WorldWideScience

Sample records for vagal motor nucleus

  1. Expression of Sex Steroid Hormone Receptors in Vagal Motor Neurons Innervating the Trachea and Esophagus in Mouse

    International Nuclear Information System (INIS)

    Mukudai, Shigeyuki; Ichi Matsuda, Ken; Bando, Hideki; Takanami, Keiko; Nishio, Takeshi; Sugiyama, Yoichiro; Hisa, Yasuo; Kawata, Mitsuhiro

    2016-01-01

    The medullary vagal motor nuclei, the nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMV), innervate the respiratory and gastrointestinal tracts. We conducted immunohistochemical analysis of expression of the androgen receptor (AR) and estrogen receptor α (ERα), in relation to innervation of the trachea and esophagus via vagal motor nuclei in mice. AR and ERα were expressed in the rostral NA and in part of the DMV. Tracing experiments using cholera toxin B subunit demonstrated that neurons of vagal motor nuclei that innervate the trachea and esophagus express AR and ERα. There was no difference in expression of sex steroid hormone receptors between trachea- and esophagus-innervating neurons. These results suggest that sex steroid hormones may act on vagal motor nuclei via their receptors, thereby regulating functions of the trachea and esophagus

  2. Architecture of vagal motor units controlling striated muscle of esophagus: peripheral elements patterning peristalsis?

    Science.gov (United States)

    Powley, Terry L; Mittal, Ravinder K; Baronowsky, Elizabeth A; Hudson, Cherie N; Martin, Felecia N; McAdams, Jennifer L; Mason, Jacqueline K; Phillips, Robert J

    2013-12-01

    Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n=78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are "hardwired," in the peripheral architecture of esophageal motor units. © 2013.

  3. Central vagal sensory and motor connections: human embryonic and fetal development.

    Science.gov (United States)

    Cheng, Gang; Zhou, Xiangtian; Qu, Jia; Ashwell, Ken W S; Paxinos, G

    2004-07-30

    The embryonic and fetal development of the nuclear components and pathways of vagal sensorimotor circuits in the human has been studied using Nissl staining and carbocyanine dye tracing techniques. Eight fetal brains ranging from 8 to 28 weeks of development had DiI (1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate) inserted into either the thoracic vagus nerve at the level of the sternal angle (two specimens of 8 and 9 weeks of gestation) or into vagal rootlets at the surface of the medulla (at all other ages), while a further five were used for study of cytoarchitectural development. The first central labeling resulting from peripheral application of DiI to the thoracic vagus nerve was seen at 8 weeks. By 9 weeks, labeled bipolar cells at the ventricular surface around the sulcus limitans (sl) were seen after DiI application to the thoracic vagus nerve. Subnuclear organization as revealed by both Nissl staining and carbocyanine dye tracing was found to be advanced at a relatively early fetal age, with afferent segregation in the medial Sol apparent at 13 weeks and subnuclear organization of efferent magnocellular divisions of dorsal motor nucleus of vagus nerve noticeable at the same stage. The results of the present study also confirm that vagal afferents are distributed to the dorsomedial subnuclei of the human nucleus of the solitary tract, with particular concentrations of afferent axons in the gelatinosus subnucleus. These vagal afferents appeared to have a restricted zone of termination from quite early in development (13 weeks) suggesting that there is no initial exuberance in the termination field of vagal afferents in the developing human nucleus of the solitary tract. On the other hand, the first suggestion of afferents invading 10N from the medial Sol was not seen until 20 weeks and was not well developed until 24 weeks, suggesting that direct monosynaptic connections between the sensory and effector components of the vagal

  4. IN VITRO EXAMINATION OF ONTOGENESIS OF DEVELOPING NEURONAL CELLS IN VAGAL NUCLEI IN MEDULLA OBLONGATA IN NEWBORNS

    Science.gov (United States)

    Islami, Hilmi; Shabani, Ragip; Bexheti, Sadi; Behluli, Ibrahim; Šukalo, Aziz; Raka, Denis; Koliqi, Rozafa; Haliti, Naim; Dauti, Hilmi; Krasniqi, Shaip; Disha, Mentor

    2008-01-01

    The development of neuron cells in vagal nerve nuclei in medulla oblongata was studied in vitro in live newborns and stillborns from different cases. Morphological changes were studied in respiratory nuclei of dorsal motor centre (DMNV) and nucleus tractus solitarius (NTS) in medulla oblongata. The material from medulla oblongata was fixated in 10μ buffered formalin solution. Fixated material was cut in series of 10μ thickness, with starting point from obex in ± 4 mm thickness. Special histochemical and histoenzymatic methods for central nervous system were used: cresyl echt violet coloring, tolyidin blue, Sevier-Munger modification and Grimelius coloring. In immature newborns (abortions and immature) in dorsal motor nucleus of the vagus (DMNV) population stages S1, S2, S3 are dominant. In neuron population in vagal sensory nuclei (NTS) stages S1, S2 are dominant. In more advanced stages of development of newborns (premature), in DMNV stages S3 and S4 are seen and in NTS stages S2 and S3 are dominant. In mature phase of newborns (maturity) in vagal nucleus DMNV stages S5 and S6 are dominant, while in sensory nucleus NTS stages S4 and S5 are dominant. These data suggest that neuron population in dorsal motor nucleus of the vagus (DMNV) are more advanced in neuronal maturity in comparison with sensory neuron population of vagal sensory nucleus NTS. This occurrence shows that phylogenetic development of motor complex is more advanced than the sensory one, which is expected to take new information’s from the extra uterine life after birth (extra uterine vagal phenotype) PMID:19125713

  5. Vagal gustatory reflex circuits for intraoral food sorting behavior in the goldfish: cellular organization and neurotransmitters.

    Science.gov (United States)

    Ikenaga, Takanori; Ogura, Tatsuya; Finger, Thomas E

    2009-09-20

    The sense of taste is crucial in an animal's determination as to what is edible and what is not. This gustatory function is especially important in goldfish, who utilize a sophisticated oropharyngeal sorting mechanism to separate food from substrate material. The computational aspects of this detection are carried out by the medullary vagal lobe, which is a large, laminated structure combining elements of both the gustatory nucleus of the solitary tract and the nucleus ambiguus. The sensory layers of the vagal lobe are coupled to the motor layers via a simple reflex arc. Details of this reflex circuit were investigated with histology and calcium imaging. Biocytin injections into the motor layer labeled vagal reflex interneurons that have radially directed dendrites ramifying within the layers of primary afferent terminals. Axons of reflex interneurons extend radially inward to terminate onto both vagal motoneurons and small, GABAergic interneurons in the motor layer. Functional imaging shows increases in intracellular Ca++ of vagal motoneurons following electrical stimulation in the sensory layer. These responses were suppressed under Ca(++)-free conditions and by interruption of the axons bridging between the sensory and motor layers. Pharmacological experiments showed that glutamate acting via (+/-)-alpha-amino-3-hydroxy- 5-ethylisoxazole-4-propioinc acid (AMPA)/kainate and N-methyl-D-aspartic acid (NMDA) receptors mediate neurotransmission between reflex interneurons and vagal motoneurons. Thus, the vagal gustatory portion of the viscerosensory complex is linked to branchiomotor neurons of the pharynx via a glutamatergic interneuronal system.

  6. Vagal gustatory reflex circuits for intraoral food sorting behavior in the goldfish Cellular organization and neurotransmitters

    Science.gov (United States)

    Ikenaga, Takanori; Ogura, Tatsuya; Finger, Thomas E.

    2009-01-01

    The sense of taste is crucial in an animal’s determination as to what is edible and what is not. This gustatory function is especially important in goldfish who utilize a sophisticated oropharyngeal sorting mechanism to separate food from substrate material. The computational aspects of this detection are carried out by the medullary vagal lobe which is a large, laminated structure combining elements of both the gustatory nucleus of the solitary tract and the nucleus ambiguus. The sensory layers of the vagal lobe are coupled to the motor layers via a simple reflex arc. Details of this reflex circuit were investigated with histology and calcium imaging. Biocytin injections into the motor layer labeled vagal reflex interneurons which have radially-directed dendrites ramifying within the layers of primary afferent terminals. Axons of reflex interneurons extend radially inward to terminate onto both vagal motoneurons and small, GABAergic interneurons in the motor layer. Functional imaging shows increases in intracellular Ca++ of vagal motoneurons following electrical stimulation in the sensory layer. These responses were suppressed under Ca++-free conditions and by interruption of the axons bridging between the sensory and motor layers. Pharmacological experiments showed that glutamate acting via (±)-α-amino-3-hydroxy-5-ethylisoxazole-4-propioinc acid (AMPA)/kainate and N-methyl-D-aspartic acid (NMDA) receptors mediates neurotransmission between reflex interneurons and vagal motoneurons. Thus the vagal gustatory portion of the viscerosensory complex is linked to branchiomotor neurons of the pharynx via a glutamatergic interneuronal system. PMID:19598285

  7. Clonidine, an alpha2-receptor agonist, diminishes GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Philbin, Kerry E; Bateman, Ryan J; Mendelowitz, David

    2010-08-06

    In hypertension, there is an autonomic imbalance in which sympathetic activity dominates over parasympathetic control. Parasympathetic activity to the heart originates from cardiac vagal neurons located in the nucleus ambiguus. Presympathetic neurons that project to sympathetic neurons in the spinal cord are located in the ventral brainstem in close proximity to cardiac vagal neurons, and many of these presympathetic neurons are catecholaminergic. In addition to their projection to the spinal cord, many of these presympathetic neurons have axon collaterals that arborize into neighboring cardiorespiratory locations and likely release norepinephrine onto nearby neurons. Activation of alpha(2)-adrenergic receptors in the central nervous system evokes a diverse range of physiological effects, including reducing blood pressure. This study tests whether clonidine, an alpha(2)-adrenergic receptor agonist, alters excitatory glutamatergic, and/or inhibitory GABAergic or glycinergic synaptic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Cardiac vagal neurons were identified in an in vitro brainstem slice preparation, and synaptic events were recording using whole cell voltage clamp methodologies. Clonidine significantly inhibited GABAergic neurotransmission but had no effect on glycinergic or glutamatergic pathways to cardiac vagal neurons. This diminished inhibitory GABAergic neurotransmission to cardiac vagal neurons would increase parasympathetic activity to the heart, decreasing heart rate and blood pressure. The results presented here provide a cellular substrate for the clinical use of clonidine as a treatment for hypertension as well as a role in alleviating posttraumatic stress disorder by evoking an increase in parasympathetic cardiac vagal activity, and a decrease in heart rate and blood pressure. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Comparative study of c-Fos expression in rat dorsal vagal complex and nucleus ambiguus induced by different durations of restraint water-immersion stress.

    Science.gov (United States)

    Zhang, Yu-Yu; Cao, Guo-Hong; Zhu, Wen-Xing; Cui, Xi-Yun; Ai, Hong-Bin

    2009-06-30

    Restraint water-immersion stress (RWIS) of rats induces vagally-mediated gastric dysfunction. The present work explored the effects of different durations of RWIS on neuronal activities of the dorsal vagal complex (DVC) and the nucleus ambiguous (NA) in rats. Male Wistar rats were exposed to RWIS for 0, 30, 60, 120, or 180 min. Then, a c-Fos immunoperoxidase technique was utilized to assess neuronal activation. Resumptively, c-Fos expression in DVC and NA peaked at 60 min of stress, subsequently decreased gradually with increasing durations of RWIS. Interestingly, the most intense c-Fos expression was observed in the dorsal motor nucleus of the vagus (DMV) during the stress, followed by NA, nucleus of solitary tract (NTS) and area postrema (AP). The peak of c-Fos expression in caudal DMV appeared at 120 min of the stress, slower than that in rostral and intermediate DMV. The c-Fos expression in intermediate and caudal NTS was significantly more intense than that in rostral NTS. These results indicate that the neuronal hyperactivity of DMV, NA, NTS and AP, the primary center that control gastric functions, especially DMV and NA, may play an important role in the disorders of gastric motility and secretion induced by RWIS.

  9. Urotensin II promotes vagal-mediated bradycardia by activating cardiac-projecting parasympathetic neurons of nucleus ambiguus.

    Science.gov (United States)

    Brailoiu, Gabriela Cristina; Deliu, Elena; Rabinowitz, Joseph E; Tilley, Douglas G; Koch, Walter J; Brailoiu, Eugen

    2014-05-01

    Urotensin II (U-II) is a cyclic undecapeptide that regulates cardiovascular function at central and peripheral sites. The functional role of U-II nucleus ambiguus, a key site controlling cardiac tone, has not been established, despite the identification of U-II and its receptor at this level. We report here that U-II produces an increase in cytosolic Ca(2+) concentration in retrogradely labeled cardiac vagal neurons of nucleus ambiguus via two pathways: (i) Ca(2+) release from the endoplasmic reticulum via inositol 1,4,5-trisphosphate receptor; and (ii) Ca(2+) influx through P/Q-type Ca(2+) channels. In addition, U-II depolarizes cultured cardiac parasympathetic neurons. Microinjection of increasing concentrations of U-II into nucleus ambiguus elicits dose-dependent bradycardia in conscious rats, indicating the in vivo activation of the cholinergic pathway controlling the heart rate. Both the in vitro and in vivo effects were abolished by the urotensin receptor antagonist, urantide. Our findings suggest that, in addition, to the previously reported increase in sympathetic outflow, U-II activates cardiac vagal neurons of nucleus ambiguus, which may contribute to cardioprotection. © 2014 International Society for Neurochemistry.

  10. Dexmedetomidine decreases inhibitory but not excitatory neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Sharp, Douglas B; Wang, Xin; Mendelowitz, David

    2014-07-29

    Dexmedetomidine, an α2 adrenergic agonist, is a useful sedative but can also cause significant bradycardia. This decrease in heart rate may be due to decreased central sympathetic output as well as increased parasympathetic output from brainstem cardiac vagal neurons. In this study, using whole cell voltage clamp methodology, the actions of dexmedetomidine on excitatory glutamatergic and inhibitory GABAergic and glycinergic neurotransmission to parasympathetic cardiac vagal neurons in the rat nucleus ambiguus was determined. The results indicate that dexmedetomidine decreases both GABAergic and glycinergic inhibitory input to cardiac vagal neurons, with no significant effect on excitatory input. These results provide a mechanism for dexmedetomidine induced bradycardia and has implications for the management of this potentially harmful side effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Clonidine, an α2 receptor agonist, diminishes GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus

    OpenAIRE

    Philbin, Kerry E.; Bateman, Ryan J.; Mendelowitz, David

    2010-01-01

    In hypertension there is an autonomic imbalance in which sympathetic activity dominates over parasympathetic control. Parasympathetic activity to the heart originates from cardiac vagal neurons located in the nucleus ambiguus. Pre-sympathetic neurons that project to sympathetic neurons in the spinal cord are located in the ventral brainstem in close proximity to cardiac vagal neurons, and many of these pre-sympathetic neurons are catecholaminergic. In addition to their projection to the spina...

  12. Hypocretin-1 (orexin A) prevents the effects of hypoxia/hypercapnia and enhances the GABAergic pathway from the lateral paragigantocellular nucleus to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Dergacheva, O; Philbin, K; Bateman, R; Mendelowitz, D

    2011-02-23

    Hypocretins (orexins) are hypothalamic neuropeptides that play a crucial role in regulating sleep/wake states and autonomic functions including parasympathetic cardiac activity. We have recently demonstrated stimulation of the lateral paragigantocellular nucleus (LPGi), the nucleus which is thought to play a role in rapid eye movement (REM) sleep control, activates an inhibitory pathway to preganglionic cardiac vagal neurons in the nucleus ambiguus (NA). In this study we test the hypothesis that hypocretin-1 modulates the inhibitory neurotransmission to cardiac vagal neurons evoked by stimulation of the LPGi using whole-cell patch-clamp recordings in an in vitro brain slice preparation from rats. Activation of hypocretin-1 receptors produced a dose-dependent and long-term facilitation of GABAergic postsynaptic currents evoked by electrical stimulation of the LPGi. Hypoxia/hypercapnia diminished LPGi-evoked GABAergic current in cardiac vagal neurons and this inhibition by hypoxia/hypercapnia was prevented by pre-application of hypocretin-1. The action of hypocretin-1 was blocked by the hypocretin-1 receptor antagonist SB-334867. Facilitation of LPGi-evoked GABAergic current in cardiac vagal neurons under both normal condition and during hypoxia/hypercapnia could be the mechanism by which hypocretin-1 affects parasympathetic cardiac function and heart rate during REM sleep. Furthermore, our findings indicate a new potential mechanism that might be involved in the cardiac arrhythmias, bradycardia, and sudden cardiac death that can occur during sleep. Copyright © 2011. Published by Elsevier Ltd.

  13. Distinct projection targets define subpopulations of mouse brainstem vagal neurons that express the autism-associated MET receptor tyrosine kinase.

    Science.gov (United States)

    Kamitakahara, Anna; Wu, Hsiao-Huei; Levitt, Pat

    2017-12-15

    Detailed anatomical tracing and mapping of the viscerotopic organization of the vagal motor nuclei has provided insight into autonomic function in health and disease. To further define specific cellular identities, we paired information based on visceral connectivity with a cell-type specific marker of a subpopulation of neurons in the dorsal motor nucleus of the vagus (DMV) and nucleus ambiguus (nAmb) that express the autism-associated MET receptor tyrosine kinase. As gastrointestinal disturbances are common in children with autism spectrum disorder (ASD), we sought to define the relationship between MET-expressing (MET+) neurons in the DMV and nAmb, and the gastrointestinal tract. Using wholemount tissue staining and clearing, or retrograde tracing in a MET EGFP transgenic mouse, we identify three novel subpopulations of EGFP+ vagal brainstem neurons: (a) EGFP+ neurons in the nAmb projecting to the esophagus or laryngeal muscles, (b) EGFP+ neurons in the medial DMV projecting to the stomach, and (b) EGFP+ neurons in the lateral DMV projecting to the cecum and/or proximal colon. Expression of the MET ligand, hepatocyte growth factor (HGF), by tissues innervated by vagal motor neurons during fetal development reveal potential sites of HGF-MET interaction. Furthermore, similar cellular expression patterns of MET in the brainstem of both the mouse and nonhuman primate suggests that MET expression at these sites is evolutionarily conserved. Together, the data suggest that MET+ neurons in the brainstem vagal motor nuclei are anatomically positioned to regulate distinct portions of the gastrointestinal tract, with implications for the pathophysiology of gastrointestinal comorbidities of ASD. © 2017 Wiley Periodicals, Inc.

  14. Nesfatin-1 activates cardiac vagal neurons of nucleus ambiguus and elicits bradycardia in conscious rats.

    Science.gov (United States)

    Brailoiu, G Cristina; Deliu, Elena; Tica, Andrei A; Rabinowitz, Joseph E; Tilley, Douglas G; Benamar, Khalid; Koch, Walter J; Brailoiu, Eugen

    2013-09-01

    Nesfatin-1, a peptide whose receptor is yet to be identified, has been involved in the modulation of feeding, stress, and metabolic responses. More recently, increasing evidence supports a modulatory role for nesfatin-1 in autonomic and cardiovascular activity. This study was undertaken to test if the expression of nesfatin-1 in the nucleus ambiguus, a key site for parasympathetic cardiac control, may be correlated with a functional role. As we have previously demonstrated that nesfatin-1 elicits Ca²⁺ signaling in hypothalamic neurons, we first assessed the effect of this peptide on cytosolic Ca²⁺ in cardiac pre-ganglionic neurons of nucleus ambiguus. We provide evidence that nesfatin-1 increases cytosolic Ca²⁺ concentration via a Gi/o-coupled mechanism. The nesfatin-1-induced Ca²⁺ rise is critically dependent on Ca²⁺ influx via P/Q-type voltage-activated Ca²⁺ channels. Repeated administration of nesfatin-1 leads to tachyphylaxis. Furthermore, nesfatin-1 produces a dose-dependent depolarization of cardiac vagal neurons via a Gi/o-coupled mechanism. In vivo studies, using telemetric and tail-cuff monitoring of heart rate and blood pressure, indicate that microinjection of nesfatin-1 into the nucleus ambiguus produces bradycardia not accompanied by a change in blood pressure in conscious rats. Taken together, our results identify for the first time that nesfatin-1 decreases heart rate by activating cardiac vagal neurons of nucleus ambiguus. Our results indicate that nesfatin-1, one of the most potent feeding peptides, increases cytosolic Ca²⁺ by promoting Ca²⁺ influx via P/Q channels and depolarizes nucleus ambiguus neurons; both effects are Gi/o-mediated. In vivo studies indicate that microinjection of nesfatin-1 into nucleus ambiguus produces bradycardia in conscious rats. This is the first report that nesfatin-1 increases the parasympathetic cardiac tone. © 2013 International Society for Neurochemistry.

  15. Food-intake dysregulation in type 2 diabetic Goto-Kakizaki rats: hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output.

    Science.gov (United States)

    Zhao, K; Ao, Y; Harper, R M; Go, V L W; Yang, H

    2013-09-05

    Thyrotropin-releasing hormone (TRH), a neuropeptide contained in neural terminals innervating brainstem vagal motor neurons, enhances vagal outflow to modify multisystemic visceral functions and food intake. Type 2 diabetes (T2D) and obesity are accompanied by impaired vagal functioning. We examined the possibility that impaired brainstem TRH action may contribute to the vagal dysregulation of food intake in Goto-Kakizaki (GK) rats, a T2D model with hyperglycemia and impaired central vagal activation by TRH. Food intake induced by intracisternal injection of TRH analog was reduced significantly by 50% in GK rats, compared to Wistar rats. Similarly, natural food intake in the dark phase or food intake after an overnight fast was reduced by 56-81% in GK rats. Fasting (48h) and refeeding (2h)-associated changes in serum ghrelin, insulin, peptide YY, pancreatic polypeptide and leptin, and the concomitant changes in orexigenic or anorexigenic peptide expression in the brainstem and hypothalamus, all apparent in Wistar rats, were absent or markedly reduced in GK rats, with hormone release stimulated by vagal activation, such as ghrelin and pancreatic polypeptide, decreased substantially. Fasting-induced Fos expression accompanying endogenous brainstem TRH action decreased by 66% and 91%, respectively, in the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) in GK rats, compared to Wistar rats. Refeeding abolished fasting-induced Fos-expression in the NTS, while that in the DMV remained in Wistar but not GK rats. These findings indicate that dysfunctional brainstem TRH-elicited vagal impairment contributes to the disturbed food intake in T2D GK rats, and may provide a pathophysiological mechanism which prevents further weight gain in T2D and obesity. Published by Elsevier Ltd.

  16. Chronic intermittent hypoxia-hypercapnia blunts heart rate responses and alters neurotransmission to cardiac vagal neurons.

    Science.gov (United States)

    Dyavanapalli, Jhansi; Jameson, Heather; Dergacheva, Olga; Jain, Vivek; Alhusayyen, Mona; Mendelowitz, David

    2014-07-01

    Patients with obstructive sleep apnoea experience chronic intermittent hypoxia-hypercapnia (CIHH) during sleep that elicit sympathetic overactivity and diminished parasympathetic activity to the heart, leading to hypertension and depressed baroreflex sensitivity. The parasympathetic control of heart rate arises from pre-motor cardiac vagal neurons (CVNs) located in nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMNX). The mechanisms underlying diminished vagal control of heart rate were investigated by studying the changes in blood pressure, heart rate, and neurotransmission to CVNs evoked by acute hypoxia-hypercapnia (H-H) and CIHH. In vivo telemetry recordings of blood pressure and heart rate were obtained in adult rats during 4 weeks of CIHH exposure. Retrogradely labelled CVNs were identified in an in vitro brainstem slice preparation obtained from adult rats exposed either to air or CIHH for 4 weeks. Postsynaptic inhibitory or excitatory currents were recorded using whole cell voltage clamp techniques. Rats exposed to CIHH had increases in blood pressure, leading to hypertension, and blunted heart rate responses to acute H-H. CIHH induced an increase in GABAergic and glycinergic neurotransmission to CVNs in NA and DMNX, respectively; and a reduction in glutamatergic neurotransmission to CVNs in both nuclei. CIHH blunted the bradycardia evoked by acute H-H and abolished the acute H-H evoked inhibition of GABAergic transmission while enhancing glycinergic neurotransmission to CVNs in NA. These changes with CIHH inhibit CVNs and vagal outflow to the heart, both in acute and chronic exposures to H-H, resulting in diminished levels of cardioprotective parasympathetic activity to the heart as seen in OSA patients. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  17. Gastrointestinal-projecting neurones in the dorsal motor nucleus of the vagus exhibit direct and viscerotopically organized sensitivity to orexin

    Science.gov (United States)

    Grabauskas, Gintautas; Moises, Hylan C

    2003-01-01

    Orexin (hypocretin)-containing projections from lateral hypothalamus (LH) are thought to play an important role in the regulation of feeding behaviour and energy balance. In rodent studies, central administration of orexin peptides increases food intake, and orexin neurones in the LH are activated by hypoglycaemia during fasting. In addition, administration of orexins into the fourth ventricle or the dorsal motor nucleus of the vagus (DMV) has been shown to stimulate gastric acid secretion and motility, respectively, via vagal efferent pathways. In this study, whole-cell recordings were obtained from DMV neurones in rat brainstem slices to investigate the cellular mechanism(s) by which orexins produce their gastrostimulatory effects. To determine whether responsiveness to orexins might be differentially expressed among distinct populations of preganglionic vagal motor neurones, recordings were made from neurones whose projections to the gastrointestinal tract had been identified by retrograde labelling following apposition of the fluorescent tracer DiI to the gastric fundus, corpus or antrum/pylorus, the duodenum or caecum. Additionally, the responses of neurones to orexins were compared with those produced by oxytocin, which acts within the DMV to stimulate gastric acid secretion, but inhibits gastric motor function. Bath application of orexin-A or orexin-B (30–300 nm) produced a slow depolarization, accompanied by increased firing in 47 of 102 DMV neurones tested, including 70 % (30/43) of those that projected to the gastric fundus or corpus. In contrast, few DMV neurones that supplied the antrum/pylorus (3/13), duodenum (4/18) or caecum (1/13) were responsive to these peptides. The depolarizing responses were concentration dependent and persisted during synaptic isolation of neurones with TTX or Cd2+, indicating they resulted from activation of postsynaptic orexin receptors. They were also associated with a small increase in membrane resistance, and in voltage

  18. Exposure to a high fat diet during the perinatal period alters vagal motoneurone excitability, even in the absence of obesity.

    Science.gov (United States)

    Bhagat, Ruchi; Fortna, Samuel R; Browning, Kirsteen N

    2015-01-01

    Obesity is recognized as being multifactorial in origin, involving both genetic and environmental factors. The perinatal period is known to be critically important in the development of neural circuits responsible for energy homeostasis and the integration of autonomic reflexes. Diet-induced obesity alters the biophysical, pharmacological and morphological properties of vagal neurocircuits regulating upper gastrointestinal tract functions, including satiety. Less information is available, however, regarding the effects of a high fat diet (HFD) itself on the properties of vagal neurocircuits. The present study was designed to test the hypothesis that exposure to a HFD during the perinatal period alters the electrophysiological, pharmacological and morphological properties of vagal efferent motoneurones innervating the stomach. Our data indicate that perinatal HFD decreases the excitability of gastric-projecting dorsal motor nucleus neurones and dysregulates neurotransmitter release from synaptic inputs and that these alterations occur prior to the development of obesity. These findings represent the first direct evidence that exposure to a HFD modulates the processing of central vagal neurocircuits even in the absence of obesity. The perinatal period is critically important to the development of autonomic neural circuits responsible for energy homeostasis. Vagal neurocircuits are vital to the regulation of upper gastrointestinal functions, including satiety. Diet-induced obesity modulates the excitability and responsiveness of both peripheral vagal afferents and central vagal efferents but less information is available regarding the effects of diet per se on vagal neurocircuit functions. The aims of this study were to investigate whether perinatal exposure to a high fat diet (HFD) dysregulated dorsal motor nucleus of the vagus (DMV) neurones, prior to the development of obesity. Whole cell patch clamp recordings were made from gastric-projecting DMV neurones in thin

  19. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy.

    Science.gov (United States)

    Peters, James H; Gallaher, Zachary R; Ryu, Vitaly; Czaja, Krzysztof

    2013-10-15

    Vagotomy, a severing of the peripheral axons of the vagus nerve, has been extensively utilized to determine the role of vagal afferents in viscerosensory signaling. Vagotomy is also an unavoidable component of some bariatric surgeries. Although it is known that peripheral axons of the vagus nerve degenerate and then regenerate to a limited extent following vagotomy, very little is known about the response of central vagal afferents in the dorsal vagal complex to this type of damage. We tested the hypothesis that vagotomy results in the transient withdrawal of central vagal afferent terminals from their primary central target, the nucleus of the solitary tract (NTS). Sprague-Dawley rats underwent bilateral subdiaphragmatic vagotomy and were sacrificed 10, 30, or 60 days later. Plastic changes in vagal afferent fibers and synapses were investigated at the morphological and functional levels by using a combination of an anterograde tracer, synapse-specific markers, and patch-clamp electrophysiology in horizontal brain sections. Morphological data revealed that numbers of vagal afferent fibers and synapses in the NTS were significantly reduced 10 days following vagotomy and were restored to control levels by 30 days and 60 days, respectively. Electrophysiology revealed transient decreases in spontaneous glutamate release, glutamate release probability, and the number of primary afferent inputs. Our results demonstrate that subdiaphragmatic vagotomy triggers transient withdrawal and remodeling of central vagal afferent terminals in the NTS. The observed vagotomy-induced plasticity within this key feeding center of the brain may be partially responsible for the response of bariatric patients following gastric bypass surgery. Copyright © 2013 Wiley Periodicals, Inc.

  20. Vagally mediated effects of brain stem dopamine on gastric tone and phasic contractions of the rat.

    Science.gov (United States)

    Anselmi, L; Toti, L; Bove, C; Travagli, R A

    2017-11-01

    Dopamine (DA)-containing fibers and neurons are embedded within the brain stem dorsal vagal complex (DVC); we have shown previously that DA modulates the membrane properties of neurons of the dorsal motor nucleus of the vagus (DMV) via DA1 and DA2 receptors. The vagally dependent modulation of gastric tone and phasic contractions, i.e., motility, by DA, however, has not been characterized. With the use of microinjections of DA in the DVC while recording gastric tone and motility, the aims of the present study were 1 ) assess the gastric effects of brain stem DA application, 2 ) identify the DA receptor subtype, and, 3 ) identify the postganglionic pathway(s) activated. Dopamine microinjection in the DVC decreased gastric tone and motility in both corpus and antrum in 29 of 34 rats, and the effects were abolished by ipsilateral vagotomy and fourth ventricular treatment with the selective DA2 receptor antagonist L741,626 but not by application of the selective DA1 receptor antagonist SCH 23390. Systemic administration of the cholinergic antagonist atropine attenuated the inhibition of corpus and antrum tone in response to DA microinjection in the DVC. Conversely, systemic administration of the nitric oxide synthase inhibitor nitro-l-arginine methyl ester did not alter the DA-induced decrease in gastric tone and motility. Our data provide evidence of a dopaminergic modulation of a brain stem vagal neurocircuit that controls gastric tone and motility. NEW & NOTEWORTHY Dopamine administration in the brain stem decreases gastric tone and phasic contractions. The gastric effects of dopamine are mediated via dopamine 2 receptors on neurons of the dorsal motor nucleus of the vagus. The inhibitory effects of dopamine are mediated via inhibition of the postganglionic cholinergic pathway. Copyright © 2017 the American Physiological Society.

  1. Selective Enhancement of Synaptic Inhibition by Hypocretin (Orexin) in Rat Vagal Motor Neurons: Implications for Autonomic Regulation

    Science.gov (United States)

    Davis, Scott F.; Williams, Kevin W.; Xu, Weiye; Glatzer, Nicholas R.; Smith, Bret N.

    2012-01-01

    The hypocretins (orexins) are hypothalamic neuropeptides implicated in feeding, arousal, and autonomic regulation. These studies were designed to determine the actions of hypocretin peptides on synaptic transmission in the dorsal motor nucleus of the vagus nerve (DMV). Whole-cell patch-clamp recordings were made from DMV neurons in transverse slices of rat brainstem. Some of the neurons were identified as gastric-related by retrograde labeling after inoculation of the stomach wall with pseudorabies virus 152, a viral label that reports enhanced green fluorescent protein. Consistent with previous findings, hypocretins caused an inward current (6–68 pA) in most neurons at holding potentials near rest. In addition, the frequency of spontaneous IPSCs was increased in a concentration-related manner (up to 477%), with little change in EPSCs. This effect was preserved in the presence of tetrodotoxin, suggesting a presynaptic site of action. Hypocretins increased the amplitude of IPSCs evoked by electrical stimulation of the nucleus tractus solitarius (NTS) but not evoked EPSCs. Hypocretin-induced increases in the frequency of IPSCs evoked by photoactivation of caged glutamate within the NTS were also observed. Identical effects of the peptides were observed in identified gastric-related and unlabeled DMV neurons. In contrast to some previous studies, which have reported primarily excitatory actions of the hypocretins in many regions of the CNS, these data support a role for hypocretin in preferentially enhancing synaptic inhibition, including inhibitory inputs arising from neurons in the NTS. These findings indicate that the hypocretins can modulate and coordinate visceral autonomic output by acting directly on central vagal circuits. PMID:12736355

  2. β adrenergic receptor modulation of neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Bateman, R J; Boychuk, C R; Philbin, K E; Mendelowitz, D

    2012-05-17

    β-adrenergic receptors are a class of G protein-coupled receptors that have essential roles in regulating heart rate, blood pressure, and other cardiorespiratory functions. Although the role of β adrenergic receptors in the peripheral nervous system is well characterized, very little is known about their role in the central nervous system despite being localized in many brain regions involved in autonomic activity and regulation. Since parasympathetic activity to the heart is dominated by cardiac vagal neurons (CVNs) originating in the nucleus ambiguus (NA), β adrenergic receptors localized in the NA represent a potential target for modulating cardiac vagal activity and heart rate. This study tests the hypothesis that activation of β adrenergic receptors alters the membrane properties and synaptic neurotransmission to CVNs. CVNs were identified in brainstem slices, and membrane properties and synaptic events were recorded using the whole-cell voltage-clamp technique. The nonselective β agonist isoproterenol significantly decreased inhibitory GABAergic and glycinergic as well as excitatory glutamatergic neurotransmission to CVNs. In addition, the β(1)-selective receptor agonist dobutamine, but not β(2) or β(3) receptor agonists, significantly decreased inhibitory GABAergic and glycinergic and excitatory glutamatergic neurotransmission to CVNs. These decreases in neurotransmission to CVNs persisted in the presence of tetrodotoxin (TTX). These results provide a mechanism by which activation of adrenergic receptors in the brainstem can alter parasympathetic activity to the heart. Likely physiological roles for this adrenergic receptor activation are coordination of parasympathetic-sympathetic activity and β receptor-mediated increases in heart rate upon arousal. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Exercise training preserves vagal preganglionic neurones and restores parasympathetic tonus in heart failure.

    Science.gov (United States)

    Ichige, Marcelo H A; Santos, Carla R; Jordão, Camila P; Ceroni, Alexandre; Negrão, Carlos E; Michelini, Lisete C

    2016-11-01

    Heart Failure (HF) is accompanied by reduced ventricular function, activation of compensatory neurohormonal mechanisms and marked autonomic dysfunction characterized by exaggerated sympathoexcitation and reduced parasympathetic activity. With 6 weeks of exercise training, HF-related loss of choline acetyltransferase (ChAT)-positive vagal preganglionic neurones is avoided, restoring the parasympathetic tonus to the heart, and the immunoreactivity of dopamine β-hydroxylase-positive premotor neurones that drive sympathetic outflow to the heart is reduced. Training-induced correction of autonomic dysfunction occurs even with the persistence of abnormal ventricular function. Strong positive correlation between improved parasympathetic tonus to the heart and increased ChAT immunoreactivity in vagal preganglionic neurones after training indicates this is a crucial mechanism to restore autonomic function in heart failure. Exercise training is an efficient tool to attenuate sympathoexcitation, a hallmark of heart failure (HF). Although sympathetic modulation in HF is widely studied, information regarding parasympathetic control is lacking. We examined the combined effects of sympathetic and vagal tonus to the heart in sedentary (Sed) and exercise trained (ET) HF rats and the contribution of respective premotor and preganglionic neurones. Wistar rats submitted to coronary artery ligation or sham surgery were assigned to training or sedentary protocols for 6 weeks. After haemodynamic, autonomic tonus (atropine and atenolol i.v.) and ventricular function determinations, brains were collected for immunoreactivity assays (choline acetyltransferase, ChATir; dopamine β-hydroxylase, DBHir) and neuronal counting in the dorsal motor nucleus of vagus (DMV), nucleus ambiguus (NA) and rostroventrolateral medulla (RVLM). HF-Sed vs. SHAM-Sed exhibited decreased exercise capacity, reduced ejection fraction, increased left ventricle end diastolic pressure, smaller positive and negative

  4. Modulation of experimental arthritis by vagal sensory and central brain stimulation.

    Science.gov (United States)

    Bassi, Gabriel Shimizu; Dias, Daniel Penteado Martins; Franchin, Marcelo; Talbot, Jhimmy; Reis, Daniel Gustavo; Menezes, Gustavo Batista; Castania, Jaci Airton; Garcia-Cairasco, Norberto; Resstel, Leonardo Barbosa Moraes; Salgado, Helio Cesar; Cunha, Fernando Queiróz; Cunha, Thiago Mattar; Ulloa, Luis; Kanashiro, Alexandre

    2017-08-01

    Articular inflammation is a major clinical burden in multiple inflammatory diseases, especially in rheumatoid arthritis. Biological anti-rheumatic drug therapies are expensive and increase the risk of systemic immunosuppression, infections, and malignancies. Here, we report that vagus nerve stimulation controls arthritic joint inflammation by inducing local regulation of innate immune response. Most of the previous studies of neuromodulation focused on vagal regulation of inflammation via the efferent peripheral pathway toward the viscera. Here, we report that vagal stimulation modulates arthritic joint inflammation through a novel "afferent" pathway mediated by the locus coeruleus (LC) of the central nervous system. Afferent vagal stimulation activates two sympatho-excitatory brain areas: the paraventricular hypothalamic nucleus (PVN) and the LC. The integrity of the LC, but not that of the PVN, is critical for vagal control of arthritic joint inflammation. Afferent vagal stimulation suppresses articular inflammation in the ipsilateral, but not in the contralateral knee to the hemispheric LC lesion. Central stimulation is followed by subsequent activation of joint sympathetic nerve terminals inducing articular norepinephrine release. Selective adrenergic beta-blockers prevent the effects of articular norepinephrine and thereby abrogate vagal control of arthritic joint inflammation. These results reveals a novel neuro-immune brain map with afferent vagal signals controlling side-specific articular inflammation through specific inflammatory-processing brain centers and joint sympathetic innervations. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Modulation of the masseteric reflex by gastric vagal afferents.

    Science.gov (United States)

    Pettorossi, V E

    1983-04-01

    Several investigations have shown that the vagal nerve can affect the reflex responses of the masticatory muscles acting at level either of trigeminal motoneurons or of the mesencephalic trigeminal nucleus (MTN). The present experiments have been devoted to establish the origin of the vagal afferent fibres involved in modulating the masseteric reflex. In particular, the gastric vagal afferents were taken into consideration and selective stimulations of such fibres were performed in rabbit. Conditioning electrical stimulation of truncus vagalis ventralis (TVV) reduced the excitability of the MTN cells as shown by a decrease of the antidromic response recorded from the semilunar ganglion and elicited by MTN single-shock electrical stimulation. Sympathetic and cardiovascular influences were not involved in these responses. Mechanical stimulation of gastric receptors, by means of gastric distension, clearly diminished the amplitude of twitch tension of masseteric reflex and inhibited the discharge frequency of proprioceptive MTN units. The effect was phasic and depended upon the velocity of distension. Thus the sensory volleys originating from rapid adapting receptors reach the brain stem through vagal afferents and by means of a polysynaptic connection inhibits the masseteric reflex at level of MTN cells.

  6. In vitro receptor autoradiography reveals angiotensin IL (ANG II) binding associated with sensory and motor components of the vagus

    International Nuclear Information System (INIS)

    Diz, D.I.; Barnes, K.L.; Ferrario, C.M.

    1986-01-01

    Specific, high affinity Ang II binding in the dog's dorsal medulla is concentrated in the area postrema, nucleus tractus solitarii (nTS) and dorsal motor nucleus of the vagus (dmnX). More recently Ang II binding sites were observed where bundles of vagal afferent fibers enter the dorsal medulla 6 mm rostral to obex and in the nodose ganglia and peripheral vagal nerves. Since Ang II binding in the nTS and dmnX overlies the distribution of vagal afferent fibers and efferent neurons, the effects of nodose ganglionectomy and cervical vagotomy on Ang II binding in the dorsal medulla were studied in rats and dogs using autoradiography after incubation of 14 μm coronal sections with 0.4 nM 125 I-Ang II. Nonspecific binding was determined in the presence of 1 μm unlabeled Ang II. Two weeks after unilateral nodose ganglionectomy Ang II binding sites were absent ipsilaterally in the region where vagal afferent fibers enter the dorsal medulla. In the nTS and dmnX, binding near obex was reduced, while more rostrally these nuclei were almost completely devoid of Ang II binding on the denervated side. After cervical vagotomy, the loss of binding was restricted to the ipsilateral dmnX. These data are the first to reveal that Ang II binding in the dorsal medulla requires an intact vagal system

  7. Neural control of left ventricular contractility in the dog heart: synaptic interactions of negative inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine hydroxylase immunoreactive terminals.

    Science.gov (United States)

    Massari, V J; Dickerson, L W; Gray, A L; Lauenstein, J M; Blinder, K J; Newsome, J T; Rodak, D J; Fleming, T J; Gatti, P J; Gillis, R A

    1998-08-17

    Recent physiological evidence indicates that vagal postganglionic control of left ventricular contractility is mediated by neurons found in a ventricular epicardial fat pad ganglion. In the dog this region has been referred to as the cranial medial ventricular (CMV) ganglion [J.L. Ardell, Structure and function of mammalian intrinsic cardiac neurons, in: J.A. Armour, J.L. Ardell (Eds.). Neurocardiology, Oxford Univ. Press, New York, 1994, pp. 95-114; B.X. Yuan, J.L. Ardell, D.A. Hopkins, A.M. Losier, J.A. Armour, Gross and microscopic anatomy of the canine intrinsic cardiac nervous system, Anat. Rec., 239 (1994) 75-87]. Since activation of the vagal neuronal input to the CMV ganglion reduces left ventricular contractility without influencing cardiac rate or AV conduction, this ganglion contains a functionally selective pool of negative inotropic parasympathetic postganglionic neurons. In the present report we have defined the light microscopic distribution of preganglionic negative inotropic neurons in the CNS which are retrogradely labeled from the CMV ganglion. Some tissues were also processed for the simultaneous immunocytochemical visualization of tyrosine hydroxylase (TH: a marker for catecholaminergic neurons) and examined with both light microscopic and electron microscopic methods. Histochemically visualized neurons were observed in a long slender column in the ventrolateral nucleus ambiguus (NA-VL). The greatest number of retrogradely labeled neurons were observed just rostral to the level of the area postrema. TH perikarya and dendrites were commonly observed interspersed with vagal motoneurons in the NA-VL. TH nerve terminals formed axo-dendritic synapses upon negative inotropic vagal motoneurons, however the origin of these terminals remains to be determined. We conclude that synaptic interactions exist which would permit the parasympathetic preganglionic vagal control of left ventricular contractility to be modulated monosynaptically by

  8. VERSATILE, HIGH-RESOLUTION ANTEROGRADE LABELING OF VAGAL EFFERENT PROJECTIONS WITH DEXTRAN AMINES

    Science.gov (United States)

    Walter, Gary C.; Phillips, Robert J.; Baronowsky, Elizabeth A.; Powley, Terry L.

    2009-01-01

    None of the anterograde tracers used to label and investigate vagal preganglionic neurons projecting to the viscera has proved optimal for routine and extensive labeling of autonomic terminal fields. To identify an alternative tracer protocol, the present experiment evaluated whether dextran conjugates, which have produced superior results in the CNS, might yield widespread and effective labeling of long, fine-caliber vagal efferents in the peripheral nervous system. The dextran conjugates that were evaluated proved reliable and versatile for labeling the motor neuron pool in its entirety, for single- and multiple-labeling protocols, for both conventional and confocal fluorescence microscopy, and for permanent labeling protocols for brightfield microscopy of the projections to the gastrointestinal (GI) tract. Using a standard ABC kit followed by visualization with DAB as the chromagen, Golgi-like labeling of the vagal efferent terminal fields in the GI wall was achieved with the biotinylated dextrans. The definition of individual terminal varicosities was so sharp and detailed that it was routinely practical to examine the relationship of putative vagal efferent contacts (by the criteria of high magnification light microscopy) with the dendritic and somatic architecture of counterstained neurons in the myenteric plexus. Overall, dextran conjugates provide high-definition labeling of an extensive vagal motor pool in the GI tract, and offer considerable versatility when multiple-staining protocols are needed to elucidate the complexities of the innervation of the gut. PMID:19056424

  9. GABA in nucleus tractus solitarius participates in electroacupuncture modulation of cardiopulmonary bradycardia reflex.

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C; Guo, Zhi-Ling; Longhurst, John C

    2014-12-01

    Phenylbiguanide (PBG) stimulates cardiopulmonary receptors and cardiovascular reflex responses, including decreases in blood pressure and heart rate mediated by the brain stem parasympathetic cardiac neurons in the nucleus ambiguus and nucleus tractus solitarius (NTS). Electroacupuncture (EA) at P5-6 stimulates sensory fibers in the median nerve and modulates these reflex responses. Stimulation of median nerves reverses bradycardia through action of γ-aminobutyric acid (GABA) in the nucleus ambiguus, important in the regulation of heart rate. We do not know whether the NTS or the neurotransmitter mechanisms in this nucleus participate in these modulatory actions by acupuncture. We hypothesized that somatic nerve stimulation during EA (P5-6) modulates cardiopulmonary inhibitory responses through a GABAergic mechanism in the NTS. Anesthetized and ventilated cats were examined during either PBG or direct vagal afferent stimulation while 30 min of EA was applied at P5-6. Reflex heart rate and blood pressure responses and NTS-evoked discharge were recorded. EA reduced the PBG-induced depressor and bradycardia reflexes by 67% and 60%, respectively. Blockade of GABAA receptors in the NTS reversed EA modulation of bradycardia but not the depressor response. During EA, gabazine reversed the vagally evoked discharge activity of cardiovascular NTS neurons. EA modulated the vagal-evoked cardiovascular NTS cellular activity for 60 min. Immunohistochemistry using triple labeling showed GABA immunoreactive fibers juxtaposed to glutamatergic nucleus ambiguus-projecting NTS neurons in rats. These glutamatergic neurons expressed GABAA receptors. These findings suggest that EA inhibits PBG-evoked bradycardia and vagally evoked NTS activity through a GABAergic mechanism, likely involving glutamatergic nucleus ambiguus-projecting NTS neurons. Copyright © 2014 the American Physiological Society.

  10. Sensory and motor innervation of the crural diaphragm by the vagus nerves.

    Science.gov (United States)

    Young, Richard L; Page, Amanda J; Cooper, Nicole J; Frisby, Claudine L; Blackshaw, L Ashley

    2010-03-01

    During gastroesophageal reflux, transient lower esophageal sphincter relaxation and crural diaphragm (CD) inhibition occur concomitantly. Modifying vagus nerve control of transient lower esophageal sphincter relaxation is a major focus of development of therapeutics for gastroesophageal reflux disease, but neural mechanisms that coordinate the CD are poorly understood. Nerve tracing and immunolabeling were used to assess innervation of the diaphragm and lower esophageal sphincter in ferrets. Mechanosensory responses of vagal afferents in the CD and electromyography responses of the CD were recorded in novel in vitro preparations and in vivo. Retrograde tracing revealed a unique population of vagal CD sensory neurons in nodose ganglia and CD motor neurons in brainstem vagal nuclei. Anterograde tracing revealed specialized vagal endings in the CD and phrenoesophageal ligament-sites of vagal afferent mechanosensitivity recorded in vitro. Spontaneous electromyography activity persisted in the CD following bilateral phrenicotomy in vivo, while vagus nerve stimulation evoked electromyography responses in the CD in vitro and in vivo. We conclude that vagal sensory and motor neurons functionally innervate the CD and phrenoesophageal ligament. CD vagal afferents show mechanosensitivity to distortion of the gastroesophageal junction, while vagal motor neurons innervate both CD and distal esophagus and may represent a common substrate for motor control of the reflux barrier. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Case report

    African Journals Online (AJOL)

    abp

    2012-07-31

    Jul 31, 2012 ... ischemic stroke. Cardiovascular exploration had found a complete arrhythmia by atrial fibrillation on hypertensive heart disease. The patient was managed with curative ... The CPG serially activates the cranial nerve motor neurons, including the nucleus ambigus and vagal dorsal motor nucleus, which then ...

  12. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones.

    Science.gov (United States)

    Browning, Kirsteen N; Fortna, Samuel R; Hajnal, Andras

    2013-05-01

    Diet-induced obesity (DIO) has been shown to alter the biophysical properties and pharmacological responsiveness of vagal afferent neurones and fibres, although the effects of DIO on central vagal neurones or vagal efferent functions have never been investigated. The aims of this study were to investigate whether high-fat diet-induced DIO also affects the properties of vagal efferent motoneurones, and to investigate whether these effects were reversed following weight loss induced by Roux-en-Y gastric bypass (RYGB) surgery. Whole-cell patch-clamp recordings were made from rat dorsal motor nucleus of the vagus (DMV) neurones in thin brainstem slices. The DMV neurones from rats exposed to high-fat diet for 12-14 weeks were less excitable, with a decreased membrane input resistance and decreased ability to fire action potentials in response to direct current pulse injection. The DMV neurones were also less responsive to superfusion with the satiety neuropeptides cholecystokinin and glucagon-like peptide 1. Roux-en-Y gastric bypass reversed all of these DIO-induced effects. Diet-induced obesity also affected the morphological properties of DMV neurones, increasing their size and dendritic arborization; RYGB did not reverse these morphological alterations. Remarkably, independent of diet, RYGB also reversed age-related changes of membrane properties and occurrence of charybdotoxin-sensitive (BK) calcium-dependent potassium current. These results demonstrate that DIO also affects the properties of central autonomic neurones by decreasing the membrane excitability and pharmacological responsiveness of central vagal motoneurones and that these changes were reversed following RYGB. In contrast, DIO-induced changes in morphological properties of DMV neurones were not reversed following gastric bypass surgery, suggesting that they may be due to diet, rather than obesity. These findings represent the first direct evidence for the plausible effect of RYGB to improve vagal

  13. Subthalamic nucleus activity optimizes maximal effort motor responses in Parkinson's disease.

    Science.gov (United States)

    Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L; Aziz, Tipu; Brown, Peter

    2012-09-01

    The neural substrates that enable individuals to achieve their fastest and strongest motor responses have long been enigmatic. Importantly, characterization of such activities may inform novel therapeutic strategies for patients with hypokinetic disorders, such as Parkinson's disease. Here, we ask whether the basal ganglia may play an important role, not only in the attainment of maximal motor responses under standard conditions but also in the setting of the performance enhancements known to be engendered by delivery of intense stimuli. To this end, we recorded local field potentials from deep brain stimulation electrodes implanted bilaterally in the subthalamic nuclei of 10 patients with Parkinson's disease, as they executed their fastest and strongest handgrips in response to a visual cue, which was accompanied by a brief 96-dB auditory tone on random trials. We identified a striking correlation between both theta/alpha (5-12 Hz) and high-gamma/high-frequency (55-375 Hz) subthalamic nucleus activity and force measures, which explained close to 70% of interindividual variance in maximal motor responses to the visual cue alone, when patients were ON their usual dopaminergic medication. Loud auditory stimuli were found to enhance reaction time and peak rate of development of force still further, independent of whether patients were ON or OFF l-DOPA, and were associated with increases in subthalamic nucleus power over a broad gamma range. However, the contribution of this broad gamma activity to the performance enhancements observed was only modest (≤13%). The results implicate frequency-specific subthalamic nucleus activities as substantial factors in optimizing an individual's peak motor responses at maximal effort of will, but much less so in the performance increments engendered by intense auditory stimuli.

  14. NMDA Receptor-Dependent Synaptic Activity in Dorsal Motor Nucleus of Vagus Mediates the Enhancement of Gastric Motility by Stimulating ST36

    Directory of Open Access Journals (Sweden)

    Xinyan Gao

    2012-01-01

    Full Text Available Previous studies have demonstrated the efficacy of electroacupuncture at ST36 for patients with gastrointestinal motility disorders. While several lines of evidence suggest that the effect may involve vagal reflex, the precise molecular mechanism underlying this process still remains unclear. Here we report that the intragastric pressure increase induced by low frequency electric stimulation at ST36 was blocked by AP-5, an antagonist of N-methyl-D-aspartate receptors (NMDARs. Indeed, stimulating ST36 enhanced NMDAR-mediated, but not 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-ylpropanoic-acid-(AMPA- receptor-(AMPAR- mediated synaptic transmission in gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV. We also identified that suppression of presynaptic μ-opioid receptors may contribute to upregulation of NMDAR-mediated synaptic transmission induced by electroacupuncture at ST36. Furthermore, we determined that the glutamate-receptor-2a-(NR2A- containing NMDARs are essential for NMDAR-mediated enhancement of gastric motility caused by stimulating ST36. Taken together, our results reveal an important role of NMDA receptors in mediating enhancement of gastric motility induced by stimulating ST36.

  15. Structural remodeling of the heart and its premotor cardioinhibitory vagal neurons following T(5) spinal cord transection.

    Science.gov (United States)

    Lujan, Heidi L; Janbaih, Hussein; DiCarlo, Stephen E

    2014-05-01

    Midthoracic spinal cord injury (SCI) is associated with enhanced cardiac sympathetic activity and reduced cardiac parasympathetic activity. The enhanced cardiac sympathetic activity is associated with sympathetic structural plasticity within the stellate ganglia, spinal cord segments T1-T4, and heart. However, changes to cardiac parasympathetic centers rostral to an experimental SCI are relatively unknown. Importantly, reduced vagal activity is a predictor of high mortality. Furthermore, this autonomic dysregulation promotes progressive left ventricular (LV) structural remodeling. Accordingly, we hypothesized that midthoracic spinal cord injury is associated with structural plasticity in premotor (preganglionic parasympathetic neurons) cardioinhibitory vagal neurons located within the nucleus ambiguus as well as LV structural remodeling. To test this hypothesis, dendritic arborization and morphology (cholera toxin B immunohistochemistry and Sholl analysis) of cardiac projecting premotor cardioinhibitory vagal neurons located within the nucleus ambiguus were determined in intact (sham transected) and thoracic level 5 transected (T5X) rats. In addition, LV chamber size, wall thickness, and collagen content (Masson trichrome stain and structural analysis) were determined. Midthoracic SCI was associated with structural changes within the nucleus ambiguus and heart. Specifically, following T5 spinal cord transection, there was a significant increase in cardiac parasympathetic preganglionic neuron dendritic arborization, soma area, maximum dendritic length, and number of intersections/animal. This parasympathetic structural remodeling was associated with a profound LV structural remodeling. Specifically, T5 spinal cord transection increased LV chamber area, reduced LV wall thickness, and increased collagen content. Accordingly, results document a dynamic interaction between the heart and its parasympathetic innervation.

  16. Premotor nitric oxide synthase immunoreactive pathway connecting lumbar segments with the ventral motor nucleus of the cervical enlargement in the dog.

    Science.gov (United States)

    Marsala, Jozef; Lukácová, Nadezda; Cízková, Dása; Lukác, Imrich; Kuchárová, Karolína; Marsala, Martin

    2004-03-01

    In this study we investigate the occurrence and origin of punctate nitric oxide synthase immunoreactivity in the neuropil of the ventral motor nucleus in C7-Th1 segments of the dog spine, which are supposed to be the terminal field of an ascending premotor propriospinal nitric oxide synthase-immunoreactive pathway. As the first step, nitric oxide synthase immunohistochemistry was used to distinguish nitric oxide synthase-immunoreactive staining of the ventral motor nucleus. Dense, punctate nitric oxide synthase immunoreactivity was found on control sections in the neuropil of the ventral motor nucleus. After hemisection at Th10-11, axotomy-induced retrograde changes consisting in a strong upregulation of nitric oxide synthase-containing neurons were found mostly unilaterally in lamina VIII, the medial part of lamina VII and in the pericentral region in all segments of the lumbosacral enlargement. Concurrently, a strong depletion of the punctate nitric oxide synthase immunopositivity in the neuropil of the ventral motor nucleus ipsilaterally with the hemisection was detected, thus revealing that an uncrossed ascending premotor propriospinal pathway containing a fairly high number of nitric oxide synthase-immunoreactive fibers terminates in the ventral motor nucleus. Application of the retrograde fluorescent tracer Fluorogold injected into the ventral motor nucleus and analysis of alternate sections processed for nitric oxide synthase immunocytochemistry revealed the presence of Fluorogold-labeled and nitric oxide synthase-immunoreactive axons in the ventrolateral funiculus and in the lateral and medial portions of the ventral column throughout the thoracic and upper lumbar segments. A noticeable number of Fluorogold-labeled and nitric oxide synthase-immunoreactive somata detected on consecutive sections were found in the lumbosacral enlargement, mainly in laminae VIII-IX, the medial part of lamina VII and in the pericentral region (lamina X), ipsilaterally with the

  17. Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2016-12-17

    Orexin neurons are known to augment the sympathetic control of cardiovascular function, however the role of orexin neurons in parasympathetic cardiac regulation remains unclear. To test the hypothesis that orexin neurons contribute to parasympathetic control we selectively expressed channelrhodopsin-2 (ChR2) in orexin neurons in orexin-Cre transgenic rats and examined postsynaptic currents in cardiac vagal neurons (CVNs) in the dorsal motor nucleus of the vagus (DMV). Simultaneous photostimulation and recording in ChR2-expressing orexin neurons in the lateral hypothalamus resulted in reliable action potential firing as well as large whole-cell currents suggesting a strong expression of ChR2 and reliable optogenetic excitation. Photostimulation of ChR2-expressing fibers in the DMV elicited short-latency (ranging from 3.2ms to 8.5ms) postsynaptic currents in 16 out of 44 CVNs tested. These responses were heterogeneous and included excitatory glutamatergic (63%) and inhibitory GABAergic (37%) postsynaptic currents. The results from this study suggest different sub-population of orexin neurons may exert diverse influences on brainstem CVNs and therefore may play distinct functional roles in parasympathetic control of the heart. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Dexamethasone rapidly increases GABA release in the dorsal motor nucleus of the vagus via retrograde messenger-mediated enhancement of TRPV1 activity.

    Directory of Open Access Journals (Sweden)

    Andrei V Derbenev

    Full Text Available Glucocorticoids influence vagal parasympathetic output to the viscera via mechanisms that include modulation of neural circuitry in the dorsal vagal complex, a principal autonomic regulatory center. Glucocorticoids can modulate synaptic neurotransmitter release elsewhere in the brain by inducing release of retrograde signalling molecules. We tested the hypothesis that the glucocorticoid agonist dexamethasone (DEX modulates GABA release in the rat dorsal motor nucleus of the vagus (DMV. Whole-cell patch-clamp recordings revealed that DEX (1-10 µM rapidly (i.e. within three minutes increased the frequency of tetrodotoxin-resistant, miniature IPSCs (mIPSCs in 67% of DMV neurons recorded in acutely prepared slices. Glutamate-mediated mEPSCs were also enhanced by DEX (10 µM, and blockade of ionotropic glutamate receptors reduced the DEX effect on mIPSC frequency. Antagonists of type I or II corticosteroid receptors blocked the effect of DEX on mIPSCs. The effect was mimicked by application of the membrane-impermeant BSA-conjugated DEX, and intracellular blockade of G protein function with GDP βS in the recorded cell prevented the effect of DEX. The enhancement of GABA release was blocked by the TRPV1 antagonists, 5'-iodoresiniferatoxin or capsazepine, but was not altered by the cannabinoid type 1 receptor antagonist AM251. The DEX effect was prevented by blocking fatty acid amide hydrolysis or by inhibiting anandamide transport, implicating involvement of the endocannabinoid system in the response. These findings indicate that DEX induces an enhancement of GABA release in the DMV, which is mediated by activation of TRPV1 receptors on afferent terminals. The effect is likely induced by anandamide or other 'endovanilloid', suggesting activation of a local retrograde signal originating from DMV neurons to enhance synaptic inhibition locally in response to glucocorticoids.

  19. Evidence for a vagal pathophysiology for bulimia nervosa and the accompanying depressive symptoms.

    Science.gov (United States)

    Faris, Patricia L; Eckert, Elke D; Kim, Suck-Won; Meller, William H; Pardo, Jose V; Goodale, Robert L; Hartman, Boyd K

    2006-05-01

    fluctuations in pain thresholds. Depressive symptoms in these subjects also were reduced by ONDAN. Like pain thresholds, depressive symptoms varied dynamically with the bulimic behaviors, with BDI scores increasing (more depressed) as more time elapsed since the last bulimic episode. PET studies indicated that mechanical distention of the stomach with a balloon (a non-nutritive stimulus) was associated with the activation of several brain loci, including those associated with vagal activation (parabrachial nucleus), emotive aspects of eating (lateral inferior frontal and orbitofrontal), and depressive symptoms (anterior cingulate). The results of the ONDAN study in bulimia nervosa subjects suggest that cyclic increases in vagal activity drive the urge to binge-eat and vomit. The alterations in vagal firing patterns are possibly a physiological adaptation to the high levels of vagal stimulation initially provided by voluntarily binge-eating and vomiting for weight control. The depressive symptoms that occur in association with the urge to binge-eat are also likely due to the cyclic increase in vagal activity. This suggestion is supported by the reduction of depressive symptoms during ONDAN treatment in bulimia subjects and PET imaging studies in normal eating subjects showing that brain loci classically involved in depression are activated by vagal stimulation administered by mechanical gastric distention. In normal eating individuals, depressions accompanying visceral diseases may also be vagally mediated. Ondansetron and other drugs known to modulate vagal activity may be helpful in treating depressions of this origin.

  20. LOCUS-COERULEUS PROJECTIONS TO THE DORSAL MOTOR VAGUS NUCLEUS IN THE RAT

    NARCIS (Netherlands)

    TERHORST, GJ; TOES, GJ; VANWILLIGEN, JD

    1991-01-01

    The origin of the noradrenergic innervation of the preganglionic autonomic nuclei in the medulla oblongata and spinal cord is still controversial. In this investigation descending connections of the locus coeruleus to the dorsal motor vagus nucleus in the rat are studied with Phaseolus vulgaris

  1. Vagal activation by sham feeding improves gastric motility in functional dyspepsia.

    Science.gov (United States)

    Lunding, J A; Nordström, L M; Haukelid, A-O; Gilja, O H; Berstad, A; Hausken, T

    2008-06-01

    Antral hypomotility and impaired gastric accommodation in patients with functional dyspepsia have been ascribed to vagal dysfunction. We investigated whether vagal stimulation by sham feeding would improve meal-induced gastric motor function in these patients. Fourteen healthy volunteers and 14 functional dyspepsia patients underwent a drink test twice, once with and once without simultaneous sham feeding. After ingesting 500 mL clear meat soup (20 kcal, 37 degrees C) in 4 min, sham feeding was performed for 10 min by chewing a sugar-containing chewing gum while spitting out saliva. Using two- and three-dimensional ultrasound, antral motility index (contraction amplitude x frequency) and intragastric volumes were estimated. Without sham feeding, functional dyspepsia patients had lower motility index than healthy volunteers (area under curve 8.0 +/- 1.2 vs 4.4 +/- 1.0 min(-1), P = 0.04). In functional dyspepsia patients, but not in healthy volunteers, motility index increased and intragastric volume tended to increase by sham feeding (P = 0.04 and P = 0.06 respectively). The change in motility index was negatively correlated to the change in pain score (r = -0.59, P = 0.007). In functional dyspepsia patients, vagal stimulation by sham feeding improves antral motility in response to a soup meal. The result supports the view that impaired vagal stimulation is implicated in the pathogenesis of gastric motility disturbances in functional dyspepsia.

