei; Ali, Tayyba; Haque, Mainul; Bates, Declan G; Hardman, Jonathan G

    2015-01-12

    Direct comparison of the relative efficacy of different recruitment maneuvers (RMs) for patients with acute respiratory distress syndrome (ARDS) via clinical trials is difficult, due to the heterogeneity of patient populations and disease states, as well as a variety of practical issues. There is also significant uncertainty regarding the minimum values of positive end-expiratory pressure (PEEP) required to ensure maintenance of effective lung recruitment using RMs. We used patient-specific computational simulation to analyze how three different RMs act to improve physiological responses, and investigate how different levels of PEEP contribute to maintaining effective lung recruitment. We conducted experiments on five 'virtual' ARDS patients using a computational simulator that reproduces static and dynamic features of a multivariable clinical dataset on the responses of individual ARDS patients to a range of ventilator inputs. Three recruitment maneuvers (sustained inflation (SI), maximal recruitment strategy (MRS) followed by a titrated PEEP, and prolonged recruitment maneuver (PRM)) were implemented and evaluated for a range of different pressure settings. All maneuvers demonstrated improvements in gas exchange, but the extent and duration of improvement varied significantly, as did the observed mechanism of operation. Maintaining adequate post-RM levels of PEEP was seen to be crucial in avoiding cliff-edge type re-collapse of alveolar units for all maneuvers. For all five patients, the MRS exhibited the most prolonged improvement in oxygenation, and we found that a PEEP setting of 35 cm H2O with a fixed driving pressure of 15 cm H2O (above PEEP) was sufficient to achieve 95% recruitment. Subsequently, we found that PEEP titrated to a value of 16 cm H2O was able to maintain 95% recruitment in all five patients. There appears to be significant scope for reducing the peak levels of PEEP originally specified in the MRS and hence to avoid exposing the lung to

  17. NMDA Receptor-Dependent Synaptic Activity in Dorsal Motor Nucleus of Vagus Mediates the Enhancement of Gastric Motility by Stimulating ST36

    Directory of Open Access Journals (Sweden)

    Xinyan Gao

    2012-01-01

    Full Text Available Previous studies have demonstrated the efficacy of electroacupuncture at ST36 for patients with gastrointestinal motility disorders. While several lines of evidence suggest that the effect may involve vagal reflex, the precise molecular mechanism underlying this process still remains unclear. Here we report that the intragastric pressure increase induced by low frequency electric stimulation at ST36 was blocked by AP-5, an antagonist of N-methyl-D-aspartate receptors (NMDARs. Indeed, stimulating ST36 enhanced NMDAR-mediated, but not 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-ylpropanoic-acid-(AMPA- receptor-(AMPAR- mediated synaptic transmission in gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV. We also identified that suppression of presynaptic μ-opioid receptors may contribute to upregulation of NMDAR-mediated synaptic transmission induced by electroacupuncture at ST36. Furthermore, we determined that the glutamate-receptor-2a-(NR2A- containing NMDARs are essential for NMDAR-mediated enhancement of gastric motility caused by stimulating ST36. Taken together, our results reveal an important role of NMDA receptors in mediating enhancement of gastric motility induced by stimulating ST36.

  18. Maneuver Acoustic Flight Test of the Bell 430 Helicopter Data Report

    Science.gov (United States)

    Watts, Michael E.; Greenwood, Eric; Smith, Charles D.; Snider, Royce; Conner, David A.

    2014-01-01

    A cooperative ight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 test points over 10 test days and compiled an extensive database of dynamic maneuver measurements. Three microphone arrays with up to 31 microphon. es in each were used to acquire acoustic data. Aircraft data included Differential Global Positioning System, aircraft state and rotor state information. This paper provides an overview of the test and documents the data acquired.

  19. Virtual maneuvering test in CFD media in presence of free surface

    Directory of Open Access Journals (Sweden)

    Ahmad Hajivand

    2015-05-01

    Full Text Available Maneuvering oblique towing test is simulated in a Computational Fluid Dynamic (CFD environment to obtain the linear and nonlinear velocity dependent damping coefficients for a DTMB 5512 model ship. The simulations are carried out in freely accessible OpenFOAM library with three different solvers, rasInterFoam, LTSInterFoam and interDyMFoam, and two turbulence models, k-ε and SST k-ω in presence of free surface. Turning and zig-zag maneuvers are simulated for the DTMB 5512 model ship using the calculated damping coefficients with CFD. The comparison of simulated results with the available experimental shows a very good agreement among them.

  20. Automated Precision Maneuvering and Landing in Extreme and Constrained Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — Autonomous, precise maneuvering and landing in extreme and constrained environments is a key enabler for future NASA missions. Missions to map the interior of a...

  1. Different role of TTX-sensitive voltage-gated sodium channel (NaV 1) subtypes in action potential initiation and conduction in vagal airway nociceptors.

    Science.gov (United States)

    Kollarik, M; Sun, H; Herbstsomer, R A; Ru, F; Kocmalova, M; Meeker, S N; Undem, B J

    2018-04-15

    The action potential initiation in the nerve terminals and its subsequent conduction along the axons of afferent nerves are not necessarily dependent on the same voltage-gated sodium channel (Na V 1) subunits. The action potential initiation in jugular C-fibres within airway tissues is not blocked by TTX; nonetheless, conduction of action potentials along the vagal axons of these nerves is often dependent on TTX-sensitive channels. This is not the case for nodose airway Aδ-fibres and C-fibres, where both action potential initiation and conduction is abolished by TTX or selective Na V 1.7 blockers. The difference between the initiation of action potentials within the airways vs. conduction along the axons should be considered when developing Na V 1 blocking drugs for topical application to the respiratory tract. The action potential (AP) initiation in the nerve terminals and its subsequent AP conduction along the axons do not necessarily depend on the same subtypes of voltage-gated sodium channels (Na V 1s). We evaluated the role of TTX-sensitive and TTX-resistant Na V 1s in vagal afferent nociceptor nerves derived from jugular and nodose ganglia innervating the respiratory system. Single cell RT-PCR was performed on vagal afferent neurons retrogradely labelled from the guinea pig trachea. Almost all of the jugular neurons expressed the TTX-sensitive channel Na V 1.7 along with TTX-resistant Na V 1.8 and Na V 1.9. Tracheal nodose neurons also expressed Na V 1.7 but, less frequently, Na V 1.8 and Na V 1.9. Na V 1.6 were expressed in ∼40% of the jugular and 25% of nodose tracheal neurons. Other Na V 1 α subunits were only rarely expressed. Single fibre recordings were made from the vagal nodose and jugular nerve fibres innervating the trachea or lung in the isolated perfused vagally-innervated preparations that allowed for selective drug delivery to the nerve terminal compartment (AP initiation) or to the desheathed vagus nerve (AP conduction). AP initiation in

  2. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft

    Science.gov (United States)

    Genova, A. L.

    2014-01-01

    This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.

  3. Conflict Resolution Performance in an Experimental Study of En Route Free Maneuvering Operations

    Science.gov (United States)

    Doble, Nathan A.; Barhydt, Richard; Hitt, James M., II

    2005-01-01

    NASA has developed a far-term air traffic management concept, termed Distributed Air/Ground Traffic Management (DAG-TM). One component of DAG-TM, En Route Free Maneuvering, allows properly trained flight crews of equipped autonomous aircraft to assume responsibility for separation from other autonomous aircraft and from Instrument Flight Rules (IFR) aircraft. Ground-based air traffic controllers continue to separate IFR traffic and issue flow management constraints to all aircraft. To examine En Route Free Maneuvering operations, a joint human-in-the-loop experiment was conducted in summer 2004 at the NASA Ames and Langley Research Centers. Test subject pilots used desktop flight simulators to resolve traffic conflicts and adhere to air traffic flow constraints issued by subject controllers. The experimental airspace integrated both autonomous and IFR aircraft at varying traffic densities. This paper presents a subset of the En Route Free Maneuvering experimental results, focusing on airborne and ground-based conflict resolution, and the effects of increased traffic levels on the ability of pilots and air traffic controllers to perform this task. The results show that, in general, increases in autonomous traffic do not significantly impact conflict resolution performance. In addition, pilot acceptability of autonomous operations remains high throughout the range of traffic densities studied. Together with previously reported findings, these results continue to support the feasibility of the En Route Free Maneuvering component of DAG-TM.

  4. Linearity of electrical impedance tomography during maximum effort breathing and forced expiration maneuvers.

    Science.gov (United States)

    Ngo, Chuong; Leonhardt, Steffen; Zhang, Tony; Lüken, Markus; Misgeld, Berno; Vollmer, Thomas; Tenbrock, Klaus; Lehmann, Sylvia

    2017-01-01

    Electrical impedance tomography (EIT) provides global and regional information about ventilation by means of relative changes in electrical impedance measured with electrodes placed around the thorax. In combination with lung function tests, e.g. spirometry and body plethysmography, regional information about lung ventilation can be achieved. Impedance changes strictly correlate with lung volume during tidal breathing and mechanical ventilation. Initial studies presumed a correlation also during forced expiration maneuvers. To quantify the validity of this correlation in extreme lung volume changes during forced breathing, a measurement system was set up and applied on seven lung-healthy volunteers. Simultaneous measurements of changes in lung volume using EIT imaging and pneumotachography were obtained with different breathing patterns. Data was divided into a synchronizing phase (spontaneous breathing) and a test phase (maximum effort breathing and forced maneuvers). The EIT impedance changes correlate strictly with spirometric data during slow breathing with increasing and maximum effort ([Formula: see text]) and during forced expiration maneuvers ([Formula: see text]). Strong correlations in spirometric volume parameters [Formula: see text] ([Formula: see text]), [Formula: see text]/FVC ([Formula: see text]), and flow parameters PEF, [Formula: see text], [Formula: see text], [Formula: see text] ([Formula: see text]) were observed. According to the linearity during forced expiration maneuvers, EIT can be used during pulmonary function testing in combination with spirometry for visualisation of regional lung ventilation.

  5. Enhanced ghrelin secretion in the cephalic phase of food ingestion in women with bulimia nervosa.

    Science.gov (United States)

    Monteleone, Palmiero; Serritella, Cristina; Scognamiglio, Pasquale; Maj, Mario

    2010-02-01

    In humans, the cephalic phase response to food ingestion consists mostly of vagal efferent activation, which promotes the secretion of entero-pancreatic hormones, including ghrelin. Since symptomatic patients with bulimia nervosa (BN) are characterized by increased vagal tone, we hypothesized an enhanced ghrelin secretion in the cephalic phase of vagal stimulation. Therefore, we investigated ghrelin response to modified sham feeding (MSF) in both BN and healthy women. Six drug-free BN women and 7 age-matched healthy females underwent MSF with initially seeing and smelling a meal, and then chewing the food without swallowing it. Blood samples were drawn immediately before and after MSF for hormone assay. Circulating ghrelin increased after MSF in both groups with BN individuals exhibiting a greater ghrelin increase, which positively correlated with the patients' weekly frequency of binge-purging. These results show for the first time an increased ghrelin secretion in the cephalic phase of vagal stimulation in symptomatic BN patients, likely resulting in a potentiation of the peripheral hunger signal, which might contribute to their aberrant binge-purging behavior. 2009 Elsevier Ltd. All rights reserved.

  6. The link between negative affect, vagal tone, and visceral sensitivity in quiescent Crohn's disease.

    Science.gov (United States)

    Rubio, A; Pellissier, S; Picot, A; Dantzer, C; Bonaz, B

    2014-08-01

    Autonomic dysfunction and mood disorders are frequently described in Crohn's disease (CD) and are known to influence visceral sensitivity. We addressed the link between vagal tone, negative affect, and visceral sensitivity in CD patients without concomitant features of irritable bowel syndrome (IBS). Rectal distensions to a discomfort threshold of 70% and onset of pain were performed in nine CD patients in remission and eight healthy controls. Autonomic parameters were evaluated with heart rate variability and electrodermal reactivity. We showed that CD patients had (i) higher scores of depressive symptomatology (12 ± 3 in patients vs 4 ± 1 in controls on the Center for Epidemiologic Studies-Depression Scale; p = 0.038), (ii) reduced vagal tone (HF 257 ± 84 ms(2) vs 1607 ± 1032 ms(2) , p = 0.043; LF 455 ± 153 ms(2) vs 1629 ± 585 ms(2) , p = 0.047), (iii) decreased sympathetic reactivity during an aversive stimulus, and (iv) higher tolerance to rectal distension pressures (43 ± 3 mmHg vs 30 ± 2 mmHg, p = 0.002) and low sensitivity index scores. In conclusion, our results provide preliminary evidence that patients with quiescent CD, in the absence of IBS, are hyposensate to experimental rectal distension. These data provide further evidence that anxiety and depressive symptomatology in addition to autonomic dysfunction modulate visceral pain perception in quiescent CD patients in the absence of IBS. © 2014 John Wiley & Sons Ltd.

  7. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    Science.gov (United States)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  8. Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility.

    Science.gov (United States)

    Dickerson, L W; Rodak, D J; Fleming, T J; Gatti, P J; Massari, V J; McKenzie, J C; Gillis, R A

    1998-05-28

    We hypothesized that selective control of ventricular contractility might be mediated by postganglionic parasympathetic neurons in the cranial medial ventricular (CMV) ganglion plexus located in a fat pad at the base of the aorta. Sinus rate, atrioventricular (AV) conduction (ventricular rate during atrial pacing), and left ventricular contractile force (LV dP/dt during right ventricular pacing) were measured in eight chloralose-anesthetized dogs both before and during bilateral cervical vagus stimulation (20-30 V, 0.5 ms pulses, 15-20 Hz). Seven of these dogs were tested under beta-adrenergic blockade (propranolol, 0.8 mg kg(-1) i.v.). Control responses included sinus node bradycardia or arrest during spontaneous rhythm, high grade AV block or complete heart block, and a 30% decrease in contractility from 2118 +/- 186 to 1526 +/- 187 mm Hg s(-1) (P 0.05) decrease in contractility but still elicited the same degree of sinus bradycardia and AV block (N = 8, P < 0.05). Five dogs were re-tested 3 h after trimethaphan fat pad injection, at which time blockade of vagally-induced negative inotropy was partially reversed, as vagal stimulation decreased LV dP/dt by 19%. The same dose of trimethaphan given either locally into other fat pads (PVFP or IVC-ILA) or systemically (i.v.) had no effect on vagally-induced negative inotropy. Thus, parasympathetic ganglia located in the CMV fat pad mediated a decrease in ventricular contractility during vagal stimulation. Blockade of the CMV fat pad had no effect on vagally-mediated slowing of sinus rate or AV conduction.

  9. Exploration of the Trade Space Between Unmanned Aircraft Systems Descent Maneuver Performance and Sense-and-Avoid System Performance Requirements

    Science.gov (United States)

    Jack, Devin P.; Hoffler, Keith D.; Johnson, Sally C.

    2014-01-01

    A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the United States' National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements, focusing on a descent avoidance maneuver. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, near-term UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how to know in which group an aircraft belongs for a given flight condition and encounter is included. The groups are airplane, flight condition, and encounter specific, rather than airplane-only specific. Results and methodology for developing UAS maneuver performance requirements are presented for a descent avoidance maneuver. Results for the descent maneuver indicate that a minimum specific excess power magnitude can assure a minimum CPA for a given time-to-go prediction. However, smaller amounts of specific excess power may achieve or exceed the same CPA if the UAS has sufficient speed to trade for altitude. The results of this study will

  10. Determination of baroreflex sensitivity during the modified Oxford maneuver by trigonometric regressive spectral analysis.

    Directory of Open Access Journals (Sweden)

    Julia Gasch

    Full Text Available BACKGROUND: Differences in spontaneous and drug-induced baroreflex sensitivity (BRS have been attributed to its different operating ranges. The current study attempted to compare BRS estimates during cardiovascular steady-state and pharmacologically stimulation using an innovative algorithm for dynamic determination of baroreflex gain. METHODOLOGY/PRINCIPAL FINDINGS: Forty-five volunteers underwent the modified Oxford maneuver in supine and 60° tilted position with blood pressure and heart rate being continuously recorded. Drug-induced BRS-estimates were calculated from data obtained by bolus injections of nitroprusside and phenylephrine. Spontaneous indices were derived from data obtained during rest (stationary and under pharmacological stimulation (non-stationary using the algorithm of trigonometric regressive spectral analysis (TRS. Spontaneous and drug-induced BRS values were significantly correlated and display directionally similar changes under different situations. Using the Bland-Altman method, systematic differences between spontaneous and drug-induced estimates were found and revealed that the discrepancy can be as large as the gain itself. Fixed bias was not evident with ordinary least products regression. The correlation and agreement between the estimates increased significantly when BRS was calculated by TRS in non-stationary mode during the drug injection period. TRS-BRS significantly increased during phenylephrine and decreased under nitroprusside. CONCLUSIONS/SIGNIFICANCE: The TRS analysis provides a reliable, non-invasive assessment of human BRS not only under static steady state conditions, but also during pharmacological perturbation of the cardiovascular system.

  11. Parametric Dependence of Initial LEV Behavior on Maneuvering Wings

    Science.gov (United States)

    Berdon, Randall; Wabick, Kevin; Buchholz, James; Johnson, Kyle; Thurow, Brian; University of Iowa Team; Auburn University Team

    2017-11-01

    A maneuvering rectangular wing of aspect ratio 2 is examined experimentally using dye visualization and PIV to characterize the initial development of the leading-edge vortex (LEV) during a rolling maneuver in a uniform free stream. Understanding the underlying physics during the early evolution of the vortex is important for developing strategies to manipulate vortex evolution. Varying the dimensionless radius of gyration of the wing (Rg/c, where Rg is the radius of gyration and c is the chord) and the advance ratio (J=U/ ΩRg, where U is the free-stream velocity and Ω is the roll rate) affects the structure of the vortex and its propensity to remain attached. The influence of these parameters will be discussed, toward identification of similarity parameters governing vortex development. This work is supported by the Air Force Office of Scientific Research (Grant Number FA9550-16-1-0107, Dr. Douglas Smith, program manager).

  12. Evaluation of the Trade Space Between UAS Maneuver Performance and SAA System Performance Requirements

    Science.gov (United States)

    Jack, Devin P.; Hoffler, Keith D.; Johnson, Sally C.

    2014-01-01

    A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, nearterm UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements for a wide range of encounters. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. The simulator is described herein and has both a graphical user interface and batch interface to support detailed analysis of individual UAS encounters and macro analysis of a very large set of UAS and encounter models, respectively. Results from the simulator using approximate performance data from a well-known manned aircraft is presented to provide insight into the problem and as verification and validation of the simulator. Analysis of climb, descent, and level turn maneuvers to avoid a collision is presented. Noting the diversity of backgrounds in the UAS community, a description of the UAS aerodynamic and propulsive design and performance parameters is included. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how

  13. 78 FR 11555 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Design Roll Maneuver for Electronic...

    Science.gov (United States)

    2013-02-19

    ... Law 92-574, the ``Noise Control Act of 1972.'' The FAA issues special conditions, as defined in 14 CFR...; Design Roll Maneuver for Electronic Flight Controls AGENCY: Federal Aviation Administration (FAA), DOT... design roll maneuver for electronic flight controls, specifically an electronic flight control system...

  14. 77 FR 70384 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Design Roll Maneuver for Electronic...

    Science.gov (United States)

    2012-11-26

    ... Law 92-574, the ``Noise Control Act of 1972.'' The FAA issues special conditions, as defined in 14 CFR... Maneuver for Electronic Flight Controls AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice... design roll maneuver for electronic flight controls, specifically an electronic flight control system...

  15. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new pulsed electric thruster, named "pulsed electrogasdynamic thruster," for attitude control and orbit maneuver is proposed. In this thruster, propellant gas is...

  16. "Spaghetti Maneuver": A useful tool in pediatric laparoscopy - Our experience

    Directory of Open Access Journals (Sweden)

    Antonio Marte

    2011-01-01

    Full Text Available Aims: The laparoscopic "Spaghetti Maneuver" consists in holding an organ by its extremity with a grasper and rolling it up around the tool to keep the organ stable and facilitate its traction within a small space. We describe our experience with the "Spaghetti Maneuver" in some minimally invasive procedures. Materials and Methods: We successfully adopted this technique in 13 patients (5F : 8M aged between 6 and 14 years (average age, 10 on whom we performed 7 appendectomies, 2 ureteral reimplantation and 4 cholecystectomies. In all cases, after the first steps, the appendix, the gallbladder and the ureter were rolled around the grasper and easily isolated; hemostasis was thus induced and the organ was mobilized until removal during cholecystectomy and appendectomy, and before the reimplantation in case of ureteral reimplantation. Results: We found that this technique facilitated significantly the acts of holding, isolating and removing, when necessary, the structures involved, which remained constantly within the visual field of the operator. This allowed a very ergonomic work setting, overcoming the problem of the "blind" zone, which represents a dangerous and invisible area out of the operator′s control during laparoscopy. Moreover the isolation maneuvers resulted easier and reduced operating time. Conclusion: We think that this technique is easy to perform and very useful, because it facilitates the dissection of these organs, by harmonizing and stabilizing the force of traction exercised.

  17. Correlation between crash avoidance maneuvers and injury severity sustained by motorcyclists in single-vehicle crashes.

    Science.gov (United States)

    Wang, Chen; Lu, Linjun; Lu, Jian; Wang, Tao

    2016-01-01

    In order to improve motorcycle safety, this article examines the correlation between crash avoidance maneuvers and injury severity sustained by motorcyclists, under multiple precrash conditions. Ten-year crash data for single-vehicle motorcycle crashes from the General Estimates Systems (GES) were analyzed, using partial proportional odds models (i.e., generalized ordered logit models). The modeling results show that "braking (no lock-up)" is associated with a higher probability of increased severity, whereas "braking (lock-up)" is associated with a higher probability of decreased severity, under all precrash conditions. "Steering" is associated with a higher probability of reduced injury severity when other vehicles are encroaching, whereas it is correlated with high injury severity under other conditions. "Braking and steering" is significantly associated with a higher probability of low severity under "animal encounter and object presence," whereas it is surprisingly correlated with high injury severity when motorcycles are traveling off the edge of the road. The results also show that a large number of motorcyclists did not perform any crash avoidance maneuvers or conducted crash avoidance maneuvers that are significantly associated with high injury severity. In general, this study suggests that precrash maneuvers are an important factor associated with motorcyclists' injury severity. To improve motorcycle safety, training/educational programs should be considered to improve safety awareness and adjust driving habits of motorcyclists. Antilock brakes and such systems are also promising, because they could effectively prevent brake lock-up and assist motorcyclists in maneuvering during critical conditions. This study also provides valuable information for the design of motorcycle training curriculum.

  18. GABA in nucleus tractus solitarius participates in electroacupuncture modulation of cardiopulmonary bradycardia reflex.

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C; Guo, Zhi-Ling; Longhurst, John C

    2014-12-01

    Phenylbiguanide (PBG) stimulates cardiopulmonary receptors and cardiovascular reflex responses, including decreases in blood pressure and heart rate mediated by the brain stem parasympathetic cardiac neurons in the nucleus ambiguus and nucleus tractus solitarius (NTS). Electroacupuncture (EA) at P5-6 stimulates sensory fibers in the median nerve and modulates these reflex responses. Stimulation of median nerves reverses bradycardia through action of γ-aminobutyric acid (GABA) in the nucleus ambiguus, important in the regulation of heart rate. We do not know whether the NTS or the neurotransmitter mechanisms in this nucleus participate in these modulatory actions by acupuncture. We hypothesized that somatic nerve stimulation during EA (P5-6) modulates cardiopulmonary inhibitory responses through a GABAergic mechanism in the NTS. Anesthetized and ventilated cats were examined during either PBG or direct vagal afferent stimulation while 30 min of EA was applied at P5-6. Reflex heart rate and blood pressure responses and NTS-evoked discharge were recorded. EA reduced the PBG-induced depressor and bradycardia reflexes by 67% and 60%, respectively. Blockade of GABAA receptors in the NTS reversed EA modulation of bradycardia but not the depressor response. During EA, gabazine reversed the vagally evoked discharge activity of cardiovascular NTS neurons. EA modulated the vagal-evoked cardiovascular NTS cellular activity for 60 min. Immunohistochemistry using triple labeling showed GABA immunoreactive fibers juxtaposed to glutamatergic nucleus ambiguus-projecting NTS neurons in rats. These glutamatergic neurons expressed GABAA receptors. These findings suggest that EA inhibits PBG-evoked bradycardia and vagally evoked NTS activity through a GABAergic mechanism, likely involving glutamatergic nucleus ambiguus-projecting NTS neurons. Copyright © 2014 the American Physiological Society.

  19. Improvements in well-being and vagal tone following a yogic breathing-based life skills workshop in young adults: Two open-trial pilot studies

    Directory of Open Access Journals (Sweden)

    Michael R Goldstein

    2016-01-01

    Conclusions: These findings suggest that a life skills workshop integrating yogic breathing techniques may provide self-empowering tools for enhancing well-being in young adults. Future research is indicated to further explore these effects, particularly in regards to vagal tone and other aspects of stress physiology.

  20. Effect of Repositioning Maneuver Type and Postmaneuver Restrictions on Vertigo and Dizziness in Benign Positional Paroxysmal Vertigo

    Science.gov (United States)

    Toupet, Michel; Ferrary, Evelyne; Bozorg Grayeli, Alexis

    2012-01-01

    Introduction. To compare the efficiency of Epley (Ep) and Sémont-Toupet (ST) repositioning maneuvers and to evaluate postmaneuver restriction effect on short-term vertigo and dizziness after repositioning maneuvers by an analog visual scale (VAS) in benign positional paroxysmal vertigo (BPPV). Material and Methods. 226 consecutive adult patients with posterior canal BPPV were included. Patients were randomized into 2 different maneuver sequence groups (n = 113): 2 ST then 1 Ep or 2 Ep then 1 ST. Each group of sequence was randomized into 2 subgroups: with or without postmaneuver restrictions. Vertigo and dizziness were assessed from days 0 to 5 by VAS. Results. There was no difference between vertigo scores between Ep and ST groups. Dizziness scores were higher in Ep group during the first 3 days but became similar to those of ST group at days 4 and 5. ST maneuvers induced liberatory signs more frequently than Ep (58% versus 42% resp., P < 0.01, Fisher's test). After repositioning maneuvers, VAS scores decreased similarly in patients with and without liberatory signs. Postmaneuver restrictions did not influence VAS scores. Conclusion. Even if ST showed a higher rate of liberatory signs than Ep in this series, VAS scores were not influenced by these signs. PMID:22973168

  1. Analysis of effects of manhole covers on motorcycle driver maneuvers: a nonparametric classification tree approach.

    Science.gov (United States)

    Chang, Li-Yen

    2014-01-01

    A manhole cover is a removable plate forming the lid over the opening of a manhole to allow traffic to pass over the manhole and to prevent people from falling in. Because most manhole covers are placed in roadway traffic lanes, if these manhole covers are not appropriately installed or maintained, they can represent unexpected hazards on the road, especially for motorcycle drivers. The objective of this study is to identify the effects of manhole cover characteristics as well as driver factors and traffic and roadway conditions on motorcycle driver maneuvers. A video camera was used to record motorcycle drivers' maneuvers when they encountered an inappropriately installed or maintained manhole cover. Information on 3059 drivers' maneuver decisions was recorded. Classification and regression tree (CART) models were applied to explore factors that can significantly affect motorcycle driver maneuvers when passing a manhole cover. Nearly 50 percent of the motorcycle drivers decelerated or changed their driving path to reduce the effects of the manhole cover. The manhole cover characteristics including the level difference between manhole cover and pavement, the pavement condition over the manhole cover, and the size of the manhole cover can significantly affect motorcycle driver maneuvers. Other factors, including traffic conditions, lane width, motorcycle speed, and loading conditions, also have significant effects on motorcycle driver maneuvers. To reduce the effects and potential risks from the manhole covers, highway authorities not only need to make sure that any newly installed manhole covers are as level as possible but also need to regularly maintain all the manhole covers to ensure that they are in good condition. In the long run, the size of manhole covers should be kept as small as possible so that the impact of manhole covers on motorcycle drivers can be effectively reduced. Supplemental materials are available for this article. Go to the publisher

  2. Selective Enhancement of Synaptic Inhibition by Hypocretin (Orexin) in Rat Vagal Motor Neurons: Implications for Autonomic Regulation

    Science.gov (United States)

    Davis, Scott F.; Williams, Kevin W.; Xu, Weiye; Glatzer, Nicholas R.; Smith, Bret N.