  2. Daith Piercing in a Case of Chronic Migraine: A Possible Vagal Modulation

    Directory of Open Access Journals (Sweden)

    Angelo Cascio Rizzo

    2017-11-01

    Full Text Available Daith piercing is an ear piercing located at the crus of the helix, bilaterally. It is getting great consent on social media as alternative treatment in chronic migraine. No data about its efficacy and action are available in scientific literature so far. We present the case of a 54-year-old male patient suffering from refractory chronic migraine with medication-overuse, who substantially improved after bilateral ear daith piercing. His migraine was refractory to symptomatic as well as prophylactic therapies. He used to treat headaches with up to five symptomatic drugs per attack and had attempted several pharmacological preventive therapies, including Onabotulinumtoxin A. He also underwent detoxification treatments with intravenous steroids and diazepam, without durable benefit. At the time of daith piercing, the headache-related disability measures showed a HIT-6 score of 64, a MIDAS-score of 70, and a 11-point Box scale of 5. On his own free will, he decided to get a “daith piercing.” After that, he experienced a reduction of migraine attacks, which became very rare, and infrequent, less disabling episodes of tension-type headache (HIT-6 score of 56; MIDAS score of 27, 11-point Box scale of 3. Painkiller assumption has much decreased: he takes only one tablet of indomethacin 50 mg to treat tensive headaches, about four times per month. Beyond a placebo effect, we can speculate a vagal modulation as the action mechanism of daith piercing: a nociceptive sensory stimulus applied to trigeminal and vagal areas of the ear can activate ear vagal afferents, which can modulate pain pathways by means of projections to the caudal trigeminal nucleus, to the locus coeruleus and to the nucleus raphe magnus. Currently, daith piercing cannot be recommended as migraine treatment because of the lack of scientific evidence, the unquantified rate of failure and the associated risks with insertion. However, given the increasing but anecdotal evidence, we

  3. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons

    Science.gov (United States)

    Babic, Tanja; Troy, Amanda E; Fortna, Samuel R; Browning, Kirsteen N

    2012-01-01

    Background Intestinal glucose induces gastric relaxation via vagally mediated sensory-motor reflexes. Glucose can alter the activity of gastrointestinal (GI) vagal afferent (sensory) neurons directly, via closure of ATP-sensitive potassium channels, as well as indirectly, via the release of 5-hydroxytryptamine (5-HT) from mucosal enteroendocrine cells. We hypothesized that glucose may also be able to modulate the ability of GI vagal afferent neurons to respond to the released 5-HT, via regulation of neuronal 5-HT3 receptors. Methods Whole cell patch clamp recordings were made from acutely dissociated GI-projecting vagal afferent neurons exposed to equiosmolar Krebs’ solution containing different concentrations of D-glucose (1.25–20mM) and the response to picospritz application of 5-HT assessed. The distribution of 5-HT3 receptors in neurons exposed to different glucose concentrations was also assessed immunohistochemically. Key Results Increasing or decreasing extracellular D-glucose concentration increased or decreased, respectively, the 5-HT-induced inward current as well as the proportion of 5-HT3 receptors associated with the neuronal membrane. These responses were blocked by the Golgi-disrupting agent Brefeldin-A (5µM) suggesting involvement of a protein trafficking pathway. Furthermore, L-glucose did not mimic the response of D-glucose implying that metabolic events downstream of neuronal glucose uptake are required in order to observe the modulation of 5-HT3 receptor mediated responses. Conclusions & Inferences These results suggest that, in addition to inducing the release of 5-HT from enterochromaffin cells, glucose may also increase the ability of GI vagal sensory neurons to respond to the released 5-HT, providing a means by which the vagal afferent signal can be amplified or prolonged. PMID:22845622

  4. Motor and non-motor circuitry activation induced by subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson’s disease patients: Intraoperative fMRI for DBS

    Science.gov (United States)

    Knight, Emily J.; Testini, Paola; Min, Hoon-Ki; Gibson, William S.; Gorny, Krzysztof R.; Favazza, Christopher P.; Felmlee, Joel P.; Kim, Inyong; Welker, Kirk M.; Clayton, Daniel A.; Klassen, Bryan T.; Chang, Su-youne; Lee, Kendall H.

    2015-01-01

    Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. PMID:26046412

  5. Vagal tone during infant contingency learning and its disruption.

    Science.gov (United States)

    Sullivan, Margaret Wolan

    2016-04-01

    This study used contingency learning to examine changes in infants' vagal tone during learning and its disruption. The heart rate of 160 five-month-old infants was recorded continuously during the first of two training sessions as they experienced an audiovisual event contingent on their pulling. Maternal reports of infant temperament were also collected. Baseline vagal tone, a measure of parasympathetic regulation of the heart, was related to vagal levels during the infants' contingency learning session, but not to their learner status. Vagal tone levels did not vary significantly over session minutes. Instead, vagal tone levels were a function of both individual differences in learner status and infant soothability. Vagal levels of infants who learned in the initial session were similar regardless of their soothability; however, vagal levels of infants who learned in a subsequent session differed as a function of soothability. Additionally, vagal levels during contingency disruption were significantly higher among infants in this group who were more soothable as opposed to those who were less soothable. The results suggest that contingency learning and disruption is associated with stable vagal tone in the majority of infants, but that individual differences in attention processes and state associated with vagal tone may be most readily observed during the disruption phase. © 2015 Wiley Periodicals, Inc.

  6. Innervation of the mammalian esophagus.

    Science.gov (United States)

    Neuhuber, Winfried L; Raab, Marion; Berthoud, Hans-Rudolf; Wörl, Jürgen

    2006-01-01

    Understanding the innervation of the esophagus is a prerequisite for successful treatment of a variety of disorders, e.g., dysphagia, achalasia, gastroesophageal reflux disease (GERD) and non-cardiac chest pain. Although, at first glance, functions of the esophagus are relatively simple, their neuronal control is considerably complex. Vagal motor neurons of the nucleus ambiguus and preganglionic neurons of the dorsal motor nucleus innervate striated and smooth muscle, respectively. Myenteric neurons represent the interface between the dorsal motor nucleus and smooth muscle but they are also involved in striated muscle innervation. Intraganglionic laminar endings (IGLEs) represent mechanosensory vagal afferent terminals. They also establish intricate connections with enteric neurons. Afferent information is implemented by the swallowing central pattern generator in the brainstem, which generates and coordinates deglutitive activity in both striated and smooth esophageal muscle and orchestrates esophageal sphincters as well as gastric adaptive relaxation. Disturbed excitation/inhibition balance in the lower esophageal sphincter results in motility disorders, e.g., achalasia and GERD. Loss of mechanosensory afferents disrupts adaptation of deglutitive motor programs to bolus variables, eventually leading to megaesophagus. Both spinal and vagal afferents appear to contribute to painful sensations, e.g., non-cardiac chest pain. Extrinsic and intrinsic neurons may be involved in intramural reflexes using acetylcholine, nitric oxide, substance P, CGRP and glutamate as main transmitters. In addition, other molecules, e.g., ATP, GABA and probably also inflammatory cytokines, may modulate these neuronal functions.

  7. Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract.

    Science.gov (United States)

    Beaumont, Eric; Campbell, Regenia P; Andresen, Michael C; Scofield, Stephanie; Singh, Krishna; Libbus, Imad; KenKnight, Bruce H; Snyder, Logan; Cantrell, Nathan

    2017-08-01

    Vagus nerve stimulation (VNS) currently treats patients with drug-resistant epilepsy, depression, and heart failure. The mild intensities used in chronic VNS suggest that primary visceral afferents and central nervous system activation are involved. Here, we measured the activity of neurons in the nucleus of the solitary tract (NTS) in anesthetized rats using clinically styled VNS. Our chief findings indicate that VNS at threshold bradycardic intensity activated NTS neuron discharge in one-third of NTS neurons. This VNS directly activated only myelinated vagal afferents projecting to second-order NTS neurons. Most VNS-induced activity in NTS, however, was unsynchronized to vagal stimuli. Thus, VNS activated unsynchronized activity in NTS neurons that were second order to vagal afferent C-fibers as well as higher-order NTS neurons only polysynaptically activated by the vagus. Overall, cardiovascular-sensitive and -insensitive NTS neurons were similarly activated by VNS: 3/4 neurons with monosynaptic vagal A-fiber afferents, 6/42 neurons with monosynaptic vagal C-fiber afferents, and 16/21 polysynaptic NTS neurons. Provocatively, vagal A-fibers indirectly activated C-fiber neurons during VNS. Elevated spontaneous spiking was quantitatively much higher than synchronized activity and extended well into the periods of nonstimulation. Surprisingly, many polysynaptic NTS neurons responded to half the bradycardic intensity used in clinical studies, indicating that a subset of myelinated vagal afferents is sufficient to evoke VNS indirect activation. Our study uncovered a myelinated vagal afferent drive that indirectly activates NTS neurons and thus central pathways beyond NTS and support reconsideration of brain contributions of vagal afferents underpinning of therapeutic impacts. NEW & NOTEWORTHY Acute vagus nerve stimulation elevated activity in neurons located in the medial nucleus of the solitary tract. Such stimuli directly activated only myelinated vagal afferents

  8. Vagal stimulation in heart failure.

    Science.gov (United States)

    De Ferrari, Gaetano M

    2014-04-01

    Heart failure (HF) is accompanied by an autonomic imbalance that is almost always characterized by both increased sympathetic activity and withdrawal of vagal activity. Experimentally, vagal stimulation has been shown to exert profound antiarrhythmic activity and to improve cardiac function and survival in HF models. A open-label pilot clinical study in 32 patients with chronic HF has shown safety and tolerability of chronic vagal stimulation associated with subjective (improved quality of life and 6-min walk test) and objective improvements (reduced left ventricular systolic volumes and improved left ventricular ejection fraction). Three larger clinical studies, including a phase III trial are currently ongoing and will evaluate the clinical role of this new approach.

  9. In vitro research of the alteration of neurons in vagal core in medulla oblongata at asphyxic deaths.

    Science.gov (United States)

    Haliti, Naim; Islami, Hilmi; Elezi, Nevzat; Shabani, Ragip; Abdullahu, Bedri; Dragusha, Gani

    2010-08-01

    The aim of this study was to research the morphological changes of neurons in the vagus nerve nuclei in medulla oblongata in asphyxia related death cases. Morphological changes that were investigated were mainly in the dorsal motor respiratory center (DMRC), nucleus tractus solitarius (nTS) and nucleus ambigus (nA) in the medulla oblongata. In our research, the autopsy material from asphyxia related death cases was used from various etiologies: monoxide carbon (CO), liquid drowning, strangulation, electricity, clinical-pathological death, firing weapon, explosive weapon, sharp and blunt objects and death cases due to accident. The material selected for research was taken from medulla oblongata and lungs from all lobes. The material from the medulla oblongata and lungs was fixed in a 10% solution of buffered formalin. Special histochemical methods for central nervous system (CNS) were employed like: Cresyl echt violet, toluidin blue, Sevier-Munger modification and Grimelius. For stereometrical analysis of the quantitative density of the neurons the universal testing system Weibel M42 was used. The acquired results show that in sudden asphyxia related death cases, there are alterations in the nuclei of vagal nerve in form of: central chromatolysis, axonal retraction, axonal fragmentation, intranuclear vacuolization, cytoplasmic vacuolization, edema, condensation and dispersion of substance of Nissl, proliferation of oligodendrocytes, astrocytes and microglia. The altered population of vagus nerve neurons does not show an important statistical significance compared to the overall quantity of the neurons in the nuclei of the vagus nerve (p<0.05).

  10. Police work stressors and cardiac vagal control.

    Science.gov (United States)

    Andrew, Michael E; Violanti, John M; Gu, Ja K; Fekedulegn, Desta; Li, Shengqiao; Hartley, Tara A; Charles, Luenda E; Mnatsakanova, Anna; Miller, Diane B; Burchfiel, Cecil M

    2017-09-10

    This study examines relationships between the frequency and intensity of police work stressors and cardiac vagal control, estimated using the high frequency component of heart rate variability (HRV). This is a cross-sectional study of 360 officers from the Buffalo New York Police Department. Police stress was measured using the Spielberger police stress survey, which includes exposure indices created as the product of the self-evaluation of how stressful certain events were and the self-reported frequency with which they occurred. Vagal control was estimated using the high frequency component of resting HRV calculated in units of milliseconds squared and reported in natural log scale. Associations between police work stressors and vagal control were examined using linear regression for significance testing and analysis of covariance for descriptive purposes, stratified by gender, and adjusted for age and race/ethnicity. There were no significant associations between police work stressor exposure indices and vagal control among men. Among women, the inverse associations between the lack of support stressor exposure and vagal control were statistically significant in adjusted models for indices of exposure over the past year (lowest stressor quartile: M = 5.57, 95% CI 5.07 to 6.08, and highest stressor quartile: M = 5.02, 95% CI 4.54 to 5.51, test of association from continuous linear regression of vagal control on lack of support stressor β = -0.273, P = .04). This study supports an inverse association between lack of organizational support and vagal control among female but not male police officers. © 2017 Wiley Periodicals, Inc.

  11. Moderate Baseline Vagal Tone Predicts Greater Prosociality in Children

    Science.gov (United States)

    Miller, Jonas G.; Kahle, Sarah; Hastings, Paul D.

    2016-01-01

    Vagal tone is widely believed to be an important physiological aspect of emotion regulation and associated positive behaviors. However, there is inconsistent evidence for relations between children’s baseline vagal tone and their helpful or prosocial responses to others (Hastings & Miller, 2014). Recent work in adults suggests a quadratic association (inverted U-shape curve) between baseline vagal tone and prosociality (Kogan et al., 2014). The present research examined whether this nonlinear association was evident in children. We found consistent evidence for a quadratic relation between vagal tone and prosociality across 3 samples of children using 6 different measures. Compared to low and high vagal tone, moderate vagal tone in early childhood concurrently predicted greater self-reported prosociality (Study 1), observed empathic concern in response to the distress of others and greater generosity toward less fortunate peers (Study 2), and longitudinally predicted greater self-, mother-, and teacher-reported prosociality 5.5 years later in middle childhood (Study 3). Taken together, our findings suggest that moderate vagal tone at rest represents a physiological preparedness or tendency to engage in different forms of prosociality across different contexts. Early moderate vagal tone may reflect an optimal balance of regulation and arousal that helps prepare children to sympathize, comfort, and share with others. PMID:27819463

  12. [The relationships among raphe magnus nucleus, locus coeruleus and dorsal motor nucleus of vagus in the descending regulation of gastric motility].

    Science.gov (United States)

    Qiao, Hui; An, Shu-Cheng; Xu, Chang

    2011-02-01

    To explore the interrelationship among dorsal motor nucleus of the vagus (DMV), locus coeruleus (LC) and raphe magnus nucleus (NRM) in the mechanism of the descending regulation on gastric motility, which may constitute a parasympathetic local circuit, work as a neural center of gastric modulation in brainstem. Using nucleus location, electric stimulation and lesion, together with microinjection, and recording the inter-gastric pressure. (1) LC stimulation could inhibit the gastric motility significantly (P effect, while blocking the a receptor on DMV could reverse the effect. (2) NRM stimulation reduced the amplitude of gastric constriction (P effect, but blocking the 5-HT2A receptor on DMV depressed the gastric motility heavily (P effect of NRM stimulation, and microinjection of ritanserin into LC could likewise abolish it. (1) LC inhibit the gastric motility via a receptor in DMV, and meanwhile may excite it through 5-HT2A receptor in DMV, these two ways work together to keeping the gastric motility amplitude normally. (2) NRM inhibit the gastric motility via 5-HT2A receptor in LC.

  13. In Vitro Research of the Alteration of Neurons in Vagal Core in Medulla Oblongata at Asphyxic Deaths

    Directory of Open Access Journals (Sweden)

    Naim Haliti

    2010-08-01

    Full Text Available The aim of this study was to research the morphological changes of neurons in the vagus nerve nuclei in medulla oblongata in asphyxia related death cases. Morphological changes that were investigated were mainly in the dorsal motor respiratory center (DMRC, nucleus tractus solitarius (nTS and nucleus ambigus (nA in the medulla oblongata. In our research, the autopsy material from asphyxia related death cases was used from various etiologies: monoxide carbon (CO, liquid drowning, strangulation, electricity, clinical-pathological death, firing weapon, explosive weapon, sharp and blunt objects and death cases due to accident. The material selected for research was taken from medulla oblongata and lungs from all lobes. The material from the medulla oblongata and lungs was fixed in a 10% solution of buffered formalin. Special histochemical methods for central nervous system (CNS were employed like: Cresyl echt violet, toluidin blue, Sevier-Munger modification and Grimelius. For stereometrical analysis of the quantitative density of the neurons the universal testing system Weibel M42 was used. The acquired results show that in sudden asphyxia related death cases, there are alterations in the nuclei of vagal nerve in form of: central chromatolysis, axonal retraction, axonal fragmentation, intranuclear vacuolization, cytoplasmic vacuolization, edema, condensation and dispersion of substance of Nissl, proliferation of oligodendrocytes, astrocytes and microglia. The altered population of vagus nerve neurons does not show an important statistica! significarne compared to the overall quantity of the neurons in the nuclei of the vagus nerve (p<0,05.

  14. Dorsal Vagal Complex Modulates Neurogenic Airway Inflammation in a Guinea Pig Model With Esophageal Perfusion of HCl

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    2018-05-01

    Full Text Available Neurogenic airway inflammation in chronic cough and bronchial asthma related to gastroesophageal reflux (GER is involved in the esophageal–bronchial reflex, but it is unclear whether this reflex is mediated by central neurons. This study aimed to investigate the regulatory effects of the dorsal vagal complex (DVC on airway inflammation induced by the esophageal perfusion of hydrochloric acid (HCl following the microinjection of nuclei in the DVC in guinea pigs. Airway inflammation was evaluated by measuring the extravasation of Evans blue dye (EBD and substance P (SP expression in the airway. Neuronal activity was indicated by Fos expression in the DVC. The neural pathways from the lower esophagus to the DVC and the DVC to the airway were identified using DiI tracing and pseudorabies virus Bartha (PRV-Bartha retrograde tracing, respectively. HCl perfusion significantly increased plasma extravasation, SP expression in the trachea, and the expression of SP and Fos in the medulla oblongata nuclei, including the nucleus of the solitary tract (NTS and the dorsal motor nucleus of the vagus (DMV. The microinjection of glutamic acid (Glu or exogenous SP to enhance neuronal activity in the DVC significantly potentiated plasma extravasation and SP release induced by intra-esophageal perfusion. The microinjection of γ-aminobutyric acid (GABA, lidocaine to inhibit neuronal activity or anti-SP serum in the DVC alleviated plasma extravasation and SP release. In conclusion, airway inflammation induced by the esophageal perfusion of HCl is regulated by DVC. This study provides new insight for the mechanism of airway neurogenic inflammation related to GER.

  15. Lesions of the amygdala central nucleus abolish lipoprivic-enhanced responding during oil-predicting conditioned stimuli.

    Science.gov (United States)

    Benoit, S C; Morell, J R; Davidson, T L

    1999-12-01

    T. L. Davidson, A. M. Altizer, S. C. Benoit, E. K. Walls, and T. L. Powley (1997) reported that rats show facilitated responding to conditioned stimuli (CSs) that predict oil, after administration of the lipoprivic agent, Na-2-mercaptoacetate (MA). This facilitation was blocked by vagal deafferentation. The present article extends that investigation to another structure, the amygdala central nucleus (CN). The CN receives inputs from dorsal vagal nuclei, and neurotoxic lesions of this nucleus are reported to abolish feeding in response to lipoprivic challenges. In Experiment 1, rats with ibotenic acid (IBO) lesions of the CN failed to show enhanced appetitive responding during oil-predicting CSs after administration of MA. Experiment 2 used a conditioned taste-aversion procedure to establish that rats with IBO lesions of the CN were able to discriminate the tastes of sucrose and peanut oil and had intact CS-US representations. It is concluded that the amygdala CN is a necessary structure for the detection of lipoprivic challenges.

  16. Research on alteration of neurons in vagal nuclei in medulla oblongata in newborns with respiratory distress.

    Science.gov (United States)

    Islami, Hilmi; Shabani, Ragip; Shabani, Driton; Dacaj, Ramadan; Manxhuka, Suzana; Azemi, Mehmedali; Krasniqi, Shaip; Kurtishi, Ilir

    2011-01-01

    Neuronal and axonal degenerative changes in motor vagal neurons (DMNV) and sensory vagal neurons (nTS) in the medulla oblongata in newborns were studied. Material was taken from the autopsies of newborns, live and dead newborns, in different gestational weeks (aborted, immature, premature and mature). 46 cases were studied. Material for research was taken from the medulla oblongata and lung tissue. Serial horizontal incisions were made in the medulla oblongata (± 4 mm), commencing from the obex, where the DMNV and nTS vagal nuclei were explored. Fixed cuttings in buffered formalin (10%) were used for histochemical staining. Serial cuttings were done with a microtome (7 µm). Pulmonary infections, being significant (p medulla oblongata in newborns in different gestational weeks are more emphasized in matures in comparison to aborted and immature (p < 0.05). Depending on the lifetime of dead newborns, neuronal morphological changes in vagus nerve nuclei are significant (p < 0.05). Therefore, it can be concluded that pulmonary infections are often caused due to dramatic respiratory distress in newborns, while hypoxaemic changes in the population of vagus nerve neurons in respiratory distress are more emphasized in matures.

  17. Preliminary findings of cerebral responses on transcutaneous vagal nerve stimulation on experimental heat pain.

    Science.gov (United States)

    Usichenko, Taras; Laqua, René; Leutzow, Bianca; Lotze, Martin

    2017-02-01

    Transcutaneous vagal nerve stimulation (TVNS) is a promising complementary method of pain relief. However, the neural networks associated with its analgesic effects are still to be elucidated. Therefore, we conducted two functional magnetic resonance imaging (fMRI) sessions, in a randomized order, with twenty healthy subjects who were exposed to experimental heat pain stimulation applied to the right forearm using a Contact Heat-Evoked Potential Stimulator. While in one session TVNS was administered bilaterally to the concha auriculae with maximal, non-painful intensity, the stimulation device was switched off in the other session (placebo condition). Pain thresholds were measured before and after each session. Heat stimulation elicited fMRI activation in cerebral pain processing regions. Activation magnitude in the secondary somatosensory cortex, posterior insula, anterior cingulate and caudate nucleus was associated with heat stimulation without TVNS. During TVNS, this association was only seen for the right anterior insula. TVNS decreased fMRI signals in the anterior cingulate cortex in comparison with the placebo condition; however, there was no relevant pain reducing effect over the group as a whole. In contrast, TVNS compared to the placebo condition showed an increased activation in the primary motor cortex, contralateral to the site of heat stimulation, and in the right amygdala. In conclusion, in the protocol used here, TVNS specifically modulated the cerebral response to heat pain, without having a direct effect on pain thresholds.

  18. Evidence for role of acid-sensing ion channels in nucleus ambiguus neurons: essential differences in anesthetized versus awake rats.

    Science.gov (United States)

    Brailoiu, G Cristina; Deliu, Elena; Altmann, Joseph B; Chitravanshi, Vineet; Brailoiu, Eugen

    2014-08-01

    Acid-sensing ion channels (ASIC) are widely expressed in several brain regions including medulla; their role in physiology and pathophysiology is incompletely understood. We examined the effect of acidic pH of 6.2 on the medullary neurons involved in parasympathetic cardiac control. Our results indicate that retrogradely labeled cardiac vagal neurons of nucleus ambiguus are depolarized by acidic pH. In addition, acidic saline of pH 6.2 increases cytosolic Ca(2+) concentration by promoting Ca(2+) influx in nucleus ambiguus neurons. In vivo studies indicate that microinjection of acidic artificial cerebrospinal fluid (pH 6.2) into the nucleus ambiguus decreases the heart rate in conscious rats, whereas it has no effect in anesthetized animals. Pretreatment with either amiloride or benzamil, two widely used ASIC blockers, abolishes both the in vitro and in vivo effects elicited by pH 6.2. Our findings support a critical role for ASIC in modulation of cardiac vagal tone and provide a potential mechanism for acidosis-induced bradycardia, while identifying important differences in the response to acidic pH between anesthetized and conscious rats.

  19. Hitting the right target : noninvasive localization of the subthalamic nucleus motor part for specific deep brain stimulation

    NARCIS (Netherlands)

    Brunenberg, E.J.L.

    2011-01-01

    Deep brain stimulation of the subthalamic nucleus (STN) has gained momentum as a therapy for advanced Parkinson’s disease. The stimulation effectively alleviates the patients’ typical motor symptoms on a long term, but can give rise to cognitive and psychiatric adverse effects as well. Based on

  20. Vagal nerve stimulation therapy: what is being stimulated?

    Science.gov (United States)

    Kember, Guy; Ardell, Jeffrey L; Armour, John A; Zamir, Mair

    2014-01-01

    Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.

  1. Vagal nerve stimulation therapy: what is being stimulated?

    Directory of Open Access Journals (Sweden)

    Guy Kember

    Full Text Available Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.

  2. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity.

    Science.gov (United States)

    Sen, Tanusree; Cawthon, Carolina R; Ihde, Benjamin Thomas; Hajnal, Andras; DiLorenzo, Patricia M; de La Serre, Claire B; Czaja, Krzysztof

    2017-05-01

    /HSD and LF/HSD fed rats. HF/HSD and LF/HSD-fed rats also exhibited an increase in cecum and serum levels of lipopolysaccharide (LPS), a pro-inflammatory bacterial product. Immunofluorescence revealed the withdrawal of vagal afferents from the gut and at their site of termination the nucleus of the solitary tract (NTS) in both the HF/HSD and LF/HSD rats. Moreover, there was significant microglia activation in the nodose ganglia, which contain the vagal afferent neuron cell bodies, of HF/HSD and LF/HSD rats. Taken together, these data indicate that, similar to HF/HSD, consumption of an LF/HSD induces dysbiosis of gut microbiota, increases gut inflammation and alters vagal gut-brain communication. These changes are associated with an increase in body fat accumulation. © 2016.

  3. Population calcium imaging of spontaneous respiratory and novel motor activity in the facial nucleus and ventral brainstem in newborn mice

    DEFF Research Database (Denmark)

    Persson, Karin; Rekling, Jens C

    2011-01-01

    The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem...... and in the facial nucleus. In Fluo-8AM loaded brainstem-spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial...... synchrony with respiratory nerve bursts. In brainstem-spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity...

  4. Factors predicting the instant effect of motor function after subthalamic nucleus deep brain stimulation in Parkinson's disease.

    Science.gov (United States)

    Su, Xin-Ling; Luo, Xiao-Guang; Lv, Hong; Wang, Jun; Ren, Yan; He, Zhi-Yi

    2017-01-01

    Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for Parkinson's disease (PD), the predictive effect of levodopa responsiveness on surgical outcomes was confirmed by some studies, however there were different conclusions about that through long- and short-term follow-ups. We aimed to investigate the factors which influence the predictive value of levodopa responsiveness, and discover more predictive factors of surgical outcomes. Twenty-three PD patients underwent bilateral STN-DBS and completed our follow-up. Clinical evaluations were performed 1 week before and 3 months after surgery. STN-DBS significantly improved motor function of PD patients after 3 months; preoperative levodopa responsiveness and disease subtype predicted the effect of DBS on motor function; gender, disease duration and duration of motor fluctuations modified the predictive effect of levodopa responsiveness on motor improvement; the duration of motor fluctuations and severity of preoperative motor symptoms modified the predictive effect of disease subtype on motor improvement. The intensity of levodopa responsiveness served as a predictor of motor improvement more accurately in female patients, patients with shorter disease duration or shorter motor fluctuations; PD patients with dominant axial symptoms benefit less from STN-DBS compared to those with limb-predominant symptoms, especially in their later disease stage.

  5. Registration and Analysis of Bioelectric Activity of Sensory-Motor Cortex During the Electrical Stimulation of Nucleus Caudate in Rats

    Directory of Open Access Journals (Sweden)

    Snežana Medenica-Milanović

    2007-05-01

    Full Text Available Background and purposeThe caudate circuit takes part in cognitive control of motor activity The purpose of the present work was registration and analysis of basic bioelectrical activity of ventral and dorsal sensory-motor cortex and nucleus caudate, study of the changes in EEG after nucleus caudate electrical stimulation and to identify of threshold level of electrical stimuli responsible for changes of electrical activity in registered brain area.Materials and methodsWe used 28 albino Wistar rat of both genders. After the animal fixation on stereotaxic apparatus to dry bone, the places for electrode fixation were marked. Two days after the electrodes had been implanted an EEG was registered so that the animals would adjust to the conditions and so they would repair the tissue reactions. EEG was registered with bipolar electrodes with ten-channeled apparatus. For first half an hour spontaneous activity of the brain was registered, and after that the head of nucleus caudate was stimulated with altered impulses of various voltages, frequency and duration.Results and conclusionsThreshold values of electric stimulus intensity from 3 to 5 V, frequency from 3 to 5 Hz, duration from 3 to 5 ms, by stimulation the head of nucleus caudate of rat, lead to the change of basal bioelectric activity of cerebrum. The change of bioelectric activity is firstly recorded in equilateral cortex, and with the higher intensity of the stimulus the changes overtake the contra lateral cortex.

  6. EFFECTS OF VAGAL SENSORY INPUT ON THE BREATHING RHYTHM OF THE CARP

    NARCIS (Netherlands)

    DEGRAAF, PJF; ROBERTS, BL

    Electrical stimulation of an epibranchial vagal ganglion, which innervates the gill region, had a marked influence on the respiratory rhythm of the carp Cyprinus carpio. Vagal input could initiate ventilation in fish displaying intermittent respiration. In fish breathing steadily, vagal stimuli

  7. Sleeve Gastrectomy and Roux-en-Y Gastric Bypass Alter the Gut-Brain Communication

    Directory of Open Access Journals (Sweden)

    L. A. Ballsmider

    2015-01-01

    Full Text Available This study investigated the anatomical integrity of vagal innervation of the gastrointestinal tract following vertical sleeve gastrectomy (VSG and Roux-en-Y gastric bypass (RYGB operations. The retrograde tracer fast blue (FB was injected into the stomach to label vagal neurons originating from nodose ganglion (NG and dorsal motor nucleus of the vagus (DMV. Microglia activation was determined by quantifying changes in the fluorescent staining of hindbrain sections against an ionizing calcium adapter binding molecule 1 (Iba1. Reorganization of vagal afferents in the hindbrain was studied by fluorescent staining against isolectin 4 (IB4. The density of Iba1- and IB4-immunoreactivity was analyzed using Nikon Elements software. There was no difference in the number of FB-labeled neurons located in NG and DMV between VSG and VSG-sham rats. RYGB, but not RYGB-sham rats, showed a dramatic reduction in number of FB-labeled neurons located in the NG and DMV. VSG increased, while the RYGB operation decreased, the density of vagal afferents in the nucleus tractus solitarius (NTS. The RYGB operation, but not the VSG procedure, significantly activated microglia in the NTS and DMV. Results of this study show that the RYGB, but not the VSG procedure, triggers microglia activation in vagal structures and remodels gut-brain communication.

  8. Sensorimotor nucleus NIf is necessary for auditory processing but not vocal motor output in the avian song system.

    Science.gov (United States)

    Cardin, Jessica A; Raksin, Jonathan N; Schmidt, Marc F

    2005-04-01

    Sensorimotor integration in the avian song system is crucial for both learning and maintenance of song, a vocal motor behavior. Although a number of song system areas demonstrate both sensory and motor characteristics, their exact roles in auditory and premotor processing are unclear. In particular, it is unknown whether input from the forebrain nucleus interface of the nidopallium (NIf), which exhibits both sensory and premotor activity, is necessary for both auditory and premotor processing in its target, HVC. Here we show that bilateral NIf lesions result in long-term loss of HVC auditory activity but do not impair song production. NIf is thus a major source of auditory input to HVC, but an intact NIf is not necessary for motor output in adult zebra finches.

  9. Self-esteem fluctuations and cardiac vagal control in everyday life.

    Science.gov (United States)

    Schwerdtfeger, Andreas R; Scheel, Sophie-Marie

    2012-03-01

    It has been proposed that self-esteem buffers threat-responding. The same effect is ascribed to the vagus nerve, which is a primary nerve of the parasympathetic nervous system. Consequently, it has been suggested that self-esteem and cardiac vagal tone are interconnected on a trait, as well as on a state, level. In this study, we examined the relationship of vagal cardiac control and self-esteem fluctuations across a single day using ecological momentary assessment. Eighty-four participants were recruited, and self-esteem, negative affect, and vagal tone were recorded throughout a 22-hour period. Men provided higher self-esteem ratings than women, but the negative relationship between self-esteem and negative affect was stronger in women. Moreover, controlling for potential confounds (e.g., age, BMI, depressive symptoms, smoking status, regular physical activity), we observed that for men, self-esteem was significantly positively associated with cardiac vagal tone, whereas for women it was not. These findings suggest that the relationship between self-esteem and vagal innervation of the heart during daily life is sex-specific and might involve different central-autonomic pathways for men and women, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Breathing exercises with vagal biofeedback may benefit patients with functional dyspepsia.

    Science.gov (United States)

    Hjelland, Ina E; Svebak, Sven; Berstad, Arnold; Flatabø, Geir; Hausken, Trygve

    2007-09-01

    Many patients with functional dyspepsia (FD) have postprandial symptoms, impaired gastric accommodation and low vagal tone. The aim of this study was to improve vagal tone, and thereby also drinking capacity, intragastric volume and quality of life, using breathing exercises with vagal biofeedback. Forty FD patients were randomized to either a biofeedback group or a control group. The patients received similar information and care. Patients in the biofeedback group were trained in breathing exercises, 6 breaths/min, 5 min each day for 4 weeks, using specially designed software for vagal biofeedback. Effect variables included maximal drinking capacity using a drink test (Toro clear meat soup 100 ml/min), intragastric volume at maximal drinking capacity, respiratory sinus arrhythmia (RSA), skin conductance (SC) and dyspepsia-related quality of life scores. Drinking capacity and quality of life improved significantly more in the biofeedback group than in the control group (p=0.02 and p=0.01) without any significant change in baseline autonomic activity (RSA and SC) or intragastric volume. After the treatment period, RSA during breathing exercises was significantly correlated to drinking capacity (r=0.6, p=0.008). Breathing exercises with vagal biofeedback increased drinking capacity and improved quality of life in FD patients, but did not improve baseline vagal tone.

  11. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    Science.gov (United States)

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  12. Motor evoked potential monitoring of the vagus nerve with transcranial electrical stimulation during skull base surgeries.

    Science.gov (United States)

    Ito, Eiji; Ichikawa, Masahiro; Itakura, Takeshi; Ando, Hitoshi; Matsumoto, Yuka; Oda, Keiko; Sato, Taku; Watanabe, Tadashi; Sakuma, Jun; Saito, Kiyoshi

    2013-01-01

    Dysphasia is one of the most serious complications of skull base surgeries and results from damage to the brainstem and/or cranial nerves involved in swallowing. Here, the authors propose a method to monitor the function of the vagus nerve using endotracheal tube surface electrodes and transcranial electrical stimulation during skull base surgeries. Fifteen patients with skull base or brainstem tumors were enrolled. The authors used surface electrodes of an endotracheal tube to record compound electromyographic responses from the vocalis muscle. Motor neurons were stimulated using corkscrew electrodes placed subdermally on the scalp at C3 and C4. During surgery, the operator received a warning when the amplitude of the vagal motor evoked potential (MEP) decreased to less than 50% of the control level. After surgery, swallowing function was assessed clinically using grading criteria. In 5 patients, vagal MEP amplitude permanently deteriorated to less than 50% of the control level on the right side when meningiomas were dissected from the pons or basilar artery, or when a schwannoma was dissected from the vagal rootlets. These 5 patients had postoperative dysphagia. At 4 weeks after surgery, 2 patients still had dysphagia. In 2 patients, vagal MEPs of one side transiently disappeared when the tumors were dissected from the brainstem or the vagal rootlets. After surgery, both patients had dysphagia, which recovered in 4 weeks. In 7 patients, MEP amplitude was consistent, maintaining more than 50% of the control level throughout the operative procedures. After surgery all 7 patients were neurologically intact with normal swallowing function. Vagal MEP monitoring with transcranial electrical stimulation and endotracheal tube electrode recording was a safe and effective method to provide continuous real-time information on the integrity of both the supranuclear and infranuclear vagal pathway. This method is useful to prevent intraoperative injury of the brainstem

  13. Vagal Blocking for Obesity Control

    DEFF Research Database (Denmark)

    Johannessen, Helene; Revesz, David; Kodama, Yosuke

    2017-01-01

    : VBLOC reduced body weight and food intake, which was associated with increased satiety but not with decreased hunger. Brain activities in response to VBLOC included increased gene expression of leptin and CCKb receptors, interleukin-1β, tumor necrosis factor, and transforming growth factor β1......BACKGROUND: Recently, the US FDA has approved "vagal blocking therapy or vBLoc® therapy" as a new treatment for obesity. The aim of the present study was to study the mechanism-of-action of "VBLOC" in rat models. METHODS: Rats were implanted with VBLOC, an intra-abdominal electrical device...... with leads placed around gastric vagal trunks through an abdominal incision and controlled by wireless device. Body weight, food intake, hunger/satiety, and metabolic parameters were monitored by a comprehensive laboratory animal monitoring system. Brain-gut responses were analyzed physiologically. RESULTS...

  14. Long-Term Potentiation in the Motor Cortex

    Science.gov (United States)

    Iriki, Atsushi; Pavlides, Constantine; Keller, Asaf; Asanuma, Hiroshi

    1989-09-01

    Long-term potentiation (LTP) is a model for learning and memory processes. Tetanic stimulation of the sensory cortex produces LTP in motor cortical neurons, whereas tetanization of the ventrolateral nucleus of the thalamus, which also projects to the motor cortex, does not. However, after simultaneous high-frequency stimulation of both the sensory cortex and the ventrolateral nucleus of the thalamus, LTP of thalamic input to motor cortical neurons is induced. This associative LTP occurs only in neurons in the superficial layers of the motor cortex that receive monosynaptic input from both the sensory cortex and the ventrolateral nucleus of the thalamus. Associative LTP in the motor cortex may constitute a basis for the retention of motor skills.

  15. Distinctive features of Phox2b-expressing neurons in the rat reticular formation dorsal to the trigeminal motor nucleus.

    Science.gov (United States)

    Nagoya, Kouta; Nakamura, Shiro; Ikeda, Keiko; Onimaru, Hiroshi; Yoshida, Atsushi; Nakayama, Kiyomi; Mochizuki, Ayako; Kiyomoto, Masaaki; Sato, Fumihiko; Kawakami, Kiyoshi; Takahashi, Koji; Inoue, Tomio

    2017-09-01

    Phox2b encodes a paired-like homeodomain-containing transcription factor essential for development of the autonomic nervous system. Phox2b-expressing (Phox2b + ) neurons are present in the reticular formation dorsal to the trigeminal motor nucleus (RdV) as well as the nucleus of the solitary tract and parafacial respiratory group. However, the nature of Phox2b + RdV neurons is still unclear. We investigated the physiological and morphological properties of Phox2b + RdV neurons using postnatal day 2-7 transgenic rats expressing yellow fluorescent protein under the control of Phox2b. Almost all of Phox2b + RdV neurons were glutamatergic, whereas Phox2b-negative (Phox2b - ) RdV neurons consisted of a few glutamatergic, many GABAergic, and many glycinergic neurons. The majority (48/56) of Phox2b + neurons showed low-frequency firing (LF), while most of Phox2b - neurons (35/42) exhibited high-frequency firing (HF) in response to intracellularly injected currents. All, but one, Phox2b + neurons (55/56) did not fire spontaneously, whereas three-fourths of the Phox2b - neurons (31/42) were spontaneously active. K + channel and persistent Na + current blockers affected the firing of LF and HF neurons. The majority of Phox2b + (35/46) and half of the Phox2b - neurons (19/40) did not respond to stimulations of the mesencephalic trigeminal nucleus, the trigeminal tract, and the principal sensory trigeminal nucleus. Biocytin labeling revealed that about half of the Phox2b + (5/12) and Phox2b - RdV neurons (5/10) send their axons to the trigeminal motor nucleus. These results suggest that Phox2b + RdV neurons have distinct neurotransmitter phenotypes and firing properties from Phox2b - RdV neurons and might play important roles in feeding-related functions including suckling and possibly mastication. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Malignant vagal paraganglioma

    DEFF Research Database (Denmark)

    Carlsen, Camilla S; Godballe, Christian; Krogdahl, Annelise S

    2003-01-01

    Approximately 20 cases of malignant vagal paragangliomas (MVP)have been reported in English literature. Malignancy is based on the presence of metastases. A careful preoperative evaluation is necessary to detect multicentricity and/or significant production of catecholamines. A new case of MVP...... treated with embolization and surgery is presented and the literature discussed. It is concluded, that preoperative embolization followed by radical surgical resection is a rational treatment of patients with unilateral MVP....

  17. Ineffective esophageal motility and the vagus: current challenges and future prospects

    Directory of Open Access Journals (Sweden)

    Chen JH

    2016-09-01

    Full Text Available Ji-Hong Chen1,2 1Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, People’s Republic of China; 2Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada Abstract: Ineffective esophageal motility (IEM is characterized by low to very low amplitude propulsive contractions in the distal esophagus, hence primarily affecting the smooth muscle part of the esophagus. IEM is often found in patients with dysphagia or heartburn and is commonly associated with gastroesophageal reflux disease. IEM is assumed to be associated with ineffective bolus transport; however, this can be verified using impedance measurements or evaluation of a barium coated marshmallow swallow. Furthermore, water swallows may not assess accurately the motor capabilities of the esophagus, since contraction amplitude is strongly determined by the size and consistency of the bolus.The “peristaltic reserve” of the esophagus can be evaluated by multiple rapid swallows that, after a period of diglutative inhibition, normally give a powerful peristaltic contraction suggestive of the integrity of neural orchestration and smooth muscle action. The amplitude of contraction is determined by a balance between intrinsic excitatory cholinergic, inhibitory nitrergic, as well as postinhibition rebound excitatory output to the musculature. This is strongly influenced by vagal efferent motor neurons and this in turn is influenced by vagal afferent neurons that send bolus information to the solitary nucleus where programmed activation of the vagal motor neurons to the smooth muscle esophagus is initiated. Solitary nucleus activity is influenced by sensory activity from a large number of organs and various areas of the brain, including the hypothalamus and the cerebral cortex. This allows interaction between swallowing activities and respiratory and cardiac activities and allows the

  18. Asystole Following Profound Vagal Stimulation During Hepatectomy

    Directory of Open Access Journals (Sweden)

    Preeta John

    2008-01-01

    Full Text Available Asystole in a non laparoscopic upper abdominal surgery following intense vagal stimulation is a rare event. This case report highlights the need for awareness of such a complication when a thoracic epidural anaesthetic has been given in addition to a general anaesthetic for an upper abdominal procedure. A combined thoracic epidural and general anaesthetic was given. The anterior abdominal wall was retracted forty minutes after administration of the epidural bolus. This maneuver resulted in a profound vagal response with bradycardia and asystole. The patient was resuscitated successfully with a cardiac massage, atropine and adrenaline and the surgery was resumed. Surgery lasted eleven hours and was uneventful.

  19. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha

    DEFF Research Database (Denmark)

    Brock, C; Brock, B; Aziz, Q

    2017-01-01

    -VNS, there was an increase in cardiac vagal tone and a reduction in tumor necrosis factor-α in comparison to baseline. No change was seen in blood pressure, cardiac sympathetic index or other cytokines. These preliminary data suggest that t-VNS exerts an autonomic and a subtle antitumor necrosis factor-α effect, which...

  20. Mechanism of hyperphagia contributing to obesity in brain-derived neurotrophic factor knockout mice.

    Science.gov (United States)

    Fox, E A; Biddinger, J E; Jones, K R; McAdams, J; Worman, A

    2013-01-15

    Global-heterozygous and brain-specific homozygous knockouts (KOs) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from the gut to the brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal motor nucleus of the vagus nerve (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Expression of a serine protease (motopsin PRSS12) mRNA in the mouse brain: in situ hybridization histochemical study.

    Science.gov (United States)

    Iijima, N; Tanaka, M; Mitsui, S; Yamamura, Y; Yamaguchi, N; Ibata, Y

    1999-03-20

    Serine proteases are considered to play several important roles in the brain. In an attempt to find novel brain-specific serine proteases (BSSPs), motopsin (PRSS-12) was cloned from a mouse brain cDNA library by polymerase chain reaction (PCR). Northern blot analysis demonstrated that the postnatal 10-day mouse brain contained the most amount of motopsin mRNA. At this developmental stage, in situ hybridization histochemistry showed that motopsin mRNA was specifically expressed in the following regions: cerebral cortical layers II/III, V and VIb, endopiriform cortex and the limbic system, particularly in the CA1 region of the hippocampal formation. In addition, in the brainstem, the oculomotor nucleus, trochlear nucleus, mecencephalic and motor nuclei of trigeminal nerve (N), abducens nucleus, facial nucleus, nucleus of the raphe pontis, dorsoral motor nucleus of vagal N, hypoglossal nucleus and ambiguus nucleus showed motopsin mRNA expression. Expression was also found in the anterior horn of the spinal cord. The above findings strongly suggest that neurons in almost all motor nuclei, particularly in the brainstem and spinal cord, express motopsin mRNA, and that motopsin seems to have a close relation to the functional role of efferent neurons. Copyright 1999 Elsevier Science B.V.

  2. Constitutive overexpression of muscarinic receptors leads to vagal hyperreactivity.

    Directory of Open Access Journals (Sweden)

    Angelo Livolsi

    Full Text Available BACKGROUND: Alterations in muscarinic receptor expression and acetylcholinesterase (AchE activity have been observed in tissues from Sudden Infant Death Syndrome (SIDS. Vagal overactivity has been proposed as a possible cause of SIDS as well as of vasovagal syncopes. The aim of the present study was to seek whether muscarinic receptor overexpression may be the underlying mechanism of vagal hyperreactivity. Rabbits with marked vagal pauses following injection of phenylephrine were selected and crossed to obtain a vagal hyperreactive strain. The density of cardiac muscarinic receptors and acetylcholinesterase (AchE gene expression were assessed. Blood markers of the observed cardiac abnormalities were also sought. METHODOLOGY/PRINCIPAL FINDINGS: Cardiac muscarinic M(2 and M(3 receptors were overexpressed in hyperreactive rabbits compared to control animals (2.3-fold and 2.5-fold, respectively and the severity of the phenylephrine-induced bradycardia was correlated with their densities. A similar overexpression of M(2 receptors was observed in peripheral mononuclear white blood cells, suggesting that cardiac M(2 receptor expression can be inferred with high confidence from measurements in blood cells. Sequencing of the coding fragment of the M(2 receptor gene revealed a single nucleotide mutation in 83% of hyperreactive animals, possibly contributing for the transcript overexpression. Significant increases in AchE expression and activity were also assessed (AchE mRNA amplification ratio of 3.6 versus normal rabbits. This phenomenon might represent a compensatory consequence of muscarinic receptors overexpression. Alterations in M(2 receptor and AchE expression occurred between the 5th and the 7th week of age, a critical period also characterized by a higher mortality rate of hyperreactive rabbits (52% in H rabbits versus 13% in normal rabbits and preceeded the appearance of functional disorders. CONCLUSIONS/SIGNIFICANCE: The results suggest that

  3. Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation.

    Science.gov (United States)

    Santaniello, Sabato; Montgomery, Erwin B; Gale, John T; Sarma, Sridevi V

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) directly modulates the basal ganglia (BG), but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine (OHDA)-lesioned rodents and facilitation of motor evoked potentials in Parkinson's disease (PD) patients, but the impact of the DBS settings on the cortical activity in normal vs. Parkinsonian conditions is still debated. We use point process models to analyze non-stationary activation patterns and inter-neuronal dependencies in the motor and sensory cortices of two non-human primates during STN DBS. These features are enhanced after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes a consistent PD-like motor impairment, while high-frequency (HF) DBS (i.e., ≥100 Hz) strongly reduces the short-term patterns (period: 3-7 ms) both before and after MPTP treatment, and elicits a short-latency post-stimulus activation. Low-frequency DBS (i.e., ≤50 Hz), instead, has negligible effects on the non-stationary features. Finally, by using tools from the information theory [i.e., receiver operating characteristic (ROC) curve and information rate (IR)], we show that the predictive power of these models is dependent on the DBS settings, i.e., the probability of spiking of the cortical neurons (which is captured by the point process models) is significantly conditioned on the timely delivery of the DBS input. This dependency increases with the DBS frequency and is significantly larger for high- vs. low-frequency DBS. Overall, the selective suppression of non-stationary features and the increased modulation of the spike probability suggest that HF STN DBS enhances the neuronal activation in motor and sensory cortices, presumably because of reinforcement mechanisms, which perhaps involve the overlap between feedback antidromic and feed-forward orthodromic responses along the BG-thalamo-cortical loop.

  4. Jugular and vagal paragangliomas: Systematic study of management with surgery and radiotherapy

    NARCIS (Netherlands)

    Suarez, C.; Rodrigo, J.P.; Bodeker, C.C.; Llorente, J.L.; Silver, C.E.; Jansen, J.C.; Takes, R.P.; Strojan, P.; Pellitteri, P.K.; Rinaldo, A.; Mendenhall, W.M.; Ferlito, A.

    2013-01-01

    BACKGROUND: The definitive treatment for head and neck paraganglioma (PG) is surgical excision. Unfortunately, surgery, particularly of vagal paraganglioma (VPG; "glomus vagale") and foramen jugulare ("glomus jugulare") tumors, may be complicated by injuries to the lower cranial nerves, a high price

  5. The Pedunculopontine Tegmental Nucleus as a Motor and Cognitive Interface between the Cerebellum and Basal Ganglia.

    Science.gov (United States)

    Mori, Fumika; Okada, Ken-Ichi; Nomura, Taishin; Kobayashi, Yasushi

    2016-01-01

    As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg) are involved in the regulation of motor control (locomotion, posture and gaze) and cognitive processes (attention, learning and memory). The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition), and modulate aspects of executive function (such as motivation). In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation (DBS) to relieve gait freezing and postural instability in advanced Parkinson's disease (PD) patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function and PD.

  6. The pedunculopontine tegmental nucleus as a motor and cognitive interface between the cerebellum and basal ganglia

    Directory of Open Access Journals (Sweden)

    Fumika Mori

    2016-11-01

    Full Text Available As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg are involved in the regulation of motor control (locomotion, posture and gaze and cognitive processes (attention, learning, and memory. The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition, and modulate aspects of executive function (such as motivation. In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation to relieve gait freezing and postural instability in advanced Parkinson’s disease patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function, and Parkinson’s disease.

  7. Vagal modulation of resting heart rate in rats: the role of stress, psychosocial factors and physical exercise

    Directory of Open Access Journals (Sweden)

    Luca eCarnevali

    2014-03-01

    Full Text Available In humans, there are large individual differences in the levels of vagal modulation of resting heart rate. High levels are a recognized index of cardiac health, whereas low levels are considered an important risk factor for cardiovascular morbidity and mortality. Several factors are thought to contribute significantly to this inter-individual variability. While regular physical exercise seems to induce an increase in resting vagal tone, chronic life stress and psychosocial factors such as negative moods and personality traits appear associated with vagal withdrawal. Preclinical research has been attempting to clarify such relationships and to provide insights into the neurobiological mechanisms underlying vagal tone impairment/enhancement. This paper focuses on rat studies that have explored the effects of stress, psychosocial factors and physical exercise on vagal modulation of resting heart rate. Results are discussed with regard to: (i individual differences in resting vagal tone, cardiac stress reactivity and arrhythmia vulnerability; (ii elucidation of the neurobiological determinants of resting vagal tone.

  8. Posterior Thalamic Nucleus Modulation of Tactile Stimuli Processing in Rat Motor and Primary Somatosensory Cortices

    Directory of Open Access Journals (Sweden)

    Diana Casas-Torremocha

    2017-09-01

    Full Text Available Rodents move rhythmically their facial whiskers and compute differences between signals predicted and those resulting from the movement to infer information about objects near their head. These computations are carried out by a large network of forebrain structures that includes the thalamus and the primary somatosensory (S1BF and motor (M1wk cortices. Spatially and temporally precise mechanorreceptive whisker information reaches the S1BF cortex via the ventroposterior medial thalamic nucleus (VPM. Other whisker-related information may reach both M1wk and S1BF via the axons from the posterior thalamic nucleus (Po. However, Po axons may convey, in addition to direct sensory signals, the dynamic output of computations between whisker signals and descending motor commands. It has been proposed that this input may be relevant for adjusting cortical responses to predicted vs. unpredicted whisker signals, but the effects of Po input on M1wk and S1BF function have not been directly tested or compared in vivo. Here, using electrophysiology, optogenetics and pharmacological tools, we compared in adult rats M1wk and S1BF in vivo responses in the whisker areas of the motor and primary somatosensory cortices to passive multi-whisker deflection, their dependence on Po activity, and their changes after a brief intense activation of Po axons. We report that the latencies of the first component of tactile-evoked local field potentials in M1wk and S1BF are similar. The evoked potentials decrease markedly in M1wk, but not in S1BF, by injection in Po of the GABAA agonist muscimol. A brief high-frequency electrical stimulation of Po decreases the responsivity of M1wk and S1BF cells to subsequent whisker stimulation. This effect is prevented by the local application of omega-agatoxin, suggesting that it may in part depend on GABA release by fast-spiking parvalbumin (PV-expressing cortical interneurons. Local optogenetic activation of Po synapses in different

  9. Nucleus Ruber of Actinopterygians.

    Science.gov (United States)

    Nakayama, Tomoya; Miyajima, Satoshi; Nishino, Hirotaka; Narita, Junya; Abe, Hideki; Yamamoto, Naoyuki

    2016-01-01

    Nucleus ruber is known as an important supraspinal center that controls forelimb movements in tetrapods, and the rubral homologue may serve similar functions in fishes (motor control of pectoral fin). However, two apparently different structures have been identified as 'nucleus ruber' in actinopterygians. One is nucleus ruber of Goldstein (1905) (NRg), and the other nucleus ruber of Nieuwenhuys and Pouwels (1983) (NRnp). It remains unclear whether one of these nuclei (or perhaps both) is homologous to tetrapod nucleus ruber. To resolve this issue from a phylogenetic point of view, we have investigated the distribution of tegmental neurons retrogradely labeled from the spinal cord in eight actinopterygian species. We also investigated the presence/absence of the two nuclei with Nissl- or Bodian-stained brain section series of an additional 28 actinopterygian species by comparing the morphological features of candidate rubral neurons with those of neurons revealed by the tracer studies. Based on these analyses, the NRg was identified in all actinopterygians investigated in the present study, while the NRnp appears to be absent in basal actinopterygians. The phylogenetic distribution pattern indicates that the NRg is the more likely homologue of nucleus ruber, and the NRnp may be a derived nucleus that emerged during the course of actinopterygian evolution. © 2016 S. Karger AG, Basel.

  10. Parental Socialization, Vagal Regulation, and Preschoolers' Anxious Difficulties: Direct Mothers and Moderated Fathers

    Science.gov (United States)

    Hastings, Paul D.; Sullivan, Caroline; McShane, Kelly E.; Coplan, Robert J.; Utendale, William T.; Vyncke, Johanna D.

    2008-01-01

    Parental supportiveness and protective overcontrol and preschoolers' parasympathetic regulation were examined as predictors of temperamental inhibition, social wariness, and internalizing problems. Lower baseline vagal tone and weaker vagal suppression were expected to mark poorer dispositional self-regulatory capacity, leaving children more…

  11. Exacerbation of electrical storm subsequent to implantation of a right vagal stimulator.

    Science.gov (United States)

    Shalaby, Alaa A; El-Saed, Aiman; Nemec, Jan; Moossy, John J; Balzer, Jeffrey R

    2007-12-01

    A patient with advanced ischemic cardiomyopathy underwent implantation of a vagal stimulator in an attempt to control recurrent drug refractory ventricular arrhythmia. Electrical storm was exacerbated after the implant and continued after neurostimulation was discontinued. The report aims to provide a cautionary note to application of vagal stimulation for control of cardiac arrhythmia.

  12. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms.

    Science.gov (United States)

    Egerod, Kristoffer L; Petersen, Natalia; Timshel, Pascal N; Rekling, Jens C; Wang, Yibing; Liu, Qinghua; Schwartz, Thue W; Gautron, Laurent

    2018-06-01

    G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagal afferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract. Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situ hybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Na v 1.8-expressing afferents. GPCRs for gut hormones that were the most enriched in Na v 1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Na v 1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Na v 1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents. Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  13. Mosaic Evolution of Brainstem Motor Nuclei in Catarrhine Primates

    Directory of Open Access Journals (Sweden)

    Seth D. Dobson

    2011-01-01

    Full Text Available Facial motor nucleus volume coevolves with both social group size and primary visual cortex volume in catarrhine primates as part of a specialized neuroethological system for communication using facial expressions. Here, we examine whether facial nucleus volume also coevolves with functionally unrelated brainstem motor nuclei (trigeminal motor and hypoglossal due to developmental constraints. Using phylogenetically informed multiple regression analyses of previously published brain component data, we demonstrate that facial nucleus volume is not correlated with the volume of other motor nuclei after controlling for medulla volume. Our results show that brainstem motor nuclei can evolve independently of other developmentally linked structures in association with specific behavioral ecological conditions. This finding provides additional support for the mosaic view of brain evolution.

  14. The antiarrhythmic effect of vagal stimulation after acute coronary occlusion: Role of the heart rate.

    Science.gov (United States)

    Manati, Waheed; Pineau, Julien; Doñate Puertas, Rosa; Morel, Elodie; Quadiri, Timour; Bui-Xuan, Bernard; Chevalier, Philippe

    2018-01-03

    Strong evidence suggests a causal link between autonomic disturbances and ventricular arrhythmias. However, the mechanisms underlying the antiarrhythmic effect of vagal stimulation are poorly understood. The vagal antiarrhythmic effect might be modulated by a decrease in heart rate. the proximal anterior interventricular artery was occluded in 16 pigs by clamping under general anaesthesia. Group 1: heart rates remained spontaneous (n = 6; 12 occlusions); Group 2: heart rates were fixed at 190 beats per minute (bpm) with atrial electrical stimulation (n = 10; 20 occlusions). Each pig received two occlusions, 30 min apart, one without and one with vagal stimulation (10 Hz, 2 ms, 5-20 mA). The antiarrhythmic effect of vagal activation was defined as the time to the appearance of ventricular fibrillation (VF) after occlusion. In Group 1, vagal stimulation triggered a significant decrease in basal heart rate (132 ± 4 vs. 110 ± 17 bpm, p coronary occlusion (1102 ± 85 vs. 925 ± 41 s, p acute coronary occlusion.

  15. Motor and Nonmotor Circuitry Activation Induced by Subthalamic Nucleus Deep Brain Stimulation in Patients With Parkinson Disease: Intraoperative Functional Magnetic Resonance Imaging for Deep Brain Stimulation.

    Science.gov (United States)

    Knight, Emily J; Testini, Paola; Min, Hoon-Ki; Gibson, William S; Gorny, Krzysztof R; Favazza, Christopher P; Felmlee, Joel P; Kim, Inyong; Welker, Kirk M; Clayton, Daniel A; Klassen, Bryan T; Chang, Su-youne; Lee, Kendall H

    2015-06-01

    To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with Parkinson disease would affect the activity of motor and nonmotor networks, we applied intraoperative functional magnetic resonance imaging (fMRI) to patients receiving DBS. Ten patients receiving STN DBS for Parkinson disease underwent intraoperative 1.5-T fMRI during high-frequency stimulation delivered via an external pulse generator. The study was conducted between January 1, 2013, and September 30, 2014. We observed blood oxygen level-dependent (BOLD) signal changes (false discovery rate <0.001) in the motor circuitry (including the primary motor, premotor, and supplementary motor cortices; thalamus; pedunculopontine nucleus; and cerebellum) and in the limbic circuitry (including the cingulate and insular cortices). Activation of the motor network was observed also after applying a Bonferroni correction (P<.001) to the data set, suggesting that across patients, BOLD changes in the motor circuitry are more consistent compared with those occurring in the nonmotor network. These findings support the modulatory role of STN DBS on the activity of motor and nonmotor networks and suggest complex mechanisms as the basis of the efficacy of this treatment modality. Furthermore, these results suggest that across patients, BOLD changes in the motor circuitry are more consistent than those in the nonmotor network. With further studies combining the use of real-time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. clinicaltrials.gov Identifier: NCT01809613. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  16. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  17. Pulmonary vein region ablation in experimental vagal atrial fibrillation: role of pulmonary veins versus autonomic ganglia.

    Science.gov (United States)

    Lemola, Kristina; Chartier, Denis; Yeh, Yung-Hsin; Dubuc, Marc; Cartier, Raymond; Armour, Andrew; Ting, Michael; Sakabe, Masao; Shiroshita-Takeshita, Akiko; Comtois, Philippe; Nattel, Stanley

    2008-01-29

    Pulmonary vein (PV) -encircling radiofrequency ablation frequently is effective in vagal atrial fibrillation (AF), and there is evidence that PVs may be particularly prone to cholinergically induced arrhythmia mechanisms. However, PV ablation procedures also can affect intracardiac autonomic ganglia. The present study examined the relative role of PVs versus peri-PV autonomic ganglia in an experimental vagal AF model. Cholinergic AF was studied under carbachol infusion in coronary perfused canine left atrial PV preparations in vitro and with cervical vagal stimulation in vivo. Carbachol caused dose-dependent AF promotion in vitro, which was not affected by excision of all PVs. Sustained AF could be induced easily in all dogs during vagal nerve stimulation in vivo both before and after isolation of all PVs with encircling lesions created by a bipolar radiofrequency ablation clamp device. PV elimination had no effect on atrial effective refractory period or its responses to cholinergic stimulation. Autonomic ganglia were identified by bradycardic and/or tachycardic responses to high-frequency subthreshold local stimulation. Ablation of the autonomic ganglia overlying all PV ostia suppressed the effective refractory period-abbreviating and AF-promoting effects of cervical vagal stimulation, whereas ablation of only left- or right-sided PV ostial ganglia failed to suppress AF. Dominant-frequency analysis suggested that the success of ablation in suppressing vagal AF depended on the elimination of high-frequency driver regions. Intact PVs are not needed for maintenance of experimental cholinergic AF. Ablation of the autonomic ganglia at the base of the PVs suppresses vagal responses and may contribute to the effectiveness of PV-directed ablation procedures in vagal AF.

  18. Vagal activity is quadratically related to prosocial traits, prosocial emotions, and observer perceptions of prosociality.

    Science.gov (United States)

    Kogan, Aleksandr; Oveis, Christopher; Carr, Evan W; Gruber, June; Mauss, Iris B; Shallcross, Amanda; Impett, Emily A; van der Lowe, Ilmo; Hui, Bryant; Cheng, Cecilia; Keltner, Dacher

    2014-12-01

    In the present article, we introduce the quadratic vagal activity-prosociality hypothesis, a theoretical framework for understanding the vagus nerve's involvement in prosociality. We argue that vagus nerve activity supports prosocial behavior by regulating physiological systems that enable emotional expression, empathy for others' mental and emotional states, the regulation of one's own distress, and the experience of positive emotions. However, we contend that extremely high levels of vagal activity can be detrimental to prosociality. We present 3 studies providing support for our model, finding consistent evidence of a quadratic relationship between respiratory sinus arrhythmia--the degree to which the vagus nerve modulates the heart rate--and prosociality. Individual differences in vagal activity were quadratically related to prosocial traits (Study 1), prosocial emotions (Study 2), and outside ratings of prosociality by complete strangers (Study 3). Thus, too much or too little vagal activity appears to be detrimental to prosociality. The present article provides the 1st theoretical and empirical account of the nonlinear relationship between vagal activity and prosociality.

  19. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Stephen J Kentish

    Full Text Available Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1 are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice.TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined.Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet.TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.

  20. Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus.

    Directory of Open Access Journals (Sweden)

    Matías A Goldin

    2017-08-01

    Full Text Available Different neuronal types within brain motor areas contribute to the generation of complex motor behaviors. A widely studied songbird forebrain nucleus (HVC has been recognized as fundamental in shaping the precise timing characteristics of birdsong. This is based, among other evidence, on the stretching and the "breaking" of song structure when HVC is cooled. However, little is known about the temperature effects that take place in its neurons. To address this, we investigated the dynamics of HVC both experimentally and computationally. We developed a technique where simultaneous electrophysiological recordings were performed during temperature manipulation of HVC. We recorded spontaneous activity and found three effects: widening of the spike shape, decrease of the firing rate and change in the interspike interval distribution. All these effects could be explained with a detailed conductance based model of all the neurons present in HVC. Temperature dependence of the ionic channel time constants explained the first effect, while the second was based in the changes of the maximal conductance using single synaptic excitatory inputs. The last phenomenon, only emerged after introducing a more realistic synaptic input to the inhibitory interneurons. Two timescales were present in the interspike distributions. The behavior of one timescale was reproduced with different input balances received form the excitatory neurons, whereas the other, which disappears with cooling, could not be found assuming poissonian synaptic inputs. Furthermore, the computational model shows that the bursting of the excitatory neurons arises naturally at normal brain temperature and that they have an intrinsic delay at low temperatures. The same effect occurs at single synapses, which may explain song stretching. These findings shed light on the temperature dependence of neuronal dynamics and present a comprehensive framework to study neuronal connectivity. This study, which

  1. The Role of Baseline Vagal Tone in Dealing with a Stressor during Face to Face and Computer-Based Social Interactions.

    Science.gov (United States)

    Rigoni, Daniele; Morganti, Francesca; Braibanti, Paride

    2017-01-01

    Facing a stressor involves a cardiac vagal tone response and a feedback effect produced by social interaction in visceral regulation. This study evaluated the contribution of baseline vagal tone and of social engagement system (SES) functioning on the ability to deal with a stressor. Participants ( n = 70) were grouped into a minimized social interaction condition (procedure administered through a PC) and a social interaction condition (procedure administered by an experimenter). The State Trait Anxiety Inventory, the Social Interaction Anxiety Scale, the Emotion Regulation Questionnaire and a debriefing questionnaire were completed by the subjects. The baseline vagal tone was registered during the baseline, stressor and recovery phases. The collected results highlighted a significant effect of the baseline vagal tone on vagal suppression. No effect of minimized vs. social interaction conditions on cardiac vagal tone during stressor and recovery phases was detected. Cardiac vagal tone and the results of the questionnaires appear to be not correlated. The study highlighted the main role of baseline vagal tone on visceral regulation. Some remarks on SES to be deepen in further research were raised.

  2. The Role of Baseline Vagal Tone in Dealing with a Stressor during Face to Face and Computer-Based Social Interactions

    Directory of Open Access Journals (Sweden)

    Daniele Rigoni

    2017-11-01

    Full Text Available Facing a stressor involves a cardiac vagal tone response and a feedback effect produced by social interaction in visceral regulation. This study evaluated the contribution of baseline vagal tone and of social engagement system (SES functioning on the ability to deal with a stressor. Participants (n = 70 were grouped into a minimized social interaction condition (procedure administered through a PC and a social interaction condition (procedure administered by an experimenter. The State Trait Anxiety Inventory, the Social Interaction Anxiety Scale, the Emotion Regulation Questionnaire and a debriefing questionnaire were completed by the subjects. The baseline vagal tone was registered during the baseline, stressor and recovery phases. The collected results highlighted a significant effect of the baseline vagal tone on vagal suppression. No effect of minimized vs. social interaction conditions on cardiac vagal tone during stressor and recovery phases was detected. Cardiac vagal tone and the results of the questionnaires appear to be not correlated. The study highlighted the main role of baseline vagal tone on visceral regulation. Some remarks on SES to be deepen in further research were raised.

  3. Mothers' responses to children's negative emotions and child emotion regulation: the moderating role of vagal suppression.

    Science.gov (United States)

    Perry, Nicole B; Calkins, Susan D; Nelson, Jackie A; Leerkes, Esther M; Marcovitch, Stuart

    2012-07-01

    The current study examined the moderating effect of children's cardiac vagal suppression on the association between maternal socialization of negative emotions (supportive and nonsupportive responses) and children's emotion regulation behaviors. One hundred and ninety-seven 4-year-olds and their mothers participated. Mothers reported on their reactions to children's negative emotions and children's regulatory behaviors. Observed distraction, an adaptive self-regulatory strategy, and vagal suppression were assessed during a laboratory task designed to elicit frustration. Results indicated that children's vagal suppression moderated the association between mothers' nonsupportive emotion socialization and children's emotion regulation behaviors such that nonsupportive reactions to negative emotions predicted lower observed distraction and lower reported emotion regulation behaviors when children displayed lower levels of vagal suppression. No interaction was found between supportive maternal emotion socialization and vagal suppression for children's emotion regulation behaviors. Results suggest physiological regulation may serve as a buffer against nonsupportive emotion socialization. Copyright © 2011 Wiley Periodicals, Inc.

  4. Validation and characterization of a novel method for selective vagal deafferentation of the gut.

    Science.gov (United States)

    Diepenbroek, Charlene; Quinn, Danielle; Stephens, Ricky; Zollinger, Benjamin; Anderson, Seth; Pan, Annabelle; de Lartigue, Guillaume

    2017-10-01

    There is a lack of tools that selectively target vagal afferent neurons (VAN) innervating the gut. We use saporin (SAP), a potent neurotoxin, conjugated to the gastronintestinal (GI) hormone cholecystokinin (CCK-SAP) injected into the nodose ganglia (NG) of male Wistar rats to specifically ablate GI-VAN. We report that CCK-SAP ablates a subpopulation of VAN in culture. In vivo, CCK-SAP injection into the NG reduces VAN innervating the mucosal and muscular layers of the stomach and small intestine but not the colon, while leaving vagal efferent neurons intact. CCK-SAP abolishes feeding-induced c-Fos in the NTS, as well as satiation by CCK or glucagon like peptide-1 (GLP-1). CCK-SAP in the NG of mice also abolishes CCK-induced satiation. Therefore, we provide multiple lines of evidence that injection of CCK-SAP in NG is a novel selective vagal deafferentation technique of the upper GI tract that works in multiple vertebrate models. This method provides improved tissue specificity and superior separation of afferent and efferent signaling compared with vagotomy, capsaicin, and subdiaphragmatic deafferentation. NEW & NOTEWORTHY We develop a new method that allows targeted lesioning of vagal afferent neurons that innervate the upper GI tract while sparing vagal efferent neurons. This reliable approach provides superior tissue specificity and selectivity for vagal afferent over efferent targeting than traditional approaches. It can be used to address questions about the role of gut to brain signaling in physiological and pathophysiological conditions. Copyright © 2017 the American Physiological Society.

  5. The modulatory effects of noradrenaline on vagal control of heart rate in the dogfish, Squalus acanthias.

    Science.gov (United States)

    Agnisola, Claudio; Randall, David J; Taylor, Edwin W

    2003-01-01

    The possible interactions between inhibitory vagal control of the heart and circulating levels of catecholamines in dogfish (Squalus acanthias) were studied using an in situ preparation of the heart, which retained intact its innervation from centrally cut vagus nerves. The response to peripheral vagal stimulation typically consisted of an initial cardiac arrest, followed by an escape beat, leading to renewed beating at a mean heart rate lower than the prestimulation rate (partial recovery). Cessation of vagal stimulation led to a transient increase in heart rate, above the prestimulation rate. This whole response was completely abolished by 10(-4) M atropine (a muscarinic cholinergic antagonist). The degree of vagal inhibition was evaluated in terms of both the initial, maximal cardiac interval and the mean heart rate during partial recovery, both expressed as a percentage of the prestimulation heart rate. The mean prestimulation heart rate of this preparation (36+/-4 beats min(-1)) was not affected by noradrenaline but was significantly reduced by 10(-4) M nadolol (a beta-adrenergic receptor antagonist), suggesting the existence of a resting adrenergic tone arising from endogenous catecholamines. The degree of vagal inhibition of heart rate varied with the rate of stimulation and was increased by the presence of 10(-8) M noradrenaline (the normal in vivo level in routinely active fish), while 10(-7) M noradrenaline (the in vivo level measured in disturbed or deeply hypoxic fish) reduced the cardiac response to vagal stimulation. In the presence of 10(-7) M noradrenaline, 10(-4) M nadolol further reduced the vagal response, while 10(-4) M nadolol + 10(-4) M phentolamine had no effect, indicating a complex interaction between adrenoreceptors, possibly involving presynaptic modulation of vagal inhibition.

  6. Parenting Stressors and Young Adolescents’ Depressive Symptoms: Does High Vagal Suppression Offer Protection?

    Science.gov (United States)

    Fletcher, Anne C.; Buehler, Cheryl; Buchanan, Christy M.; Weymouth, Bridget B.

    2017-01-01

    Grounded in a dual-risk, biosocial perspective of developmental psychopathology, this study examined the role of higher vagal suppression in providing young adolescents protection from four parenting stressors. It was expected that lower vagal suppression would increase youth vulnerability to the deleterious effects of these parenting stressors. Depressive symptoms were examined as a central marker of socioemotional difficulties during early adolescence. The four parenting stressors examined were interparental hostility, maternal use of harsh discipline, maternal inconsistent discipline, and maternal psychological control. Participants were 68 young adolescents (Grade 6) and their mothers. Greater vagal suppression provided protection (i.e., lower depressive symptoms) from interparental hostility, harsh discipline, and maternal psychological control for boys but not for girls. PMID:27979628

  7. Inhibition of reflex vagal bradycardia by a central action of 5-hydroxytryptophan.

    OpenAIRE

    Tadepalli, A. S.

    1980-01-01

    1 Vagally mediated reflex bradycardia was elicited in spinal cats with intravenous pressor doses of noradrenaline. Administration of 5-hydroxytryptophan (1.5 and 3 mg total dose) into the fourth cerebral ventricle reduced the reflex bradycardia. 2 Inhibition of central amino acid decarboxylase with R044602 prevented the effects of 5-hydroxytryptophan. After intravenous administration of 5-hydroxytryptophan, vagal reflex bradycardia was not affected. 3 Results suggest that 5-hydroxytryptophan ...

  8. Modulation of cardiopulmonary depressor reflex in nucleus ambiguus by electroacupuncture: roles of opioids and γ-aminobutyric acid.

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C; Li, Peng; Li, Min; Longhurst, John C

    2012-04-01

    Stimulation of cardiopulmonary receptors with phenylbiguanide (PBG) elicits depressor cardiovascular reflex responses, including decreases in blood pressure and heart rate mediated in part by the brain stem parasympathetic cardiac neurons in the nucleus ambiguus (NAmb). The present study examined NAmb neurotransmitter mechanisms underlying the influence of electroacupuncture (EA) on the PBG-induced hypotension and bradycardia. We hypothesized that somatic stimulation during EA modulates PBG responses through opioid and γ-aminobutyric acid (GABA) modulation in the NAmb. Anesthetized and ventilated cats were studied during repeated stimulation with PBG or cardiac vagal afferents while low-frequency EA (2 Hz) was applied at P5-6 acupoints overlying the median nerve for 30 min and NAmb neuronal activity, heart rate, and blood pressure were recorded. Microinjection of kainic acid into the NAmb attenuated the PBG-induced bradycardia from -60 ± 11 to -36 ± 11 beats/min. Likewise, EA reduced the PBG-induced depressor and bradycardia reflex by 52 and 61%, respectively. Cardiac vagal afferent evoked preganglionic cellular activity in the NAmb was reduced by EA for about 60 min. Blockade of opioid or GABA(A) receptors using naloxone and gabazine reversed the EA-related modulation of the evoked cardiac vagal activity by 73 and 53%, respectively. Similarly, naloxone and gabazine reversed EA modulation of the negative chronotropic responses from -11 ± 5 to -23 ± 6 and -13 ± 4 to -24 ± 3 beats/min, respectively. Thus EA at P5-6 decreases PBG evoked hypotension and bradycardia as well as the NAmb PBG-sensitive preganglionic cardiac vagal outflow through opioid and GABA neurotransmitter systems.

  9. c-Fos expression in the supraoptic nucleus is the most intense during different durations of restraint water-immersion stress in the rat.

    Science.gov (United States)

    Zhang, Yu-Yu; Zhu, Wen-Xing; Cao, Guo-Hong; Cui, Xi-Yun; Ai, Hong-Bin

    2009-09-01

    Restraint water-immersion stress (RWIS) can induce anxiety, hypothermia, and severe vagally-mediated gastric dysfunction. The present work explored the effects of different durations of RWIS on neuronal activities of the forebrain by c-Fos expression in conscious rats exposed to RWIS for 0, 30, 60, 120, or 180 min. The peak of c-Fos induction was distinct for different forebrain regions. The most intense c-Fos induction was always observed in the supraoptic nucleus (SON), and then in the hypothalamic paraventricular nucleus (PVN), posterior cortical amygdaloid nucleus (PCoA), central amygdaloid nucleus (CeA), and medial prefrontal cortex (mPFC). Moreover, body temperature was reduced to the lowest degree after 60 min of RWIS, and the gastric lesions tended to gradually worsen with the prolonging of RWIS duration. These data strongly suggest that these nuclei participate in the organismal response to RWIS to different degrees, and may be involved in the hypothermia and gastric lesions induced by RWIS.

  10. Parenting stressors and young adolescents' depressive symptoms: Does high vagal suppression offer protection?

    Science.gov (United States)

    Fletcher, Anne C; Buehler, Cheryl; Buchanan, Christy M; Weymouth, Bridget B

    2017-03-01

    Grounded in a dual-risk, biosocial perspective of developmental psychopathology, this study examined the role of higher vagal suppression in providing young adolescents protection from four parenting stressors. It was expected that lower vagal suppression would increase youth vulnerability to the deleterious effects of these parenting stressors. Depressive symptoms were examined as a central marker of socioemotional difficulties during early adolescence. The four parenting stressors examined were interparental hostility, maternal use of harsh discipline, maternal inconsistent discipline, and maternal psychological control. Participants were 68 young adolescents (Grade 6) and their mothers. Greater vagal suppression provided protection (i.e., lower depressive symptoms) from interparental hostility, harsh discipline, and maternal psychological control for boys but not for girls. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. [Effects of transections and electrical coagulations in the medulla oblongata upon the activities in the respiratory muscles of the crucian carp (author's transl)].

    Science.gov (United States)

    Fukuda, H

    1975-06-01

    The following conclusions may be drawn from the results in this work. The respiratory cycles are formed by the neuronal machinery in the reticular formation under the posterior part of the vagal motor nucleus. The motor neurones or the neuronal networks composing the motor nucleus of the respiratory muscles tonically discharge the action potentials, when the neurones or the networks are released from the inhibitory influences of the interneurones connecting the neuronal machinery to the motor neurones. Furthermore, the interneurones probably generate the tonic discharges after removing the inhibitory influences of the other interneurones or the neuronal machinery on them. A reflex mouth closing is elicited by a mechanical stimulus applying on the upper lip. The motor neurones of the m. adductor mandibulae are activated via only one synapse in the reflex. The reflex action potentials recorded from the motor nerve reduce in amplitude at the resting phase of the nerve in the respiratory cycles. These results suggest that the respiratory motor neurones are by nature spontaneous generators of the tonic action potentials and, in the time of the normal breathing, the tonic activity is interrupted by an inhibitory influence of the neuronal machinery generating the respiratory cycles.

  12. Vagal afferents modulate cytokine-mediated respiratory control at the neonatal medulla oblongata.

    Science.gov (United States)

    Balan, Kannan V; Kc, Prabha; Hoxha, Zana; Mayer, Catherine A; Wilson, Christopher G; Martin, Richard J

    2011-09-30

    Perinatal sepsis and inflammation trigger lung and brain injury in preterm infants, and associated apnea of prematurity. We hypothesized that endotoxin exposure in the immature lung would upregulate proinflammatory cytokine mRNA expression in the medulla oblongata and be associated with impaired respiratory control. Lipopolysaccharide (LPS, 0.1mg/kg) or saline was administered intratracheally to rat pups and medulla oblongatas were harvested for quantifying expression of mRNA for proinflammatory cytokines. LPS-exposure significantly increased medullary mRNA for IL-1β and IL-6, and vagotomy blunted this increase in IL-1β, but not IL-6. Whole-body flow plethysmography revealed that LPS-exposed pups had an attenuated ventilatory response to hypoxia both before and after carotid sinus nerve transection. Immunochemical expression of IL-1β within the nucleus of the solitary tract and area postrema was increased after LPS-exposure. In summary, intratracheal endotoxin-exposure in rat pups is associated with upregulation of proinflammatory cytokines in the medulla oblongata that is vagally mediated for IL-1β and associated with an impaired hypoxic ventilatory response. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Relationship between vagal tone, cortisol, TNF-alpha, epinephrine and negative affects in Crohn's disease and irritable bowel syndrome.

    Science.gov (United States)

    Pellissier, Sonia; Dantzer, Cécile; Mondillon, Laurie; Trocme, Candice; Gauchez, Anne-Sophie; Ducros, Véronique; Mathieu, Nicolas; Toussaint, Bertrand; Fournier, Alicia; Canini, Frédéric; Bonaz, Bruno

    2014-01-01

    Crohn's disease (CD) and irritable bowel syndrome (IBS) involve brain-gut dysfunctions where vagus nerve is an important component. The aim of this work was to study the association between vagal tone and markers of stress and inflammation in patients with CD or IBS compared to healthy subjects (controls). The study was performed in 73 subjects (26 controls, 21 CD in remission and 26 IBS patients). The day prior to the experiment, salivary cortisol was measured at 8:00 AM and 10:00 PM. The day of the experiment, subjects completed questionnaires for anxiety (STAI) and depressive symptoms (CES-D). After 30 min of rest, ECG was recorded for heart rate variability (HRV) analysis. Plasma cortisol, epinephrine, norepinephrine, TNF-alpha and IL-6 were measured in blood samples taken at the end of ECG recording. Compared with controls, CD and IBS patients had higher scores of state-anxiety and depressive symptomatology. A subgroup classification based on HRV-normalized high frequency band (HFnu) as a marker of vagal tone, showed that control subjects with high vagal tone had significantly lower evening salivary cortisol levels than subjects with low vagal tone. Such an effect was not observed in CD and IBS patients. Moreover, an inverse association (r =  -0.48; p<0.05) was observed between the vagal tone and TNF-alpha level in CD patients exclusively. In contrast, in IBS patients, vagal tone was inversely correlated with plasma epinephrine (r =  -0.39; p<0.05). No relationship was observed between vagal tone and IL-6, norepinephrine or negative affects (anxiety and depressive symptomatology) in any group. In conclusion, these data argue for an imbalance between the hypothalamus-pituitary-adrenal axis and the vagal tone in CD and IBS patients. Furthermore, they highlight the specific homeostatic link between vagal tone and TNF-alpha in CD and epinephrine in IBS and argue for the relevance of vagus nerve reinforcement interventions in those diseases.

  14. Relationship between vagal tone, cortisol, TNF-alpha, epinephrine and negative affects in Crohn's disease and irritable bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Sonia Pellissier

    Full Text Available Crohn's disease (CD and irritable bowel syndrome (IBS involve brain-gut dysfunctions where vagus nerve is an important component. The aim of this work was to study the association between vagal tone and markers of stress and inflammation in patients with CD or IBS compared to healthy subjects (controls. The study was performed in 73 subjects (26 controls, 21 CD in remission and 26 IBS patients. The day prior to the experiment, salivary cortisol was measured at 8:00 AM and 10:00 PM. The day of the experiment, subjects completed questionnaires for anxiety (STAI and depressive symptoms (CES-D. After 30 min of rest, ECG was recorded for heart rate variability (HRV analysis. Plasma cortisol, epinephrine, norepinephrine, TNF-alpha and IL-6 were measured in blood samples taken at the end of ECG recording. Compared with controls, CD and IBS patients had higher scores of state-anxiety and depressive symptomatology. A subgroup classification based on HRV-normalized high frequency band (HFnu as a marker of vagal tone, showed that control subjects with high vagal tone had significantly lower evening salivary cortisol levels than subjects with low vagal tone. Such an effect was not observed in CD and IBS patients. Moreover, an inverse association (r =  -0.48; p<0.05 was observed between the vagal tone and TNF-alpha level in CD patients exclusively. In contrast, in IBS patients, vagal tone was inversely correlated with plasma epinephrine (r =  -0.39; p<0.05. No relationship was observed between vagal tone and IL-6, norepinephrine or negative affects (anxiety and depressive symptomatology in any group. In conclusion, these data argue for an imbalance between the hypothalamus-pituitary-adrenal axis and the vagal tone in CD and IBS patients. Furthermore, they highlight the specific homeostatic link between vagal tone and TNF-alpha in CD and epinephrine in IBS and argue for the relevance of vagus nerve reinforcement interventions in those diseases.

  15. The network of causal interactions for beta oscillations in the pedunculopontine nucleus, primary motor cortex, and subthalamic nucleus of walking parkinsonian rats.

    Science.gov (United States)

    Li, Min; Zhou, Ming; Wen, Peng; Wang, Qiang; Yang, Yong; Xiao, Hu; Xie, Zhengyuan; Li, Xing; Wang, Ning; Wang, Jinyan; Luo, Fei; Chang, Jingyu; Zhang, Wangming

    2016-08-01

    Oscillatory activity has been well-studied in many structures within cortico-basal ganglia circuits, but it is not well understood within the pedunculopontine nucleus (PPN), which was recently introduced as a potential target for the treatment of gait and postural impairments in advanced stages of Parkinson's disease (PD). To investigate oscillatory activity in the PPN and its relationship with oscillatory activity in cortico-basal ganglia circuits, we simultaneously recorded local field potentials in the PPN, primary motor cortex (M1), and subthalamic nucleus (STN) of 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats during resting and walking. After analysis of power spectral density, coherence, and partial Granger causality, three major findings emerged: 1) after 6-OHDA lesions, beta band oscillations were enhanced in all three regions during walking; 2) the direction of information flow for beta oscillations among the three structures was STN→M1, STN→PPN, and PPN→M1; 3) after the treatment of levodopa, beta activity in the three regions was reduced significantly and the flow of beta band was also abrogated. Our results suggest that beta activity in the PPN is transmitted from the basal ganglia and probably comes from the STN, and the STN plays a dominant role in the network of causal interactions for beta activity. Thus, the STN may be a potential source of aberrant beta band oscillations in PD. Levodopa can inhibit beta activity in the PPN of parkinsonian rats but cannot relieve parkinsonian patients' axial symptoms clinically. Therefore, beta oscillations may not be the major cause of axial symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Posterolateral Trajectories Favor a Longer Motor Domain in Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease.

    Science.gov (United States)

    Tamir, Idit; Marmor-Levin, Odeya; Eitan, Renana; Bergman, Hagai; Israel, Zvi

    2017-10-01

    The clinical outcome of patients with Parkinson disease (PD) who undergo subthalamic nucleus (STN) deep brain stimulation (DBS) is, in part, determined by the length of the electrode trajectory through the motor STN domain, the dorsolateral oscillatory region (DLOR). Trajectory length has been found to correlate with the stimulation-related improvement in patients' motor function (estimated by part III of the United Parkinson's Disease Rating Scale [UPDRS]). Therefore, it seems that ideally trajectories should have maximal DLOR length. We retrospectively studied the influence of various anatomic aspects of the brains of patients with PD and the geometry of trajectories planned on the length of the DLOR and STN recorded during DBS surgery. We examined 212 trajectories and 424 microelectrode recording tracks in 115 patients operated on in our center between 2010 and 2015. We found a strong correlation between the length of the recorded DLOR and STN. Trajectories that were more lateral and/or posterior in orientation had a longer STN and DLOR pass, although the DLOR/STN fraction length remained constant. The STN target was more lateral when the third ventricle was wider, and the latter correlated with older age and male gender. Trajectory angles correlate with the recorded STN and DLOR lengths, and should be altered toward a more posterolateral angle in older patients and atrophied brains to compensate for the changes in STN location and geometry. These fine adjustments should yield a longer motor domain pass, thereby improving the patient's predicted outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Topographic organization of the human and non-human primate subthalamic nucleus

    NARCIS (Netherlands)

    Alkemade, A.; Schnitzler, A.; Forstmann, B.U.

    2015-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is used to relieve motor symptoms of Parkinson's disease. A tripartite system of STN subdivisions serving motoric, associative, and limbic functions was proposed, mainly based on tracing studies, which are limited by low numbers of

  18. Modulation of Neurally Mediated Vasodepression and Bradycardia by Electroacupuncture through Opioids in Nucleus Tractus Solitarius.

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C; Fu, Liang-Wu; Guo, Zhi-Ling; Longhurst, John C

    2018-01-30

    Stimulation of vagal afferent endings with intravenous phenylbiguanide (PBG) causes both bradycardia and vasodepression, simulating neurally mediated syncope. Activation of µ-opioid receptors in the nucleus tractus solitarius (NTS) increases blood pressure. Electroacupuncture (EA) stimulation of somatosensory nerves underneath acupoints P5-6, ST36-37, LI6-7 or G37-39 selectively but differentially modulates sympathoexcitatory responses. We therefore hypothesized that EA-stimulation at P5-6 or ST36-37, but not LI6-7 or G37-39 acupoints, inhibits the bradycardia and vasodepression through a µ-opioid receptor mechanism in the NTS. We observed that stimulation at acupoints P5-6 and ST36-37 overlying the deep somatosensory nerves and LI6-7 and G37-39 overlying cutaneous nerves differentially evoked NTS neural activity in anesthetized and ventilated animals. Thirty-min of EA-stimulation at P5-6 or ST36-37 reduced the depressor and bradycardia responses to PBG while EA at LI6-7 or G37-39 did not. Congruent with the hemodynamic responses, EA at P5-6 and ST36-37, but not at LI6-7 and G37-39, reduced vagally evoked activity of cardiovascular NTS cells. Finally, opioid receptor blockade in the NTS with naloxone or a specific μ-receptor antagonist reversed P5-6 EA-inhibition of the depressor, bradycardia and vagally evoked NTS activity. These data suggest that point specific EA stimulation inhibits PBG-induced vasodepression and bradycardia responses through a μ-opioid mechanism in the NTS.

  19. Effects of vasoactive intestinal polypeptide on heart rate in relation to vagal cardioacceleration in conscious dogs

    NARCIS (Netherlands)

    Roossien, A; Brunstig, J.R; Nijmeijer, A; Zaagsma, Hans; Zijlstra, W.G

    Objective: The vagal cardiac accelerator (VCA) system takes part in the nervous control of the heart rate. In the present study we tried to adduce evidence that vasoactive intestinal polypeptide (VLP) contributes to vagally induced cardioacceleration. Methods: The effect of VIP on heart rate and

  20. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats

    Directory of Open Access Journals (Sweden)

    Cao Bing

    2012-06-01

    Full Text Available Abstract Background Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD model with the conditioned place avoidance (CPA paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes. In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK, which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. Results In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593. The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change

  1. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats.

    Science.gov (United States)

    Cao, Bing; Zhang, Xu; Yan, Ni; Chen, Shengliang; Li, Ying

    2012-06-09

    Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD) model with the conditioned place avoidance (CPA) paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC) activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes.In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK), which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593). The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change the nociceptive response (visceral pain

  2. Malignant Transformation of Vagal Nerve Schwannoma in to ...

    African Journals Online (AJOL)

    Vagal schwannomas are benign, rare peripheral nerve sheath tumors in the head and neck region. Some physicians opt to closely observe cases of schwannoma of the neck on an outpatient basis rather than to perform radical surgery. However, there is a possibility, albeit rare, of malignant transformation of a.

  3. Sluggish vagal brake reactivity to physical exercise challenge in children with selective mutism.

    Science.gov (United States)

    Heilman, Keri J; Connolly, Sucheta D; Padilla, Wendy O; Wrzosek, Marika I; Graczyk, Patricia A; Porges, Stephen W

    2012-02-01

    Cardiovascular response patterns to laboratory-based social and physical exercise challenges were evaluated in 69 children and adolescents, 20 with selective mutism (SM), to identify possible neurophysiological mechanisms that may mediate the behavioral features of SM. Results suggest that SM is associated with a dampened response of the vagal brake to physical exercise that is manifested as reduced reactivity in heart rate and respiration. Polyvagal theory proposes that the regulation of the vagal brake is a neurophysiological component of an integrated social engagement system that includes the neural regulation of the laryngeal and pharyngeal muscles. Within this theoretical framework, sluggish vagal brake reactivity may parallel an inability to recruit efficiently the structures involved in speech. Thus, the findings suggest that dampened autonomic reactivity during mobilization behaviors may be a biomarker of SM that can be assessed independent of the social stimuli that elicit mutism.

  4. Peakonsul Jaanus Kirikmäe andis teenetemärgi praost Thomas Vagale / Airi Vaga ; foto: Harold Karu

    Index Scriptorium Estoniae

    Vaga, Airi, 1940-

    2008-01-01

    President Toomas Hendrik Ilves annetas iseseisvuspäeva puhul USA I praostkonna praostile Thomas Vagale Valgetähe IV klassi teenetemärgi. Teenetemärgi andis Thomas Vagale üle Eesti Vabariigi peakonsul Jaanus Kirikmäe

  5. Relationship between Vagal Tone, Cortisol, TNF-Alpha, Epinephrine and Negative Affects in Crohn’s Disease and Irritable Bowel Syndrome

    Science.gov (United States)

    Pellissier, Sonia; Dantzer, Cécile; Mondillon, Laurie; Trocme, Candice; Gauchez, Anne-Sophie; Ducros, Véronique; Mathieu, Nicolas; Toussaint, Bertrand; Fournier, Alicia; Canini, Frédéric; Bonaz, Bruno

    2014-01-01

    Crohn’s disease (CD) and irritable bowel syndrome (IBS) involve brain-gut dysfunctions where vagus nerve is an important component. The aim of this work was to study the association between vagal tone and markers of stress and inflammation in patients with CD or IBS compared to healthy subjects (controls). The study was performed in 73 subjects (26 controls, 21 CD in remission and 26 IBS patients). The day prior to the experiment, salivary cortisol was measured at 8∶00 AM and 10∶00 PM. The day of the experiment, subjects completed questionnaires for anxiety (STAI) and depressive symptoms (CES-D). After 30 min of rest, ECG was recorded for heart rate variability (HRV) analysis. Plasma cortisol, epinephrine, norepinephrine, TNF-alpha and IL-6 were measured in blood samples taken at the end of ECG recording. Compared with controls, CD and IBS patients had higher scores of state-anxiety and depressive symptomatology. A subgroup classification based on HRV-normalized high frequency band (HFnu) as a marker of vagal tone, showed that control subjects with high vagal tone had significantly lower evening salivary cortisol levels than subjects with low vagal tone. Such an effect was not observed in CD and IBS patients. Moreover, an inverse association (r = −0.48; p<0.05) was observed between the vagal tone and TNF-alpha level in CD patients exclusively. In contrast, in IBS patients, vagal tone was inversely correlated with plasma epinephrine (r = −0.39; p<0.05). No relationship was observed between vagal tone and IL-6, norepinephrine or negative affects (anxiety and depressive symptomatology) in any group. In conclusion, these data argue for an imbalance between the hypothalamus-pituitary-adrenal axis and the vagal tone in CD and IBS patients. Furthermore, they highlight the specific homeostatic link between vagal tone and TNF-alpha in CD and epinephrine in IBS and argue for the relevance of vagus nerve reinforcement interventions in those diseases. PMID

  6. Cardiac vagal tone, a non-invasive measure of parasympathetic tone, is a clinically relevant tool in Type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Brock, C; Jessen, N; Brock, B

    2017-01-01

    AIMS: To compare a novel index of parasympathetic tone, cardiac vagal tone, with established autonomic variables and to test the hypotheses that (1) cardiac vagal tone would be associated with established time and frequency domain measures of heart rate and (2) cardiac vagal tone would be lower...... identification of people with Type 1 diabetes who should undergo formal autonomic function testing....

  7. Vagal withdrawal during endoscopic retrograde cholangiopancreatography

    DEFF Research Database (Denmark)

    Christensen, M; Rasmussen, Verner; Schulze, S

    2000-01-01

    BACKGROUND: Patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) are at risk of developing cardiorespiratory complications, but the mechanism is still unknown. Treatment with metoprolol 2 h before the endoscopy has been shown to decrease the incidence of myocardial ischaemia......: The existence of a defence-like reaction ('vagal withdrawal') during ERCP has been shown. Metoprolol given 2 h before the procedure did not affect the occurrence of this phenomenon. The interaction of other periendoscopic factors is still unclear and should be studied further....

  8. Low Vagal Tone Magnifies the Association Between Psychosocial Stress Exposure and Internalizing Psychopathology in Adolescents

    Science.gov (United States)

    McLaughlin, Katie A.; Rith-Najarian, Leslie; Dirks, Melanie A.; Sheridan, Margaret A.

    2014-01-01

    Vagal tone is a measure of cardiovascular function that facilitates adaptive responses to environmental challenge. Low vagal tone is associated with poor emotional and attentional regulation in children and has been conceptualized as a marker of sensitivity to stress. We investigated whether the associations of a wide range of psychosocial stressors with internalizing and externalizing psychopathology were magnified in adolescents with low vagal tone. Resting heart period data were collected from a diverse community sample of adolescents (ages 13–17; N =168). Adolescents completed measures assessing internalizing and externalizing psychopathology and exposure to stressors occurring in family, peer, and community contexts. Respiratory sinus arrhythmia (RSA) was calculated from the interbeat interval time series. We estimated interactions between RSA and stress exposure in predicting internalizing and externalizing symptoms and evaluated whether interactions differed by gender. Exposure to psychosocial stressors was associated strongly with psychopathology. RSA was unrelated to internalizing or externalizing problems. Significant interactions were observed between RSA and child abuse, community violence, peer victimization, and traumatic events in predicting internalizing but not externalizing symptoms. Stressors were positively associated with internalizing symptoms in adolescents with low RSA but not in those with high RSA. Similar patterns were observed for anxiety and depression. These interactions were more consistently observed for male than female individuals. Low vagal tone is associated with internalizing psychopathology in adolescents exposed to high levels of stressors. Measurement of vagal tone in clinical settings might provide useful information about sensitivity to stress in child and adolescent clients. PMID:24156380

  9. Cortical Plasticity Induction by Pairing Subthalamic Nucleus Deep-Brain Stimulation and Primary Motor Cortical Transcranial Magnetic Stimulation in Parkinson's Disease.

    Science.gov (United States)

    Udupa, Kaviraja; Bahl, Nina; Ni, Zhen; Gunraj, Carolyn; Mazzella, Filomena; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Lang, Anthony E; Chen, Robert

    2016-01-13

    Noninvasive brain stimulation studies have shown abnormal motor cortical plasticity in Parkinson's disease (PD). These studies used peripheral nerve stimulation paired with transcranial magnetic stimulation (TMS) to primary motor cortex (M1) at specific intervals to induce plasticity. Induction of cortical plasticity through stimulation of the basal ganglia (BG)-M1 connections has not been studied. In the present study, we used a novel technique of plasticity induction by repeated pairing of deep-brain stimulation (DBS) of the BG with M1 stimulation using TMS. We hypothesize that repeated pairing of subthalamic nucleus (STN)-DBS and M1-TMS at specific time intervals will lead to plasticity in the M1. Ten PD human patients with STN-DBS were studied in the on-medication state with DBS set to 3 Hz. The interstimulus intervals (ISIs) between STN-DBS and TMS that produced cortical facilitation were determined individually for each patient. Three plasticity induction conditions with repeated pairings (180 times) at specific ISIs (∼ 3 and ∼ 23 ms) that produced cortical facilitation and a control ISI of 167 ms were tested in random order. Repeated pairing of STN-DBS and M1-TMS at short (∼ 3 ms) and medium (∼ 23 ms) latencies increased M1 excitability that lasted for at least 45 min, whereas the control condition (fixed ISI of 167 ms) had no effect. There were no specific changes in motor thresholds, intracortical circuits, or recruitment curves. Our results indicate that paired-associative cortical plasticity can be induced by repeated STN and M1 stimulation at specific intervals. These results show that STN-DBS can modulate cortical plasticity. We introduced a new experimental paradigm to test the hypothesis that pairing subthalamic nucleus deep-brain stimulation (STN-DBS) with motor cortical transcranial magnetic stimulation (M1-TMS) at specific times can induce cortical plasticity in patients with Parkinson's disease (PD). We found that repeated pairing of STN

  10. A model-based approach for the evaluation of vagal and sympathetic activities in a newborn lamb.

    Science.gov (United States)

    Le Rolle, Virginie; Ojeda, David; Beuchée, Alain; Praud, Jean-Paul; Pladys, Patrick; Hernández, Alfredo I

    2013-01-01

    This paper proposes a baroreflex model and a recursive identification method to estimate the time-varying vagal and sympathetic contributions to heart rate variability during autonomic maneuvers. The baroreflex model includes baroreceptors, cardiovascular control center, parasympathetic and sympathetic pathways. The gains of the global afferent sympathetic and vagal pathways are identified recursively. The method has been validated on data from newborn lambs, which have been acquired during the application of an autonomic maneuver, without medication and under beta-blockers. Results show a close match between experimental and simulated signals under both conditions. The vagal and sympathetic contributions have been simulated and, as expected, it is possible to observe different baroreflex responses under beta-blockers compared to baseline conditions.

  11. Anorexia‐cachexia syndrome in hepatoma tumour‐bearing rats requires the area postrema but not vagal afferents and is paralleled by increased MIC‐1/GDF15

    Science.gov (United States)

    Borner, Tito; Arnold, Myrtha; Ruud, Johan; Breit, Samuel N.; Langhans, Wolfgang; Lutz, Thomas A.; Blomqvist, Anders

    2016-01-01

    Abstract Background The cancer‐anorexia‐cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour‐derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour‐derived macrophage inhibitory cytokine‐1 (MIC‐1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC‐1 in mice. Methods Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC‐1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. Results In tumour‐bearing sham‐operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer‐induced anorexia or body weight loss. Tumour‐bearing rats had substantially increased MIC‐1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. Conclusions These findings demonstrate the importance of the AP in the mediation of cancer‐dependent anorexia and body weight loss and support a pathological role of MIC‐1 as a tumour‐derived factor mediating CACS, possibly via an AP

  12. Cholecystokinin regulates satiation idependently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy

    NARCIS (Netherlands)

    Ripken, D.; Wielen, van der N.; Meulen, van der J.; Schuurman, T.; Witkamp, R.F.; Hendriks, H.F.J.; Koopmans, S.J.

    2015-01-01

    The vagal nerve and gut hormones CCK and GLP-1 play important roles in the control of food intake. However, it is not clear to what extent CCK and GLP-1 increase satiation by stimulating receptors located on abdominal vagal nerve endings or via receptors located elsewhere. This study aimed to

  13. Cholecystokinin regulates satiation independently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy

    NARCIS (Netherlands)

    Ripken, D.; Wielen, N. van der; Meulen, J. van der; Schuurman, T.; Witkamp, R.F.; Hendriks, H.F.J.; Koopmans, S.J.

    2015-01-01

    The vagal nerve and gut hormones CCK and GLP-1 play important roles in the control of food intake. However, it is not clear to what extent CCK and GLP-1 increase satiation by stimulating receptors located on abdominal vagal nerve endings or via receptors located elsewhere. This study aimed to

  14. Roles for gut vagal sensory signals in determining energy availability and energy expenditure.

    Science.gov (United States)

    Schwartz, Gary J

    2018-08-15

    The gut sensory vagus transmits a wide range of meal-related mechanical, chemical and gut peptide signals from gastrointestinal and hepatic tissues to the central nervous system at the level of the caudal brainstem. Results from studies using neurophysiological, behavioral physiological and metabolic approaches that challenge the integrity of this gut-brain axis support an important role for these gut signals in the negative feedback control of energy availability by limiting food intake during a meal. These experimental approaches have now been applied to identify important and unanticipated contributions of the vagal sensory gut-brain axis to the control of two additional effectors of overall energy balance: the feedback control of endogenous energy availability through hepatic glucose production and metabolism, and the control of energy expenditure through brown adipose tissue thermogenesis. Taken together, these studies reveal the pleiotropic influences of gut vagal meal-related signals on energy balance, and encourage experimental efforts aimed at understanding how the brainstem represents, organizes and coordinates gut vagal sensory signals with these three determinants of energy homeostasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Meal parameters and vagal gastrointestinal afferents in mice that experienced early postnatal overnutrition.

    Science.gov (United States)

    Biddinger, Jessica E; Fox, Edward A

    2010-08-04

    Early postnatal overnutrition results in a predisposition to develop obesity due in part to hypothalamic and sympathetic dysfunction. Potential involvement of another major regulatory system component--the vagus nerve--has not been examined. Moreover, feeding disturbances have rarely been investigated prior to development of obesity when confounds due to obesity are minimized. To examine these issues, litters were culled on the day of birth to create small litters (SL; overnutrition), or normal size litters (NL; normal nutrition). Body weight, fat pad weight, meal patterns, and vagal sensory duodenal innervation were compared between SL and NL adult mice prior to development of obesity. Meal patterns were studied 18 h/day for 3 weeks using a balanced diet. Then vagal mechanoreceptors were labeled using anterograde transport of wheatgerm agglutinin-horseradish peroxidase injected into the nodose ganglion and their density and morphology were examined. Between postnatal day 1 and weaning, body weight of SL mice was greater than for NL mice. By young adulthood it was similar in both groups, whereas SL fat pad weight was greater in males, suggesting postnatal overnutrition produced a predisposition to obesity. SL mice exhibited increased food intake, decreased satiety ratio, and increased first meal rate (following mild food deprivation) compared to NL mice, suggesting postnatal overnutrition disrupted satiety. The density and structure of intestinal IGLEs appeared similar in SL and NL mice. Thus, although a vagal role cannot be excluded, our meal parameter and anatomical findings provided no evidence for significant postnatal overnutrition effects on vagal gastrointestinal afferents. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Less Empathic and More Reactive: The Different Impact of Childhood Maltreatment on Facial Mimicry and Vagal Regulation.

    Directory of Open Access Journals (Sweden)

    Martina Ardizzi

    Full Text Available Facial mimicry and vagal regulation represent two crucial physiological responses to others' facial expressions of emotions. Facial mimicry, defined as the automatic, rapid and congruent electromyographic activation to others' facial expressions, is implicated in empathy, emotional reciprocity and emotions recognition. Vagal regulation, quantified by the computation of Respiratory Sinus Arrhythmia (RSA, exemplifies the autonomic adaptation to contingent social cues. Although it has been demonstrated that childhood maltreatment induces alterations in the processing of the facial expression of emotions, both at an explicit and implicit level, the effects of maltreatment on children's facial mimicry and vagal regulation in response to facial expressions of emotions remain unknown. The purpose of the present study was to fill this gap, involving 24 street-children (maltreated group and 20 age-matched controls (control group. We recorded their spontaneous facial electromyographic activations of corrugator and zygomaticus muscles and RSA responses during the visualization of the facial expressions of anger, fear, joy and sadness. Results demonstrated a different impact of childhood maltreatment on facial mimicry and vagal regulation. Maltreated children did not show the typical positive-negative modulation of corrugator mimicry. Furthermore, when only negative facial expressions were considered, maltreated children demonstrated lower corrugator mimicry than controls. With respect to vagal regulation, whereas maltreated children manifested the expected and functional inverse correlation between RSA value at rest and RSA response to angry facial expressions, controls did not. These results describe an early and divergent functional adaptation to hostile environment of the two investigated physiological mechanisms. On the one side, maltreatment leads to the suppression of the spontaneous facial mimicry normally concurring to empathic understanding of

  17. Particle correlations in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Nagamiya, Sh.

    1981-01-01

    Particle correlations in proton-nucleus and nucleus-nucleus collisions at energies of 1-2 GeV/nucleon are investigated. The problems of measurement of the mean free path lambda of protons inside the nucleus and the interaction radius of nucleus-nucleus collisions is considered. The value of lambda has been determined in two-proton coincidence experiment in proton-nucleus interaction at 800 MeV. The observed value of lambda is slightly longer than the expected from free nucleon-nucleon collisions. Some preliminary results on proton emission beyond free nucleon-nucleon kinemaics are given

  18. Resection of cervical vagal schwannoma via a post-auricular approach.

    Science.gov (United States)

    Roh, Jong-Lyel

    2006-03-01

    Cervical vagal schwannomas are extremely rare and gross total resection is the standard treatment modality. However, because the conventional cervical approach leaves an incision scar in a visible area, other approaches need to be developed for young women who want the postoperative scar to be invisible. A 28-year-old female underwent complete resection of a 4x4 cm tumor in her right upper neck via a post-auricular approach using an inverted V-shaped incision along the post-auricular sulcus and hairline. The tumor was a schwannoma originating from the right cervical vagus nerve. Postoperatively, right vocal cord paralysis developed despite careful dissection but completely recovered within 6 months after surgery. The patient was satisfied with an invisible external scar which was hidden by her auricle and hair. A cervical vagal schwannoma can be successfully removed by making an incision in a potentially invisible area.

  19. Effects of VPAC1 activation in nucleus ambiguus neurons.

    Science.gov (United States)

    Gherghina, Florin Liviu; Tica, Andrei Adrian; Deliu, Elena; Abood, Mary E; Brailoiu, G Cristina; Brailoiu, Eugen

    2017-02-15

    The pituitary adenylyl cyclase-activating polypeptide (PACAP) and its G protein-coupled receptors, PAC1, VPAC1 and VPAC2 form a system involved in a variety of biological processes. Although some sympathetic stimulatory effects of this system have been reported, its central cardiovascular regulatory properties are poorly characterized. VPAC1 receptors are expressed in the nucleus ambiguus (nAmb), a key center controlling cardiac parasympathetic tone. In this study, we report that selective VPAC1 activation in rhodamine-labeled cardiac vagal preganglionic neurons of the rat nAmb produces inositol 1,4,5-trisphosphate receptor-mediated Ca 2+ mobilization, membrane depolarization and activation of P/Q-type Ca 2+ channels. In vivo, this pathway converges onto transient reduction in heart rate of conscious rats. Therefore we demonstrate a VPAC1-dependent mechanism in the central parasympathetic regulation of the heart rate, adding to the complexity of PACAP-mediated cardiovascular modulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Red nucleus and rubrospinal tract disorganization in the absence of Pou4f1

    Science.gov (United States)

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    The red nucleus (RN) is a neuronal population that plays an important role in forelimb motor control and locomotion. Histologically it is subdivided into two subpopulations, the parvocellular RN (pRN) located in the diencephalon and the magnocellular RN (mRN) in the mesencephalon. The RN integrates signals from motor cortex and cerebellum and projects to spinal cord interneurons and motor neurons through the rubrospinal tract (RST). Pou4f1 is a transcription factor highly expressed in this nucleus that has been related to its specification. Here we profoundly analyzed consequences of Pou4f1 loss-of-function in development, maturation and axonal projection of the RN. Surprisingly, RN neurons are specified and maintained in the mutant, no cell death was detected. Nevertheless, the nucleus appeared disorganized with a strong delay in radial migration and with a wider neuronal distribution; the neurons did not form a compacted population as they do in controls, Robo1 and Slit2 were miss-expressed. Cplx1 and Npas1, expressed in the RN, are transcription factors involved in neurotransmitter release, neuronal maturation and motor function processes among others. In our mutant mice, both transcription factors are lost, suggesting an abnormal maturation of the RN. The resulting altered nucleus occupied a wider territory. Finally, we examined RST development and found that the RN neurons were able to project to the spinal cord but their axons appeared defasciculated. These data suggest that Pou4f1 is necessary for the maturation of RN neurons but not for their specification and maintenance. PMID:25698939

  1. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 1. Nucleus-nucleus interaction potential

    International Nuclear Information System (INIS)

    Davidovs'ka, O.Yi.; Denisov, V.Yu.; Nesterov, V.O.

    2010-01-01

    Various approaches for nucleus-nucleus interaction potential evaluation are discussed in details. It is shown that the antisymmetrization of nucleons belonging to different nuclei and the Pauli principle give the essential contribution into the nucleus-nucleus potential at distances, when nuclei are strongly overlapping, and lead to appearance of the repulsive core of nucleus nucleus interaction at small distances between nuclei.

  2. Determining cardiac vagal threshold from short term heart rate complexity

    Directory of Open Access Journals (Sweden)

    Hamdan Rami Abou

    2016-09-01

    Full Text Available Evaluating individual aerobic exercise capacity is fundamental in sports and exercise medicine but associated with organizational and instrumental effort. Here, we extract an index related to common performance markers, the aerobic and anaerobic thresholds enabling the estimation of exercise capacity from a conventional sports watch supporting beatwise heart rate tracking. Therefore, cardiac vagal threshold (CVT was determined in 19 male subjects performing an incremental maximum exercise test. CVT varied around the anaerobic threshold AnT with mean deviation of 7.9 ± 17.7 W. A high correspondence of the two thresholds was indicated by Bland-Altman plots with limits of agreement −27.5 W and 43.4 W. Additionally, CVT was strongly correlated AnT (rp = 0.86, p < 0.001 and reproduced this marker well (rc = 0.81. We conclude, that cardiac vagal threshold derived from compression entropy time course can be useful to assess physical fitness in an uncomplicated way.

  3. Getting to the Heart of Masculinity Stressors: Masculinity Threats Induce Pronounced Vagal Withdrawal During a Speaking Task.

    Science.gov (United States)

    Kramer, Brandon L; Himmelstein, Mary S; Springer, Kristen W

    2017-12-01

    Previous work has found that traditional masculinity ideals and behaviors play a crucial role in higher rates of morbidity and mortality for men. Some studies also suggest that threatening men's masculinity can be stressful. Over time, this stress can weigh on men's cardiovascular and metabolic systems, which may contribute to men's higher rates of cardiometabolic health issues. The purpose of this study is to explore how masculinity threats affect men's heart rate and heart rate variability reactivity (i.e., vagal withdrawal) to masculinity feedback on a social speaking task. Two hundred and eighty-five undergraduate males were randomly assigned to one of six conditions during a laboratory-based speech task. They received one of two feedback types (masculinity or control) and one of three feedback levels (low, high, or dropping) in order to assess whether masculinity threats influence heart rate reactivity and vagal withdrawal patterns during the speech task. Men who receive low masculinity feedback during the speech task experienced more pronounced vagal withdrawal relative to those who received the control. Masculinity threats can induce vagal withdrawal that may accumulate over the life course to contribute to men's relatively worse cardiometabolic health.

  4. The role of the medial caudate nucleus, but not the hippocampus, in a matching-to sample task for a motor response.

    Science.gov (United States)

    Kesner, Raymond P; Gilbert, Paul E

    2006-04-01

    A delayed-match-to-sample task was used to assess memory for motor responses in rats with control, hippocampus, or medial caudate nucleus (MCN) lesions. All testing was conducted on a cheeseboard maze in complete darkness using an infrared camera. A start box was positioned in the centre of the maze facing a randomly determined direction on each trial. On the sample phase, a phosphorescent object was randomly positioned to cover a baited food well in one of five equally spaced positions around the circumference of the maze forming a 180-degree arc 60 cm from the box. The rat had to displace the object to receive food and return to the start box. The box was then rotated to face a different direction. An identical baited phosphorescent object was placed in the same position relative to the start box. A second identical object was positioned to cover a different unbaited well. On the choice phase, the rat must remember the motor response made on the sample phase and make the same motor response on the choice phase to receive a reward. Hippocampus lesioned and control rats improved as a function of increased angle separation used to separate the correct object from the foil (45, 90, 135, and 180 degrees) and matched the performance of controls. However, rats with MCN lesions were impaired across all separations. Results suggest that the MCN, but not the hippocampus, supports working memory and/or a process aimed at reducing interference for motor response selection based on vector angle information.

  5. Grey matter volume loss is associated with specific clinical motor signs in Huntington's disease.

    Science.gov (United States)

    Coppen, Emma M; Jacobs, Milou; van den Berg-Huysmans, Annette A; van der Grond, Jeroen; Roos, Raymund A C

    2018-01-01

    Motor disturbances are clinical hallmarks of Huntington's disease (HD) and involve chorea, dystonia, hypokinesia and visuomotor dysfunction. Investigating the association between specific motor signs and different regional volumes is important to understand the heterogeneity of HD. To investigate the motor phenotype of HD and associations with subcortical and cortical grey matter volume loss. Structural T1-weighted MRI scans of 79 HD patients and 30 healthy controls were used to calculate volumes of seven subcortical structures including the nucleus accumbens, hippocampus, thalamus, caudate nucleus, putamen, pallidum and amygdala. Multiple linear regression analyses, corrected for age, gender, CAG, MRI scan protocol and normalized brain volume, were performed to assess the relationship between subcortical volumes and different motor subdomains (i.e. eye movements, chorea, dystonia, hypokinesia/rigidity and gait/balance). Voxel-based morphometry analysis was used to investigate the relationship between cortical volume changes and motor signs. Subcortical volume loss of the accumbens nucleus, caudate nucleus, putamen, and pallidum were associated with higher chorea scores. No other subcortical region was significantly associated with motor symptoms after correction for multiple comparisons. Voxel-based cortical grey matter volume reductions in occipital regions were related with an increase in eye movement scores. In HD, chorea is mainly associated with subcortical volume loss, while eye movements are more related to cortical volume loss. Both subcortical and cortical degeneration has an impact on motor impairment in HD. This implies that there is a widespread contribution of different brain regions resulting in the clinical motor presentation seen in HD patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Lead intoxication induces noradrenaline depletion, motor nonmotor disabilities, and changes in the firing pattern of subthalamic nucleus neurons.

    Science.gov (United States)

    Sabbar, M; Delaville, C; De Deurwaerdère, P; Benazzouz, A; Lakhdar-Ghazal, N

    2012-05-17

    Lead intoxication has been suggested as a high risk factor for the development of Parkinson disease. However, its impact on motor and nonmotor functions and the mechanism by which it can be involved in the disease are still unclear. In the present study, we studied the effects of lead intoxication on the following: (1) locomotor activity using an open field actimeter and motor coordination using the rotarod test, (2) anxiety behavior using the elevated plus maze, (3) "depression-like" behavior using sucrose preference test, and (4) subthalamic nucleus (STN) neuronal activity using extracellular single unit recordings. Male Sprague-Dawley rats were treated once a day with lead acetate or sodium acetate (20 mg/kg/d i.p.) during 3 weeks. The tissue content of monoamines was used to determine alteration of these systems at the end of experiments. Results show that lead significantly reduced exploratory activity, locomotor activity and the time spent on the rotarod bar. Furthermore, lead induced anxiety but not "depressive-like" behavior. The electrophysiological results show that lead altered the discharge pattern of STN neurons with an increase in the number of bursting and irregular cells without affecting the firing rate. Moreover, lead intoxication resulted in a decrease of tissue noradrenaline content without any change in the levels of dopamine and serotonin. Together, these results show for the first time that lead intoxication resulted in motor and nonmotor behavioral changes paralleled by noradrenaline depletion and changes in the firing activity of STN neurons, providing evidence consistent with the induction of atypical parkinsonian-like deficits. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 6-hydroxydopamine-lesioned hemi-parkinsonian rats.

    Science.gov (United States)

    Wang, Yan-Yan; Wang, Yong; Jiang, Hai-Fei; Liu, Jun-Hua; Jia, Jun; Wang, Ke; Zhao, Fei; Luo, Min-Hua; Luo, Min-Min; Wang, Xiao-Min

    2018-02-01

    The glutamatergic projection from the motor cortex to the subthalamic nucleus (STN) constitutes the cortico-basal ganglia circuit and plays a critical role in the control of movement. Emerging evidence shows that the cortico-STN pathway is susceptible to dopamine depletion. Specifically in Parkinson's disease (PD), abnormal electrophysiological activities were observed in the motor cortex and STN, while the STN serves as a key target of deep brain stimulation for PD therapy. However, direct morphological changes in the cortico-STN connectivity in response to PD progress are poorly understood at present. In the present study, we used a trans-synaptic anterograde tracing method with herpes simplex virus-green fluorescent protein (HSV-GFP) to monitor the cortico-STN connectivity in a rat model of PD. We found that the connectivity from the primary motor cortex (M1) to the STN was impaired in parkinsonian rats as manifested by a marked decrease in trans-synaptic infection of HSV-GFP from M1 neurons to STN neurons in unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats. Ultrastructural analysis with electron microscopy revealed that excitatory synapses in the STN were also impaired in parkinsonian rats. Glutamatergic terminals identified by a specific marker (vesicular glutamate transporter 1) were reduced in the STN, while glutamatergic neurons showed an insignificant change in their total number in both the M1 and STN regions. These results indicate that the M1-STN glutamatergic connectivity is downregulated in parkinsonian rats. This downregulation is mediated probably via a mechanism involving the impairments of excitatory terminals and synapses in the STN. Copyright © 2017. Published by Elsevier Inc.

  8. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Khan, F.; Townsend, L.W.

    1993-12-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies

  9. Mechanisms of High Energy Hadron-Nucleus and Nucleus-Nucleus Collision Processes

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1994-01-01

    Mechanisms of high energy hadron-nucleus and nucleus-nucleus collision processes are depicted qualitatively, as prompted experimentally. In hadron-nucleus collisions the interaction of the incident hadron in intranuclear matter is localized in small cylindrical volume, with the radius as large as the strong interaction range is, centered on the hadron course in the nucleus. The nucleon emission is induced by the hadron in its passing through the nucleus; particles are produced via intermediate objects produced in 2 → 2 endoergic reactions of the hadron and its successors with downstream nucleons. In nucleus-nucleus collisions, the outcome of the reaction appears as the composition of statistically independent hadron-nucleus collision outcomes at various impact parameters. Observable effects supporting such mechanisms are discussed. 51 refs

  10. The lateral paragigantocellular nucleus modulates parasympathetic cardiac neurons: a mechanism for rapid eye movement sleep-dependent changes in heart rate.

    Science.gov (United States)

    Dergacheva, Olga; Wang, Xin; Lovett-Barr, Mary R; Jameson, Heather; Mendelowitz, David

    2010-08-01

    Rapid eye movement (REM) sleep is generally associated with a withdrawal of parasympathetic activity and heart rate increases; however, episodic vagally mediated heart rate decelerations also occur during REM sleep. This alternating pattern of autonomic activation provides a physiological basis for REM sleep-induced cardiac arrhythmias. Medullary neurons within the lateral paragigantocellular nucleus (LPGi) are thought to be active after REM sleep recovery and play a role in REM sleep control. In proximity to the LPGi are parasympathetic cardiac vagal neurons (CVNs) within the nucleus ambiguus (NA), which are critical for controlling heart rate. This study examined brain stem pathways that may mediate REM sleep-related reductions in parasympathetic cardiac activity. Electrical stimulation of the LPGi evoked inhibitory GABAergic postsynaptic currents in CVNs in an in vitro brain stem slice preparation in rats. Because brain stem cholinergic mechanisms are involved in REM sleep regulation, we also studied the role of nicotinic neurotransmission in modulation of GABAergic pathway from the LGPi to CVNs. Application of nicotine diminished the GABAergic responses evoked by electrical stimulation. This inhibitory effect of nicotine was prevented by the alpha7 nicotinic receptor antagonist alpha-bungarotoxin. Moreover, hypoxia/hypercapnia (H/H) diminished LPGi-evoked GABAergic current in CVNs, and this inhibitory effect was also prevented by alpha-bungarotoxin. In conclusion, stimulation of the LPGi evokes an inhibitory pathway to CVNs, which may constitute a mechanism for the reduced parasympathetic cardiac activity and increase in heart rate during REM sleep. Inhibition of this pathway by nicotinic receptor activation and H/H may play a role in REM sleep-related and apnea-associated bradyarrhythmias.

  11. Vagal and sympathetic activity in burnouts during a mentally demanding workday

    NARCIS (Netherlands)

    Zanstra, Ydwine J.; Schellekens, Jan M. H.; Schaap, Cas; Kooistra, Libbe

    2006-01-01

    Objective: We study differences in task performance and related sympathetic-vagal reaction patterns between burnouts and controls during a mentally demanding workday. Method: Thirty-nine adults with burnout and 40 healthy controls performed mental tasks during a simulated workday. At pretest, just

  12. Anorexia-cachexia syndrome in hepatoma tumour-bearing rats requires the area postrema but not vagal afferents and is paralleled by increased MIC-1/GDF15.

    Science.gov (United States)

    Borner, Tito; Arnold, Myrtha; Ruud, Johan; Breit, Samuel N; Langhans, Wolfgang; Lutz, Thomas A; Blomqvist, Anders; Riediger, Thomas

    2017-06-01

    The cancer-anorexia-cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour-derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour-derived macrophage inhibitory cytokine-1 (MIC-1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC-1 in mice. Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC-1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. In tumour-bearing sham-operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer-induced anorexia or body weight loss. Tumour-bearing rats had substantially increased MIC-1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. These findings demonstrate the importance of the AP in the mediation of cancer-dependent anorexia and body weight loss and support a pathological role of MIC-1 as a tumour-derived factor mediating CACS, possibly via an AP-dependent action. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle

  13. Antiproton production in nucleon-nucleus and nucleus-nucleus collisions at the CERN-SPS

    International Nuclear Information System (INIS)

    Kadija, K.; Schmitz, N.; Seyboth, P.

    1996-01-01

    A model for antiproton production in nucleon-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon, based on the wounded nucleon model is developed. The predictions are compared to published nucleon-nucleus and sulphur-nucleus data. The results suggest the presence of similar antiproton production processes in nucleon-nucleus and nucleus-nucleus collisions near midrapidity. (orig.)

  14. Baroreflex deficiency induces additional impairment of vagal tone, diastolic function and calcium handling proteins after myocardial infarction

    Science.gov (United States)

    Mostarda, Cristiano; Rodrigues, Bruno; Medeiros, Alessandra; Moreira, Edson D; Moraes-Silva, Ivana C; Brum, Patricia C; Angelis, Katia De; Irigoyen, Maria-Cláudia

    2014-01-01

    Baroreflex dysfunction has been considered an important mortality predictor after myocardial infarction (MI). However, the impact of baroreflex deficiency prior to MI on tonic autonomic control and cardiac function, and on the profile of proteins associated with intracellular calcium handling has not yet been studied. The aim of the present study was to analyze how the impairment of baroreflex induced by sinoaortic denervation (SAD) prior to MI in rats affects the tonic autonomic control, ventricular function and cardiomyocyte calcium handling proteins. After 15 days of following or SAD surgery, rats underwent MI. Echocardiographic, hemodynamic, autonomic and molecular evaluations were performed 90 days after MI. Baroreflex impairment led to additional damage on: left ventricular remodeling, diastolic function, vagal tonus and intrinsic heart rate after MI. The loss of vagal component of the arterial baroreflex and vagal tonus were correlated with changes in the cardiac proteins involved in intracellular calcium homeostasis. Furthermore, additional increase in sodium calcium exchanger expression levels was associated with impaired diastolic function in experimental animals. Our findings strongly suggest that previous arterial baroreflex deficiency may induce additional impairment of vagal tonus, which was associated with calcium handling proteins abnormalities, probably triggering ventricular diastolic dysfunction after MI in rats. PMID:24936224

  15. Nucleus-nucleus total reaction cross sections

    International Nuclear Information System (INIS)

    DeVries, R.M.; Peng, J.C.

    1980-01-01

    We compare sigma/sub R/(E) for nucleus-nucleus systems (obtained from existing direct measurements and derived from elastic scattering data) with nucleon-nucleon and nucleon-nucleus data. The energy dependence of sigma/sub R/(E) for nucleus-nucleus systems is found to be quite rapid; there appears to be no evidence for an energy independent, geometric sigma/sub R/. Simple parameter free microscopic calculations are able to quantitatively reproduce the data and thus, emphasize the dominance of nucleon-nucleon interactions in medium energy nucleus-nucleus collisions

  16. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.; Alexandrov, Y.A.; Andreeva, N.P.; Badyal, S.K.; Basova, E.S.; Bhalla, K.B.; Bhasin, A.; Bhatia, V.S.; Bradnova, V.; Bubnov, V.I.; Cai, X.; Chasnikov, I.Y.; Chen, G.M.; Chernova, L.P.; Chernyavsky, M.M.; Dhamija, S.; Chenawi, K.El; Felea, D.; Feng, S.Q.; Gaitinov, A.S.; Ganssauge, E.R.; Garpman, S.; Gerassimov, S.G.; Gheata, A.; Gheata, M.; Grote, J.; Gulamov, K.G.; Gupta, S.K.; Gupta, V.K.; Henjes, U.; Jakobsson, B.; Kanygina, E.K.; Karabova, M.; Kharlamov, S.P.; Kovalenko, A.D.; Krasnov, S.A.; Kumar, V.; Larionova, V.G.; Li, Y.X.; Liu, L.S.; Lokanathan, S.; Lord, J.J.; Lukicheva, N.S.; Lu, Y.; Luo, S.B.; Mangotra, L.K.; Manhas, I.; Mittra, I.S.; Musaeva, A.K.; Nasyrov, S.Z.; Navotny, V.S.; Nystrand, J.; Otterlund, I.; Peresadko, N.G.; Qian, W.Y.; Qin, Y.M.; Raniwala, R.; Rao, N.K.; Roeper, M.; Rusakova, V.V.; Saidkhanov, N.; Salmanova, N.A.; Seitimbetov, A.M.; Sethi, R.; Singh, B.; Skelding, D.; Soderstrem, K.; Stenlund, E.; Svechnikova, L.N.; Svensson, T.; Tawfik, A.M.; Tothova, M.; Tretyakova, M.I.; Trofimova, T.P.; Tuleeva, U.I.; Vashisht, Vani; Vokal, S.; Vrlakova, J.; Wang, H.Q.; Wang, X.R.; Weng, Z.Q.; Wilkes, R.J.; Yang, C.B.; Yin, Z.B.; Yu, L.Z.; Zhang, D.H.; Zheng, P.Y.; Zhokhova, S.I.; Zhou, D.C.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus

  17. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, G I; Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Badyal, S K; Basova, E S; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Y; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; Chenawi, K El; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Roeper, M; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Sethi, R; Singh, B; Skelding, D; Soderstrem, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, Vani; Vokal, S; Vrlakova, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C

    1999-03-01

    Angular distributions of charged particles produced in {sup 16}O and {sup 32}S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b{sub NA}, that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus.

  18. Nucleus-nucleus collision as superposition of nucleon-nucleus collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus. (orig.)

  19. α-MSH Influences the Excitability of Feeding-Related Neurons in the Hypothalamus and Dorsal Vagal Complex of Rats

    Directory of Open Access Journals (Sweden)

    Hong-Zai Guan

    2017-01-01

    Full Text Available Alpha-melanocyte-stimulating hormone (α-MSH is processed from proopiomelanocortin (POMC and acts on the melanocortin receptors, MC3 and MC4. α-MSH plays a key role in energy homeostasis. In the present study, to shed light on the mechanisms by which α-MSH exerts its anorectic effects, extracellular neuronal activity was recorded in the hypothalamus and the dorsal vagal complex (DVC of anesthetized rats. We examined the impact of α-MSH on glucose-sensing neurons and gastric distension (GD sensitive neurons. In the lateral hypothalamus (LHA, α-MSH inhibited 75.0% of the glucose-inhibited (GI neurons. In the ventromedial nucleus (VMN, most glucose-sensitive neurons were glucose-excited (GE neurons, which were mainly activated by α-MSH. In the paraventricular nucleus (PVN, α-MSH suppressed the majority of GI neurons and excited most GE neurons. In the DVC, among the 20 GI neurons examined for a response to α-MSH, 1 was activated, 16 were depressed, and 3 failed to respond. Nineteen of 24 GE neurons were activated by α-MSH administration. Additionally, among the 42 DVC neurons examined for responses to GD, 23 were excited (GD-EXC and 19 were inhibited (GD-INH. Fifteen of 20 GD-EXC neurons were excited, whereas 11 out of 14 GD-INH neurons were suppressed by α-MSH. All these responses were abolished by pretreatment with the MC3/4R antagonist, SHU9119. In conclusion, the activity of glucose-sensitive neurons and GD-sensitive neurons in the hypothalamus and DVC can be modulated by α-MSH.

  20. Medical Devices; Neurological Devices; Classification of the External Vagal Nerve Stimulator for Headache. Final order.

    Science.gov (United States)

    2017-12-27

    The Food and Drug Administration (FDA or we) is classifying the external vagal nerve stimulator for headache into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the external vagal nerve stimulator for headache's classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  1. Some experimental results of the investigation of hadron-nucleus and nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Azimov, S.A.; Gulamov, K.G.; Chernov, G.M.