    2012-01-01

    The hypocretins (orexins) are hypothalamic neuropeptides implicated in feeding, arousal, and autonomic regulation. These studies were designed to determine the actions of hypocretin peptides on synaptic transmission in the dorsal motor nucleus of the vagus nerve (DMV). Whole-cell patch-clamp recordings were made from DMV neurons in transverse slices of rat brainstem. Some of the neurons were identified as gastric-related by retrograde labeling after inoculation of the stomach wall with pseudorabies virus 152, a viral label that reports enhanced green fluorescent protein. Consistent with previous findings, hypocretins caused an inward current (6–68 pA) in most neurons at holding potentials near rest. In addition, the frequency of spontaneous IPSCs was increased in a concentration-related manner (up to 477%), with little change in EPSCs. This effect was preserved in the presence of tetrodotoxin, suggesting a presynaptic site of action. Hypocretins increased the amplitude of IPSCs evoked by electrical stimulation of the nucleus tractus solitarius (NTS) but not evoked EPSCs. Hypocretin-induced increases in the frequency of IPSCs evoked by photoactivation of caged glutamate within the NTS were also observed. Identical effects of the peptides were observed in identified gastric-related and unlabeled DMV neurons. In contrast to some previous studies, which have reported primarily excitatory actions of the hypocretins in many regions of the CNS, these data support a role for hypocretin in preferentially enhancing synaptic inhibition, including inhibitory inputs arising from neurons in the NTS. These findings indicate that the hypocretins can modulate and coordinate visceral autonomic output by acting directly on central vagal circuits. PMID:12736355

  3. Transcutaneous vagus nerve stimulation (tVNS) enhances recognition of emotions in faces but not bodies.

    Science.gov (United States)

    Sellaro, Roberta; de Gelder, Beatrice; Finisguerra, Alessandra; Colzato, Lorenza S

    2018-02-01

    The polyvagal theory suggests that the vagus nerve is the key phylogenetic substrate enabling optimal social interactions, a crucial aspect of which is emotion recognition. A previous study showed that the vagus nerve plays a causal role in mediating people's ability to recognize emotions based on images of the eye region. The aim of this study is to verify whether the previously reported causal link between vagal activity and emotion recognition can be generalized to situations in which emotions must be inferred from images of whole faces and bodies. To this end, we employed transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique that causes the vagus nerve to fire by the application of a mild electrical stimulation to the auricular branch of the vagus nerve, located in the anterior protuberance of the outer ear. In two separate sessions, participants received active or sham tVNS before and while performing two emotion recognition tasks, aimed at indexing their ability to recognize emotions from facial and bodily expressions. Active tVNS, compared to sham stimulation, enhanced emotion recognition for whole faces but not for bodies. Our results confirm and further extend recent observations supporting a causal relationship between vagus nerve activity and the ability to infer others' emotional state, but restrict this association to situations in which the emotional state is conveyed by the whole face and/or by salient facial cues, such as eyes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Prospect of Responsive Spacecraft Using Aeroassisted, Trans-Atmospheric Maneuvers

    Science.gov (United States)

    2014-06-19

    99 V. Design of Experiments Approach to Atmospheric Skip Entry Maneuver Optimization .....100 Chapter Overview...Transfer Diagram .................................................................................................11 3.1. Comparison of Geocentric ...Comparison of Geocentric /Geodetic Latitude for Apollo 10 (2-Gravity Model, Fourth-Order Runge-Kutta Solver

  5. Associating crash avoidance maneuvers with driver attributes and accident characteristics: a mixed logit model approach

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    from the key role of proactive and state-aware road users within the concept of sustainable safety systems, as well as from the key role of effective corrective maneuvers in the success of automated in-vehicle warning and driver assistance systems. Methods: The analysis is conducted by means of a mixed...... about the risks of driving under fatigue and distraction being comparable to the risks of driving under the influence of alcohol and drugs. Moreover, the results suggest the need to educate drivers about hazard perception, designing a forgiving infrastructure within a sustainable safety systems......Objective: The current study focuses on the propensity of drivers to engage in crash avoidance maneuvers in relation to driver attributes, critical events, crash characteristics, vehicles involved, road characteristics, and environmental conditions. The importance of avoidance maneuvers derives...

  6. Quadcopter Aggressive Maneuvers along Singular Configurations: An Energy-Quaternion Based Approach

    Directory of Open Access Journals (Sweden)

    Ayman A. El-Badawy

    2016-01-01

    Full Text Available Automatic aggressive maneuvers with quadcopters are regarded as a highly challenging control problem. The aim is to tackle the singularities that exist in a vertical looping maneuver. Modeling singularities are resolved by writing the equations-of-motion of the quadcopter in quaternion form. Physical singularities due to underactuation are resolved by using an energy-based control. Energy-based control is utilized to overcome the uncontrollability of the quadcopter at physical singular configurations, for instance, when commanding the quadcopter to gain altitude while pitched at 90∘. Three looping strategies (circular, clothoidal, and newly developed constant thrust are implemented on a nonlinear model of the quadcopter. The three looping strategies are discussed along with their advantages and limitations.

  7. Mixed evidence for the potential of non-invasive transcutaneous vagal nerve stimulation to improve the extinction and retention of fear.

    Science.gov (United States)

    Burger, A M; Verkuil, B; Fenlon, H; Thijs, L; Cools, L; Miller, H C; Vervliet, B; Van Diest, I

    2017-10-01

    Extinction memories are fragile and their formation has been proposed to partially rely on vagus nerve activity. We tested whether stimulating the auricular branch of the vagus (transcutaneous VNS; tVNS) accelerates extinction and reduces spontaneous recovery of fear. Forty-two healthy students participated in a 3-day fear conditioning study, where we tested fear acquisition (day 1), fear extinction (day 2) and the retention of the extinction memory (day 3). During extinction, participants were randomly allocated to receive tVNS or sham stimulation concurrently with each CS presentation. During the acquisition and retention phases, all participants received sham stimulation. Indexes of fear included US-expectancy, startle blink EMG and skin conductance responses. Results showed successful acquisition and extinction of fear in all measures. tVNS facilitated the extinction of declarative fear (US expectancy ratings), but did not promote a stronger retention of the declarative extinction memory. No clear effects of tVNS on extinction and retention of extinction were found for the psychophysiological indexes. The present findings provide tentative indications that tVNS could be a promising tool to improve fear extinction and call for larger scale studies to replicate these effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Transient Structured Distance as a Maneuver in Marital Therapy

    Science.gov (United States)

    Greene, Bernard L.; And Others

    1973-01-01

    Experience with 73 cases has shown the value of Transient Structured Distance as a maneuver in marriage therapy. While the TSD is a radical form of intervention with risks of anxiety reactions, homosexual panic, or divorce, it has proved effective with difficult forms of acute or chronic marital disharmony. (Author)

  9. A Small State Maneuvering in the Changing World Order

    DEFF Research Database (Denmark)

    Sørensen, Camilla T. N.

    2016-01-01

    , especially the Danish approach to the BRICs, has developed in recent years, I show how Denmark – a small state – is trying to maneuver in the changing world order through a “creative agency” approach characterized by pragmatic low-profile activism. I develop a neoclassical realist framework and use...

  10. Support and maneuvering device

    Science.gov (United States)

    Wood, R.L.

    1987-03-23

    A support and maneuvering device includes an elongated flexible inflatable enclosure having a fixed end and a movable end. The movable end is collapsible toward the fixed end to a contracted position when the enclosure is in a noninflated condition. Upon inflation, the movable end is movable away from the fixed end to an extended position. The movable end includes means for mounting an article such as a solar reflector thereon. The device also includes a plurality of position controlling means disposed about the movable end to effect adjusting movement of portions thereof by predetermined amounts and for controlling an angle at which the article disposed at the movable end is oriented. The plurality of position controlling means limits a suitable number degrees of freedom of the movable end for transmitting a steering motion thereto and for controlling the position thereof. 9 figs.

  11. Comparison of spontaneous vs. metronome-guided breathing on assessment of vagal modulation using RR variability.

    Science.gov (United States)

    Bloomfield, D M; Magnano, A; Bigger, J T; Rivadeneira, H; Parides, M; Steinman, R C

    2001-03-01

    R-R interval variability (RR variability) is increasingly being used as an index of autonomic activity. High-frequency (HF) power reflects vagal modulation of the sinus node. Since vagal modulation occurs at the respiratory frequency, some investigators have suggested that HF power cannot be interpreted unless the breathing rate is controlled. We hypothesized that HF power during spontaneous breathing would not differ significantly from HF power during metronome-guided breathing. We measured HF power during spontaneous breathing in 20 healthy subjects and 19 patients with heart disease. Each subject's spontaneous breathing rate was determined, and the calculation of HF power was repeated with a metronome set to his or her average spontaneous breathing rate. There was no significant difference between the logarithm of HF power measured during spontaneous and metronome-guided breathing [4.88 +/- 0.29 vs. 5.29 +/- 0.30 ln(ms(2)), P = 0.32] in the group as a whole and when patients and healthy subjects were examined separately. We did observe a small (9.9%) decrease in HF power with increasing metronome-guided breathing rates (from 9 to 20 breaths/min). These data indicate that HF power during spontaneous and metronome-guided breathing differs at most by very small amounts. This variability is several logarithmic units less than the wide discrepancies observed between healthy subjects and cardiac patients with a heterogeneous group of cardiovascular disorders. In addition, HF power is relatively constant across the range of typical breathing rates. These data indicate that there is no need to control breathing rate to interpret HF power when RR variability (and specifically HF power) is used to identify high-risk cardiac patients.

  12. Lung vagal afferent activity in rats with bleomycin-induced lung fibrosis.

    Science.gov (United States)

    Schelegle, E S; Walby, W F; Mansoor, J K; Chen, A T

    2001-05-01

    Bleomycin treatment in rats results in pulmonary fibrosis that is characterized by a rapid shallow breathing pattern, a decrease in quasi-static lung compliance and a blunting of the Hering-Breuer Inflation Reflex. We examined the impulse activity of pulmonary vagal afferents in anesthetized, mechanically ventilated rats with bleomycin-induced lung fibrosis during the ventilator cycle and static lung inflations/deflations and following the injection of capsaicin into the right atrium. Bleomycin enhanced volume sensitivity of slowly adapting stretch receptors (SARs), while it blunted the sensitivity of these receptors to increasing transpulmonary pressure. Bleomycin treatment increased the inspiratory activity, while it decreased the expiratory activity of rapidly adapting stretch receptors (RARs). Pulmonary C-fiber impulse activity did not appear to be affected by bleomycin treatment. We conclude that the fibrosis-related shift in discharge profile and enhanced volume sensitivity of SARs combined with the increased inspiratory activity of RARs contributes to the observed rapid shallow breathing of bleomycin-induced lung fibrosis.

  13. Cerebral near-infrared spectroscopy to evaluate anti-G straining maneuvers in centrifuge training.

    Science.gov (United States)

    Kobayashi, Asao; Kikukawa, Azusa; Kimura, Mikihiko; Inui, Takuo; Miyamoto, Yoshinori

    2012-08-01

    Over the past decade, near-infrared spectroscopy (NIRS) has emerged as an easily manageable noninvasive method for the continuous monitoring of cerebral cortical oxygenation during +Gz exposure. NIRS is also used to evaluate pilot trainees' ability to adequately perform anti-G straining maneuvers in the course of centrifuge training. This study aimed to determine the general patterns and individual differences in NIRS recordings during +Gz exposure. There were 22 healthy male cadets who participated in the study. The centrifuge training profiles included a gradual onset run (GOR, onset rate of 0.1 Gz x s(-1)) and short-term repeated exposures, with Gz levels from 4 to 7 Gz at an onset rate of 1.0 Gz x s(-1) (rapid onset run, ROR). Cortical tissue hemoglobin saturation (tissue oxygenation index, TOI) and changes in the concentration of oxygenated hemoglobin (O2Hb) were recorded from the right forehead during the period of Gz exposure. Most of the subjects successfully performed an anti-G straining maneuver and maintained or increased the cerebral oxygenation level during Gz exposure. In four subjects, however, oxygenation decline was observed at levels over 4 Gz, even though their anti-G systems were functioning. In contrast to the O2Hb response, TOI, which reflects intracranial oxygenation changes, was decreased during the anti-G straining maneuver at Gz onset or during the countdown to a ROR exposure. Although NIRS is an effective tool for monitoring anti-G straining maneuver performance, it should be carefully evaluated in terms of intracranial oxygenation results.

  14. Simulation of upwind maneuvering of a sailing yacht

    Science.gov (United States)

    Harris, Daniel Hartrick

    A time domain maneuvering simulation of an IACC class yacht suitable for the analysis of unsteady upwind sailing including tacking is presented. The simulation considers motions in six degrees of freedom. The hydrodynamic and aerodynamic loads are calculated primarily with unsteady potential theory supplemented by empirical viscous models. The hydrodynamic model includes the effects of incident waves. Control of the rudder is provided by a simple rate feedback autopilot which is augmented with open loop additions to mimic human steering. The hydrodynamic models are based on the superposition of force components. These components fall into two groups, those which the yacht will experience in calm water, and those due to incident waves. The calm water loads are further divided into zero Froude number, or "double body" maneuvering loads, hydrostatic loads, gravitational loads, free surface radiation loads, and viscous/residual loads. The maneuvering loads are calculated with an unsteady panel code which treats the instantaneous geometry of the yacht below the undisturbed free surface. The free surface radiation loads are calculated via convolution of impulse response functions derived from seakeeping strip theory. The viscous/residual loads are based upon empirical estimates. The aerodynamic model consists primarily of a database of steady state sail coefficients. These coefficients treat the individual contributions to the total sail force of a number of chordwise strips on both the main and jib. Dynamic effects are modeled by using the instantaneous incident wind velocity and direction as the independent variables for the sail load contribution of each strip. The sail coefficient database was calculated numerically with potential methods and simple empirical viscous corrections. Additional aerodynamic load calculations are made to determine the parasitic contributions of the rig and hull. Validation studies compare the steady sailing hydro and aerodynamic loads

  15. Hemodynamic responses during and after multiple sets of stretching exercises performed with and without the Valsalva maneuver.

    Science.gov (United States)

    Lima, Tainah P; Farinatti, Paulo T V; Rubini, Ercole C; Silva, Elirez B; Monteiro, Walace D

    2015-05-01

    This study investigated the acute hemodynamic responses to multiple sets of passive stretching exercises performed with and without the Valsalva maneuver. Fifteen healthy men aged 21 to 29 years with poor flexibility performed stretching protocols comprising 10 sets of maximal passive unilateral hip flexion, sustained for 30 seconds with equal intervals between sets. Protocols without and with the Valsalva maneuver were applied in a random counterbalanced order, separated by 48-hour intervals. Hemodynamic responses were measured by photoplethysmography pre-exercise, during the stretching sets, and post-exercise. The effects of stretching sets on systolic and diastolic blood pressure were cumulative until the fourth set in protocols performed with and without the Valsalva maneuver. The heart rate and rate pressure product increased in both protocols, but no additive effect was observed due to the number of sets. Hemodynamic responses were always higher when stretching was performed with the Valsalva maneuver, causing an additional elevation in the rate pressure product. Multiple sets of unilateral hip flexion stretching significantly increased blood pressure, heart rate, and rate pressure product values. A cumulative effect of the number of sets occurred only for systolic and diastolic blood pressure, at least in the initial sets of the stretching protocols. The performance of the Valsalva maneuver intensified all hemodynamic responses, which resulted in significant increases in cardiac work during stretching exercises.

  16. In-shoe plantar tri-axial stress profiles during maximum-effort cutting maneuvers.

    Science.gov (United States)

    Cong, Yan; Lam, Wing Kai; Cheung, Jason Tak-Man; Zhang, Ming

    2014-12-18

    Soft tissue injuries, such as anterior cruciate ligament rupture, ankle sprain and foot skin problems, frequently occur during cutting maneuvers. These injuries are often regarded as associated with abnormal joint torque and interfacial friction caused by excessive external and in-shoe shear forces. This study simultaneously investigated the dynamic in-shoe localized plantar pressure and shear stress during lateral shuffling and 45° sidestep cutting maneuvers. Tri-axial force transducers were affixed at the first and second metatarsal heads, lateral forefoot, and heel regions in the midsole of a basketball shoe. Seventeen basketball players executed both cutting maneuvers with maximum efforts. Lateral shuffling cutting had a larger mediolateral braking force than 45° sidestep cutting. This large braking force was concentrated at the first metatarsal head, as indicated by its maximum medial shear stress (312.2 ± 157.0 kPa). During propulsion phase, peak shear stress occurred at the second metatarsal head (271.3 ± 124.3 kPa). Compared with lateral shuffling cutting, 45° sidestep cutting produced larger peak propulsion shear stress (463.0 ± 272.6 kPa) but smaller peak braking shear stress (184.8 ± 181.7 kPa), of which both were found at the first metatarsal head. During both cutting maneuvers, maximum medial and posterior shear stress occurred at the first metatarsal head, whereas maximum pressure occurred at the second metatarsal head. The first and second metatarsal heads sustained relatively high pressure and shear stress and were expected to be susceptible to plantar tissue discomfort or injury. Due to different stress distribution, distinct pressure and shear cushioning mechanisms in basketball footwear might be considered over different foot regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Concurrent sympathetic activation and vagal withdrawal in hyperthyroidism: Evidence from detrended fluctuation analysis of heart rate variability

    Science.gov (United States)

    Chen, Jin-Long; Shiau, Yuo-Hsien; Tseng, Yin-Jiun; Chiu, Hung-Wen; Hsiao, Tzu-Chien; Wessel, Niels; Kurths, Jürgen; Chu, Woei-Chyn

    2010-05-01

    Despite many previous studies on the association between hyperthyroidism and the hyperadrenergic state, controversies still exist. Detrended fluctuation analysis (DFA) is a well recognized method in the nonlinear analysis of heart rate variability (HRV), and it has physiological significance related to the autonomic nervous system. In particular, an increased short-term scaling exponent α1 calculated from DFA is associated with both increased sympathetic activity and decreased vagal activity. No study has investigated the DFA of HRV in hyperthyroidism. This study was designed to assess the sympathovagal balance in hyperthyroidism. We performed the DFA along with the linear analysis of HRV in 36 hyperthyroid Graves’ disease patients (32 females and 4 males; age 30 ± 1 years, means ± SE) and 36 normal controls matched by sex, age and body mass index. Compared with the normal controls, the hyperthyroid patients revealed a significant increase ( Phyperthyroid 1.28±0.04 versus control 0.91±0.02), long-term scaling exponent α2 (1.05±0.02 versus 0.90±0.01), overall scaling exponent α (1.11±0.02 versus 0.89±0.01), low frequency power in normalized units (LF%) and the ratio of low frequency power to high frequency power (LF/HF); and a significant decrease ( Phyperthyroidism is characterized by concurrent sympathetic activation and vagal withdrawal. This sympathovagal imbalance state in hyperthyroidism helps to explain the higher prevalence of atrial fibrillation and exercise intolerance among hyperthyroid patients.

  18. The Choice of the Maneuver of the Vessel’s Passing Considering the Coordination’s System of the Interactive Vessels and Their Dynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Yevgen Volkov

    2017-03-01

    Full Text Available The maneuver of the altering course of the vessel is a more preferable to avoid a collision. Due to that the calculation of the parameters of the avoidance maneuver should be done considering the dynamic characteristics of the vessel in maneuvering. The paper analyzes the dynamic models of the vessel rotation motion in order to select more appropriate one for the calculation of avoidance maneuver of the vessel applying the altering of the course.

  19. ABDOMINAL DRAWING IN MANEUVER: EFFECT ON GAIT PARAMETERS AND PAIN REDUCTION IN PATIENTS WITH CHRONIC LOW BACK PAIN

    Directory of Open Access Journals (Sweden)

    Paramasivan Mani

    2016-08-01

    Full Text Available Background: Back pain is the common musculoskeletal condition with a high prevalence of up to 80% among the general and work force population at some times in their lives.Muscular injury, fatigue, or facet or disc degeneration can compromise the stabilizing effects resulting in shearing forces that cause pain.Abdominal drawing in maneuver is used to facilitate the re-education of neuromuscular control mechanisms provided by local stabilizing muscles. Objective of the study is to measure the gait parameters and pain control before and after abdominal drawing in maneuver in patient with chronic mechanical low back pain. Methods: Total number of 30 consecutive patients and they were divided into two groups by purposive sampling. Group A is subjects with low back pain and Group B is subjects without low back pain. Outcome measures were average step cycle, average step length, coefficient of variation, time on each foot, Ambulation index measured with Biodex gait trainer. Pain is measured with Revised-Oswestry low back pain questionnaire. Results: Significant difference between gait parameters were observed in both low back pain group and the group without low back pain group with abdominal drawing in maneuver and the changes without abdominal drawing in maneuver was minimal. There was no significant difference found between both groups with or without abdominal drawing in maneuver. Conclusion: Gait parameters and Pain control can be improved by training with abdominal drawing in maneuver thereby it reduces pain and improves gait symmetry in subjects with low back pain.

  20. 46 CFR 35.20-40 - Maneuvering characteristics-T/OC.

    Science.gov (United States)

    2010-10-01

    ... for the normal load and normal ballast condition for: (1) Calm weather—wind 10 knots or less, calm sea... response of the (name of the vessel) may be different from those listed above if any of the following conditions, upon which the maneuvering information is based, are varied: (1) Calm weather—wind 10 knots or...

  1. F-18 High Alpha Research Vehicle (HARV) parameter identification flight test maneuvers for optimal input design validation and lateral control effectiveness

    Science.gov (United States)

    Morelli, Eugene A.

    1995-01-01

    Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for open loop parameter identification purposes, specifically for optimal input design validation at 5 degrees angle of attack, identification of individual strake effectiveness at 40 and 50 degrees angle of attack, and study of lateral dynamics and lateral control effectiveness at 40 and 50 degrees angle of attack. Each maneuver is to be realized by applying square wave inputs to specific control effectors using the On-Board Excitation System (OBES). Maneuver descriptions and complete specifications of the time/amplitude points define each input are included, along with plots of the input time histories.

  2. Parameter Identification of Ship Maneuvering Models Using Recursive Least Square Method Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Man Zhu

    2017-03-01

    Full Text Available Determination of ship maneuvering models is a tough task of ship maneuverability prediction. Among several prime approaches of estimating ship maneuvering models, system identification combined with the full-scale or free- running model test is preferred. In this contribution, real-time system identification programs using recursive identification method, such as the recursive least square method (RLS, are exerted for on-line identification of ship maneuvering models. However, this method seriously depends on the objects of study and initial values of identified parameters. To overcome this, an intelligent technology, i.e., support vector machines (SVM, is firstly used to estimate initial values of the identified parameters with finite samples. As real measured motion data of the Mariner class ship always involve noise from sensors and external disturbances, the zigzag simulation test data include a substantial quantity of Gaussian white noise. Wavelet method and empirical mode decomposition (EMD are used to filter the data corrupted by noise, respectively. The choice of the sample number for SVM to decide initial values of identified parameters is extensively discussed and analyzed. With de-noised motion data as input-output training samples, parameters of ship maneuvering models are estimated using RLS and SVM-RLS, respectively. The comparison between identification results and true values of parameters demonstrates that both the identified ship maneuvering models from RLS and SVM-RLS have reasonable agreements with simulated motions of the ship, and the increment of the sample for SVM positively affects the identification results. Furthermore, SVM-RLS using data de-noised by EMD shows the highest accuracy and best convergence.

  3. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling.

    Science.gov (United States)

    Ronveaux, Charlotte C; Tomé, Daniel; Raybould, Helen E

    2015-04-01

    Emerging evidence has suggested a possible physiologic role for peripheral glucagon-like peptide 1 (GLP-1) in regulating glucose metabolism and food intake. The likely site of action of GLP-1 is on vagal afferent neurons (VANs). The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the central nervous system and influences feeding behavior. Peripheral GLP-1 acts on VANs to inhibit food intake. The mechanism of the GLP-1 receptor (GLP-1R) is unlike other gut-derived receptors; GLP-1Rs change their cellular localization according to feeding status rather than their protein concentrations. It is possible that several gut peptides are involved in mediating GLP-1R translocation. The mechanism of peripheral GLP-1R translocation still needs to be elucidated. We review data supporting the role of peripheral GLP-1 acting on VANs in influencing glucose homeostasis and feeding behavior. We highlight evidence demonstrating that GLP-1 interacts with ghrelin and leptin to induce satiation. Our aim was to understand the mechanism of peripheral GLP-1 in the development of noninvasive antiobesity treatments. © 2015 American Society for Nutrition.

  4. α-MSH Influences the Excitability of Feeding-Related Neurons in the Hypothalamus and Dorsal Vagal Complex of Rats

    Directory of Open Access Journals (Sweden)

    Hong-Zai Guan

    2017-01-01

    Full Text Available Alpha-melanocyte-stimulating hormone (α-MSH is processed from proopiomelanocortin (POMC and acts on the melanocortin receptors, MC3 and MC4. α-MSH plays a key role in energy homeostasis. In the present study, to shed light on the mechanisms by which α-MSH exerts its anorectic effects, extracellular neuronal activity was recorded in the hypothalamus and the dorsal vagal complex (DVC of anesthetized rats. We examined the impact of α-MSH on glucose-sensing neurons and gastric distension (GD sensitive neurons. In the lateral hypothalamus (LHA, α-MSH inhibited 75.0% of the glucose-inhibited (GI neurons. In the ventromedial nucleus (VMN, most glucose-sensitive neurons were glucose-excited (GE neurons, which were mainly activated by α-MSH. In the paraventricular nucleus (PVN, α-MSH suppressed the majority of GI neurons and excited most GE neurons. In the DVC, among the 20 GI neurons examined for a response to α-MSH, 1 was activated, 16 were depressed, and 3 failed to respond. Nineteen of 24 GE neurons were activated by α-MSH administration. Additionally, among the 42 DVC neurons examined for responses to GD, 23 were excited (GD-EXC and 19 were inhibited (GD-INH. Fifteen of 20 GD-EXC neurons were excited, whereas 11 out of 14 GD-INH neurons were suppressed by α-MSH. All these responses were abolished by pretreatment with the MC3/4R antagonist, SHU9119. In conclusion, the activity of glucose-sensitive neurons and GD-sensitive neurons in the hypothalamus and DVC can be modulated by α-MSH.

  5. Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2016-12-01

    Full Text Available In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the 1st lunar orbit insertion (LOI maneuver of the Korea Pathfinder Lunar Orbiter (KPLO mission. During the early design phase of the system, associate analysis is an essential design factor as the 1st LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the 1st LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the 1st elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground

  6. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin

    Science.gov (United States)

    Grabauskas, Gintautas; Wu, Xiaoyin; Lu, Yuanxu; Heldsinger, Andrea; Song, Il; Zhou, Shi-Yi; Owyang, Chung

    2015-01-01

    Abstract Ghrelin is the only known hunger signal derived from the peripheral tissues. Ghrelin overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. The mechanisms by which ghrelin reduces the sensory signals evoked by anorexigenic hormones, which act via the vagus nerve to stimulate feeding, are unknown. Patch clamp recordings of isolated rat vagal neurons show that ghrelin hyperpolarizes neurons by activating K+ conductance. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition in vitro and in vivo. Patch clamp studies show that ghrelin inhibits currents evoked by leptin and CCK-8, which operate through independent ionic channels. The inhibitory actions of ghrelin were abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. In vivo gene silencing of PI3K and Erk1/2 in the nodose ganglia prevented ghrelin inhibition of leptin- or CCK-8-evoked vagal firing. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a–Gαi–PI3K–Erk1/2–KATP pathway. The resulting hyperpolarization renders the neurons less responsive to signals evoked by anorexigenic hormones. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways. Key points Ghrelin, a hunger signalling peptide derived from the peripheral tissues, overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. Using in vivo and in vitro electrophysiological

  7. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Science.gov (United States)

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-01-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane. Key points An increased shoe collar height effectively reduced ankle joint ROM in the sagittal plane in weight-bearing dorsiflexion maneuver. Shoe collar height did not affect sagittal plane ankle kinematics and had no effect on performance during realistic jumping. Shoe collar height can affect the ankle plantarflexion torque and peak power during the push-off phase in lay-up jump. PMID:29238255

  8. Concept of a Maneuvering Load Control System and Effect on the Fatigue Life Extension

    Directory of Open Access Journals (Sweden)

    N. Paletta

    Full Text Available Abstract This paper presents a methodology for the conceptual design of a Maneuver Load Control system taking into account the airframe flexibility. The system, when switched on, is able to minimize the bending moment augmentation at a wing station near the wing root during an unsteady longitudinal maneuver. The reduction of the incremental wing bending moment due to maneuvers can lead to benefits such as improved pay-loads/gross weight capabilities and/or extended structural fatigue life. The maneuver is performed by following a desired vertical load factor law with elevators deflections, starting from the trim equilibrium in level flight. The system observes load factor and structural bending through accelerometers and calibrated strain sensors and then sends signals to a computer that symmetrically actuates ailerons for reducing the structural bending and elevators for compensating the perturbation to the longitudinal equilibrium. The major limit of this kind of systems appears when it has to be installed on commercial transport aircraft for reduced OEW or augmented wing aspect-ratio. In this case extensive RAMS analyses and high redundancy of the MLC related sub-systems are required by the Certification Authority. Otherwise the structural design must be performed at system off. Thus the unique actual benefit to be gained from the adoption of a MLC system on a commercial transport is the fatigue life extension. An application to a business aircraft responding to the EASA Certification Specifications, Part 25, has been performed. The aircraft used for the numerical application is considered only as a test case-study. Most of design and analysis considerations are applicable also to other aircraft, such as unmanned or military ones, although some design requirements can be clearly different. The estimation of the fatigue life extension of a structural joint (wing lower skin-stringer, located close to the wing root, has been estimated by showing

  9. Pressure applied by the healthcare staff on a cricoids cartilage simulator during Sellick's maneuver in rapid sequence intubation

    NARCIS (Netherlands)

    J.A. Calvache (Jose Andrés); L.C.B. Sandoval (Luz); W.A. Vargas (William Andres)

    2013-01-01

    textabstractBackground: Sellick's maneuver or cricoid pressure is a strategy used to prevent bronchoaspiration during the rapid intubation sequence. Several studies have described that the force required for an adequate maneuver is of 2.5-3.5 kg. The purpose of this paper was to determine the force

  10. Effects of an alveolar recruitment maneuver on subdural pressure, brain swelling, and mean arterial pressure in patients undergoing supratentorial tumour resection: a randomized crossover study.