    1978-01-01

    Recent experimental data on the hadron-nucleus and nucleus-nucleus inelastic interactions are analyzed. A particular attention is paid to the description of the leading hadron spectra and of the spectra of nucleon recoils in hadron-nucleus interactions. Some of the results of the experimental studies of correlations between secondary particles are discussed. This discussion demonstrates that an analysis of the multiparticle phenomena is very promising regarding the discrimination between the different models for the hadron-nucleus and nucleus-nucleus interactions. It is pointed out that the actual mechanism of the hadron-nucleus and nucleus-nucleus interactions is a rather complex one and can be described comprehensively by none of the existing models

  2. Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease.

    Science.gov (United States)

    Schneider, Frank; Habel, Ute; Volkmann, Jens; Regel, Sabine; Kornischka, Jürgen; Sturm, Volker; Freund, Hans-Joachim

    2003-03-01

    High-frequency electrical stimulation of the subthalamic nucleus is a new and highly effective therapy for complications of long-term levodopa therapy and motor symptoms in advanced Parkinson disease (PD). Clinical observations indicate additional influence on emotional behavior. Electrical stimulation of deep brain nuclei with pulse rates above 100 Hz provokes a reversible, lesioning-like effect. Here, the effect of deep brain stimulation of the subthalamic nucleus on emotional, cognitive, and motor performance in patients with PD (n = 12) was examined. The results were compared with the effects of a suprathreshold dose of levodopa intended to transiently restore striatal dopamine deficiency. Patients were tested during medication off/stimulation off (STIM OFF), medication off/stimulation on (STIM ON), and during the best motor state after taking levodopa without deep brain stimulation (MED). More positive self-reported mood and an enhanced mood induction effect as well as improvement in emotional memory during STIM ON were observed, while during STIM OFF, patients revealed reduced emotional performance. Comparable effects were revealed by STIM ON and MED. Cognitive performance was not affected by the different conditions and treatments. Deep brain stimulation of the subthalamic nucleus selectively enhanced affective processing and subjective well-being and seemed to be antidepressive. Levodopa and deep brain stimulation had similar effects on emotion. This finding may provide new clues about the neurobiologic bases of emotion and mood disorders, and it illustrates the important role of the basal ganglia and the dopaminergic system in emotional processing in addition to the well-known motor and cognitive functions.

  3. Raclopride or high-frequency stimulation of the subthalamic nucleus stops cocaine-induced motor stereotypy and restores related alterations in prefrontal basal ganglia circuits.

    Science.gov (United States)

    Aliane, Verena; Pérez, Sylvie; Deniau, Jean-Michel; Kemel, Marie-Louise

    2012-11-01

    Motor stereotypy is a key symptom of various neurological or neuropsychiatric disorders. Neuroleptics or the promising treatment using deep brain stimulation stops stereotypies but the mechanisms underlying their actions are unclear. In rat, motor stereotypies are linked to an imbalance between prefrontal and sensorimotor cortico-basal ganglia circuits. Indeed, cortico-nigral transmission was reduced in the prefrontal but not sensorimotor basal ganglia circuits and dopamine and acetylcholine release was altered in the prefrontal but not sensorimotor territory of the dorsal striatum. Furthermore, cholinergic transmission in the prefrontal territory of the dorsal striatum plays a crucial role in the arrest of motor stereotypy. Here we found that, as previously observed for raclopride, high-frequency stimulation of the subthalamic nucleus (HFS STN) rapidly stopped cocaine-induced motor stereotypies in rat. Importantly, raclopride and HFS STN exerted a strong effect on cocaine-induced alterations in prefrontal basal ganglia circuits. Raclopride restored the cholinergic transmission in the prefrontal territory of the dorsal striatum and the cortico-nigral information transmissions in the prefrontal basal ganglia circuits. HFS STN also restored the N-methyl-d-aspartic-acid-evoked release of acetylcholine and dopamine in the prefrontal territory of the dorsal striatum. However, in contrast to raclopride, HFS STN did not restore the cortico-substantia nigra pars reticulata transmissions but exerted strong inhibitory and excitatory effects on neuronal activity in the prefrontal subdivision of the substantia nigra pars reticulata. Thus, both raclopride and HFS STN stop cocaine-induced motor stereotypy, but exert different effects on the related alterations in the prefrontal basal ganglia circuits. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. Mathematical modeling of molecular motors

    OpenAIRE

    Keller, Peter

    2013-01-01

    Amongst the many complex processes taking place in living cells, transport of cargoes across the cytosceleton is fundamental to cell viability and activity. To move cargoes between the different cell parts, cells employ Molecular Motors. The motors operate by transporting cargoes along the so-called cellular micro-tubules, namely rope-like structures that connect, for instance, the cell-nucleus and outer membrane. We introduce a new Markov Chain, the killed Quasi-Random-Walk, for such transpo...

  5. Cerebellum tunes the excitability of the motor system: evidence from peripheral motor axons.

    Science.gov (United States)

    Nodera, Hiroyuki; Manto, Mario

    2014-12-01

    Cerebellum is highly connected with the contralateral cerebral cortex. So far, the motor deficits observed in acute focal cerebellar lesions in human have been mainly explained on the basis of a disruption of the cerebello-thalamo-cortical projections. Cerebellar circuits have also numerous anatomical and functional interactions with brainstem nuclei and projects also directly to the spinal cord. Cerebellar lesions alter the excitability of peripheral motor axons as demonstrated by peripheral motor threshold-tracking techniques in cerebellar stroke. The biophysical changes are correlated with the functional scores. Nerve excitability measurements represent an attractive tool to extract the rules underlying the tuning of excitability of the motor pathways by the cerebellum and to discover the contributions of each cerebellar nucleus in this key function, contributing to early plasticity and sensorimotor learning.

  6. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication.

    Science.gov (United States)

    Bercik, P; Park, A J; Sinclair, D; Khoshdel, A; Lu, J; Huang, X; Deng, Y; Blennerhassett, P A; Fahnestock, M; Moine, D; Berger, B; Huizinga, J D; Kunze, W; McLean, P G; Bergonzelli, G E; Collins, S M; Verdu, E F

    2011-12-01

    The probiotic Bifidobacterium longum NCC3001 normalizes anxiety-like behavior and hippocampal brain derived neurotrophic factor (BDNF) in mice with infectious colitis. Using a model of chemical colitis we test whether the anxiolytic effect of B. longum involves vagal integrity, and changes in neural cell function. Methods  Mice received dextran sodium sulfate (DSS, 3%) in drinking water during three 1-week cycles. Bifidobacterium longum or placebo were gavaged daily during the last cycle. Some mice underwent subdiaphragmatic vagotomy. Behavior was assessed by step-down test, inflammation by myeloperoxidase (MPO) activity and histology. BDNF mRNA was measured in neuroblastoma SH-SY5Y cells after incubation with sera from B. longum- or placebo-treated mice. The effect of B. longum on myenteric neuron excitability was measured using intracellular microelectrodes. Chronic colitis was associated with anxiety-like behavior, which was absent in previously vagotomized mice. B. longum normalized behavior but had no effect on MPO activity or histological scores. Its anxiolytic effect was absent in mice with established anxiety that were vagotomized before the third DSS cycle. B. longum metabolites did not affect BDNF mRNA expression in SH-SY5Y cells but decreased excitability of enteric neurons. In this colitis model, anxiety-like behavior is vagally mediated. The anxiolytic effect of B. longum requires vagal integrity but does not involve gut immuno-modulation or production of BDNF by neuronal cells. As B. longum decreases excitability of enteric neurons, it may signal to the central nervous system by activating vagal pathways at the level of the enteric nervous system. © 2011 Blackwell Publishing Ltd.

  7. High energy nucleus-nucleus scattering and matter radius of unstable nucleus

    International Nuclear Information System (INIS)

    Sato, H.; Okuhara, Y.

    1985-07-01

    The interaction cross sections of high energy nucleus-nucleus scattering have been studied with the Glauber Model and Hartree-Fock like variational calculation for the nuclear structure. It is found that the experimental interaction cross sections of the light unstable nucleus-stable nucleus scatterings measured by INS-LBL collaboration are well reproduceable. (author)

  8. Cardiac vagal regulation in infancy predicts executive function and social competence in preschool: Indirect effects through language.

    Science.gov (United States)

    Whedon, Margaret; Perry, Nicole B; Calkins, Susan D; Bell, Martha A

    2018-05-21

    Parasympathetic nervous system functioning in infancy may serve a foundational role in the development of cognitive and socioemotional skills (Calkins, 2007). In this study (N = 297), we investigated the potential indirect effects of cardiac vagal regulation in infancy on children's executive functioning and social competence in preschool via expressive and receptive language in toddlerhood. Vagal regulation was assessed at 10 months during two attention conditions (social, nonsocial) via task-related changes in respiratory sinus arrhythmia (RSA). A path analysis revealed that decreased RSA from baseline in the nonsocial condition and increased RSA in the social condition were related to larger vocabularies in toddlerhood. Additionally, children's vocabulary sizes were positively related to their executive function and social competence in preschool. Indirect effects from vagal regulation in both contexts to both 4-year outcomes were significant, suggesting that early advances in language may represent a mechanism through which biological functioning in infancy impacts social and cognitive functioning in childhood. © 2018 Wiley Periodicals, Inc.

  9. Rationalization of the Irrational Neuropathologic Basis of Hypothyroidism-Olfaction Disorders Paradox: Experimental Study.

    Science.gov (United States)

    Aydin, Nazan; Ramazanoglu, Leyla; Onen, Mehmet Resid; Yilmaz, Ilhan; Aydin, Mehmet Dumlu; Altinkaynak, Konca; Calik, Muhammet; Kanat, Ayhan

    2017-11-01

    Hypothyroidism is defined as an underactive thyroid gland and one of the reasons for inadequate stimulation of thyroid is dysfunction of the hormone regulating brain centers. Olfaction disorders have been considered as a problem in hypothyroidism. It has been hypothesized that olfaction disorders reduce olfactory stimulation and diminished olfactory stimulus may trigger hypothyroidism. In this study, an examination was made of the thyroid hormone levels, histologic features of thyroid glands, and vagal nerve network degradation in an experimental animal model of olfactory bulbectomy (OBX). A total of 25 rats were divided into control (n = 5), SHAM (n = 5), and OBX (n = 15) groups and were followed up for 8 weeks. Thyroid hormone levels were measured before (1 time), during the experiment (1 time/month) and the animals were decapitated. The olfactory bulbs, dorsal motor nucleus of the vagal nerves, and thyroid gland sections were stained with hematoxylin-eosin and tunnel dye to determine OBX-related damage. Specimens were analyzed stereologically to evaluate neuron density of the vagal nucleus and hormone-filled total follicle volume (TFV) per cubic centimeter, and these were statistically compared with thyroid hormone levels. The mean degenerated neuron density of the vagal nucleus was 21 ± 8/mm 3 . TFV and triiodothyronine (T 3 )-thyroxine (T 4 ) levels were measured as TFV, (312 ± 91) × 10 6 μm 3 /cm 3 ; T 3 , 105 μg/dl; T 4 , 1.89 μg/dl in control (group I). Mean degenerated neuron density, 56 ± 12/mm 3 ; TFV, (284 ± 69) × 10 6 μm 3 /cm 3 ; T 3 , 103 μg/dl; T 4 , 1.85 μg/dl in SHAM (group II). Mean degenerated neuron density, 235 ± 64/mm 3 ; TFV, (193 ± 34) × 10 6 μm 3 /cm 3 ; T 3 , 86 μg/dl; T 4 , 1.37 μg/dl in the OBX group (group III). The TFV were significantly diminished because of apoptotic degradation in olfactory bulbs and thyroid gland with decreased T 3 - T 4 levels with increased thyroid-stimulating hormone levels in OBX

  10. Complementary roles of different oscillatory activities in the subthalamic nucleus in coding motor effort in Parkinsonism.

    Science.gov (United States)

    Tan, Huiling; Pogosyan, Alek; Anzak, Anam; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter

    2013-10-01

    The basal ganglia may play an important role in the control of motor scaling or effort. Recently local field potential (LFP) recordings from patients with deep brain stimulation electrodes in the basal ganglia have suggested that local increases in the synchronisation of neurons in the gamma frequency band may correlate with force or effort. Whether this feature uniquely codes for effort and whether such a coding mechanism holds true over a range of efforts is unclear. Here we investigated the relationship between frequency-specific oscillatory activities in the subthalamic nucleus (STN) and manual grips made with different efforts. The latter were self-rated using the 10 level Borg scale ranging from 0 (no effort) to 10 (maximal effort). STN LFP activities were recorded in patients with Parkinson's Disease (PD) who had undergone functional surgery. Patients were studied while motor performance was improved by dopaminergic medication. In line with previous studies we observed power increase in the theta/alpha band (4-12 Hz), power suppression in the beta band (13-30 Hz) and power increase in the gamma band (55-90 Hz) and high frequency band (101-375 Hz) during voluntary grips. Beta suppression deepened, and then reached a floor level as effort increased. Conversely, gamma and high frequency power increases were enhanced during grips made with greater effort. Multiple regression models incorporating the four different spectral changes confirmed that the modulation of power in the beta band was the only independent predictor of effort during grips made with efforts rated <5. In contrast, increases in gamma band activity were the only independent predictor of effort during grips made with efforts ≥5. Accordingly, the difference between power changes in the gamma and beta bands correlated with effort across all effort levels. These findings suggest complementary roles for changes in beta and gamma band activities in the STN in motor effort coding. The latter function

  11. High energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Bhalla, K.B.

    1980-01-01

    An attempt is made to explain nucleus-nucleus collisions based on nuclear emulsion experiments. Peripheral and central collisions are described in detail. Assuming the fireball model, the concepts of geometry, kinematics and thermodynamics in this model are discussed. Projectile and target fragmentations are studied. The advantages of using nuclear emulsions as detectors, are mentioned. Proton-nucleus collisions and nucleus-nucleus collisions are compared. Interactions, of projectiles such as Ca, B and C on targets such as Pb, Ag, Br etc. at very high energies (approximately 300 to 1700 Gev) are listed. A comparison of the near multiplicities in these interactions is given. A generalized explanation is given on the processes involved in these interactions. (A.K.)

  12. Localization and function of the Kv3.1b subunit in the rat medulla oblongata: focus on the nucleus tractus solitarii

    Science.gov (United States)

    Dallas, Mark L; Atkinson, Lucy; Milligan, Carol J; Morris, Neil P; Lewis, David I; Deuchars, Susan A; Deuchars, Jim

    2005-01-01

    The voltage-gated potassium channel subunit Kv3.1 confers fast firing characteristics to neurones. Kv3.1b subunit immunoreactivity (Kv3.1b-IR) was widespread throughout the medulla oblongata, with labelled neurones in the gracile, cuneate and spinal trigeminal nuclei. In the nucleus of the solitary tract (NTS), Kv3.1b-IR neurones were predominantly located close to the tractus solitarius (TS) and could be GABAergic or glutamatergic. Ultrastructurally, Kv3.1b-IR was detected in NTS terminals, some of which were vagal afferents. Whole-cell current-clamp recordings from neurones near the TS revealed electrophysiological characteristics consistent with the presence of Kv3.1b subunits: short duration action potentials (4.2 ± 1.4 ms) and high firing frequencies (68.9 ± 5.3 Hz), both sensitive to application of TEA (0.5 mm) and 4-aminopyridine (4-AP; 30 μm). Intracellular dialysis of an anti-Kv3.1b antibody mimicked and occluded the effects of TEA and 4-AP in NTS and dorsal column nuclei neurones, but not in dorsal vagal nucleus or cerebellar Purkinje cells (which express other Kv3 subunits, but not Kv3.1b). Voltage-clamp recordings from outside-out patches from NTS neurones revealed an outward K+ current with the basic characteristics of that carried by Kv3 channels. In NTS neurones, electrical stimulation of the TS evoked EPSPs and IPSPs, and TEA and 4-AP increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. Synaptic inputs evoked by stimulation of a region lacking Kv3.1b-IR neurones were not affected, correlating the presence of Kv3.1b in the TS with the pharmacological effects. PMID:15528247

  13. Adrenergic receptors and gastric secretion in dogs. Is a "tonic balance" relationship between vagal and beta 2-adrenergic activity a possibility?

    DEFF Research Database (Denmark)

    Gottrup, F; Hovendal, C; Bech, K

    1984-01-01

    The relative influence of adrenergic receptors on gastric acid secretion in the dog stomach with different vagal activity or "tone" is almost unknown. beta-adrenoceptors seem to be most important for the direct effect of adrenergic stimulation on acid secretion. In this study the effects...... acid secretion was not influenced significantly by beta-blockade. Similar dose-response curves were found for non-vagotomized dogs with high beta 2-adrenergic tone and dogs with low vagal tone (vagotomy) after pentagastrin and histamine stimulated acid secretion. This study indicates...... that a counterbalance between beta 2-adrenergic and cholinergic vagal tone exists. A "tonic balance theory" is suggested and is probably involved in the resulting acid secretion after vagotomy....

  14. Interacting gluon model for hadron-nucleus and nucleus-nucleus collisions in the central rapidity region

    International Nuclear Information System (INIS)

    Fowler, G.N.; Navarra, F.S.; Plumer, M.; Lawrence Berkeley Laboratory, Nuclear Science Division, Berkeley, California 94720); Vourdas, A.; Weiner, R.M.

    1989-01-01

    The interacting gluon model developed to describe the inelasticity distribution in hadron-nucleon collisions has been generalized and applied to hadron-nucleus and nucleus-nucleus interactions. Leading particle spectra and energy distributions in hadron-nucleus and nucleus-nucleus collisions are calculated

  15. Low to high frequency ratio of heart rate variability spectra fails to describe sympatho-vagal balance in cardiac patients.

    Science.gov (United States)

    Milicević, Goran

    2005-06-01

    Heart rate variability (HRV) reflects an influence of autonomic nervous system on heart work. In healthy subjects, ratio between low and high frequency components (LF/HF ratio) of HRV spectra represents a measure of sympatho-vagal balance. The ratio was defined by the authorities as an useful clinical tool, but it seems that it fails to summarise sympatho-vagal balance in a clinical setting. Value of the method was re-evaluated in several categories of cardiac patients. HRV was analysed from 24-hour Holter ECGs in 132 healthy subjects, and 2159 cardiac patients dichotomised by gender, median of age, diagnosis of myocardial infarction or coronary artery surgery, left ventricular systolic function and divided by overall HRV into several categories. In healthy subjects, LF/HF ratio correlated with overall HRV negatively, as expected. The paradoxical finding was obtained in cardiac patients; the lower the overall HRV and the time-domain indices of vagal modulation activity were the lower the LF/HF ratio was. If used as a measure of sympatho-vagal balance, long-term recordings of LF/HF ratio contradict to clinical finding and time-domain HRV indices in cardiac patients. The ratio cannot therefore be used as a reliable marker of autonomic activity in a clinical setting.

  16. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    Science.gov (United States)

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  17. Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinson's disease.

    Science.gov (United States)

    Rodriguez-Oroz, Maria C; López-Azcárate, Jon; Garcia-Garcia, David; Alegre, Manuel; Toledo, Jon; Valencia, Miguel; Guridi, Jorge; Artieda, Julio; Obeso, Jose A

    2011-01-01

    Behavioural abnormalities such as impulse control disorders may develop when patients with Parkinson's disease receive dopaminergic therapy, although they can be controlled by deep brain stimulation of the subthalamic nucleus. We have recorded local field potentials in the subthalamic nucleus of 28 patients with surgically implanted subthalamic electrodes. According to the predominant clinical features of each patient, their Parkinson's disease was associated with impulse control disorders (n = 10), dyskinesias (n = 9) or no dopaminergic mediated motor or behavioural complications (n = 9). Recordings were obtained during the OFF and ON dopaminergic states and the power spectrum of the subthalamic activity as well as the subthalamocortical coherence were analysed using Fourier transform-based techniques. The position of each electrode contact was determined in the postoperative magnetic resonance image to define the topography of the oscillatory activity recorded in each patient. In the OFF state, the three groups of patients had similar oscillatory activity. By contrast, in the ON state, the patients with impulse control disorders displayed theta-alpha (4-10 Hz) activity (mean peak: 6.71 Hz) that was generated 2-8 mm below the intercommissural line. Similarly, the patients with dyskinesia showed theta-alpha activity that peaked at a higher frequency (mean: 8.38 Hz) and was generated 0-2 mm below the intercommissural line. No such activity was detected in patients that displayed no dopaminergic side effects. Cortico-subthalamic coherence was more frequent in the impulsive patients in the 4-7.5 Hz range in scalp electrodes placed on the frontal regions anterior to the primary motor cortex, while in patients with dyskinesia it was in the 7.5-10 Hz range in the leads overlying the primary motor and supplementary motor area. Thus, dopaminergic side effects in Parkinson's disease are associated with oscillatory activity in the theta-alpha band, but at different

  18. Afferent projections to the deep mesencephalic nucleus in the rat

    International Nuclear Information System (INIS)

    Veazey, R.B.; Severin, C.M.

    1982-01-01

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist

  19. Diffractive ''semioptical'' model for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Musulmanbekov, Zh.Zh.

    1979-01-01

    Diffraction Glauber theory for nucleus-nucleus collisions is considered in approximation when the initial nucleus interacts as a whole with nucleons of the target nucleus. Such an approach, being intermediate between precise Glauber theory and its optical limit, essentially simplifies numerical calculations and gives a good agreement with experiments as well. (author)

  20. Five-year follow-up of 23 asymmetrical Parkinson's disease patients treated with unilateral subthalamic nucleus stimulation

    Institute of Scientific and Technical Information of China (English)

    Jinchuan Liang; Xiaowu Hu; Xiaoping Zhou; Xiufeng Jiang; Yiqun Cao; Laixing Wang; Aiguo Jin; Jianmin Liu

    2012-01-01

    In this study, 23 asymmetrical Parkinson's disease patients were treated with unilateral deep brain stimulation of the subthalamic nucleus and followed up for 5 years. At 5 years after stimulation treatment, Unified Parkinson's Disease Rating Scale II, III and axial symptom scores in the off-drug condition were significantly increased compared those at baseline. However, total Unified Parkinson's Disease Rating Scale II, III and axial symptom scores were significantly lower with stimulation-on compared with the synchronous stimulation-off state in off-drug condition, and the motor symptoms of contralateral side limbs were effectively controlled. Only low Hoehn-Yahr stage was correlated with good long-term postoperative improvement in motor symptoms. The mean levodopa-equivalent daily dose after stimulation treatment was significantly lower than that before treatment, but dyskinesias became worse. Our experimental findings indicate that unilateral deep brain stimulation of the subthalamic nucleus is an effective treatment for improving motor symptoms in well selected asymmetrical Parkinson's disease patients presenting no severe axial symptoms and dyskinesias.

  1. Crypto-rhombomeres of the mouse medulla oblongata, defined by molecular and morphological features.

    Science.gov (United States)

    Tomás-Roca, Laura; Corral-San-Miguel, Rubén; Aroca, Pilar; Puelles, Luis; Marín, Faustino

    2016-03-01

    The medulla oblongata is the caudal portion of the vertebrate hindbrain. It contains major ascending and descending fiber tracts as well as several motor and interneuron populations, including neural centers that regulate the visceral functions and the maintenance of bodily homeostasis. In the avian embryo, it has been proposed that the primordium of this region is subdivided into five segments or crypto-rhombomeres (r7-r11), which were defined according to either their parameric position relative to intersomitic boundaries (Cambronero and Puelles, in J Comp Neurol 427:522-545, 2000) or a stepped expression of Hox genes (Marín et al., in Dev Biol 323:230-247, 2008). In the present work, we examine the implied similar segmental organization of the mouse medulla oblongata. To this end, we analyze the expression pattern of Hox genes from groups 3 to 8, comparing them to the expression of given cytoarchitectonic and molecular markers, from mid-gestational to perinatal stages. As a result of this approach, we conclude that the mouse medulla oblongata is segmentally organized, similarly as in avian embryos. Longitudinal structures such as the nucleus of the solitary tract, the dorsal vagal motor nucleus, the hypoglossal motor nucleus, the descending trigeminal and vestibular columns, or the reticular formation appear subdivided into discrete segmental units. Additionally, our analysis identified an internal molecular organization of the migrated pontine nuclei that reflects a differential segmental origin of their neurons as assessed by Hox gene expression.

  2. Chapter 11 - Electrical Coupling in the Generation of Vertebrate Motor Rhythms

    DEFF Research Database (Denmark)

    Li, W.C.; Rekling, Jens Christian

    2017-01-01

    Many forms of vertebrate motor activity like chewing, breathing, and locomotion are rhythmic. This requires synchronized discharges of motoneurons controlling different muscle groups in an orchestrated manner. We provide a brief review of the presence and role of electrical coupling in a few well...... of electrical coupling in vertebrate motor rhythms appears to be critically dependent on developmental age, with more crucial functions in the early postnatal period than in the adult.......-studied systems: the pacemaker nucleus in weakly electric fish; mesencephalic trigeminal nucleus involved in chewing rhythms; mammalian spinal motoneurons and excitatory interneurons in the Xenopus tadpole swimming circuit, brainstem circuits underlying breathing rhythm, and central respiratory chemosensitivity...

  3. Impact of gonadectomy on sympatho-vagal balance in male and female normotensive rat

    NARCIS (Netherlands)

    Pijacka, Wioletta; Clifford, Bethan; Walas, Dawid; Tilburgs, Chantal; Joles, Jaap A; McMullen, Sarah; Langley-Evans, Simon C

    OBJECTIVE: It is well established that autonomic nervous system and sympatho-vagal balance plays an important role in maintaining arterial blood pressure (ABP) (Salman IM., 2016) and that autonomic regulation of ABP differs between males and females (Hart EC et al., 2014). We hypothesised that sex

  4. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge.

    Science.gov (United States)

    Schelegle, Edward S; Walby, William F

    2012-05-31

    Brown-Norway rats (n=113) sensitized and challenged with nDer f 1 allergen were used to examine the contribution of lung sensory nerves to ozone (O(3)) exacerbation of asthma. Prior to their third challenge rats inhaled 1.0ppm O(3) for 8h. There were three groups: (1) control; (2) vagus perineural capsaicin treatment (PCT) with or without hexamethonium; and (3) vagotomy. O(3) inhalation resulted in a significant increase in lung resistance (R(L)) and an exaggerated response to subsequent allergen challenge. PCT abolished the O(3)-induced increase in R(L) and significantly reduced the increase in R(L) induced by a subsequent allergen challenge, while hexamethonium treatment reestablished bronchoconstriction induced by allergen challenge. Vagotomy resulted in a significant increase in the bronchoconstriction induced by O(3) inhalation and subsequent challenge with allergen. In this model of O(3) exacerbation of asthma, vagal C-fibers initiate reflex bronchoconstriction, vagal myelinated fibers initiate reflex bronchodilation, and mediators released within the airway initiate bronchoconstriction. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The Relationship between a New Biomarker of Vagal Neuroimmunomodulation and Survival in Two Fatal Cancers

    Directory of Open Access Journals (Sweden)

    Y. Gidron

    2018-01-01

    Full Text Available Background. The vagus nerve may slow tumor progression because it inhibits inflammation. This study examined the relationship between a new vagal neuroimmunomodulation (NIM index and survival in fatal cancers. Method. We retroactively derived markers of vagal nerve activity indexed by heart rate variability (HRV, specifically the root mean square of successive differences (RMSSD, from patients’ electrocardiograms near diagnosis. The NIM index was the ratio of RMSSD to C-reactive protein levels (RMSSD/CRP. Sample 1 included 202 Belgian patients with advanced pancreatic cancer (PC, while sample 2 included 71 Belgian patients with non-small cell lung cancer (NSCLC. In both samples, we examined the overall survival, while in sample 2, we additionally examined the survival time in deceased patients. Results. In PC patients, in a multivariate Cox regression controlling for confounders, the NIM index had a protective relative risk (RR of 0.68 and 95% confidence interval (95% CI of 0.51–0.92. In NSCLC patients, the NIM index also had a protective RR of 0.53 and 95% CI of 0.32–0.88. Finally, in NSCLC, patients with a higher NIM index survived more days (475.2 than those with lower NIM (285.1 (p<0.05. Conclusions. The NIM index, reflecting vagal modulation of inflammation, may be a new independent prognostic biomarker in fatal cancers.

  6. Electroacupuncture improves burn-induced impairment in gastric motility mediated via the vagal mechanism in rats.

    Science.gov (United States)

    Song, J; Yin, J; Sallam, H S; Bai, T; Chen, Y; Chen, J D Z

    2013-10-01

    Delayed gastric emptying (GE) is common in patients with severe burns. This study was designed to investigate effects and mechanisms of electroacupuncture (EA) on gastric motility in rats with burns. Male rats (intact and vagotomized) were implanted with gastric electrodes, chest and abdominal wall electrodes for investigating the effects of EA at ST-36 (stomach-36 or Zusanli) on GE, gastric slow waves, autonomic functions, and plasma interleukin 6 (IL-6) 6 and 24 h post severe burns. (i) Burn delayed GE (P Electroacupuncture improved GE 6 and 24 h post burn (P Electroacupuncture improved burn-induced gastric dysrhythmia. The percentage of normal slow waves was increased with EA 6 and 24 h post burn (P = 0.02). (iii) Electroacupuncture increased vagal activity assessed by the spectral analysis of heart rate variability (HRV). The high-frequency component reflecting vagal component was increased with EA 6 (P = 0.004) and 24 h post burn (P = 0.03, vs sham-EA). (iv) Electroacupuncture attenuated burn-induced increase in plasma IL-6 at both 6 (P = 0.03) and 24 h post burn (P = 0.003). Electroacupuncture at ST-36 improves gastric dysrhythmia and accelerates GE in rats with burns. The improvement seems to be mediated via the vagal pathway involving the inflammatory cytokine IL-6. © 2013 John Wiley & Sons Ltd.

  7. At the heart of morality lies neuro-visceral integration: lower cardiac vagal tone predicts utilitarian moral judgment

    Science.gov (United States)

    Kappes, Andreas; Rho, Yeojin; Van Bavel, Jay J.

    2016-01-01

    To not harm others is widely considered the most basic element of human morality. The aversion to harm others can be either rooted in the outcomes of an action (utilitarianism) or reactions to the action itself (deontology). We speculated that the human moral judgments rely on the integration of neural computations of harm and visceral reactions. The present research examined whether utilitarian or deontological aspects of moral judgment are associated with cardiac vagal tone, a physiological proxy for neuro-visceral integration. We investigated the relationship between cardiac vagal tone and moral judgment by using a mix of moral dilemmas, mathematical modeling and psychophysiological measures. An index of bipolar deontology-utilitarianism was correlated with resting heart rate variability (HRV)—an index of cardiac vagal tone—such that more utilitarian judgments were associated with lower HRV. Follow-up analyses using process dissociation, which independently quantifies utilitarian and deontological moral inclinations, provided further evidence that utilitarian (but not deontological) judgments were associated with lower HRV. Our results suggest that the functional integration of neural and visceral systems during moral judgments can restrict outcome-based, utilitarian moral preferences. Implications for theories of moral judgment are discussed. PMID:27317926

  8. High-Frequency Stimulation of the Subthalamic Nucleus Activates Motor Cortex Pyramidal Tract Neurons by a Process Involving Local Glutamate, GABA and Dopamine Receptors in Hemi-Parkinsonian Rats.

    Science.gov (United States)

    Chuang, Chi-Fen; Wu, Chen-Wei; Weng, Ying; Hu, Pei-San; Yeh, Shin-Rung; Chang, Yen-Chung

    2018-04-30

    Deep brain stimulation (DBS) is widely used to treat advanced Parkinson’s disease (PD). Here, we investigated how DBS applied on the subthalamic nucleus (STN) influenced the neural activity in the motor cortex. Rats, which had the midbrain dopaminergic neurons partially depleted unilaterally, called the hemi-Parkinsonian rats, were used as a study model. c-Fos expression in the neurons was used as an indicator of neural activity. Application of high-frequency stimulation (HFS) upon the STN was used to mimic the DBS treatment. The motor cortices in the two hemispheres of hemi-Parkinsonian rats were found to contain unequal densities of c-Fos-positive (Fos+) cells, and STN-HFS rectified this bilateral imbalance. In addition, STN-HFS led to the intense c-Fos expression in a group of motor cortical neurons which exhibited biochemical and anatomical characteristics resembling those of the pyramidal tract (PT) neurons sending efferent projections to the STN. The number of PT neurons expressing high levels of c-Fos was significantly reduced by local application of the antagonists of non-N-methyl-D-aspartate (non-NMDA) glutamate receptors, gammaaminobutyric acid A (GABAA) receptors and dopamine receptors in the upper layers of the motor cortex. The results indicate that the coincident activations of synapses and dopamine receptors in the motor cortex during STN-HFS trigger the intense expression of c-Fos of the PT neurons. The implications of the results on the cellular mechanism underlying the therapeutic effects of STN-DBS on the movement disorders of PD are also discussed.

  9. Inhibition of excitatory synaptic transmission in the trigeminal motor nucleus by the nitric oxide-cyclic GMP signaling pathway.

    Science.gov (United States)

    Pose, Inés; Silveira, Valentina; Morales, Francisco R

    2011-06-01

    Nitric oxide (NO) and cyclic GMP (cGMP) suppressed glutamatergic synaptic transmission to trigeminal motoneurons in brain stem slices of neonatal rats. Histological studies showed guanylate cyclase (GC) containing fibers in the trigeminal motor pool. Glutamatergic excitatory postsynaptic currents (EPSCs) were recorded from neonatal trigeminal motoneurons in response to stimulation of the supratrigeminal nucleus (SuV). The NO donors DETA/NONOate (DETA/NO), at a concentration which released 275.1 nM of NO, and Spermine/NONOate (Sper/NO) reduced the amplitude of the EPSC to 52.7±0.6% and 60.1±10.8% of control values, respectively. These actions were not blocked by the GC inhibitors, ODQ or NS-2028. However, in the presence of YC-1 or BAY41-2272, modulators of GC that act as NO sensitizers, lower and otherwise ineffective concentrations of DETA/NO induced a reduction of the EPSC to 60.6±5.2%. Moreover, NO effects were mimicked by 8BrcGMP and by Zaprinast, an inhibitor of Phosphodiesterase 5. Glutamatergic currents evoked by exogenous glutamate were not reduced by DETA/NO nor 8BrcGMP. Paired-pulse facilitation was increased by NO donors. Under "minimal stimulation" conditions NO donors and cGMP increased the failure rate of evoked EPSCs. Protein kinase inhibitors antagonized cGMP effects. The results suggest that NO, through the synthesis of cGMP, presynaptically inhibits glutamatergic synaptic transmission on trigeminal motoneurons. We propose that NO has complex actions on motor pools; specific studies are needed to elucidate their physiological significance in the behaving animal. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Critical Airway Compromise due to a Massive Vagal Schwannoma

    LENUS (Irish Health Repository)

    McDermott, AM

    2016-05-01

    We describe the case of a 37-year-old man with a slowly enlarging neck lump and compressive symptoms. He presented to a separate institution 10 years prior where an observational approach was advocated. Following preoperative investigations and embolization, an 11cm vagal schwannoma was excised and vagus nerve was sacrificed. Although conservative management is appropriate for a select patient population, surgical excision is treatment of choice for cervical neurogenic tumours and paraganglionomas and must be considered in young patients or rapidly expanding tumours to avoid compressive symptoms, as in this case.

  11. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica (Brazil)

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  12. Differential Activation of Medullary Vagal Nuclei Caused by Stimulation of Different Esophageal Mechanoreceptors

    Science.gov (United States)

    Lang, Ivan M.; Medda, Bidyut K.; Shaker, Reza

    2010-01-01

    Esophageal mechanorecptors, i.e. muscular slowly adapting tension receptors and mucosal rapidly adapting touch receptors, mediate different sets of reflexes. The aim of this study was to determine the medullary vagal nuclei involved in the reflex responses to activation of these receptors. Thirty-three cats were anesthetized with alpha-chloralose and the esophagus was stimulated by slow balloon or rapid air distension. The physiological effects of the stimuli (N=4) were identified by recording responses from the pharyngeal, laryngeal, and hyoid muscles, esophagus, and the lower esophageal sphincter (LES). The effects on the medullary vagal nuclei of the stimuli: slow distension (N=10), rapid distension (N=9), and in control animals (N=10) were identified using the immunohistochemical analysis of c-fos. The experimental groups were stimulated 3 times per minute for 3 hours. After the experiment, the brains were removed and processed for c-fos immunoreactivity or thioinin. We found that slow balloon distension activated the esophago-UES contractile reflex and esophago LES relaxation response, and rapid air injection activated the belch and its component reflexes. Slow balloon distension activated the NTSce, NTSdl, NTSvl, DMNc, DMNr and NAr; and rapid air injection primarily activated AP, NTScd, NTSim, NTSis, NTSdm, NTSvl, NAc and NAr. We concluded that different sets of medullary vagal nuclei mediate different reflexes of the esophagus activated from different sets of mechanoreceptors. The NTScd is the primary NTS subnucleus mediating reflexes from the mucosal rapidly adapting touch receptors, and the NTSce is the primary NTS subnucleus mediating reflexes from the muscular slowly adapting tension receptors. The AP may be involved in mediation of belching. PMID:20971087

  13. Model for nucleus-nucleus, hadron-nucleus and hadron-proton multiplicity distributions

    International Nuclear Information System (INIS)

    Singh, C.P.; Shyam, M.; Tuli, S.K.

    1986-07-01

    A model relating hadron-proton, hadron-nucleus and nucleus-nucleus multiplicity distributions is proposed and some interesting consequences are derived. The values of the parameters are the same for all the processes and are given by the QCD hypothesis of ''universal'' hadronic multiplicities which are found to be asymptotically independent of target and beam in hadronic and current induced reactions in particle physics. (author)

  14. Higgs-boson production in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider

  15. Higgs-Boson Production in Nucleus-Nucleus Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  16. Neuronal Entropy-Rate Feature of Entopeduncular Nucleus in Rat Model of Parkinson's Disease.

    Science.gov (United States)

    Darbin, Olivier; Jin, Xingxing; Von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K; Alam, Mesbah

    2016-03-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus, i.e. the entopeduncular nucleus (EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD). In both control subjects and subjects with 6-OHDA lesion of dopamine (DA) the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15 and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25 Hz. Our data establishes that the nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions such as movement disorders.

  17. Disease progression continues in patients with advanced Parkinson's disease and effective subthalamic nucleus stimulation

    NARCIS (Netherlands)

    Hilker, R; Portman, AT; Voges, J; Staal, MJ; Burghaus, L; van Laar, T; Koulousakis, A; Maguire, RP; Pruim, J; de Jong, BM; Herholz, K; Sturm, [No Value; Heiss, WD; Leenders, KL

    Objectives: Glutamate mediated excitotoxicity of the hyperactive subthalamic nucleus (STN) has been reported to contribute to nigral degeneration in Parkinson's disease (PD). Deep brain stimulation of the STN (STN DBS), in its role as a highly effective treatment of severe PD motor complications,

  18. Avaliando a atividade vagal cardíaca na eletrocardiografia convencional Evaluating cardiac vagal activity on a conventional electrocardiogram

    Directory of Open Access Journals (Sweden)

    Flávia P. Teixeira

    2007-04-01

    Full Text Available OBJETIVO: Determinar a viabilidade da utilização de traçado convencional de eletrocardiografia (ECG para avaliação da atividade vagal cardíaca (AVC. MÉTODOS: Foram analisados, retrospectivamente, 1.395 indivíduos (995 homens, na faixa de idade de 46 + 17,2 anos (média ± desvio padrão, com traçados de ECG convencional para medida do Delta RR, que representa a diferença, em ms, entre o maior e o menor intervalo RR, e com resultados da avaliação autonômica parassimpática, o teste de exercício de quatro segundos (T4s, que quantifica a AVC por meio do índice vagal cardíaco (IVC. Foram obtidas curvas ROC para determinar os valores de Delta RR com melhor relação entre sensibilidade e especificidade para os pontos de corte de baixa e alta AVC, respectivamente, de 1,20 e 1,95. RESULTADOS: Os valores de delta RR correlacionaram-se significativamente com os de IVC (r = 0,40; p 120 ms como os melhores pontos de corte para baixa e alta AVC, com sensibilidade de 75% e 57%, especificidade de 62% e 79% e áreas das curvas ROC de 0,76 e 0,74, respectivamente. CONCLUSÃO: A medida visual do delta RR em um traçado de ECG parece ser válida para a avaliação clínica preliminar e rápida da AVC, podendo ser útil em consultórios, emergências ou situações nas quais o uso de métodos mais sofisticados de avaliação autonômica não seja viável, oportuno ou conveniente.OBJECTIVE: To determine the viability of using a conventional electrocardiogram (ECG tracing for assessment of CVA. METHODS: We retrospectively analyzed 1395 individuals (995 males, aged 46 ± 17.2 years (mean ± standard deviation with conventional ECG tracings to measure the delta RR (which represents the difference in milliseconds (ms between the greatest and smallest RR interval and results of a second autonomic parasympathetic evaluation, the 4-second exercise test (T4s, that quantifies CVA by the cardiac vagal index (CVI. ROC curves were obtained to determine the

  19. Therapeutic effects of selective atrioventricular node vagal stimulation in atrial fibrillation and heart failure.

    Science.gov (United States)

    Zhang, Youhua; Popović, Zoran B; Kusunose, Kenya; Mazgalev, Todor N

    2013-01-01

    Atrial fibrillation (AF) and heart failure (HF) frequently coexist. We have previously demonstrated that selective atrioventricular node (AVN) vagal stimulation (AVN-VS) can be used to control ventricular rate during AF. Due to withdrawal of vagal activity in HF, the therapeutic effects of AVN-VS may be compromised in the combined condition of AF and HF. Accordingly, this study was designed to evaluate the therapeutic effects of AVN-VS to control ventricular rate in AF and HF. A combined model of AF and HF was created by implanting a dual chamber pacemaker in 24 dogs. A newly designed bipolar electrode was inserted into the ganglionic AVN fat pad and connected to a nerve stimulator for delivering AVN-VS. In all dogs, HF was induced by high rate ventricular pacing at 220 bpm for 4 weeks. AF was then induced and maintained by rapid atrial pacing at 600 bpm after discontinuation of ventricular pacing. These HF + AF dogs were randomized into control (n = 9) and AVN-VS (n = 15) groups. In the latter group, vagal stimulation (310 μs, 20 Hz, 3-7 mA) was delivered continuously for 6 months. Compared with the control, AVN-VS had a consistent effect on ventricular rate slowing (by >50 bpm, all P AVN-VS was well tolerated by the treated animals. AVN-VS achieved consistent rate slowing, which was associated with improved ventricular function in a canine AF and HF model. Thus, AVN-VS may be a novel, effective therapeutic option in the combined condition of AF and HF. © 2012 Wiley Periodicals, Inc.

  20. An autoradiographic analysis of the cortical connections of the pallidal and cerebellar zones within the feline motor thalamus

    International Nuclear Information System (INIS)

    Wensel, J.P.

    1989-01-01

    The feline motor thalamus relays both basal ganglia and cerebellar inputs to the motor cortex. This complex is classically subdivided into three nuclei: the ventroanterior nucleus (VA), the ventrolateral nucleus (VL), and the ventromedial nucleus (VM). Poor correlation between recognized patterns of cortical and subcortical connectivity and traditional boundaries used to distinguish these nuclei complicate the elucidation of the role they play in the elaboration of motor behavior. The recent demonstration of complementarity for the pallidothalamic and dentatothalamic projections to the motor thalamus of the cat provided the foundation for a revision of these nuclear borders to reflect differences in subcortical connectivity. Using a revised topography, this study analyzed the afferent and efferent connections of the feline VA and VL through the application of both anterograde and retrograde tracing techniques. The extent of the cerebellothalamic projection, as revealed by the bidirectional transport of WGA-HRP, was used to demarcate the boundary between VA and VL. Injections of tritiated amino acids into VA and VL allowed for the autoradiographic tracing of their cortical projections. Autoradiography was also used to demonstrate the distributions of corticothalamic projections from selected pericruciate and posterior parietal subfields to the motor thalamus

  1. Angular momentum and incident-energy dependence of nucleus-nucleus interaction

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1991-01-01

    The purpose of this paper is to understand intuitively the origin of the angular momentum and incident-energy dependence of the nucleus-nucleus interaction on the basis of the totally- antisymmetrized many-body theory. With the aim of understanding the structure of the nucleus-nucleus interaction, we show first that the nucleus-nucleus interaction can be written by the use of the density-distribution function and the phase-space distribution function instead of using the many-body wave function itself. And we show that the structure change of the density-distribution function with the increase of the angular momentum causes the angular momentum dependence of the nucleus-nucleus interaction and that the incident-energy dependence of the nucleus-nucleus interaction originates from the structure change of the phase-space distribution function

  2. New results on nuclear multifragmentation in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies

    International Nuclear Information System (INIS)

    Besliu, Calin; Jipa, Alexandru; Iliescu, Bogdan; Felea, Daniel

    2002-01-01

    Some new aspects on the multifragmentation processes in nucleus-nucleus and nucleon-nucleus collisions at high energies are discussed in this work. Experimental data obtained in international collaborations (for example, MULTI Collaboration with KEK Tsukuba (Japan) and SKM 200 Collaboration with JINR Dubna (Russia)) are used to discuss new mechanisms in the target nucleus fragmentation. Correlations with stopping power, participant region size and energy density are included. Comparisons of the experimental results with the predictions of a phenomenological geometric model of intermediate mass fragment multiplicity, caloric curves and angular distributions are also presented. These results are used for global description of the multifragmentation processes in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies. The size of the participant region and the average intermediate mass fragments multiplicity are taken into consideration using the free space probability. A few correlations between the deposited energy in the participant region and stability state of the intermediate mass fragments are presented in this work. The importance of the collision geometry in the multifragmentation processes is stressed. The results suggest different time moments for the incident nucleus fragmentation and for the target nucleus fragmentation. The associated entropies are distinct. (authors)

  3. At the heart of morality lies neuro-visceral integration: lower cardiac vagal tone predicts utilitarian moral judgment.

    Science.gov (United States)

    Park, Gewnhi; Kappes, Andreas; Rho, Yeojin; Van Bavel, Jay J

    2016-10-01

    To not harm others is widely considered the most basic element of human morality. The aversion to harm others can be either rooted in the outcomes of an action (utilitarianism) or reactions to the action itself (deontology). We speculated that the human moral judgments rely on the integration of neural computations of harm and visceral reactions. The present research examined whether utilitarian or deontological aspects of moral judgment are associated with cardiac vagal tone, a physiological proxy for neuro-visceral integration. We investigated the relationship between cardiac vagal tone and moral judgment by using a mix of moral dilemmas, mathematical modeling and psychophysiological measures. An index of bipolar deontology-utilitarianism was correlated with resting heart rate variability (HRV)-an index of cardiac vagal tone-such that more utilitarian judgments were associated with lower HRV. Follow-up analyses using process dissociation, which independently quantifies utilitarian and deontological moral inclinations, provided further evidence that utilitarian (but not deontological) judgments were associated with lower HRV. Our results suggest that the functional integration of neural and visceral systems during moral judgments can restrict outcome-based, utilitarian moral preferences. Implications for theories of moral judgment are discussed. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. The role of cardiac vagal tone and inhibitory control in pre-schoolers' listening comprehension.

    Science.gov (United States)

    Scrimin, Sara; Patron, Elisabetta; Florit, Elena; Palomba, Daniela; Mason, Lucia

    2017-12-01

    This study investigated the role of basal cardiac activity and inhibitory control at the beginning of the school year in predicting oral comprehension at the end of the year in pre-schoolers. Forty-three, 4-year-olds participated in the study. At the beginning of the school year children's electrocardiogram at rest was registered followed by the assessment of inhibitory control as well as verbal working memory and verbal ability. At the end of the year all children were administered a listening comprehension ability measure. A stepwise regression showed a significant effect of basal cardiac vagal tone in predicting listening comprehension together with inhibitory control and verbal ability. These results are among the first to show the predictive role of basal cardiac vagal tone and inhibitory control in pre-schoolers' oral text comprehension, and offer new insight into the association between autonomic regulation of the heart, inhibitory control, and cognitive activity at a young age. © 2017 Wiley Periodicals, Inc.

  5. The Heart´s rhythm 'n' blues: Sex differences in circadian variation patterns of vagal activity vary by depressive symptoms in predominantly healthy employees.

    Science.gov (United States)

    Jarczok, Marc N; Aguilar-Raab, Corina; Koenig, Julian; Kaess, Michael; Borniger, Jeremy C; Nelson, Randy J; Hall, Martica; Ditzen, Beate; Thayer, Julian F; Fischer, Joachim E

    2018-03-15

    Successful regulation of emotional states is positively associated to mental health, while difficulties in regulating emotions are negatively associated to overall mental health and in particular associated with anxiety or depression symptoms. A key structure associated to socio-emotional regulatory processes is the central autonomic network. Activity in this structure is associated to vagal activity can be indexed noninvasively and simply by measures of peripheral cardiac autonomic modulations such as heart rate variability. Vagal activity exhibits a circadian variation pattern, with a maximum during nighttime. Depression is known to affect chronobiology. Also, depressive symptoms are known to be associated with decreased resting state vagal activity, but studies investigating the association between circadian variation pattern of vagal activity and depressive symptoms are scarce. We aim to examine these patterns in association to symptom severity of depression using chronobiologic methods. Data from the Manheim Industrial Cohort Studies (MICS) were used. A total of 3,030 predominantly healthy working adults underwent, among others, ambulatory 24-h hear rate-recordings, detailed health examination and online questionnaires and were available for this analysis. The root mean sum of successive differences (RMSSD) was used as an indicator of vagally mediated heart rate variability. Three individual-level cosine function parameters (MESOR, amplitude, acrophase) were estimated to quantify circadian variation pattern. Multivariate linear regression models including important covariates such as age, sex, and lifestyle factors as well as an interaction effect of sex with depressive symptoms were used to estimate the association of circadian variation pattern of vagal activity with depressive symptoms simultaneously. The analysis sample consisted of 20.2% females and an average age 41 with standard deviation of 11 years. Nonparametric bivariate analysis revealed

  6. The Subthalamic Nucleus, Limbic Function, and Impulse Control.

    Science.gov (United States)

    Rossi, P Justin; Gunduz, Aysegul; Okun, Michael S

    2015-12-01

    It has been well documented that deep brain stimulation (DBS) of the subthalamic nucleus (STN) to address some of the disabling motor symptoms of Parkinson's disease (PD) can evoke unintended effects, especially on non-motor behavior. This observation has catalyzed more than a decade of research concentrated on establishing trends and identifying potential mechanisms for these non-motor effects. While many issues remain unresolved, the collective result of many research studies and clinical observations has been a general recognition of the role of the STN in mediating limbic function. In particular, the STN has been implicated in impulse control and the related construct of valence processing. A better understanding of STN involvement in these phenomena could have important implications for treating impulse control disorders (ICDs). ICDs affect up to 40% of PD patients on dopamine agonist therapy and approximately 15% of PD patients overall. ICDs have been reported to be associated with STN DBS. In this paper we will focus on impulse control and review pre-clinical, clinical, behavioral, imaging, and electrophysiological studies pertaining to the limbic function of the STN.

  7. The effect of vagal nerve blockade using electrical impulses on glucose metabolism in nondiabetic subjects

    Directory of Open Access Journals (Sweden)

    Sathananthan M

    2014-07-01

    Full Text Available Matheni Sathananthan,1 Sayeed Ikramuddin,2 James M Swain,3,6 Meera Shah,1 Francesca Piccinini,4 Chiara Dalla Man,4 Claudio Cobelli,4 Robert A Rizza,1 Michael Camilleri,5 Adrian Vella1 1Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA; 2Division of General Surgery, University of Minnesota, Minneapolis, MN, USA; 3Division of General Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA; 4Department of Information Engineering, University of Padua, Padua, Italy; 5Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA; 6Scottsdale Healthcare Bariatric Center, Scottsdale, AZ, USA Purpose: Vagal interruption causes weight loss in humans and decreases endogenous glucose production in animals. However, it is unknown if this is due to a direct effect on glucose metabolism. We sought to determine if vagal blockade using electrical impulses alters glucose metabolism in humans. Patients and methods: We utilized a randomized, cross-over study design where participants were studied after 2 weeks of activation or inactivation of vagal nerve blockade (VNB. Seven obese subjects with impaired fasting glucose previously enrolled in a long-term study to examine the effect of VNB on weight took part. We used a standardized triple-tracer mixed meal to enable measurement of the rate of meal appearance, endogenous glucose production, and glucose disappearance. The 550 kcal meal was also labeled with 111In-diethylene triamine pentaacetic acid (DTPA to measure gastrointestinal transit. Insulin action and ß-cell responsivity indices were estimated using the minimal model. Results: Integrated glucose, insulin, and glucagon concentrations did not differ between study days. This was also reflected in a lack of effect on β-cell responsivity and insulin action. Furthermore, fasting and postprandial endogenous glucose production, integrated meal appearance, and glucose

  8. Lipid-rich enteral nutrition regulates mucosal mast cell activation via the vagal anti-inflammatory reflex

    NARCIS (Netherlands)

    de Haan, Jacco J.; Hadfoune, M.'hamed; Lubbers, Tim; Hodin, Caroline; Lenaerts, Kaatje; Ito, Akihiko; Verbaeys, Isabelle; Skynner, Michael J.; Cailotto, Cathy; van der Vliet, Jan; de Jonge, Wouter J.; Greve, Jan-Willem M.; Buurman, Wim A.

    2013-01-01

    Nutritional stimulation of the cholecystokinin-1 receptor (CCK-1R) and nicotinic acetylcholine receptor (nAChR)-mediated vagal reflex was shown to reduce inflammation and preserve intestinal integrity. Mast cells are important early effectors of the innate immune response; therefore modulation of

  9. Assessment of Psychophysiological Response and Specific Fine Motor Skills in Combat Units.

    Science.gov (United States)

    Sánchez-Molina, Joaquín; Robles-Pérez, José J; Clemente-Suárez, Vicente J

    2018-03-02

    Soldiers´ training and experience can influence the outcome of the missions, as well as their own physical integrity. The objective of this research was to analyze the psycho-physiological response and specific motor skills in an urban combat simulation with two units of infantry with different training and experience. psychophysiological parameters -Heart Rate, blood oxygen saturation, glucose and blood lactate, cortical activation, anxiety and heart rate variability-, as well as fine motor skills were analyzed in 31 male soldiers of the Spanish Army, 19 belonging to the Light Infantry Brigade, and 12 to the Heavy Forces Infantry Brigade, before and after an urban combat simulation. A combat simulation provokes an alteration of the psycho-physiological basal state in soldiers and a great unbalance in the sympathetic-vagal interaction. The specific training of Light Infantry unit involves lower metabolic, cardiovascular, and anxiogenic response not only previous, but mainly after a combat maneuver, than Heavy Infantry unit's. No differences were found in relation with fine motor skills, improving in both cases after the maneuver. This fact should be taken into account for betterment units´ deployment preparation in current theaters of operations.

  10. Parasympathetic preganglionic cardiac motoneurons labeled after voluntary diving

    Directory of Open Access Journals (Sweden)

    W Michael ePanneton

    2014-01-01

    Full Text Available A dramatic bradycardia is induced by underwater submersion in vertebrates. The location of parasympathetic preganglionic cardiac motor neurons driving this aspect of the diving response was investigated using cFos immunohistochemistry combined with retrograde transport of cholera toxin subunit B (CTB to double-label neurons. After pericardial injections of CTB, trained rats voluntarily dove underwater, and their heart rates dropped immediately to 95±2bpm, an 80% reduction. After immunohistochemical processing, the vast majority of CTB labeled neurons were located in the reticular formation from the rostral cervical spinal cord to the facial motor nucleus, confirming previous studies. Labeled neurons caudal to the rostral ventrolateral medulla were usually spindle-shaped aligned along an oblique line running from the dorsal vagal nucleus to the ventrolateral reticular formation, while those more rostrally were multipolar with extended dendrites. Nine percent of retrogradely-labeled neurons were positive for both cFos and CTB after diving and 74% of these were found rostral to the obex. CTB also was transported transganglionically in primary afferent fibers, resulting in large granular deposits in dorsolateral, ventrolateral, and commissural subnuclei of the nucleus tractus solitarii and finer deposits in lamina I and IV-V of the trigeminocervical complex. The overlap of parasympathetic preganglionic cardiac motor neurons activated by diving with those activated by baro- and chemoreceptors in the rostral ventrolateral medulla is discussed. Thus the profound bradycardia seen with underwater submersion reinforces the notion that the mammalian diving response is the most powerful autonomic reflex known.

  11. Deconfinement of quarks and gluons in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Gorenstein, M.I.

    2011-01-01

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals the anomalies. They were predicted as the signals of the deconfinement phase transition and observed by NA49 collaboration in Pb+Pb collisions at the CERN SPS. This indicates the onset of the deconfinement in central nucleus-nucleus collisions at about 30 AGeV.

  12. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    Science.gov (United States)

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  13. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats.

    Science.gov (United States)

    Rasmussen, Brittany A; Breen, Danna M; Luo, Ping; Cheung, Grace W C; Yang, Clair S; Sun, Biying; Kokorovic, Andrea; Rong, Weifang; Lam, Tony K T

    2012-04-01

    The duodenum senses nutrients to maintain energy and glucose homeostasis, but little is known about the signaling and neuronal mechanisms involved. We tested whether duodenal activation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) is sufficient and necessary for cholecystokinin (CCK) signaling to trigger vagal afferent firing and regulate glucose production. In rats, we selectively activated duodenal PKA and evaluated changes in glucose kinetics during the pancreatic (basal insulin) pancreatic clamps and vagal afferent firing. The requirement of duodenal PKA signaling in glucose regulation was evaluated by inhibiting duodenal activation of PKA in the presence of infusion of the intraduodenal PKA agonist (Sp-cAMPS) or CCK1 receptor agonist (CCK-8). We also assessed the involvement of a neuronal network and the metabolic impact of duodenal PKA activation in rats placed on high-fat diets. Intraduodenal infusion of Sp-cAMPS activated duodenal PKA and lowered glucose production, in association with increased vagal afferent firing in control rats. The metabolic and neuronal effects of duodenal Sp-cAMPS were negated by coinfusion with either the PKA inhibitor H89 or Rp-CAMPS. The metabolic effect was also negated by coinfusion with tetracaine, molecular and pharmacologic inhibition of NR1-containing N-methyl-d-aspartate (NMDA) receptors within the dorsal vagal complex, or hepatic vagotomy in rats. Inhibition of duodenal PKA blocked the ability of duodenal CCK-8 to reduce glucose production in control rats, whereas duodenal Sp-cAMPS bypassed duodenal CCK resistance and activated duodenal PKA and lowered glucose production in rats on high-fat diets. We identified a neural glucoregulatory function of duodenal PKA signaling. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Deep brain stimulation for Parkinson's disease: defining the optimal location within the subthalamic nucleus.

    Science.gov (United States)

    Bot, Maarten; Schuurman, P Richard; Odekerken, Vincent J J; Verhagen, Rens; Contarino, Fiorella Maria; De Bie, Rob M A; van den Munckhof, Pepijn

    2018-05-01

    Individual motor improvement after deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) varies considerably. Stereotactic targeting of the dorsolateral sensorimotor part of the STN is considered paramount for maximising effectiveness, but studies employing the midcommissural point (MCP) as anatomical reference failed to show correlation between DBS location and motor improvement. The medial border of the STN as reference may provide better insight in the relationship between DBS location and clinical outcome. Motor improvement after 12 months of 65 STN DBS electrodes was categorised into non-responding, responding and optimally responding body-sides. Stereotactic coordinates of optimal electrode contacts relative to both medial STN border and MCP served to define theoretic DBS 'hotspots'. Using the medial STN border as reference, significant negative correlation (Pearson's correlation -0.52, P<0.01) was found between the Euclidean distance from the centre of stimulation to this DBS hotspot and motor improvement. This hotspot was located at 2.8 mm lateral, 1.7 mm anterior and 2.5 mm superior relative to the medial STN border. Using MCP as reference, no correlation was found. The medial STN border proved superior compared with MCP as anatomical reference for correlation of DBS location and motor improvement, and enabled defining an optimal DBS location within the nucleus. We therefore propose the medial STN border as a better individual reference point than the currently used MCP on preoperative stereotactic imaging, in order to obtain optimal and thus less variable motor improvement for individual patients with PD following STN DBS. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Deep brain stimulation of the subthalamic nucleus improves reward-based decision-learning in Parkinson's disease

    NARCIS (Netherlands)

    van Wouwe, N.C.; Ridderinkhof, K.R.; van den Wildenberg, W.P.M.; Band, G.P.H.; Abisogun, A.; Elias, W.J.; Frysinger, R.; Wylie, S.A.

    2011-01-01

    Recently, the subthalamic nucleus (STN) has been shown to be critically involved in decision-making, action selection, and motor control. Here we investigate the effect of deep brain stimulation (DBS) of the STN on reward-based decision-learning in patients diagnosed with Parkinson's disease (PD).

  16. Anterograde Tracing Method using DiI to Label Vagal Innervation of the Embryonic and Early Postnatal Mouse Gastrointestinal Tract

    Science.gov (United States)

    Murphy, Michelle C.; Fox, Edward A.

    2007-01-01

    The mouse is an extremely valuable model for studying vagal development in relation to strain differences, genetic variation, gene manipulations, or pharmacological manipulations. Therefore, a method using 1, 1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) was developed for labeling vagal innervation of the gastrointestinal (GI) tract in embryonic and postnatal mice. DiI labeling was adapted and optimized for this purpose by varying several facets of the method. For example, insertion and crushing of DiI crystals into the nerve led to faster DiI diffusion along vagal axons and diffusion over longer distances as compared with piercing the nerve with a micropipette tip coated with dried DiI oil. Moreover, inclusion of EDTA in the fixative reduced leakage of DiI out of nerve fibers that occurred with long incubations. Also, mounting labeled tissue in PBS was superior to glycerol with n-propyl gallate, which resulted in reduced clarity of DiI labeling that may have been due to DiI leaking out of fibers. Optical sectioning of flattened wholemounts permitted examination of individual tissue layers of the GI tract wall. This procedure aided identification of nerve ending types because in most instances each type innervates a different tissue layer. Between embryonic day 12.5 and postnatal day 8, growth of axons into the GI tract, formation and patterning of fiber bundles in the myenteric plexus and early formation of putative afferent and efferent nerve terminals were observed. Thus, the DiI tracing method developed here has opened up a window for investigation during an important phase of vagal development. PMID:17418900

  17. Projections of the optic tectum and the mesencephalic nucleus of the trigeminal nerve in the tegu lizard (Tupinambis nigropunctatus).

    Science.gov (United States)

    Ebbesson, S O

    1981-01-01

    Fibers undergoing Wallerian degeneration following tectal lesions were demonstrated with the Nauta and Fink-Heimer methods and traced to their termination. Four of the five distinct fiber paths originating in the optic tectum appear related to vision, while one is related to the mesencephalic nucleus of the trigeminus. The latter component of the tectal efferents distributes fibers to 1) the main sensory nucleus of the trigeminus, 2) the motor nucleus of the trigeminus, 3) the nucleus of tractus solitarius, and 4) the intermediate gray of the cervical spinal cord. The principal ascending bundle projects to the nucleus rotundus, three components of the ventral geniculate nucleus and the nucleus ventromedialis anterior ipsilaterally, before it crosses in the supraoptic commissure and terminates in the contralateral nucleus rotundus, ventral geniculate nucleus and a hitherto unnamed region dorsal to the nucleus of the posterior accessory optic tract. Fibers leaving the tectum dorso-medially terminate in the posterodorsal nucleus ipsilaterally and the stratum griseum periventriculare of the contralateral tectum. The descending fiber paths terminate in medial reticular cell groups and the rostral spinal cord contralaterally and in the torus and the lateral reticular regions ipsilaterally. The ipsilateral fascicle also issues fibers to the magnocellular nucleus isthmi.

  18. Gastrointestinal motor inhibition by exogenous human, salmon, and eel calcitonin in conscious dogs.

    Science.gov (United States)

    Nakamura, H; Asano, T; Haruta, K; Takeda, K

    1995-01-01

    Effects of synthetic eel (E-), salmon (S-), and human (H-) calcitonin (CT) on gastrointestinal motility were studied in conscious beagle dogs, which had been implanted with strain gauge force transducers. Intramuscular administration of E-, S-, or H-CT interrupted gastric migrating motor complexes, digestive pattern, and gastric emptying. The order of potency was E-CT = S-CT > H-CT. Motor inhibition induced by CT occurred independently of plasma immunoreactive motilin levels or hypocalcemia. In addition, E-CT and S-CT induced vomiting without a retrograde giant contraction (RGC) during the postprandial state. Apomorphine or CuSO4 initiated RGC prior to vomiting. RGC induced by apomorphine was inhibited by pretreatment with E-CT as well as hexamethonium, atropine, or surgical vagotomy. E-CT showed no inhibitory effect on nicotine stimulated contraction of isolated guinea-pig ileum. These results suggest that peripherally administered CT inhibits canine gastrointestinal motility at the central nervous system level by lowering vagal activity.

  19. A brain-liver circuit regulates glucose homeostasis.

    Science.gov (United States)

    Pocai, Alessandro; Obici, Silvana; Schwartz, Gary J; Rossetti, Luciano

    2005-01-01

    Increased glucose production (GP) is the major determinant of fasting hyperglycemia in diabetes mellitus. Previous studies suggested that lipid metabolism within specific hypothalamic nuclei is a biochemical sensor for nutrient availability that exerts negative feedback on GP. Here we show that central inhibition of fat oxidation leads to selective activation of brainstem neurons within the nucleus of the solitary tract and the dorsal motor nucleus of the vagus and markedly decreases liver gluconeogenesis, expression of gluconeogenic enzymes, and GP. These effects require central activation of ATP-dependent potassium channels (K(ATP)) and descending fibers within the hepatic branch of the vagus nerve. Thus, hypothalamic lipid sensing potently modulates glucose metabolism via neural circuitry that requires the activation of K(ATP) and selective brainstem neurons and intact vagal input to the liver. This crosstalk between brain and liver couples central nutrient sensing to peripheral nutrient production and its disruption may lead to hyperglycemia.

  20. Vagal Nerve Stimulator Malfunction with Change in Neck Position: Case Report and Literature Review.

    Science.gov (United States)

    D'Agostino, Erin; Makler, Vyacheslav; Bauer, David F

    2018-06-01

    Vagal nerve stimulation is a safe and well-tolerated treatment for drug-resistant epilepsy. Complications and failure of the device can result from lead fracture, device malfunction, disconnection, or battery displacement and can result in a variety of symptoms. We present an interesting case of stimulator malfunction with increased impedance change seen only with a change in head position. The patient is a 25-year-old male with a vagal nerve stimulator (VNs) placed for medically refractory epilepsy who presented with neck pain and an electrical pulling sensation in his neck whenever he turned his head to the right. Initial interrogation of the VNs showed normal impedance. Subsequent interrogation with the patient's head turned found increased impedance only when the head was turned to the right. The patient had successful removal and replacement of the device with resolution of his preoperative complaints. Partial lead fracture was seen at explant. VNs malfunction can present in atypical ways. Positional maneuvers may help with its timely diagnosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Hearing in action; auditory properties of neurones in the red nucleus of alert primates

    Directory of Open Access Journals (Sweden)

    Jonathan Murray Lovell

    2014-05-01

    Full Text Available The response of neurones in the Red Nucleus pars magnocellularis (RNm to both tone bursts and electrical stimulation were observed in three cynomolgus monkeys (Macaca fascicularis, in a series of studies primarily designed to characterise the influence of the dopaminergic ventral midbrain on auditory processing. Compared to its role in motor behaviour, little is known about the sensory response properties of neurons in the red nucleus; particularly those concerning the auditory modality. Sites in the RN were recognised by observing electrically evoked body movements characteristic for this deep brain structure. In this study we applied brief monopolar electrical stimulation to 118 deep brain sites at a maximum intensity of 200 µA, thus evoking minimal body movements. Auditory sensitivity of RN neurons was analysed more thoroughly at 15 sites, with the majority exhibiting broad tuning curves and phase locking up to 1.03 kHz. Since the RN appears to receive inputs from a very early stage of the ascending auditory system, our results suggest that sounds can modify the motor control exerted by this brain nucleus. At selected locations, we also tested for the presence of functional connections between the RN and the auditory cortex by inserting additional microelectrodes into the auditory cortex and investigating how action potentials and local field potentials were affected by electrical stimulation of the RN.

  2. Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS

    CERN Multimedia

    Klochkov, V; Herve, A E; Kowalski, S; Kaptur, E A; Kowalik, K L; Dominik, W M; Matulewicz, T N; Krasnoperov, A; Feofilov, G; Vinogradov, L; Kovalenko, V; Johnson, S R; Planeta, R J; Rubbia, A; Marton, K; Messerly, B A; Puzovic, J; Bogomilov, M V; Bravar, A; Renfordt, R A E; Deveaux, M; Engel, R R; Grzeszczuk, A; Davis, N; Kuich, M; Lyubushkin, V; Kondratev, V; Kadija, K; Diakonos, F; Slodkowski, M A; Rauch, W H; Pistillo, C; Laszlo, A; Nakadaira, T; Hasegawa, T; Sadovskiy, A; Morozov, S; Petukhov, O; Mathes, H; Roehrich, D; Marcinek, A J; Marino, A D; Grebieszkow, K; Di luise, S; Wlodarczyk, Z; Rybczynski, M A; Wojtaszek-szwarc, A; Nirkko, M C; Sakashita, K; Golubeva, M; Kurepin, A; Manic, D; Kolev, D I; Kisiel, J E; Koziel, M E; Rondio, E; Larsen, D T; Czopowicz, T R; Seyboth, P; Turko, L; Guber, F; Marin, V; Busygina, O; Strikhanov, M; Taranenko, A; Cirkovic, M; Roth, M A; Pulawski, S M; Aduszkiewicz, A M; Bunyatov, S; Vechernin, V; Nagai, Y; Anticic, T; Dynowski, K M; Mackowiak-pawlowska, M K; Stefanek, G; Pavin, M; Fodor, Z P; Nishikawa, K; Tada, M; Blondel, A P P; Stroebele, H W; Posiadala, M Z; Kolesnikov, V; Andronov, E; Zimmerman, E D; Antoniou, N; Majka, Z; Dumarchez, J; Naskret, M; Ivashkin, A; Tsenov, R V; Koziel, M G; Schmidt, K J; Melkumov, G; Popov, B; Panagiotou, A; Richter-was, E M; Morgala, S J; Paolone, V; Damyanova, A; Gazdzicki, M; Unger, M T; Wilczek, A G; Stepaniak, J M; Seryakov, A; Susa, T; Staszel, P P; Brzychczyk, J; Maksiak, B; Tefelski, D B

    2007-01-01

    The NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment is a large acceptance hadron spectrometer at the CERN SPS for the study of the hadronic final states produced in interactions of various beam particles (pions, protons, C, S and In) with a variety of fixed targets at the SPS energies. The main components of the current detector were constructed and used by the NA49 experiment. The physics program of NA61/SHINE consists of three main subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2011) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in nucleus-nucleus collisions as well as in p+p a...

  3. Pion production in nucleus--nucleus collisions

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1975-06-01

    Current work on pion production in high-energy nucleus-nucleus collisions is reviewed. The majority of existing data are of the inclusive variety in which a single final state pion is detected. Experimental data are compared and their possible contributions to obtaining new information on nuclear structure is discussed. Various models which attempt to explain the observed single-inclusive-pion spectra either on the basis of a nucleon-nucleus interaction in which Fermi motion is included or on some type of cooperative model are examined. Other areas of interest involving pion production include tests of charge symmetry and pion multiplicities. (9 figures, 1 table) (U.S.)

  4. MRI in spastic cerebral palsy - correlations with motor development and mental retardation

    International Nuclear Information System (INIS)

    Kulal, W.; Sobaniec, W.; Kubas, B.

    2004-01-01

    The introduction of magnetic resonance (MR) has improved our understanding of the pathophysiology and early diagnosis of cerebral palsy (CP). The aim of this study was to evaluate types of lesions on MR in children with CP in correlations with motor development, cognitive impairment and risk factors. Twenty-two children aged 4-17 years (boys 12, girls 10) with CP diplegia - 16 and tetraplegia - 6 were studied. Routine MR images were performed in all children. Results: All patients had periventricular leukomalacia (PVL) in MR findings. In addition three different degrees of MRI lesion patterns were defined: a mild pattern (nucleus lentiformis and thalamus) moderate (nucleus lentiformis, thalamus and pericentral region)and a severe pattern (nucleus lentiformis , thalamus, pericentral region and hippocampus). Significant correlations of the MR findings with the motor development and mental retardation were found. No significant relationships between the MR findings and the etiological factors (prematurity, low birthweight, Apgar score, sepsis, seizures, pre-eclamsia , and gestational age) were noted. MR imaging is useful in the evaluation structural abnormalities in the brains in the children with spastic diplegia and tetraplegia. (author)

  5. Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System.

    Science.gov (United States)

    Gennaro, Mariangela; Mattiello, Alessandro; Mazziotti, Raffaele; Antonelli, Camilla; Gherardini, Lisa; Guzzetta, Andrea; Berardi, Nicoletta; Cioni, Giovanni; Pizzorusso, Tommaso

    2017-01-01

    Motor system development is characterized by an activity-dependent competition between ipsilateral and contralateral corticospinal tracts (CST). Clinical evidence suggests that age is crucial for developmental stroke outcome, with early lesions inducing a "maladaptive" strengthening of ipsilateral projections from the healthy hemisphere and worse motor impairment. Here, we investigated in developing rats the relation between lesion timing, motor outcome and CST remodeling pattern. We induced a focal ischemia into forelimb motor cortex (fM1) at two distinct pre-weaning ages: P14 and P21. We compared long-term motor outcome with changes in axonal sprouting of contralesional CST at red nucleus and spinal cord level using anterograde tracing. We found that P14 stroke caused a more severe long-term motor impairment than at P21, and induced a strong and aberrant contralesional CST sprouting onto denervated spinal cord and red nucleus. The mistargeted sprouting of CST, and the worse motor outcome of the P14 stroke rats were reversed by an early skilled motor training, underscoring the potential of early activity-dependent plasticity in modulating lesion outcome. Thus, changes in the mechanisms controlling CST plasticity occurring during the third postnatal week are associated with age-dependent regulation of the motor outcome after stroke.

  6. Perspective of ultrarelativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Specht, H.J.

    1985-01-01

    The paper concerns the lectures given at the International School of nuclear physics, Erice, 1985, which survey the expectations for the field of ultrarelativistic nucleus-nucleus collisions. The primary motivation for the field, the organization of the lectures, and a description of the NA 34 experiment, are all briefly given. (U.K.)

  7. Toward relating the subthalamic nucleus spiking activity to the local field potentials acquired intranuclearly

    International Nuclear Information System (INIS)

    Michmizos, K P; Nikita, K S; Sakas, D

    2011-01-01

    Studies on neurophysiological correlates of the functional magnetic resonance imaging (fMRI) signals reveal a strong relationship between the local field potential (LFP) acquired invasively and metabolic signal changes in fMRI experiments. Most of these studies failed to reveal an analogous relationship between metabolic signals and the spiking activity. That would allow for the prediction of the neural activity exclusively from the fMRI signals. However, the relationship between fMRI signals and spiking activity can be inferred indirectly provided that the LFPs can be used to predict the spiking activity of the area. Until now, only the LFP–spike relationship in cortical areas has been examined. Herein, we show that the spiking activity can be predicted by the LFPs acquired in a deep nucleus, namely the subthalamic nucleus (STN), using a nonlinear cascade model. The model can reproduce the spike patterns inside the motor area of the STN that represent information about the motor plans. Our findings expand the possibility of further recruiting non-invasive neuroimaging techniques to understand the activity of the STN and predict or even control movement

  8. Deep brain stimulation of the subthalamic nucleus improves reward-based decision-learning in Parkinson’s disease

    NARCIS (Netherlands)

    Wouwe, N.C. van; Ridderinkhof, K.R.; Wildenberg, W.P.M. van den; Band, G.P.H.; Abisogun, A.; Elias, W.J.; Frysinger, R.; Wylie, S.A.

    2011-01-01

    Recently, the subthalamic nucleus (STN) has been shown to be critically involved in decision-making, action selection, and motor control. Here we investigate the effect of deep brain stimulation (DBS) of the STN on reward-based decision-learning in patients diagnosed with Parkinson’s disease (PD).

  9. Formation of light particles in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Penionzhkevich, Yu.

    1993-01-01

    The principal experimental results on the yield of the light charged particles in nucleus-nucleus collisions at the low and intermediate energies are reviewed. Inclusive spectra of light particles and their coincidences with the characteristic KX-rays, γ-rays, neutrons, projectile-like fragments, other light particles, fission fragments, and evaporation residues are analyzed. The main theoretical models used for the description of the light particle formation are briefly outlined together with their merits and shortcomings. The unsolved problems of fast light particle formation, in particular, and of nucleus-nucleus interaction dynamics, on the whole, are discussed with the outlooks of new experiments able to clear up some of these problems. (author) 144 refs., 40 figs., 2 tabs

  10. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.

    Science.gov (United States)

    Machado, Carolina Barcellos; Kanning, Kevin C; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-02-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.

  11. Global features of nucleus-nucleus collisions in ultrarelativistic domain

    International Nuclear Information System (INIS)

    Savina, M.V.; Shmatov, S.V.; Slavin, N.V.; Zarubin, P.I.

    1998-01-01

    HIJING generator simulation of nucleus-nucleus collisions at ultrarelativistic energies is presented. It is shown that the global characteristics of nucleus-nucleus collisions, such as distribution of a charged multiplicity, total and electromagnetic transverse energy over pseudorapidity are rather sensitive to some predictions of models of high-exited nuclear medium formation, namely parton energy losses in dense nuclear matter. These losses result in appearance of a broad maximum in global variable distributions over pseudorapidity. The most profound of this effect occurs at central heavy ion collisions at LHC energy

  12. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics.

    Science.gov (United States)

    McCairn, Kevin W; Nagai, Yuji; Hori, Yukiko; Ninomiya, Taihei; Kikuchi, Erika; Lee, Ju-Young; Suhara, Tetsuya; Iriki, Atsushi; Minamimoto, Takafumi; Takada, Masahiko; Isoda, Masaki; Matsumoto, Masayuki

    2016-01-20

    Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Scaling phenomenon in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Wong, C.Y.; Blankenbecler, R.

    1980-01-01

    New scaling variables for proton and pion production in relativistic nucleus-nucleus collisions are introduced which are the generalizations of the Feynmann scaling variable. They allow a simple description of the cross sections at forward and backward angles. 2 figures

  14. Nucleus--nucleus potential

    International Nuclear Information System (INIS)

    Jaqaman, H.R.

    1977-01-01

    The nucleus--nucleus interaction is studied within the framework of the generator coordinate method that permits an easy incorporation of the full effects of antisymmetrization. It is found that the interaction, as far as the elastic scattering problem is concerned, can be described by a simple effective potential that is equivalent to the original many-body (and hence non-local) problem. The potential is obtained by dividing the wavefunction into a long-range part and a short-range part and requiring the former to satisfy a Schroedinger equation. This enables avoiding dealing with the troublesome short-range part of the wavefunction and provides a direct link with the optical model so that the potential obtained here is equivalent to the real part of the optical potential (the imaginary part is not investigated). The effective potential is found to consist of three parts: an interaction term between the nucleons belonging to different nuclei, a kinetic energy term due to the change in the intrinsic kinetic energy of the system as a result of the antisymmetrization, and finally an l-dependent part. The kinetic energy term is found to be very repulsive and effectively gives a hard core, and is calculated for the α--α and 16 O-- 16 O cases. The full potential is calculated for the α--α case for the S, D, and G partial waves and then used to calculate the corresponding phase shifts that are then compared with experimental results and other microscopic calculations. Finally, some recent results and analyses of fusion and deep inelastic reactions are reviewed that seem to indicate the presence of a hard core in the nucleus--nucleus potential. Such a hard core is present in the potential obtained in the sudden approximation

  15. Hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1981-01-01

    Qualitative picture of high energy hadron-nucleus collision process, emerging from the analysis of experimental data, is presented. Appropriate description procedure giving a possibility of reproducing various characteristics of this process in terms of the data on elementary hadron-nucleon interaction is proposed. Formula reproducing hadron-nucleus collision cross sections is derived. Inelastic collision cross sections for pion-nucleus and proton-nucleus reactions at wide energy interval are calculated for Pb, Ag, and Al targets. A-dependence of cross sections for pion-nucleus and proton-nucleus collisions at nearly 50 GeV/c momentum were calculated and compared with existing experimental data. Energy dependence of cross sections for hadron-nucleus collisions is determined simply by energy dependence of corresponding cross sections for hadron-nucleon collisions; A-dependence is determined simply by nuclear sizes and nucleon density distributions in nuclei

  16. An approach to contouring the dorsal vagal complex for radiotherapy planning

    Energy Technology Data Exchange (ETDEWEB)

    O' Steen, Lillie; Amdur, Robert J., E-mail: amdurr@shands.ufl.edu

    2016-04-01

    Multiple studies suggest that radiation dose to the area of the brainstem called the “dorsal vagal complex (DVC)” influences the frequency of nausea and vomiting during radiotherapy. The purpose of this didactic article is to describe the step-by-step process that we use to contour the general area of the DVC on axial computed tomography (CT) images as would be done for radiotherapy planning. The contouring procedure that we describe for contouring the area of the DVC is useful to medical dosimetrists and radiation oncologists.

  17. Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner.

    Science.gov (United States)

    Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel

    2012-01-01

    Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the "cytoplasmic" myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. We have shown that the novel specific NLS brings to the cell nucleus not only the "nuclear" isoform of myosin I (NM1 protein) but also its "cytoplasmic" isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus.

  18. Deep Brain Stimulation in Parkinson’s Disease: New and Emerging Targets for Refractory Motor and Nonmotor Symptoms

    Directory of Open Access Journals (Sweden)

    Dustin Anderson

    2017-01-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative condition characterized by bradykinesia, tremor, rigidity, and postural instability (PI, in addition to numerous nonmotor manifestations. Many pharmacological therapies now exist to successfully treat PD motor symptoms; however, as the disease progresses, it often becomes challenging to treat with medications alone. Deep brain stimulation (DBS has become a crucial player in PD treatment, particularly for patients who have disabling motor complications from medical treatment. Well-established DBS targets include the subthalamic nucleus (STN, the globus pallidus pars interna (GPi, and to a lesser degree the ventral intermediate nucleus (VIM of the thalamus. Studies of alternative DBS targets for PD are ongoing, the majority of which have shown some clinical benefit; however, more carefully designed and controlled studies are needed. In the present review, we discuss the role of these new and emerging DBS targets in treating refractory axial motor symptoms and other motor and nonmotor symptoms (NMS.

  19. Heavy metals in locus ceruleus and motor neurons in motor neuron disease.

    Science.gov (United States)

    Pamphlett, Roger; Kum Jew, Stephen

    2013-12-12

    The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons.

  20. Heavy metals in locus ceruleus and motor neurons in motor neuron disease

    Science.gov (United States)

    2013-01-01

    Background The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Results Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Conclusions Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons. PMID:24330485

  1. Co-expression of GAD67 and choline acetyltransferase reveals a novel neuronal phenotype in the mouse medulla oblongata.

    Science.gov (United States)

    Gotts, Jittima; Atkinson, Lucy; Edwards, Ian J; Yanagawa, Yuchio; Deuchars, Susan A; Deuchars, Jim

    2015-12-01

    GABAergic and cholinergic systems play an important part in autonomic pathways. To determine the distribution of the enzymes responsible for the production of GABA and acetylcholine in areas involved in autonomic control in the mouse brainstem, we used a transgenic mouse expressing green fluorescent protein (GFP) in glutamate decarboxylase 67 (GAD67) neurones, combined with choline acetyl transferase (ChAT) immunohistochemistry. ChAT-immunoreactive (IR) and GAD67-GFP containing neurones were observed throughout the brainstem. A small number of cells contained both ChAT-IR and GAD67-GFP. Such double labelled cells were observed in the NTS (predominantly in the intermediate and central subnuclei), the area postrema, reticular formation and lateral paragigantocellular nucleus. All ChAT-IR neurones in the area postrema contained GAD67-GFP. Double labelled neurones were not observed in the dorsal vagal motor nucleus, nucleus ambiguus or hypoglossal nucleus. Double labelled ChAT-IR/GAD67-GFP cells in the NTS did not contain neuronal nitric oxide synthase (nNOS) immunoreactivity, whereas those in the reticular formation and lateral paragigantocellular nucleus did. The function of these small populations of double labelled cells is currently unknown, however their location suggests a potential role in integrating signals involved in oromotor behaviours. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. The effects of chronic consumption of heroin on basal and vagal electrical-stimulated gastric acid and pepsin secretion in rat.

    Science.gov (United States)

    Rafsanjani, Fatemeh N; Maghouli, Fatemeh; Vahedian, Jalal; Esmaeili, Farzaneh

    2004-10-01

    Addiction to opium and heroin is not only an important social and individual problem in the world but it also affects the human physiology and multiple systems. The aim of this study is to determine the effects of chronic heroin consumption on basal and vagus electrical-stimulated total gastric acid and pepsin secretion in rats. The study was carried out in the Department of Physiology, Kerman University of Medical Sciences, Iran from August 2002 to June 2003. Both male and female rats weighing 200-250 g were used. Rats received daily doses of heroin intraperitoneally starting from 0.2 mg/kg to 0.1 mg/kg/day up to the maintenance level of 0.7 mg/kg and continued until day 12. After anesthesia, tracheotomy and laparotomy, gastric effluents were collected by washout technique with a 15 minutes interval. The total titrable acid was measured by manual titrator, and the total pepsin content was measured by Anson's method. Vagal electrical stimulation was used to stimulate the secretion of acid and pepsin. Heroin results in a significant decrease in total basal acid and pepsin secretions (4.10 +/- 0.18 mmol/15 minutes versus 2.40 +/- 0.16 mmol/15 minutes for acid, pacid and pepsin secretions in vagotomized condition. Heroin also causes a significant decrease in vagal-electrically stimulated acid and pepsin secretions (14.70 +/- 0.54 mmol/15 minutes versus 4.30 +/- 0.21 mmol/15 minutes for acid, pacid and pepsin secretion, but not in vagotomized condition. Heroin may decrease acid secretion by inhibiting vagal release of acetylcholine within the gastric wall. Other probable mechanisms include: presynaptic inhibition of acetylcholine release or depressing the vagal center, inhibition of pentagastrin induced acid secretion, inhibitory effects via central mechanisms, probably mediated by the opiate receptors. Further studies are needed to recognize the actual mechanism.

  3. Evidence for glutamatergic mechanisms in the vagal sensory pathway initiating cardiorespiratory reflexes in the shorthorn sculpin Myoxocephalus scorpius.

    Science.gov (United States)

    Sundin, L; Turesson, J; Taylor, E W

    2003-03-01

    Glutamate is a major neurotransmitter of chemoreceptor and baroreceptor afferent pathways in mammals and therefore plays a central role in the development of cardiorespiratory reflexes. In fish, the gills are the major sites of these receptors, and, consequently, the terminal field (sensory area) of their afferents (glossopharyngus and vagus) in the medulla must be an important site for the integration of chemoreceptor and baroreceptor signals. This investigation explored whether fish have glutamatergic mechanisms in the vagal sensory area (Xs) that could be involved in the generation of cardiorespiratory reflexes. The locations of the vagal sensory and motor (Xm) areas in the medulla were established by the orthograde and retrograde axonal transport of the neural tract tracer Fast Blue following its injection into the ganglion nodosum. Glutamate was then microinjected into identified sites within the Xs in an attempt to mimic chemoreceptor- and baroreceptor-induced reflexes commonly observed in fish. By necessity, the brain injections were performed on anaesthetised animals that were fixed by 'eye bars' in a recirculating water system. Blood pressure and heart rate were measured using an arterial cannula positioned in the afferent branchial artery of the 3rd gill arch, and ventilation was measured by impedance probes sutured onto the operculum. Unilateral injection of glutamate (40-100 nl, 10 mmol l(-1)) into the Xs caused marked cardiorespiratory changes. Injection (0.1-0.3 mm deep) in different rostrocaudal, medial-lateral positions induced a bradycardia, either increased or decreased blood pressure, ventilation frequency and amplitude and, sometimes, an initial apnea. Often these responses occurred simultaneously in various different combinations but, occasionally, they appeared singly, suggesting specific projections into the Xs for each cardiorespiratory variable and local determination of the modality of the response. Response patterns related to

  4. Intraperitoneal injections of low doses of C75 elicit a behaviorally specific and vagal afferent-independent inhibition of eating in rats

    Science.gov (United States)

    Mansouri, Abdelhak; Aja, Susan; Moran, Timothy H.; Ronnett, Gabriele; Kuhajda, Francis P.; Arnold, Myrtha; Geary, Nori; Langhans, Wolfgang; Leonhardt, Monika

    2008-01-01

    Central and intraperitoneal C75, an inhibitor of fatty acid synthase and stimulator of carnitine palmitoyl-transferase-1, inhibits eating in mice and rats. Mechanisms involved in feeding inhibition after central C75 have been identified, but little is yet known about how systemic C75 might inhibit eating. One issue is whether intraperitoneal C75 reduces food intake in rats by influencing normal physiological controls of food intake or acts nonselectively, for example by eliciting illness or aversion. Another issue relates to whether intraperitoneal C75 acts centrally or, similar to some other peripheral metabolic controls of eating, activates abdominal vagal afferents to inhibit eating. To further address these questions, we investigated the effects of intraperitoneal C75 on spontaneous meal patterns and the formation of conditioned taste aversion (CTA). We also tested whether the eating inhibitory effect of intraperitoneal C75 is vagally mediated by testing rats after either total subdiaphragmatic vagotomy (TVX) or selective subdiaphragmatic vagal deafferentations (SDA). Intraperitoneal injection of 3.2 and 7.5 mg/kg of C75 significantly reduced food intake 3, 12, and 24 h after injection by reducing the number of meals without affecting meal size, whereas 15 mg/kg of C75 reduced both meal number and meal size. The two smaller doses of C75 failed to induce a CTA, but 15 mg/kg C75 did. The eating inhibitory effect of C75 was not diminished in either TVX or SDA rats. We conclude that intraperitoneal injections of low doses of C75 inhibit eating in a behaviorally specific manner and that this effect does not require abdominal vagal afferents. PMID:18667714

  5. The imaginary part of the nucleus - nucleus optical potential

    International Nuclear Information System (INIS)

    Phatak, S.C.; Sinha, B.

    1978-01-01

    The contribution to the imaginary nucleus - nucleus optical potential has been estimated by evaluating the energy - conserving seocond-order term in the perturbation series. The incoming nuclear field is supposed to excite nucleons in a nucleus in this calculation and the nuclear excitations are approximated by particle-hole excitations in a Fermi gas. The resulting imaginary potential compares favourably with phenomenological potentials. (author)

  6. Subthalamic nucleus deep brain stimulation impacts language in early Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Lara Phillips

    Full Text Available Although deep brain stimulation (DBS of the basal ganglia improves motor outcomes in Parkinson's disease (PD, its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars and lexical (irregulars processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor and non-manipulated (non-motor objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor but not non-manipulated (non-motor objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar but not irregulars (lexicon, as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar remain to be elucidated.

  7. The Possible Role of TASK Channels in Rank-Ordered Recruitment of Motoneurons in the Dorsolateral Part of the Trigeminal Motor Nucleus.

    Science.gov (United States)

    Okamoto, Keiko; Emura, Norihito; Sato, Hajime; Fukatsu, Yuki; Saito, Mitsuru; Tanaka, Chie; Morita, Yukako; Nishimura, Kayo; Kuramoto, Eriko; Xu Yin, Dong; Furutani, Kazuharu; Okazawa, Makoto; Kurachi, Yoshihisa; Kaneko, Takeshi; Maeda, Yoshinobu; Yamashiro, Takashi; Takada, Kenji; Toyoda, Hiroki; Kang, Youngnam

    2016-01-01

    Because a rank-ordered recruitment of motor units occurs during isometric contraction of jaw-closing muscles, jaw-closing motoneurons (MNs) may be recruited in a manner dependent on their soma sizes or input resistances (IRs). In the dorsolateral part of the trigeminal motor nucleus (dl-TMN) in rats, MNs abundantly express TWIK (two-pore domain weak inwardly rectifying K channel)-related acid-sensitive-K(+) channel (TASK)-1 and TASK3 channels, which determine the IR and resting membrane potential. Here we examined how TASK channels are involved in IR-dependent activation/recruitment of MNs in the rat dl-TMN by using multiple methods. The real-time PCR study revealed that single large MNs (>35 μm) expressed TASK1 and TASK3 mRNAs more abundantly compared with single small MNs (15-20 μm). The immunohistochemistry revealed that TASK1 and TASK3 channels were complementarily distributed in somata and dendrites of MNs, respectively. The density of TASK1 channels seemed to increase with a decrease in soma diameter while there were inverse relationships between the soma size of MNs and IR, resting membrane potential, or spike threshold. Dual whole-cell recordings obtained from smaller and larger MNs revealed that the recruitment of MNs depends on their IRs in response to repetitive stimulation of the presumed Ia afferents. 8-Bromoguanosine-cGMP decreased IRs in small MNs, while it hardly changed those in large MNs, and subsequently decreased the difference in spike-onset latency between the smaller and larger MNs, causing a synchronous activation of MNs. These results suggest that TASK channels play critical roles in rank-ordered recruitment of MNs in the dl-TMN.

  8. Neurons in red nucleus and primary motor cortex exhibit similar responses to mechanical perturbations applied to the upper-limb during posture

    Directory of Open Access Journals (Sweden)

    Troy Michael Herter

    2015-04-01

    Full Text Available Primary motor cortex (M1 and red nucleus (RN are brain regions involved in limb motor control. Both structures are highly interconnected with the cerebellum and project directly to the spinal cord, although the contribution of RN is smaller than M1. It remains uncertain whether RN and M1 serve similar or distinct roles during posture and movement. Many neurons in M1 respond rapidly to mechanical disturbances of the limb, but it remains unclear whether RN neurons also respond to such limb perturbations. We have compared discharges of single neurons in RN (n = 49 and M1 (n = 109 of one monkey during a postural perturbation task. Neural responses to whole-limb perturbations were examined by transiently applying (300 ms flexor or extensor torques to the shoulder and/or elbow while the monkeys attempted to maintain a static hand posture. Relative to baseline discharges before perturbation onset, perturbations evoked rapid (<100 ms changes of neural discharges in many RN (28 of 49, 57% and M1 (43 of 109, 39% neurons. In addition to exhibiting a greater proportion of perturbation-related neurons, RN neurons also tended to exhibit higher peak discharge frequencies in response to perturbations than M1 neurons. Importantly, neurons in both structures exhibited similar response latencies and tuning properties (preferred torque directions and tuning widths in joint-torque space. Proximal arm muscles also displayed similar tuning properties in joint-torque space. These results suggest that RN is more sensitive than M1 to mechanical perturbations applied during postural control but both structures may play a similar role in feedback control of posture.

  9. Differential Activation of Medullary Vagal Nuclei Caused by Stimulation of Different Esophageal Mechanoreceptors

    OpenAIRE

    Lang, Ivan M.; Medda, Bidyut K.; Shaker, Reza

    2010-01-01

    Esophageal mechanorecptors, i.e. muscular slowly adapting tension receptors and mucosal rapidly adapting touch receptors, mediate different sets of reflexes. The aim of this study was to determine the medullary vagal nuclei involved in the reflex responses to activation of these receptors. Thirty-three cats were anesthetized with alpha-chloralose and the esophagus was stimulated by slow balloon or rapid air distension. The physiological effects of the stimuli (N=4) were identified by recordin...

  10. Sensitivity analysis of discharge patterns of subthalamic nucleus in the model of basal ganglia in Parkinson disease.

    Science.gov (United States)

    Singh, Jyotsna; Singh, Phool; Malik, Vikas

    2017-01-01

    Parkinson disease alters the information patterns in movement related pathways in brain. Experimental results performed on rats show that the activity patterns changes from single spike activity to mixed burst mode in Parkinson disease. However the cause of this change in activity pattern is not yet completely understood. Subthalamic nucleus is one of the main nuclei involved in the origin of motor dysfunction in Parkinson disease. In this paper, a single compartment conductance based model is considered which focuses on subthalamic nucleus and synaptic input from globus pallidus (external). This model shows highly nonlinear behavior with respect to various intrinsic parameters. Behavior of model has been presented with the help of activity patterns generated in healthy and Parkinson condition. These patterns have been compared by calculating their correlation coefficient for different values of intrinsic parameters. Results display that the activity patterns are very sensitive to various intrinsic parameters and calcium shows some promising results which provide insights into the motor dysfunction.

  11. Quasi-elastic shadowing in nucleus-nucleus elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Dymarz, R; Malecki, A [Institute of Nuclear Physics, Krakow (Poland); Gluski, K [Institute of Nuclear Research, Warsaw (Poland); Picchi, P [Turin Univ. (Italy). Ist. di Fisica; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica)

    1979-01-06

    The complete evaluation of the Glauber multiple-scattering series for nucleus-nucleus collisions is a very difficult task and that is why various approximate formulae were proposed. In this work some of these approximations are discussed.

  12. Infant diet, gender and the development of vagal tone stability during the first two years of life

    Science.gov (United States)

    Postnatal nutrition influences neurodevelopment, including autonomic nervous system components associated with cardiac control. In this study resting vagal tone (V) was measured quarterly during infancy and at 2 years in 146 breast-fed, 143 milk formula-fed, and 137 soy formula-fed infants. Stabilit...

  13. High density QCD and nucleus-nucleus scattering deeply in the saturation region

    International Nuclear Information System (INIS)

    Kormilitzin, Andrey; Levin, Eugene; Miller, Jeremy S.

    2011-01-01

    In this paper we solve the equations that describe nucleus-nucleus scattering, in high density QCD, in the framework of the BFKL Pomeron Calculus. We found that (i) the contribution of short distances to the opacity for nucleus-nucleus scattering dies at high energies, (ii) the opacity tends to unity at high energy, and (iii) the main contribution that survives comes from soft (long distance) processes for large values of the impact parameter. The corrections to the opacity Ω(Y,b)=1 were calculated and it turns out that they have a completely different form, namely (1-Ω→exp(-Const√(Y))) than the opacity that stems from the Balitsky-Kovchegov equation, which is (1-Ω→exp(-ConstY 2 )). We reproduce the formula for the nucleus-nucleus cross section that is commonly used in the description of nucleus-nucleus scattering, and there is no reason why it should be correct in the Glauber-Gribov approach.

  14. Neural mechanism of gastric motility regulation by electroacupuncture at RN12 and BL21: A paraventricular hypothalamic nucleus-dorsal vagal complex-vagus nerve-gastric channel pathway

    Science.gov (United States)

    Wang, Hao; Liu, Wen-Jian; Shen, Guo-Ming; Zhang, Meng-Ting; Huang, Shun; He, Ying

    2015-01-01

    AIM: To study the neural mechanism by which electroacupuncture (EA) at RN12 (Zhongwan) and BL21 (Weishu) regulates gastric motility. METHODS: One hundred and forty-four adult Sprague Dawley rats were studied in four separate experiments. Intragastric pressure was measured using custom-made rubber balloons, and extracellular neuron firing activity, which is sensitive to gastric distention in the dorsal vagal complex (DVC), was recorded by an electrophysiological technique. The expression levels of c-fos, motilin (MTL) and gastrin (GAS) in the paraventricular hypothalamic nucleus (PVN) were assayed by immunohistochemistry, and the expression levels of motilin receptor (MTL-R) and gastrin receptor (GAS-R) in both the PVN and the gastric antrum were assayed by western blotting. RESULTS: EA at RN12 + BL21 (gastric Shu and Mu points), BL21 (gastric Back-Shu point), RN12 (gastric Front-Mu point), resulted in increased neuron-activating frequency in the DVC (2.08 ± 0.050, 1.17 ± 0.023, 1.55 ± 0.079 vs 0.75 ± 0.046, P < 0.001) compared with a model group. The expression of c-fos (36.24 ± 1.67, 29.41 ± 2.55, 31.79 ± 3.00 vs 5.73 ± 2.18, P < 0.001), MTL (22.48 ± 2.66, 20.76 ± 2.41, 19.17 ± 1.71 vs 11.68 ± 2.52, P < 0.001), GAS (24.99 ± 2.95, 21.69 ± 3.24, 23.03 ± 3.09 vs 12.53 ± 2.15, P < 0.001), MTL-R (1.39 ± 0.05, 1.22 ± 0.05, 1.17 ± 0.12 vs 0.84 ± 0.06, P < 0.001), and GAS-R (1.07 ± 0.07, 0.91 ± 0.06, 0.78 ± 0.05 vs 0.45 ± 0.04, P < 0.001) increased in the PVN after EA compared with the model group. The expression of MTL-R (1.46 ± 0.14, 1.26 ± 0.11, 0.99 ± 0.07 vs 0.65 ± 0.03, P < 0.001), and GAS-R (1.63 ± 0.11, 1.26 ± 0.16, 1.13 ± 0.02 vs 0.80 ± 0.11, P < 0.001) increased in the gastric antrum after EA compared with the model group. Damaging the PVN resulted in reduced intragastric pressure (13.67 ± 3.72 vs 4.27 ± 1.48, P < 0.001). These data demonstrate that the signals induced by EA stimulation of acupoints RN12 and BL21 are detectable

  15. Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity

    DEFF Research Database (Denmark)

    Frøkjaer, J B; Bergmann, S; Brock, C

    2016-01-01

    algometry, conditioned pain modulation using a cold pressor test and a liquid meal ultrasonographic gastroduodenal motility test were performed. KEY RESULTS: Cardiac vagal tone increased during active treatment with t-VNS and DSB compared to sham (p = 0.009). In comparison to sham, thresholds to bone pain...... increased (p = 0.001), frequency of antral contractions increased (p = 0.004) and gastroduodenal motility index increased (p = 0.016) with active treatment. However, no effect on muscle pain thresholds and conditioned pain modulation was seen. CONCLUSIONS & INFERENCES: This experimental study suggests...

  16. Song decrystallization in adult zebra finches does not require the song nucleus NIf.

    Science.gov (United States)

    Roy, Arani; Mooney, Richard

    2009-08-01

    In adult male zebra finches, transecting the vocal nerve causes previously stable (i.e., crystallized) song to slowly degrade, presumably because of the resulting distortion in auditory feedback. How and where distorted feedback interacts with song motor networks to induce this process of song decrystallization remains unknown. The song premotor nucleus HVC is a potential site where auditory feedback signals could interact with song motor commands. Although the forebrain nucleus interface of the nidopallium (NIf) appears to be the primary auditory input to HVC, NIf lesions made in adult zebra finches do not trigger song decrystallization. One possibility is that NIf lesions do not interfere with song maintenance, but do compromise the adult zebra finch's ability to express renewed vocal plasticity in response to feedback perturbations. To test this idea, we bilaterally lesioned NIf and then transected the vocal nerve in adult male zebra finches. We found that bilateral NIf lesions did not prevent nerve section-induced song decrystallization. To test the extent to which the NIf lesions disrupted auditory processing in the song system, we made in vivo extracellular recordings in HVC and a downstream anterior forebrain pathway (AFP) in NIf-lesioned birds. We found strong and selective auditory responses to the playback of the birds' own song persisted in HVC and the AFP following NIf lesions. These findings suggest that auditory inputs to the song system other than NIf, such as the caudal mesopallium, could act as a source of auditory feedback signals to the song motor network.

  17. High-Resolution Manometry Evaluation of Pressures at the Pharyngo-upper Esophageal Area in Patients with Oropharyngeal Dysphagia Due to Vagal Paralysis.

    Science.gov (United States)

    Pinna, Bruno Rezende; Herbella, Fernando A M; de Biase, Noemi; Vaiano, Thays C G; Patti, Marco G

    2017-10-01

    The motility of the pharynx, upper esophageal sphincter (UES), and proximal esophagus in patients with oropharyngeal dysphagia is still not entirely understood. High-resolution manometry (HRM) was recently added to the armamentarium for the study of this area. This study aims to describe HRM findings in patients with vagal paralysis. Sixteen patients (mean age 54 years, 69% females) with oropharyngeal dysphagia due to unilateral vagal paralysis were prospectively studied. All patients underwent HRM. Motility of the UES and at the topography of the velopharynx and epiglottis were recorded. (1) UES relaxation is compromised in a minority of patients, (2) epiglottis pressure does not follow a specific pattern, (3) vellum is hypotonic in half of the patients, (4) dysphagia is related to a low pharyngeal pressure, not to a flow obstruction at the level of the UES, and (5) aspiration is related to low pressures at the level of the UES and epiglottis and higher pressures at the level of the vellum. Pharyngeal motility is significantly impaired in patients with oropharyngeal dysphagia and unilateral vagal paralysis. In half of the cases, UES resting pressure is preserved due to unilateral innervation and relaxation is normal in most patients. Dysphagia therapy in these patients must be directed toward improvement in the oropharyngeal motility not at the UES.

  18. Onuf's nucleus X

    DEFF Research Database (Denmark)

    Schrøder, H D

    1981-01-01

    in the length of the nucleus was observed. Based on the cytoarchitecture the nucleus could be divided in three parts, a cranial, a dorsomedial and a ventrolateral. All parts of the nucleus consisted of chromatin-rich medium-sized neurons, and apparent direct appositions between different cells bodies as well...

  19. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation

    Science.gov (United States)

    Streeter, K.A.; Baker-Herman, T.L.

    2014-01-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30 min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. PMID:24681155

  20. Acute Vagal Nerve Stimulation Lowers α2 Adrenoceptor Availability

    DEFF Research Database (Denmark)

    Landau, Anne M.; Dyve, Suzan; Jakobsen, Steen

    2015-01-01

    Background Vagal nerve stimulation (VNS) emerged as an anti-epileptic therapy, and more recently as a potential antidepressant intervention. Objective/hypothesis We hypothesized that salutary effects of VNS are mediated, at least in part, by augmentation of the inhibitory effects of cortical...... monoaminergic neurotransmission at appropriate receptors, specifically adrenoceptors. Our objective was to measure the effect of acute VNS on α2 adrenoceptor binding. Methods Using positron emission tomography (PET), we measured changes in noradrenaline receptor binding associated with acute VNS stimulation...... electrode in minipigs before and within 30 min of the initiation of 1 mA stimulation. Kinetic analysis with the Logan graphical linearization generated tracer volumes of distribution for each condition. We used an averaged value of the distribution volume of non-displaceable ligand (VND), to calculate...

  1. Distributed Cerebellar Motor Learning; a Spike-Timing-Dependent Plasticity Model

    Directory of Open Access Journals (Sweden)

    Niceto Rafael Luque

    2016-03-01

    Full Text Available Deep cerebellar nuclei neurons receive both inhibitory (GABAergic synaptic currents from Purkinje cells (within the cerebellar cortex and excitatory (glutamatergic synaptic currents from mossy fibres. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting properties in the framework of accurate movements. We show that distributed spike-timing-dependent plasticity mechanisms (STDP located at different cerebellar sites (parallel fibres to Purkinje cells, mossy fibres to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells in close-loop simulations provide an explanation for the complex learning properties of the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar spiking model. In this new model, deep cerebellar nuclei embed a dual functionality: deep cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow memory consolidation at mossy fibres to deep cerebellar nucleus synapses. Equipping the cerebellum with excitatory (e-STDP and inhibitory (i-STDP mechanisms at deep cerebellar nuclei afferents allows the accommodation of synaptic memories that were formed at parallel fibres to Purkinje cells synapses and then transferred to mossy fibres to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation towards optimising its working range.

  2. Dynamic changes in parent affect and adolescent cardiac vagal regulation: a real-time analysis.

    Science.gov (United States)

    Cui, Lixian; Morris, Amanda Sheffield; Harrist, Amanda W; Larzelere, Robert E; Criss, Michael M

    2015-04-01

    The current study explored the role of parents' negative and positive affect in adolescent respiratory sinus arrhythmia (RSA) reactivity during a parent-adolescent conflict discussion task and the moderating effects of adolescent sex and age. Questionnaire data were collected from 206 adolescents (10-18 years of age; M = 13.37 years) and their primary caregivers (83.3% biological mothers). Electrocardiogram and respiration data were collected from adolescents, and RSA variables were computed. Parent affect was coded during the conflict discussion task. Multilevel modeling was used to distinguish the between- and within-individual effects of parent affect on adolescent RSA. Results indicated that observed within-parent-teen dyad anger was negatively associated with adolescent RSA, controlling for previous-minute RSA level, particularly among adolescents 13 years and older. In addition, observed between-dyad positive affect was positively linked to RSA for both boys and girls when previous-minute RSA level was controlled. Within-dyad positive affect was positively related to girl's RSA only. These findings suggest that expressions of positive affect may be related to better vagal regulation (RSA increases), whereas expressions of anger may be related to poor vagal regulation (RSA decreases) during social engagement. (c) 2015 APA, all rights reserved).

  3. Classifiers for centrality determination in proton-nucleus and nucleus-nucleus collisions

    Directory of Open Access Journals (Sweden)

    Altsybeev Igor

    2017-01-01

    Full Text Available Centrality, as a geometrical property of the collision, is crucial for the physical interpretation of nucleus-nucleus and proton-nucleus experimental data. However, it cannot be directly accessed in event-by-event data analysis. Common methods for centrality estimation in A-A and p-A collisions usually rely on a single detector (either on the signal in zero-degree calorimeters or on the multiplicity in some semi-central rapidity range. In the present work, we made an attempt to develop an approach for centrality determination that is based on machine-learning techniques and utilizes information from several detector subsystems simultaneously. Different event classifiers are suggested and evaluated for their selectivity power in terms of the number of nucleons-participants and the impact parameter of the collision. Finer centrality resolution may allow to reduce impact from so-called volume fluctuations on physical observables being studied in heavy-ion experiments like ALICE at the LHC and fixed target experiment NA61/SHINE on SPS.

  4. Low vagally-mediated heart rate variability and increased susceptibility to ventricular arrhythmias in rats bred for high anxiety.

    Science.gov (United States)

    Carnevali, Luca; Trombini, Mimosa; Graiani, Gallia; Madeddu, Denise; Quaini, Federico; Landgraf, Rainer; Neumann, Inga D; Nalivaiko, Eugene; Sgoifo, Andrea

    2014-04-10

    In humans, there is a documented association between anxiety disorders and cardiovascular disease. Putative underlying mechanisms may include an impairment of the autonomic nervous system control of cardiac function. The primary objective of the present study was to characterize cardiac autonomic modulation and susceptibility to arrhythmias in genetic lines of rats that differ largely in their anxiety level. To reach this goal, electrocardiographic recordings were performed in high-anxiety behavior (HAB, n=10) and low-anxiety behavior (LAB, n=10) rats at rest, during stressful stimuli and under autonomic pharmacological manipulations, and analyzed by means of time- and frequency-domain indexes of heart rate variability. During resting conditions, HAB rats displayed a reduced heart rate variability, mostly in terms of lower parasympathetic (vagal) modulation compared to LAB rats. In HAB rats, this relatively low cardiac vagal control was associated with smaller heart rate responsiveness to acute stressors compared to LAB counterparts. In addition, beta-adrenergic pharmacological stimulation induced a larger incidence of ventricular tachyarrhythmias in HABs compared to LABs. At sacrifice, a moderate increase in heart-body weight ratio was observed in HAB rats. We conclude that high levels of anxiety-related behavior in rats are associated with signs of i) impaired autonomic modulation of heart rate (low vagally-mediated heart rate variability), ii) poor adaptive heart rate responsiveness to stressful stimuli, iii) increased arrhythmia susceptibility, and iv) cardiac hypertrophy. These results highlight the utility of the HAB/LAB model for investigating the mechanistic basis of the comorbidity between anxiety disorders and cardiovascular disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Characterization of Some Morphological Parameters of Orbicularis Oculi Motor Neurons in the Monkey

    OpenAIRE

    McNeal, DW; Ge, J; Herrick, JL; Stilwell-Morecraft, KS; Morecraft, RJ

    2007-01-01

    The primate facial nucleus is a prominent brainstem structure that is composed of cell bodies giving rise to axons forming the facial nerve. It is musculotopically organized, but we know little about the morphological features of its motor neurons. Using the Lucifer yellow intracellular filling method, we examined 17 morphological parameters of motor neurons innervating the monkey orbicularis oculi (OO) muscle, which plays an important role in eye lid closure and voluntary and emotional facia...

  6. Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex.

    Science.gov (United States)

    Li, Qian; Ke, Ya; Chan, Danny C W; Qian, Zhong-Ming; Yung, Ken K L; Ko, Ho; Arbuthnott, Gordon W; Yung, Wing-Ho

    2012-12-06

    Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Ventricular tachyarrhythmia-related basal cardiomyopathy in rabbits with vagal stimulation--a novel experimental model for inverted Takotsubo-like cardiomyopathy.

    Science.gov (United States)

    Takato, Tetsuya; Ashida, Terunao; Seko, Yoshinori; Fujii, Jun; Kawai, Sachio

    2010-07-01

    Electrical stimulation of the intact (unsectioned) cervical vagus in rabbits frequently provokes ventricular tachyarrhythmias that are often accompanied by mitral regurgitation. Unique pathological lesions often arise on the mitral valve, papillary muscles, and mitral annulus (mitral complex), the latter two of which become swollen and stiffened. These lesions are reversible in nature. Previous studies have essentially ignored the basal portion except for the mitral annulus. Therefore, the present study examined pathological lesions on the left ventricular basal portion in rabbits. The intact right vagal nerves of 20 anesthetized rabbits were repeatedly electrically stimulated under electrocardiographic monitoring. Colloidal carbon (lml) was injected intravenously immediately after the end of the stimulation and all animals were killed 1 week later. Pathological lesions were identified as carbon deposits visible at gross examination. Ventricular bigeminy was induced after vagal stimulation in 15 (75%) of the 20 rabbits. Pathological lesions were evident on the basal portion in 16 (80%) and on the mitral valve and papillary muscles of 15 (75%) of the 20 rabbits. Ventricular bigeminy was closely associated with the development of the pathological lesions, which were rarely observed on the ventricular apex. Cardiomyopathic lesions involving the basal portion and mitral complex were frequently induced in rabbits by vagal stimulation. These lesions bear a close similarity in distribution and reversibility to inverted Takotsubo cardiomyopathy. Copyright 2010 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  8. Topography and collateralization of dopaminergic projections to primary motor cortex in rats.

    Science.gov (United States)

    Hosp, Jonas A; Nolan, Helen E; Luft, Andreas R

    2015-05-01

    Dopaminergic signaling within the primary motor cortex (M1) is necessary for successful motor skill learning. Dopaminergic neurons projecting to M1 are located in the ventral tegmental area (VTA, nucleus A10) of the midbrain. It is unknown which behavioral correlates are encoded by these neurons. The objective here is to investigate whether VTA-M1 fibers are collaterals of projections to prefrontal cortex (PFC) or nucleus accumbens (NAc) or if they form a distinct pathway. In rats, multiple-site retrograde fluorescent tracers were injected into M1, PFC and the core region of the NAc and VTA sections investigated for concomitant labeling of different tracers. Dopaminergic neurons projecting to M1, PFC and NAc were found in nucleus A10 and to a lesser degree in the medial nucleus A9. Neurons show high target specificity, minimal collateral branching to other than their target area and hardly cross the midline. Whereas PFC- and NAc-projecting neurons are indistinguishably intermingled within the ventral portion of dopaminergic nuclei in middle and caudal midbrain, M1-projecting neurons are only located within the dorsal part of the rostral midbrain. Within M1, the forelimb representation receives sevenfold more dopaminergic projections than the hindlimb representation. This strong rostro-caudal gradient as well as the topographical preference to dorsal structures suggest that projections to M1 emerged late in the development of the dopaminergic systems in and form a functionally distinct system.

  9. Partial inelasticity coefficients of negative pions produced in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    OLIMOV, K.; LUTPULLAEV, S.L.; PETROV, V.I.; OLIMOV, A.K.

    2015-01-01

    New experimental data on the partial inelasticity coefficients of negative pions produced in "1"6Op-collisions at 3.25 A GeV/s, pC-interactions at 4.2 and 9.9 GeV/s, and d,α,C(C)-collisions at 4.2 A GeV/s are presented. It is established that the behavior of partial inelasticity coefficients of pions at intermediate energies (<10 GeV) in hadron-nucleus collisions has a transitional character, reaching the limiting value at ultrahigh energies. It is shown that the mean values of partial inelasticity coefficients of pions produced in nucleus-nucleus collisions decrease with an increase in mass number of the projectile nucleus. (authors)

  10. Ketamine-induced oscillations in the motor circuit of the rat basal ganglia.

    Directory of Open Access Journals (Sweden)

    María Jesús Nicolás

    Full Text Available Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion.We recorded local field potentials from motor cortex, caudate-putamen (CPU, substantia nigra pars reticulata (SNr and subthalamic nucleus (STN in 20 awake rats before and after the administration of ketamine at three different subanesthetic doses (10, 25 and 50 mg/Kg, and saline as control condition. Motor behavior was semiautomatically quantified by custom-made software specifically developed for this setting.Ketamine induced coherent oscillations in low gamma (~ 50 Hz, high gamma (~ 80 Hz and high frequency (HFO, ~ 150 Hz bands, with different behavior in the four structures studied. While oscillatory activity at these three peaks was widespread across all structures, interactions showed a different pattern for each frequency band. Imaginary coherence at 150 Hz was maximum between motor cortex and the different basal ganglia nuclei, while low gamma coherence connected motor cortex with CPU and high gamma coherence was more constrained to the basal ganglia nuclei. Power at three bands correlated with the motor activity of the animal, but only coherence values in the HFO and high gamma range correlated with movement. Interactions in the low gamma band did not show a direct relationship to movement.These results suggest that the motor effects of ketamine administration may be primarily mediated by the induction of coherent widespread high-frequency activity in the motor circuit of the basal ganglia, together with a frequency

  11. Red nucleus of Macaca fascicularis : an electron microscopic study of its synaptic organization in relation to afferent and efferent connectivity and proposals for the role of the red nucleus in motor mechanisms

    NARCIS (Netherlands)

    Ralston, Diane Cornelia Daly

    1994-01-01

    Dit proefschrift heeft betrekking op de verbindingen en de synaptische organisatie binnen het parvicellularaire en magnocellulaire deel van de nucleus ruber of de rode kern van de aap (macaque). De nucleus ruber is gemakkelijk herkenbaar in de middenhersenen of het mesencephalon, het hart van het

  12. Diabatic interaction potential for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Lukasiak, A.

    1984-01-01

    Within a refined method for the construction of diabatic states allowing for the treatment of the full spin-orbit coupling, characteristic features of the diabatic potential for nucleus-nucleus collisions are investigated. Approximately 90% of the strong repulsion results from diabatic particle-hole excitations, while only 10% is due to compression. The diabatic interaction potential describes a physical situation intermediate between adiabatic and sudden approximations. (orig.)

  13. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and substance P in neural areas mediating motion-induced emesis: Effects of vagal stimulation on GAD immunoreactivity

    Science.gov (United States)

    Damelio, F.; Gibbs, M. A.; Mehler, W. R.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid (GABA) by means of its biosynthetic enzyme glutamic acid decarboxylase (GAD) and the neuropeptide substance P in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), and gelatinous nucleus (GEL). In addition, electrical stimulation was applied to the night vagus nerve at the cervical level to assess the effects on GAD-immunoreactivity (GAR-IR). GAD-IR terminals and fibers were observed in the AP, ASP, NTS, and GEL. They showed pronounced density at the level of the ASP and gradual decrease towards the solitary complex. Nerve cells were not labelled in our preparations. Ultrastructural studies showed symmetric or asymmetric synaptic contracts between labelled terminals and non-immunoreactive dendrites, axons, or neurons. Some of the labelled terminals contained both clear- and dense-core vesicles. Our preliminary findings, after electrical stimulation of the vagus nerve, revealed a bilateral decrease of GAD-IR that was particularly evident at the level of the ASP. SP-immunoreactive (SP-IR) terminals and fibers showed varying densities in the AP, ASP, NTS, and GEL. In our preparations, the lateral sub-division of the NTS showed the greatest accumulation. The ASP showed medium density of immunoreactive varicosities and terminals and the AP and GEL displayed scattered varicose axon terminals. The electron microscopy revealed that all immunoreactive terminals contained clear-core vesicles which make symmetric or asymmetric synaptic contact with unlabelled dendrites. It is suggested that the GABAergic terminals might correspond to vagal afferent projections and that GAD/GABA and substance P might be co-localized in the same terminal allowing the possibility of a regulated release of the transmitters in relation to demands.

  14. Foot reflexology can increase vagal modulation, decrease sympathetic modulation, and lower blood pressure in healthy subjects and patients with coronary artery disease.

    Science.gov (United States)

    Lu, Wan-An; Chen, Gau-Yang; Kuo, Cheng-Deng

    2011-01-01

    Complementary and alternative medicine (CAM) has long been used by people to postpone the aging process and to reverse disease progression. Reflexology is a CAM method that involves massage to reflex areas in the feet and hands. This study investigated the effect of foot reflexology (FR) on the autonomic nervous modulation in patients with coronary artery disease (CAD) by using heart rate variability analysis. Seventeen people with angiographically patent coronary arteries and 20 patients with CAD scheduled for coronary artery bypass graft surgery were recruited as the control and CAD groups, respectively. The normalized high-frequency power (nHFP) was used as the index of vagal modulation and the normalized very low-frequency power (nVLFP) as the index of vagal withdrawal and renin-angiotensin modulation. In both control and CAD groups, the nHFP was increased significantly whereas the nVLFP was decreased significantly 30 and 60 minutes after FR, as compared with those before FR. The systolic, diastolic, mean arterial, and pulse pressures were significantly decreased after FR in both groups of participants. In the CAD group, the percentage change in heart rate 30 and 60 minutes after FR was smaller than that in the control, and the percentage change in nVLFP 60 minutes after FR was smaller than that in the control. In conclusion, a higher vagal modulation, lower sympathetic modulation, and lower blood pressure can be observed following 60 minutes of FR in both controls and CAD patients. The magnitude of change in the autonomic nervous modulation in CAD patients was slightly smaller than that in the controls. FR may be used as an efficient adjunct to the therapeutic regimen to increase the vagal modulation and decrease blood pressure in both healthy people and CAD patients.

  15. Interaction between hippocampal and striatal systems predicts subsequent consolidation of motor sequence memory.

    Directory of Open Access Journals (Sweden)

    Geneviève Albouy

    Full Text Available The development of fast and reproducible motor behavior is a crucial human capacity. The aim of the present study was to address the relationship between the implementation of consistent behavior during initial training on a sequential motor task (the Finger Tapping Task and subsequent sleep-dependent motor sequence memory consolidation, using functional magnetic resonance imaging (fMRI and total sleep deprivation protocol. Our behavioral results indicated significant offline gains in performance speed after sleep whereas performance was only stabilized, but not enhanced, after sleep deprivation. At the cerebral level, we previously showed that responses in the caudate nucleus increase, in parallel to a decrease in its functional connectivity with frontal areas, as performance became more consistent. Here, the strength of the competitive interaction, assessed through functional connectivity analyses, between the caudate nucleus and hippocampo-frontal areas during initial training, predicted delayed gains in performance at retest in sleepers but not in sleep-deprived subjects. Moreover, during retest, responses increased in the hippocampus and medial prefrontal cortex in sleepers whereas in sleep-deprived subjects, responses increased in the putamen and cingulate cortex. Our results suggest that the strength of the competitive interplay between the striatum and the hippocampus, participating in the implementation of consistent motor behavior during initial training, conditions subsequent motor sequence memory consolidation. The latter process appears to be supported by a reorganisation of cerebral activity in hippocampo-neocortical networks after sleep.

  16. Classical gluon production amplitude for nucleus-nucleus collisions:First saturation correction in the projectile

    International Nuclear Information System (INIS)

    Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E.

    2015-01-01

    We calculate the classical single-gluon production amplitude in nucleus-nucleus collisions including the first saturation correction in one of the nuclei (the projectile) while keeping multiple-rescattering (saturation) corrections to all orders in the other nucleus (the target). In our approximation only two nucleons interact in the projectile nucleus: the single-gluon production amplitude we calculate is order-g"3 and is leading-order in the atomic number of the projectile, while resumming all order-one saturation corrections in the target nucleus. Our result is the first step towards obtaining an analytic expression for the first projectile saturation correction to the gluon production cross section in nucleus-nucleus collisions.

  17. The role of the vagus nerve in the generation of cardiorespiratory interactions in a neotropical fish, the pacu, Piaractus mesopotamicus.

    Science.gov (United States)

    Leite, Cleo Alcantara Costa; Taylor, E W; Guerra, C D R; Florindo, L H; Belão, T; Rantin, F T

    2009-08-01

    The role of the vagus nerve in determining heart rate (f(H)) and cardiorespiratory interactions was investigated in a neotropical fish, Piaractus mesopotamicus. During progressive hypoxia f(H) initially increased, establishing a 1:1 ratio with ventilation rate (f(R)). Subsequently there was a hypoxic bradycardia. Injection of atropine abolished a normoxic inhibitory tonus on the heart and the f(H) adjustments during progressive hypoxia, confirming that they are imposed by efferent parasympathetic inputs via the vagus nerve. Efferent activity recorded from the cardiac vagus in lightly anesthetized normoxic fish included occasional bursts of activity related to spontaneous changes in ventilation amplitude, which increased the cardiac interval. Restricting the flow of aerated water irrigating the gills resulted in increased respiratory effort and bursts of respiration-related activity in the cardiac vagus that seemed to cause f(H) to couple with f(R). Cell bodies of cardiac vagal pre-ganglionic neurons were located in two distinct groups within the dorsal vagal motor column having an overlapping distribution with respiratory motor-neurons. A small proportion of cardiac vagal pre-ganglionic neurons (2%) was in scattered positions in the ventrolateral medulla. This division of cardiac vagal pre-ganglionic neurons into distinct motor groups may relate to their functional roles in determining cardiorespiratory interactions.

  18. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat.

    Directory of Open Access Journals (Sweden)

    Bertrand Degos

    Full Text Available Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.

  19. 8-OH-DPAT abolishes the pulmonary C-fiber-mediated apneic response to fentanyl largely via acting on 5HT1A receptors in the nucleus tractus solitarius

    Science.gov (United States)

    Zhuang, Jianguo; Zhang, Zhenxiong; Zhang, Cancan

    2012-01-01

    Intravenous bolus injection of morphine causes a vagal-mediated brief apnea (∼3 s), while continuous injection, via action upon central μ-opioid receptor (MOR), arrests ventilation (>20 s) that is eliminated by stimulating central 5-hydroxytryptamine 1A receptors (5HT1ARs). Bronchopulmonary C-fibers (PCFs) are essential for triggering a brief apnea, and their afferents terminate at the caudomedial region of the nucleus tractus solitarius (mNTS) that densely expresses 5HT1ARs. Thus we asked whether the vagal-mediated apneic response to MOR agonists was PCF dependent, and if so, whether this apnea was abolished by systemic administration of 8-hydroxy-2-(di-n-propylamino)tetral (8-OH-DPAT) largely through action upon mNTS 5HT1ARs. Right atrial bolus injection of fentanyl (5.0 μg/kg, a MOR agonist) was performed in the anesthetized and spontaneously breathing rats before and after: 1) selective blockade of PCFs' conduction and subsequent bivagotomy; 2) intravenous administration of 5HT1AR agonist 8-OH-DPAT; 3) intra-mNTS injection of 8-OH-DPAT; and 4) intra-mNTS injection of 5HT1AR antagonist WAY-100635 followed by 8-OH-DPAT (iv). We found the following: First, fentanyl evoked an immediate apnea (2.5 ± 0.4 s, ∼6-fold longer than the baseline expiratory duration, TE), which was abolished by either blocking PCFs' conduction or bivagotomy. Second, this apnea was prevented by systemic 8-OH-DPAT challenge. Third, intra-mNTS injection of 8-OH-DPAT greatly attenuated the apnea by 64%. Finally, intra-mNTS microinjection of WAY-100635 significantly attenuated (58%) the apneic blockade by 8-OH-DPAT (iv). We conclude that the vagal-mediated apneic response to MOR activation depends on PCFs, which is fully antagonized by systemic 8-OH-DPAT challenge largely via acting on mNTS 5HT1ARs. PMID:22696579

  20. High glucose increases action potential firing of catecholamine neurons in the nucleus of the solitary tract by increasing spontaneous glutamate inputs.

    Science.gov (United States)

    Roberts, Brandon L; Zhu, Mingyan; Zhao, Huan; Dillon, Crystal; Appleyard, Suzanne M

    2017-09-01

    Glucose is a crucial substrate essential for cell survival and function. Changes in glucose levels impact neuronal activity and glucose deprivation increases feeding. Several brain regions have been shown to respond to glucoprivation, including the nucleus of the solitary tract (NTS) in the brain stem. The NTS is the primary site in the brain that receives visceral afferent information from the gastrointestinal tract. The catecholaminergic (CA) subpopulation within the NTS modulates many homeostatic functions including cardiovascular reflexes, respiration, food intake, arousal, and stress. However, it is not known if they respond to changes in glucose. Here we determined whether NTS-CA neurons respond to changes in glucose concentration and the mechanism involved. We found that decreasing glucose concentrations from 5 mM to 2 mM to 1 mM, significantly decreased action potential firing in a cell-attached preparation, whereas increasing it back to 5 mM increased the firing rate. This effect was dependent on glutamate release from afferent terminals and required presynaptic 5-HT 3 Rs. Decreasing the glucose concentration also decreased both basal and 5-HT 3 R agonist-induced increase in the frequency of spontaneous glutamate inputs onto NTS-CA neurons. Low glucose also blunted 5-HT-induced inward currents in nodose ganglia neurons, which are the cell bodies of vagal afferents. The effect of low glucose in both nodose ganglia cells and in NTS slices was mimicked by the glucokinase inhibitor glucosamine. This study suggests that NTS-CA neurons are glucosensing through a presynaptic mechanism that is dependent on vagal glutamate release, 5-HT 3 R activity, and glucokinase. Copyright © 2017 the American Physiological Society.

  1. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation.

    Science.gov (United States)

    Streeter, K A; Baker-Herman, T L

    2014-06-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Acute physiological and electrical accentuation of vagal tone has no effect on pain or gastrointestinal motility in chronic pancreatitis

    DEFF Research Database (Denmark)

    Juel, Jacob; Brock, Christina; Olesen, Soren S.

    2017-01-01

    derived parameters of autonomic tone, quantitative sensory testing of bone and muscle pain pressure, conditioned pain modulation (CPM) and assessments of gastroduodenal motility with ultrasound were performed. Results: In comparison to sham, t-VNS and DSB increased cardiac vagal tone (CVT) (P

  3. Interactions Between Epinephrine, Ascending Vagal Fibers and Central Noradrenergic Systems in Modulating Memory for Emotionally Arousing Events.