    Science.gov (United States)

    Flexman, Alana M; Gooderham, Peter A; Griesdale, Donald E; Argue, Ruth; Toyota, Brian

    2017-06-01

    Although recruitment maneuvers have been advocated as part of a lung protective ventilation strategy, their effects on cerebral physiology during elective neurosurgery are unknown. Our objectives were to determine the effects of an alveolar recruitment maneuver on subdural pressure (SDP), brain relaxation score (BRS), and cerebral perfusion pressure among patients undergoing supratentorial tumour resection. In this prospective crossover study, patients scheduled for resection of a supratentorial brain tumour were randomized to undergo either a recruitment maneuver (30 cm of water for 30 sec) or a "sham" maneuver (5 cm of water for 30 sec), followed by the alternative intervention after a 90-sec equilibration period. Subdural pressure was measured through a dural perforation following opening of the cranium. Subdural pressure and mean arterial pressure (MAP) were recorded continuously. The blinded neurosurgeon provided a BRS at baseline and at the end of each intervention. During each treatment, the changes in SDP, BRS, and MAP were compared. Twenty-one patients underwent the study procedure. The increase in SDP was higher during the recruitment maneuver than during the sham maneuver (difference, 3.9 mmHg; 95% confidence interval [CI], 2.2 to 5.6; P < 0.001). Mean arterial pressure decreased further in the recruitment maneuver than in the sham maneuver (difference, -9.0 mmHg; 95% CI, -12.5 to -5.6; P < 0.001). Cerebral perfusion pressure decreased 14 mmHg (95% CI, 4 to 24) during the recruitment maneuver. The BRS did not change with either maneuver. Our results suggest that recruitment maneuvers increase subdural pressure and reduce cerebral perfusion pressure, although the clinical importance of these findings is thus far unknown. This trial was registered with ClinicalTrials.gov, NCT02093117.

  11. Rimonabant induced anorexia in rodents is not mediated by vagal or sympathetic gut afferents

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Jelsing, Jacob; van de Wall, Esther H E M

    2009-01-01

    The selective CB1 receptor antagonist rimonabant is a novel weight control agent. Although CB1 receptors and binding sites are present in both the rodent central and peripheral nervous systems, including the afferent vagus nerve, the role of gut afferents in mediating anorexia following CB1R...... blockade is still debated. In the present study we examined rimonabant-induced anorexia in male C57BL/6J mice with subdiaphragmatic vagotomy (VGX) as well as in male Sprague-Dawley rats subjected to either subdiaphragmatic vagal deafferentation (SDA) alone or in combination with a complete celiac...... system, are required for rimonabant to inhibit food intake leading to the hypothesis that centrally located CB1 receptors are the prime mediators of rimonabant-induced anorexia....

  12. Conflict resolution maneuvers during near miss encounters with cockpit traffic displays

    Science.gov (United States)

    Palmer, E.

    1983-01-01

    The benefits and liabilities associated with pilots' use of a cockpit traffic display to assess the threat posed by air traffic and to make small maneuvers to avoid situations which would result in collision avoidance advisories are experimentally studied. The crew's task was to fly a simulated wide-body aircraft along a straight course at constant altitude while intruder aircraft appeared on a variety of converging trajectories. The main experimental variables were the amount and quality of the information displayed on the intruder aircraft's estimated future position. Pilots were to maintain a horizontal separation of at least 1.5 nautical miles or a vertical separation of 500 ft, so that collision avoidance advisories would not be triggered. The results show that pilots could usually maneuver to provide the specified separation but often made course deviations greater than 1.5 nm or 500 ft.

  13. Coordination Logic for Repulsive Resolution Maneuvers

    Science.gov (United States)

    Narkawicz, Anthony J.; Munoz, Cesar A.; Dutle, Aaron M.

    2016-01-01

    This paper presents an algorithm for determining the direction an aircraft should maneuver in the event of a potential conflict with another aircraft. The algorithm is implicitly coordinated, meaning that with perfectly reliable computations and information, it will in- dependently provide directional information that is guaranteed to be coordinated without any additional information exchange or direct communication. The logic is inspired by the logic of TCAS II, the airborne system designed to reduce the risk of mid-air collisions between aircraft. TCAS II provides pilots with only vertical resolution advice, while the proposed algorithm, using a similar logic, provides implicitly coordinated vertical and horizontal directional advice.

  14. Ocular VEMPs indicate repositioning of otoconia to the utricle after successful liberatory maneuvers in benign paroxysmal positioning vertigo

    Science.gov (United States)

    BREMOVA, TATIANA; BAYER, OTMAR; AGRAWAL, YURI; KREMMYDA, OLYMPIA; BRANDT, THOMAS; TEUFEL, JULIAN; STRUPP, MICHAEL

    2014-01-01

    Conclusions This study showed a transient increase of ocular vestibular evoked myogenic potential (oVEMP) amplitudes in the affected ear after successful liberatory maneuvers and no changes in cervical VEMP (cVEMP) amplitudes. These findings support the hypothesis that successful liberatory maneuvers can lead to a repositioning of otoconia to the utricle. Objectives To evaluate whether oVEMP amplitudes increase after successful liberatory maneuvers in patients with posterior semicircular canal benign paroxysmal positioning vertigo (pc-BPPV), while cVEMP amplitudes do not change. These findings may indicate a successful repositioning of dislodged otoconia to the utricular macula, but not to the saccular macula. Methods Thirty patients with unilateral pc-BPPV were prospectively examined with bone-conducted oVEMP and air-conducted cVEMP at four time points: before, after, 1 week after, and 1 month after the liberatory maneuvers (Sémont maneuvers). Results At the 1-week follow-up, 20 of 30 patients were asymptomatic (responders); BPPV could still be induced in the other 10 (non-responders). In responders the mean n10 amplitude on the affected side increased from 12 ± 6.5 μV at baseline (before the treatment) to 15.9 ± 7.1 μV at 1 week after treatment; this increase was significantly (p = 0.001) higher in responders than in non-responders. cVEMP did not differ significantly. PMID:24245699

  15. [Effects of lung protective ventilation strategy combined with lung recruitment maneuver on patients with severe burn complicated with acute respiratory distress syndrome].

    Science.gov (United States)

    Li, Xiaojian; Zhong, Xiaomin; Deng, Zhongyuan; Zhang Xuhui; Zhang, Zhi; Zhang, Tao; Tang, Wenbin; Chen, Bib; Liu, Changling; Cao, Wenjuan

    2014-08-01

    To investigate the effects of lung protective ventilation strategy combined with lung recruitment maneuver on ARDS complicating patients with severe burn. Clinical data of 15 severely burned patients with ARDS admitted to our burn ICU from September 2011 to September 2013 and conforming to the study criteria were analyzed. Right after the diagnosis of acute lung injury/ARDS, patients received mechanical ventilation with lung protective ventilation strategy. When the oxygenation index (OI) was below or equal to 200 mmHg (1 mmHg = 0. 133 kPa), lung recruitment maneuver was performed combining incremental positive end-expiratory pressure. When OI was above 200 mmHg, lung recruitment maneuver was stopped and ventilation with lung protective ventilation strategy was continued. When OI was above 300 mmHg, mechanical ventilation was stopped. Before combining lung recruitment maneuver, 24 h after combining lung recruitment maneuver, and at the end of combining lung recruitment maneuver, variables of blood gas analysis (pH, PaO2, and PaCO2) were obtained by blood gas analyzer, and the OI values were calculated; hemodynamic parameters including heart rate, mean arterial pressure (MAP), central venous pressure (CVP) of all patients and the cardiac output (CO), extravascular lung water index (EVLWI) of 4 patients who received pulse contour cardiac output (PiCCO) monitoring were monitored. Treatment measures and outcome of patients were recorded. Data were processed with analysis of variance of repeated measurement of a single group and LSD test. (1) Before combining lung recruitment maneuver, 24 h after combining lung recruitment maneuver, and at the end of combining lung recruitment maneuver, the levels of PaO2 and OI of patients were respectively (77 ± 8), (113 ± 5), (142 ± 6) mmHg, and (128 ± 12), (188 ± 8), (237 ± 10) mmHg. As a whole, levels of PaO2 and OI changed significantly at different time points (with F values respectively 860. 96 and 842. 09, P values below

  16. Analysis of Driver Evasive Maneuvering Prior to Intersection Crashes Using Event Data Recorders.

    Science.gov (United States)

    Scanlon, John M; Kusano, Kristofer D; Gabler, Hampton C

    2015-01-01

    Intersection crashes account for over 4,500 fatalities in the United States each year. Intersection Advanced Driver Assistance Systems (I-ADAS) are emerging vehicle-based active safety systems that have the potential to help drivers safely navigate across intersections and prevent intersection crashes and injuries. The performance of an I-ADAS is expected to be highly dependent upon driver evasive maneuvering prior to an intersection crash. Little has been published, however, on the detailed evasive kinematics followed by drivers prior to real-world intersection crashes. The objective of this study was to characterize the frequency, timing, and kinematics of driver evasive maneuvers prior to intersection crashes. Event data recorders (EDRs) downloaded from vehicles involved in intersection crashes were investigated as part of NASS-CDS years 2001 to 2013. A total of 135 EDRs with precrash vehicle speed and braking application were downloaded to investigate evasive braking. A smaller subset of 59 EDRs that collected vehicle yaw rate was additionally analyzed to investigate evasive steering. Each vehicle was assigned to one of 3 precrash movement classifiers (traveling through the intersection, completely stopped, or rolling stop) based on the vehicle's calculated acceleration and observed velocity profile. To ensure that any significant steering input observed was an attempted evasive maneuver, the analysis excluded vehicles at intersections that were turning, driving on a curved road, or performing a lane change. Braking application at the last EDR-recorded time point was assumed to indicate evasive braking. A vehicle yaw rate greater than 4° per second was assumed to indicate an evasive steering maneuver. Drivers executed crash avoidance maneuvers in four-fifths of intersection crashes. A more detailed analysis of evasive braking frequency by precrash maneuver revealed that drivers performing complete or rolling stops (61.3%) braked less often than drivers

  17. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Directory of Open Access Journals (Sweden)

    Yang Yang, Ying Fang, Xini Zhang, Junliang He, Weijie Fu

    2017-12-01

    Full Text Available The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively performed a weight-bearing dorsiflexion (WB-DF maneuver, drop jumps (DJs, and lay-up jumps (LJs. Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041 was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028 and power (p = 0.022 were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane.

  18. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Science.gov (United States)

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-12-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion-extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane.

  19. Orbital maneuvering end effectors

    Science.gov (United States)

    Myers, W. Neill (Inventor); Forbes, John C. (Inventor); Barnes, Wayne L. (Inventor)

    1986-01-01

    This invention relates to an end effector device for grasping and maneuvering objects such as berthing handles of a space telescope. The device includes a V-shaped capture window defined as inclined surfaces in parallel face plates which converge toward a retainer recess in which the handle is retained. A pivotal finger (30) meshes with a pair of pivoted fingers which rotate in counterrotation. The fingers rotate to pull a handle within the capture window into recess where latches lock handle in the recess. To align the capture window, plates may be cocked plus or minus five degrees on base. Drive means is included in the form of a motor coupled with a harmonic drive speed reducer, which provides for slow movement of the fingers at a high torque so that large articles may be handled. Novelty of the invention is believed to reside in the combined intermeshing finger structure, drive means and the harmonic drive speed reducer, which features provide the required maneuverability and strength.

  20. Sensory and motor innervation of the crural diaphragm by the vagus nerves.

    Science.gov (United States)

    Young, Richard L; Page, Amanda J; Cooper, Nicole J; Frisby, Claudine L; Blackshaw, L Ashley

    2010-03-01

    During gastroesophageal reflux, transient lower esophageal sphincter relaxation and crural diaphragm (CD) inhibition occur concomitantly. Modifying vagus nerve control of transient lower esophageal sphincter relaxation is a major focus of development of therapeutics for gastroesophageal reflux disease, but neural mechanisms that coordinate the CD are poorly understood. Nerve tracing and immunolabeling were used to assess innervation of the diaphragm and lower esophageal sphincter in ferrets. Mechanosensory responses of vagal afferents in the CD and electromyography responses of the CD were recorded in novel in vitro preparations and in vivo. Retrograde tracing revealed a unique population of vagal CD sensory neurons in nodose ganglia and CD motor neurons in brainstem vagal nuclei. Anterograde tracing revealed specialized vagal endings in the CD and phrenoesophageal ligament-sites of vagal afferent mechanosensitivity recorded in vitro. Spontaneous electromyography activity persisted in the CD following bilateral phrenicotomy in vivo, while vagus nerve stimulation evoked electromyography responses in the CD in vitro and in vivo. We conclude that vagal sensory and motor neurons functionally innervate the CD and phrenoesophageal ligament. CD vagal afferents show mechanosensitivity to distortion of the gastroesophageal junction, while vagal motor neurons innervate both CD and distal esophagus and may represent a common substrate for motor control of the reflux barrier. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Radiofrequency ablation of rabbit liver in vivo: effect of the Pringle maneuver on pathologic changes in liver surrounding the ablation zone

    International Nuclear Information System (INIS)

    Kim, Seung Kwon; Lim, Hyo K; Ryu, Jeong Ah

    2004-01-01

    We wished to evaluate the effect of the Pringle maneuver (occlusion of both the hepatic artery and portal vein) on the pathologic changes in the hepatic vessels, bile ducts and liver parenchyma surrounding the ablation zone in rabbit livers. Radiofrequency (RF) ablation zones were created in the livers of 24 rabbits in vivo by using a 50-W, 480-kHz monopolar RF generator and a 15-gauge expandable electrode with four sharp prongs for 7 mins. The tips of the electrodes were placed in the liver parenchyma near the porta hepatis with the distal 1 cm of their prongs deployed. Radiofrequency ablation was performed in the groups with (n=12 rabbits) and without (n=12 rabbits) the Pringle maneuver. Three animals of each group were sacrificed immediately, three days (the acute phase), seven days (the early subacute phase) and two weeks (the late subacute phase) after RF ablation. The ablation zones were excised and serial pathologic changes in the hepatic vessels, bile ducts and liver parenchyma surrounding the ablation zone were evaluated. With the Pringle maneuver, portal vein thrombosis was found in three cases (in the immediate [n=2] and acute phase [n=1]), bile duct dilatation adjacent to the ablation zone was found in one case (in the late subacute phase [n=1]), infarction adjacent to the ablation zone was found in three cases (in the early subacute [n=2] and late subacute [n=1] phases). None of the above changes was found in the livers ablated without the Pringle maneuver. On the microscopic findings, centrilobular congestion, sinusoidal congestion, sinusoidal platelet and neutrophilic adhesion, and hepatocyte vacuolar and ballooning changes in liver ablated with Pringle maneuver showed more significant changes than in those livers ablated without the Pringle maneuver (ρ < 0.05). Radiofrequency ablation with the Pringle maneuver created more severe pathologic changes in the portal vein, bile ducts and liver parenchyma surrounding the ablation zone compared with RF

  2. Effectiveness of Otolith Repositioning Maneuvers and Vestibular Rehabilitation exercises in elderly people with Benign Paroxysmal Positional Vertigo: a systematic review

    Directory of Open Access Journals (Sweden)

    Karyna Figueiredo Ribeiro

    Full Text Available Abstract Introduction Benign Paroxysmal Positional Vertigo is highly prevalent in elderly people. This condition is related to vertigo, hearing loss, tinnitus, poor balance, gait disturbance, and an increase in risk of falls, leading to postural changes and quality of life decreasing. Objective To evaluate the outcomes obtained by clinical trials on the effectiveness of Otolith Repositioning Maneuver and Vestibular Rehabilitation exercises in the treatment of Benign Paroxysmal Positional Vertigo in elderly. Methods The literature research was performed using PubMed, Scopus, Web of Science and PEDro databases, and included randomized controlled clinical trials in English, Spanish and Portuguese, published during January 2000 to August 2016. The methodological quality of the studies was assessed by PEDro score and the outcomes analysis was done by critical revision of content. Results Six studies were fully reviewed. The average age of participants ranged between 67.2 and 74.5 years. The articles were classified from 2 to 7/10 through the PEDro score. The main outcome measures analyzed were vertigo, positional nystagmus and postural balance. Additionally, the number of maneuvers necessary for remission of the symptoms, the quality of life, and the functionality were also assessed. The majority of the clinical trials used Otolith Repositioning Maneuver (n = 5 and 3 articles performed Vestibular Rehabilitation exercises in addition to Otolith Repositioning Maneuver or pharmacotherapy. One study showed that the addition of movement restrictions after maneuver did not influence the outcomes. Conclusion There was a trend of improvement in Benign Paroxysmal Positional Vertigo symptomatology in elderly patients who underwent Otolith Repositioning Maneuver. There is sparse evidence from methodologically robust clinical trials that examined the effects of Otolith Repositioning Maneuver and Vestibular Rehabilitation exercises for treating Benign Paroxysmal

  3. Performance evaluation of control strategies for power maneuvering event of the KALIMER-600

    International Nuclear Information System (INIS)

    Seong, Seong-Hwan; Kim, Seong-O

    2012-01-01

    Highlights: ► The performance of three power control strategies of the KALIMER-600 was evaluated. ► There are turbine-, reactor- and feedwater-leading strategies in this study. ► For this, a performance analysis code was developed in this study. ► Simulation results show the turbine-leading is the best alternative. ► The feedwater-leading seems to be the second option. - Abstract: A sodium-cooled fast reactor named KALIMER-600 has been under development at KAERI. It is a pool-type reactor with the intermediate loops filled with sodium and has a superheated steam cycle with the once-through steam generators. Since the characteristic of the power control of the KALIMER-600 is expected to be different with that of a conventional power plant, the performance of the turbine-leading, reactor-leading and feedwater-leading control strategies for a power maneuvering event of the KALIMER-600 was evaluated in this study. The turbine-leading and reactor-leading strategies are very similar to those of a conventional water reactor but the feedwater-leading strategy is very similar to that of a fossil plant. Also, a performance analysis code which can analyze the plant dynamics of the KALIMER-600 and simulate the control actions during a power maneuvering event was developed. To evaluate the performance of control strategies, a simple power maneuvering event including a 10% step change and a ramp change with a rate of 5%/min was assumed and simulated. Through the simulation results, the turbine-leading strategy is proven to be very suitable for the KALIMER-600 and the feedwater-leading strategy for power maneuvering seems to be a good alternative for the power control. In further studies, various performance-related events such as the reactor power cutback, turbine runback and some transients will be evaluated and the best control strategy will be suggested.

  4. Investigation into the mechanisms of vagus nerve stimulation for the treatment of intractable epilepsy, using {sup 99m}Tc-HMPAO SPET brain images

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Anna; Chisholm, Jennifer A.; Patterson, James; Wyper, David [Department of Clinical Physics, Institute of Neurological Sciences, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF (United Kingdom); Duncan, Roderick [Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow (United Kingdom); Lindsay, Kenneth [Department of Neurosurgery, Institute of Neurological Sciences, Southern General Hospital, Glasgow (United Kingdom)

    2003-02-01

    Vagus nerve stimulation (VNS) has gained recognition as a treatment for refractory epilepsies where surgical treatment is not possible. While it appears that this treatment is effective in some patients, the mechanism of action is not clearly understood. The purpose of this study was to clarify findings of other positron emission tomography and single-photon emission tomography (SPET) investigations by measuring the acute effect of VNS on patients who have normal cerebral anatomy on magnetic resonance imaging and who have not previously been exposed to VNS. We investigated six subjects (two males and four females, mean age 29.5 years, range 21-39 years) with intractable epilepsy. One patient had primary generalised epilepsy causing generalised tonic-clonic seizures; the remaining five patients had localisation-related epilepsy causing complex partial seizures. SPET imaging was performed using 250 MBq of {sup 99m}Tc-HMPAO and a four-scan paradigm - two with and two without stimulation. The stimulation began at VNS current levels of 0.25 mA and was increased according to the limit of patients' tolerance, usually defined by coughing or discomfort. The stimulating waveform was of continuous square wave pulses of 500 {mu}s duration at 30 Hz. Image analysis was by SPM99. Reduced perfusion during stimulation was observed in the ipsilateral brain stem, cingulate, amygdala and hippocampus and contralateral thalamus and cingulate. The study provides further evidence of the involvement of the limbic system in the action of vagal nerve stimulation. (orig.)

  5. [Efficacy of quick repositioning maneuver for posterior semicircular canal benign paroxysmal positional vertigo in different age groups].

    Science.gov (United States)

    Zhang, Hao; Li, Jinrang; Guo, Pengfei; Tian, Shiyu; Li, Keliang

    2015-12-01

    To observe the short and long-term efficacy of quick repositioning maneuver for posterior semicircular canal benign paroxysmal positional vertigo (PC-BPPV) in different age groups. The clinical data of 113 adult patients with single PC-BPPV who underwent quick repositioning maneuver from July 2009 to February 2015 were retrospectively analyzed. The quick repositioning maneuver was to roll the patient from involved side to healthy side in the coronal plane for 180° as quickly as possible. The patients were divided into 3 groups according to different ages: young group (age group (45 ≤ age group (≥ 60 years). The short and long term outcomes of the three groups were observed. The left ear was involved in 58 cases (51.3%) and the right ear in 55 cases (48.7%). The short term improvement rates of the young, middle-age and the old groups were 92.5%, 93.6% and 92.3% respectively, and the long term improvement rate was 90.0%, 85.1% and 73.1% respectively. There was no significant difference among the three groups in short and long term outcomes (P > 0.05). The recurrence rate of the three groups was 5.0%, 6.4% and 15.4% respectively, also no significant difference (P > 0.05). The quick repositioning maneuver along the coronal plane for PC-BPPV has a definite effect for every age groups. The method is simple, rapid and easy to master, and the patients are tolerated the maneuver well without evident side effect.

  6. Home particle repositioning maneuver to prevent the recurrence of posterior canal BPPV.

    Science.gov (United States)

    Ismail, Elshahat Ibrahem; Morgan, Ashraf Elsayed; Abdeltawwab, Mohamed Moustafa

    2018-03-08

    To check the value of home particle repositioning maneuver in the prevention of the recurrence of posterior canal benign paroxysmal positional vertigo (pc-BPPV). In this study, patients diagnosed as unilateral posterior canal BPPV were selected following an accurate evaluation using video goggle VNG system. All patients were managed by particle repositioning maneuver (PRM). Patients were instructed to do home PRM once weekly for five years. Then, they were divided into two groups (according to choice of patient to do PRM). The first group (control group) consisted of 144 patients who did not do home PRM; whereas the second group (study group) included 165 patients who performed home PRM. All patients (control & study groups) were followed up every four months for five years. The study found out that the recurrence rate of pc-BPPV in control group was 33 patients in the first year (27.2%), 11 patients in second year (9%), 5 patients in third year (4%), 3 patients in fourth year (2.5%) and 3 patients in fifth year (2.5%). The recurrence of pc-BPPV in the treated side (study group) of patients was reported as 5 patients in the first year (3.5%), 3 patients in the second year (2%), 2 patients in the third year (1.4%), 2 patients in the fourth year (1.4%), and 1 patient in the fifth year (0.7%). There was statistically significant difference between the control and the study groups regarding the recurrence rates in the first year follow up which was the highest in first four months. Home particle repositioning maneuver has the capacity to prevent the recurrence of pc-BPPV. It proved to be more successful and functional in minimizing the recurrence of the disease in the study than in the control group. Hence, home particle repositioning maneuver is highly recommended for one year at least in pc-BPPV. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Differential Evolution Optimization for Targeting Spacecraft Maneuver Plans

    Science.gov (United States)

    Mattern, Daniel

    2016-01-01

    Previous analysis identified specific orbital parameters as being safer for conjunction avoidance for the TDRS fleet. With TDRS-9 being considered an at-risk spacecraft, a potential conjunction concern was raised should TDRS-9 fail while at a longitude of 12W. This document summarizes the analysis performed to identify if these specific orbital parameters could be targeted using the remaining drift-termination maneuvers for the relocation of TDRS-9 from 41W longitude to 12W longitude.

  8. The Rapier or the Club: The Relationship between Attrition and Maneuver Warfare

    National Research Council Canada - National Science Library

    Springman, Jeffrey A

    2006-01-01

    ...? This project compares the relationship between attrition and maneuver warfare. The study considers whether there are times when wars of attrition should be fought, and whether there are conditions that force wars of attrition...

  9. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes.

    Science.gov (United States)

    Dusenkova, Svetlana; Ru, Fei; Surdenikova, Lenka; Nassenstein, Christina; Hatok, Jozef; Dusenka, Robert; Banovcin, Peter; Kliment, Jan; Tatar, Milos; Kollarik, Marian

    2014-11-01

    Acid-sensing ion channels (ASICs) have been implicated in esophageal acid sensing and mechanotransduction. However, insufficient knowledge of ASIC subunit expression profile in esophageal afferent nerves hampers the understanding of their role. This knowledge is essential because ASIC subunits form heteromultimeric channels with distinct functional properties. We hypothesized that the esophageal putative nociceptive C-fiber nerves (transient receptor potential vanilloid 1, TRPV1-positive) express multiple ASIC subunits and that the ASIC expression profile differs between the nodose TRPV1-positive subtype developmentally derived from placodes and the jugular TRPV1-positive subtype derived from neural crest. We performed single cell RT-PCR on the vagal afferent neurons retrogradely labeled from the esophagus. In the guinea pig, nearly all (90%-95%) nodose and jugular esophageal TRPV1-positive neurons expressed ASICs, most often in a combination (65-75%). ASIC1, ASIC2, and ASIC3 were expressed in 65-75%, 55-70%, and 70%, respectively, of both nodose and jugular TRPV1-positive neurons. The ASIC1 splice variants ASIC1a and ASIC1b and the ASIC2 splice variant ASIC2b were similarly expressed in both nodose and jugular TRPV1-positive neurons. However, ASIC2a was found exclusively in the nodose neurons. In contrast to guinea pig, ASIC3 was almost absent from the mouse vagal esophageal TRPV1-positive neurons. However, ASIC3 was similarly expressed in the nonnociceptive TRPV1-negative (tension mechanoreceptors) neurons in both species. We conclude that the majority of esophageal vagal nociceptive neurons express multiple ASIC subunits. The placode-derived nodose neurons selectively express ASIC2a, known to substantially reduce acid sensitivity of ASIC heteromultimers. ASIC3 is expressed in the guinea pig but not in the mouse vagal esophageal TRPV1-positive neurons, indicating species differences in ASIC expression. Copyright © 2014 the American Physiological Society.

  10. Aural stimulation with capsaicin ointment improved swallowing function in elderly patients with dysphagia: a randomized, placebo-controlled, double-blind, comparative study.

    Science.gov (United States)

    Kondo, Eiji; Jinnouchi, Osamu; Nakano, Seiichi; Ohnishi, Hiroki; Kawata, Ikuji; Okamoto, Hidehiko; Takeda, Noriaki

    2017-01-01

    The aim of this study was to assess whether aural stimulation with ointment containing capsaicin improves swallowing function in elderly patients with dysphagia. A randomized, placebo-controlled, double-blind, comparative study. Secondary hospital. Twenty elderly dysphagic patients with a history of cerebrovascular disorder or Parkinson's disease were randomly divided into two groups: 10 receiving aural stimulation with 0.025% capsaicin ointment and 10 stimulated with placebo. The ointments were applied to the external auditory canal with a cotton swab. Then, swallowing of a bolus of blue-dyed water was recorded using transnasal videoendoscopy, and the swallowing function was evaluated according to both endoscopic swallowing scoring and Sensory-Motor-Reflex-Clearance (SMRC) scale. The sum of endoscopic swallowing scores was significantly decreased 30 and 60 min after a single administration in patients treated with capsaicin, but not with placebo. Reflex score, but not Sensory, Motion and Clearance scores, of the SMRC scale was significantly increased 5, 30 and 60 min after single administration in patients treated with capsaicin, but not with placebo. No patient showed signs of adverse effects. As capsaicin is an agonist of the transient receptor potential vanilloid 1 (TRPV1), these findings suggest that improvement of the swallowing function, especially glottal closure and cough reflexes, in elderly dysphagic patients was due to TRPV1-mediated aural stimulation of vagal Arnold's nerve with capsaicin, but not with a nonspecific mechanical stimulation with a cotton swab.

  11. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model.

    Directory of Open Access Journals (Sweden)

    Laura A Cagle

    Full Text Available Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury.To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation.5-12 week-old female BALB/c mice (n = 85 were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg or high tidal volume (15 ml/kg with or without positive end-expiratory pressure and recruitment maneuvers.Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation.Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours and lung injury worsens with longer-term ventilation (4 hrs. Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide

  12. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model

    Science.gov (United States)

    Franzi, Lisa M.; Linderholm, Angela L.; Last, Jerold A.; Adams, Jason Y.; Harper, Richart W.

    2017-01-01

    Background Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. Objectives To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. Methods 5–12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Results Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Conclusions Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points

  13. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model.

    Science.gov (United States)

    Cagle, Laura A; Franzi, Lisa M; Linderholm, Angela L; Last, Jerold A; Adams, Jason Y; Harper, Richart W; Kenyon, Nicholas J

    2017-01-01

    Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. 5-12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide the frequency

  14. Cooperative maneuvering in close environments among cybercars and dual-mode cars

    NARCIS (Netherlands)

    Milanés, V.; Alonso, J.; Bouraoui, L.; Ploeg, J.

    2011-01-01

    This paper describes the results of vehicle-to-vehicle (V2V) and infrastructure-to-vehicle (I2V) experiments implementing cooperative maneuvering for three different vehicles driving automatically. The cars used were cybercars from the Institut National de Recherche en Informatique et Automatique

  15. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes.

    Science.gov (United States)

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-Sang J; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Rosin, Diane L; Guyenet, Patrice G; Okusa, Mark D

    2016-05-02

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes.

  16. How hummingbirds hum: Acoustic holography of hummingbirds during maneuvering flight

    Science.gov (United States)

    Hightower, Ben; Wijnings, Patrick; Ingersoll, Rivers; Chin, Diana; Scholte, Rick; Lentink, David

    2017-11-01

    Hummingbirds make a characteristic humming sound when they flap their wings. The physics and the biological significance of hummingbird aeroacoustics is still poorly understood. We used acoustic holography and high-speed cameras to determine the acoustic field of six hummingbirds while they either hovered stationary in front of a flower or maneuvered to track flower motion. We used a robotic flower that oscillated either laterally or longitudinally with a linear combination of 20 different frequencies between 0.2 and 20 Hz, a range that encompasses natural flower vibration frequencies in wind. We used high-speed marker tracking to dissect the transfer function between the moving flower, the head, and body of the bird. We also positioned four acoustic arrays equipped with 2176 microphones total above, below, and in front of the hummingbird. Acoustic data from the microphones were back-propagated to planes adjacent to the hummingbird to create the first real-time holograms of the pressure field a hummingbird generates in vivo. Integration of all this data offers insight into how hummingbirds modulate the acoustic field during hovering and maneuvering flight.

  17. AIRCRAFT CONFLICTS RESOLUTION BY COURSE MANEUVERING

    Directory of Open Access Journals (Sweden)

    В. Харченко

    2011-02-01

    Full Text Available Enhancement of requirements for air traffic efficiency at increasing of flights intensity determines the necessity of development of new optimization methods for aircraft conflict resolutions. The statement of problem of optimal conflict resolutions at Cooperative Air Traffic Management was done. The method for optimal aircraft conflict  resolution by course maneuvering has been  developed. The method using dynamic programming provides planning of aircraft conflict-free trajectory with minimum length. The decomposition of conflict resolution process on phases and stages, definition of states, controls and recursive  equations for generation of optimal course control program were done. Computer modeling of aircraft conflict resolution by developed method was done

  18. Multislice spiral computed tomography to determine the effects of a recruitment maneuver in experimental lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Henzler, Dietrich; Rossaint, Rolf [University Hospital, RWTH Aachen, Anesthesiology Department, Aachen (Germany); Mahnken, Andreas H.; Wildberger, Joachim E.; Guenther, Rolf W. [University Hospital of the RWTH Aachen, Clinic of Diagnostic Radiology, Aachen (Germany); Kuhlen, Ralf [University Hospital of the RWTH Aachen, Operative Intensive Care Department, Aachen (Germany)

    2006-06-15

    Although recruitment of atelectatic lung is a common aim in acute respiratory distress syndrome (ARDS), the effects of a recruitment maneuver have not been assessed quantitatively. By multislice spiral CT (MSCT), we analyzed the changes in lung volumes calculated from the changes in the CT values of hyperinflated (V{sub HYP}), normally (V{sub NORM}), poorly (V{sub POOR}) and nonaerated (V{sub NON}) lung in eight mechanically ventilated pigs with saline lavage-induced acute lung injury before and after a recruitment maneuver. This was compared to single slice analysis near the diaphragm. The increase in aerated lung was mainly for V{sub POOR} and the less in V{sub NORM}. Total lung volume and intrathoracic gas increased. No differences were found for tidal volumes measured by spirometry or determined by CT. The inspiratory-expiratory volume differences were not different after the recruitment maneuver in V{sub NON} (from 62{+-}18 ml to 43{+-}26 ml, P=0.114), and in V{sub NORM} (from 216{+-}51 ml to 251{+-}37 ml, P=0.102). Single slice analysis significantly underestimated the increase in normally and poorly aerated lung. Quantitative analysis of lung volumes by whole lung MSCT revealed the increase of poorly aerated lung as the main mechanism of a standard recruitment maneuver. MSCT can provide additional information as compared to single slice CT. (orig.)

  19. Multislice spiral computed tomography to determine the effects of a recruitment maneuver in experimental lung injury

    International Nuclear Information System (INIS)

    Henzler, Dietrich; Rossaint, Rolf; Mahnken, Andreas H.; Wildberger, Joachim E.; Guenther, Rolf W.; Kuhlen, Ralf

    2006-01-01

    Although recruitment of atelectatic lung is a common aim in acute respiratory distress syndrome (ARDS), the effects of a recruitment maneuver have not been assessed quantitatively. By multislice spiral CT (MSCT), we analyzed the changes in lung volumes calculated from the changes in the CT values of hyperinflated (V HYP ), normally (V NORM ), poorly (V POOR ) and nonaerated (V NON ) lung in eight mechanically ventilated pigs with saline lavage-induced acute lung injury before and after a recruitment maneuver. This was compared to single slice analysis near the diaphragm. The increase in aerated lung was mainly for V POOR and the less in V NORM . Total lung volume and intrathoracic gas increased. No differences were found for tidal volumes measured by spirometry or determined by CT. The inspiratory-expiratory volume differences were not different after the recruitment maneuver in V NON (from 62±18 ml to 43±26 ml, P=0.114), and in V NORM (from 216±51 ml to 251±37 ml, P=0.102). Single slice analysis significantly underestimated the increase in normally and poorly aerated lung. Quantitative analysis of lung volumes by whole lung MSCT revealed the increase of poorly aerated lung as the main mechanism of a standard recruitment maneuver. MSCT can provide additional information as compared to single slice CT. (orig.)

  20. Development of a Ground Vehicle Maneuver Ontology to Support the Common Operational Picture

    National Research Council Canada - National Science Library

    Richmond, Paul W; Blais, Curtis L; Goerger, Niki C

    2006-01-01

    .... This paper describes both the Mobility-COP, from which warfighters can assess the ability of forces to maneuver effectively under multiple environmental and tactical conditions, and a formal ontology...

  1. Modulation of Neurally Mediated Vasodepression and Bradycardia by Electroacupuncture through Opioids in Nucleus Tractus Solitarius.

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C; Fu, Liang-Wu; Guo, Zhi-Ling; Longhurst, John C

    2018-01-30

    Stimulation of vagal afferent endings with intravenous phenylbiguanide (PBG) causes both bradycardia and vasodepression, simulating neurally mediated syncope. Activation of µ-opioid receptors in the nucleus tractus solitarius (NTS) increases blood pressure. Electroacupuncture (EA) stimulation of somatosensory nerves underneath acupoints P5-6, ST36-37, LI6-7 or G37-39 selectively but differentially modulates sympathoexcitatory responses. We therefore hypothesized that EA-stimulation at P5-6 or ST36-37, but not LI6-7 or G37-39 acupoints, inhibits the bradycardia and vasodepression through a µ-opioid receptor mechanism in the NTS. We observed that stimulation at acupoints P5-6 and ST36-37 overlying the deep somatosensory nerves and LI6-7 and G37-39 overlying cutaneous nerves differentially evoked NTS neural activity in anesthetized and ventilated animals. Thirty-min of EA-stimulation at P5-6 or ST36-37 reduced the depressor and bradycardia responses to PBG while EA at LI6-7 or G37-39 did not. Congruent with the hemodynamic responses, EA at P5-6 and ST36-37, but not at LI6-7 and G37-39, reduced vagally evoked activity of cardiovascular NTS cells. Finally, opioid receptor blockade in the NTS with naloxone or a specific μ-receptor antagonist reversed P5-6 EA-inhibition of the depressor, bradycardia and vagally evoked NTS activity. These data suggest that point specific EA stimulation inhibits PBG-induced vasodepression and bradycardia responses through a μ-opioid mechanism in the NTS.

  2. Optogenetic stimulation of locus ceruleus neurons augments inhibitory transmission to parasympathetic cardiac vagal neurons via activation of brainstem α1 and β1 receptors.

    Science.gov (United States)

    Wang, Xin; Piñol, Ramón A; Byrne, Peter; Mendelowitz, David

    2014-04-30

    Locus ceruleus (LC) noradrenergic neurons are critical in generating alertness. In addition to inducing cortical arousal, the LC also orchestrates changes in accompanying autonomic system function that compliments increased attention, such as during stress, excitation, and/or exposure to averse or novel stimuli. Although the association between arousal and increased heart rate is well accepted, the neurobiological link between the LC and parasympathetic neurons that control heart rate has not been identified. In this study, we test directly whether activation of noradrenergic neurons in the LC influences brainstem parasympathetic cardiac vagal neurons (CVNs). CVNs were identified in transgenic mice that express channel-rhodopsin-2 (ChR2) in LC tyrosine hydroxylase neurons. Photoactivation evoked a rapid depolarization, increased firing, and excitatory inward currents in ChR2-expressing neurons in the LC. Photostimulation of LC neurons did not alter excitatory currents, but increased inhibitory neurotransmission to CVNs. Optogenetic activation of LC neurons increased the frequency of isolated glycinergic IPSCs by 27 ± 8% (p = 0.003, n = 26) and augmented GABAergic IPSCs in CVNs by 21 ± 5% (p = 0.001, n = 26). Inhibiting α1, but not α2, receptors blocked the evoked responses. Inhibiting β1 receptors prevented the increase in glycinergic, but not GABAergic, IPSCs in CVNs. This study demonstrates LC noradrenergic neurons inhibit the brainstem CVNs that generate parasympathetic activity to the heart. This inhibition of CVNs would increase heart rate and risks associated with tachycardia. The receptors activated within this pathway, α1 and/or β1 receptors, are targets for clinically prescribed antagonists that promote slower, cardioprotective heart rates during heightened vigilant states.

  3. Horizontal Conflict Resolution Maneuvers with a Cockpit Display of Traffic Information

    Science.gov (United States)

    Palmer, E.; Jago, S.; Dubord, M.

    1981-01-01

    Pilot resolution of potential conflicts in the horizontal plane when the only information available on the other aircraft was presented on a Cockpit Display of Traffic Information (CDTI) is investigated. The pilot's task was to assess the situation and if necessary maneuver so as to avoid the other aircraft. No instructions were given on evasive strategy or on what was considered to be an acceptable minimum separation. The results indicate that pilots had a strong bias of turning toward the intruder aircraft in order to pass behind it. In more than 50% of the encounters with a 90 degree crossing angle in which the intruder aircraft was programmed to pass behind the aircraft, the pilots maneuvered so as to pass behind the intruder. This bias was not as strong with the display which showed a prediction of the intruder's relative velocity. The average miss distance for all encounters was about 4500 feet.

  4. Behavior learning in differential games and reorientation maneuvers

    Science.gov (United States)

    Satak, Neha

    method is the Direct Approximation of Value Function (DAVF) method. In this method, unlike the CSR method, the player formulates an objective function for the opponent but does not formulates a strategy directly; rather, indirectly the player assumes that the opponent is playing optimally. Thus, a value function satisfying the HJB equation corresponding to the opponent's cost function exists. The DAVF method finds an approximate solution for the value function based on previous observations of the opponent's control. The approximate solution to the value function is then used to predict the opponent's future behavior. Game examples in which only a single player is learning its opponent's behavior are simulated. Subsequently, examples in which both players in a two-player game are learning each other's behavior are simulated. In the second part of this research, a reorientation control maneuver for a spinning spacecraft will be developed. This will aid the application of behavior learning and differential games concepts to the specific scenario involving multiple spinning spacecraft. An impulsive reorientation maneuver with coasting will be analytically designed to reorient the spin axis of the spacecraft using a single body fixed thruster. Cooperative maneuvers of multiple spacecraft optimizing fuel and relative orientation will be designed. Pareto optimality concepts will be used to arrive at mutually agreeable reorientation maneuvers for the cooperating spinning spacecraft.

  5. A Minimum Fuel Based Estimator for Maneuver and Natrual Dynamics Reconstruction

    Science.gov (United States)

    Lubey, D.; Scheeres, D.

    2013-09-01

    The vast and growing population of objects in Earth orbit (active and defunct spacecraft, orbital debris, etc.) offers many unique challenges when it comes to tracking these objects and associating the resulting observations. Complicating these challenges are the inaccurate natural dynamical models of these objects, the active maneuvers of spacecraft that deviate them from their ballistic trajectories, and the fact that spacecraft are tracked and operated by separate agencies. Maneuver detection and reconstruction algorithms can help with each of these issues by estimating mismodeled and unmodeled dynamics through indirect observation of spacecraft. It also helps to verify the associations made by an object correlation algorithm or aid in making those associations, which is essential when tracking objects in orbit. The algorithm developed in this study applies an Optimal Control Problem (OCP) Distance Metric approach to the problems of Maneuver Reconstruction and Dynamics Estimation. This was first developed by Holzinger, Scheeres, and Alfriend (2011), with a subsequent study by Singh, Horwood, and Poore (2012). This method estimates the minimum fuel control policy rather than the state as a typical Kalman Filter would. This difference ensures that the states are connected through a given dynamical model and allows for automatic covariance manipulation, which can help to prevent filter saturation. Using a string of measurements (either verified or hypothesized to correlate with one another), the algorithm outputs a corresponding string of adjoint and state estimates with associated noise. Post-processing techniques are implemented, which when applied to the adjoint estimates can remove noise and expose unmodeled maneuvers and mismodeled natural dynamics. Specifically, the estimated controls are used to determine spacecraft dependent accelerations (atmospheric drag and solar radiation pressure) using an adapted form of the Optimal Control based natural dynamics

  6. Omeprazole promotes proximal duodenal mucosal bicarbonate secretion in humans

    DEFF Research Database (Denmark)

    Mertz-Nielsen, A; Hillingsø, Jens; Bukhave, K

    1996-01-01

    with control experiments. Also the combination of omeprazole and ranitidine increased (p = 0.05) duodenal bicarbonate secretion, while ranitidine alone caused no change in either basal or stimulated secretion. In the stomach basal as well as vagally stimulated bicarbonate secretion was independent of the means...

  7. Effectiveness of Otolith Repositioning Maneuvers and Vestibular Rehabilitation exercises in elderly people with Benign Paroxysmal Positional Vertigo: a systematic review.

    Science.gov (United States)

    Ribeiro, Karyna Figueiredo; Oliveira, Bruna Steffeni; Freitas, Raysa V; Ferreira, Lidiane M; Deshpande, Nandini; Guerra, Ricardo O

    2017-06-29

    Benign Paroxysmal Positional Vertigo is highly prevalent in elderly people. This condition is related to vertigo, hearing loss, tinnitus, poor balance, gait disturbance, and an increase in risk of falls, leading to postural changes and quality of life decreasing. To evaluate the outcomes obtained by clinical trials on the effectiveness of Otolith Repositioning Maneuver and Vestibular Rehabilitation exercises in the treatment of Benign Paroxysmal Positional Vertigo in elderly. The literature research was performed using PubMed, Scopus, Web of Science and PEDro databases, and included randomized controlled clinical trials in English, Spanish and Portuguese, published during January 2000 to August 2016. The methodological quality of the studies was assessed by PEDro score and the outcomes analysis was done by critical revision of content. Six studies were fully reviewed. The average age of participants ranged between 67.2 and 74.5 years. The articles were classified from 2 to 7/10 through the PEDro score. The main outcome measures analyzed were vertigo, positional nystagmus and postural balance. Additionally, the number of maneuvers necessary for remission of the symptoms, the quality of life, and the functionality were also assessed. The majority of the clinical trials used Otolith Repositioning Maneuver (n=5) and 3 articles performed Vestibular Rehabilitation exercises in addition to Otolith Repositioning Maneuver or pharmacotherapy. One study showed that the addition of movement restrictions after maneuver did not influence the outcomes. There was a trend of improvement in Benign Paroxysmal Positional Vertigo symptomatology in elderly patients who underwent Otolith Repositioning Maneuver. There is sparse evidence from methodologically robust clinical trials that examined the effects of Otolith Repositioning Maneuver and Vestibular Rehabilitation exercises for treating Benign Paroxysmal Positional Vertigo in the elderly. Randomized controlled clinical trials with

  8. Anorexia‐cachexia syndrome in hepatoma tumour‐bearing rats requires the area postrema but not vagal afferents and is paralleled by increased MIC‐1/GDF15

    Science.gov (United States)

    Borner, Tito; Arnold, Myrtha; Ruud, Johan; Breit, Samuel N.; Langhans, Wolfgang; Lutz, Thomas A.; Blomqvist, Anders

    2016-01-01

    Abstract Background The cancer‐anorexia‐cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour‐derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour‐derived macrophage inhibitory cytokine‐1 (MIC‐1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC‐1 in mice. Methods Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC‐1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. Results In tumour‐bearing sham‐operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer‐induced anorexia or body weight loss. Tumour‐bearing rats had substantially increased MIC‐1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. Conclusions These findings demonstrate the importance of the AP in the mediation of cancer‐dependent anorexia and body weight loss and support a pathological role of MIC‐1 as a tumour‐derived factor mediating CACS, possibly via an AP

  9. Neuroimmune Interactions in Schizophrenia: Focus on Vagus Nerve Stimulation and Activation of the Alpha-7 Nicotinic Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Fabiana Maria das Graças Corsi-Zuelli

    2017-05-01

    Full Text Available Schizophrenia is one of the most debilitating mental disorders and is aggravated by the lack of efficacious treatment. Although its etiology is unclear, epidemiological studies indicate that infection and inflammation during development induces behavioral, morphological, neurochemical, and cognitive impairments, increasing the risk of developing schizophrenia. The inflammatory hypothesis of schizophrenia is also supported by clinical studies demonstrating systemic inflammation and microglia activation in schizophrenic patients. Although elucidating the mechanism that induces this inflammatory profile remains a challenge, mounting evidence suggests that neuroimmune interactions may provide therapeutic advantages to control inflammation and hence schizophrenia. Recent studies have indicated that vagus nerve stimulation controls both peripheral and central inflammation via alpha-7 nicotinic acetylcholine receptor (α7nAChR. Other findings have indicated that vagal stimulation and α7nAChR-agonists can provide therapeutic advantages for neuropsychiatric disorders, such as depression and epilepsy. This review analyzes the latest results regarding: (I the immune-to-brain pathogenesis of schizophrenia; (II the regulation of inflammation by the autonomic nervous system in psychiatric disorders; and (III the role of the vagus nerve and α7nAChR in schizophrenia.

  10. Neuroimmune Interactions in Schizophrenia: Focus on Vagus Nerve Stimulation and Activation of the Alpha-7 Nicotinic Acetylcholine Receptor

    Science.gov (United States)

    Corsi-Zuelli, Fabiana Maria das Graças; Brognara, Fernanda; Quirino, Gustavo Fernando da Silva; Hiroki, Carlos Hiroji; Fais, Rafael Sobrano; Del-Ben, Cristina Marta; Ulloa, Luis; Salgado, Helio Cesar; Kanashiro, Alexandre; Loureiro, Camila Marcelino

    2017-01-01

    Schizophrenia is one of the most debilitating mental disorders and is aggravated by the lack of efficacious treatment. Although its etiology is unclear, epidemiological studies indicate that infection and inflammation during development induces behavioral, morphological, neurochemical, and cognitive impairments, increasing the risk of developing schizophrenia. The inflammatory hypothesis of schizophrenia is also supported by clinical studies demonstrating systemic inflammation and microglia activation in schizophrenic patients. Although elucidating the mechanism that induces this inflammatory profile remains a challenge, mounting evidence suggests that neuroimmune interactions may provide therapeutic advantages to control inflammation and hence schizophrenia. Recent studies have indicated that vagus nerve stimulation controls both peripheral and central inflammation via alpha-7 nicotinic acetylcholine receptor (α7nAChR). Other findings have indicated that vagal stimulation and α7nAChR-agonists can provide therapeutic advantages for neuropsychiatric disorders, such as depression and epilepsy. This review analyzes the latest results regarding: (I) the immune-to-brain pathogenesis of schizophrenia; (II) the regulation of inflammation by the autonomic nervous system in psychiatric disorders; and (III) the role of the vagus nerve and α7nAChR in schizophrenia. PMID:28620379

  11. Analysis of ship maneuvering data from simulators

    Science.gov (United States)

    Frette, V.; Kleppe, G.; Christensen, K.

    2011-03-01

    We analyze complex manuevering histories of ships obtained from training sessions on bridge simulators. Advanced ships are used in fields like offshore oil exploration: dive support vessels, supply vessels, anchor handling vessels, tugs, cable layers, and multi-purpose vessels. Due to high demands from the operations carried out, these ships need to have very high maneuverability. This is achieved through a propulsion system with several thrusters, water jets, and rudders in addition to standard propellers. For some operations, like subsea maintenance, it is crucial that the ship accurately keeps a fixed position. Therefore, bridge systems usually incorporate equipment for Dynamic Positioning (DP). DP is a method to keep ships and semi submersible rigs in a fixed position using the propulsion systems instead of anchors. It may also be used for sailing a vessel from one position to another along a predefined route. Like an autopilot on an airplane, DP may operate without human involvement. The method relies on accurate determination of position from external reference systems like GPS, as well as a continuously adjusted mathematical model of the ship and external forces from wind, waves and currents. In a specific simulator exercise for offshore crews, a ship is to be taken up to an installation consisting of three nearby oil platforms connected by bridges (Frigg field, North Sea), where a subsea inspection is to be carried out. Due to the many degrees of freedom during maneuvering, including partly or full use of DP, the chosen routes vary significantly. In this poster we report preliminary results on representations of the complex maneuvering histories; representations that allow comparison between crew groups, and, possibly, sorting of the different strategic choices behind.

  12. Nesfatin-1 activates cardiac vagal neurons of nucleus ambiguus and elicits bradycardia in conscious rats.

    Science.gov (United States)

    Brailoiu, G Cristina; Deliu, Elena; Tica, Andrei A; Rabinowitz, Joseph E; Tilley, Douglas G; Benamar, Khalid; Koch, Walter J; Brailoiu, Eugen

    2013-09-01

    Nesfatin-1, a peptide whose receptor is yet to be identified, has been involved in the modulation of feeding, stress, and metabolic responses. More recently, increasing evidence supports a modulatory role for nesfatin-1 in autonomic and cardiovascular activity. This study was undertaken to test if the expression of nesfatin-1 in the nucleus ambiguus, a key site for parasympathetic cardiac control, may be correlated with a functional role. As we have previously demonstrated that nesfatin-1 elicits Ca²⁺ signaling in hypothalamic neurons, we first assessed the effect of this peptide on cytosolic Ca²⁺ in cardiac pre-ganglionic neurons of nucleus ambiguus. We provide evidence that nesfatin-1 increases cytosolic Ca²⁺ concentration via a Gi/o-coupled mechanism. The nesfatin-1-induced Ca²⁺ rise is critically dependent on Ca²⁺ influx via P/Q-type voltage-activated Ca²⁺ channels. Repeated administration of nesfatin-1 leads to tachyphylaxis. Furthermore, nesfatin-1 produces a dose-dependent depolarization of cardiac vagal neurons via a Gi/o-coupled mechanism. In vivo studies, using telemetric and tail-cuff monitoring of heart rate and blood pressure, indicate that microinjection of nesfatin-1 into the nucleus ambiguus produces bradycardia not accompanied by a change in blood pressure in conscious rats. Taken together, our results identify for the first time that nesfatin-1 decreases heart rate by activating cardiac vagal neurons of nucleus ambiguus. Our results indicate that nesfatin-1, one of the most potent feeding peptides, increases cytosolic Ca²⁺ by promoting Ca²⁺ influx via P/Q channels and depolarizes nucleus ambiguus neurons; both effects are Gi/o-mediated. In vivo studies indicate that microinjection of nesfatin-1 into nucleus ambiguus produces bradycardia in conscious rats. This is the first report that nesfatin-1 increases the parasympathetic cardiac tone. © 2013 International Society for Neurochemistry.

  13. Marine Corps Maneuver Squad Leader Mastery Model

    Science.gov (United States)

    2012-12-17

    H. L., & Dreyfus, S. E. (1986). Mind over machine: The power of human intuitive expertise in the  era of the computer. New York: The  Free  Press...at them then  squat  down to begin playing a dice game. The  maneuver squad leader judged this behavior as an anomaly, because  the boys didn’t begin

  14. Effects of maneuver dynamics on drag polars of the X-29A forward-swept-wing aircraft with automatic wing camber control

    Science.gov (United States)

    Hicks, John W.; Moulton, Bryan J.

    1988-01-01

    The camber control loop of the X-29A FSW aircraft was designed to furnish the optimum L/D for trimmed, stabilized flight. A marked difference was noted between automatic wing camber control loop behavior in dynamic maneuvers and in stabilized flight conditions, which in turn affected subsonic aerodynamic performance. The degree of drag level increase was a direct function of maneuver rate. Attention is given to the aircraft flight drag polar effects of maneuver dynamics in light of wing camber control loop schedule. The effect of changing camber scheduling to better track the optimum automatic camber control L/D schedule is discussed.

  15. Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2016-12-17

    Orexin neurons are known to augment the sympathetic control of cardiovascular function, however the role of orexin neurons in parasympathetic cardiac regulation remains unclear. To test the hypothesis that orexin neurons contribute to parasympathetic control we selectively expressed channelrhodopsin-2 (ChR2) in orexin neurons in orexin-Cre transgenic rats and examined postsynaptic currents in cardiac vagal neurons (CVNs) in the dorsal motor nucleus of the vagus (DMV). Simultaneous photostimulation and recording in ChR2-expressing orexin neurons in the lateral hypothalamus resulted in reliable action potential firing as well as large whole-cell currents suggesting a strong expression of ChR2 and reliable optogenetic excitation. Photostimulation of ChR2-expressing fibers in the DMV elicited short-latency (ranging from 3.2ms to 8.5ms) postsynaptic currents in 16 out of 44 CVNs tested. These responses were heterogeneous and included excitatory glutamatergic (63%) and inhibitory GABAergic (37%) postsynaptic currents. The results from this study suggest different sub-population of orexin neurons may exert diverse influences on brainstem CVNs and therefore may play distinct functional roles in parasympathetic control of the heart. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. High cardiac vagal control is related to better subjective and objective sleep quality.

    Science.gov (United States)

    Werner, Gabriela G; Ford, Brett Q; Mauss, Iris B; Schabus, Manuel; Blechert, Jens; Wilhelm, Frank H

    2015-03-01

    Cardiac vagal control (CVC) has been linked to both physical and mental health. One critical aspect of health, that has not received much attention, is sleep. We hypothesized that adults with higher CVC--operationalized by high-frequency heart rate variability (HF-HRV)--will exhibit better sleep quality assessed both subjectively (i.e., with Pittsburgh Sleep Quality Index) and objectively (i.e., with polysomnography). HF-HRV was measured in 29 healthy young women during an extended neutral film clip. Participants then underwent full polysomnography to obtain objective measures of sleep quality and HF-HRV during a night of sleep. As expected, higher resting HF-HRV was associated with higher subjective and objective sleep quality (i.e., shorter sleep latency and fewer arousals). HF-HRV during sleep (overall or separated by sleep phases) showed less consistent relationships with sleep quality. These findings indicate that high waking CVC may be a key predictor of healthy sleep. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Localization of mGluR5, GABAB, GABAA, and cannabinoid receptors on the vago-vagal reflex pathway responsible for transient lower esophageal sphincter relaxation in humans: an immunohistochemical study

    NARCIS (Netherlands)

    Rohof, W. O.; Aronica, E.; Beaumont, H.; Troost, D.; Boeckxstaens, G. E.