    Directory of Open Access Journals (Sweden)

    Cedric L. Williams

    2012-06-01

    Full Text Available It is well established that exposure to emotionally laden events initiates secretion of the arousal related hormone epinephrine in the periphery. These neuroendocrine changes and the subsequent increase in peripheral physiological output play an integral role in modulating brain systems involved in memory formation. The impermeability of the blood brain barrier to epinephrine represents an important obstacle in understanding how peripheral hormones initiate neurochemical changes in the brain that lead to effective memory formation. This obstacle necessitated the identity of a putative pathway capable of conveying physiological changes produced by epinephrine to limbic structures that incorporate arousal and affect related information into memory. A major theme of the proposed studies is that ascending fibers of the vagus nerve may represent such a mechanism. This hypothesis was tested by evaluating the contribution of ascending vagal fibers in modulating memory for responses learned under behavioral conditions that produce emotional arousal by manipulating appetitive stimuli. A combination of electrophysiological recording of vagal afferent fibers and in vivo microdialysis was employed in a second study to simultaneously assess how elevations in peripheral levels of epinephrine affect vagal nerve discharge and the subsequent potentiation of norepinephrine release in the basolateral amygdala. The final study used double immunohistochemistry labeling of c-fos and dopamine beta hydroxylase, the enzyme for norepinephrine synthesis to determine if epinephrine administration alone or stimulation of the vagus nerve at an intensity identical to that which improved memory in Experiment 1 produces similar patterns of neuronal activity in brain areas involved in processing memory for emotional events. Findings emerging from this collection of studies establish the importance of ascending fibers of the vagus nerve as an essential pathway for conveying the

  4. K+-nucleus interaction

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1984-01-01

    The K + -nucleus system is reviewed and comparison with data is made. The principal conclusions are that the theoretical uncertainties in relating the K + -nucleus interaction to the K + -nucleon interaction are very small and hence the positive kaon makes an excellent probe of the nucleus. It is suggested that this particle may be more sensitive to non-nucleonic degrees of freedom (especially quarks) than classical probes

  5. TWO-PHOTON PHYSICS IN NUCLEUS-NUCLEUS COLLISIONS AT RHIC

    International Nuclear Information System (INIS)

    Nystrand, J.; Klein, S.

    1998-01-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z 2 up to an energy of ∼ 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented

  6. Two-photon physics in nucleus-nucleus collisions at RHIC

    International Nuclear Information System (INIS)

    Nystrand, J.; Klein, S.

    1998-01-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z 2 up to an energy of ∼ 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented

  7. Functionalized active-nucleus complex sensor

    Science.gov (United States)

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  8. Effect of l-DOPA on local field potential relationship between the pedunculopontine nucleus and primary motor cortex in a rat model of Parkinson's disease.

    Science.gov (United States)

    Geng, Xiwen; Wang, Xuenan; Xie, Jinlu; Zhang, Xiao; Wang, Xiusong; Hou, Yabing; Lei, Chengdong; Li, Min; Han, Hongyu; Yao, Xiaomeng; Zhang, Qun; Wang, Min

    2016-12-15

    Levodopa (l-DOPA) has been proved to reverse the pathologic neuron activities in many brain regions related to Parkinson's disease (PD). But little is known about the effect of l-DOPA on the altered electrophysiological coherent activities between pedunculopontine nucleus (PPN) and motor cortex. To investigate this, local field potentials (LFPs) of PPN and primary motor cortex (M1) were recorded simultaneously in control, 6-hydroxydopamine lesioned and lesioned rats with l-DOPA chronic treatment. The results revealed that in resting state, chronic l-DOPA treatment could correct the suppressed power of LFPs in PPN and M1 in low-frequency band (1-7Hz) and the enhanced power in high-frequency band (7-70Hz in PPN and 12-70Hz in M1) of lesioned rats. In locomotor state, l-DOPA treatment could correct the alterations in most of frequency bands except the δ band in PPN and α band in M1. Moreover, l-DOPA could also reverse the altered coherent relationships caused by dopamine depletion in resting state between PPN and M1 in β band. And in locomotor state, l-DOPA had therapeutic effect on the alterations in δ and β bands but not in the α band. These findings provide evidence that l-DOPA can reverse the altered LFP activities in PPN and M1 and their relationships in a rat model of PD, which contributes to better understanding the electrophysiological mechanisms of the pathophysiology and therapy of PD. Copyright © 2016. Published by Elsevier B.V.

  9. Strangeness production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions in the dual parton model

    International Nuclear Information System (INIS)

    Moehring, H.; Ranft, J.; Capella, A.; Tran Thanh Van, J.

    1993-01-01

    Λ, bar Λ, and K S 0 production is studied in a Monte Carlo dual parton model for hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions with an SU(3) symmetric sea for chain formation (chain ends) but strangeness suppression in the chain fragmentation process. Additionally, (qq)-(bar q bar q) production from the sea was introduced into the chain formation process with the same probability as for the q→qq branching within the chain decay process. With these assumptions, multiplicity ratios and Feynman-x distributions for strange particles in h-h and multiplicity ratios in heavy ion collisions are reasonably well reproduced

  10. From synapse to nucleus and back again--communication over distance within neurons.

    Science.gov (United States)

    Fainzilber, Mike; Budnik, Vivian; Segal, Rosalind A; Kreutz, Michael R

    2011-11-09

    How do neurons integrate intracellular communication from synapse to nucleus and back? Here we briefly summarize aspects of this topic covered by a symposium at Neuroscience 2011. A rich repertoire of signaling mechanisms link both dendritic terminals and axon tips with neuronal soma and nucleus, using motor-dependent transport machineries to traverse the long intracellular distances along neuronal processes. Activation mechanisms at terminals include localized translation of dendritic or axonal RNA, proteolytic cleavage of receptors or second messengers, and differential phosphorylation of signaling moieties. Signaling complexes may be transported in endosomes, or as non-endosomal complexes associated with importins and dynein. Anterograde transport of RNA granules from the soma to neuronal processes, coupled with retrograde transport of proteins translated locally at terminals or within processes, may fuel ongoing bidirectional communication between soma and synapse to modulate synaptic plasticity as well as neuronal growth and survival decisions.

  11. The nuclear response and the imaginary potential for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Phatak, S.C.; Sinha, B.

    1983-01-01

    The Fermi-gas model is used in this paper to study the nucleus-nucleus collision. The field produced by one of the nuclei is considered to act on nucleons in the other nucleus, which is treated as a Fermi gas of radius R. The imaginary part of the (non-local) nucleus-nucleus potential is then computed by evaluating the energy-conserving second-order term in which the intermediate states are particle-hole excitations produced in the Fermi gas. The equivalent local potential, obtained by using the Perey-Saxon method, is compared with phenomenological imaginary potentials. Later it is shown that, in the limit of small range of non-locality, the imaginary potential can be related to the nuclear response function. With this, one can write the nuclear friction coefficient that is used in phenomenological analyses of heavy-ion collisions in terms of the imaginary potential. (orig.)

  12. Self-regulation of primary motor cortex activity with motor imagery induces functional connectivity modulation: A real-time fMRI neurofeedback study.

    Science.gov (United States)

    Makary, Meena M; Seulgi, Eun; Kyungmo Park

    2017-07-01

    Recent developments in data acquisition of functional magnetic resonance imaging (fMRI) have led to rapid preprocessing and analysis of brain activity in a quasireal-time basis, what so called real-time fMRI neurofeedback (rtfMRI-NFB). This information is fed back to subjects allowing them to gain a voluntary control over their own region-specific brain activity. Forty-one healthy participants were randomized into an experimental (NFB) group, who received a feedback directly proportional to their brain activity from the primary motor cortex (M1), and a control (CTRL) group who received a sham feedback. The M1 ROI was functionally localized during motor execution and imagery tasks. A resting-state functional run was performed before and after the neurofeedback training to investigate the default mode network (DMN) modulation after training. The NFB group revealed increased DMN functional connectivity after training to the cortical and subcortical sensory/motor areas (M1/S1 and caudate nucleus, respectively), which may be associated with sensorimotor processing of learning in the resting state. These results show that motor imagery training through rtfMRI-NFB could modulate the DMN functional connectivity to motor-related areas, suggesting that this modulation potentially subserved the establishment of motor learning in the NFB group.

  13. Temperature induced syllable breaking unveils nonlinearly interacting timescales in birdsong motor pathway.

    Directory of Open Access Journals (Sweden)

    Matías A Goldin

    Full Text Available The nature of telencephalic control over premotor and motor circuits is debated. Hypotheses range from complete usurping of downstream circuitry to highly interactive mechanisms of control. We show theoretically and experimentally, that telencephalic song motor control in canaries is consistent with a highly interactive strategy. As predicted from a theoretical model of respiratory control, mild cooling of a forebrain nucleus (HVC led to song stretching, but further cooling caused progressive restructuring of song, consistent with the hypothesis that respiratory gestures are subharmonic responses to a timescale present in the output of HVC. This interaction between a life-sustaining motor function (respiration and telencephalic song motor control suggests a more general mechanism of how nonlinear integration of evolutionarily new brain structures into existing circuitry gives rise to diverse, new behavior.

  14. Electrophysiological and Morphological Properties of α and γ Motoneurons in the Rat Trigeminal Motor Nucleus

    Directory of Open Access Journals (Sweden)

    Kayo Nishimura

    2018-01-01

    Full Text Available The muscle contraction during voluntary movement is regulated by activities of α- and γ-motoneurons (αMNs and γMNs, respectively. The tension of jaw-closing muscles can be finely tuned over a wide range. This excellent function is likely to be achieved by the specific populations of αMNs innervating jaw-closing muscles. Indeed, we have recently demonstrated that in the rat dorsolateral trigeminal motor nucleus (dl-TMN, the size distribution of αMNs was bimodal and the population of smaller αMNs showed a size distribution similar to that of γMNs, by immunohistochemically identifying αMNs and γMNs based on the expressions of estrogen-related receptor gamma (Err3 and neuronal DNA binding protein NeuN together with ChAT. This finding suggests the presence of αMNs as small as γMNs. However, differences in the electrophysiological membrane properties between αMNs and γMNs remain unknown also in the dl-TMN. Therefore, in the present study, we studied the electrophysiological membrane properties of MNs in the dl-TMN of infant rats at postnatal days 7–12 together with their morphological properties using whole-cell current-clamp recordings followed by immunohistochemical staining with an anti-NeuN and anti-ChAT antibodies. We found that the ChAT-positive and NeuN-positive αMNs were divided into two subclasses: the first one had a larger cell body and displayed a 4-aminopyridine (4-AP-sensitive current while the second one had a smaller cell body and displayed a less prominent 4-AP-sensitive current and a low-threshold spike, suitable for their orderly recruitment. We finally found that γMNs showing ChAT-positive and NeuN-negative immunoreactivities had smaller cell bodies and displayed an afterdepolarization mediated by flufenamate-sensitive cation current. It is suggested that these electrophysiological and morphological features of MNs in the dl-TMN are well correlated with the precise control of occlusion.

  15. The subthalamic microlesion story in Parkinson's disease: electrode insertion-related motor improvement with relative cortico-subcortical hypoactivation in fMRI.

    Directory of Open Access Journals (Sweden)

    Robert Jech

    Full Text Available Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III and collateral oedema. Twelve patients with PD (age 55.9± (SD6.8 years, PD duration 9-15 years underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition: (i before and (ii within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001, correlating with the postoperative oedema score (p<0.05. During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001. The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001. One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4.In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation.

  16. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    Science.gov (United States)

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Activity of cardiorespiratory networks revealed by transsynaptic virus expressing GFP.

    Science.gov (United States)

    Irnaten, M; Neff, R A; Wang, J; Loewy, A D; Mettenleiter, T C; Mendelowitz, D

    2001-01-01

    A fluorescent transneuronal marker capable of labeling individual neurons in a central network while maintaining their normal physiology would permit functional studies of neurons within entire networks responsible for complex behaviors such as cardiorespiratory reflexes. The Bartha strain of pseudorabies virus (PRV), an attenuated swine alpha herpesvirus, can be used as a transsynaptic marker of neural circuits. Bartha PRV invades neuronal networks in the CNS through peripherally projecting axons, replicates in these parent neurons, and then travels transsynaptically to continue labeling the second- and higher-order neurons in a time-dependent manner. A Bartha PRV mutant that expresses green fluorescent protein (GFP) was used to visualize and record from neurons that determine the vagal motor outflow to the heart. Here we show that Bartha PRV-GFP-labeled neurons retain their normal electrophysiological properties and that the labeled baroreflex pathways that control heart rate are unaltered by the virus. This novel transynaptic virus permits in vitro studies of identified neurons within functionally defined neuronal systems including networks that mediate cardiovascular and respiratory function and interactions. We also demonstrate superior laryngeal motorneurons fire spontaneously and synapse on cardiac vagal neurons in the nucleus ambiguus. This cardiorespiratory pathway provides a neural basis of respiratory sinus arrhythmias.

  18. Effective nucleus-nucleus potentials derived from the generator coordinate method

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, H; Canto, L F [Oxford Univ. (UK). Dept. of Theoretical Physics

    1977-11-07

    The equivalence of the generator coordinate method (GCM) and the resonating group method (RGM) and the formal equivalence of the RGM and the orthogonality condition model (OCM) lead to a relation connecting the effective nucleus-nucleus potentials of the OCM with matrix elements of the GCM. This relation may be used to derive effective nucleus-nucleus potentials directly from GCM matrix elements without explicit reference to the potentials of the RGM. In a first application local and l-independent effective potentials are derived from diagonal GCM matrix elements which represent the energy surfaces of a two-centre shell model. Using these potentials the OCM can reproduce the results of a full RGM calculation very well for the elastic scattering of two ..cap alpha..-particles and fairly well for elastic /sup 16/O-/sup 16/O scattering.

  19. Deep brain stimulation of the subthalamic nucleus improves pain in Parkinson's disease.

    Science.gov (United States)

    Pellaprat, Jean; Ory-Magne, Fabienne; Canivet, Cindy; Simonetta-Moreau, Marion; Lotterie, Jean-Albert; Radji, Fatai; Arbus, Christophe; Gerdelat, Angélique; Chaynes, Patrick; Brefel-Courbon, Christine

    2014-06-01

    In Parkinson's disease (PD), chronic pain is a common symptom which markedly affects the quality of life. Some physiological arguments proposed that Deep Brain Stimulation of the Subthalamic Nucleus (STN-DBS) could improve pain in PD. We investigated in 58 PD patients the effect of STN-DBS on pain using the short McGill Pain Questionnaire and other pain parameters such as the Bodily discomfort subscore of the Parkinson's disease Questionnaire 39 and the Unified Parkinson's Disease Rating Scale section II (UPDRS II) item 17. All pain scores were significantly improved 12 months after STN-DBS. This improvement was not correlated with motor improvement, depression scores or L-Dopa reduction. STN-DBS induced a substantial beneficial effect on pain in PD, independently of its motor effects and mood status of patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Coherence of neuronal firing of the entopeduncular nucleus with motor cortex oscillatory activity in the 6-OHDA rat model of Parkinson's disease with levodopa-induced dyskinesias.

    Science.gov (United States)

    Jin, Xingxing; Schwabe, Kerstin; Krauss, Joachim K; Alam, Mesbah

    2016-04-01

    The pathophysiological mechanisms leading to dyskinesias in Parkinson's disease (PD) after long-term treatment with levodopa remain unclear. This study investigates the neuronal firing characteristics of the entopeduncular nucleus (EPN), the rat equivalent of the human globus pallidus internus and output nucleus of the basal ganglia, and its coherence with the motor cortex (MCx) field potentials in the unilateral 6-OHDA rat model of PD with and without levodopa-induced dyskinesias (LID). 6-hydroxydopamine-lesioned hemiparkinsonian (HP) rats, 6-OHDA-lesioned HP rats with LID (HP-LID) rats, and naïve controls were used for recording of single-unit activity under urethane (1.4 g/kg, i.p) anesthesia in the EPN "on" and "off" levodopa. Over the MCx, the electrocorticogram output was recorded. Analysis of single-unit activity in the EPN showed enhanced firing rates, burst activity, and irregularity compared to naïve controls, which did not differ between drug-naïve HP and HP-LID rats. Analysis of EPN spike coherence and phase-locked ratio with MCx field potentials showed a shift of low (12-19 Hz) and high (19-30 Hz) beta oscillatory activity between HP and HP-LID groups. EPN theta phase-locked ratio was only enhanced in HP-LID compared to HP rats. Overall, levodopa injection had no stronger effect in HP-LID rats than in HP rats. Altered coherence and changes in the phase lock ratio of spike and local field potentials in the beta range may play a role for the development of LID.

  1. Experimental search for compression phenomena in fast nucleus--nucleus collisions

    International Nuclear Information System (INIS)

    Schopper, E.; Baumgardt, H.G.; Obst, E.

    1977-01-01

    The occurrence of compression phenomena and shock waves, connected with the increase of the density of the nuclear matter during the interpenetration of two fast nuclei, are discussed. Current experiments dealing with this problem are reviewed. Before considering the mechanism of the interpenetration of two fast nuclei it may be useful to look at more simple situations, i.e., proton-proton interactions, then to envelop them with nuclear matter, considering proton-nucleus interactions. Only very general features are described, which may give suggestions for the understanding of the nucleus-nucleus impact

  2. [Emotion and basal ganglia (II): what can we learn from subthalamic nucleus deep brain stimulation in Parkinson's disease?].

    Science.gov (United States)

    Péron, J; Dondaine, T

    2012-01-01

    The subthalamic nucleus deep-brain stimulation Parkinson's disease patient model seems to represent a unique opportunity for studying the functional role of the basal ganglia and notably the subthalamic nucleus in human emotional processing. Indeed, in addition to constituting a therapeutic advance for severely disabled Parkinson's disease patients, deep brain stimulation is a technique, which selectively modulates the activity of focal structures targeted by surgery. There is growing evidence of a link between emotional impairments and deep-brain stimulation of the subthalamic nucleus. In this context, according to the definition of emotional processing exposed in the companion paper available in this issue, the aim of the present review will consist in providing a synopsis of the studies that investigated the emotional disturbances observed in subthalamic nucleus deep brain stimulation Parkinson's disease patients. This review leads to the conclusion that several emotional components would be disrupted after subthalamic nucleus deep brain stimulation in Parkinson's disease: subjective feeling, neurophysiological activation, and motor expression. Finally, after a description of the limitations of this study model, we discuss the functional role of the subthalamic nucleus (and the striato-thalamo-cortical circuits in which it is involved) in emotional processing. It seems reasonable to conclude that the striato-thalamo-cortical circuits are indeed involved in emotional processing and that the subthalamic nucleus plays a central in role the human emotional architecture. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  3. The mechanism of nuclear energy release in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1998-01-01

    The mechanism of intranuclear energy release in reactions induced by nucleus-nucleus collisions at energies higher than ∼ 0.5 GeV/nucl. is presented - as prompted experimentally. The intranuclear energy release goes through local damages of the colliding nuclei

  4. Processing of emotional information in the human subthalamic nucleus.

    Science.gov (United States)

    Buot, Anne; Welter, Marie-Laure; Karachi, Carine; Pochon, Jean-Baptiste; Bardinet, Eric; Yelnik, Jérôme; Mallet, Luc

    2013-12-01

    The subthalamic nucleus (STN) is an efficient target for treating patients with Parkinson's disease as well as patients with obsessive-compulsive disorder (OCD) using high frequency stimulation (HFS). In both Parkinson's disease and OCD patients, STN-HFS can trigger abnormal behaviours, such as hypomania and impulsivity. To investigate if this structure processes emotional information, and whether it depends on motor demands, we recorded subthalamic local field potentials in 16 patients with Parkinson's disease using deep brain stimulation electrodes. Recordings were made with and without dopaminergic treatment while patients performed an emotional categorisation paradigm in which the response varied according to stimulus valence (pleasant, unpleasant and neutral) and to the instruction given (motor, non-motor and passive). Pleasant, unpleasant and neutral stimuli evoked an event related potential (ERP). Without dopamine medication, ERP amplitudes were significantly larger for unpleasant compared with neutral pictures, whatever the response triggered by the stimuli; and the magnitude of this effect was maximal in the ventral part of the STN. No significant difference in ERP amplitude was observed for pleasant pictures. With dopamine medication, ERP amplitudes were significantly increased for pleasant compared with neutral pictures whatever the response triggered by the stimuli, while ERP amplitudes to unpleasant pictures were not modified. These results demonstrate that the ventral part of the STN processes the emotional valence of stimuli independently of the motor context and that dopamine enhances processing of pleasant information. These findings confirm the specific involvement of the STN in emotional processes in human, which may underlie the behavioural changes observed in patients with deep brain stimulation.

  5. Radiofrequency Catheter Ablation for Atrial Fibrillation Elicited "Jackhammer Esophagus": A New Complication Due to Vagal Nerve Stimulation?

    Science.gov (United States)

    Tolone, Salvatore; Savarino, Edoardo; Docimo, Ludovico

    2015-10-01

    Radiofrequency catheter ablation (RFCA) is a potentially curative method for treatment of highly symptomatic and drug-refractory atrial fibrillation (AF). However, this technique can provoke esophageal and nerve lesion, due to thermal injury. To our knowledge, there have been no reported cases of a newly described motor disorder, the Jackhammer esophagus (JE) after RFCA, independently of GERD. We report a case of JE diagnosed by high-resolution manometry (HRM), in whom esophageal symptoms developed 2 weeks after RFCA, in absence of objective evidence of GERD. A 65-year-old male with highly symptomatic, drug-refractory paroxysmal AF was candidate to complete electrical pulmonary vein isolation with RFCA. Prior the procedure, the patient underwent HRM and impedance-pH to rule out GERD or hiatal hernia presence. All HRM parameters, according to Chicago classification, were within normal limits. No significant gastroesophageal reflux was documented at impedance pH monitoring. Patient underwent RFCA with electrical disconnection of pulmonary vein. After two weeks, patient started to complain of dysphagia for solids, with acute chest-pain. The patient repeated HRM and impedance-pH monitoring 8 weeks after RFCA. HRM showed in all liquid swallows the typical spastic hypercontractile contractions consistent with the diagnosis of JE, whereas impedance-pH monitoring resulted again negative for GERD. Esophageal dysmotility can represent a possible complication of RFCA for AF, probably due to a vagal nerve injury, and dysphagia appearance after this procedure must be timely investigated by HRM.

  6. The correlation between the transverse polarization and transverse momentum of lambda produced in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ye Yunxiu; Zhou Xin; Ji Gang; Su Shufang; Zhu Guohuai

    1996-01-01

    The transverse polarization of lambda produced in relativistic nucleus-nucleus collisions is determined. The effect from the interaction between spin moment and magnetic field is corrected. The near zero transverse polarization and non-correlation between transverse polarization and transverse momentum are obtained and compared to ones obtained from the nucleus-nucleus interactions at lower energies. This comparison shows that the production mechanism of lambdas in the relativistic nucleus-nucleus collisions is different from one in the nucleus-nucleus reactions at lower energies

  7. Formation of proton-fragments in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    Bazarov, E.Kh.; Olimov, K.; Petrov, V.I.; Lutpullaev, S.L.

    2006-01-01

    Full text: The investigation of production of protons in hadron- and nucleus-nucleus interactions is a key problem allowing one to establish the singularities of dynamics of nuclear interactions. The formation of proton-fragments at high energies of colliding particles proceeds within both the interaction of hadrons with nuclei and in the process of decay of the nucleus or its de-excitation at peripheral interactions. At different stages of interaction of impinging particle with target nucleus, the different mechanisms of formation of proton-fragments: the direct knock-out of intranuclear nucleons in the process of high energy cascade of an initial hadron, intranuclear cascade of produced particles, decay of the excited multi-nucleon fragments and of the thermalized remnant nucleus, and the coalescence of nuclear fragments to the new clusters are realized with the certain probability, connected to the interaction parameters (the interaction energy, the parameter of collision, the intranuclear density, the configuration of Fermi momentum of nucleons and clusters of target nucleus et al.). In its turn, the mechanisms of formation of the final nuclear fragments are closely related to the type of excitation of an initial nucleus. The peripheral interactions proceed at small transfers of the momentum of an impinging particle and represent the wide class of reactions covering the processes from diffractive or coulomb collective excitations of the whole nucleus to the direct quasi-elastic knock-out of the separate nucleons. Non-peripheral interactions are caused by comparatively high local transfers of momentum to the intranuclear clusters allowing the development of intranuclear cascade and the asymmetric redistribution of energy of an impinging particle. The central collisions causing the full decay of nucleus on nucleons or few-nucleon fragments, are the limiting case of the maximal development of the intranuclear cascade. The interaction of the initial particles with

  8. Nucleus-nucleus interactions in the transition energy regime

    International Nuclear Information System (INIS)

    Volant, C.

    1985-02-01

    There are at least two ways for studying large interactions in nucleus-nucleus collisions. One way is to use the method of angular correlations between fission fragments. The aim of the experiments presented here was to make a survey on the role of the various experimental parameters. In that respect three targets have been studied and different projectiles and bombarding energies have been used. Results are presented and discussed

  9. Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.

    Science.gov (United States)

    Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R

    2012-01-11

    Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.

  10. Spinal TNFα is necessary for inactivity-induced phrenic motor facilitation

    Science.gov (United States)

    Broytman, Oleg; Baertsch, Nathan A; Baker-Herman, Tracy L

    2013-01-01

    A prolonged reduction in central neural respiratory activity elicits a form of plasticity known as inactivity-induced phrenic motor facilitation (iPMF), a ‘rebound’ increase in phrenic burst amplitude apparent once respiratory neural activity is restored. iPMF requires atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize an early transient increase in phrenic burst amplitude and to form long-lasting iPMF following reduced respiratory neural activity. Upstream signal(s) leading to spinal aPKC activation are unknown. We tested the hypothesis that spinal tumour necrosis factor-α (TNFα) is necessary for iPMF via an aPKC-dependent mechanism. Anaesthetized, ventilated rats were exposed to a 30 min neural apnoea; upon resumption of respiratory neural activity, a prolonged increase in phrenic burst amplitude (42 ± 9% baseline; P phrenic motor nucleus prior to neural apnoea blocked long-lasting iPMF (2 ± 8% baseline; P > 0.05). Intrathecal TNFα without neural apnoea was sufficient to elicit long-lasting phrenic motor facilitation (pMF; 62 ± 7% baseline; P < 0.05). Similar to iPMF, TNFα-induced pMF required spinal aPKC activity, as intrathecal delivery of a ζ-pseudosubstrate inhibitory peptide (PKCζ-PS) 35 min following intrathecal TNFα arrested TNFα-induced pMF (28 ± 8% baseline; P < 0.05). These data demonstrate that: (1) spinal TNFα is necessary for iPMF; and (2) spinal TNFα is sufficient to elicit pMF via a similar aPKC-dependent mechanism. These data are consistent with the hypothesis that reduced respiratory neural activity elicits iPMF via a TNFα-dependent increase in spinal aPKC activity. PMID:23878370

  11. The application of a phenomenological model to inelastic nucleus-nucleus interactions for laboratory momenta below 5 GeV/c per nucleon of the incident nucleus

    International Nuclear Information System (INIS)

    Grishin, V.G.; Kladnitskaya, E.N.

    1985-01-01

    A phenomenological model for inelastic nucleus-nucleus interactions at momenta below 5 GeV/c per nucleon is described. Particle interactions inside the interacting nuclei are described by phenomenological models of hadron-nucleus and hadron-nucleon interactions. The Monte-Carlo model provides the kinematic variables for a set of events under study. The comparison of the model inclusive distri-- butions for different particles and nucleus-nucleus interactions agrees well with the experimental data

  12. Loss of vagal tone aggravates systemic inflammation and cardiac impairment in endotoxemic rats.

    Science.gov (United States)

    Schulte, Astrid; Lichtenstern, Christoph; Henrich, Michael; Weigand, Markus A; Uhle, Florian

    2014-05-15

    During the course of sepsis, often myocardial depression with hemodynamic impairment occurs. Acetylcholine, the main transmitter of the parasympathetic Nervus vagus, has been shown to be of importance for the transmission of signals within the immune system and also for a variety of other functions throughout the organism. Hypothesizing a potential correlation between this dysfunction and hemodynamic impairment, we wanted to assess the impact of vagal stimulation on myocardial inflammation and function in a rat model of lipopolysaccharide (LPS)-induced septic shock. As the myocardial tissue is (sparsely) innervated by the N. vagus, there might be an important anti-inflammatory effect in the heart, inhibiting proinflammatory gene expression in cardiomyocytes and improving cardiac function. We performed stimulation of the right cervical branch of the N. vagus in vagotomized, endotoxemic (1 mg/kg body weight LPS, intravenously) rats. Hemodynamic parameters were assessed over time using a left ventricular pressure-volume catheter. After the experiments, hearts and blood plasma were collected, and the expression of proinflammatory cytokines was measured using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. After vagotomy, the inflammatory response was aggravated, measurable by elevated cytokine levels in plasma and ventricular tissue. In concordance, cardiac impairment during septic shock was pronounced in these animals. To reverse both hemodynamic and immunologic effects of diminished vagal tone, even a brief stimulation of the N. vagus was enough during initial LPS infusion. Overall, the N. vagus might play a major role in maintaining hemodynamic stability and cardiac immune homeostasis during septic shock. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    Science.gov (United States)

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  14. Description of inelastic nucleus-nucleus interactions at medium energy using dual parton model

    International Nuclear Information System (INIS)

    Polanski, A.; Shmakov, S.Yu.; Uzhinskij, V.V.

    1989-01-01

    It is shown that the dual parton model taking into account the processes of diffraction dissociation to the low mass states and finite energy corrections to the asymptotic Abramovski-Gribov-Kancheli cutting rules allows satisfactory description of existing experimental data on hadron-nucleus and nucleus-nucleus interactions at medium energy. (orig.)

  15. Relationship of ocular accommodation and motor skills performance in developmental coordination disorder.

    Science.gov (United States)

    Rafique, Sara A; Northway, Nadia

    2015-08-01

    Ocular accommodation provides a well-focussed image, feedback for accurate eye movement control, and cues for depth perception. To accurately perform visually guided motor tasks, integration of ocular motor systems is essential. Children with motor coordination impairment are established to be at higher risk of accommodation anomalies. The aim of the present study was to examine the relationship between ocular accommodation and motor tasks, which are often overlooked, in order to better understand the problems experienced by children with motor coordination impairment. Visual function, gross and fine motor skills were assessed in children with developmental coordination disorder (DCD) and typically developing control children. Children with DCD had significantly poorer accommodation facility and amplitude dynamics compared to controls. Results indicate a relationship between impaired accommodation and motor skills. Specifically, accommodation anomalies correlated with visual motor, upper limb and fine dexterity task performance. Consequently, we argue accommodation anomalies influence the ineffective coordination of action and perception in DCD. Furthermore, reading disabilities were related to poorer motor performance. We postulate the role of the fastigial nucleus as a common pathway for accommodation and motor deficits. Implications of the findings and recommended visual screening protocols are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. High job control enhances vagal recovery in media work.

    Science.gov (United States)

    Lindholm, Harri; Sinisalo, Juha; Ahlberg, Jari; Jahkola, Antti; Partinen, Markku; Hublin, Christer; Savolainen, Aslak

    2009-12-01

    Job strain has been linked to increased risk of cardiovascular diseases. In modern media work, time pressures, rapidly changing situations, computer work and irregular working hours are common. Heart rate variability (HRV) has been widely used to monitor sympathovagal balance. Autonomic imbalance may play an additive role in the development of cardiovascular diseases. To study the effects of work demands and job control on the autonomic nervous system recovery among the media personnel. From the cross-sectional postal survey of the employees in Finnish Broadcasting Company (n = 874), three age cohorts (n = 132) were randomly selected for an analysis of HRV in 24 h electrocardiography recordings. In the middle-aged group, those who experienced high job control had significantly better vagal recovery than those with low or moderate control (P work rather than low demands seemed to enhance autonomic recovery in middle-aged media workers. This was independent of poor health habits such as smoking, physical inactivity or alcohol consumption.

  17. The vagal innervation of the gut and immune homeostasis.

    Science.gov (United States)

    Matteoli, Gianluca; Boeckxstaens, Guy E

    2013-08-01

    The central nervous system interacts dynamically with the immune system to modulate inflammation through humoral and neural pathways. Recently, in animal models of sepsis, the vagus nerve (VN) has been proposed to play a crucial role in the regulation of the immune response, also referred to as the cholinergic anti-inflammatory pathway. The VN, through release of acetylcholine, dampens immune cell activation by interacting with α-7 nicotinic acetylcholine receptors. Recent evidence suggests that the vagal innervation of the gastrointestinal tract also plays a major role controlling intestinal immune activation. Indeed, VN electrical stimulation potently reduces intestinal inflammation restoring intestinal homeostasis, whereas vagotomy has the reverse effect. In this review, we will discuss the current understanding concerning the mechanisms and effects involved in the cholinergic anti-inflammatory pathway in the gastrointestinal tract. Deeper investigation on this counter-regulatory neuroimmune mechanism will provide new insights in the cross-talk between the nervous and immune system leading to the identification of new therapeutic targets to treat intestinal immune disease.

  18. Infant diet, gender and the normative development of vagal tone and heart period during the first two years of life

    Science.gov (United States)

    Relationships between early postnatal diet and the development of cardiac regulation were studied using resting vagal tone and heart period measures obtained quarterly during infancy and at 2 years in 158 breast-fed, 159 milk formula-fed, and 148 soy formula-fed infants. Both measures increased acro...

  19. Is pancreatic polypeptide response to food ingestion a reliable index of vagal function in type 1 diabetes?

    DEFF Research Database (Denmark)

    Damholt, M B; Arlien-Soeborg, P; Hilsted, L

    2006-01-01

    The diagnosis of autonomic neuropathy in diabetic patients is based on cardiovascular reflex tests. Since cardiac function may be affected by arteriosclerosis and cardiomyopathy in type 1 diabetes mellitus, alternative tests reflecting vagal nerve function, in other organ systems, are needed....... In this study the pancreatic polypeptide (PP) response to a mixed meal was evaluated in healthy subjects and in recently diagnosed type 1 diabetic patients....

  20. WGA-Alexa transsynaptic labeling in the phrenic motor system of adult rats: Intrapleural injection versus intradiaphragmatic injection.

    Science.gov (United States)

    Buttry, Janelle L; Goshgarian, Harry G

    2015-02-15

    Intrapleural injection of CTB-Alexa 488, a retrograde tracer, provides an alternative labeling technique to the surgically invasive laparotomy required for intradiaphragmatic injection. However, CTB-Alexa 488 is incapable of crossing synapses restricting the tracer to the phrenic nuclei and the intercostal motor nuclei in the spinal cord. Intrapleural injection of WGA-Alexa 488, a transsynaptic tracer, provides a method to label the respiratory motor pathway in both the spinal cord and medulla. Intradiaphragmatic injection of WGA-Alexa 594 and vagal nerve injections of True blue were used to confirm the phrenic nuclei and to differentiate between the rVRG and the NA in the medulla. Following intrapleural injection, WGA-Alexa 488 was retrogradely transported to the phrenic nuclei and to the intercostal motor nuclei. Subsequently WGA-Alexa 488 was transsynaptically transported from the phrenic motoneurons to the pre-motor neurons in the rVRG that provide the descending drive to the phrenic neurons during inspiration. In addition WGA-Alexa 488 was identified in select cells of the NA confirmed by a dual label of both WGA-Alexa 488 and True blue. WGA-Alexa 488 demonstrates retrograde transsynaptic labeling following intrapleural injection whereas the previous method of injecting CTB-Alexa 488 only demonstrates retrograde labeling. Intrapleural injection of WGA-Alexa fluor conjugates is an effective method to transsynaptically label the phrenic motor system providing an alternative for the invasive laparotomy required for intradiaphragmatic injections. Furthermore, the study provides the first anatomical evidence of a direct synaptic relationship between rVRG and select NA cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Dimuon enhancement in nucleus-nucleus ultrarelativistic interactions

    International Nuclear Information System (INIS)

    Bordalo, Paula; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Bohrani, A.; Boldea, V.; Bussiere, A.; Capelli, L.; Caponi, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constans, N.; Constantinescu, S.; Contardo, D.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Ducroux, L.; Espagnon, B.; Fargeix, J.; Ferreira, R.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Gorodetzky, P.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkanyan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kossakowski, R.; Kurepin, A.B.; Landau, G.; Le Bornec, Y.; Lourenco, C.; Luquin, L.; Macciotta, P.; Mac Cormick, M.; Mandry, R.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Monteno, M.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Ropotar, I.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Sitta, M.; Soave, C.; Sonderegger, P.; Tarrago, X.; Topilskaya, N.S.; Usai, G.L.; Varela, J.; Vercellin, E.; Villatte, L.

    1999-01-01

    The study of muon pairs in the mass region 1.5 μμ 2 in 450 GeV/c p-A, 200 GeV/nucleon S-U and 158 GeV/nucleon Pb-Pb collisions is presented. In p-A interactions, the dimuon signal mass spectra are well described by a superposition of Drell-Yan and charmed meson semi-leptonic decay contributions, in agreement with previous experiments when considering a linear A dependence. In nucleus-nucleus reactions, taking only into account these two physical ingredients, a dimuon enhancement both with increasing A·B and centrality is observed

  2. Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog, Rana pipiens.

    Science.gov (United States)

    Anderson, C W

    2001-09-01

    Using injections of small molecular weight fluorescein dextran amines, combined with activity-dependent uptake of sulforhodamine 101 (SR101), brainstem circuits presumed to be involved in feeding motor output were investigated. As has been shown previously in other studies, projections to the cerebellar nuclei were identified from the cerebellar cortex, the trigeminal motor nucleus, and the vestibular nuclei. Results presented here suggest an additional pathway from the hypoglossal motor nuclei to the cerebellar nucleus as well as an afferent projection from the peripheral hypoglossal nerve to the Purkinje cell layer of the cerebellar cortex. Injections in the cerebellar cortex combined with retrograde labeling of the peripheral hypoglossal nerve demonstrate anatomical convergence at the level of the medial reticular formation. This suggests a possible integrative region for afferent feedback from the hypoglossal nerve and information through the Purkinje cell layer of the cerebellar cortex. The activity-dependent uptake of SR101 additionally suggests a reciprocal, polysynaptic pathway between this same area of the medial reticular formation and the trigeminal motor nuclei. The trigeminal motor neurons innervate the m adductor mandibulae, the primary mouth-closing muscle. The SR101 uptake clearly labeled the ventrolateral hypoglossal nuclei, the medial reticular formation, and the Purkinje cell layer of the cerebellar cortex. Unlike retrograde labeling of the peripheral hypoglossal nerve, stimulating the hypoglossal nerve while SR101 was bath-applied labeled trigeminal motor neurons. This, combined with the dextran labeling, suggests a reciprocal connection between the trigeminal motor nuclei and the cerebellar nuclei, as well as the medulla. Taken together, these data are important for understanding the neurophysiological pathways used to coordinate the proper timing of an extremely rapid, goal-directed movement and may prove useful for elucidating some of the

  3. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lingling, E-mail: liulingling2012@163.com; Luo, Qing, E-mail: qing.luo@cqu.edu.cn; Sun, Jinghui, E-mail: sunjhemail@163.com; Song, Guanbin, E-mail: song@cqu.edu.cn

    2016-10-15

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at

  4. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    International Nuclear Information System (INIS)

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Song, Guanbin

    2016-01-01

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at

  5. Physical meaning of the yields from hadron-nucleon, hadron-nucleus, and nucleus-nucleus collisions observed in experiments

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1995-01-01

    A physical meaning of the outcomes from hadronic and nuclear collision processes at high energies is presented, as prompted experimentally. The fast and slow stages in hadron-nucleus collisions are distinguished. Hadrons are produced via intermediate objects observed in hadron-nucleus collisions. The intermediate objects may be treated as the groups of quarks or the quark bags. 37 refs

  6. Rubrocerebellar Feedback Loop Isolates the Interposed Nucleus as an Independent Processor of Corollary Discharge Information in Mice.

    Science.gov (United States)

    Beitzel, Christy S; Houck, Brenda D; Lewis, Samantha M; Person, Abigail L

    2017-10-18

    Understanding cerebellar contributions to motor coordination requires deeper insight into how the output structures of the cerebellum, the cerebellar nuclei, integrate their inputs and influence downstream motor pathways. The magnocellular red nucleus (RNm), a brainstem premotor structure, is a major target of the interposed nucleus (IN), and has also been described in previous studies to send feedback collaterals to the cerebellum. Because such a pathway is in a key position to provide motor efferent information to the cerebellum, satisfying predictions about the use of corollary discharge in cerebellar computations, we studied it in mice of both sexes. Using anterograde viral tracing, we show that innervation of cerebellum by rubrospinal neuron collaterals is remarkably selective for the IN compared with the cerebellar cortex. Optogenetic activation of the pathway in acute mouse brain slices drove IN activity despite small amplitude synaptic currents, suggesting an active role in IN information processing. Monosynaptic transsynaptic rabies tracing indicated the pathway contacts multiple cell types within the IN. By contrast, IN inputs to the RNm targeted a region that lacked inhibitory neurons. Optogenetic drive of IN inputs to the RNm revealed strong, direct excitation but no inhibition of RNm neurons. Together, these data indicate that the cerebellar nuclei are under afferent control independent of the cerebellar cortex, potentially diversifying its roles in motor control. SIGNIFICANCE STATEMENT The common assumption that all cerebellar mossy fibers uniformly collateralize to the cerebellar nuclei and cortex underlies classic models of convergent Purkinje influence on cerebellar output. Specifically, mossy fibers are thought to both directly excite nuclear neurons and drive polysynaptic feedforward inhibition via Purkinje neurons, setting up a fundamental computational unit. Here we present data that challenge this rule. A dedicated cerebellar nuclear afferent

  7. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research – Recommendations for Experiment Planning, Data Analysis, and Data Reporting

    Science.gov (United States)

    Laborde, Sylvain; Mosley, Emma; Thayer, Julian F.

    2017-01-01

    Psychophysiological research integrating heart rate variability (HRV) has increased during the last two decades, particularly given the fact that HRV is able to index cardiac vagal tone. Cardiac vagal tone, which represents the contribution of the parasympathetic nervous system to cardiac regulation, is acknowledged to be linked with many phenomena relevant for psychophysiological research, including self-regulation at the cognitive, emotional, social, and health levels. The ease of HRV collection and measurement coupled with the fact it is relatively affordable, non-invasive and pain free makes it widely accessible to many researchers. This ease of access should not obscure the difficulty of interpretation of HRV findings that can be easily misconstrued, however, this can be controlled to some extent through correct methodological processes. Standards of measurement were developed two decades ago by a Task Force within HRV research, and recent reviews updated several aspects of the Task Force paper. However, many methodological aspects related to HRV in psychophysiological research have to be considered if one aims to be able to draw sound conclusions, which makes it difficult to interpret findings and to compare results across laboratories. Those methodological issues have mainly been discussed in separate outlets, making difficult to get a grasp on them, and thus this paper aims to address this issue. It will help to provide psychophysiological researchers with recommendations and practical advice concerning experimental designs, data analysis, and data reporting. This will ensure that researchers starting a project with HRV and cardiac vagal tone are well informed regarding methodological considerations in order for their findings to contribute to knowledge advancement in their field. PMID:28265249

  8. Meson-nucleus potentials and the search for meson-nucleus bound states

    Science.gov (United States)

    Metag, V.; Nanova, M.; Paryev, E. Ya.

    2017-11-01

    Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on K+ ,K0 ,K- , η ,η‧ , ω, and ϕ mesons are presented and compared with theoretical predictions. The interaction of K+ and K0 mesons with nuclei is found to be weakly repulsive, while the K- , η ,η‧ , ω and ϕ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the η and η‧ mesons.

  9. Cortical disconnection of the ipsilesional primary motor cortex is associated with gait speed and upper extremity motor impairment in chronic left hemispheric stroke.

    Science.gov (United States)

    Peters, Denise M; Fridriksson, Julius; Stewart, Jill C; Richardson, Jessica D; Rorden, Chris; Bonilha, Leonardo; Middleton, Addie; Gleichgerrcht, Ezequiel; Fritz, Stacy L

    2018-01-01

    Advances in neuroimaging have enabled the mapping of white matter connections across the entire brain, allowing for a more thorough examination of the extent of white matter disconnection after stroke. To assess how cortical disconnection contributes to motor impairments, we examined the relationship between structural brain connectivity and upper and lower extremity motor function in individuals with chronic stroke. Forty-three participants [mean age: 59.7 (±11.2) years; time poststroke: 64.4 (±58.8) months] underwent clinical motor assessments and MRI scanning. Nonparametric correlation analyses were performed to examine the relationship between structural connectivity amid a subsection of the motor network and upper/lower extremity motor function. Standard multiple linear regression analyses were performed to examine the relationship between cortical necrosis and disconnection of three main cortical areas of motor control [primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA)] and motor function. Anatomical connectivity between ipsilesional M1/SMA and the (1) cerebral peduncle, (2) thalamus, and (3) red nucleus were significantly correlated with upper and lower extremity motor performance (P ≤ 0.003). M1-M1 interhemispheric connectivity was also significantly correlated with gross manual dexterity of the affected upper extremity (P = 0.001). Regression models with M1 lesion load and M1 disconnection (adjusted for time poststroke) explained a significant amount of variance in upper extremity motor performance (R 2  = 0.36-0.46) and gait speed (R 2  = 0.46), with M1 disconnection an independent predictor of motor performance. Cortical disconnection, especially of ipsilesional M1, could significantly contribute to variability seen in locomotor and upper extremity motor function and recovery in chronic stroke. Hum Brain Mapp 39:120-132, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Spastin subcellular localization is regulated through usage of different translation start sites and active export from the nucleus

    International Nuclear Information System (INIS)

    Claudiani, Pamela; Riano, Elena; Errico, Alessia; Andolfi, Gennaro; Rugarli, Elena I.

    2005-01-01

    Most cases of autosomal-dominant hereditary spastic paraplegia are linked to mutations in SPG4 encoding spastin, a protein involved in microtubule dynamics and membrane trafficking. In pyramidal neurons of the motor cortex and in immortalized motor neurons, spastin is localized to the synaptic terminals and growth cones. However, in other neurons and in proliferating cells spastin is prevalently nuclear. The mechanisms that determine targeting of spastin to the nucleus or the cytoplasm are unknown. We show here that the SPG4 mRNA is able to direct synthesis of two spastin isoforms, 68 and 60 kDa, respectively, through usage of two different translational start sites. Both isoforms are imported into the nucleus, but the 68-kDa isoform contains two nuclear export signals that efficiently drive export to the cytoplasm. Nuclear export is leptomycin-B sensitive. The cytoplasmic 68-kDa spastin isoform is more abundant in the brain and the spinal cord than in other tissues. Our data indicate that spastin function is modulated through usage of alternative translational start sites and active nuclear import and export, and open new perspectives for the pathogenesis of hereditary spastic paraplegia

  11. Brain changes following four weeks of unimanual motor training: Evidence from fMRI-guided diffusion MRI tractography.

    Science.gov (United States)

    Reid, Lee B; Sale, Martin V; Cunnington, Ross; Mattingley, Jason B; Rose, Stephen E

    2017-09-01

    We have reported reliable changes in behavior, brain structure, and function in 24 healthy right-handed adults who practiced a finger-thumb opposition sequence task with their left hand for 10 min daily, over 4 weeks. Here, we extend these findings by using diffusion MRI to investigate white-matter changes in the corticospinal tract, basal-ganglia, and connections of the dorsolateral prefrontal cortex. Twenty-three participant datasets were available with pre-training and post-training scans. Task performance improved in all participants (mean: 52.8%, SD: 20.0%; group P right caudate nucleus (4.9%; P left nucleus accumbens (-1.3%; P right corticospinal tract (mean 3.28%; P left corticospinal tract did not show any changes. FA also increased in white matter connections between the right middle frontal gyrus and both right caudate nucleus (17/22 participants; P right supplementary motor area (18/22 participants; P left (non-trained) hemisphere. In combination with our functional and structural findings, this study provides detailed, multifocal evidence for widespread neuroplastic changes in the human brain resulting from motor training. Hum Brain Mapp 38:4302-4312, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder

    Directory of Open Access Journals (Sweden)

    Thomas Hassa

    2017-01-01

    Full Text Available Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.

  13. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder.

    Science.gov (United States)

    Hassa, Thomas; Sebastian, Alexandra; Liepert, Joachim; Weiller, Cornelius; Schmidt, Roger; Tüscher, Oliver

    2017-01-01

    Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI) was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-)supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.

  14. Relationship of striatal 99Tcm-TRODAT-1 specific uptake and motor's severity in patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Bian Yanzhu; Liu Huang; Feng Jue; Wei Qiang; Li Jinfu; Liu Guozhang

    2004-01-01

    Objective: To investigate the relationship of striatal 99 Tc m -2β-((N, N'-bis (2-mercap-toethyl) ethylene diamino) methyl), 3β-(4-chlorophenyl) tropane, ( 99 Tc m -TRODAT-1) specific uptake values (SUVs) and motor's severity in patients with Parkinson's disease (PD). Methods: 35 patients with PD were examined by 99 Tc m -TRODAT-1 SPECT dopamine transporter brain imaging. The SUVs of the striatum and its subregions, including the putamen and caudate nucleus, were calculated by semi-quantity region of interest (ROI) technique with the radiation ratios of target/cerebellum. Motor's severity of PD was measured by Unified Parkinson's Disease Rating Scale (UPDRS). Motor UPDRS scores were divided into four subscales, bradykinesia scores, rigidity scores, postural instability scores and tremor scores. Results: SUVs of putamen correlated best with the motor UPDRS scores(r=-0.846, P<0.001), followed by that of striatum and caudate nucleus. Among the four major clinical signs of PD, the bradykinesia scores (X1) correlated best with SUVs of putamen(r=-0.858, P<0.001), followed by rigidity scores (X2) and postural instability scores. There was no significant correlation between tremor scores and SUVs of putamen (Y). A regression equation (Y=2.345-0.0418 X1-0.0580 X2) was founded by stepwise multiple linear regression analysis. Conclusions: The SUVs of striatum (especially SUVs of putamen) was a useful marker to evaluate the motor's severity of PD and monitor the progression of PD. (authors)

  15. Effective number of inelastically interacting nucleons in rare nucleus-nucleus production processes

    International Nuclear Information System (INIS)

    Korotkikh, V.L.; Lokhtin, I.P.

    1992-01-01

    A model of nucleus-nucleus interaction using one inelastic NN-interaction is suggested for the exclusive production processes with small cross-section. A-dependence nuclear coherent and incoherent production cross-section are predicted. 20 refs.; 4 figs

  16. Double folding model of nucleus-nucleus potential: formulae, iteration method and computer code

    International Nuclear Information System (INIS)

    Luk'yanov, K.V.

    2008-01-01

    Method of construction of the nucleus-nucleus double folding potential is described. Iteration procedure for the corresponding integral equation is presented. Computer code and numerical results are presented

  17. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats

    Directory of Open Access Journals (Sweden)

    Tong-Chun Wen

    2018-04-01

    Full Text Available After injury to the corticospinal tract (CST in early development there is large-scale adaptation of descending motor pathways. Some studies suggest the uninjured hemisphere controls the impaired forelimb, while others suggest that the injured hemisphere does; these pathways have never been compared directly. We tested the contribution of each motor cortex to the recovery forelimb function after neonatal injury of the CST. We cut the left pyramid (pyramidotomy of postnatal day 7 rats, which caused a measurable impairment of the right forelimb. We used pharmacological inactivation of each motor cortex to test its contribution to a skilled reach and supination task. Rats with neonatal pyramidotomy were further impaired by inactivation of motor cortex in both the injured and the uninjured hemispheres, while the forelimb of uninjured rats was impaired only from the contralateral motor cortex. Thus, inactivation demonstrated motor control from each motor cortex. In contrast, physiological and anatomical interrogation of these pathways support adaptations only in the uninjured hemisphere. Intracortical microstimulation of motor cortex in the uninjured hemisphere of rats with neonatal pyramidotomy produced responses from both forelimbs, while stimulation of the injured hemisphere did not elicit responses from either forelimb. Both anterograde and retrograde tracers were used to label corticofugal pathways. There was no increased plasticity from the injured hemisphere, either from cortex to the red nucleus or the red nucleus to the spinal cord. In contrast, there were very strong CST connections to both halves of the spinal cord from the uninjured motor cortex. Retrograde tracing produced maps of each forelimb within the uninjured hemisphere, and these were partly segregated. This suggests that the uninjured hemisphere may encode separate control of the unimpaired and the impaired forelimbs of rats with neonatal pyramidotomy.

  18. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats.

    Science.gov (United States)

    Wen, Tong-Chun; Lall, Sophia; Pagnotta, Corey; Markward, James; Gupta, Disha; Ratnadurai-Giridharan, Shivakeshavan; Bucci, Jacqueline; Greenwald, Lucy; Klugman, Madelyne; Hill, N Jeremy; Carmel, Jason B

    2018-01-01

    After injury to the corticospinal tract (CST) in early development there is large-scale adaptation of descending motor pathways. Some studies suggest the uninjured hemisphere controls the impaired forelimb, while others suggest that the injured hemisphere does; these pathways have never been compared directly. We tested the contribution of each motor cortex to the recovery forelimb function after neonatal injury of the CST. We cut the left pyramid (pyramidotomy) of postnatal day 7 rats, which caused a measurable impairment of the right forelimb. We used pharmacological inactivation of each motor cortex to test its contribution to a skilled reach and supination task. Rats with neonatal pyramidotomy were further impaired by inactivation of motor cortex in both the injured and the uninjured hemispheres, while the forelimb of uninjured rats was impaired only from the contralateral motor cortex. Thus, inactivation demonstrated motor control from each motor cortex. In contrast, physiological and anatomical interrogation of these pathways support adaptations only in the uninjured hemisphere. Intracortical microstimulation of motor cortex in the uninjured hemisphere of rats with neonatal pyramidotomy produced responses from both forelimbs, while stimulation of the injured hemisphere did not elicit responses from either forelimb. Both anterograde and retrograde tracers were used to label corticofugal pathways. There was no increased plasticity from the injured hemisphere, either from cortex to the red nucleus or the red nucleus to the spinal cord. In contrast, there were very strong CST connections to both halves of the spinal cord from the uninjured motor cortex. Retrograde tracing produced maps of each forelimb within the uninjured hemisphere, and these were partly segregated. This suggests that the uninjured hemisphere may encode separate control of the unimpaired and the impaired forelimbs of rats with neonatal pyramidotomy.

  19. Theory of and effects from elastoplasticity in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Technische Hochschule Darmstadt

    1985-02-01

    Elastoplasticity of finite Fermi systems results from a coherent coupling between collective and intrinsic degrees of freedom and subsequent equilibration essentially due to two-body collisions. Within a non-markovian transport-theoretical approach referred to as dissipative diabatic dynamics (DDD), elastoplastical forms the link between giant vibrations and overdamped motion of nuclear. Obersvable effects resulting from this non-markovian behaviour in nucleus-nucleus collisions are discussed. (orig.)

  20. Electrophysiology of Cranial Nerve Testing: Cranial Nerves IX and X.

    Science.gov (United States)

    Martinez, Alberto R M; Martins, Melina P; Moreira, Ana Lucila; Martins, Carlos R; Kimaid, Paulo A T; França, Marcondes C

    2018-01-01

    The cranial nerves IX and X emerge from medulla oblongata and have motor, sensory, and parasympathetic functions. Some of these are amenable to neurophysiological assessment. It is often hard to separate the individual contribution of each nerve; in fact, some of the techniques are indeed a composite functional measure of both nerves. The main methods are the evaluation of the swallowing function (combined IX and X), laryngeal electromyogram (predominant motor vagal function), and heart rate variability (predominant parasympathetic vagal function). This review describes, therefore, the techniques that best evaluate the major symptoms presented in IX and X cranial nerve disturbance: dysphagia, dysphonia, and autonomic parasympathetic dysfunction.

  1. Study of η-nucleus interaction through the formation of η-nucleus ...

    Indian Academy of Sciences (India)

    Answer to this question will deeply enrich our understanding of -nucleus interaction which is not so well-understood. We review the experimental efforts for the search of -mesic nuclei and describe the physics motivation behind it. We present the description of an experiment for the search of -nucleus bound state using ...

  2. Correlations between Motor Symptoms across Different Motor Tasks, Quantified via Random Forest Feature Classification in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Andreas Kuhner

    2017-11-01

    Full Text Available BackgroundObjective assessments of Parkinson’s disease (PD patients’ motor state using motion capture techniques are still rarely used in clinical practice, even though they may improve clinical management. One major obstacle relates to the large dimensionality of motor abnormalities in PD. We aimed to extract global motor performance measures covering different everyday motor tasks, as a function of a clinical intervention, i.e., deep brain stimulation (DBS of the subthalamic nucleus.MethodsWe followed a data-driven, machine-learning approach and propose performance measures that employ Random Forests with probability distributions. We applied this method to 14 PD patients with DBS switched-off or -on, and 26 healthy control subjects performing the Timed Up and Go Test (TUG, the Functional Reach Test (FRT, a hand coordination task, walking 10-m straight, and a 90° curve.ResultsFor each motor task, a Random Forest identified a specific set of metrics that optimally separated PD off DBS from healthy subjects. We noted the highest accuracy (94.6% for standing up. This corresponded to a sensitivity of 91.5% to detect a PD patient off DBS, and a specificity of 97.2% representing the rate of correctly identified healthy subjects. We then calculated performance measures based on these sets of metrics and applied those results to characterize symptom severity in different motor tasks. Task-specific symptom severity measures correlated significantly with each other and with the Unified Parkinson’s Disease Rating Scale (UPDRS, part III, correlation of r2 = 0.79. Agreement rates between different measures ranged from 79.8 to 89.3%.ConclusionThe close correlation of PD patients’ various motor abnormalities quantified by different, task-specific severity measures suggests that these abnormalities are only facets of the underlying one-dimensional severity of motor deficits. The identification and characterization of this underlying motor deficit

  3. Anandamide and 2-AG Are Endogenously Present within the Laterodorsal Tegmental Nucleus: Functional Implications for a role of eCBs in arousal

    DEFF Research Database (Denmark)

    Soni, Neeraj; Prabhala, Bala Krishna; Mehta, Ved

    2017-01-01

    Previously, we presented electrophysiological evidence for presence in mice brain slices of functional cannabinoid type I receptors (CB1Rs) within the laterodorsal tegmentum (LDT), a brain stem nucleus critical in control of arousal and rapid eye movement (REM) sleep. Further, using pharmacological...... as cortical and motor activity characteristic of REM sleep....

  4. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin.

    Science.gov (United States)

    Pivetta, Chiara; Esposito, Maria Soledad; Sigrist, Markus; Arber, Silvia

    2014-01-30

    Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Quark matter formation in high energy nucleus-nucleus collisions - predictions and observations

    International Nuclear Information System (INIS)

    Otterlund, I.

    1983-01-01

    In this talk I give a short summary of the recent discussion around predictions and possible observations of quark-gluon plasma and fireballs in ultrarelativistic nucleus-nucleus collisions. In particular this talk is focused on heavy ion reactions at 200 A GeV. (orig./HSI)

  6. Cardiorespiratory interactions previously identified as mammalian are present in the primitive lungfish.

    Science.gov (United States)

    Monteiro, Diana A; Taylor, Edwin W; Sartori, Marina R; Cruz, André L; Rantin, Francisco T; Leite, Cleo A C

    2018-02-01

    The present study has revealed that the lungfish has both structural and functional features of its system for physiological control of heart rate, previously considered solely mammalian, that together generate variability (HRV). Ultrastructural and electrophysiological investigation revealed that the nerves connecting the brain to the heart are myelinated, conferring rapid conduction velocities, comparable to mammalian fibers that generate instantaneous changes in heart rate at the onset of each air breath. These respiration-related changes in beat-to-beat cardiac intervals were detected by complex analysis of HRV and shown to maximize oxygen uptake per breath, a causal relationship never conclusively demonstrated in mammals. Cardiac vagal preganglionic neurons, responsible for controlling heart rate via the parasympathetic vagus nerve, were shown to have multiple locations, chiefly within the dorsal vagal motor nucleus that may enable interactive control of the circulatory and respiratory systems, similar to that described for tetrapods. The present illustration of an apparently highly evolved control system for HRV in a fish with a proven ancient lineage, based on paleontological, morphological, and recent genetic evidence, questions much of the anthropocentric thinking implied by some mammalian physiologists and encouraged by many psychobiologists. It is possible that some characteristics of mammalian respiratory sinus arrhythmia, for which functional roles have been sought, are evolutionary relics that had their physiological role defined in ancient representatives of the vertebrates with undivided circulatory systems.

  7. Cardiorespiratory interactions previously identified as mammalian are present in the primitive lungfish

    Science.gov (United States)

    Monteiro, Diana A.; Taylor, Edwin W.; Sartori, Marina R.; Cruz, André L.; Rantin, Francisco T.; Leite, Cleo A. C.

    2018-01-01

    The present study has revealed that the lungfish has both structural and functional features of its system for physiological control of heart rate, previously considered solely mammalian, that together generate variability (HRV). Ultrastructural and electrophysiological investigation revealed that the nerves connecting the brain to the heart are myelinated, conferring rapid conduction velocities, comparable to mammalian fibers that generate instantaneous changes in heart rate at the onset of each air breath. These respiration-related changes in beat-to-beat cardiac intervals were detected by complex analysis of HRV and shown to maximize oxygen uptake per breath, a causal relationship never conclusively demonstrated in mammals. Cardiac vagal preganglionic neurons, responsible for controlling heart rate via the parasympathetic vagus nerve, were shown to have multiple locations, chiefly within the dorsal vagal motor nucleus that may enable interactive control of the circulatory and respiratory systems, similar to that described for tetrapods. The present illustration of an apparently highly evolved control system for HRV in a fish with a proven ancient lineage, based on paleontological, morphological, and recent genetic evidence, questions much of the anthropocentric thinking implied by some mammalian physiologists and encouraged by many psychobiologists. It is possible that some characteristics of mammalian respiratory sinus arrhythmia, for which functional roles have been sought, are evolutionary relics that had their physiological role defined in ancient representatives of the vertebrates with undivided circulatory systems. PMID:29507882

  8. Different role of TTX-sensitive voltage-gated sodium channel (NaV 1) subtypes in action potential initiation and conduction in vagal airway nociceptors.

    Science.gov (United States)

    Kollarik, M; Sun, H; Herbstsomer, R A; Ru, F; Kocmalova, M; Meeker, S N; Undem, B J

    2018-04-15

    The action potential initiation in the nerve terminals and its subsequent conduction along the axons of afferent nerves are not necessarily dependent on the same voltage-gated sodium channel (Na V 1) subunits. The action potential initiation in jugular C-fibres within airway tissues is not blocked by TTX; nonetheless, conduction of action potentials along the vagal axons of these nerves is often dependent on TTX-sensitive channels. This is not the case for nodose airway Aδ-fibres and C-fibres, where both action potential initiation and conduction is abolished by TTX or selective Na V 1.7 blockers. The difference between the initiation of action potentials within the airways vs. conduction along the axons should be considered when developing Na V 1 blocking drugs for topical application to the respiratory tract. The action potential (AP) initiation in the nerve terminals and its subsequent AP conduction along the axons do not necessarily depend on the same subtypes of voltage-gated sodium channels (Na V 1s). We evaluated the role of TTX-sensitive and TTX-resistant Na V 1s in vagal afferent nociceptor nerves derived from jugular and nodose ganglia innervating the respiratory system. Single cell RT-PCR was performed on vagal afferent neurons retrogradely labelled from the guinea pig trachea. Almost all of the jugular neurons expressed the TTX-sensitive channel Na V 1.7 along with TTX-resistant Na V 1.8 and Na V 1.9. Tracheal nodose neurons also expressed Na V 1.7 but, less frequently, Na V 1.8 and Na V 1.9. Na V 1.6 were expressed in ∼40% of the jugular and 25% of nodose tracheal neurons. Other Na V 1 α subunits were only rarely expressed. Single fibre recordings were made from the vagal nodose and jugular nerve fibres innervating the trachea or lung in the isolated perfused vagally-innervated preparations that allowed for selective drug delivery to the nerve terminal compartment (AP initiation) or to the desheathed vagus nerve (AP conduction). AP initiation in

  9. MDS-UPDRS to assess non-motor symptoms after STN DBS for Parkinson's disease.

    Science.gov (United States)

    Jafari, Nickey; Pahwa, Rajesh; Nazzaro, Jules M; Arnold, Paul M; Lyons, Kelly E

    2016-01-01

    To determine if the non-motor sections of the Movement Disorder Society's (MDS) version of the Unified Parkinson's Disease Rating Scale (UPDRS) could supplement the original UPDRS as a patient completed assessment of changes in non-motor symptoms in Parkinson's disease (PD) patients after bilateral subthalamic nucleus (STN) deep brain stimulation (DBS). Thirty PD patients who underwent bilateral STN DBS were assessed using the total UPDRS and the non-motor sections of the MDS-UPDRS prior to surgery and one year following surgery. This study focuses on non-motor symptoms as assessed by Part I of the UPDRS and Part 1A and 1B of the MDS-UPDRS. One year following surgery, no individual non-motor symptoms or the total mentation score of the UPDRS were significantly changed. In comparison, the MDS-UPDRS showed significant improvements in sleep and urinary problems and a trend towards improvement in anxiety, constipation, daytime sleepiness, fatigue and pain. This study provides evidence that the MDS-UPDRS non-motor sections, when completed by the patients, can supplement the original version of the UPDRS as an effective method of measuring changes in non-motor symptoms after DBS. It also reinforces the benefits of bilateral STN DBS on non-motor symptoms of PD.