    2012-01-01

    Background Transient lower esophageal sphincter relaxations (TLESRs) are the predominant mechanisms underlying gastro-esophageal reflux. TLESRs are mediated by a vago-vagal reflex, which can be blocked by interaction with metabotropic Glutamate Receptor 5 (mGluR5), ?-aminobutyric acid type B

  18. An expert system for pressurized water reactor load maneuvers

    International Nuclear Information System (INIS)

    Chaung Lin; Jungping Chen; Yihjiunn Lin; Lianshin Lin

    1993-01-01

    Restartup after reactor shutdown and load-follow operations are the important tasks in operating pressurized water reactors. Generally, the most efficient method is to apply constant axial offset control (CAOC) strategy during load maneuvers. An expert system using CAOC strategy, fuzzy reasoning, a two-node core model, and operational constraints has been developed. The computation time is so short that this system, which leads to an approximate closed-loop control, could be useful for on-site calculation

  19. Psychophysiological Assessment in Pilots Performing Challenging Simulated and Real Flight Maneuvers.

    Science.gov (United States)

    Johannes, Bernd; Rothe, Stefanie; Gens, André; Westphal, Soeren; Birkenfeld, Katja; Mulder, Edwin; Rittweger, Jörn; Ledderhos, Carla

    2017-09-01

    The objective assessment of psychophysiological arousal during challenging flight maneuvers is of great interest to aerospace medicine, but remains a challenging task. In the study presented here, a vector-methodological approach was used which integrates different psychophysiological variables, yielding an integral arousal index called the Psychophysiological Arousal Value (PAV). The arousal levels of 15 male pilots were assessed during predetermined, well-defined flight maneuvers performed under simulated and real flight conditions. The physiological data, as expected, revealed inter- and intra-individual differences for the various measurement conditions. As indicated by the PAV, air-to-air refueling (AAR) turned out to be the most challenging task. In general, arousal levels were comparable between simulator and real flight conditions. However, a distinct difference was observed when the pilots were divided by instructors into two groups based on their proficiency in AAR with AWACS (AAR-Novices vs. AAR-Professionals). AAR-Novices had on average more than 2000 flight hours on other aircrafts. They showed higher arousal reactions to AAR in real flight (contact: PAV score 8.4 ± 0.37) than under simulator conditions (7.1 ± 0.30), whereas AAR-Professionals did not (8.5 ± 0.46 vs. 8.8 ± 0.80). The psychophysiological arousal value assessment was tested in field measurements, yielding quantifiable arousal differences between proficiency groups of pilots during simulated and real flight conditions. The method used in this study allows an evaluation of the psychophysiological cost during a certain flying performance and thus is possibly a valuable tool for objectively evaluating the actual skill status of pilots.Johannes B, Rothe S, Gens A, Westphal S, Birkenfeld K, Mulder E, Rittweger J, Ledderhos C. Psychophysiological assessment in pilots performing challenging simulated and real flight maneuvers. Aerosp Med Hum Perform. 2017; 88(9):834-840.

  20. Liver hanging maneuver for right hemiliver in situ donation--anatomical considerations.

    Science.gov (United States)

    Trotovsek, B; Gadzijev, E M; Ravnik, D; Hribernik, M

    2006-01-01

    An anatomical study was carried out to evaluate the safety of the liver hanging maneuver for the right hemiliver in living donor and in situ splitting transplantation. During this procedure a 4-6 cm blind dissection is performed between the inferior vena cava and the liver. Short subhepatic veins entering the inferior vena cava from segments 1 and 9 could be torn with consequent hemorrhage. One hundred corrosive casts of livers were evaluated to establish the position and diameter of short subhepatic veins and the inferior right hepatic vein. The average distance from the right border of the inferior vena cava to the opening of segment 1 veins was 16.7+/-3.4 mm and to the entrance of segment 9 veins was 5.0+/-0.5 mm. The width of the narrowest point on the route of blind dissection was determined, with the average value being 8.7+/-2.3 mm (range 2-15 mm). The results show that the liver hanging maneuver is a safe procedure. A proposed route of dissection minimizes the risk of disrupting short subhepatic veins (7%).

  1. Tolerance to extended galvanic vestibular stimulation: optimal exposure for astronaut training.

    Science.gov (United States)

    Dilda, Valentina; MacDougall, Hamish G; Moore, Steven T

    2011-08-01

    We have developed an analogue of postflight sensorimotor dysfunction in astronauts using pseudorandom galvanic vestibular stimulation (GVS). To date there has been no study of the effects of extended GVS on human subjects and our aim was to determine optimal exposure for astronaut training based on tolerance to intermittent and continuous galvanic stimulation. There were 60 subjects who were exposed to a total of 10.5 min of intermittent GVS at a peak current of 3.5 mA or 5 mA. A subset of 24 subjects who tolerated the intermittent stimulus were subsequently exposed to 20-min continuous stimulation at 3.5 mA or 5 mA. During intermittent GVS the large majority of subjects (78.3%) reported no or at most mild motion sickness symptoms, 13.3% reported moderate symptoms, and 8.3% experienced severe nausea and requested termination of the stimulus. During 20-min continuous exposure, 83.3% of subjects reported no or at most mild motion sickness symptoms and 16.7% (all in the 5-mA group) experienced severe nausea. Based on these results, we propose two basic modes of GVS application to minimize the incidence of motion sickness: intermittent high (5 mA) amplitude, suited to simulation of intensive operator tasks requiring a high-fidelity analogue of postflight sensorimotor dysfunction such as landing or docking maneuvers; and continuous low (3.5 mA) amplitude stimulation, for longer simulation scenarios such as extra vehicular activity. Our results suggest that neither mode of stimulation would induce motion sickness in the large majority of subjects for up to 20 min exposure.

  2. Vagal Blocking Improves Glycemic Control and Elevated Blood Pressure in Obese Subjects with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    S. Shikora

    2013-01-01

    Full Text Available Background. An active device that downregulates abdominal vagal signalling has resulted in significant weight loss in feasibility studies. Objective. To prospectively evaluate the effect of intermittent vagal blocking (VBLOC on weight loss, glycemic control, and blood pressure (BP in obese subjects with DM2. Methods. Twenty-eight subjects were implanted with a VBLOC device (Maestro Rechargeable System at 5 centers in an open-label study. Effects on weight loss, HbA1c, fasting blood glucose, and BP were evaluated at 1 week to 12 months. Results. 26 subjects (17 females/9 males, 51±2 years, BMI 37±1 kg/m2, mean ± SEM completed 12 months followup. One serious adverse event (pain at implant site was easily resolved. At 1 week and 12 months, mean excess weight loss percentages (% EWL were 9±1% and 25±4% (P<0.0001, and HbA1c declined by 0.3±0.1% and 1.0±0.2% (P=0.02, baseline 7.8±0.2%. In DM2 subjects with elevated BP (n=15, mean arterial pressure reduced by 7±3 mmHg and 8±3 mmHg (P=0.04, baseline 100 ± 2 mmHg at 1 week and 12 months. All subjects MAP decreased by 3 ± 2 mmHg (baseline 95 ± 2 mmHg at 12 months. Conclusions. VBLOC was safe in obese DM2 subjects and associated with meaningful weight loss, early and sustained improvements in HbA1c, and reductions in BP in hypertensive DM2 subjects. This trial is registered with ClinicalTrials.gov NCT00555958.

  3. Ultra-fast escape maneuver of an octopus-inspired robot

    International Nuclear Information System (INIS)

    Weymouth, G D; Subramaniam, V; Triantafyllou, M S

    2015-01-01

    We design and test an octopus-inspired flexible hull robot that demonstrates outstanding fast-starting performance. The robot is hyper-inflated with water, and then rapidly deflates to expel the fluid so as to power the escape maneuver. Using this robot we verify for the first time in laboratory testing that rapid size-change can substantially reduce separation in bluff bodies traveling several body lengths, and recover fluid energy which can be employed to improve the propulsive performance. The robot is found to experience speeds over ten body lengths per second, exceeding that of a similarly propelled optimally streamlined rigid rocket. The peak net thrust force on the robot is more than 2.6 times that on an optimal rigid body performing the same maneuver, experimentally demonstrating large energy recovery and enabling acceleration greater than 14 body lengths per second squared. Finally, over 53% of the available energy is converted into payload kinetic energy, a performance that exceeds the estimated energy conversion efficiency of fast-starting fish. The Reynolds number based on final speed and robot length is Re≈700 000. We use the experimental data to establish a fundamental deflation scaling parameter σ∗ which characterizes the mechanisms of flow control via shape change. Based on this scaling parameter, we find that the fast-starting performance improves with increasing size. (paper)

  4. Ultra-fast escape maneuver of an octopus-inspired robot.

    Science.gov (United States)

    Weymouth, G D; Subramaniam, V; Triantafyllou, M S

    2015-02-02

    We design and test an octopus-inspired flexible hull robot that demonstrates outstanding fast-starting performance. The robot is hyper-inflated with water, and then rapidly deflates to expel the fluid so as to power the escape maneuver. Using this robot we verify for the first time in laboratory testing that rapid size-change can substantially reduce separation in bluff bodies traveling several body lengths, and recover fluid energy which can be employed to improve the propulsive performance. The robot is found to experience speeds over ten body lengths per second, exceeding that of a similarly propelled optimally streamlined rigid rocket. The peak net thrust force on the robot is more than 2.6 times that on an optimal rigid body performing the same maneuver, experimentally demonstrating large energy recovery and enabling acceleration greater than 14 body lengths per second squared. Finally, over 53% of the available energy is converted into payload kinetic energy, a performance that exceeds the estimated energy conversion efficiency of fast-starting fish. The Reynolds number based on final speed and robot length is [Formula: see text]. We use the experimental data to establish a fundamental deflation scaling parameter [Formula: see text] which characterizes the mechanisms of flow control via shape change. Based on this scaling parameter, we find that the fast-starting performance improves with increasing size.

  5. Spacecraft attitude maneuver control using two parallel mounted 3-DOF spherical actuators

    Directory of Open Access Journals (Sweden)

    Guidan Li

    2017-02-01

    Full Text Available A parallel configuration using two 3-degree-of-freedom (3-DOF spherical electromagnetic momentum exchange actuators is investigated for large angle spacecraft attitude maneuvers. First, the full dynamic equations of motion for the spacecraft system are derived by the Newton-Euler method. To facilitate computation, virtual gimbal coordinate frames are established. Second, a nonlinear control law in terms of quaternions is developed via backstepping method. The proposed control law compensates the coupling torques arising from the spacecraft rotation, and is robust against the external disturbances. Then, the singularity problem is analyzed. To avoid singularities, a modified weighed Moore-Pseudo inverse velocity steering law based on null motion is proposed. The weighted matrices are carefully designed to switch the actuators and redistribute the control torques. The null motion is used to reorient the rotor away from the tilt angle saturation state. Finally, numerical simulations of rest-to-rest maneuvers are performed to validate the effectiveness of the proposed method.

  6. Optimization model of conventional missile maneuvering route based on improved Floyd algorithm

    Science.gov (United States)

    Wu, Runping; Liu, Weidong

    2018-04-01

    Missile combat plays a crucial role in the victory of war under high-tech conditions. According to the characteristics of maneuver tasks of conventional missile units in combat operations, the factors influencing road maneuvering are analyzed. Based on road distance, road conflicts, launching device speed, position requirements, launch device deployment, Concealment and so on. The shortest time optimization model was built to discuss the situation of road conflict and the strategy of conflict resolution. The results suggest that in the process of solving road conflict, the effect of node waiting is better than detour to another way. In this study, we analyzed the deficiency of the traditional Floyd algorithm which may limit the optimal way of solving road conflict, and put forward the improved Floyd algorithm, meanwhile, we designed the algorithm flow which would be better than traditional Floyd algorithm. Finally, throgh a numerical example, the model and the algorithm were proved to be reliable and effective.

  7. Transcatheter closure of large atrial septal defects with deficient aortic or posterior rims using the "Greek maneuver". A multicenter study.

    Science.gov (United States)

    Thanopoulos, Basil D; Dardas, Petros; Ninios, Vlasis; Eleftherakis, Nicholaos; Karanasios, Evangelos

    2013-10-09

    We report a modification ("Greek maneuver") of the standard atrial septal defect (ASD) closure technique using the Amplatzer septal occluder (ASO) to facilitate closure of large ASDs with deficient aortic or posterior rims. 185 patients (median 10.8, range 3 to 52 years) with large ASDs (mean diameter 26±7 mm, range 20-40 mm) with a deficient aortic (134 patients) or posterior (51 patients) rim underwent catheter closure with the ASO using the "Greek maneuver" under transesophageal guidance. The Greek maneuver is applied when protrusion of the aortic edge of the deployed left disk of the device in to the right atrium is detected by echo. To circumvent this left disk is recaptured and the whole delivery system is pushed inward and leftward into the left atrium where the left disk and the 2/3 of right disk are simultaneously released. This maneuver forces the left disk to become parallel to the septum preventing the protrusion of the device into the right atrium. The ASO was successfully implanted and was associated with complete closure in 175/185 (95%) of the patients. There were no early or late complications related to the procedure during a follow-up period ranging from 6 months to 7 years. The "Greek maneuver" is a simple quite useful trick that facilitates closure of large ASDs associated with or without deficient aortic or posterior rims. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. An adaptive maneuvering logic computer program for the simulation of one-on-one air-to-air combat. Volume 1: General description

    Science.gov (United States)

    Burgin, G. H.; Fogel, L. J.; Phelps, J. P.

    1975-01-01

    A technique for computer simulation of air combat is described. Volume 1 decribes the computer program and its development in general terms. Two versions of the program exist. Both incorporate a logic for selecting and executing air combat maneuvers with performance models of specific fighter aircraft. In the batch processing version the flight paths of two aircraft engaged in interactive aerial combat and controlled by the same logic are computed. The realtime version permits human pilots to fly air-to-air combat against the adaptive maneuvering logic (AML) in Langley Differential Maneuvering Simulator (DMS). Volume 2 consists of a detailed description of the computer programs.

  9. Comparative study of c-Fos expression in rat dorsal vagal complex and nucleus ambiguus induced by different durations of restraint water-immersion stress.

    Science.gov (United States)

    Zhang, Yu-Yu; Cao, Guo-Hong; Zhu, Wen-Xing; Cui, Xi-Yun; Ai, Hong-Bin

    2009-06-30

    Restraint water-immersion stress (RWIS) of rats induces vagally-mediated gastric dysfunction. The present work explored the effects of different durations of RWIS on neuronal activities of the dorsal vagal complex (DVC) and the nucleus ambiguous (NA) in rats. Male Wistar rats were exposed to RWIS for 0, 30, 60, 120, or 180 min. Then, a c-Fos immunoperoxidase technique was utilized to assess neuronal activation. Resumptively, c-Fos expression in DVC and NA peaked at 60 min of stress, subsequently decreased gradually with increasing durations of RWIS. Interestingly, the most intense c-Fos expression was observed in the dorsal motor nucleus of the vagus (DMV) during the stress, followed by NA, nucleus of solitary tract (NTS) and area postrema (AP). The peak of c-Fos expression in caudal DMV appeared at 120 min of the stress, slower than that in rostral and intermediate DMV. The c-Fos expression in intermediate and caudal NTS was significantly more intense than that in rostral NTS. These results indicate that the neuronal hyperactivity of DMV, NA, NTS and AP, the primary center that control gastric functions, especially DMV and NA, may play an important role in the disorders of gastric motility and secretion induced by RWIS.

  10. Stimulation of the nervous system for the management of seizures: current and future developments.

    Science.gov (United States)

    Murphy, Jerome V; Patil, Arunangelo

    2003-01-01

    Vagal nerve stimulation (VNS) for the treatment of refractory epilepsy appears to have started from the theory that since VNS can alter the EEG, it may influence epilepsy. It proved effective in several models of epilepsy and was then tried in short-term, open-label and double-blind trials, leading to approval in Canada, Europe and the US. Follow-up observations in these patients demonstrated continued improvement in seizure control for up to 2 years. Close to 50% of treated patients have achieved at least a 50% reduction in seizure frequency. This therapy was also useful as rescue therapy for ongoing seizures in some patients; many patients are more alert. The initial trials were completed in patients >/=12 years of age with refractory partial seizures. Subsequently, similar benefits were shown in patients with tuberous sclerosis complex, Lennox-Gastaut syndrome, hypothalamic hamartomas and primary generalised seizures. Implanting the generator and leads is technically easy, and complications are few. The method of action is largely unknown, although VNS appears to alter metabolic activity in specific brain nuclei. Considering that improvement in mood is frequently found in patients using VNS, it has undergone trials in patients with depression. Other illnesses deserving exploration with this unusual therapy are Alzheimer's disease and autism. Some aspects of VNS have proven disappointing. Although patients have fewer seizures, the number of antiepileptic drugs they take is not significantly reduced. In addition, there is no way to accurately predict the end of life of the generator. Optimal stimulation parameters, if they exist, are unknown. Deep brain stimulation is a new method for controlling medically refractory seizures. It is based on the observation that thalamic stimulation can influence the EEG over a wide area. Several thalamic nuclei have been the object of stimulation in different groups of patients. Intraoperative brain imaging is essential for

  11. Vagus nerve stimulation modulates visceral pain-related affective memory.

    Science.gov (United States)

    Zhang, Xu; Cao, Bing; Yan, Ni; Liu, Jin; Wang, Jun; Tung, Vivian Oi Vian; Li, Ying

    2013-01-01

    Within a biopsychosocial model of pain, pain is seen as a conscious experience modulated by mental, emotional and sensory mechanisms. Recently, using a rodent visceral pain assay that combines the colorectal distension (CRD) model with the conditioned place avoidance (CPA) paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC) activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Electrical vagus nerve stimulation (VNS) has become an established therapy for treatment-resistant epilepsy. VNS has also been shown to enhance memory performance in rats and humans. High-intensity VNS (400 μA) immediately following conditional training significantly increases the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, VNS (400 μA) had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593). Low-intensity VNS (40 μA) had no effect on CRD-induced CPA. Electrophysiological recording showed that VNS (400 μA) had no effect on basal and CRD-induced ACC neuronal firing. Further, VNS did not alter CRD-induced visceral pain responses suggesting high intensity VNS facilitates visceral pain aversive memory independent of sensory discriminative aspects of visceral pain processing. The findings that vagus nerve stimulation facilities visceral pain-related affective memory underscore the importance of memory in visceral pain perception, and support the theory that postprandial factors may act on vagal afferents to modulate ongoing nature of visceral pain-induced affective disorder observed in the clinic, such as irritable bowel syndrome. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Modulation of cardiopulmonary depressor reflex in nucleus ambiguus by electroacupuncture: roles of opioids and γ-aminobutyric acid.

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C; Li, Peng; Li, Min; Longhurst, John C

    2012-04-01

    Stimulation of cardiopulmonary receptors with phenylbiguanide (PBG) elicits depressor cardiovascular reflex responses, including decreases in blood pressure and heart rate mediated in part by the brain stem parasympathetic cardiac neurons in the nucleus ambiguus (NAmb). The present study examined NAmb neurotransmitter mechanisms underlying the influence of electroacupuncture (EA) on the PBG-induced hypotension and bradycardia. We hypothesized that somatic stimulation during EA modulates PBG responses through opioid and γ-aminobutyric acid (GABA) modulation in the NAmb. Anesthetized and ventilated cats were studied during repeated stimulation with PBG or cardiac vagal afferents while low-frequency EA (2 Hz) was applied at P5-6 acupoints overlying the median nerve for 30 min and NAmb neuronal activity, heart rate, and blood pressure were recorded. Microinjection of kainic acid into the NAmb attenuated the PBG-induced bradycardia from -60 ± 11 to -36 ± 11 beats/min. Likewise, EA reduced the PBG-induced depressor and bradycardia reflex by 52 and 61%, respectively. Cardiac vagal afferent evoked preganglionic cellular activity in the NAmb was reduced by EA for about 60 min. Blockade of opioid or GABA(A) receptors using naloxone and gabazine reversed the EA-related modulation of the evoked cardiac vagal activity by 73 and 53%, respectively. Similarly, naloxone and gabazine reversed EA modulation of the negative chronotropic responses from -11 ± 5 to -23 ± 6 and -13 ± 4 to -24 ± 3 beats/min, respectively. Thus EA at P5-6 decreases PBG evoked hypotension and bradycardia as well as the NAmb PBG-sensitive preganglionic cardiac vagal outflow through opioid and GABA neurotransmitter systems.

  13. Dynamics and Control of Three-Dimensional Perching Maneuver under Dynamic Stall Influence

    Science.gov (United States)

    Feroskhan, Mir Alikhan Bin Mohammad

    Perching is a type of aggressive maneuver performed by the class 'Aves' species to attain precision point landing with a generally short landing distance. Perching capability is desirable on unmanned aerial vehicles (UAVs) due to its efficient deceleration process that potentially expands the functionality and flight envelope of the aircraft. This dissertation extends the previous works on perching, which is mostly limited to two-dimensional (2D) cases, to its state-of-the-art threedimensional (3D) variety. This dissertation presents the aerodynamic modeling and optimization framework adopted to generate unprecedented variants of the 3D perching maneuver that include the sideslip perching trajectory, which ameliorates the existing 2D perching concept by eliminating the undesirable undershoot and reliance on gravity. The sideslip perching technique methodically utilizes the lateral and longitudinal drag mechanisms through consecutive phases of yawing and pitching-up motion. Since perching maneuver involves high rates of change in the angles of attack and large turn rates, introduction of three internal variables thus becomes necessary for addressing the influence of dynamic stall delay on the UAV's transient post-stall behavior. These variables are then integrated into a static nonlinear aerodynamic model, developed using empirical and analytical methods, and into an optimization framework that generates a trajectory of sideslip perching maneuver, acquiring over 70% velocity reduction. An impact study of the dynamic stall influence on the optimal perching trajectories suggests that consideration of dynamic stall delay is essential due to the significant discrepancies in the corresponding control inputs required. A comparative study between 2D and 3D perching is also conducted to examine the different drag mechanisms employed by 2D and 3D perching respectively. 3D perching is presented as a more efficient deceleration technique with respect to spatial costs and

  14. Propulsive Maneuver Design for the 2007 Mars Phoenix Lander Mission

    Science.gov (United States)

    Raofi, Behzad; Bhat, Ramachandra S.; Helfrich, Cliff

    2008-01-01

    On May 25, 2008, the Mars Phoenix Lander (PHX) successfully landed in the northern planes of Mars in order to continue and complement NASA's "follow the water" theme as its predecessor Mars missions, such as Mars Odyssey (ODY) and Mars Exploration Rovers, have done in recent years. Instruments on the lander, through a robotic arm able to deliver soil samples to the deck, will perform in-situ and remote-sensing investigations to characterize the chemistry of materials at the local surface, subsurface, and atmosphere. Lander instruments will also identify the potential history of key indicator elements of significance to the biological potential of Mars, including potential organics within any accessible water ice. Precise trajectory control and targeting were necessary in order to achieve the accurate atmospheric entry conditions required for arriving at the desired landing site. The challenge for the trajectory control maneuver design was to meet or exceed these requirements in the presence of spacecraft limitations as well as other mission constraints. This paper describes the strategies used, including the specialized targeting specifically developed for PHX, in order to design and successfully execute the propulsive maneuvers that delivered the spacecraft to its targeted landing site while satisfying the planetary protection requirements in the presence of flight system constraints.

  15. Adjuvant Maneuvers for Residual Curvature Correction During Penile Prosthesis Implantation in Men with Peyronie's Disease.

    Science.gov (United States)

    Berookhim, Boback M; Karpman, Edward; Carrion, Rafael

    2015-11-01

    The surgical treatment of comorbid erectile dysfunction and Peyronie's disease has long included the implantation of an inflatable penile prosthesis as well as a number of adjuvant maneuvers to address residual curvature after prosthesis placement. To review the various surgical options for addressing curvature after prosthesis placement, with specific attention paid to an original article by Wilson et al. reporting on modeling over a penile prosthesis for the management of Peyronie's disease. A literature review was performed analyzing articles reporting the management of penile curvature in patients undergoing implantation of an inflatable penile prosthesis. Reported improvement in Peyronie's deformity as well as the complication rate associated with the various surgical techniques described. Modeling is a well-established treatment modality among patients with Peyronie's disease undergoing penile prosthesis implantation. A variety of other adjuvant maneuvers to address residual curvature when modeling alone is insufficient has been presented in the literature. Over 20 years of experience with modeling over a penile prosthesis have proven the efficacy and safety of this treatment option, providing the surgeon a simple initial step for the management of residual curvature after penile implantation which allows for the use of additional adjuvant maneuvers in those with significant deformities. © 2015 International Society for Sexual Medicine.

  16. Hybrid Switching Controller Design for the Maneuvering and Transit of a Training Ship

    Directory of Open Access Journals (Sweden)

    Tomera Mirosław

    2017-03-01

    Full Text Available The paper presents the design of a hybrid controller used to control the movement of a ship in different operating modes, thereby improving the performance of basic maneuvers. This task requires integrating several operating modes, such as maneuvering the ship at low speeds, steering the ship at different speeds in the course or along the trajectory, and stopping the ship on the route. These modes are executed by five component controllers switched on and off by the supervisor depending on the type of operation performed. The desired route, containing the coordinates of waypoints and tasks performed along consecutive segments of the reference trajectory, is obtained by the supervisory system from the system operator. The former supports switching between component controllers and provides them with new set-points after each change in the reference trajectory segment, thereby ensuring stable operation of the entire hybrid switching controller.

  17. Limited War in the Precision Engagement Era: The Balance Between Dominant Maneuver and Precision Engagement

    National Research Council Canada - National Science Library

    Hedstrom, Marvin

    2001-01-01

    .... German historian Hans Delbruck's two strategies of warfare: annihilation and exhaustion, and American military theorist Robert Leonhard's concepts of attrition and maneuver are examined to establish the relationship...

  18. Interacting Multiple Model (IMM Fifth-Degree Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking

    Directory of Open Access Journals (Sweden)

    Hua Liu

    2017-06-01

    Full Text Available For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF. The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF, the interacting multiple model cubature Kalman filter (IMMCKF and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF.

  19. Interacting Multiple Model (IMM) Fifth-Degree Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.

    Science.gov (United States)

    Liu, Hua; Wu, Wen

    2017-06-13

    For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF).

  20. A Cubature-Principle-Assisted IMM-Adaptive UKF Algorithm for Maneuvering Target Tracking Caused by Sensor Faults

    Directory of Open Access Journals (Sweden)

    Huan Zhou

    2017-09-01

    Full Text Available Aimed at solving the problem of decreased filtering precision while maneuvering target tracking caused by non-Gaussian distribution and sensor faults, we developed an efficient interacting multiple model-unscented Kalman filter (IMM-UKF algorithm. By dividing the IMM-UKF into two links, the algorithm introduces the cubature principle to approximate the probability density of the random variable, after the interaction, by considering the external link of IMM-UKF, which constitutes the cubature-principle-assisted IMM method (CPIMM for solving the non-Gaussian problem, and leads to an adaptive matrix to balance the contribution of the state. The algorithm provides filtering solutions by considering the internal link of IMM-UKF, which is called a new adaptive UKF algorithm (NAUKF to address sensor faults. The proposed CPIMM-NAUKF is evaluated in a numerical simulation and two practical experiments including one navigation experiment and one maneuvering target tracking experiment. The simulation and experiment results show that the proposed CPIMM-NAUKF has greater filtering precision and faster convergence than the existing IMM-UKF. The proposed algorithm achieves a very good tracking performance, and will be effective and applicable in the field of maneuvering target tracking.

  1. Optimal Braking Patterns and Forces in Autonomous Safety-Critical Maneuvers

    OpenAIRE

    Fors, Victor

    2018-01-01

    The trend of more advanced driver-assistance features and the development toward autonomous vehicles enable new possibilities in the area of active safety. With more information available in the vehicle about the surrounding traffic and the road ahead, there is the possibility of improved active-safety systems that make use of this information for stability control in safety-critical maneuvers. Such a system could adaptively make a trade-off between controlling the longitudinal, lateral, and ...

  2. Effects of positive end-expiratory pressure titration and recruitment maneuver on lung inflammation and hyperinflation in experimental acid aspiration-induced lung injury.

    Science.gov (United States)

    Ambrosio, Aline M; Luo, Rubin; Fantoni, Denise T; Gutierres, Claudia; Lu, Qin; Gu, Wen-Jie; Otsuki, Denise A; Malbouisson, Luiz M S; Auler, Jose O C; Rouby, Jean-Jacques

    2012-12-01

    In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.

  3. Anorexia-cachexia syndrome in hepatoma tumour-bearing rats requires the area postrema but not vagal afferents and is paralleled by increased MIC-1/GDF15.

    Science.gov (United States)

    Borner, Tito; Arnold, Myrtha; Ruud, Johan; Breit, Samuel N; Langhans, Wolfgang; Lutz, Thomas A; Blomqvist, Anders; Riediger, Thomas

    2017-06-01

    The cancer-anorexia-cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour-derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour-derived macrophage inhibitory cytokine-1 (MIC-1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC-1 in mice. Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC-1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. In tumour-bearing sham-operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer-induced anorexia or body weight loss. Tumour-bearing rats had substantially increased MIC-1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. These findings demonstrate the importance of the AP in the mediation of cancer-dependent anorexia and body weight loss and support a pathological role of MIC-1 as a tumour-derived factor mediating CACS, possibly via an AP-dependent action. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle

  4. Dopamine Mediates the Vagal Modulation of the Immune System by Electroacupuncture

    Science.gov (United States)

    Torres-Rosas, Rafael; Yehia, Ghassan; Peña, Geber; Mishra, Priya; del Rocio Thompson-Bonilla, Maria; Moreno-Eutimio, Mario Adán; Arriaga-Pizano, Lourdes Andrea; Isibasi, Armando; Ulloa, Luis

    2014-01-01

    Previous anti-inflammatory strategies against sepsis, a leading cause of death in hospitals, had limited efficacy in clinical trials, in part because they targeted single cytokines and the experimental models failed to mimic clinical settings1-3. Neuronal networks represent physiological mechanisms selected by evolution to control inflammation that can be exploited for the treatment of inflammatory and infectious disorders3. Here, we report that sciatic nerve activation with electroacupuncture controls systemic inflammation and rescues mice from polymicrobial peritonitis. Electroacupuncture at the sciatic nerve controls systemic inflammation by inducing a vagal activation of DOPA decarboxylase leading to the production of dopamine in the adrenal medulla. Experimental models with adrenolectomized animals mimic clinical adrenal insufficiency4, increase the susceptibility to sepsis, and prevent the anti-inflammatory potential of electroacupuncture. Dopamine inhibits cytokine production via dopaminergic type-1 receptors. Dopaminergic D1-agonists suppress systemic inflammation and rescue mice from polymicrobial peritonitis in animals with adrenal insufficiency. Our results suggest a novel anti-inflammatory mechanism mediated by the sciatic and the vagus nerves modulating the production of catecholamines in the adrenal glands. From a pharmacological perspective, selective dopaminergic agonists mimic the anti-inflammatory potential of electroacupuncture and can provide therapeutic advantages to control inflammation in infectious and inflammatory disorders. PMID:24562381

  5. Low-Thrust Out-of-Plane Orbital Station-Keeping Maneuvers for Satellites

    Directory of Open Access Journals (Sweden)

    Vivian M. Gomes

    2012-01-01

    Full Text Available This paper considers the problem of out of plane orbital maneuvers for station keeping of satellites. The main idea is to consider that a satellite is in an orbit around the Earth and that it has its orbit is disturbed by one or more forces. Then, it is necessary to perform a small amplitude orbital correction to return the satellite to its original orbit, to keep it performing its mission. A low thrust propulsion is used to complete this task. It is important to search for solutions that minimize the fuel consumption to increase the lifetime of the satellite. To solve this problem a hybrid optimal control approach is used. The accuracy of the satisfaction of the constraints is considered, in order to try to decrease the fuel expenditure by taking advantage of this freedom. This type of problem presents numerical difficulties and it is necessary to adjust parameters, as well as details of the algorithm, to get convergence. In this versions of the algorithm that works well for planar maneuvers are usually not adequate for the out of plane orbital corrections. In order to illustrate the method, some numerical results are presented.

  6. An Analysis Nomoto Gain and Norbin Parameter on Ship Turning Maneuver

    Directory of Open Access Journals (Sweden)

    Aulia Siti Aisjah

    2010-05-01

    Full Text Available First order approach of maneuvering ship model developed by Nomoto, that has commonly underpinned researchers on mathematical models of ship maneuvering, is employed by the present research in order to describe the results of Nomoto validation gain value from some type of ships. In this present study, the controls are designated using FLC, while the rules are derived from FLC; furthermore, the reference is the LQG/LTR. On the other pole, Norbin parameters are obtained under the bases of the gain and time constant output control response. Validation of Nomoto gain value is obtained through the calculation of the value of a constant gain, settling time of the first order response, and approach value toward damping ratio and natural frequency response of the system used to control the output of the second order pattern. Validation is employed on 20 types of ships with a length between 40-350 meters; as a result, it is figured out that at the Low Speed General Cargo ship, Mariner, RO/RO, and Barge Carrier have good maneuverability compared to the other 17 types of ships.

  7. A Sampling Based Approach to Spacecraft Autonomous Maneuvering with Safety Specifications

    Science.gov (United States)

    Starek, Joseph A.; Barbee, Brent W.; Pavone, Marco

    2015-01-01

    This paper presents a methods for safe spacecraft autonomous maneuvering that leverages robotic motion-planning techniques to spacecraft control. Specifically the scenario we consider is an in-plan rendezvous of a chaser spacecraft in proximity to a target spacecraft at the origin of the Clohessy Wiltshire Hill frame. The trajectory for the chaser spacecraft is generated in a receding horizon fashion by executing a sampling based robotic motion planning algorithm name Fast Marching Trees (FMT) which efficiently grows a tree of trajectories over a set of probabillistically drawn samples in the state space. To enforce safety the tree is only grown over actively safe samples for which there exists a one-burn collision avoidance maneuver that circularizes the spacecraft orbit along a collision-free coasting arc and that can be executed under potential thrusters failures. The overall approach establishes a provably correct framework for the systematic encoding of safety specifications into the spacecraft trajectory generations process and appears amenable to real time implementation on orbit. Simulation results are presented for a two-fault tolerant spacecraft during autonomous approach to a single client in Low Earth Orbit.

  8. Vagal afferents modulate cytokine-mediated respiratory control at the neonatal medulla oblongata.

    Science.gov (United States)

    Balan, Kannan V; Kc, Prabha; Hoxha, Zana; Mayer, Catherine A; Wilson, Christopher G; Martin, Richard J

    2011-09-30

    Perinatal sepsis and inflammation trigger lung and brain injury in preterm infants, and associated apnea of prematurity. We hypothesized that endotoxin exposure in the immature lung would upregulate proinflammatory cytokine mRNA expression in the medulla oblongata and be associated with impaired respiratory control. Lipopolysaccharide (LPS, 0.1mg/kg) or saline was administered intratracheally to rat pups and medulla oblongatas were harvested for quantifying expression of mRNA for proinflammatory cytokines. LPS-exposure significantly increased medullary mRNA for IL-1β and IL-6, and vagotomy blunted this increase in IL-1β, but not IL-6. Whole-body flow plethysmography revealed that LPS-exposed pups had an attenuated ventilatory response to hypoxia both before and after carotid sinus nerve transection. Immunochemical expression of IL-1β within the nucleus of the solitary tract and area postrema was increased after LPS-exposure. In summary, intratracheal endotoxin-exposure in rat pups is associated with upregulation of proinflammatory cytokines in the medulla oblongata that is vagally mediated for IL-1β and associated with an impaired hypoxic ventilatory response. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Urban air pollution targets the dorsal vagal complex and dark chocolate offers neuroprotection.

    Science.gov (United States)

    Villarreal-Calderon, Rafael; Torres-Jardón, Ricardo; Palacios-Moreno, Juan; Osnaya, Norma; Pérez-Guillé, Beatriz; Maronpot, Robert R; Reed, William; Zhu, Hongtu; Calderón-Garcidueñas, Lilian

    2010-12-01

    Mexico City (MC) residents exposed to fine particulate matter and endotoxin exhibit inflammation of the olfactory bulb, substantia nigra, and vagus nerve. The goal of this study was to model these endpoints in mice and examine the neuroprotective effects of chocolate. Mice exposed to MC air received no treatment or oral dark chocolate and were compared to clean-air mice either untreated or treated intraperitoneally with endotoxin. Cyclooxygenase-2 (COX-2), interleukin 1 beta (IL-1β), and CD14 messenger RNA (mRNA) were quantified after 4, 8, and 16 months of exposure in target brain regions. After 16 months of exposure, the dorsal vagal complex (DVC) exhibited significant inflammation in endotoxin-treated and MC mice (COX-2 and IL-1β P<.001). Mexico City mice had olfactory bulb upregulation of CD14 (P=.002) and significant DVC imbalance in genes for antioxidant defenses, apoptosis, and neurodegeneration. These findings demonstrate sustained DVC inflammation in mice exposed to MC air, which is mitigated by chocolate administration. © The Author(s) 2010

  10. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the Lunar Atmosphere Dust Environment Explorer (LADEE) Spacecraft

    Science.gov (United States)

    Genova, Anthony L.; Loucks, Michael; Carrico, John

    2014-01-01

    The purpose of this extended abstract is to present results from a failed lunar-orbit insertion (LOI) maneuver contingency analysis for the Lunar Atmosphere Dust Environment Explorer (LADEE) mission, managed and operated by NASA Ames Research Center in Moffett Field, CA. The LADEE spacecrafts nominal trajectory implemented multiple sub-lunar phasing orbits centered at Earth before eventually reaching the Moon (Fig. 1) where a critical LOI maneuver was to be performed [1,2,3]. If this LOI was missed, the LADEE spacecraft would be on an Earth-escape trajectory, bound for heliocentric space. Although a partial mission recovery is possible from a heliocentric orbit (to be discussed in the full paper), it was found that an escape-prevention maneuver could be performed several days after a hypothetical LOI-miss, allowing a return to the desired science orbit around the Moon without leaving the Earths sphere-of-influence (SOI).

  11. Maneuvering a pilot implementation to align agendas across sectors

    DEFF Research Database (Denmark)

    Mønsted, Troels; Hertzum, Morten; Søndergaard, Jens

    2017-01-01

    A prerequisite for pilot implementations in complex organizational settings is that the agendas of the stakeholders of the system are maneuvered into alignment. In this paper we present a study of the pilot implementation of the IT-supported, preventive intervention TOF (Tidlig Opsporing og...... Forebyggelse). A core element of TOF is an IT system that stratifies citizens into risk groups on the basis of self-reported lifestyle information and data retrieved from the medical records of the general practitioners (GPs). In addition, the system facilitates cross-sectoral coordination between preventive...

  12. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  13. Dynamic ankle control in athletes with ankle instability during sports maneuvers.

    Science.gov (United States)

    Lin, Cheng-Feng; Chen, Chin-Yang; Lin, Chia-Wei

    2011-09-01

    Ankle sprain is a common sports injury. While the effects of static constraints in stabilizing the ankle joint are relatively well understood, those of dynamic constraints are less clear and require further investigation. This study was undertaken to evaluate the dynamic stability of the ankle joint during the landing phase of running and stop-jump maneuvers in athletes with and without chronic ankle instability (CAI). Controlled laboratory study. Fifteen athletes with CAI and 15 age-matched athletes without CAI performed running and stop-jump landing tasks. The dynamic ankle joint stiffness, tibialis anterior (TA)/peroneus longus (PL) and TA/gastrocnemius lateralis (GL) co-contraction indices, ankle joint angle, and root-mean-square (RMS) of the TA, PL, and GL electromyographic signals were measured during each task. During running, the CAI group exhibited a greater ankle inversion angle than the control group in the pre-landing phase (P = .012-.042) and a lower dynamic ankle joint stiffness in the post-landing phase (CAI: 0.109 ± 0.039 N·m/deg; control: 0.150 ± 0.068 N·m/deg; P = .048). In the stop-jump landing task, athletes with CAI had a significantly lower TA/PL co-contraction index during the pre-landing phase (CAI: 49.1 ± 19; control: 64.8 ± 16; P = .009). In addition, the CAI group exhibited a greater ankle inversion (P = .049), a lower peak eversion (P = .04), and a smaller RMS of the PL electromyographic signal in the post-landing phase (CAI: 0.73 ± 0.32; control: 0.51 ± 0.22; P = .04). Athletes with CAI had a relatively inverted ankle, reduced muscle co-contraction, and a lower dynamic stiffness in the ankle joint during the landing phase of sports maneuvers and this may jeopardize the stability of the ankle. Sports training or rehabilitation programs should differentiate between the pre-landing and post-landing phases of sports maneuvers, and should educate athletes to land with an appropriate ankle position and muscle recruitment.

  14. Intraoperative electrocortical stimulation of Brodman area 4: a 10-year analysis of 255 cases

    Directory of Open Access Journals (Sweden)

    Brock Mario

    2006-07-01

    Full Text Available Abstract Background Brain tumor surgery is limited by the risk of postoperative neurological deficits. Intraoperative neurophysiological examination techniques, which are based on the electrical excitability of the human brain cortex, are thus still indispensable for surgery in eloquent areas such as the primary motor cortex (Brodman Area 4. Methods This study analyzed the data obtained from a total of 255 cerebral interventions for lesions with direct contact to (121 or immediately adjacent to (134 Brodman Area 4 in order to optimize stimulation parameters and to search for direct correlation between intraoperative potential changes and specific surgical maneuvers when using monopolar cortex stimulation (MCS for electrocortical mapping and continuous intraoperative neurophysiological monitoring. Results Compound muscle action potentials (CMAPs were recorded from the thenar muscles and forearm flexors in accordance with the large representational area of the hand and forearm in Brodman Area 4. By optimizing the stimulation parameters in two steps (step 1: stimulation frequency and step 2: train sequence MCS was successful in 91% (232/255 of the cases. Statistical analysis of the parameters latency, potential width and amplitude showed spontaneous latency prolongations and abrupt amplitude reductions as a reliable warning signal for direct involvement of the motor cortex or motor pathways. Conclusion MCS must be considered a stimulation technique that enables reliable qualitative analysis of the recorded potentials, which may thus be regarded as directly predictive. Nevertheless, like other intraoperative neurophysiological examination techniques, MCS has technical, anatomical and neurophysiological limitations. A variety of surgical and non-surgical influences can be reason for false positive or false negative measurements.

  15. Canadarm2 Maneuvers Quest Airlock

    Science.gov (United States)

    2001-01-01

    At the control of Expedition Two Flight Engineer Susan B. Helms, the newly-installed Canadian-built Canadarm2, Space Station Remote Manipulator System (SSRMS) maneuvers the Quest Airlock into the proper position to be mated onto the starboard side of the Unity Node I during the first of three extravehicular activities (EVA) of the STS-104 mission. The Quest Airlock makes it easier to perform space walks, and allows both Russian and American spacesuits to be worn when the Shuttle is not docked with the International Space Station (ISS). American suits will not fit through Russion airlocks at the Station. The Boeing Company, the space station prime contractor, built the 6.5-ton (5.8 metric ton) airlock and several other key components at the Marshall Space Flight Center (MSFC), in the same building where the Saturn V rocket was built. Installation activities were supported by the development team from the Payload Operations Control Center (POCC) located at the MSFC and the Mission Control Center at NASA's Johnson Space Flight Center in Houston, Texas.

  16. [Sex differences in neuromodulation of mucosal mast cells in the rat jejunum].

    Science.gov (United States)

    Gottwald, T; Becker, H D; Stead, R H

    1997-01-01

    The effect of electrical stimulation of both cervical vagal nerves on mucosal mast cells in the jejunum was investigated in an in vivo animal model with rats of both sexes. Males showed a significant increase of mast cell densities after electrical stimulation (1.0 mA, 5 Hz, 5 ms, 12 min) in the lamina propria. Simultaneously, we observed a significant increase of tissue histamine levels (ANOVA: P < 0.05), whereas serum levels remained unchanged. However, even though females had significantly higher levels throughout compared to males (ANOVA: P < 0.05), they did not show any significant reaction to electrical stimulation. These in vivo data support morphological and in vitro data from other investigators, who hypothesized a functional interaction between mucosal mast cells and nerves. However, degranulation seems to be a poor in situ indicator for mast-cell stimulation, as mast-cell densities increased in males, while the percentage of degranulated cells remained the same in all groups (about 40%). Instead, electrical stimulation of the vagal nerve seems to trigger histamine synthesis, or simply stabilization of mast cells. Interestingly, this phenomenon seems to be sex-dependent, suggesting a regulatory role for sex hormones in this scenario.

  17. Driver Behavior During Overtaking Maneuvers from the 100-Car Naturalistic Driving Study.

    Science.gov (United States)

    Chen, Rong; Kusano, Kristofer D; Gabler, Hampton C

    2015-01-01

    Lane changes with the intention to overtake the vehicle in front are especially challenging scenarios for forward collision warning (FCW) designs. These overtaking maneuvers can occur at high relative vehicle speeds and often involve no brake and/or turn signal application. Therefore, overtaking presents the potential of erroneously triggering the FCW. A better understanding of driver behavior during lane change events can improve designs of this human-machine interface and increase driver acceptance of FCW. The objective of this study was to aid FCW design by characterizing driver behavior during lane change events using naturalistic driving study data. The analysis was based on data from the 100-Car Naturalistic Driving Study, collected by the Virginia Tech Transportation Institute. The 100-Car study contains approximately 1.2 million vehicle miles of driving and 43,000 h of data collected from 108 primary drivers. In order to identify overtaking maneuvers from a large sample of driving data, an algorithm to automatically identify overtaking events was developed. The lead vehicle and minimum time to collision (TTC) at the start of lane change events was identified using radar processing techniques developed in a previous study. The lane change identification algorithm was validated against video analysis, which manually identified 1,425 lane change events from approximately 126 full trips. Forty-five drivers with valid time series data were selected from the 100-Car study. From the sample of drivers, our algorithm identified 326,238 lane change events. A total of 90,639 lane change events were found to involve a closing lead vehicle. Lane change events were evenly distributed between left side and right side lane changes. The characterization of lane change frequency and minimum TTC was divided into 10 mph speed bins for vehicle travel speeds between 10 and 90 mph. For all lane change events with a closing lead vehicle, the results showed that drivers change

  18. Effect of antrectomy on the nervous phase of gastric secretion in the dog.

    Science.gov (United States)

    Caboclo, J L; Wolfe, M M; Hocking, M P; McGuigan, J E; Woodward, E R

    1981-09-01

    A method is described for complete isolation of the stomach in the dog with vagal innervation intact. This involves esophagostomy, double mucosal closure of the pylorus and a Maydl gastric fistula combined with gastrojejunostomy. The latter is occluded during periods of study. In this preparation the responses to sham feeding and to insulin-induced hypoglycemia were reduced approximately 10-fold, reiterating the significant synergistic effect of gastrin on vagal stimulation of the parietal cell mass. However, significant acid secretion could still be induced in this preparation by both sham feeding and insulin-induced hypoglycemia.

  19. Slewing maneuvers and vibration control of space structures by feedforward/feedback moment-gyro controls

    Science.gov (United States)

    Yang, Li-Farn; Mikulas, Martin M., Jr.; Park, K. C.; Su, Renjeng

    1993-01-01

    This paper presents a moment-gyro control approach to the maneuver and vibration suppression of a flexible truss arm undergoing a constant slewing motion. The overall slewing motion is triggered by a feedforward input, and a companion feedback controller is employed to augment the feedforward input and subsequently to control vibrations. The feedforward input for the given motion requirement is determined from the combined CMG (Control Momentum Gyro) devices and the desired rigid-body motion. The rigid-body dynamic model has enabled us to identify the attendant CMG momentum saturation constraints. The task for vibration control is carried out in two stages; first in the search of a suitable CMG placement along the beam span for various slewing maneuvers, and subsequently in the development of Liapunov-based control algorithms for CMG spin-stabilization. Both analytical and numerical results are presented to show the effectiveness of the present approach.

  20. Determination of the SNPP VIIRS SDSM Screen Relative Transmittance From Both Yaw Maneuver and Regular On-Orbit Data

    Science.gov (United States)

    Lei, Ning; Chen, Xuexia; Xiong, Xiaoxiong

    2015-01-01

    The Visible Infrared Imaging Radiometer Suiteaboard the Suomi National Polar-orbiting Partnership (SNPP) satellite performs radiometric calibration of its reflective solar bands primarily through observing a sunlit onboard solar diffuser (SD). The SD bidirectional reflectance distribution function(BRDF) degradation factor is determined by an onboard SD stability monitor (SDSM), which observes the Sun through a pinhole screen and the sunlit SD. The transmittance of the SDSM pinhole screen over a range of solar angles was determined prelaunch and used initially to determine the BRDF degradation factor.The degradation-factor-versus-time curves were found to have a number of very large unphysical undulations likely due to the inaccuracy in the prelaunch determined SDSM screen transmittance.To refine the SDSM screen transmittance, satellite yaw maneuvers were carried out. With the SDSM screen relative transmittance determined from the yaw maneuver data, the computed BRDFdegradation factor curves still have large unphysical ripples, indicating that the projected solar horizontal angular step size in the yaw maneuver data is too large to resolve the transmittance at a fine angular scale. We develop a methodology to use both the yaw maneuver and a small portion of regular on-orbit data to determine the SDSM screen relative transmittance at a fine angular scale. We determine that the error standard deviation of the calculated relative transmittance ranges from 0.00030 (672 nm) to 0.00092 (926 nm). With the newly determined SDSM screen relative transmittance, the computed BRDF degradation factor behaves much more smoothly over time.

  1. Stanovení vagového prahu a možnosti jeho využití Determination of the vagal threshold and changes of it's using

    Directory of Open Access Journals (Sweden)

    Aleš Gába

    2008-01-01

    Full Text Available Cílem této studie bylo navrhnout jednoduchý matematický postup, podle kterého by bylo možno stanovit takovou hraniční intenzitu zatížení, nad kterou se redukovaná vagová aktivita dále výrazně nemění a kardiovaskulární systém je dominantně řízen zvyšující se aktivitou sympatoadrenálního systému (vagový práh – TVA. Testovaný soubor tvořilo 10 mužů ve věku 27,24 ± 3,23 let s hodnotou maximální spotřeby kyslíku 50,24 ± 4,63 ml.kg–1.min–1. Aktivita ANS byla hodnocena pomocí neinvazivní metody spektrální analýzy (SA variability srdeční frekvence (HRV. Změny v autonomní kardiální regulaci byly posuzovány během chůze na běhátku v setrvalém stavu při intenzitách zatížení od 20 % do 70 % maximální tepové rezervy (MTR. Zvýšení intenzity zatížení o 10 % MTR v rozmezí od 20 % do 70 % MTR vedlo vždy k signifikantnímu snížení aktivity vagu. Navržený postup pro stanovení deflekčního bodu křivky závislosti PHF na intenzitě zatížení, za kterým již PHF výrazně neklesá, umožnil identifikovat TVA na úrovni 43,63 ± 4,66 % MTR. Navržený algoritmus stanovení TVA dovoluje odhadnout při tělesné práci "bezpečnou" intenzitu zatížení, při které je ještě zachována aktivita vagu a aktivita sympatiku se ještě výrazně nezvyšuje. Stanovení TVA se může uplatnit zejména při preskripci intenzity zatížení v rámci programu pohybové aktivity u pacientů s redukovanou aktivitou ANS a se zvýšeným rizikem náhlé srdeční příhody. Exercise intensity causes changes in the activity of both branches of the autonomic nervous system (ANS as involved in cardiovascular system regulation. Reduction in vagal activity and an increase in sympatho-adrenal activity is associated with an increase in death risk from both cardiac and arrhythmic causes during exercise. The main aim of this work was to develop a simple mathematic algorithm for determination of

  2. Effects of the Tongue-in-Groove Maneuver on Nasal Tip Rotation.

    Science.gov (United States)

    Antunes, Marcelo B; Quatela, Vito C

    2018-03-27

    Changes in nasal tip rotation is a very common maneuver performed during rhinoplasty. Among the many techniques used to achieve this goal is the tongue-in-groove (TIG). This study addresses the long-term effect of the TIG on the nasal tip rotation 1 year after rhinoplasty. The authors prospectively identified patients who were submitted to a rhinoplasty with a TIG maneuver over a period of 1 year. The angle of rotation was measured along the nostril axis angle. The data was analyzed using the t-test and a linear regression model. Seventeen patients were included. The average preoperative tip rotation was 93.95° (SD, 3.12°). Immediate postoperative tip rotation averaged 114.47° (SD, 3.79°). At the 1-year follow-up appointment, the tip rotation averaged 106.55° (SD, 3.54°). There was a significant loss of rotation at the 1-year postoperative visit (pTIG is a more dependable technique than the ones that rely on healing and contraction to obtain rotation. Our data demonstrated a significant loss of rotation during the first year. This suggests that the surgeon needs to slightly overcorrect the tip rotation to account for this loss.

  3. Modeling of driver's collision avoidance maneuver based on controller switching model.

    Science.gov (United States)

    Kim, Jong-Hae; Hayakawa, Soichiro; Suzuki, Tatsuya; Hayashi, Koji; Okuma, Shigeru; Tsuchida, Nuio; Shimizu, Masayuki; Kido, Shigeyuki

    2005-12-01

    This paper presents a modeling strategy of human driving behavior based on the controller switching model focusing on the driver's collision avoidance maneuver. The driving data are collected by using the three-dimensional (3-D) driving simulator based on the CAVE Automatic Virtual Environment (CAVE), which provides stereoscopic immersive virtual environment. In our modeling, the control scenario of the human driver, that is, the mapping from the driver's sensory information to the operation of the driver such as acceleration, braking, and steering, is expressed by Piecewise Polynomial (PWP) model. Since the PWP model includes both continuous behaviors given by polynomials and discrete logical conditions, it can be regarded as a class of Hybrid Dynamical System (HDS). The identification problem for the PWP model is formulated as the Mixed Integer Linear Programming (MILP) by transforming the switching conditions into binary variables. From the obtained results, it is found that the driver appropriately switches the "control law" according to the sensory information. In addition, the driving characteristics of the beginner driver and the expert driver are compared and discussed. These results enable us to capture not only the physical meaning of the driving skill but the decision-making aspect (switching conditions) in the driver's collision avoidance maneuver as well.

  4. Efficiency of Combined Use of a Surfactant and the «Lung Opening» Maneuver in the Treatment of Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    A. V. Vlasenko

    2007-01-01

    Full Text Available The paper discusses whether the «lung opening» maneuver in combination with the endobronchial administration of a pulmonary surfactant can be used in the treatment of patients with acute respiratory distress syndrome (ARDS of various genesis. The authors outline data of their studies of the separate use of both methods and present the results of successful treatment in a patient with severe concomitant injury and posttraumatic ARDS in the combined use of the «lung opening» maneuver and Surfactant-BL. With intensive care, the combined use of these methods is a more effective way of improving gas exchange as compared with their use alone. Key words: acute respiratory distress syndrome, surfactant-BL, «lung opening» maneuver, combined use of both methods.

  5. Implementation of the Orbital Maneuvering Systems Engine and Thrust Vector Control for the European Service Module

    Science.gov (United States)

    Millard, Jon

    2014-01-01

    The European Space Agency (ESA) has entered into a partnership with the National Aeronautics and Space Administration (NASA) to develop and provide the Service Module (SM) for the Orion Multipurpose Crew Vehicle (MPCV) Program. The European Service Module (ESM) will provide main engine thrust by utilizing the Space Shuttle Program Orbital Maneuvering System Engine (OMS-E). Thrust Vector Control (TVC) of the OMS-E will be provided by the Orbital Maneuvering System (OMS) TVC, also used during the Space Shuttle Program. NASA will be providing the OMS-E and OMS TVC to ESA as Government Furnished Equipment (GFE) to integrate into the ESM. This presentation will describe the OMS-E and OMS TVC and discuss the implementation of the hardware for the ESM.

  6. Minimum Propellant Low-Thrust Maneuvers near the Libration Points

    Science.gov (United States)

    Marinescu, A.; Dumitrache, M.

    The impulse technique certainly can bring the vehicle on orbits around the libration points or close to them. The question that aries is, by what means can the vehicle arrive in such cases at the libration points? A first investigation carried out in this paper can give an answer: the use of the technique of low-thrust, which, in addition, can bring the vehicle from the libration points near to or into orbits around these points. This aspect is considered in this present paper where for the applications we have considered the transfer for orbits of the equidistant point L4 and of the collinear point L2, from Earth-moon system. This transfer maneuver can be used to insertion one satellite on libration points orbits. In Earth- moon system the points L 4 and L 5 because an vehicle in on of the equidistant points in quite stable and remains in its vicinity of perturbed, have potential interest for the establishment of transporder satellite for interplanetary tracking. In contrast an vehicle in one of the collinear points is quite instable and it will oscillate along the Earth-moon-axis at increasing amplitude and gradually escape from the libration point. Let use assume that a space vehicle equipped with a low-thrust propulsion is near a libration point L. We consider the planar motion in the restricted frame of the three bodies in the rotating system L, where the Earth-moon distance D=l. The unit of time T is period of the moon's orbit divided by 2 and multiplied by the square root of the quantity one plus the moon/Earth mass ratio, and the unit of mass is the Earth's mass. With these predictions the motion equatios of the vehicle equiped with a low-thrust propulsion installation in the linear approximation near the libration point, have been established. The parameters of the motion at the beginning and the end of these maneuvers are known, the variational problem has been formulated as a Lagrange type problem with fixed extremities. On established the differential

  7. Analysis of Loss of Control Parameters for Aircraft Maneuvering in General Aviation

    Directory of Open Access Journals (Sweden)

    Sameer Ud-Din

    2018-01-01

    Full Text Available A rapid increase in the occurrence of loss of control in general aviation has raised concern in recent years. Loss of control (LOC pertains to unique characteristics in which external and internal events act in conjunction. The Federal Aviation Administration (FAA has approved an Integrated Safety Assessment Model (ISAM for evaluating safety in the National Airspace System (NAS. ISAM consists of an event sequence diagram (ESD with fault trees containing numerous parameters, which is recognized as casual risk model. In this paper, we outline an integrated risk assessment framework to model maneuvering through cross-examining external and internal events. The maneuvering is in the critical flight phase with a high number of LOC occurrences in general aviation, where highly trained and qualified pilots failed to maintain aircraft control irrespective of the preventive nature of the events. Various metrics have been presented for evaluating the significance of these parameters to identify the most important ones. The proposed sensitivity analysis considers the accident, fatality, and risk reduction frequencies that assist in the decision-making process and foresees future risks from a general aviation perspective.