  10. MPORTANCE OF PHYSICAL ACTIVITY IN OBESE CHILDREN IN RELATION TO MOTOR SKILLS A SYSTEMATIC REVIEW

    Directory of Open Access Journals (Sweden)

    Ganesh Sundaram Subramanian

    2014-12-01

    Full Text Available Background: Childhood obesity has reached epidemic proportions worldwide and is associated with increased cardio vascular mortality and morbidity in adult life. In children, obesity correlates strongly with a progressive reduction in the level of physical activity and changes in food habits. Methods: This study is a qualitative research study. A secondary data collection technique was utilized and conducted through a search of articles published between 2005 and 2014 in PubMed and Google scholar databases. The objective of the present study is to provide a systemic review of the available literature and outline the factors in early life that are associated with an increased risk of obesity in children there by leading to poor gross motor skill performance with the help of Anthropometric assessment, Body composition and Motor skills proficiency. Results: Importantly recent studies have demonstrated that exercise training improves vascular endothelial function and stimulation of pressure receptors leading to increased vagal activity in obese children. The current literature highlights the importance of adding exercise programs to clinics, schools and families for the physical and psychological wellbeing of children. Conclusion: Overall findings from the present review showed that normal children with physical exercise are more superior in motor skills compared to other peers. Results of the previous studies indicated that normal children’s are more efficient in bilateral coordination in greater balancing, efficient upper limb coordination and greater strength

  11. Theta burst magnetic stimulation over the pre-supplementary motor area improves motor inhibition.

    Science.gov (United States)

    Obeso, Ignacio; Wilkinson, Leonora; Teo, James T; Talelli, Penelope; Rothwell, John C; Jahanshahi, Marjan

    Stopping an ongoing motor response or resolving conflict induced by conflicting stimuli are associated with activation of a right-lateralized network of inferior frontal gyrus (IFG), pre-supplementary motor area (pre-SMA) and subthalamic nucleus (STN). However, the roles of the right IFG and pre-SMA in stopping a movement and in conflict resolution remain unclear. We used continuous theta burst stimulation (cTBS) to examine the involvement of the right IFG and pre-SMA in inhibition and conflict resolution using the conditional stop signal task. We measured stop signal reaction time (SSRT, measure of reactive inhibition), response delay effect (RDE, measure of proactive action restraint) and conflict induced slowing (CIS, measure of conflict resolution). Stimulation over the pre-SMA resulted in significantly shorter SSRTs (improved inhibition) compared to sham cTBS. This effect was not observed for CIS, RDE, or any other measures. cTBS over the right IFG had no effect on SSRT, CIS, RDE or on any other measure. The improvement of SSRT with cTBS over the pre-SMA suggests its critical contribution to stopping ongoing movements. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The intercalatus nucleus of Staderini.

    Science.gov (United States)

    Cascella, Marco

    2016-01-01

    Rutilio Staderini was one of the leading Italian anatomists of the twentieth century, together with some scientists, such as Giulio Chiarugi, Giovanni Vitali, and others. He was also a member of a new generation of anatomists. They had continued the tradition of the most famous Italian scientists, which started from the Renaissance up until the nineteenth century. Although he carried out important studies of neuroanatomy and comparative anatomy, as well as embryology, his name is rarely remembered by most medical historians. His name is linked to the nucleus he discovered: the Staderini nucleus or intercalated nucleus, a collection of nerve cells in the medulla oblongata located lateral to the hypoglossal nucleus. This article focuses on the biography of the neuroanatomist as well as the nucleus that carries his name and his other research, especially on comparative anatomy and embryology.

  13. Dynamics of hadronization in ultra-relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Friman, B.L.

    1986-01-01

    One of the main problems in the search for quark-gluon plasma in ultra-relativistic nucleus-nucleus collisions is finding a reliable signature for deconfinement. Several signatures have been suggested, e.g., dileptons with a spectrum characteristic of the plasma, an increase in the number of strange particles and effects due to the hadronization of the plasma. In this talk I will describe some recent work on the effects of the hadronization transition in the central rapidity region within the hydrodynamic model of Bjorken, Kajantie and McLerran. (orig.)

  14. The link between negative affect, vagal tone, and visceral sensitivity in quiescent Crohn's disease.

    Science.gov (United States)

    Rubio, A; Pellissier, S; Picot, A; Dantzer, C; Bonaz, B

    2014-08-01

    Autonomic dysfunction and mood disorders are frequently described in Crohn's disease (CD) and are known to influence visceral sensitivity. We addressed the link between vagal tone, negative affect, and visceral sensitivity in CD patients without concomitant features of irritable bowel syndrome (IBS). Rectal distensions to a discomfort threshold of 70% and onset of pain were performed in nine CD patients in remission and eight healthy controls. Autonomic parameters were evaluated with heart rate variability and electrodermal reactivity. We showed that CD patients had (i) higher scores of depressive symptomatology (12 ± 3 in patients vs 4 ± 1 in controls on the Center for Epidemiologic Studies-Depression Scale; p = 0.038), (ii) reduced vagal tone (HF 257 ± 84 ms(2) vs 1607 ± 1032 ms(2) , p = 0.043; LF 455 ± 153 ms(2) vs 1629 ± 585 ms(2) , p = 0.047), (iii) decreased sympathetic reactivity during an aversive stimulus, and (iv) higher tolerance to rectal distension pressures (43 ± 3 mmHg vs 30 ± 2 mmHg, p = 0.002) and low sensitivity index scores. In conclusion, our results provide preliminary evidence that patients with quiescent CD, in the absence of IBS, are hyposensate to experimental rectal distension. These data provide further evidence that anxiety and depressive symptomatology in addition to autonomic dysfunction modulate visceral pain perception in quiescent CD patients in the absence of IBS. © 2014 John Wiley & Sons Ltd.

  15. Brain stem origins of spinal projections in the lizard Tupinambis nigropunctatus.

    Science.gov (United States)

    Cruce, W L; Newman, D B

    1981-05-10

    In order to study brainstem origins of spinal projections, ten Tegu lizards (Tupinambis nigropunctatus) received complete or partial hemisections of the spinal cord at the first or second cervical segment. Their brains were processed for conventional Nissl staining. The sections were surveyed for the presence or absence of retrograde chromatolysis. Based on analysis and comparison of results from lesions in the various spinal cord funiculi, the following conclusions were reached: The interstitial nucleus projects ipsilaterally to the spinal cord via the medial longitudinal fasciculus, as does the middle reticular field of the metencephalon. The red nucleus and dorsal vagal motor nucleus both project contralaterally to the spinal cord via the dorsal part of the lateral funiculus. The superior reticular field in the rostral metencephalon and the ventrolateral vestibular nucleus project ipsilaterally to the spinal cord via the ventral funiculus. The dorsolateral metencephalic nucleus and the ventral part of the inferior reticular nucleus of the myelencephalon both project ipsilaterally to the spinal cord via the dorsal part of the lateral funiculus. Several brainstem nuclei in Tupinambis project bilaterally to the spinal cord. The ventrolateral metencephalic nucleus, for example, projects ipsilaterally to the cord via the medial longitudinal fasciculus and contralaterally via the dorsal part of the lateral funiculus. The dorsal part of the inferior reticular nucleus projects bilaterally to the spinal cord via the dorsal part of the lateral funiculus. The nucleus solitarius complex projects contralaterally via the dorsal part of the lateral funiculus but ipsilaterally via the middle of the lateral funiculus. The inferior raphe nucleus projects bilaterally to the spinal cord via the middle part of the lateral funiculus. These data suggest that supraspinal projections in reptiles, especially reticulospinal systems, are more highly differentiated than previously thought

  16. The picture of the nuclei disintegration mechanism - from hadron-nucleus and nucleus-nucleus collisions experimental investigations at high energies

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.; Chmielowski, W.

    1997-01-01

    The mechanism of the nuclei disintegration process in collisions of high-energy hadrons with nuclei is revealed experimentally. The disintegration appears as a complicated nuclear process developing in time and space in intranuclear matter, consisting at least of three stages which last together about 10 -24 - 10 -17 s after the impact. At the first stage, which lasts about 10 -24 - 10 -22 s, fast nucleons are densely emitted and the target-nucleus is locally damaged. At the second stage, lasting about 10 -22 - 10 -1 7 s, the damaged and unstable residual target nucleus uses to evaporate light fragments - mainly nucleons, deuterons, tritons, α-particles. At the final stage, the residual target-nucleus uses to split sometimes into two or more nuclear fragments

  17. Levodopa Effect on Basal Ganglia Motor Circuit in Parkinson's Disease.

    Science.gov (United States)

    Gao, Lin-Lin; Zhang, Jia-Rong; Chan, Piu; Wu, Tao

    2017-01-01

    To investigate the effects of levodopa on the basal ganglia motor circuit (BGMC) in Parkinson's disease (PD). Thirty PD patients with asymmetrical bradykinesia and 30 control subjects were scanned using resting-state functional MRI. Functional connectivity of the BGMC was measured and compared before and after levodopa administration in patients with PD. The correlation between improvements in bradykinesia and changes in BGMC connectivity was examined. In the PD-off state (before medication), the posterior putamen and internal globus pallidus (GPi) had decreased connectivity while the subthalamic nucleus (STN) had enhanced connectivity within the BGMC relative to control subjects. Levodopa administration increased the connectivity of posterior putamen- and GPi-related networks but decreased the connectivity of STN-related networks. Improvements in bradykinesia were correlated with enhanced connectivity of the posterior putamen-cortical motor pathway and with decreased connectivity of the STN-thalamo-cortical motor pathway. In PD patients with asymmetrical bradykinesia, levodopa can partially normalize the connectivity of the BGMC with a larger effect on the more severely affected side. Moreover, the beneficial effect of levodopa on bradykinesia is associated with normalization of the striato-thalamo-cortical motor and STN-cortical motor pathways. Our findings inform the neural mechanism of levodopa treatment in PD. © 2016 John Wiley & Sons Ltd.

  18. Proton rapidity distribution in nucleus-nucleus collisions at high energy

    International Nuclear Information System (INIS)

    Liu, F.H.

    2002-01-01

    The proton rapidity distributions in nucleus-nucleus collisions at the Alternating Gradient Synchrotron (AGS) and the Super Proton Synchrotron (SPS) energies are analysed by the revised thermalized cylinder model. The calculated results are compared and found to he in agreement with the experimental data of Si-AI and Si-Pb collisions at 14.6 A GeV/c, Pb-Pb collisions at 158 A GeV/c, and S-S collisions at 200 A GeV/c. (Author)

  19. ψ' and J/ψ suppression in high-energy nucleon-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Wong, Cheuk-Yin.

    1995-01-01

    The observed features of ψ' to J/ψ suppression in pA and nucleus-nucleus collisions can be explained in terms of a two-component absorption model. For the hard component of the absorption due to the interaction of the produced c bar c systems with baryons at high relative energies, the absorption cross sections are insensitive to the radii of the c bar c systems, as described by the Additive Quark Model. For the soft component due to the low energy c bar c interactions with soft particles produced by other baryon-baryon collisions, the absorption cross sections are greater for ψ' than for J/ψ, because the breakup threshold for ψ' is much smaller than for ψ

  20. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats.

    Science.gov (United States)

    Ishiwari, Keita; Madson, Lisa J; Farrar, Andrew M; Mingote, Susana M; Valenta, John P; DiGianvittorio, Michael D; Frank, Lauren E; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D

    2007-03-28

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5-10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 microg or 5.0 microg in 0.5 microl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core.

  1. The Baryon Production and Baryon Number Transfer in Hadron-Hadron, Hadron-Nucleus and Nucleus-Nucleus Collisions

    International Nuclear Information System (INIS)

    Szymanski, P.

    2006-09-01

    This work concerns soft hadronic interactions which in the Standard Model carry most of the observable cross-section but are not amenable to quantitative predictions due to the very nature of the QCD (Theory of Strong Interactions). In the low momentum transfer region the evolving coupling constant caused perturbation theory to break down. In this situation better experimental understanding of the physics phenomena is needed. One aspect of the soft hadronic interactions will be discussed in this work: transfer of the baryon number from the initial to the final state of the interaction. The past experimental knowledge on this process is presented, reasons for its unsatisfactory status are discussed and condition necessary for improvement are outlined: that is experimental apparatus with superior performance over the full range of available interactions: hadron-hadron collision, hadron-nucleus and nucleus-nucleus interactions. A consistent model-independent picture of the baryon number transfer process emerging from the data on the full range of interactions is shown. It offers serious challenge to theory to provide quantitative and detailed explanation of the measurements. (author)

  2. Production of strange and multistrange hadrons in nucleus-nucleus collisions at the SPS

    Czech Academy of Sciences Publication Activity Database

    Antinori, F.; Bakke, H.; Beusch, W.; Staroba, Pavel; Závada, Petr

    1999-01-01

    Roč. 661, - (1999), 130c-139c ISSN 0375-9474 Institutional research plan: CEZ:AV0Z1010920 Keywords : production * nucleus-nucleus collisions * hadrons * strangeness * model predictions Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 2.088, year: 1999

  3. Particle production in high energy nucleus--nucleus experiments at Berkeley

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1976-09-01

    A review of high energy nucleus-nucleus experiments performed at the Berkeley Bevalac is presented. Earlier results on projectile and target fragmentation and pion production are briefly summarized. More recent results on Coulomb effects in projectile fragmentation, heavy ion total cross-sections, γ-ray production, and charged particle multiplicities are presented. Also, recent experiments which may shed light on phenomena arising from the central collision of two energetic nuclei, including recent evidence for and against the observation of nuclear shock waves, are reviewed

  4. Kaonic nuclei and kaon-nucleus interactions

    CERN Document Server

    Ikuta, K; Masutani, K

    2002-01-01

    Although kaonic atoms provide valuable information concerning the K sup - -nucleus interaction at low energies, they cannot fully determine the K sup - - nucleus optical potential. We demonstrate that K sup - nuclear bound states, if they exist, can be useful in investigating the K sup - -nucleus interaction, especially in the interior of the nucleus. In order to show this possibility, we calculate the double differential cross sections for (K sup - , P) using the Green function method. (author)

  5. Effects of DBS, premotor rTMS, and levodopa on motor function and silent period in advanced Parkinson's disease

    DEFF Research Database (Denmark)

    Bäumer, Tobias; Hidding, Ute; Hamel, Wolfgang

    2009-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used and highly effective treatment for patients with advanced Parkinson's disease (PD). Repetitive TMS (rTMS) applied to motor cortical areas has also been shown to improve symptoms in PD and modulate motor cortical...... excitability. Here, we compared clinical and neurophysiological effects of STN stimulation with those of 1 Hz rTMS given to the dorsal premotor cortex (PMd) and those following intake of levodopa in a group of PD patients with advanced disease. Ten PD patients were studied on 2 consecutive days before...... and after surgery. Clinical effects were determined using the UPDRS motor score. Motor thresholds, motor-evoked potential (MEP) amplitudes during slight voluntary contraction, and the cortical silent periods (SP) were measured using TMS. Before surgery effects of levodopa and 1 Hz PMd rTMS and after surgery...

  6. The nucleus

    International Nuclear Information System (INIS)

    Marano, S.

    1998-01-01

    In 1911 E.Rutherford discovered the nucleus. Since then the nucleus has been investigated with more and more powerful tools but it remains the main field of study of nuclear physics. As it is impossible to take into account the interaction of all the nucleons, a theory based on the hypothesis that each nucleon undergoes an average interaction force has been set up. 2 representations have emerged: the Skyrme force and the Gogny force. Both representations match experimental results but are unable to describe fission yields or the multi-fragmentation of very hot nuclei. The mean-field theory can predict the shape of the nuclei according to its energy level. An experimental program involving the Vivitron accelerator and the Euroball detector is due to begin to validate it. By bombarding targets with exotic nuclei nuclear physicists detect new structures and test their collision models. About ten years ago nuclear halos were observed with lithium 11 nuclei. In this nucleus 2 neutrons move in a space larger than the nucleus itself. This discovery has triggered the elaboration of new theories based on nuclear clusters. At very high temperatures the mean-field theory predicts that nuclear matter acts as a fluid. Following the nuclei temperature different ways of decay appear: first evaporation then multi-fragmentation and vaporization. This ultimate stage occurs around 100 milliard celsius degree temperature when the nuclei decays in a multitude of light particles. Isomeric states are studied and could be seen as a way of storing energy. In a very pedagogical way this article gives information to understand the challenges that face nuclear physics today and highlights the contributions of Cea in this field. (A.C.)

  7. Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat.

    Science.gov (United States)

    Bron, Romke; Yin, Lei; Russo, Domenico; Furness, John B

    2013-08-15

    There is ambiguity concerning the distribution of neurons that express the ghrelin receptor (GHSR) in the medulla oblongata. In the current study we used a sensitive nonradioactive method to investigate GHSR mRNA distribution by in situ hybridization. Strong expression of the GHSR gene was confirmed in neurons of the facial nucleus (FacN, 7), the dorsal vagal complex (DVC), and the semicompact (but not compact) nucleus ambiguus (AmbSC and AmbC). In addition, expression of GHSR was found in other regions, where it had not been described before. GHSR-positive neurons were observed in the gustatory rostral nucleus tractus solitarius and in areas involved in vestibulo-ocular processing (such as the medial vestibular nucleus and the nucleus abducens). GHSR expression was also noted in ventral areas associated with cardiorespiratory control, including the gigantocellular reticular nucleus, the lateral paragigantocellular nucleus, the rostral and caudal ventrolateral medulla, the (pre)-Bötzinger complex, and the rostral and caudal ventrolateral respiratory group. However, GHSR-positive neurons in ventrolateral areas did not express markers for cardiovascular presympathetic vasomotor neurons, respiratory propriobulbar rhythmogenic neurons, or sensory interneurons. GHSR-positive cells were intermingled with catecholamine neurons in the dorsal vagal complex but these populations did not overlap. Thus, the ghrelin receptor occurs in the medulla oblongata in 1) second-order sensory neurons processing gustatory, vestibulo-ocular, and visceral sensation; 2) cholinergic somatomotor neurons of the FacN and autonomic preganglionic neurons of the DMNX and AmbSC; 3) cardiovascular neurons in the DVC, Gi, and LPGi; 4) neurons of as yet unknown function in the ventrolateral medulla. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.

  8. Improvements in well-being and vagal tone following a yogic breathing-based life skills workshop in young adults: Two open-trial pilot studies

    Directory of Open Access Journals (Sweden)

    Michael R Goldstein

    2016-01-01

    Conclusions: These findings suggest that a life skills workshop integrating yogic breathing techniques may provide self-empowering tools for enhancing well-being in young adults. Future research is indicated to further explore these effects, particularly in regards to vagal tone and other aspects of stress physiology.

  9. (--Epigallocatechin gallate attenuates NADPH-d/nNOS expression in motor neurons of rats following peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Tseng Chi-Yu

    2011-06-01

    Full Text Available Abstract Background Oxidative stress and large amounts of nitric oxide (NO have been implicated in the pathophysiology of neuronal injury and neurodegenerative disease. Recent studies have shown that (--epigallocatechin gallate (EGCG, one of the green tea polyphenols, has potent antioxidant effects against free radical-mediated lipid peroxidation in ischemia-induced neuronal damage. The purpose of this study was to examine whether EGCG would attenuate neuronal expression of NADPH-d/nNOS in the motor neurons of the lower brainstem following peripheral nerve crush. Thus, young adult rats were treated with EGCG (10, 25, or 50 mg/kg, i.p. 30 min prior to crushing their hypoglossal and vagus nerves for 30 seconds (left side, at the cervical level. The treatment (pre-crush doses of EGCG was continued from day 1 to day 6, and the animals were sacrificed on days 3, 7, 14 and 28. Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d histochemistry and neuronal nitric oxide synthase (nNOS immunohistochemistry were used to assess neuronal NADPH-d/nNOS expression in the hypoglossal nucleus and dorsal motor nucleus of the vagus. Results In rats treated with high dosages of EGCG (25 or 50 mg/kg, NADPH-d/nNOS reactivity and cell death of the motor neurons were significantly decreased. Conclusions The present evidence indicated that EGCG can reduce NADPH-d/nNOS reactivity and thus may enhance motor neuron survival time following peripheral nerve injury.

  10. Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical oscillations during movement.

    Science.gov (United States)

    Lipski, Witold J; Wozny, Thomas A; Alhourani, Ahmad; Kondylis, Efstathios D; Turner, Robert S; Crammond, Donald J; Richardson, Robert Mark

    2017-09-01

    Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate. NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also

  11. Dissipation in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Santanu Pal

    1984-01-01

    This paper deals with the mechanism of one- and two-body dissipations in nucleus-nucleus collisions. The average energy transferred to nuclear excitations is calculated using a time-dependent density matrix approach with lowest-order approximations. Considering the nuclei as Fermi gases, and using a gaussian-type NN interaction as the basic perturbation, simplified expressions are obtained for energy dissipations. These expressions are quite instructive to follow a number of interesting aspects of one- and two-body dissipations. It is theoretically observed that the memory time for the two-body dissipation is significantly smaller than that of one-body dissipation. A threshold-type dependence of the transferred energy on the relative velocity between the two nuclei is also observed. This threshold velocity is found to be related with the intrinsic nucleon kinetic energy for two-body dissipation and with the nuclear size for the one-body case. This observation further suggests that the total dissipated energy is shared between the two nuclei approximately in the ratio of their masses. The physical origin of these observations is also explained. Numerical calculations further illustrate some characteristic features of one- and two-body dissipations. (orig.)

  12. Single nucleon emission in relativistic nucleus-nucleus reactions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors

  13. Respiratory function after selective respiratory motor neuron death from intrapleural CTB–saporin injections

    Science.gov (United States)

    Nichols, Nicole L.; Vinit, Stéphane; Bauernschmidt, Lorene; Mitchell, Gordon S.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, paralysis and death by ventilatory failure. In rodent ALS models: 1) breathing capacity is preserved until late in disease progression despite major respiratory motor neuron death, suggesting unknown forms of compensatory respiratory plasticity; and 2) spinal microglia become activated in association with motor neuron cell death. Here, we report a novel experimental model to study the impact of respiratory motor neuron death on compensatory responses without many complications attendant to spontaneous motor neuron disease. In specific, we used intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB–SAP) to selectively kill motor neurons with access to the pleural space. Motor neuron survival, CD11b labeling (microglia), ventilatory capacity and phrenic motor output were assessed in rats 3–28 days after intrapleural injections of: 1) CTB–SAP (25 and 50 μg), or 2) unconjugated CTB and SAP (i.e. control; (CTB + SAP). CTB–SAP elicited dose-dependent phrenic and intercostal motor neuron death; 7 days post-25 μg CTB–SAP, motor neuron survival approximated that in end-stage ALS rats (phrenic: 36 ± 7%; intercostal: 56 ± 10% of controls; n = 9; p phrenic motor nucleus, indicating microglial activation; 2) decreased breathing during maximal chemoreceptor stimulation; and 3) diminished phrenic motor output in anesthetized rats (7 days post-25 μg, CTB–SAP: 0.3 ± 0.07 V; CTB + SAP: 1.5 ± 0.3; n = 9; p < 0.05). Intrapleural CTB–SAP represents a novel, inducible model of respiratory motor neuron death and provides an opportunity to study compensation for respiratory motor neuron loss. PMID:25476493

  14. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features.

    Science.gov (United States)

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Bedetti, Christophe; Brambati, Simona; Carrier, Julie; Monchi, Oury; Bourgouin, Pierre-Alexandre; Gaubert, Malo; Gagnon, Jean-François

    2018-02-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Comparison of spontaneous vs. metronome-guided breathing on assessment of vagal modulation using RR variability.

    Science.gov (United States)

    Bloomfield, D M; Magnano, A; Bigger, J T; Rivadeneira, H; Parides, M; Steinman, R C

    2001-03-01

    R-R interval variability (RR variability) is increasingly being used as an index of autonomic activity. High-frequency (HF) power reflects vagal modulation of the sinus node. Since vagal modulation occurs at the respiratory frequency, some investigators have suggested that HF power cannot be interpreted unless the breathing rate is controlled. We hypothesized that HF power during spontaneous breathing would not differ significantly from HF power during metronome-guided breathing. We measured HF power during spontaneous breathing in 20 healthy subjects and 19 patients with heart disease. Each subject's spontaneous breathing rate was determined, and the calculation of HF power was repeated with a metronome set to his or her average spontaneous breathing rate. There was no significant difference between the logarithm of HF power measured during spontaneous and metronome-guided breathing [4.88 +/- 0.29 vs. 5.29 +/- 0.30 ln(ms(2)), P = 0.32] in the group as a whole and when patients and healthy subjects were examined separately. We did observe a small (9.9%) decrease in HF power with increasing metronome-guided breathing rates (from 9 to 20 breaths/min). These data indicate that HF power during spontaneous and metronome-guided breathing differs at most by very small amounts. This variability is several logarithmic units less than the wide discrepancies observed between healthy subjects and cardiac patients with a heterogeneous group of cardiovascular disorders. In addition, HF power is relatively constant across the range of typical breathing rates. These data indicate that there is no need to control breathing rate to interpret HF power when RR variability (and specifically HF power) is used to identify high-risk cardiac patients.

  16. Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated...

    DEFF Research Database (Denmark)

    Vrang, N.; Larsen, P.J.; Mikkelsen, J.D.

    1995-01-01

    Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry......Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry...

  17. Lung vagal afferent activity in rats with bleomycin-induced lung fibrosis.

    Science.gov (United States)

    Schelegle, E S; Walby, W F; Mansoor, J K; Chen, A T

    2001-05-01

    Bleomycin treatment in rats results in pulmonary fibrosis that is characterized by a rapid shallow breathing pattern, a decrease in quasi-static lung compliance and a blunting of the Hering-Breuer Inflation Reflex. We examined the impulse activity of pulmonary vagal afferents in anesthetized, mechanically ventilated rats with bleomycin-induced lung fibrosis during the ventilator cycle and static lung inflations/deflations and following the injection of capsaicin into the right atrium. Bleomycin enhanced volume sensitivity of slowly adapting stretch receptors (SARs), while it blunted the sensitivity of these receptors to increasing transpulmonary pressure. Bleomycin treatment increased the inspiratory activity, while it decreased the expiratory activity of rapidly adapting stretch receptors (RARs). Pulmonary C-fiber impulse activity did not appear to be affected by bleomycin treatment. We conclude that the fibrosis-related shift in discharge profile and enhanced volume sensitivity of SARs combined with the increased inspiratory activity of RARs contributes to the observed rapid shallow breathing of bleomycin-induced lung fibrosis.

  18. The Gemin associates of survival motor neuron are required for motor function in Drosophila.

    Science.gov (United States)

    Borg, Rebecca; Cauchi, Ruben J

    2013-01-01

    Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2-8 and Unrip. The best-characterised function of this macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles and each SMN complex member has a key role during this process. So far, however, only little is known about the function of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We show that ectopic overexpression of the dead helicase Gem3(ΔN) mutant or knockdown of Gemin3 result in similar motor phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3(ΔN) overexpression mimics a loss-of-function. Based on the localisation pattern of Gem3(ΔN), we predict that the nucleus is the primary site of the antimorphic or dominant-negative mechanism of Gem3(ΔN)-mediated interference. Interestingly, phenotypes induced by human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3(ΔN). Through enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour, including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor function in vivo.

  19. Concurrent sympathetic activation and vagal withdrawal in hyperthyroidism: Evidence from detrended fluctuation analysis of heart rate variability

    Science.gov (United States)

    Chen, Jin-Long; Shiau, Yuo-Hsien; Tseng, Yin-Jiun; Chiu, Hung-Wen; Hsiao, Tzu-Chien; Wessel, Niels; Kurths, Jürgen; Chu, Woei-Chyn

    2010-05-01

    Despite many previous studies on the association between hyperthyroidism and the hyperadrenergic state, controversies still exist. Detrended fluctuation analysis (DFA) is a well recognized method in the nonlinear analysis of heart rate variability (HRV), and it has physiological significance related to the autonomic nervous system. In particular, an increased short-term scaling exponent α1 calculated from DFA is associated with both increased sympathetic activity and decreased vagal activity. No study has investigated the DFA of HRV in hyperthyroidism. This study was designed to assess the sympathovagal balance in hyperthyroidism. We performed the DFA along with the linear analysis of HRV in 36 hyperthyroid Graves’ disease patients (32 females and 4 males; age 30 ± 1 years, means ± SE) and 36 normal controls matched by sex, age and body mass index. Compared with the normal controls, the hyperthyroid patients revealed a significant increase ( Phyperthyroid 1.28±0.04 versus control 0.91±0.02), long-term scaling exponent α2 (1.05±0.02 versus 0.90±0.01), overall scaling exponent α (1.11±0.02 versus 0.89±0.01), low frequency power in normalized units (LF%) and the ratio of low frequency power to high frequency power (LF/HF); and a significant decrease ( Phyperthyroidism is characterized by concurrent sympathetic activation and vagal withdrawal. This sympathovagal imbalance state in hyperthyroidism helps to explain the higher prevalence of atrial fibrillation and exercise intolerance among hyperthyroid patients.

  20. Irradiation-induced motor disorder of the oesophagus

    Energy Technology Data Exchange (ETDEWEB)

    Thorpe, J.A.C.; Oakland, C.; Adams, I.P.; Matthews, H.R. (East Birmingham Hospital (UK); Birmingham General Hospital (UK))

    1982-08-01

    This case report describes the late development of an achalasia-like disturbance of oesophageal motility following irradiation to the neck for a pharyngeal lymphosarcoma. The radiological, manometric and endoscopic findings are recorded as well as laboratory investigations showing evidence of complete vagal denervation.

  1. Interleaving subthalamic nucleus deep brain stimulation to avoid side effects while achieving satisfactory motor benefits in Parkinson disease

    Science.gov (United States)

    Zhang, Shizhen; Zhou, Peizhi; Jiang, Shu; Wang, Wei; Li, Peng

    2016-01-01

    Abstract Background: Deep brain stimulation (DBS) of the subthalamic nucleus is an effective treatment for advanced Parkinson disease (PD). However, achieving ideal outcomes by conventional programming can be difficult in some patients, resulting in suboptimal control of PD symptoms and stimulation-induced adverse effects. Interleaving stimulation (ILS) is a newer programming technique that can individually optimize the stimulation area, thereby improving control of PD symptoms while alleviating stimulation-induced side effects after conventional programming fails to achieve the desired results. Methods: We retrospectively reviewed PD patients who received DBS programming during the previous 4 years in our hospital. We collected clinical and demographic data from 12 patients who received ILS because of incomplete alleviation of PD symptoms or stimulation-induced adverse effects after conventional programming had proven ineffective or intolerable. Appropriate lead location was confirmed with postoperative reconstruction images. The rationale and clinical efficacy of ILS was analyzed. Results: We divided our patients into 4 groups based on the following symptoms: stimulation-induced dysarthria and choreoathetoid dyskinesias, gait disturbance, and incomplete control of parkinsonism. After treatment with ILS, patients showed satisfactory improvement in PD symptoms and alleviation of stimulation-induced side effects, with a mean improvement in Unified PD Rating Scale motor scores of 26.9%. Conclusions: ILS is a newer choice and effective programming strategy to maximize symptom control in PD while decreasing stimulation-induced adverse effects when conventional programming fails to achieve satisfactory outcome. However, we should keep in mind that most DBS patients are routinely treated with conventional stimulation and that not all patients benefit from ILS. ILS is not recommended as the first choice of programming, and it is recommended only when patients have

  2. Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Feldman, J L

    1997-01-01

    Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro. J. Neurophysiol. 78: 2483-2492, 1997. The nucleus ambiguus contains vagal and glossopharyngeal motoneurons and preganglionic neurons involved in respiration, swallowing, vocalization......-stimulus orthodromic activation, using an electrode placed in the dorsomedial slice near the nucleus tractus solitarius, evoked single excitatory postsynaptic potentials (EPSPs) or short trains of EPSPs (500 ms to 1 s). However, tetanic stimulation (5 pulses, 10 Hz) induced voltage-dependent afterdepolarizations...

  3. Serotonin projection patterns to the cochlear nucleus.

    Science.gov (United States)

    Thompson, A M; Thompson, G C

    2001-07-13

    The cochlear nucleus is well known as an obligatory relay center for primary auditory nerve fibers. Perhaps not so well known is the neural input to the cochlear nucleus from cells containing serotonin that reside near the midline in the midbrain raphe region. Although the specific locations of the main, if not sole, sources of serotonin within the dorsal cochlear nucleus subdivision are known to be the dorsal and median raphe nuclei, sources of serotonin located within other cochlear nucleus subdivisions are not currently known. Anterograde tract tracing was used to label fibers originating from the dorsal and median raphe nuclei while fluorescence immunohistochemistry was used to simultaneously label specific serotonin fibers in cat. Biotinylated dextran amine was injected into the dorsal and median raphe nuclei and was visualized with Texas Red, while serotonin was visualized with fluorescein. Thus, double-labeled fibers were unequivocally identified as serotoninergic and originating from one of the labeled neurons within the dorsal and median raphe nuclei. Double-labeled fiber segments, typically of fine caliber with oval varicosities, were observed in many areas of the cochlear nucleus. They were found in the molecular layer of the dorsal cochlear nucleus, in the small cell cap region, and in the granule cell and external regions of the cochlear nuclei, bilaterally, of all cats. However, the density of these double-labeled fiber segments varied considerably depending upon the exact region in which they were found. Fiber segments were most dense in the dorsal cochlear nucleus (especially in the molecular layer) and the large spherical cell area of the anteroventral cochlear nucleus; they were moderately dense in the small cell cap region; and fiber segments were least dense in the octopus and multipolar cell regions of the posteroventral cochlear nucleus. Because of the presence of labeled fiber segments in subdivisions of the cochlear nucleus other than the

  4. Actomyosin contractility rotates the cell nucleus.

    Science.gov (United States)

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  5. Multi-quark effects in high energy nucleon-nucleon and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Besliu, C.; Caraciuc, I.; Jipa, A.; Olariu, A.; Topor-Pop, R.; Cotorobai, F.; Pantea, D.; Popa, L.; Popa, V.; Topor-Pop, V.

    1988-02-01

    Recent data obtained in two experiments performed in the framework of the Bucharest-Dubna collaboration are presented, i.e.: the observation of narrow dibaryonic resonances is neutron-proton interactions in 1mHBC at different momenta of incident neutrons in the range 1-5 GeV/c, and the cumulative production of negative pions in nucleus-nucleus interactions in SKM-200 streamer chamber at 4.5 GeV/c. (authors)

  6. Microscopic model of nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Harvey, B.G.

    1986-04-01

    The collision of two nuclei is treated as a collection of collisions between the nucleons of the projectile and those of the target nucleus. The primary projectile fragments contain only those nucleons that did not undergo a collision. The inclusive and coincidence cross sections result from the decay of the excited primary fragments. 15 refs., 5 figs

  7. K+ nucleus total cross sections

    International Nuclear Information System (INIS)

    Sawafta, R.

    1990-01-01

    The scattering of K + mesons from nuclei has attracted considerable interest in the last few years. The K + holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K + is capable of probing the entire volume of the nucleus. Single scattering of the K + with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K + is used to compare the nucleon in the nucleus with a free nucleon

  8. Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii

    Science.gov (United States)

    Boychuk, Carie R.; Gyarmati, Peter; Xu, Hong

    2015-01-01

    Changes in blood glucose concentration alter autonomic function in a manner consistent with altered neural activity in brain regions controlling digestive processes, including neurons in the brain stem nucleus tractus solitarii (NTS), which process viscerosensory information. With whole cell or on-cell patch-clamp recordings, responses to elevating glucose concentration from 2.5 to 15 mM were assessed in identified GABAergic NTS neurons in slices from transgenic mice that express EGFP in a subset of GABA neurons. Single-cell real-time RT-PCR was also performed to detect glutamic acid decarboxylase (GAD67) in recorded neurons. In most identified GABA neurons (73%), elevating glucose concentration from 2.5 to 15 mM resulted in either increased (40%) or decreased (33%) neuronal excitability, reflected by altered membrane potential and/or action potential firing. Effects on membrane potential were maintained when action potentials or fast synaptic inputs were blocked, suggesting direct glucose sensing by GABA neurons. Glucose-inhibited GABA neurons were found predominantly in the lateral NTS, whereas glucose-excited cells were mainly in the medial NTS, suggesting regional segregation of responses. Responses were prevented in the presence of glucosamine, a glucokinase (GCK) inhibitor. Depolarizing responses were prevented when KATP channel activity was blocked with tolbutamide. Whereas effects on synaptic input to identified GABAergic neurons were variable in GABA neurons, elevating glucose increased glutamate release subsequent to stimulation of tractus solitarius in unlabeled, unidentified neurons. These results indicate that GABAergic NTS neurons act as GCK-dependent glucose sensors in the vagal complex, providing a means of modulating central autonomic signals when glucose is elevated. PMID:26084907

  9. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling.

    Science.gov (United States)

    Ronveaux, Charlotte C; Tomé, Daniel; Raybould, Helen E

    2015-04-01

    Emerging evidence has suggested a possible physiologic role for peripheral glucagon-like peptide 1 (GLP-1) in regulating glucose metabolism and food intake. The likely site of action of GLP-1 is on vagal afferent neurons (VANs). The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the central nervous system and influences feeding behavior. Peripheral GLP-1 acts on VANs to inhibit food intake. The mechanism of the GLP-1 receptor (GLP-1R) is unlike other gut-derived receptors; GLP-1Rs change their cellular localization according to feeding status rather than their protein concentrations. It is possible that several gut peptides are involved in mediating GLP-1R translocation. The mechanism of peripheral GLP-1R translocation still needs to be elucidated. We review data supporting the role of peripheral GLP-1 acting on VANs in influencing glucose homeostasis and feeding behavior. We highlight evidence demonstrating that GLP-1 interacts with ghrelin and leptin to induce satiation. Our aim was to understand the mechanism of peripheral GLP-1 in the development of noninvasive antiobesity treatments. © 2015 American Society for Nutrition.

  10. Irradiation-induced motor disorder of the oesophagus

    International Nuclear Information System (INIS)

    Thorpe, J.A.C.; Oakland, C.; Adams, I.P.; Matthews, H.R.

    1982-01-01

    This case report describes the late development of an achalasia-like disturbance of oesophageal motility following irradiation to the neck for a pharyngeal lymphosarcoma. The radiological, manometric and endoscopic findings are recorded as well as laboratory investigations showing evidence of complete vagal denervation. (author)

  11. Random matrix theory and analysis of nucleus-nucleus collision at high energies

    International Nuclear Information System (INIS)

    Shahaliev, E.I.; Inst. of Radiation Problems, Baku; ); Kuznetsov, A.A.; Suleymanov, M.K.; ); Teryaev, O.V.; )

    2006-01-01

    A novel method for analysis of experimental data obtained at relativistic nucleus-nucleus collisions is proposed. The method, based on the ideas of Random Matrix Theory, is applied to detect systematic errors that occur at measurements of momentum distributions of emitted particles. The unfolded momentum distribution is well described by the Gaussian orthogonal ensemble of random matrices, when the uncertainty in the momentum distribution is maximal. The method is free from unwanted background contributions [ru

  12. Nucleus of the solitary tract in the C57BL/6J mouse: Subnuclear parcellation, chorda tympani nerve projections, and brainstem connections.

    Science.gov (United States)

    Ganchrow, Donald; Ganchrow, Judith R; Cicchini, Vanessa; Bartel, Dianna L; Kaufman, Daniel; Girard, David; Whitehead, Mark C

    2014-05-01

    The nucleus of the solitary tract (NST) processes gustatory and related somatosensory information rostrally and general viscerosensory information caudally. To compare its connections with those of other rodents, this study in the C57BL/6J mouse provides a subnuclear cytoarchitectonic parcellation (Nissl stain) of the NST into rostral, intermediate, and caudal divisions. Subnuclei are further characterized by NADPH staining and P2X2 immunoreactivity (IR). Cholera toxin subunit B (CTb) labeling revealed those NST subnuclei receiving chorda tympani nerve (CT) afferents, those connecting with the parabrachial nucleus (PBN) and reticular formation (RF), and those interconnecting NST subnuclei. CT terminals are densest in the rostral central (RC) and medial (M) subnuclei; less dense in the rostral lateral (RL) subnucleus; and sparse in the ventral (V), ventral lateral (VL), and central lateral (CL) subnuclei. CTb injection into the PBN retrogradely labels cells in the aforementioned subnuclei; RC and M providing the largest source of PBN projection neurons. Pontine efferent axons terminate mainly in V and rostral medial (RM) subnuclei. CTb injection into the medullary RF labels cells and axonal endings predominantly in V at rostral and intermediate NST levels. Small CTb injections within the NST label extensive projections from the rostral division to caudal subnuclei. Projections from the caudal division primarily interconnect subnuclei confined to the caudal division of the NST; they also connect with the area postrema. P2X2 -IR identifies probable vagal nerve terminals in the central (Ce) subnucleus in the intermediate/caudal NST. Ce also shows intense NADPH staining and does not project to the PBN. Copyright © 2013 Wiley Periodicals, Inc.

  13. Color oscillations of nucleons in a nucleus

    International Nuclear Information System (INIS)

    Petrov, V.A.; Smirnov, A.Yu.

    1987-01-01

    Possibility of nucleus description as an object consisting of quarks and gluons is considered. A model of two-nucleon interaction in a nucleus is presented and analytical expressions for the nucleus nucleon ground state wave functions and also for nuclear nucleon structure functions are obtained. The carried out analysis shows that the suggested model permits to express the nucleus structure functions at quark level only by means of nucleon and Δ-isobaric degrees of freedom

  14. Percolation Model of Nuclear Multifragmentation in High Energy Nucleus-Nucleus Interactions

    International Nuclear Information System (INIS)

    Abdel-Waged, Kh.

    1994-01-01

    A hybrid model based on Reggeon theory inspired model of nuclear distribution, which was successful in explaining the cascading of particles in high energy nucleus-nucleus interactions, and percolation model is proposed. In the framework of this model the yield of the fragment in p + Ag, Au at 350 GeV and C + Ag, Au at 3.6 GeV/nucleon as well as the charge distribution of fragments in Kr, Xe and U interactions with emulsion at ∼ 1 GeV/nucleon is correctly described. 32 refs., 3 figs

  15. Rimonabant induced anorexia in rodents is not mediated by vagal or sympathetic gut afferents

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Jelsing, Jacob; van de Wall, Esther H E M

    2009-01-01

    The selective CB1 receptor antagonist rimonabant is a novel weight control agent. Although CB1 receptors and binding sites are present in both the rodent central and peripheral nervous systems, including the afferent vagus nerve, the role of gut afferents in mediating anorexia following CB1R...... blockade is still debated. In the present study we examined rimonabant-induced anorexia in male C57BL/6J mice with subdiaphragmatic vagotomy (VGX) as well as in male Sprague-Dawley rats subjected to either subdiaphragmatic vagal deafferentation (SDA) alone or in combination with a complete celiac...... system, are required for rimonabant to inhibit food intake leading to the hypothesis that centrally located CB1 receptors are the prime mediators of rimonabant-induced anorexia....

  16. Reorganization of Motor Cortex by Vagus Nerve Stimulation Requires Cholinergic Innervation.

    Science.gov (United States)

    Hulsey, Daniel R; Hays, Seth A; Khodaparast, Navid; Ruiz, Andrea; Das, Priyanka; Rennaker, Robert L; Kilgard, Michael P

    2016-01-01

    Vagus nerve stimulation (VNS) paired with forelimb training drives robust, specific reorganization of movement representations in the motor cortex. The mechanisms that underlie VNS-dependent enhancement of map plasticity are largely unknown. The cholinergic nucleus basalis (NB) is a critical substrate in cortical plasticity, and several studies suggest that VNS activates cholinergic circuitry. We examined whether the NB is required for VNS-dependent enhancement of map plasticity in the motor cortex. Rats were trained to perform a lever pressing task and then received injections of the immunotoxin 192-IgG-saporin to selectively lesion cholinergic neurons of the NB. After lesion, rats underwent five days of motor training during which VNS was paired with successful trials. At the conclusion of behavioral training, intracortical microstimulation was used to document movement representations in motor cortex. VNS paired with forelimb training resulted in a substantial increase in the representation of proximal forelimb in rats with an intact NB compared to untrained controls. NB lesions prevent this VNS-dependent increase in proximal forelimb area and result in representations similar to untrained controls. Motor performance was similar between groups, suggesting that differences in forelimb function cannot account for the difference in proximal forelimb representation. Together, these findings indicate that the NB is required for VNS-dependent enhancement of plasticity in the motor cortex and may provide insight into the mechanisms that underlie the benefits of VNS therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Neurokinin NK1 and NK3 receptors as targets for drugs to treat gastrointestinal motility disorders and pain

    OpenAIRE

    Sanger, Gareth J

    2004-01-01

    NK1 and NK3 receptors do not appear to play significant roles in normal GI functions, but both may be involved in defensive or pathological processes. NK1 receptor antagonists are antiemetic, operating via vagal sensory and motor systems, so there is a need to study their effects on other gastro-vagal functions thought to play roles in functional bowel disorder's. Interactions between NK1 receptors and enteric nonadrenergic, noncholinergic motorneurones suggest a need to explore the role of t...

  18. Energy loss, range and fluence distributions, total reaction and projectile fragment production cross sections for proton-nucleus and nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Sihver, L.; Kanai, T.

    1992-07-01

    We have developed a computer code for calculations of energy loss (dE/dx) and range distributions for heavy ions in any media. The results from our calculations are in very good agreement with previous calculations. We have developed semiempirical total reaction cross section formulae for proton-nucleus (with Z p ≤26) and nucleus-nucleus (with Z p and Z t ≤26) reactions. These formulae apply for incident energies above 15 MeV and 100 MeV/nucleon respectively. From the total reaction cross sections, we can calculate the mean free paths and the fluence distributions of protons and heavy ions in any media. We have compared all the calculated reaction cross sections and the mean free paths with experimental data, and the agreement is good. We have also constructed a procedure for calculating projectile fragment production cross sections, by scaling semiempirical proton-nucleus partial cross section systematics. The scaling is performed using a scaling parameter deduced from our reaction cross sections formulae, and additional enhancements factors. All products with atomic number ranging from that of the projectile (Z p ) down to Z=2 can be calculated. The agreement between the calculated cross sections and the experimental data is better than earlier published results. (author)

  19. Neural connections between antrum and duodenum

    DEFF Research Database (Denmark)

    Kraglund, K; Schrøder, H D; Stødkilde-Jørgensen, H

    1983-01-01

    Postprandial coordination of antroduodenal motility partly takes place via intrinsic mural pathways. The nature and origin of these nerve fibers have not yet been clarified. In this investigation using fluorochromic substances injected into the antrum and duodenum it was demonstrated that common ...... central neurons for the antroduodenal area exist in the vagal nucleus....

  20. Transverse Energy in nucleus-nucleus collisions: A review

    International Nuclear Information System (INIS)

    Tincknell, M.

    1988-01-01

    The status of Transverse Energy (E/sub T/) in relativistic nucleus-nucleus collisions at the Brookhaven AGS and the CERN SPS is reviewed. The definition of E/sub T/ and its physical significance are discussed. The basic techniques and limitations of the experimental measurements are presented. The acceptances of the major experiments to be discussed are shown, along with remarks about their idiosyncrasies. The data demonstrate that the nuclear geometry of colliding spheres primarily determines the shapes of the observed spectra. Careful account of the acceptances is crucial to comparing and interpreting results. It is concluded that nuclear stopping power is high, and that the amount of energy deposited into the interaction volume is increasing with beam energy even at SPS energies. The energy densities believed to be obtained at the SPS are close to the critical values predicted for the onset of a quark-gluon plasma. 25 refs., 8 figs

  1. Role of heat shock protein Hsp25 in the response of the orofacial nuclei motor system to physiological stress

    Science.gov (United States)

    Murashov, A. K.; Talebian, S.; Wolgemuth, D. J.

    1998-01-01

    Although expression of the small heat shock protein family member Hsp25 has been previously observed in the central nervous system (CNS), both constitutively and upon induction, its function in the CNS remains far from clear. In the present study we have characterized the spatial pattern of expression of Hsp25 in the normal adult mouse brain as well as the changes in expression patterns induced by subjecting mice to experimental hyperthermia or hypoxia. Immunohistochemical analysis revealed a surprisingly restricted pattern of constitutive expression of Hsp25 in the brain, limited to the facial, trigeminal, ambiguus, hypoglossal and vagal motor nuclei of the brainstem. After hyperthermia or hypoxia treatment, significant increases in the levels of Hsp25 were observed in these same areas and also in fibers of the facial and trigeminal nerve tracts. Immunoblot analysis of protein lysates from brainstem also showed the same pattern of induction of Hsp25. Surprisingly, no other area in the brain showed expression of Hsp25, in either control or stressed animals. The highly restricted expression of Hsp25 implies that this protein may have a specific physiological role in the orofacial motor nuclei, which govern precise coordination between muscles of mastication and the pharynx, larynx, and face. Its rapid induction after stress further suggests that Hsp25 may serve as a specific molecular chaperone in the lower cholinergic motor neurons and along their fibers under conditions of stress or injury. Copyright 1998 Elsevier Science B.V.

  2. Aspects of Coulomb dissociation and interference in peripheral nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Nystrand, Joakim; Baltz, Anthony; Klein, Spencer R.

    2001-01-01

    Coherent vector meson production in peripheral nucleus-nucleus collisions is discussed. These interactions may occur for impact parameters much larger than the sum of the nuclear radii. Since the vector meson production is always localized to one of the nuclei, the system acts as a two-source interferometer in the transverse plane. By tagging the outgoing nuclei for Coulomb dissociation it is possible to obtain a measure of the impact parameter and thus the source separation in the interferometer. This is of particular interest since the life-time of the vector mesons are generally much shorter than the impact parameters of the collisions

  3. Neutrino-nucleus collision at intermediate energy

    International Nuclear Information System (INIS)

    Kosmas, T.S.; Oset, E.

    1999-01-01

    Neutrino-nucleus reactions at low and intermediate energy up to E ν = 500 MeV are studied for the most interesting nuclei from an experimental point of view. We focus on neutrino-nucleus cross-sections of semi-inclusive processes, for which recent measurements from radiochemical experiments at LAMPF and KARMEN laboratories are available. The method employed uses the modified Lindhard function for the description of the particle-hole excitations of the final nucleus via a local density approximation. (authors)

  4. Transverse and radial flow in intermediate energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Vestfall, D. Gary

    1997-01-01

    We have studied transverse and radial flow in nucleus-nucleus collisions ranging in energy from 15 to 155 MeV/nucleon. We have measured the impact parameter dependence of the balance energy for Ar + Sc and compared the results with Quantum Molecular Dynamics calculations with and without momentum dependence. We have shown that transverse flow and the balance energy dependence on the isospin of the system using the systems 58 Fe + 58 Fe, 58 Ni + 58 Ni, and 58 Mn + 58 Fe. These results are compared with Boltzmann-Uehling-Uehlenbeck calculations incorporating isospin-dependence. We have measured radial flow for Ar + Sc and find that about 50% of the observed energy is related to radial flow. (author)

  5. Nuclear energy release in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1998-01-01

    Energy release process in nuclear reactions induced by fast hadrons in hadron-nucleus collisions is discussed. Some portion of the internal nuclear energy is released when the locally damaged in a collision, and instable therefore, residual target nucleus transits itself into light nuclear fragments (nucleons, D, T) and a stable lighter final nucleus or some number of stable lighter nuclei. It is not excluded that in some of the collisions the induced intranuclear nuclear reactions may be energy overcompensating. Corresponding reconnaissance should be made - in analysing the nuclear reactions induced in hadron-nucleus collisions

  6. Thermal Bremsstrahlung probing nuclear multifragmentation in nucleus-nucleus collisions around the Fermi energy

    International Nuclear Information System (INIS)

    D'Enterria, D.G.

    2000-05-01

    The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (E γ > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar 36 + Au 197 , Ag 107 , Ni 58 , C 12 at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4π. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pnγ) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)

  7. Nucleon molecular orbitals and the transition mechanism between molecular orbitals in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Imanishi, B.; Misono, S.; von Oertzen, W.; Voit, H.

    1988-08-01

    The molecular orbitals of the nucleon(s) in nucleus-nucleus collisions are dynamically defined as a linear combination of nucleon single-particle orbits (LCNO) in a rotating frame by using the coupled-reaction-channel (CRC) theory. Nucleon molecular orbitals and the promotions of nucleon, - especially due to the Landau-Zener radial coupling are discussed with the method above mentioned. (author)

  8. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes.

    Science.gov (United States)

    Dusenkova, Svetlana; Ru, Fei; Surdenikova, Lenka; Nassenstein, Christina; Hatok, Jozef; Dusenka, Robert; Banovcin, Peter; Kliment, Jan; Tatar, Milos; Kollarik, Marian

    2014-11-01

    Acid-sensing ion channels (ASICs) have been implicated in esophageal acid sensing and mechanotransduction. However, insufficient knowledge of ASIC subunit expression profile in esophageal afferent nerves hampers the understanding of their role. This knowledge is essential because ASIC subunits form heteromultimeric channels with distinct functional properties. We hypothesized that the esophageal putative nociceptive C-fiber nerves (transient receptor potential vanilloid 1, TRPV1-positive) express multiple ASIC subunits and that the ASIC expression profile differs between the nodose TRPV1-positive subtype developmentally derived from placodes and the jugular TRPV1-positive subtype derived from neural crest. We performed single cell RT-PCR on the vagal afferent neurons retrogradely labeled from the esophagus. In the guinea pig, nearly all (90%-95%) nodose and jugular esophageal TRPV1-positive neurons expressed ASICs, most often in a combination (65-75%). ASIC1, ASIC2, and ASIC3 were expressed in 65-75%, 55-70%, and 70%, respectively, of both nodose and jugular TRPV1-positive neurons. The ASIC1 splice variants ASIC1a and ASIC1b and the ASIC2 splice variant ASIC2b were similarly expressed in both nodose and jugular TRPV1-positive neurons. However, ASIC2a was found exclusively in the nodose neurons. In contrast to guinea pig, ASIC3 was almost absent from the mouse vagal esophageal TRPV1-positive neurons. However, ASIC3 was similarly expressed in the nonnociceptive TRPV1-negative (tension mechanoreceptors) neurons in both species. We conclude that the majority of esophageal vagal nociceptive neurons express multiple ASIC subunits. The placode-derived nodose neurons selectively express ASIC2a, known to substantially reduce acid sensitivity of ASIC heteromultimers. ASIC3 is expressed in the guinea pig but not in the mouse vagal esophageal TRPV1-positive neurons, indicating species differences in ASIC expression. Copyright © 2014 the American Physiological Society.

  9. Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat.

    Science.gov (United States)

    Zhang, Min; Balmadrid, Christian; Kelley, Ann E

    2003-04-01

    The current studies were designed to evaluate whether incentive motivation for palatable food is altered after manipulations of opioid, GABAergic, and dopaminergic transmission within the nucleus accumbens. A progressive ratio schedule was used to measure lever-pressing for sugar pellets after microinfusion of drugs into the nucleus accumbens in non-food-deprived rats. The mu opioid agonist D-Ala2, NMe-Phe4, Glyo15-enkephalin and the indirect dopamine agonist amphetamine induced a marked increase in break point and correct lever-presses; the GABA(A) agonist muscimol did not affect breakpoint or lever-presses. The data suggest that opioid, dopaminergic, and GABAergic systems within the accumbens differentially modulate food-seeking behavior through mechanisms related to hedonic evaluation of food, incentive salience, and control of motor feeding circuits, respectively.

  10. The many facets of motor learning and their relevance for Parkinson's disease.

    Science.gov (United States)

    Marinelli, Lucio; Quartarone, Angelo; Hallett, Mark; Frazzitta, Giuseppe; Ghilardi, Maria Felice

    2017-07-01

    The final goal of motor learning, a complex process that includes both implicit and explicit (or declarative) components, is the optimization and automatization of motor skills. Motor learning involves different neural networks and neurotransmitters systems depending on the type of task and on the stage of learning. After the first phase of acquisition, a motor skill goes through consolidation (i.e., becoming resistant to interference) and retention, processes in which sleep and long-term potentiation seem to play important roles. The studies of motor learning in Parkinson's disease have yielded controversial results that likely stem from the use of different experimental paradigms. When a task's characteristics, instructions, context, learning phase and type of measures are taken into consideration, it is apparent that, in general, only learning that relies on attentional resources and cognitive strategies is affected by PD, in agreement with the finding of a fronto-striatal deficit in this disease. Levodopa administration does not seem to reverse the learning deficits in PD, while deep brain stimulation of either globus pallidus or subthalamic nucleus appears to be beneficial. Finally and most importantly, patients with PD often show a decrease in retention of newly learned skill, a problem that is present even in the early stages of the disease. A thorough dissection and understanding of the processes involved in motor learning is warranted to provide solid bases for effective medical, surgical and rehabilitative approaches in PD. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.

  11. Deep brain stimulation of the subthalamic nucleus alters frontal activity during spatial working memory maintenance of patients with Parkinson's disease.

    Science.gov (United States)

    Mayer, Jutta S; Neimat, Joseph; Folley, Bradley S; Bourne, Sarah K; Konrad, Peter E; Charles, David; Park, Sohee

    2016-08-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves the motor symptoms of Parkinson's disease (PD). The STN may represent an important relay station not only in the motor but also the associative cortico-striato-thalamocortical pathway. Therefore, STN stimulation may alter cognitive functions, such as working memory (WM). We examined cortical effects of STN-DBS on WM in early PD patients using functional near-infrared spectroscopy. The effects of dopaminergic medication on WM were also examined. Lateral frontal activity during WM maintenance was greater when patients were taking dopaminergic medication. STN-DBS led to a trend-level worsening of WM performance, accompanied by increased lateral frontal activity during WM maintenance. These findings suggest that STN-DBS in PD might lead to functional modifications of the basal ganglia-thalamocortical pathway during WM maintenance.

  12. Transverse-momentum distribution of produced particles in ultrarelativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ban-Hao, S.; Wong, C.

    1985-01-01

    In order to discern coherent or collective processes from incoherent processes in nucleus-nucleus reactions at high energies, we study the transverse-momentum distribution of the produced particles with an incoherent-multiple-collision model. In this model, the projectile nucleon makes successive inelastic collisions with nucleons in the target nucleus, the probability of such collisions being given by the thickness function and the nucleon-nucleon inelastic cross section. It is assumed that each baryon-baryon collision produces particles and degrades momenta just as a baryon-baryon collision in free space, and that there are no secondary collisions between the produced particles and the nucleons. We found that the average transverse momentum and the charged-multiplicity data at Fermilab and CERN ISR energies can be well explained by such a model. However, the average transverse momentum for some events observed by the Japanese-American cooperative emulsion experiment (JACEE) associated with large energy density in the central rapidity region differ markedly from the model results. Such a deviation indicates the presence of coherent or collective effects for these collisions and may indicate the possibility of a formation of quark-gluon plasma

  13. Fast detector for triggering on charged particle multiplicity for relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Agakishiev, G.; Man'yakov, P.K.; Drees, A.

    1997-01-01

    The simple and fast detector of charged particle multiplicity for relativistic nucleus-nucleus collision studies is performed. The multiplicity detector has been designed for the first level trigger of the CERES/NA45 experiment to study Pb-Au collisions at CERN SPS energies. The detector has allowed a realization of the 40 ns trigger for selection of events with definite impact parameter. The construction, operation characteristics, method of calibration, and testing results are described in detail

  14. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  15. Long-term increase in coherence between the basal ganglia and motor cortex after asphyxial cardiac arrest and resuscitation in developing rats.

    Science.gov (United States)

    Aravamuthan, Bhooma R; Shoykhet, Michael

    2015-10-01

    The basal ganglia are vulnerable to injury during cardiac arrest. Movement disorders are a common morbidity in survivors. Yet, neuronal motor network changes post-arrest remain poorly understood. We compared function of the motor network in adult rats that, during postnatal week 3, underwent 9.5 min of asphyxial cardiac arrest (n = 9) or sham intervention (n = 8). Six months after injury, we simultaneously recorded local field potentials (LFP) from the primary motor cortex (MCx) and single neuron firing and LFP from the rat entopeduncular nucleus (EPN), which corresponds to the primate globus pallidus pars interna. Data were analyzed for firing rates, power, and coherence between MCx and EPN spike and LFP activity. Cardiac arrest survivors display chronic motor deficits. EPN firing rate is lower in cardiac arrest survivors (19.5 ± 2.4 Hz) compared with controls (27.4 ± 2.7 Hz; P motor network after cardiac arrest. Increased motor network synchrony is thought to be antikinetic in primary movement disorders. Characterization of motor network synchrony after cardiac arrest may help guide management of post-hypoxic movement disorders.

  16. Model of homogeneous nucleus. Total and inelastic cross sections of nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Ponomarev, L.A.; Smorodinskaya, N.Ya.

    1985-01-01

    It is shown that the nucleon-nuckleus scattering amplitude at high energy can be easily calculated by generalization of the nucleon-nucleon scattering amplitude and satisfies a simple factorization relation. As distinct from the Glauber model, the suggested approach makes no use of the nucleonic structure of the nucleus and the hadron-nucleus scattering amplitude is not expressed in terms of hadron-nucleon scattering amplitudes. The energy dependence of total and inelastic cross sections is successfully described for a number of nuclei

  17. The thalamic reticular nucleus: structure, function and concept.

    Science.gov (United States)

    Pinault, Didier

    2004-08-01

    On the basis of theoretical, anatomical, psychological and physiological considerations, Francis Crick (1984) proposed that, during selective attention, the thalamic reticular nucleus (TRN) controls the internal attentional searchlight that simultaneously highlights all the neural circuits called on by the object of attention. In other words, he submitted that during either perception, or the preparation and execution of any cognitive and/or motor task, the TRN sets all the corresponding thalamocortical (TC) circuits in motion. Over the last two decades, behavioural, electrophysiological, anatomical and neurochemical findings have been accumulating, supporting the complex nature of the TRN and raising questions about the validity of this speculative hypothesis. Indeed, our knowledge of the actual functioning of the TRN is still sprinkled with unresolved questions. Therefore, the time has come to join forces and discuss some recent cellular and network findings concerning this diencephalic GABAergic structure, which plays important roles during various states of consciousness. On the whole, the present critical survey emphasizes the TRN's complexity, and provides arguments combining anatomy, physiology and cognitive psychology.

  18. Does vagal nerve stimulation affect body composition and metabolism? Experimental study of a new potential technique in bariatric surgery.

    Science.gov (United States)

    Sobocki, Jacek; Fourtanier, Gilles; Estany, Joan; Otal, Phillipe

    2006-02-01

    It has been shown that vagal nerve stimulation (VNS) can affect body mass. The aim of this study was to evaluate effect of VNS on body mass, body composition, metabolic rate, and plasma leptin and IGF-I levels. Eight female pigs were included in the study. Under general anesthesia, a bipolar electrode was implanted on the anterior vagal nerve by laparoscopy. Group A was treated by VNS, and group B was the control. After 4 weeks, stimulation was discontinued in group A and started in group B. The following parameters were evaluated: body mass, body composition, metabolic rate, plasma leptin and IGF-1 levels and intramuscular fat content (IMF). VNS attenuated body weight gain (2.28 +/- 3.47 kg vs 14.04 +/- 6.75 kg; P = .0112, for stimulation and nonstimulation periods, respectively), backfat gain (0.04 +/- 0.26 mm vs 2.31 +/- 1.12 mm) and IMF gain (-3.76 +/- 6.06 mg/g MS vs 7.24 +/- 12.90 mg/g MS; P = .0281). VNS resulted in lower backfat depth/loin muscle area ratio (0.33 +/- 0.017 vs 0.38 +/- 0.35; P = .0476). Lower plasma IGF-I concentration was found after VNS (-3.67 +/- -11.55 ng/mL vs 9.86 +/- 10.74 ng/mL; P = .0312). No significant changes in other parameters were observed. VNS affects body weight mainly at the expense of body fat resources; however, metabolic rate is not affected.

  19. Common features of neural activity during singing and sleep periods in a basal ganglia nucleus critical for vocal learning in a juvenile songbird.

    Directory of Open Access Journals (Sweden)

    Shin Yanagihara

    Full Text Available Reactivations of waking experiences during sleep have been considered fundamental neural processes for memory consolidation. In songbirds, evidence suggests the importance of sleep-related neuronal activity in song system motor pathway nuclei for both juvenile vocal learning and maintenance of adult song. Like those in singing motor nuclei, neurons in the basal ganglia nucleus Area X, part of the basal ganglia-thalamocortical circuit essential for vocal plasticity, exhibit singing-related activity. It is unclear, however, whether Area X neurons show any distinctive spiking activity during sleep similar to that during singing. Here we demonstrate that, during sleep, Area X pallidal neurons exhibit phasic spiking activity, which shares some firing properties with activity during singing. Shorter interspike intervals that almost exclusively occurred during singing in awake periods were also observed during sleep. The level of firing variability was consistently higher during singing and sleep than during awake non-singing states. Moreover, deceleration of firing rate, which is considered to be an important firing property for transmitting signals from Area X to the thalamic nucleus DLM, was observed mainly during sleep as well as during singing. These results suggest that songbird basal ganglia circuitry may be involved in the off-line processing potentially critical for vocal learning during sensorimotor learning phase.

  20. Interesting correlations among various parameters of charged secondaries in nucleus - nucleus interactions at 4.5 A GeV

    International Nuclear Information System (INIS)

    Khan, M. Saleem; Shukla, Praveen Prakash; Khushnood, H.