  8. Effects of the Mueller maneuver on functional mitral regurgitation and implications for obstructive sleep apnea.

    Science.gov (United States)

    Pressman, Gregg S; Orban, Marek; Leinveber, Pavel; Parekh, Kunal; Singh, Manmeet; Kara, Tomas; Somers, Virend K

    2015-06-01

    Obstructive sleep apnea is prevalent and adversely affects cardiovascular health. However, little is known of the acute effects of an obstructive apnea on cardiovascular physiology. We hypothesized that pre-existing functional mitral regurgitation (MR) would worsen during performance of a Mueller maneuver (MM) used to simulate an obstructive apnea; 15 subjects with an ejection fraction ≤35% and pre-existing functional MR were studied with Doppler echocardiography. The radius of the proximal flow convergence was used as a measure of mitral regurgitant flow. Measurements were made at baseline, during the MM, and post-MM. Areas of all 4 chambers were also measured at these time points, both in systole and diastole. Mean flow convergence radius for the group decreased significantly during the transition from the late-MM to post-MM (0.65 → 0.57 mm, p = 0.001), implying increased MR during the MM. In addition, in 3 subjects, duration of MR increased during the MM. Right atrial (RA) areas, both systolic and diastolic, increased during the maneuver, whereas RA fractional area change decreased, indicating reduced RA emptying. Left ventricular emptying decreased early in the maneuver, probably because of the increased afterload burden, and then recovered. In conclusion, high negative intrathoracic pressure produces changes that, repeated hundreds of times per night in patients with obstructive sleep apnea, have the potential to worsen heart failure and predispose affected subjects to atrial fibrillation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Anatomy and muscle activity of the dorsal fins in bamboo sharks and spiny dogfish during turning maneuvers.

    Science.gov (United States)

    Maia, Anabela; Wilga, Cheryl D

    2013-11-01

    Stability and procured instability characterize two opposing types of swimming, steady and maneuvering, respectively. Fins can be used to manipulate flow to adjust stability during swimming maneuvers either actively using muscle control or passively by structural control. The function of the dorsal fins during turning maneuvering in two shark species with different swimming modes is investigated here using musculoskeletal anatomy and muscle function. White-spotted bamboo sharks are a benthic species that inhabits complex reef habitats and thus have high requirements for maneuverability. Spiny dogfish occupy a variety of coastal and continental shelf habitats and spend relatively more time cruising in open water. These species differ in dorsal fin morphology and fin position along the body. Bamboo sharks have a larger second dorsal fin area and proportionally more muscle insertion into both dorsal fins. The basal and radial pterygiophores are plate-like structures in spiny dogfish and are nearly indistinguishable from one another. In contrast, bamboo sharks lack basal pterygiophores, while the radial pterygiophores form two rows of elongated rectangular elements that articulate with one another. The dorsal fin muscles are composed of a large muscle mass that extends over the ceratotrichia overlying the radials in spiny dogfish. However, in bamboo sharks, the muscle mass is divided into multiple distinct muscles that insert onto the ceratotrichia. During turning maneuvers, the dorsal fin muscles are active in both species with no differences in onset between fin sides. Spiny dogfish have longer burst durations on the outer fin side, which is consistent with opposing resistance to the medium. In bamboo sharks, bilateral activation of the dorsal in muscles could also be stiffening the fin throughout the turn. Thus, dogfish sharks passively stiffen the dorsal fin structurally and functionally, while bamboo sharks have more flexible dorsal fins, which result from a

  10. How Lovebirds Maneuver Rapidly Using Super-Fast Head Saccades and Image Feature Stabilization.

    Directory of Open Access Journals (Sweden)

    Daniel Kress

    Full Text Available Diurnal flying animals such as birds depend primarily on vision to coordinate their flight path during goal-directed flight tasks. To extract the spatial structure of the surrounding environment, birds are thought to use retinal image motion (optical flow that is primarily induced by motion of their head. It is unclear what gaze behaviors birds perform to support visuomotor control during rapid maneuvering flight in which they continuously switch between flight modes. To analyze this, we measured the gaze behavior of rapidly turning lovebirds in a goal-directed task: take-off and fly away from a perch, turn on a dime, and fly back and land on the same perch. High-speed flight recordings revealed that rapidly turning lovebirds perform a remarkable stereotypical gaze behavior with peak saccadic head turns up to 2700 degrees per second, as fast as insects, enabled by fast neck muscles. In between saccades, gaze orientation is held constant. By comparing saccade and wingbeat phase, we find that these super-fast saccades are coordinated with the downstroke when the lateral visual field is occluded by the wings. Lovebirds thus maximize visual perception by overlying behaviors that impair vision, which helps coordinate maneuvers. Before the turn, lovebirds keep a high contrast edge in their visual midline. Similarly, before landing, the lovebirds stabilize the center of the perch in their visual midline. The perch on which the birds land swings, like a branch in the wind, and we find that retinal size of the perch is the most parsimonious visual cue to initiate landing. Our observations show that rapidly maneuvering birds use precisely timed stereotypic gaze behaviors consisting of rapid head turns and frontal feature stabilization, which facilitates optical flow based flight control. Similar gaze behaviors have been reported for visually navigating humans. This finding can inspire more effective vision-based autopilots for drones.

  11. The application of the random regret minimization model to drivers’ choice of crash avoidance maneuvers

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    This study explores the plausibility of regret minimization as behavioral paradigm underlying the choice of crash avoidance maneuvers. Alternatively to previous studies that considered utility maximization, this study applies the random regret minimization (RRM) model while assuming that drivers ...

  12. The application of the random regret minimization model to drivers’ choice of crash avoidance maneuvers

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    This study explores the plausibility of regret minimization as behavioral paradigm underlying the choice of crash avoidance maneuvers. Alternatively to previous studies that considered utility maximization, this study applies the random regret minimization (RRM) model while assuming that drivers ...

  13. Modified unscented Kalman filter using modified filter gain and variance scale factor for highly maneuvering target tracking

    Institute of Scientific and Technical Information of China (English)

    Changyun Liu; Penglang Shui; Gang Wei; Song Li

    2014-01-01

    To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneu-vers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is pre-sented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneu-vering target compared with the standard UKF.

  14. Using stimulation of the diving reflex in humans to teach integrative physiology.

    Science.gov (United States)

    Choate, Julia K; Denton, Kate M; Evans, Roger G; Hodgson, Yvonne

    2014-12-01

    During underwater submersion, the body responds by conserving O2 and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be stimulated in the practical laboratory setting using breath holding and facial immersion in water. Our undergraduate physiology students complete a laboratory class in which they investigate the effects of stimulating the diving reflex on cardiovascular variables, which are recorded and calculated with a Finapres finger cuff. These variables include heart rate, cardiac output, stroke volume, total peripheral resistance, and arterial pressures (mean, diastolic, and systolic). Components of the diving reflex are stimulated by 1) facial immersion in cold water (15°C), 2) breathing with a snorkel in cold water (15°C), 3) facial immersion in warm water (30°C), and 4) breath holding in air. Statistical analysis of the data generated for each of these four maneuvers allows the students to consider the factors that contribute to the diving response, such as the temperature of the water and the location of the sensory receptors that initiate the response. In addition to providing specific details about the equipment, protocols, and learning outcomes, this report describes how we assess this practical exercise and summarizes some common student misunderstandings of the essential physiological concepts underlying the diving response. Copyright © 2014 The American Physiological Society.

  15. Affective and physiological responses to the suffering of others: compassion and vagal activity.

    Science.gov (United States)

    Stellar, Jennifer E; Cohen, Adam; Oveis, Christopher; Keltner, Dacher

    2015-04-01

    Compassion is an affective response to another's suffering and a catalyst of prosocial behavior. In the present studies, we explore the peripheral physiological changes associated with the experience of compassion. Guided by long-standing theoretical claims, we propose that compassion is associated with activation in the parasympathetic autonomic nervous system through the vagus nerve. Across 4 studies, participants witnessed others suffer while we recorded physiological measures, including heart rate, respiration, skin conductance, and a measure of vagal activity called respiratory sinus arrhythmia (RSA). Participants exhibited greater RSA during the compassion induction compared with a neutral control (Study 1), another positive emotion (Study 2), and a prosocial emotion lacking appraisals of another person's suffering (Study 3). Greater RSA during the experience of compassion compared with the neutral or control emotion was often accompanied by lower heart rate and respiration but no difference in skin conductance. In Study 4, increases in RSA during compassion positively predicted an established composite of compassion-related words, continuous self-reports of compassion, and nonverbal displays of compassion. Compassion, a core affective component of empathy and prosociality, is associated with heightened parasympathetic activity. (c) 2015 APA, all rights reserved).

  16. Effect of the Abdominal Hollowing and Bracing Maneuvers on Activity Pattern of the Lumbopelvic Muscles During Prone Hip Extension in Subjects With or Without Chronic Low Back Pain: A Preliminary Study.

    Science.gov (United States)

    Kahlaee, Amir H; Ghamkhar, Leila; Arab, Amir M

    2017-02-01

    The purpose of this study was to compare the effect of abdominal hollowing (AH) and abdominal bracing (AB) maneuvers on the activity pattern of lumbopelvic muscles during prone hip extension (PHE) in participants with or without nonspecific chronic low back pain (CLBP). Twenty women with or without CLBP participated in this cross-sectional observational study. The electromyographic activity (amplitude and onset time) of the contralateral erector spinae (CES), ipsilateral erector spinae (IES), gluteus maximus, and biceps femoris muscles was measured during PHE with and without abdominal maneuvers. A 3-way mixed model analysis of variance and post hoc tests were used for statistical analysis. Between-group comparisons showed that the CES onset delay during PHE alone was greater (P = .03) and the activity level of IES, CES, and biceps femoris in all maneuvers (P .05). Performance of the AH maneuver decreased the erector spinae muscle AMP in both groups, and neither maneuver altered the onset delay of any of the muscles in either group. The low back pain group showed higher levels of activity in all muscles (not statistically significant in gluteus maximus during all maneuvers). The groups were similar according to the onset delay of any of the muscles during either maneuver. Copyright © 2016. Published by Elsevier Inc.

  17. Colon electrical stimulation: potential use for treatment of obesity.

    Science.gov (United States)

    Sallam, Hanaa S; Chen, Jiande D Z

    2011-09-01

    Obesity is one of the most prevalent health problems in the United States. Current therapeutic strategies for the treatment of obesity are unsatisfactory. We hypothesized the use of colon electrical stimulation (CES) to treat obesity by inhibiting upper gastrointestinal motility. In this preliminary study, we aimed at studying the effects of CES on gastric emptying of solid, intestinal motility, and food intake in dogs. Six dogs, equipped with serosal colon electrodes and a jejunal cannula, were randomly assigned to receive sham-CES or CES during the assessment of: (i) gastric emptying of solids, (ii) postprandial intestinal motility, (iii) autonomic functions, and (iv) food intake. We found that (i) CES delayed gastric emptying of solids by 77%. Guanethidine partially blocked the inhibitory effect of CES on solid gastric emptying; (ii) CES significantly reduced intestinal contractility and the effect lasted throughout the recovery period; (iii) CES decreased vagal activity in both fasting and fed states, increased the sympathovagal balance and marginally increased sympathetic activity in the fasting state; (iv) CES resulted in a reduction of 61% in food intake. CES reduces food intake in healthy dogs and the anorexigenic effect may be attributed to its inhibitory effects on gastric emptying and intestinal motility, mediated via the autonomic mechanisms. Further studies are warranted to investigate the therapeutic potential of CES for obesity.

  18. Improving aggregate behavior in parking lots with appropriate local maneuvers

    KAUST Repository

    Rodriguez, Samuel

    2013-11-01

    In this paper we study the ingress and egress of pedestrians and vehicles in a parking lot. We show how local maneuvers executed by agents permit them to create trajectories in constrained environments, and to resolve the deadlocks between them in mixed-flow scenarios. We utilize a roadmap-based approach which allows us to map complex environments and generate heuristic local paths that are feasible for both pedestrians and vehicles. Finally, we examine the effect that some agent-behavioral parameters have on parking lot ingress and egress. © 2013 IEEE.

  19. Fasting and meal-induced CCK and PP secretion following intragastric balloon treatment for obesity

    NARCIS (Netherlands)

    Mathus-Vliegen, Elisabeth M. H.; de Groot, Gerrit H.

    2013-01-01

    Satiety is centrally and peripherally mediated by gastrointestinal peptides and the vagal nerve. We aimed to investigate whether intragastric balloon treatment affects satiety through effects on fasting and meal-stimulated cholecystokinin (CCK) and pancreatic polypeptide (PP) secretion. Patients

  20. Gastrin release: Antrum microdialysis reveals a complex neural control

    DEFF Research Database (Denmark)

    Ericsson, P; Håkanson, R; Rehfeld, Jens F.

    2010-01-01

    in both serum and microdialysate. Food intake induced a 2- to 3-fold increase in serum gastrin, while gastrin in antral microdialysate increased 10- to 15-fold. In unilaterally vagotomized rats (fasted, 3 days post-op.), food evoked a prompt peak gastrin release followed by a gradual decline on the intact......We used microdialysis to monitor local gastrin release in response to food, acid blockade and acute vagal excitation. For the first time, gastrin release has been monitored continuously in intact conscious rats in a physiologically relevant experimental setting in a fashion that minimizes...... in serum regardless of the prandial state. The rats were conscious during microdialysis except when subjected to electrical vagal stimulation. Acid blockade (omeprazole treatment of freely fed rats for 4 days), or bilateral sectioning of the abdominal vagal trunks (fasted, 3 days post-op.), raised...

  1. Platelet injectors for Space Shuttle orbit maneuvering engine

    Science.gov (United States)

    Kahl, R. C.; Labotz, R. J.; Bassham, L. B.

    1974-01-01

    The Space Shuttle Orbit Maneuvering Subsystem Rocket Engine employs a platelet element injector concept. This injector has demonstrated 316-sec vacuum specific impulse performance under simulated altitude conditions when tested with a milled slot/electroformed nickel close-out regenerative chamber and a full 71 area ratio nozzle. To date, over 300 altitude engine tests and 300 stability bomb tests have demonstrated stable, erosion free operation with this concept to test durations of 150 seconds. The injector and chamber also meet the reusable requirements of the shuttle with a cycle life capability in excess of 1000 cycles. An extensive altitude restart program has also demonstrated OMS-engine operation over large variations in the burn and coast times with helium saturated propellants.

  2. A Novel Guidance Law with Line-of-Sight Acceleration Feedback for Missiles against Maneuvering Targets

    Directory of Open Access Journals (Sweden)

    Kemao Ma

    2014-01-01

    Full Text Available Terminal guidance law design and its implementation are considered for homing missiles against maneuvering targets. The lateral acceleration dynamics are taken into account in the design. In the guidance law design, the line-of-sight acceleration signals are incorporated into the acceleration reference signals to compensate for the targets’ maneuvers. Then the commanded accelerations are designed and the convergent tracking of the lateral accelerations to these signals is proven theoretically. In the guidance implementation, a linear high-gain differentiator is used to estimate the line-of-sight rates and the line-of-sight acceleration signals. To avoid the magnifying effects of higher order differentiation, a practical design of commanded accelerations is given to realize approximate tracking of the lateral accelerations to the given reference signals. Simulation is conducted for both cases with and without measurement noises. The simulation results justify the feasibility of the design and the implementation.

  3. Leveraging Manet and Mobile Devices in Ship-to-Objective Maneuver and Expeditionary MAGTF Operations

    Science.gov (United States)

    2014-09-01

    support and firepower. ECO allows for the Marine Corps to deploy a lower- level maneuver unit as an economy of force measure to assert combat power over...to the Global Information Grid ( GIG ) is the course of action the Marine Corps should adopt (Price & McHuen, 2009). My proposed research addresses

  4. An Adaptive Nonlinear Aircraft Maneuvering Envelope Estimation Approach for Online Applications

    Science.gov (United States)

    Schuet, Stefan R.; Lombaerts, Thomas Jan; Acosta, Diana; Wheeler, Kevin; Kaneshige, John

    2014-01-01

    A nonlinear aircraft model is presented and used to develop an overall unified robust and adaptive approach to passive trim and maneuverability envelope estimation with uncertainty quantification. The concept of time scale separation makes this method suitable for the online characterization of altered safe maneuvering limitations after impairment. The results can be used to provide pilot feedback and/or be combined with flight planning, trajectory generation, and guidance algorithms to help maintain safe aircraft operations in both nominal and off-nominal scenarios.

  5. Non-Toxic Orbital Maneuvering System Engine Development

    Science.gov (United States)

    Green, Christopher; Claflin, Scott; Maeding, Chris; Butas, John

    1999-01-01

    Recent results using the Aestus engine operated with LOx/ethanol propellant are presented. An experimental program at Rocketdyne Propulsion and Power is underway to adapt this engine for the Boeing Reusable Space Systems Division non-toxic Orbital Maneuvering System/Reaction control System (OMS/RCS) system. Daimler-Chrysler Aerospace designed the Aestus as an nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) upper-stage engine for the Ariane 5. The non-toxic OMS/RCS system's preliminary design requires a LOx/ethanol (O2/C2H5OH) engine that operates with a mixture ratio of 1.8, a specific impulse of 323 seconds, and fits within the original OMS design envelope. This paper describes current efforts to meet these requirements including, investigating engine performance using LOx/ethanol, developing the en-ine system sizing package, and meeting the vehicle operation parameters. Data from hot-fire testing are also presented and discussed.

  6. Comparison of changes in the mobility of the pelvic floor muscle on during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction.

    Science.gov (United States)

    Jung, Halim; Jung, Sangwoo; Joo, Sunghee; Song, Changho

    2016-01-01

    [Purpose] The purpose of this study was to compare changes in the mobility of the pelvic floor muscle during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. [Subjects] Thirty healthy adults participated in this study (15 men and 15 women). [Methods] All participants performed a bridge exercise and abdominal curl-up during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. Pelvic floor mobility was evaluated as the distance from the bladder base using ultrasound. [Results] According to exercise method, bridge exercise and abdominal curl-ups led to significantly different pelvic floor mobility. The pelvic floor muscle was elevated during the abdominal drawing-in maneuver and descended during maximal expiration. Finally, pelvic floor muscle mobility was greater during abdominal curl-up than during the bridge exercise. [Conclusion] According to these results, the abdominal drawing-in maneuver induced pelvic floor muscle contraction, and pelvic floor muscle contraction was greater during the abdominal curl-up than during the bridge exercise.

  7. Vagally-mediated heart rate variability and indices of well-being: Results of a nationally representative study.

    Science.gov (United States)

    Sloan, Richard P; Schwarz, Emilie; McKinley, Paula S; Weinstein, Maxine; Love, Gayle; Ryff, Carol; Mroczek, Daniel; Choo, Tse-Hwei; Lee, Seonjoo; Seeman, Teresa

    2017-01-01

    High frequency (HF) heart rate variability (HRV) has long been accepted as an index of cardiac vagal control. Recent studies report relationships between HF-HRV and indices of positive and negative affect, personality traits and well-being but these studies generally are based on small and selective samples. These relationships were examined using data from 967 participants in the second Midlife in the U.S. (MIDUS II) study. Participants completed survey questionnaires on well-being and affect. HF-HRV was measured at rest. A hierarchical series of regression analyses examined relationships between these various indices and HF-HRV before and after adjustment for relevant demographic and biomedical factors. Significant inverse relationships were found only between indices of negative affect and HF-HRV. Relationships between indices of psychological and hedonic well-being and positive affect failed to reach significance. These findings raise questions about relationships between cardiac parasympathetic modulation, emotion regulation, and indices of well-being. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Performance of the Sellick maneuver significantly improves when residents and trained nurses use a visually interactive guidance device in simulation

    International Nuclear Information System (INIS)

    Connor, Christopher W; Saffary, Roya; Feliz, Eddy

    2013-01-01

    We examined the proper performance of the Sellick maneuver, a maneuver used to reduce the risk of aspiration of stomach contents during induction of general anesthesia, using a novel device that measures and visualizes the force applied to the cricoid cartilage using thin-film force sensitive resistors in a form suitable for in vivo use. Performance was tested in three stages with twenty anaesthesiology residents and twenty trained operating room nurses. Firstly, subjects applied force to the cricoid cartilage as was customary to them. Secondly, subjects used the device to guide the application of that force. Thirdly, subjects were again asked to perform the manoeuvre without visual guidance. Each test lasted 1 min and the amount of force applied was measured throughout. Overall, the Sellick maneuver was often not applied properly, with large variance between individual subjects. Performance and inter-subject consistency improved to a very highly significant degree when subjects were able to use the device as a visual guide (p < 0.001). Subsequent significant improvements in performances during the last, unguided test demonstrated that the device initiated learning. (paper)

  9. Performance of the Sellick maneuver significantly improves when residents and trained nurses use a visually interactive guidance device in simulation

    Energy Technology Data Exchange (ETDEWEB)

    Connor, Christopher W; Saffary, Roya; Feliz, Eddy [Department of Anesthesiology Boston Medical Center, Boston, MA (United States)

    2013-12-15

    We examined the proper performance of the Sellick maneuver, a maneuver used to reduce the risk of aspiration of stomach contents during induction of general anesthesia, using a novel device that measures and visualizes the force applied to the cricoid cartilage using thin-film force sensitive resistors in a form suitable for in vivo use. Performance was tested in three stages with twenty anaesthesiology residents and twenty trained operating room nurses. Firstly, subjects applied force to the cricoid cartilage as was customary to them. Secondly, subjects used the device to guide the application of that force. Thirdly, subjects were again asked to perform the manoeuvre without visual guidance. Each test lasted 1 min and the amount of force applied was measured throughout. Overall, the Sellick maneuver was often not applied properly, with large variance between individual subjects. Performance and inter-subject consistency improved to a very highly significant degree when subjects were able to use the device as a visual guide (p < 0.001). Subsequent significant improvements in performances during the last, unguided test demonstrated that the device initiated learning. (paper)

  10. Tumor necrosis factor alpha and interleukin-1 stimulate bone resorption in vivo as measured by urinary [3H]tetracycline excretion from prelabeled mice

    International Nuclear Information System (INIS)

    Koenig, A.M.; Muehlbauer, R.C.F.; Fleisch, H.

    1988-01-01

    Tumor necrosis factor alpha (TNF-alpha) and interleukin-1 (IL-1) have been shown to stimulate bone resorption in vitro. We have now investigated whether these cytokines also cause a similar action when administered in vivo. This was made possible by the adaptation of a newly developed technique that enables the continual assessment of bone resorption in vivo in mice by measuring urinary excretion of 3 H from [ 3 H]tetracycline-prelabeled animals. Experiments using maneuvers known to influence bone resorption, such as a change in dietary calcium or administration of parathyroid hormone or dichloromethylenebisphosphonate, indicate that the technique is reliable and sensitive in mice. Daily intravenous administration of either recombinant human or recombinant murine TNF-alpha, as well as subcutaneous administration of recombinant human IL-1 alpha, were found to stimulate bone resorption in a dose-dependent manner. The effect was maximal within 2 days. Thus, exogenous TNF-alpha and IL-1 alpha can stimulate bone resorption in vivo, suggesting that these cytokines may also exert a systemic effect on bone

  11. Associating Crash Avoidance Maneuvers with Driver Attributes and Accident Characteristics: A Mixed Logit Model Approach

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    as from the key role of the ability of drivers to perform effective corrective maneuvers for the success of automated in-vehicle warning and driver assistance systems. The analysis is conducted by means of a mixed logit model that accommodates correlations across alternatives and heteroscedasticity. Data...

  12. Benefit from the Chin-Down Maneuver in the Swallowing Performance and Self-Perception of Parkinson’s Disease Patients

    Directory of Open Access Journals (Sweden)

    Annelise Ayres

    2017-01-01

    Full Text Available Aims. To verify the effectiveness of the maneuver application in swallowing therapy with PD. Materials and Method. We performed an open-label trial, with three groups compounds by PD individuals: the experimental group, control group, and orientation group. The study included PD patients with dysphagia. A cognitive screening, through a questionnaire about depression and quality of life, was conducted. Swallowing assessment was performed through (1 fiberoptic endoscopic evaluation of swallowing (FEES; (2 clinical evaluation and Functional Oral Intake Scale (FOIS; and (3 assessment of the quality life related to swallowing (SWALQOL. A therapeutic program, which consisted of chin-down postural maneuver and orientations on feeding, was applied. Both groups (EG and OG received on-month therapeutic program. Results. A significant improvement in swallowing, evaluated by clinical assessment, was observed in solid (p<0.001 and liquid (p=0.022 consistencies in EG when compared to OG and CG. Patients in EG presented improvement in QoL, with the significant difference in comparison with the other groups, about domain frequency of symptoms (p=0.029 in SWALQOL questionnaire. Conclusion. The postural maneuver chin-down improved swallowing performance and self-perception, but not the laryngeal signs. This trial is registered with registration number NCT02973698.

  13. Study of a very low cost air combat maneuvering trainer aircraft

    Science.gov (United States)

    Hill, G. C.; Bowles, J. V.

    1976-01-01

    A very low cost aircraft for performing Air Combat Maneuvering (ACM) training was studied using the BD-5J sport plane as a point of departure. The installation of a larger engine and increased fuel capacity were required to meet the performance and mission objectives. Reduced wing area increased the simulation of the ACM engagement, and a comparison with current tactical aircraft is presented. Other factors affecting the training transfer are considered analytically, but a flight evaluation is recommended to determine the concept utility.

  14. Vagal innervation is required for pulmonary function phenotype in Htr4-/- mice.

    Science.gov (United States)

    House, John S; Nichols, Cody E; Li, Huiling; Brandenberger, Christina; Virgincar, Rohan S; DeGraff, Laura M; Driehuys, Bastiaan; Zeldin, Darryl C; London, Stephanie J

    2017-04-01

    Human genome-wide association studies have identified over 50 loci associated with pulmonary function and related phenotypes, yet follow-up studies to determine causal genes or variants are rare. Single nucleotide polymorphisms in serotonin receptor 4 ( HTR4 ) are associated with human pulmonary function in genome-wide association studies and follow-up animal work has demonstrated that Htr4 is causally associated with pulmonary function in mice, although the precise mechanisms were not identified. We sought to elucidate the role of neural innervation and pulmonary architecture in the lung phenotype of Htr4 -/- animals. We report here that the Htr4 -/- phenotype in mouse is dependent on vagal innervation to the lung. Both ex vivo tracheal ring reactivity and in vivo flexiVent pulmonary functional analyses demonstrate that vagotomy abrogates the Htr4 -/- airway hyperresponsiveness phenotype. Hyperpolarized 3 He gas magnetic resonance imaging and stereological assessment of wild-type and Htr4 -/- mice reveal no observable differences in lung volume, inflation characteristics, or pulmonary microarchitecture. Finally, control of breathing experiments reveal substantive differences in baseline breathing characteristics between mice with/without functional HTR4 in breathing frequency, relaxation time, flow rate, minute volume, time of inspiration and expiration and breathing pauses. These results suggest that HTR4's role in pulmonary function likely relates to neural innervation and control of breathing. Copyright © 2017 the American Physiological Society.

  15. Chronic work stress and decreased vagal tone impairs decision making and reaction time in jockeys.

    Science.gov (United States)

    Landolt, Kathleen; Maruff, Paul; Horan, Ben; Kingsley, Michael; Kinsella, Glynda; O'Halloran, Paul D; Hale, Matthew W; Wright, Bradley J

    2017-10-01

    The inverse relationship between acute stress and decision-making is well documented, but few studies have investigated the impact of chronic stress. Jockeys work exhaustive schedules and have extremely dangerous occupations, with safe performance requiring quick reaction time and accurate decision-making. We used the effort reward imbalance (ERI) occupational stress model to assess the relationship of work stress with indices of stress physiology and decision-making and reaction time. Jockeys (N=32) completed computerised cognitive tasks (Cogstate) on two occasions; September and November (naturally occurring lower and higher stress periods), either side of an acute stress test. Higher ERI was correlated with the cortisol awakening responses (high stress r=-0.37; low stress r=0.36), and with decrements in decision-making comparable to having a blood alcohol concentration of 0.08 in the high stress period (pdecision-making. Potentially, this may be attributed to a 'tipping point' whereby the higher ERI reported by jockeys in the high stress period decreases vagal tone, which may contribute to reduced decision-making abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Gravitational disturbances generated by the Sun, Phobos and Deimos in orbital maneuvers around Mars with automatic correction of the semi-major axis

    International Nuclear Information System (INIS)

    Rocco, E M

    2015-01-01

    The objective of this work is to analyze orbital maneuvers of a spacecraft orbiting Mars, considering disturbance effects due to the gravitational attraction of the Sun, Phobos and Deimos, beyond the disturbances due to the gravitational potential of Mars. To simulate the trajectory, constructive aspects of the propulsion system were considered. Initially ideal thrusters, capable of applying infinite magnitude of the thrust, were used. Thus, impulsive optimal maneuvers were obtained by scanning the solutions of the Lambert's problem in order to select the maneuver of minimum fuel consumption. Due to the impossibility of applying an impulse, the orbital maneuver must be distributed in a propulsive arc around the position of the impulse given by the solution of the Lambert's problem. However the effect of the propulsive arc is not exactly equivalent to the application of an impulse due to the errors in magnitude and direction of applied thrust. Therefore, the influence of the thrusters’ capacity in the trajectory was evaluated for a more realistic model instead of the ideal case represented by the impulsive approach. Beyond the evaluation of the deviation in the orbital path, was considered an automatic correction of the semi-major axis using continuous low thrust controlled in closed loop to minimize the error in the trajectory after the application of the main thrust. (paper)

  17. Stroke Volume during Mueller Maneuver Measured by Impedance Cardiography in Patients with Mitral Regurgitation

    Czech Academy of Sciences Publication Activity Database

    Viščor, Ivo; Jurák, Pavel; Vondra, Vlastimil; Halámek, Josef; Leinveber, Pavel

    2009-01-01

    Roč. 36, - (2009), s. 749-751 ISSN 0276-6574 R&D Projects: GA AV ČR IAA200650801; GA ČR GP102/07/P425 Institutional research plan: CEZ:AV0Z20650511 Keywords : Mueller maneuver * impedance cardiography * congestive heart failure Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://cinc.mit.edu/archives/2009/pdf/0749.pdf

  18. Towards Real-Time Maneuver Detection: Automatic State and Dynamics Estimation with the Adaptive Optimal Control Based Estimator

    Science.gov (United States)

    Lubey, D.; Scheeres, D.

    Tracking objects in Earth orbit is fraught with complications. This is due to the large population of orbiting spacecraft and debris that continues to grow, passive (i.e. no direct communication) and data-sparse observations, and the presence of maneuvers and dynamics mismodeling. Accurate orbit determination in this environment requires an algorithm to capture both a system's state and its state dynamics in order to account for mismodelings. Previous studies by the authors yielded an algorithm called the Optimal Control Based Estimator (OCBE) - an algorithm that simultaneously estimates a system's state and optimal control policies that represent dynamic mismodeling in the system for an arbitrary orbit-observer setup. The stochastic properties of these estimated controls are then used to determine the presence of mismodelings (maneuver detection), as well as characterize and reconstruct the mismodelings. The purpose of this paper is to develop the OCBE into an accurate real-time orbit tracking and maneuver detection algorithm by automating the algorithm and removing its linear assumptions. This results in a nonlinear adaptive estimator. In its original form the OCBE had a parameter called the assumed dynamic uncertainty, which is selected by the user with each new measurement to reflect the level of dynamic mismodeling in the system. This human-in-the-loop approach precludes real-time application to orbit tracking problems due to their complexity. This paper focuses on the Adaptive OCBE, a version of the estimator where the assumed dynamic uncertainty is chosen automatically with each new measurement using maneuver detection results to ensure that state uncertainties are properly adjusted to account for all dynamic mismodelings. The paper also focuses on a nonlinear implementation of the estimator. Originally, the OCBE was derived from a nonlinear cost function then linearized about a nominal trajectory, which is assumed to be ballistic (i.e. the nominal optimal

  19. Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft

    Science.gov (United States)

    Bevilacqua, R.; Lehmann, T.; Romano, M.

    2011-04-01

    This work introduces a novel control algorithm for close proximity multiple spacecraft autonomous maneuvers, based on hybrid linear quadratic regulator/artificial potential function (LQR/APF), for applications including autonomous docking, on-orbit assembly and spacecraft servicing. Both theoretical developments and experimental validation of the proposed approach are presented. Fuel consumption is sub-optimized in real-time through re-computation of the LQR at each sample time, while performing collision avoidance through the APF and a high level decisional logic. The underlying LQR/APF controller is integrated with a customized wall-following technique and a decisional logic, overcoming problems such as local minima. The algorithm is experimentally tested on a four spacecraft simulators test bed at the Spacecraft Robotics Laboratory of the Naval Postgraduate School. The metrics to evaluate the control algorithm are: autonomy of the system in making decisions, successful completion of the maneuver, required time, and propellant consumption.

  20. Experimental Analysis of Steady-State Maneuvering Effects on Transmission Vibration Patterns Recorded in an AH-1 Cobra Helicopter

    Science.gov (United States)

    Huff, Edward M.; Dzwonczyk, Mark; Norvig, Peter (Technical Monitor)

    2000-01-01

    Flight experiment was designed primarily to determine the extent to which steady-state maneuvers influence characteristic vibration patterns measured at the input pinion and output annulus gear locations of the main transmission. If results were to indicate that maneuvers systematically influence vibration patterns, more extensive studies would be planned to explore the response surface. It was also designed to collect baseline data for comparison with experimental data to be recorded at a later date from test stands at Glenn Research Center. Finally, because this was the first vibration flight study on the Cobra aircraft, considerable energy was invested in developing an in-flight recording apparatus, as well as exploring acceleration mounting methods, and generally learning about the overall vibratory characteristics of the aircraft itself.

  1. Comparison of Valsalva Maneuver, Amyl Nitrite, and Exercise Echocardiography to Demonstrate Latent Left Ventricular Outflow Obstruction in Hypertrophic Cardiomyopathy.

    Science.gov (United States)

    Ayoub, Chadi; Geske, Jeffrey B; Larsen, Carolyn M; Scott, Christopher G; Klarich, Kyle W; Pellikka, Patricia A

    2017-12-15

    Guidelines recommend exercise stress echocardiogram (ESE) for patients with hypertrophic cardiomyopathy (HC) if a 50 mm Hg gradient is not present at rest or provoked with Valsalva or amyl nitrite, to direct medical and surgical management. However, no study has directly compared all 3 methods. We sought to evaluate efficacy and degree of provocation of left ventricular outflow gradients by ESE, and compare with Valsalva and amyl nitrite. In patients with HC between 2002 and 2015, resting echocardiograms and ESEs within 1 year were retrospectively reviewed. Gradients elicited by each provocation method were compared. Rest and ESE were available in 97 patients (mean age 54 ± 18 years, 57% male); 78 underwent Valsalva maneuver and 41 amyl nitrite provocation. Median gradients (interquartile range) were 10 mm Hg (7,19) at rest, 16 mm Hg (9,34) with Valsalva, 23 mm Hg (13,49) with amyl nitrite, and 26 mm Hg (13,58) with ESE. ESE and amyl nitrite were able to provoke obstruction (≥30 mm Hg) and severe obstruction (≥50 mm Hg) more frequently than Valsalva. In patients with resting gradient <30 mm Hg (n = 83), provocation maneuvers demonstrated dynamic obstruction in 51%; in those with Valsalva gradient <30 mm Hg (n = 57), ESE or amyl nitrite provoked a gradient in 44%; and in those with amyl nitrite gradient <30 mm Hg (n = 20), ESE provoked a gradient in 29%. No demographic or baseline echocardiographic parameter predicted provocable obstruction. In conclusion, ESE is clinically useful; however, different provocation maneuvers may be effective in different patients with HC, and all maneuvers may be required to provoke dynamic obstruction in symptomatic patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Identification and risk estimation of movement strategies during cutting maneuvers.

    Science.gov (United States)

    David, Sina; Komnik, Igor; Peters, Markus; Funken, Johannes; Potthast, Wolfgang

    2017-12-01

    Approximately 70% of anterior cruciate ligament (ACL) injuries occur in non-contact situations during cutting and landing maneuvers. Parameters such as footstrike patterns and trunk orientation were found to influence ACL relevant knee loading, however, the relationship between the whole body movement and injury risk is debated. This study identifies whole body movement strategies that increase injury risk, and provides training recommendations to reduce this risk or enable a save return to sports after injury. Experimental cross-sectional study design. Three dimensional movement analysis was carried out to investigate 50 participants performing anticipated 90° cutting maneuvers. To identify and characterize movement strategies, footstrike pattern, knee valgus moment, knee internal rotation moment, angle of attack, shoulder and pelvis axis were analyzed using statistical parametric mapping. Three different movement strategies were identified. One strategy included rearfoot striking in combination with a relatively upright body position which generated higher knee joint loads than the second strategy, forefoot striking in combination with more backwards leaning and pre-rotation of the trunk towards the new movement direction. A third strategy combined forefoot striking with less preorientation which increased the ACL relevant knee joint load compared to the second strategy. The identified movement strategies clearly pre-determine the injury risk during non-contact situations with the third strategy as the most unfavorable one. Compared to the study of isolated parameters, the analysis of the whole body movement allowed for detailed separation of more risky from less risky cutting strategies. These results give practical recommendations for the prevention of ACL injury. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Understanding successful and unsuccessful landings of aerial maneuver variations in professional surfing.

    Science.gov (United States)

    Forsyth, J R; Riddiford-Harland, D L; Whitting, J W; Sheppard, J M; Steele, J R

    2018-05-01

    Although performing aerial maneuvers can increase wave score and winning potential in competitive surfing, the critical features underlying successful aerial performance have not been systematically investigated. This study aimed to analyze highly skilled aerial maneuver performance and to identify the critical features associated with successful or unsuccessful landing. Using video recordings of the World Surf League's Championship Tour, every aerial performed during the quarterfinal, semifinal, and final heats from the 11 events in the 2015 season was viewed. From this, 121 aerials were identified with the Frontside Air (n = 15) and Frontside Air Reverse (n = 67) being selected to be qualitatively assessed. Using chi-squared analyses, a series of key critical features, including landing over the center of the surfboard (FS Air χ 2  = 14.00, FS Air Reverse χ 2  = 26.61; P < .001) and landing with the lead ankle in dorsiflexion (FS Air χ 2  = 3.90, FS Air Reverse χ 2  = 13.64; P < .05), were found to be associated with successful landings. These critical features help surfers land in a stable position, while maintaining contact with the surfboard. The results of this study provide coaches with evidence to adjust the technique of their athletes to improve their winning potential. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Space shuttle orbital maneuvering engine platelet injector program

    Science.gov (United States)

    1975-01-01

    A platelet-face injector for the fully reusable orbit maneuvering system OMS on the space shuttle was evaluated as a means of obtaining additional design margin and low cost. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects of acoustic cavity configuration on combustion stability, including cavity depth, open area, inlet contour, and other parameters, were investigated using sea level bomb tests. Prototype injector and chamber behavior was evaluated for a variety of conditions; these tests examined the effects of film cooling, helium saturated propellants, chamber length, inlet conditions, and operating point, on performance, heat transfer and engine transient behavior. Helium bubble ingestion into both propellant circuits was investigated, as was chugging at low pressure operation, and hot and cold engine restart with and without a purge.

  5. Archaeological Sites Inventory in the Black Hills of the Pinon Canyon Maneuver Site, Las Animas County, Colorado

    National Research Council Canada - National Science Library

    Owens, Mark

    2000-01-01

    .... These tree-covered areas located adjacent to open plains, appear black on the horizon. This setting of open steppes and juxtaposed hills is found along the eastern portion of the Pinon Canyon Maneuver Site (PCMS), a U.S...

  6. Chronic cuffing of cervical vagus nerve inhibits efferent fiber integrity in rat model

    Science.gov (United States)

    Somann, Jesse P.; Albors, Gabriel O.; Neihouser, Kaitlyn V.; Lu, Kun-Han; Liu, Zhongming; Ward, Matthew P.; Durkes, Abigail; Robinson, J. Paul; Powley, Terry L.; Irazoqui, Pedro P.

    2018-06-01

    Objective. Numerous studies of vagal nerve stimulation (VNS) have been published showing it to be a potential treatment for chronic inflammation and other related diseases and disorders. Studies in recent years have shown that electrical stimulation of the vagal efferent fibers can artificially modulate cytokine levels and reduce systematic inflammation. Most VNS research in the treatment of inflammation have been acute studies on rodent subjects. Our study tested VNS on freely moving animals by stimulating and recording from the cervical vagus with nerve cuff electrodes over an extended period of time. Approach. We used methods of electrical stimulation, retrograde tracing (using Fluorogold) and post necropsy histological analysis of nerve tissue, flow cytometry to measure plasma cytokine levels, and MRI scanning of gastric emptying. This novel combination of methods allowed examination of physiological aspects of VNS previously unexplored. Main results. Through our study of 53 rat subjects, we found that chronically cuffing the left cervical vagus nerve suppressed efferent Fluorogold transport in 43 of 44 animals (36 showed complete suppression). Measured cytokine levels and gastric emptying rates concurrently showed nominal differences between chronically cuffed rats and those tested with similar acute methods. Meanwhile, results of electrophysiological and histological tests of the cuffed nerves revealed them to be otherwise healthy, consistent with previous literature. Significance. We hypothesize that due to these unforeseen and unexplored physiological consequences of the chronically cuffed vagus nerve in a rat, that inflammatory modulation and other vagal effects by VNS may become unreliable in chronic studies. Given our findings, we submit that it would benefit the VNS community to re-examine methods used in previous literature to verify the efficacy of the rat model for chronic VNS studies.

  7. Helicopter Acoustic Flight Test with Altitude Variation and Maneuvers

    Science.gov (United States)

    Watts, Michael E.; Greenwood, Eric; Sim, Ben; Stephenson, James; Smith, Charles D.

    2016-01-01

    A cooperative flight test campaign between NASA and the U.S. Army was performed from September 2014 to February 2015. The purposes of the testing were to: investigate the effects of altitude variation on noise generation, investigate the effects of gross weight variation on noise generation, establish the statistical variability in acoustic flight testing of helicopters, and characterize the effects of transient maneuvers on radiated noise for a medium-lift utility helicopter. This test was performed at three test sites (0, 4000, and 7000 feet above mean sea level) with two aircraft (AS350 SD1 and EH-60L) tested at each site. This report provides an overview of the test, documents the data acquired and describes the formats of the stored data.

  8. Nuclear space power systems for orbit raising and maneuvering

    International Nuclear Information System (INIS)

    Buden, D.; Sullivan, J.A.

    1984-01-01

    Reference is made to recent studies which have shown that direct thrust nuclear rockets for routine orbit raising and near-earth space tug missions are probably not cost-effective. The need for additional trade-off studies and comparisons of direct-thrust nuclear systems with chemical systems to clarify the role of nuclear rockets in missions requiring rapid orbit maneuvering is stressed. Attention is confined here to nuclear electric propulsion considerations. Low-mass nuclear power plants are constructed to optimize nuclear electric propulsion systems. Electric power levels from 100 kilowatts to as much as several megawatts are desirable. The goals for the power plant specific mass are 20-30 kg/kW at the lower powers to 2-4 kg/kW at the higher powers

  9. Neuromuscular and lower limb biomechanical differences exist between male and female elite adolescent soccer players during an unanticipated side-cut maneuver.

    Science.gov (United States)

    Landry, Scott C; McKean, Kelly A; Hubley-Kozey, Cheryl L; Stanish, William D; Deluzio, Kevin J

    2007-11-01

    Female athletes are 2 to 8 times more likely than male athletes to injure the anterior cruciate ligament during a non-contact athletic maneuver. Identifying anterior cruciate ligament injury risk factors in female athletes may help with the development of preventive training programs aimed at reducing injury rates. Differences between genders in lower limb kinematics, kinetics, and neuromuscular patterns will be identified in an adolescent soccer population during an unanticipated side-cut maneuver. Controlled laboratory study. Forty-two elite adolescent soccer players (21 male and 21 female) performed an unanticipated side-cut maneuver, with the 3-dimensional kinematic, kinetic, and electromyographic lower limb data being analyzed using principal component analysis. The female athletes had higher gastrocnemius activity, normalized to maximal voluntary isometric contractions, and a mediolateral gastrocnemius activation imbalance that was not present in the male athletes during early stance to midstance of the side-cut. Female athletes demonstrated greater rectus femoris muscle activity throughout stance, and the only hamstring difference identified was a mediolateral activation imbalance in male athletes only. Female athletes performed the side-cut with less hip flexion and more hip external rotation and also generated a smaller hip flexion moment compared with the male athletes. This is the first study to identify gender-related differences in gastrocnemius muscle activity during an unanticipated cutting maneuver. The increased and imbalanced gastrocnemius muscle activity, combined with increased rectus femoris muscle activity and reduced hip flexion angles and moments in female subjects, may all have important contributing roles in the higher noncontact ACL injury rates observed in female athletes.

  10. Liver hanging maneuver for right hemiliver in situ donation – anatomical considerations

    OpenAIRE

    Trotovšek, B.; Gadžijev, E.M.; Ravnik, D.; Hribernik, M.

    2006-01-01

    Background. An anatomical study was carried out to evaluate the safety of the liver hanging maneuver for the right hemiliver in living donor and in situ splitting transplantation. During this procedure a 4–6 cm blind dissection is performed between the inferior vena cava and the liver. Short subhepatic veins entering the inferior vena cava from segments 1 and 9 could be torn with consequent hemorrhage. Materials and methods. One hundred corrosive casts of livers were evaluated to establish th...

  11. Potential of intestinal electrical stimulation for obesity: a preliminary canine study.

    Science.gov (United States)

    Yin, Jieyun; Ouyang, Hui; Chen, Jiande D Z

    2007-05-01

    The aims of this study were to investigate the therapeutic potential of intestinal electrical stimulation (IES) for obesity. Experiments were performed to investigate the effects of IES on food intake, gastric tone, gastric accommodation, and its possible pathway. Ten normal dogs and six dogs with truncal vagotomy were used in this study. Each dog was equipped with a gastric cannula for the measurement of gastric tone and accommodation by barostat and one pair of duodenal serosal electrodes for IES. The experiment on food intake was composed of both control session without IES and IES session after a 28-hour fast. The experiment on gastric tone and accommodation was performed in the fasting and fed states and composed of three sessions: control, IES, and IES with N(G)-nitro-l-arginine. IES significantly reduced food intake in the normal dogs (459.0 vs. 312.6 grams, p < 0.001). The food intake was negatively correlated with the fasting gastric volume during IES. IES significantly decreased fasting gastric tone in the normal dogs reflected as a decrease in gastric volume (89.1 vs. 261.3 mL, p < 0.01), which was abolished by vagotomy and N(G)-nitro-l-arginine. IES reduces food intake and inhibits gastric tone in the fasting state. The inhibitory effect of IES on gastric tone is mediated by both vagal and nitrergic pathway.

  12. Evidence for glutamatergic mechanisms in the vagal sensory pathway initiating cardiorespiratory reflexes in the shorthorn sculpin Myoxocephalus scorpius.

    Science.gov (United States)

    Sundin, L; Turesson, J; Taylor, E W

    2003-03-01

    Glutamate is a major neurotransmitter of chemoreceptor and baroreceptor afferent pathways in mammals and therefore plays a central role in the development of cardiorespiratory reflexes. In fish, the gills are the major sites of these receptors, and, consequently, the terminal field (sensory area) of their afferents (glossopharyngus and vagus) in the medulla must be an important site for the integration of chemoreceptor and baroreceptor signals. This investigation explored whether fish have glutamatergic mechanisms in the vagal sensory area (Xs) that could be involved in the generation of cardiorespiratory reflexes. The locations of the vagal sensory and motor (Xm) areas in the medulla were established by the orthograde and retrograde axonal transport of the neural tract tracer Fast Blue following its injection into the ganglion nodosum. Glutamate was then microinjected into identified sites within the Xs in an attempt to mimic chemoreceptor- and baroreceptor-induced reflexes commonly observed in fish. By necessity, the brain injections were performed on anaesthetised animals that were fixed by 'eye bars' in a recirculating water system. Blood pressure and heart rate were measured using an arterial cannula positioned in the afferent branchial artery of the 3rd gill arch, and ventilation was measured by impedance probes sutured onto the operculum. Unilateral injection of glutamate (40-100 nl, 10 mmol l(-1)) into the Xs caused marked cardiorespiratory changes. Injection (0.1-0.3 mm deep) in different rostrocaudal, medial-lateral positions induced a bradycardia, either increased or decreased blood pressure, ventilation frequency and amplitude and, sometimes, an initial apnea. Often these responses occurred simultaneously in various different combinations but, occasionally, they appeared singly, suggesting specific projections into the Xs for each cardiorespiratory variable and local determination of the modality of the response. Response patterns related to

  13. Maintain and Regain Well Clear: Maneuver Guidance Designs for Pilots Performing the Detect-and-Avoid Task

    Science.gov (United States)

    Monk, Kevin J.; Roberts, Zachary

    2017-01-01

    In order to support the future expansion and integration of Unmanned Aircraft Systems (UAS), ongoing research efforts have sought to produce findings that inform the minimum display information elements required for acceptable UAS pilot response times and traffic avoidance. Previous simulations have revealed performance benefits associated with DAA displays containing predictive information and suggestive maneuver guidance tools in the form of banding. The present study investigated the impact of various maneuver guidance display configurations on detect-and-avoid (DAA) task performance in a simulated airspace environment. UAS pilots ability to maintain DAA well clear was compared between displays with either the presence or absence of green DAA bands, which indicated conflict-free flight regions. Additional display comparisons assessed pilots ability to regain DAA well clear with two different guidance presentations designed to aid in DAA well clear recovery during critical encounters. Performance implications and display considerations for future UAS DAA systems are discussed.

  14. Neonatal Pneumothorax Pressures Surpass Higher Threshold in Lung Recruitment Maneuvers: An In Vivo Interventional Study.

    Science.gov (United States)

    González-Pizarro, Patricio; García-Fernández, Javier; Canfrán, Susana; Gilsanz, Fernando

    2016-02-01

    Causing pneumothorax is one of the main concerns of lung recruitment maneuvers in pediatric patients, especially newborns. Therefore, these maneuvers are not performed routinely during anesthesia. Our objective was to determine the pressures that cause pneumothorax in healthy newborns by a prospective experimental study of 10 newborn piglets (pneumothorax. Animals under anesthesia and bilateral chest tube catheterization were randomly allocated to 2 groups: one with PEEP and fixed inspiratory driving pressure of 15 cm H2O (PEEP group) and the second one with PEEP = 0 cm H2O and non-fixed inspiratory driving pressure (zero PEEP group). In both groups, the ventilation mode was pressure-controlled, and PIP was raised at 2-min intervals, with steps of 5 cm H2O until air leak was observed through the chest tubes. The PEEP group raised PIP through 5-cm H2O PEEP increments, and the zero PEEP group raised PIP through 5-cm H2O inspiratory driving pressure increments. Pneumothorax was observed with a PIP of 90.5 ± 15.7 cm H2O with no statistically significant differences between the PEEP group (92 ± 14.8 cm H2O) and the zero PEEP group (89 ± 18.2 cm H2O). The zero PEEP group had hypotension, with a PIP of 35 cm H2O; the PEEP group had hypotension, with a PIP of 60 cm H2O (P = .01). The zero PEEP group presented bradycardia, with PIP of 40 cm H2O; the PEEP group presented bradycardia, with PIP of 70 cm H2O (P = .002). Performing recruitment maneuvers in newborns without lung disease is a safe procedure in terms of pneumothorax. Pneumothorax does not seem to occur in the clinically relevant PIPs of pneumothorax PIP in poorly compliant lungs. Copyright © 2016 by Daedalus Enterprises.

  15. Independent Orbiter Assessment (IOA): Assessment of the orbital maneuvering system FMEA/CIL, volume 1

    Science.gov (United States)

    Prust, Chet D.; Haufler, W. A.; Marino, A. J.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Orbital Maneuvering System (OMS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter OMS hardware. The IOA analysis defined the OMS as being comprised of the following subsystems: helium pressurization, propellant storage and distribution, Orbital Maneuvering Engine, and EPD and C. The IOA product for the OMS analysis consisted of 284 hardware and 667 EPD and C failure mode worksheets that resulted in 160 hardware and 216 EPD and C potential critical items (PCIs) being identified. A comparison was made of the IOA product to the NASA FMEA/CIL baseline which consisted of 101 hardware and 142 EPD and C CIL items.

  16. Estimation of left-turning vehicle maneuvers for the assessment of pedestrian safety at intersections

    Directory of Open Access Journals (Sweden)

    Wael K.M. Alhajyaseen

    2012-07-01

    Full Text Available Improving pedestrian safety at intersections remains a critical issue. Although several types of safety countermeasures, such as reforming intersection layouts, have been implemented, methods have not yet been established to quantitatively evaluate the effects of these countermeasures before installation. One of the main issues in pedestrian safety is conflicts with turning vehicles. This study aims to develop an integrated model to represent the variations in the maneuvers of left-turners (left-hand traffic at signalized intersections that dynamically considers the vehicle reaction to intersection geometry and crossing pedestrians. The proposed method consists of four empirically developed stochastic sub-models, including a path model, free-flow speed profile model, lag/gap acceptance model, and stopping/clearing speed profile model. Since safety assessment is the main objective driving the development of the proposed model, this study uses post-encroachment time (PET and vehicle speed at the crosswalk as validation parameters. Preliminary validation results obtained by Monte Carlo simulation show that the proposed integrated model can realistically represent the variations in vehicle maneuvers as well as the distribution of PET and vehicle speeds at the crosswalk.

  17. Effects of electrical stimulation of the hunger center in the lateral hypothalamus and food reinforcement on impulse activity of the stomach in rabbits under conditions of hunger and satiation.

    Science.gov (United States)

    Zenina, O Yu; Kromin, A A

    2012-10-01

    Stimulation of the lateral hypothalamus in preliminary fed animals in the presence of the food is associated with successful food-procuring behavior, accompanied by regular generation of high-amplitude slow electrical waves by muscles of the lesser curvature, body, and antrum of the stomach, which was reflected in the structure of temporal organization of slow electrical activity in the form of unimodal distribution of slow wave periods typical of satiation state. Despite increased level of food motivation caused by stimulation of the lateral hypothalamus, the additional food intake completely abolished the inhibitory effects of hunger motivation excitement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach of satiated rabbits. Changes in slow electrical activity of the stomach muscles in rabbits deprived of food over 24 h and offered food and associated food-procuring behavior during electrical stimulation of the lateral hypothalamus have a two-phase pattern. Despite food intake during phase I of electrical stimulation, the downstream inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature of stomach abolishes the stimulating effect of food reinforcement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach. During phase II of electrical stimulation, the food reinforcement decreases inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature that paces maximal rhythm of slow electrical waves for muscles activity in the lesser curvature, body, and antrum of the stomach, which is reflected by unimodal distribution of slow electrical wave periods. Our results indicated that the structure of temporal organization of slow electrical activity of the stomach muscles reflects convergent interactions of food motivation and reinforcement excitations on the dorsal vagal complex neurons in medulla oblongata.

  18. MAXIMAL HIP AND KNEE MUSCLE STRENGTH ARE NOT RELATED TO NEUROMUSCULAR PRE-ACTIVITY DURING SIDECUTTING MANEUVER

    DEFF Research Database (Denmark)

    Husted, Rasmus S; Bencke, Jesper; Hölmich, Per

    2018-01-01

    recorded during a sidecutting maneuver (high-risk movement) in adolescent female soccer and handball athletes. Study design: Cross-sectional study. Methods: Eighty-five adolescent (age 16.9 ± 1.2 years) female elite handball and soccer athletes were assessed for maximal hip extensor, hip abductor and knee...

  19. 76 FR 41045 - Special Conditions; Gulfstream Aerospace LP (GALP) Model G250 Airplane, Design Roll-Maneuver...

    Science.gov (United States)

    2011-07-13

    ... issue a finding of regulatory adequacy under Sec. 611 of Public Law 92-574, the ``Noise Control Act of... with electronic flight controls as they relate to design roll-maneuver requirements. The applicable... G250 airplane is equipped with an electronic flight control system that provides control through the...

  20. The balance and harmony of control power for a combat aircraft in tactical maneuvering

    Science.gov (United States)

    Bocvarov, Spiro; Cliff, Eugene M.; Lutze, Frederick H.

    1992-01-01

    An analysis is presented for a family of regular extremal attitude-maneuvers for the High Angle-of-Attack Research Vehicle that has thrust-vectoring capability. Different levels of dynamic coupling are identified in the combat aircraft attitude model, and the characteristic extremal-family motion is explained. It is shown why the extremal-family trajectories develop small sideslip-angles, a highly desirable feature from a practical viewpoint.