    2015-01-01

    The study of the characteristic of charged secondaries was the aim of most of the experiments on high energy nucleon-nucleon and nucleus-nucleus collisions. Investigation are carried out on the produced secondary charged particles with a common belief that these particles are more informative about the collisional dynamics and thus, could be effective in revealing the underlying physics of high energy relativistic interactions. So for understanding the mechanism of multiparticle production in high energy hadron-nucleus collisions, the correlations amongst the secondary charged particles are studied. Several workers have attempted to study the multiplicity correlations over widely different incident energies with different projectiles. The AALMT collaboration have also studied the multiplicity correlations in 200 GeV proton-nucleus collisions

  1. Syncope Associated with Subthalamic Nucleus Deep Brain Stimulation in a Patient with Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Dursun Aygun

    2013-01-01

    Full Text Available In advanced Parkinson's disease (PD, deep brain stimulation (DBS may be an alternative option for the treatment of motor symptoms. Side effects associated with subthalamic nucleus (STN DBS in patients with PD are emerging as the most frequent sensory and motor symptoms. DBS-related syncope is reported as extremely rare. We wanted to discuss the mechanisms of syncope associated with STN DBS in a patient with Parkinson's disease. Case report. Sixty-three-year-old female patient is followed up with diagnosis of idiopathic Parkinson's disease for 6 years in our clinic. The patient has undergone STN DBS due to painful dystonia and drug resistant tremor. During the operation, when the left STN was stimulated at 5 milliampere (mAmp, the patient developed presyncopal symptoms. However, when the stimulation was stopped symptoms improved. During the early period after the operation, when the right STN was stimulated at 1.3 millivolts (mV, she developed the pre-yncopal symptoms and then syncope. Our case shows that STN DBS may lead to directly autonomic symptoms resulting in syncope during stimulation-on (stim-on.

  2. K sup + nucleus total cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Sawafta, R.

    1990-01-01

    The scattering of K{sup +} mesons from nuclei has attracted considerable interest in the last few years. The K{sup +} holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K{sup +} is capable of probing the entire volume of the nucleus. Single scattering of the K{sup +} with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K{sup +} is used to compare the nucleon in the nucleus with a free nucleon.

  3. Microtubules move the nucleus to quiescence.

    Science.gov (United States)

    Laporte, Damien; Sagot, Isabelle

    2014-01-01

    The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.

  4. High energy nucleus-nucleus collisions at CERN: Signatures, physical observables and experimental results

    International Nuclear Information System (INIS)

    Harris, J.W.

    1988-02-01

    Experimental results on high energy nucleus-nucleus collisions have become available with the recent experiments at CERN utilizing 200 GeV/n oxygen and sulfur beams. Physics motivations for these experiments are presented: a description of predicted signatures for possible formation of a quark-gluon plasma and physical observables that are expected to provide important information for understanding the dynamics of these collisions. A presentation will be made of some of the first experimental results to emerge from this new field. 28 refs., 9 figs

  5. The isospin dependence of the nucleus-nucleus inelastic cross-section at high energy

    International Nuclear Information System (INIS)

    Rashdan, M.; Farhan, A.M.; Hassib, E.; Kareem, W. Abdel

    2006-01-01

    The isospin dependence of the nucleus-nucleus inelastic cross-section at high energy is investigated within the multiple scattering theory. The multiple integrals are evaluated by Monte Carlo method as well as by the optical limit approximation of the Glauber model. Calculations are performed for 14-23 N, 16-24 O and 18-26 F isotopes colliding with carbon target around 1 GeV. It is found that rms radii and the density distributions show a halo structure of 22 N, 23 O and 24 F

  6. Strangeness and charm production in nucleus-nucleus collisions at beam energies near the thresholds

    International Nuclear Information System (INIS)

    Senger, P.

    2001-01-01

    The creation of strangeness and charm in nucleus-nucleus collisions at threshold beam energies is discussed as a probe for compressed baryonic matter. Experimental data on strangeness production at SIS energies indicate that the properties of kaons and antikaons are modified in the dense nuclear medium. An experiment is proposed to explore the QCD phase diagram in the region of highest baryon densities. An important observable will be charm production close to threshold. (orig.)

  7. Anti p-nucleus interaction

    International Nuclear Information System (INIS)

    Peng, J.C.

    1986-05-01

    Status and future prospects of antiproton-nucleus scattering experiments are presented. These scattering experiments were conducted at antiproton beam momentums of 300 and 600 MeV/c on target nuclei of 6 Li, 12 C, 16 O, 18 O, 40 Ca, 48 Ca, and 208 Pb. Antiproton-proton reactions investigated antiproton-nucleus bound or resonant states in antiproton reactions with d, 6 Li, 12 C, 63 Cu, and 209 Bi. Inelastic scattering experiments investigated the spin-isospin dependence of the NN interactions. 19 refs., 1 fig., 1 tab

  8. Hadron-nucleus interactions with a small target-nucleus excitation

    International Nuclear Information System (INIS)

    Anzon, Z.V.; Chasnikov, I.Ya.; Shakhova, Ts.I.

    1981-01-01

    Hadron inelastic interactions in nuclear emulsion with a small target-nucleus excitation in the energy range 7.5-200 GeV have been studied. Possible reasons for the differences in production cross-section for events with even and odd number of S-particles are analysed

  9. Formation, structure, and evolution of boiling nucleus and interfacial tension between bulk liquid phase and nucleus

    Science.gov (United States)

    Wang, Xiao-Dong; Peng, Xiao-Feng; Tian, Yong; Wang, Bu-Xuan

    2005-05-01

    In this paper, the concept of the molecular free path is introduced to derive a criterion distinguishing active molecules from inactive molecules in liquid phase. A concept of the critical aggregation concentration (CAC) of active molecules is proposed to describe the physical configuration before the formation of a nucleus during vapor-liquid phase transition. All active molecules exist as monomers when the concentration of active molecules is lower than CAC, while the active molecules will generate aggregation once the concentration of the active molecules reaches CAC. However, these aggregates with aggregation number, N, smaller than five can steadily exist in bulk phase. The other excess active molecules can only produce infinite aggregation and form a critical nucleus of vapor-liquid phase transition. Without any outer perturbation the state point of CAC corresponds to the critical superheated or supercooled state. Meanwhile, a model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent of the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provides solid theoretical evidences to clarify the definition of nucleation rate and understand nucleation phenomenon with the insight into the physical nature.

  10. On the possible detection of quantum-mechanical interferences between gravitational forces and nucleus-nucleus Coulomb forces

    International Nuclear Information System (INIS)

    Silveira, R. da

    1996-07-01

    Possible effects of quantum-mechanical interferences between gravitational forces and the nucleus-nucleus Coulomb interaction are discussed. It is shown that, although very small, these effects could be measured using low energy scattering between identical heavy nuclei, e.g. for the system 208 Pb + 208 Pb (E L = 5 MeV). (author)

  11. Regulation of the Bcas1 and Baiap3 transcripts in the subthalamic nucleus in mice recovering from MPTP toxicity

    DEFF Research Database (Denmark)

    Lauridsen, J B; Johansen, J L; Rekling, J C

    2011-01-01

    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposure leads to significant and irreversible damage to dopaminergic neurons in both mice and humans. While MPTP exposure in humans causes permanent symptoms of Parkinson's disease, MPTP treated mice will recover behaviorally over a 3-week period....... This mouse specific recovery might be linked to transcriptional changes in the basal ganglia enabling mice to maintain normal motor function in spite of low striatal dopamine levels. Laser microdissection was used to isolate the subthalamic nucleus from mice 7 and 28 days following MPTP exposure. High...

  12. Dynamics of hadron-nucleus interactions

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1981-07-01

    Recent progress in diffraction theory shows that proton-nucleus scattering at nonforward angles is dominated by the interference of waves from two or more bright spots. Analytic formulas based on asymptotic theories of diffraction yield valuable new insights into the scattering and these formulas can be readily extended to illuminate the role of dynamical ingredients, i.e., the nucleon-nucleon amplitudes. The governing parameters of the diffraction and some direct connections between the observed cross sections and the input dynamics are reviewed. New information regarding the nucleon-nucleon parameters based on recent phase shift analyses show some systematic differences from the effective NN amplitudes which produce fits to proton-nucleus diffraction data. Recent progress in understanding the role of Δ-isobars in proton-nucleus dynamics is reviewed. 126 references

  13. Transport of glutathione into the nucleus.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine

    2014-10-01

    The tripeptide thiol glutathione (GSH) is present in the nucleus of plant and animal cells. However, the functions of GSH in the nucleus remain poorly characterised. GSH appears to become sequestered in the nucleus at the early stages of the cell cycle. As part of our search for proteins that may be involved in GSH transport into the nucleus, we studied the functions of the nucleoporin called Alacrima Achalasia aDrenal Insufficiency Neurologic disorder (ALADIN). ALADIN is encoded by the Achalasia-Addisonianism-Alacrimia (AAAS) gene in mammalian cells. Defects in ALADIN promote adrenal disorders and lead to the triple A syndrome in humans. The ALADIN protein localizes to the nuclear envelope in Arabidopsis thaliana and interacts with other components of the nuclear pore complex (NPC). We characterised the functions of the ALADIN protein in an Arabidopsis thaliana T-DNA insertion knockout mutant, which shows slow growth compared to the wild type. Copyright © 2014. Published by Elsevier Inc.

  14. High cardiac vagal control is related to better subjective and objective sleep quality.

    Science.gov (United States)

    Werner, Gabriela G; Ford, Brett Q; Mauss, Iris B; Schabus, Manuel; Blechert, Jens; Wilhelm, Frank H

    2015-03-01

    Cardiac vagal control (CVC) has been linked to both physical and mental health. One critical aspect of health, that has not received much attention, is sleep. We hypothesized that adults with higher CVC--operationalized by high-frequency heart rate variability (HF-HRV)--will exhibit better sleep quality assessed both subjectively (i.e., with Pittsburgh Sleep Quality Index) and objectively (i.e., with polysomnography). HF-HRV was measured in 29 healthy young women during an extended neutral film clip. Participants then underwent full polysomnography to obtain objective measures of sleep quality and HF-HRV during a night of sleep. As expected, higher resting HF-HRV was associated with higher subjective and objective sleep quality (i.e., shorter sleep latency and fewer arousals). HF-HRV during sleep (overall or separated by sleep phases) showed less consistent relationships with sleep quality. These findings indicate that high waking CVC may be a key predictor of healthy sleep. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Practice Parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology.

    Science.gov (United States)

    Pahwa, R; Factor, S A; Lyons, K E; Ondo, W G; Gronseth, G; Bronte-Stewart, H; Hallett, M; Miyasaki, J; Stevens, J; Weiner, W J

    2006-04-11

    To make evidence-based treatment recommendations for the medical and surgical treatment of patients with Parkinson disease (PD) with levodopa-induced motor fluctuations and dyskinesia. To that end, five questions were addressed. 1. Which medications reduce off time? 2. What is the relative efficacy of medications in reducing off time? 3. Which medications reduce dyskinesia? 4. Does deep brain stimulation (DBS) of the subthalamic nucleus (STN), globus pallidus interna (GPi), or ventral intermediate (VIM) nucleus of the thalamus reduce off time, dyskinesia, and antiparkinsonian medication usage and improve motor function? 5. Which factors predict improvement after DBS? A 10-member committee including movement disorder specialists and general neurologists evaluated the available evidence based on a structured literature review including MEDLINE, EMBASE, and Ovid databases from 1965 through June 2004. 1. Entacapone and rasagiline should be offered to reduce off time (Level A). Pergolide, pramipexole, ropinirole, and tolcapone should be considered to reduce off time (Level B). Apomorphine, cabergoline, and selegiline may be considered to reduce off time (Level C). 2. The available evidence does not establish superiority of one medicine over another in reducing off time (Level B). Sustained release carbidopa/levodopa and bromocriptine may be disregarded to reduce off time (Level C). 3. Amantadine may be considered to reduce dyskinesia (Level C). 4. Deep brain stimulation of the STN may be considered to improve motor function and reduce off time, dyskinesia, and medication usage (Level C). There is insufficient evidence to support or refute the efficacy of DBS of the GPi or VIM nucleus of the thalamus in reducing off time, dyskinesia, or medication usage, or to improve motor function. 5. Preoperative response to levodopa predicts better outcome after DBS of the STN (Level B).

  16. Localization of mGluR5, GABAB, GABAA, and cannabinoid receptors on the vago-vagal reflex pathway responsible for transient lower esophageal sphincter relaxation in humans: an immunohistochemical study

    NARCIS (Netherlands)

    Rohof, W. O.; Aronica, E.; Beaumont, H.; Troost, D.; Boeckxstaens, G. E.

    2012-01-01

    Background Transient lower esophageal sphincter relaxations (TLESRs) are the predominant mechanisms underlying gastro-esophageal reflux. TLESRs are mediated by a vago-vagal reflex, which can be blocked by interaction with metabotropic Glutamate Receptor 5 (mGluR5), ?-aminobutyric acid type B

  17. Zolpidem improves neuropsychiatric symptoms and motor dysfunction in a patient with Parkinson's disease after deep brain stimulation.

    Science.gov (United States)

    Huang, Hung-Yu; Hsu, Yi-Ting; Wu, Yu-Chin; Chiou, Shang-Ming; Kao, Chia-Hung; Tsai, Mu-Chieh; Tsai, Chon-Haw

    2012-06-01

    To illustrate the beneficial effect of zolpidem on the neuropsychiatric and motor symptoms in a patient with Parkinson disease (PD) after bilateral subthalamic nucleus deep brain stimulation. The 61-year-old housewife was diagnosed to have PD for 12 years with initial presentation of clumsiness and rest tremor of right limbs. She was referred to our hospital in March 2009 due to shortening of drug beneficial period since 3 years ago and on-phase dyskinesia in recent 2 years. Bilateral STN DBS was conducted on 18 June, 2009. Fluctuating spells of mental confusion were developed on the next day after surgery. Electric stimuli via DBS electrodes were delivered with parameters of 2 volts, 60 μs, 130 Hz on bilateral STN 32 days after DBS. The incoherent behaviors and motor fluctuation remained to occur. The beneficial effect of zolpidem on her neuropsychiatric and motor symptoms was detected incidentally in early July 2009. She could chat normally with her caregiver and walk with assistance after taking zolpidem. The beneficial period may last for 2 hours. Zolpidem was then given in dosage of 10 mg three times per day. The neuropsychiatric inventory was scored 56 during zolpidem 'off' and 30 during zolpidem 'on'. To understand the intriguing feature, we conducted FDG-PET during 'off' and 'on' zolpidem conditions. The results revealed that the metabolism was decreased in the right frontal, parietal cortex and caudate nucleus during zolpidem 'off'. These cool spots can be partially restored by zolpidem. Zolpidem ameliorated the neuropsychiatric and parkinsonian motor symptom in the PD patient. Since GABAA benzodiazepine receptors are widely distributed throughout the central nervous system, zolpidem probably acts via modulating structures lying within the cortico-subcortical loop or by direct effect on these cortical regions.

  18. Nucleus management with irrigating vectis

    Directory of Open Access Journals (Sweden)

    Srinivasan Aravind

    2009-01-01

    Full Text Available The main objective in modern cataract surgery is to achieve a better unaided visual acuity with rapid post-surgical recovery and minimal surgery-related complications. Early visual rehabilitation and better unaided vision can be achieved only by reducing the incision size. In manual small incision cataract surgery (MSICS, incision is between 5.5 to 7 mm. Once the nucleus is prolapsed into the anterior chamber, it can be extracted through the tunnel. Nucleus extraction with an irrigating vectis is a very simple technique, which combines mechanical and hydrostatic forces to express out the nucleus. This technique is time-tested with good results and more than 95% of nuclei in MSICS are extracted in this way offering all the merits of phacoemulsification with the added benefits of having wider applicability, better safety, shorter learning curve and lower cost.

  19. Neuron–Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region

    Science.gov (United States)

    Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-01-01

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate–glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron–glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP. PMID:28954391

  20. Neuron-Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region.

    Science.gov (United States)

    Hossain, Mohammad Zakir; Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-09-26

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate-glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron-glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP.

  1. Vagal Blocking Improves Glycemic Control and Elevated Blood Pressure in Obese Subjects with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    S. Shikora

    2013-01-01

    Full Text Available Background. An active device that downregulates abdominal vagal signalling has resulted in significant weight loss in feasibility studies. Objective. To prospectively evaluate the effect of intermittent vagal blocking (VBLOC on weight loss, glycemic control, and blood pressure (BP in obese subjects with DM2. Methods. Twenty-eight subjects were implanted with a VBLOC device (Maestro Rechargeable System at 5 centers in an open-label study. Effects on weight loss, HbA1c, fasting blood glucose, and BP were evaluated at 1 week to 12 months. Results. 26 subjects (17 females/9 males, 51±2 years, BMI 37±1 kg/m2, mean ± SEM completed 12 months followup. One serious adverse event (pain at implant site was easily resolved. At 1 week and 12 months, mean excess weight loss percentages (% EWL were 9±1% and 25±4% (P<0.0001, and HbA1c declined by 0.3±0.1% and 1.0±0.2% (P=0.02, baseline 7.8±0.2%. In DM2 subjects with elevated BP (n=15, mean arterial pressure reduced by 7±3 mmHg and 8±3 mmHg (P=0.04, baseline 100 ± 2 mmHg at 1 week and 12 months. All subjects MAP decreased by 3 ± 2 mmHg (baseline 95 ± 2 mmHg at 12 months. Conclusions. VBLOC was safe in obese DM2 subjects and associated with meaningful weight loss, early and sustained improvements in HbA1c, and reductions in BP in hypertensive DM2 subjects. This trial is registered with ClinicalTrials.gov NCT00555958.

  2. The dentate nucleus in children: normal development and patterns of disease

    Energy Technology Data Exchange (ETDEWEB)

    McErlean, Aoife; Abdalla, Khaled; Donoghue, Veronica; Ryan, Stephanie [Children' s University Hospital, Radiology Department, Dublin (Ireland)

    2010-03-15

    The dentate nuclei lie deep within the cerebellum and play a vital role in the pathways involved in fine motor control and coordination. They are susceptible to a variety of diseases. Some pathological processes preferentially affect the dentate nuclei, while concomitant basal ganglia or white matter involvement can be a striking finding in others. A familiarity with the normal appearance of the dentate nuclei at different ages in combination with the radiological distribution of pathology in the brain allows the paediatric radiologist to develop a logical approach to the interpretation of MR imaging of these deep cerebellar nuclei. In this article we review the normal appearance and MR features of the dentate nuclei, including changes that are seen with myelination. We describe the specific imaging characteristics of childhood diseases that involve the dentate nuclei, and develop a systematic approach to the differential diagnosis of dentate nucleus abnormalities on MR imaging. (orig.)

  3. The dentate nucleus in children: normal development and patterns of disease

    International Nuclear Information System (INIS)

    McErlean, Aoife; Abdalla, Khaled; Donoghue, Veronica; Ryan, Stephanie

    2010-01-01

    The dentate nuclei lie deep within the cerebellum and play a vital role in the pathways involved in fine motor control and coordination. They are susceptible to a variety of diseases. Some pathological processes preferentially affect the dentate nuclei, while concomitant basal ganglia or white matter involvement can be a striking finding in others. A familiarity with the normal appearance of the dentate nuclei at different ages in combination with the radiological distribution of pathology in the brain allows the paediatric radiologist to develop a logical approach to the interpretation of MR imaging of these deep cerebellar nuclei. In this article we review the normal appearance and MR features of the dentate nuclei, including changes that are seen with myelination. We describe the specific imaging characteristics of childhood diseases that involve the dentate nuclei, and develop a systematic approach to the differential diagnosis of dentate nucleus abnormalities on MR imaging. (orig.)

  4. Open-nucleus theory for beef cattle breeding systems: A revisitation

    International Nuclear Information System (INIS)

    Recami, E.; Packer, I.U.; Tenorio Vasconselos, M.

    1990-07-01

    A theoretical model for Open-Nucleus Systems is herein described in the case of beef cattle breeding. One of the starting points is the observation that the majority of the standard theoretical models for open-nucleus breeding systems were constructed for the case of discrete generations, i.e. for the cases in which the dam average fertility coefficient is f>2. In the case of cattle herds, when only a fraction of the breeding dams can be replaced, it is therefore worthwhile to build up anew a rather rigorous theoretical model, with overlapping generations, and check its predictions. Namely, we apply the new formulae - explicitly depending on β F , ν F , ν M , K and R - to the system in which all breeding sires are in the Nucleus (and are reared in the nucleus itself), and are mated to both Nucleus and Base dams via artificial insemination. Optimal system design has been looked for by the NAG and MINOS computation programs, operated on Vax computers. Opening the nucleus in this situation results to be very effective since the (optimum) asymptotic genetic gain per generation for ''closed nucleus'' systems (x=0) results to be, when e.g. R≡F/M≅200, more than 40% lower than the (optimum) asymptotic genetic gain, G*, for open nucleus systems. Optimal design corresponds to: (i) having a fraction p≅16% of the female population in the nucleus; (ii) replacing practically all the (nucleus) breeding sires by the best (nucleus born) males: ν M =97/98%; (iii) using for dam replacement all (b≅100%) the (base and nucleus born) females; (iv) implementing a high upward gene migration (x≅80%), while all the surplus nucleus-born females are to be used as base replacements. This corresponds to replace, at each generation, also almost all the nucleus dams (ν F ≅95/100%), and the largest possible fraction of base dams (β F ≅30%, a value changing with p). 17 refs

  5. Calculations of nucleus-nucleus microscopic optical potentials at intermediate energies

    International Nuclear Information System (INIS)

    Hanna, K.M.; Kuhtina, I.N.; Lukyanov, K.V.; Lukyanov, V.K.; Zemlyanaya, E.V.; Slowinski, B.

    2006-01-01

    Three types of microscopic nucleus-nucleus optical potentials are constructed using three patterns for their real and imaginary parts. Two of these patterns are the real V H and imaginary W H parts of the potential which reproduces the high-energy amplitude of scattering in the microscopic Glauber-Sitenko theory. Another template VDF is calculated within the standard double-folding model with the exchange term included. For either of the three tested potentials, the contribution of real and imaginary patterns is adjusted by introducing two fitted factors. Correspondingly, using numerical code ECIS, the elastic differential cross-sections were fitted to the experimental data on scattering of the 16,17 O heavy-ions at about hundred Mev/nucleon on various target-nuclei. The relativization effect is also included. The tables of the obtained factors which renormalize the strengths of the real and (or) imaginary parts of the calculated microscopic potentials are given

  6. The momentum distribution inside nucleus

    International Nuclear Information System (INIS)

    Fujita, T.

    1985-01-01

    Discussions are made on several reactions which can determine the momentum distribution inside nucleus. The first reaction discussed is the high energy heavy ion collision. This reaction involves many nucleons which interact strongly. Therefore, one must be careful for any possible final state interactions. The expression for the single particle momentum distribution is given. And it can be said that the expression is consistent with the description of the energetic neutrons from muon capture by heavy nucleus. The best way to determine the momentum distribution would be the lepton-nucleus scattering since it does not involve the strong interaction in the initial channel. Another reaction discussed is the backward proton production, which is governed by quite complicated reaction processes. Therefore, the determination of the momentum distribution is only indirect. Noverthless, it is found that this reaction presents a very interesting and important information on the momentum distribution. (Aoki, K.)

  7. Deglutitive inhibition, latency between swallow and esophageal contractions and primary esophageal motor disorders.

    Science.gov (United States)

    Sifrim, Daniel; Jafari, Jafar

    2012-01-01

    Swallowing induces an inhibitory wave that is followed by a contractile wave along the esophageal body. Deglutitive inhibition in the skeletal muscle of the esophagus is controlled in the brain stem whilst in the smooth muscle, an intrinsic peripheral control mechanism is critical. The latency between swallow and contractions is determined by the pattern of activation of the inhibitory and excitatory vagal pathways, the regional gradients of inhibitory and excitatory myenteric nerves, and the intrinsic properties of the smooth muscle. A wave of inhibition precedes a swallow-induced peristaltic contraction in the smooth muscle part of the human oesophagus involving both circular and longitudinal muscles in a peristaltic fashion. Deglutitive inhibition is necessary for drinking liquids which requires multiple rapid swallows (MRS). During MRS the esophageal body remains inhibited until the last of the series of swallows and then a peristaltic contraction wave follows. A normal response to MRS requires indemnity of both inhibitory and excitatory mechanisms and esophageal muscle. MRS has recently been used to assess deglutitive inhibition in patients with esophageal motor disorders. Examples with impairment of deglutitive inhibition are achalasia of the LES and diffuse esophageal spasm.

  8. Asymmetric right/left encoding of emotions in the human subthalamic nucleus

    Directory of Open Access Journals (Sweden)

    Renana eEitan

    2013-10-01

    Full Text Available Emotional processing is lateralized to the non-dominant brain hemisphere. However, there is no clear spatial model for lateralization of emotional domains in the basal ganglia. The subthalamic nucleus (STN, an input structure in the basal ganglia network, plays a major role in the pathophysiology of Parkinson’s disease (PD. This role is probably not limited only to the motor deficits of PD, but may also span the emotional and cognitive deficits commonly observed in PD patients. Beta oscillations (12-30Hz, the electrophysiological signature of PD, are restricted to the dorsolateral part of the STN that corresponds to the anatomically defined sensorimotor STN. The more medial, more anterior and more ventral parts of the STN are thought to correspond to the anatomically defined limbic and associative territories of the STN. Surprisingly, little is known about the electrophysiological properties of the non-motor domains of the STN, nor about electrophysiological differences between right and left STNs.In this study, microelectrodes were utilized to record the STN spontaneous spiking activity and responses to vocal non-verbal emotional stimuli during deep brain stimulation (DBS surgeries in human PD patients. The oscillation properties of the STN neurons were used to map the dorsal oscillatory and the ventral non-oscillatory regions of the STN. Emotive auditory stimulation evoked activity in the ventral non-oscillatory region of the right STN. These responses were not observed in the left ventral STN or in the dorsal regions of either the right or left STN. Therefore, our results suggest that the ventral non-oscillatory regions are asymmetrically associated with non-motor functions, with the right ventral STN associated with emotional processing. These results suggest that DBS of the right ventral STN may be associated with beneficial or adverse emotional effects observed in PD patients and may relieve mental symptoms in other neurological and

  9. Selective left, right and bilateral stimulation of subthalamic nuclei in Parkinson's disease: differential effects on motor, speech and language function.

    Science.gov (United States)

    Schulz, Geralyn M; Hosey, Lara A; Bradberry, Trent J; Stager, Sheila V; Lee, Li-Ching; Pawha, Rajesh; Lyons, Kelly E; Metman, Leo Verhagen; Braun, Allen R

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus improves the motor symptoms of Parkinson's disease, but may produce a worsening of speech and language performance at rates and amplitudes typically selected in clinical practice. The possibility that these dissociated effects might be modulated by selective stimulation of left and right STN has never been systematically investigated. To address this issue, we analyzed motor, speech and language functions of 12 patients implanted with bilateral stimulators configured for optimal motor responses. Behavioral responses were quantified under four stimulator conditions: bilateral DBS, right-only DBS, left-only DBS and no DBS. Under bilateral and left-only DBS conditions, our results exhibited a significant improvement in motor symptoms but worsening of speech and language. These findings contribute to the growing body of literature demonstrating that bilateral STN DBS compromises speech and language function and suggests that these negative effects may be principally due to left-sided stimulation. These findings may have practical clinical consequences, suggesting that clinicians might optimize motor, speech and language functions by carefully adjusting left- and right-sided stimulation parameters.

  10. Ovarian hormone deprivation reduces oxytocin expression in Paraventricular Nucleus preautonomic neurons and correlates with baroreflex impairment in rats

    Directory of Open Access Journals (Sweden)

    Vitor Ulisses De Melo

    2016-10-01

    Full Text Available The prevalence of cardiovascular diseases including hypertension increases dramatically in women after menopause, however the mechanisms involved remain incompletely understood. Oxytocinergic (OTergic neurons are largely present within the paraventricular nucleus of the hypothalamus (PVN. Several studies have shown that OTergic drive from PVN to brainstem increases baroreflex sensitivity and improves autonomic control of the circulation. Since preautonomic PVN neurons express different types of estrogen receptors, we hypothesize that ovarian hormone deprivation causes baroreflex impairment, autonomic imbalance and hypertension by negatively impacting OTergic drive and oxytocin levels in pre-autonomic neurons. Here, we assessed oxytocin gene and protein expression (qPCR and immunohistochemistry within PVN subnuclei in sham-operated and ovariectomized Wistar rats. Conscious hemodynamic recordings were used to assess resting blood pressure and heart rate and the autonomic modulation of heart and vessels was estimated by power spectral analysis. We observed that the ovarian hormone deprivation in ovariectomized rats decreased baroreflex sensitivity, increased sympathetic and reduced vagal outflows to the heart and augmented the resting blood pressure. Of note, ovariectomized rats had reduced PVN oxytocin mRNA and protein expression in all pre-autonomic PVN subnuclei. Furthermore, reduced PVN oxytocin protein levels were positively correlated with decreased baroreflex sensitivity and negatively correlated with increased LF/HF ratio. These findings suggest that reduced oxytocin expression in OTergic neurons of the PVN contributes to the baroreflex dysfunction and autonomic dysregulation observed with ovarian hormone deprivation.

  11. Association Between Motor Symptoms and Brain Metabolism in Early Huntington Disease.

    Science.gov (United States)

    Gaura, Véronique; Lavisse, Sonia; Payoux, Pierre; Goldman, Serge; Verny, Christophe; Krystkowiak, Pierre; Damier, Philippe; Supiot, Frédéric; Bachoud-Levi, Anne-Catherine; Remy, Philippe

    2017-09-01

    Brain hypometabolism is associated with the clinical consequences of the degenerative process, but little is known about regional hypermetabolism, sometimes observed in the brain of patients with clinically manifest Huntington disease (HD). Studying the role of regional hypermetabolism is needed to better understand its interaction with the motor symptoms of the disease. To investigate the association between brain hypometabolism and hypermetabolism with motor scores of patients with early HD. This study started in 2001, and analysis was completed in 2016. Sixty symptomatic patients with HD and 15 healthy age-matched control individuals underwent positron emission tomography to measure cerebral metabolism in this cross-sectional study. They also underwent the Unified Huntington's Disease Rating Scale motor test, and 2 subscores were extracted: (1) a hyperkinetic score, combining dystonia and chorea, and (2) a hypokinetic score, combining bradykinesia and rigidity. Statistical parametric mapping software (SPM5) was used to identify all hypo- and hypermetabolic regions in patients with HD relative to control individuals. Correlation analyses (P motor subscores and brain metabolic values were performed for regions with significant hypometabolism and hypermetabolism. Among 60 patients with HD, 22 were women (36.7%), and the mean (SD) age was 44.6 (7.6) years. Of the 15 control individuals, 7 were women (46.7%), and the mean (SD) age was 42.2 (7.3) years. In statistical parametric mapping, striatal hypometabolism was significantly correlated with the severity of all motor scores. Hypermetabolism was negatively correlated only with hypokinetic scores in the cuneus (z score = 3.95, P motor scores were associated with higher metabolic values in the inferior parietal lobule, anterior cingulate, inferior temporal lobule, the dentate nucleus, and the cerebellar lobules IV/V, VI, and VIII bilaterally corresponding to the motor regions of the cerebellum (z score = 3

  12. A common optimization principle for motor execution in healthy subjects and parkinsonian patients.

    Science.gov (United States)

    Baraduc, Pierre; Thobois, Stéphane; Gan, Jing; Broussolle, Emmanuel; Desmurget, Michel

    2013-01-09

    Recent research on Parkinson's disease (PD) has emphasized that parkinsonian movement, although bradykinetic, shares many attributes with healthy behavior. This observation led to the suggestion that bradykinesia in PD could be due to a reduction in motor motivation. This hypothesis can be tested in the framework of optimal control theory, which accounts for many characteristics of healthy human movement while providing a link between the motor behavior and a cost/benefit trade-off. This approach offers the opportunity to interpret movement deficits of PD patients in the light of a computational theory of normal motor control. We studied 14 PD patients with bilateral subthalamic nucleus (STN) stimulation and 16 age-matched healthy controls, and tested whether reaching movements were governed by similar rules in these two groups. A single optimal control model accounted for the reaching movements of healthy subjects and PD patients, whatever the condition of STN stimulation (on or off). The choice of movement speed was explained in all subjects by the existence of a preset dynamic range for the motor signals. This range was idiosyncratic and applied to all movements regardless of their amplitude. In PD patients this dynamic range was abnormally narrow and correlated with bradykinesia. STN stimulation reduced bradykinesia and widened this range in all patients, but did not restore it to a normal value. These results, consistent with the motor motivation hypothesis, suggest that constrained optimization of motor effort is the main determinant of movement planning (choice of speed) and movement production, in both healthy and PD subjects.

  13. Structural dynamics of the cell nucleus

    Science.gov (United States)

    Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832

  14. Strangeness production in nucleus-nucleus collisions: An experimental review

    International Nuclear Information System (INIS)

    Odyniec, G.

    1990-12-01

    In experiments with oxygen (60 and 200 GeV/N) and sulphur (200 GeV/N) ions at CERNSPS, large energy densities of the order of 2--3 GeV/fm 3 have been observed, which according to QCD calculations, satisfy necessary conditions for the formation of a quark gluon plasma (QGP) phase. Under such conditions, colour would no longer be confined to hadronic dimensions, and quarks and gluons will propagate freely throughout an extended volume. Somehow lower energy densities, of the order of 0.7--1 GeV/fm 3 , were observed in AGS experiments with 15 GeV/N silicon beams and heavy targets. These energy densities might be adequate for investigations of the pre-equilibrium stage, during which the momentum space distribution has been degradated from its initial value but is not yet thermal. First experimental results, available now, show promise of seeing signs of a new phase of matter. In this review the current status of the selective experimental results on strange-particle production, which are relevant to equilibration and QGP formation in nucleus-nucleus collisions, is presented

  15. Applying the elastic model for various nucleus-nucleus fusion

    International Nuclear Information System (INIS)

    HASSAN, G.S.; RAGAB, H.S.; SEDDEEK, M.K.

    2000-01-01

    The Elastic Model of two free parameters m,d given by Scalia has been used for wider energy regions to fit the available experimental data for potential barriers and cross sections. In order to generalize Scalia's formula in both sub- and above-barrier regions, we calculated m, d for pairs rather than those given by Scalia and compared the calculated cross sections with the experimental data. This makes a generalization of the Elastic Model in describing fusion process. On the other hand, Scalia's range of interacting systems was 24 ≤ A ≤194 where A is the compound nucleus mass number. Our extension of that model includes an example of the pairs of A larger than his final limit aiming to make it as a general formula for any type of reactants: light, intermediate or heavy systems. A significant point is the comparison of Elastic Model calculations with the well known methods studying complete fusion and compound nucleus formation, namely with the resultants of using Proximity potential with either Sharp or Smooth cut-off approximations

  16. Nucleus-size pinning for determination of nucleation free-energy barriers and nucleus geometry

    Science.gov (United States)

    Sharma, Abhishek K.; Escobedo, Fernando A.

    2018-05-01

    Classical Nucleation Theory (CNT) has recently been used in conjunction with a seeding approach to simulate nucleation phenomena at small-to-moderate supersaturation conditions when large free-energy barriers ensue. In this study, the conventional seeding approach [J. R. Espinosa et al., J. Chem. Phys. 144, 034501 (2016)] is improved by a novel, more robust method to estimate nucleation barriers. Inspired by the interfacial pinning approach [U. R. Pedersen, J. Chem. Phys. 139, 104102 (2013)] used before to determine conditions where two phases coexist, the seed of the incipient phase is pinned to a preselected size to iteratively drive the system toward the conditions where the seed becomes a critical nucleus. The proposed technique is first validated by estimating the critical nucleation conditions for the disorder-to-order transition in hard spheres and then applied to simulate and characterize the highly non-trivial (prolate) morphology of the critical crystal nucleus in hard gyrobifastigia. A generalization of CNT is used to account for nucleus asphericity and predict nucleation free-energy barriers for gyrobifastigia. These predictions of nuclei shape and barriers are validated by independent umbrella sampling calculations.

  17. Choreatic Side Effects of Deep Brain Stimulation of the Anteromedial Subthalamic Nucleus for Treatment-Resistant Obsessive-Compulsive disorder.

    Science.gov (United States)

    Mulders, Anne E P; Leentjens, Albert F G; Schruers, Koen; Duits, Annelien; Ackermans, Linda; Temel, Yasin

    2017-08-01

    Patients with treatment-resistant obsessive-compulsive disorder (OCD) are potential candidates for deep brain stimulation (DBS). The anteromedial subthalamic nucleus (STN) is among the most commonly used targets for DBS in OCD. We present a patient with a 30-year history of treatment-resistant OCD who underwent anteromedial STN-DBS. Despite a clear mood-enhancing effect, stimulation caused motor side effects, including bilateral hyperkinesia, dyskinesias, and sudden large amplitude choreatic movements of arms and legs when stimulating at voltages greater than approximately 1.5 V. DBS at lower amplitudes and at other contact points failed to result in a significant reduction of obsessions and compulsions without inducing motor side effects. Because of this limitation in programming options, we decided to reoperate and target the ventral capsule/ventral striatum (VC/VS), which resulted in a substantial reduction in key obsessive and compulsive symptoms without serious side effects. Choreatic movements and hemiballismus have previously been linked to STN dysfunction and have been incidentally reported as side effects of DBS of the dorsolateral STN in Parkinson disease (PD). However, in PD, these side effects were usually transient, and they rarely interfered with DBS programming. In our patient, the motor side effects were persistent, and they made optimal DBS programming impossible. To our knowledge, such severe and persistent motor side effects have not been described previously for anteromedial STN-DBS. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Do migrating cells need a nucleus?

    Science.gov (United States)

    Hawkins, Rhoda J

    2018-03-05

    How the nucleus affects cell polarity and migration is unclear. In this issue, Graham et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201706097) show that enucleated cells polarize and migrate in two but not three dimensions and propose that the nucleus is a necessary component of the molecular clutch regulating normal mechanical responses. © 2018 Hawkins.

  19. Study of high energy densities over extended nuclear volumes via nucleus-nucleus collisions at the SPS

    CERN Multimedia

    2002-01-01

    This experiment examines in detail the characteristics of ultra-relativistic nucleus-nucleus interactions using $^{16}$O beams of 200 GeV/A from the SPS. The experiment combines 4$\\pi$ calorimeter coverage with measurements of inclusive particle spectra, two-particle correlations, low and high-mass lepton pairs and photons. A multiwire active target allows maximum interaction rates with a minimum of secondary interactions. Additional data are taken with an emulsion target.

  20. International Halley Watch: Discipline specialists for near-nucleus studies

    Science.gov (United States)

    Larson, S.; Sekanina, Z.; Rahe, J.

    1986-01-01

    The purpose of the Near-Nucleus Studies Net is to study the processes taking place in the near-nucleus environment as they relate to the nature of nucleus. This is accomplisghed by measuring the spatial and temporal distribution of dust, gases and ions in the coma on high resolution images taken from many observatories around the world. By modeling the motions of discrete dust features in Comet Halley, it is often possible to determine the locations of the emission sources on the surface and learn about the nucleus structure. In addition to the general goals shared by all IHW nets, the scientific goals of the net has been to determine (1)the gross surface structure of the nucleus, (2)the nucleus spin vector, (3)the distribution and evolution of jet sources and (4)the interrelationships between the gas, dust and ion components of the coma. An additional Comet Giacobini-Zinner watch was carried out by the NNSN in support of the NASA International Cometary Explorer flyby.

  1. Diabatic emission of neutrons: A probe for the energy dissipation mechanism in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Cassing, W.

    1984-05-01

    The precompound emission of neutrons in central nucleus-nucleus collisions is investigated within the framework of dissipative diabatic dynamics. For 92 Mo + 92 Mo at bombarding energies between 7.5 and 20 MeV/u the differential neutron multiplicities dMsub(n)/dEsub(n) are estimated from the decay of highly excited diabatic single-particle states. The energy spectra have an almost exponential high-energy tail with effective temperatures up to 10 MeV for 20 MeV/u bombarding energy. (orig.)

  2. Study of Strange and Multistrange Particles in Ultrarelativistic Nucleus-Nucleus Collisions

    CERN Multimedia

    Vande vyvre, P; Feofilov, G; Snoeys, W; Hetland, K F; Campbell, M; Klempt, W

    2002-01-01

    % NA57\\\\ \\\\ The goal of the experiment is to study the production of strange and multi-strange particles in nucleus-nucleus collisions. This study was initiated at the OMEGA spectrometer, where three ion experiments have been performed: WA85 (S-W and p-W collisions at 200 A GeV/c), WA94 (S-S and p-S collisions at 200 A GeV/c) and WA97 (Pb-Pb, p-Pb and p-Be collisions at 160 A GeV/c).\\\\ \\\\ The experiment aims at extending the scope of WA97 by:\\\\ \\\\ - investigating the beam energy dependence of the enhancements of multi-strange particle production reported by the previous experiments, and by\\\\ \\\\\\\\ \\\\- measuring the yields of strange and multi-strange particles over an extended centrality range compared with the previous experiments.\\\\ \\\\ The apparatus consists mainly of silicon pixel detector planes.

  3. Apathy following Bilateral Deep Brain Stimulation of Subthalamic Nucleus in Parkinson's Disease: A Meta-Analysis

    Science.gov (United States)

    Zhang, Xiaona

    2018-01-01

    Bilateral deep brain stimulation of subthalamic nucleus (STN-DBS) has proven effective in improving motor symptoms in Parkinson's disease (PD) patients. However, psychiatric changes after surgery are controversial. In this study, we specifically analyzed apathy following bilateral STN-DBS in PD patients using a meta-analysis. Relevant articles utilized for this study were obtained through literature search on PubMed, ScienceDirect, and Embase databases. The articles included were those contained both pre- and postsurgery apathy data acquired using the Starkstein Apathy Scale or Apathy Evaluation Scale with patient follow-up of at least three months. A total of 9 out of 86 articles were included in our study through this strict screening process. Standardized mean difference (SMD), that is, Cohen's d, with a 95% confidence interval (CI) was calculated to show the change. We found a significant difference between the presurgery stage and the postsurgery stage scores (SMD = 0.35, 95% CI: 0.17∼0.52, P < 0.001). STN-DBS seems to relatively worsen the condition of apathy, which may result from both the surgery target (subthalamic nucleus) and the reduction of dopaminergic medication. Further studies should focus on the exact mechanisms of possible postoperative apathy in the future.

  4. Dopamine Mediates the Vagal Modulation of the Immune System by Electroacupuncture

    Science.gov (United States)

    Torres-Rosas, Rafael; Yehia, Ghassan; Peña, Geber; Mishra, Priya; del Rocio Thompson-Bonilla, Maria; Moreno-Eutimio, Mario Adán; Arriaga-Pizano, Lourdes Andrea; Isibasi, Armando; Ulloa, Luis

    2014-01-01

    Previous anti-inflammatory strategies against sepsis, a leading cause of death in hospitals, had limited efficacy in clinical trials, in part because they targeted single cytokines and the experimental models failed to mimic clinical settings1-3. Neuronal networks represent physiological mechanisms selected by evolution to control inflammation that can be exploited for the treatment of inflammatory and infectious disorders3. Here, we report that sciatic nerve activation with electroacupuncture controls systemic inflammation and rescues mice from polymicrobial peritonitis. Electroacupuncture at the sciatic nerve controls systemic inflammation by inducing a vagal activation of DOPA decarboxylase leading to the production of dopamine in the adrenal medulla. Experimental models with adrenolectomized animals mimic clinical adrenal insufficiency4, increase the susceptibility to sepsis, and prevent the anti-inflammatory potential of electroacupuncture. Dopamine inhibits cytokine production via dopaminergic type-1 receptors. Dopaminergic D1-agonists suppress systemic inflammation and rescue mice from polymicrobial peritonitis in animals with adrenal insufficiency. Our results suggest a novel anti-inflammatory mechanism mediated by the sciatic and the vagus nerves modulating the production of catecholamines in the adrenal glands. From a pharmacological perspective, selective dopaminergic agonists mimic the anti-inflammatory potential of electroacupuncture and can provide therapeutic advantages to control inflammation in infectious and inflammatory disorders. PMID:24562381

  5. Critical role of cerebellar fastigial nucleus in programming sequences of saccades

    Science.gov (United States)

    King, Susan A.; Schneider, Rosalyn M.; Serra, Alessandro; Leigh, R. John

    2011-01-01

    The cerebellum plays an important role in programming accurate saccades. Cerebellar lesions affecting the ocular motor region of the fastigial nucleus (FOR) cause saccadic hypermetria; however, if a second target is presented before a saccade can be initiated (double-step paradigm), saccade hypermetria may be decreased. We tested the hypothesis that the cerebellum, especially FOR, plays a pivotal role in programming sequences of saccades. We studied patients with saccadic hypermetria due either to genetic cerebellar ataxia or surgical lesions affecting FOR and confirmed that the gain of initial saccades made to double-step stimuli was reduced compared with the gain of saccades to single target jumps. Based on measurements of the intersaccadic interval, we found that the ability to perform parallel processing of saccades was reduced or absent in all of our patients with cerebellar disease. Our results support the crucial role of the cerebellum, especially FOR, in programming sequences of saccades. PMID:21950988

  6. The picture of the nuclei disintegration mechanism - from nucleus-nucleus collision experimental data at high energies

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    1997-01-01

    Experimental data on nuclear collisions at high energies, mainly obtained from photographic emulsions, are considered from the point of view of the picture of the nuclear collision processes mechanisms prompted experimentally. In fact, the disintegration products of each nucleus involved in a nuclear collision, in its own rest-frame, are similar to that produced by the impact of a number of nucleons of velocity equal to that of the moving primary nucleus

  7. Interleaving subthalamic nucleus deep brain stimulation to avoid side effects while achieving satisfactory motor benefits in Parkinson disease: A report of 12 cases.

    Science.gov (United States)

    Zhang, Shizhen; Zhou, Peizhi; Jiang, Shu; Wang, Wei; Li, Peng

    2016-12-01

    Deep brain stimulation (DBS) of the subthalamic nucleus is an effective treatment for advanced Parkinson disease (PD). However, achieving ideal outcomes by conventional programming can be difficult in some patients, resulting in suboptimal control of PD symptoms and stimulation-induced adverse effects. Interleaving stimulation (ILS) is a newer programming technique that can individually optimize the stimulation area, thereby improving control of PD symptoms while alleviating stimulation-induced side effects after conventional programming fails to achieve the desired results. We retrospectively reviewed PD patients who received DBS programming during the previous 4 years in our hospital. We collected clinical and demographic data from 12 patients who received ILS because of incomplete alleviation of PD symptoms or stimulation-induced adverse effects after conventional programming had proven ineffective or intolerable. Appropriate lead location was confirmed with postoperative reconstruction images. The rationale and clinical efficacy of ILS was analyzed. We divided our patients into 4 groups based on the following symptoms: stimulation-induced dysarthria and choreoathetoid dyskinesias, gait disturbance, and incomplete control of parkinsonism. After treatment with ILS, patients showed satisfactory improvement in PD symptoms and alleviation of stimulation-induced side effects, with a mean improvement in Unified PD Rating Scale motor scores of 26.9%. ILS is a newer choice and effective programming strategy to maximize symptom control in PD while decreasing stimulation-induced adverse effects when conventional programming fails to achieve satisfactory outcome. However, we should keep in mind that most DBS patients are routinely treated with conventional stimulation and that not all patients benefit from ILS. ILS is not recommended as the first choice of programming, and it is recommended only when patients have unsatisfactory control of PD symptoms or stimulation

  8. The nucleus in Finland - The second report

    International Nuclear Information System (INIS)

    Aurela, Jorma; Korteniemi, Virpi; Halme-Tapanainen, Kristina

    1993-01-01

    The Finnish Nuclear Society (FNS) started the distribution of the Nucleus bulletin at the beginning of 1988. The volume of distribution has been extended since, including today nearly 1,000 persons. Both the English and the Finnish version of the bulletin is sent to various opinion leaders of society, i.e. the members of the parliament, ministries, the media, representatives of industry and other decision-makers of the energy field. After the five-year history of the Nucleus in Finland, it is time to look back and sum up the present status of the Nucleus. This report gives a short summary concerning the present distribution and its efficiency, the experiences gained and the influence of the bulletin in Finland. The first questionnaire was sent in November 1988, and the survey was repeated among the Finnish readers of the Nucleus in autumn 1992. The results of the latter survey are given in this report

  9. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI

    2016-07-01

    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  10. Variation in motor output and motor performance in a centrally generated motor pattern

    Science.gov (United States)

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  11. Urban air pollution targets the dorsal vagal complex and dark chocolate offers neuroprotection.

    Science.gov (United States)

    Villarreal-Calderon, Rafael; Torres-Jardón, Ricardo; Palacios-Moreno, Juan; Osnaya, Norma; Pérez-Guillé, Beatriz; Maronpot, Robert R; Reed, William; Zhu, Hongtu; Calderón-Garcidueñas, Lilian

    2010-12-01

    Mexico City (MC) residents exposed to fine particulate matter and endotoxin exhibit inflammation of the olfactory bulb, substantia nigra, and vagus nerve. The goal of this study was to model these endpoints in mice and examine the neuroprotective effects of chocolate. Mice exposed to MC air received no treatment or oral dark chocolate and were compared to clean-air mice either untreated or treated intraperitoneally with endotoxin. Cyclooxygenase-2 (COX-2), interleukin 1 beta (IL-1β), and CD14 messenger RNA (mRNA) were quantified after 4, 8, and 16 months of exposure in target brain regions. After 16 months of exposure, the dorsal vagal complex (DVC) exhibited significant inflammation in endotoxin-treated and MC mice (COX-2 and IL-1β P<.001). Mexico City mice had olfactory bulb upregulation of CD14 (P=.002) and significant DVC imbalance in genes for antioxidant defenses, apoptosis, and neurodegeneration. These findings demonstrate sustained DVC inflammation in mice exposed to MC air, which is mitigated by chocolate administration. © The Author(s) 2010

  12. Experimental and phenomenological investigations of QCD matter in high-energy nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Andronic, Anton

    2014-07-15

    This thesis is heterogeneous, comprising experimental papers at low energies (SIS-18 at GSI) and at the LHC, papers on phenomenology of high-energy nucleus-nucleus collisions, and papers on detectors. The overview covers the experimental papers and those on phenomenology. I have chosen to write it in a general manner, intended to be accessible to non-experts. It emphasizes recent measurements and their understanding at the LHC. The detector papers, which address many principle aspects of gaseous detectors, are summarized and placed in context in the review I co-wrote and which closes the stack. The detector papers included here are the outcome of an R and D program for the Transition Radiation Detector of ALICE.

  13. Experimental and phenomenological investigations of QCD matter in high-energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Andronic, Anton

    2014-07-01

    This thesis is heterogeneous, comprising experimental papers at low energies (SIS-18 at GSI) and at the LHC, papers on phenomenology of high-energy nucleus-nucleus collisions, and papers on detectors. The overview covers the experimental papers and those on phenomenology. I have chosen to write it in a general manner, intended to be accessible to non-experts. It emphasizes recent measurements and their understanding at the LHC. The detector papers, which address many principle aspects of gaseous detectors, are summarized and placed in context in the review I co-wrote and which closes the stack. The detector papers included here are the outcome of an R and D program for the Transition Radiation Detector of ALICE.

  14. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  15. Dissipation and fluctuation of the relative momentum in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Feldmeier, H.; Spangenberger, H.

    1984-07-01

    The dissipation of the relative momentum in nucleus-nucleus collisions is treated in terms of a Langevin equation with a fluctuating force. Equations of motion for first and second moments of the macroscopic variables are derived directly from the Langevin equation. The properties of the fluctuating force which results from random particle exchange are investigated in detail. Drift and diffusion coefficients are calculated microscopically and analytical expressions are given which can be used in any trajectory calculation. An important feature of the model is that the Einstein relation between dissipation and fluctuation turns out to be only a limiting case of a more general expression which included nonthermal fluctuations. By treating the two nuclei as intrinsically equilibrated but not in thermal equilibrium with respect to each other several important aspects of the dissipative behaviour, seen in heavy ion collisions with final energies above the Coloumb barrier, can be understood. (orig.)

  16. Dynamical and statistical aspects in nucleus-nucleus collisions around the Fermi energy

    Energy Technology Data Exchange (ETDEWEB)

    Tamain, B.; Bocage, F.; Bougault, R.; Brou, R. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Assenard, M. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Auger, G.; Benlliure, J. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Bacri, C.O.; Borderie, B. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Bisquer, E. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire] [and others

    1997-12-31

    Nucleus-nucleus collisions at low incident energy are mainly governed by statistical dissipative processes, fusion and deep inelastic reactions being the most important ones. Conversely, in the relativistic energy regime, dynamical effects play a dominant role and one should apply a participant-spectator picture in order to understand the data. In between, the intermediate energy region is a transition one in which it is necessary to disentangle dynamics from statistical effects. Moreover, the Fermi energy region corresponds to available energies comparable with nuclear binding energies and one may except to observe phase transition effects. Experiments performed recently with 4{pi} devices have given quite new data and a much better insight into involved mechanisms and hot nuclear matter properties. INDRA data related to reaction mechanisms and multifragmentation are presented. (author) 53 refs.

  17. Dynamical and statistical aspects in nucleus-nucleus collisions around the Fermi energy

    International Nuclear Information System (INIS)

    Tamain, B.; Bocage, F.; Bougault, R.; Brou, R.; Bacri, C.O.; Borderie, B.; Bisquer, E.

    1997-01-01

    Nucleus-nucleus collisions at low incident energy are mainly governed by statistical dissipative processes, fusion and deep inelastic reactions being the most important ones. Conversely, in the relativistic energy regime, dynamical effects play a dominant role and one should apply a participant-spectator picture in order to understand the data. In between, the intermediate energy region is a transition one in which it is necessary to disentangle dynamics from statistical effects. Moreover, the Fermi energy region corresponds to available energies comparable with nuclear binding energies and one may except to observe phase transition effects. Experiments performed recently with 4π devices have given quite new data and a much better insight into involved mechanisms and hot nuclear matter properties. INDRA data related to reaction mechanisms and multifragmentation are presented. (author)

  18. Recent results on (anti)nucleus and (anti)hyperon production in nucleus-nucleus collisions at CERN SPS energies

    CERN Document Server

    Melkumov, G L; Anticic, T; Baatar, B; Barna, D; Bartke, J; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chung, P; Chvala, O; Cramer, J G; Csató, P; Dinkelaker, P; Eckardt, V; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gál, J; Gazdzicki, M; Genchev, V; Georgopoulos, G; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kikola, D; Gladysz-Dziadus, E; Kliemant, M; Kniege, S; Kolesnikov, V I; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Laszlo, A; Lacey, R; Van Leeuwen, M; Lvai, P; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Nicolic, V; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Peryt, W; Pikna, M; Pluta, J; Prindle, D; Pühlhofer, F; Renfordt, R; Roland, C; Roland5, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Siklér, F; Sitár, B; Skrzypczak, E; Slodkowski, M; Stefanek, G; Stock, R; Seyboth, P; Strabel, C; Ströbele, H; Susa, T; Szentpetery, I; Sziklai, J; Szuba, M; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranic, D; Wlodarczyk, Z; Wojtaszek11, A; Yoo, I K; Zimnyi, J; Wetzler, A

    2007-01-01

    The NA49 experiment has collected comprehensive data on particle production in nucleus-nucleus collisions over the whole SPS beam energies range, the critical energy domain where the expected phase transition to a deconfined phase is expected to occur. The latest results from Pb+Pb collisions between 20$A$ GeV and 158$A$ GeV on baryon stopping and light nuclei production as well as those for strange hyperons are presented. The measured data on $p$, $\\bar{p}$, $\\Lambda$, $\\bar{\\Lambda}$, $\\Xi^-$ and $\\bar{\\Xi}^+$ production were used to evaluate the rapidity distributions of net-baryons at SPS energies and to compare with the results from the AGS and the RHIC for central Pb+Pb (Au+Au) collisions. The dependence of the yield ratios and the inverse slope parameter of the $m_t$ spectra on the collision energy and centrality, and the mass number of the produced nuclei $^3He$, $t$, $d$ and $\\bar{d}$ are discussed within coalescence and statistical approaches. Analysis of the total multiplicity exhibits remarkable a...

  19. Pseudobulbar dysarthria in the initial stage of motor neuron disease with dementia: a clinicopathological report of two autopsied cases.

    Science.gov (United States)

    Ishihara, Kenji; Araki, Shigeo; Ihori, Nami; Suzuki, Yoshio; Shiota, Jun-ichi; Arai, Nobutaka; Nakano, Imaharu; Kawamura, Mitsuru

    2013-01-01

    We retrospectively analyzed the clinical features of two cases of neurodegenerative disease, whose initial symptoms were motor speech disorder and dementia, brought to autopsy. We compared the distributions of pathological findings with the clinical features. The main symptom of speech disorder was dysarthria, involving low pitch, slow rate, hypernasality and hoarseness. Other than these findings, effortful speech, sound prolongation and initial difficulty were observed. Moreover, repetition of multisyllables was severely impaired compared to monosyllables. Repetition and comprehension of words and sentences were not impaired. Neither atrophy nor fasciculation of the tongue was observed. Both cases showed rapid progression to mutism within a few years. Neuropathologically, frontal lobe degeneration including the precentral gyrus was observed. The bilateral pyramidal tracts also showed severe degeneration. However, the nucleus of the hypoglossal nerve showed only mild degeneration. These findings suggest upper motor neuron dominant motor neuron disease with dementia. We believe the results indicate a subgroup of motor neuron disease with dementia whose initial symptoms involve pseudobulbar palsy and dementia, and which shows rapid progression to mutism. Copyright © 2013 S. Karger AG, Basel.

  20. New quasibound states of the compound nucleus in α -particle capture by the nucleus

    Science.gov (United States)

    Maydanyuk, Sergei P.; Zhang, Peng-Ming; Zou, Li-Ping

    2017-07-01

    We generalize the theory of nuclear decay and capture of Gamow that is based on tunneling through the barrier and internal oscillations inside the nucleus. In our formalism an additional factor is obtained, which describes distribution of the wave function of the the α particle inside the nuclear region. We discover new most stable states (called quasibound states) of the compound nucleus (CN) formed during the capture of α particle by the nucleus. With a simple example, we explain why these states cannot appear in traditional calculations of the α capture cross sections based on monotonic penetrabilities of a barrier, but they appear in a complete description of the evolution of the CN. Our result is obtained by a complete description of the CN evolution, which has the advantages of (1) a clear picture of the formation of the CN and its disintegration, (2) a detailed quantum description of the CN, (3) tests of the calculated amplitudes based on quantum mechanics (not realized in other approaches), and (4) high accuracy of calculations (not achieved in other approaches). These peculiarities are shown with the capture reaction of α +44Ca . We predict quasibound energy levels and determine fusion probabilities for this reaction. The difference between our approach and theory of quasistationary states with complex energies applied for the α capture is also discussed. We show (1) that theory does not provide calculations for the cross section of α capture (according to modern models of the α capture), in contrast with our formalism, and (2) these two approaches describe different states of the α capture (for the same α -nucleus potential).

  1. Spindle pole body-anchored Kar3 drives the nucleus along microtubules from another nucleus in preparation for nuclear fusion during yeast karyogamy.

    Science.gov (United States)

    Gibeaux, Romain; Politi, Antonio Z; Nédélec, François; Antony, Claude; Knop, Michael

    2013-02-01

    Nuclear migration during yeast karyogamy, termed nuclear congression, is required to initiate nuclear fusion. Congression involves a specific regulation of the microtubule minus end-directed kinesin-14 motor Kar3 and a rearrangement of the cytoplasmic microtubule attachment sites at the spindle pole bodies (SPBs). However, how these elements interact to produce the forces necessary for nuclear migration is less clear. We used electron tomography, molecular genetics, quantitative imaging, and first principles modeling to investigate how cytoplasmic microtubules are organized during nuclear congression. We found that Kar3, with the help of its light chain, Cik1, is anchored during mating to the SPB component Spc72 that also serves as a nucleator and anchor for microtubules via their minus ends. Moreover, we show that no direct microtubule-microtubule interactions are required for nuclear migration. Instead, SPB-anchored Kar3 exerts the necessary pulling forces laterally on microtubules emanating from the SPB of the mating partner nucleus. Therefore, a twofold symmetrical application of the core principle that drives nuclear migration in higher cells is used in yeast to drive nuclei toward each other before nuclear fusion.

  2. The atomic nucleus as a target

    International Nuclear Information System (INIS)

    Strugalski, Z.; Pawlak, T.

    1981-01-01

    The purpose of this article is to characterize the atomic nucleus used as a target in hadron-nucleus collision experiments. The atomic nucleus can be treated as a lens-shaped ''slab'' of nuclear matter. Such ''slab'' should be characterized by the nuclear matter layer thickness at any impact parameter, by its average thickness, and by its maximal thickness. Parameters characterizing atomic nuclei as targets are given for the elements: 6 12 C, 7 14 N, 8 16 O, 9 19 F, 10 20 Ne, 13 27 Al, 14 28 Si, 16 32 S, 18 40 Ar, 24 52 Cr, 26 54 Fe, 27 59 Co, 29 64 Cu, 30 65 Zn, 32 73 Ge, 35 80 Br, 47 100 Ag, 53 127 I, 54 131 Xe, 73 181 Ta, 74 184 W, 79 197 Au, 82 207 Pb, 92 -- 238 U [ru

  3. A plausible picture of high-energy proton-nucleus collisions

    International Nuclear Information System (INIS)

    Kim, C.O.

    1976-01-01

    Results experimentally obtained from jets of E(p)=10-10 3 GeV in nuclear emulsion show that the target nucleus in proton-nucleus collisions seems to present ''limiting fragmentation''. In the same energy range, proton-nucleus collisions resemble closely proton-proton collisions and asymmetric shape of rapidities is only caused by the break-up products of heavy targets [fr

  4. Manifestation of jet quenching in differential distributions of the total transverse energy in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Savina, M.V.; Shmatov, S.V.; Slavin, N.V.; Zarubin, P.I.

    1998-01-01

    In the framework of the HIJING model, global characteristics of nucleus-nucleus collisions are studied for a Large Hadron Collider (LHC) energy scale. An interesting model prediction is the presence of a central bump over a pseudorapidity plateau of a total transverse energy distribution. The bump is induced by a jet quenching effect in a dense nuclear matter. It is shown that a wide acceptance calorimeter with a pseudorapidity coverage -5<η<5 allows one to obtain experimental confirmation of such an effect

  5. New aspects of the atomic nucleus

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1987-01-01

    We are at last just beginning to identify convincing evidence for what we have long believed, namely that the nucleus is more than the sum of its neutron-proton parts taken pairwise because, for example, a cluster of three nucleons interacts differently from the sum of the interactions of its three pairs; there is an important collectivism in the life of a nucleus even before we ask what its nucleons are doing. (orig./WL)

  6. Advances in hard nucleus cataract surgery

    Directory of Open Access Journals (Sweden)

    Wei Cui

    2013-11-01

    Full Text Available Security and perfect vision and fewer complications are our goals in cataract surgery, and hard-nucleus cataract surgery is always a difficulty one. Many new studies indicate that micro-incision phacoemulsification in treating hard nucleus cataract is obviously effective. This article reviews the evolution process of hard nuclear cataract surgery, the new progress in the research of artificial intraocular lens for microincision, and analyse advantages and disadvantages of various surgical methods.

  7. Cortico-cortical white matter motor pathway microstructure is related to psychomotor retardation in major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Tobias Bracht

    Full Text Available Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD. However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC, the rostral anterior cingulate cortex (rACC, the pre-supplementary motor area (pre-SMA, the SMA-proper, the primary motor cortex (M1, the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD.

  8. Apathy following Bilateral Deep Brain Stimulation of Subthalamic Nucleus in Parkinson’s Disease: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2018-01-01

    Full Text Available Bilateral deep brain stimulation of subthalamic nucleus (STN-DBS has proven effective in improving motor symptoms in Parkinson’s disease (PD patients. However, psychiatric changes after surgery are controversial. In this study, we specifically analyzed apathy following bilateral STN-DBS in PD patients using a meta-analysis. Relevant articles utilized for this study were obtained through literature search on PubMed, ScienceDirect, and Embase databases. The articles included were those contained both pre- and postsurgery apathy data acquired using the Starkstein Apathy Scale or Apathy Evaluation Scale with patient follow-up of at least three months. A total of 9 out of 86 articles were included in our study through this strict screening process. Standardized mean difference (SMD, that is, Cohen’s d, with a 95% confidence interval (CI was calculated to show the change. We found a significant difference between the presurgery stage and the postsurgery stage scores (SMD = 0.35, 95% CI: 0.17∼0.52, P<0.001. STN-DBS seems to relatively worsen the condition of apathy, which may result from both the surgery target (subthalamic nucleus and the reduction of dopaminergic medication. Further studies should focus on the exact mechanisms of possible postoperative apathy in the future.

  9. High-energy elastic and quasi-elastic deuteron-nucleus scattering

    International Nuclear Information System (INIS)

    Tekou, Amouzou

    1974-01-01

    A study is made of deuteron-nucleus elastic and quasi-elastic scattering and the connection between the opaque nucleus model and the Glauber model is pointed out. The contributions to different cross-sections of the collisions in which the nucleus, excited by one of the nucleons of the deuteron, is brought back to the ground state by the other nucleon is analysed. Coherent deuteron disintegration is found to be highly improbable when the target nucleus is heavy and incoherent disintegration accounts for nearly all the deuteron disintegration. Thus a correct comparison between theoretical and experimental data on proton stripping must take the incoherent deuteron disintegration into consideration

  10. Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images.

    Science.gov (United States)

    Arslan, Salim; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2013-06-01

    More rapid and accurate high-throughput screening in molecular cellular biology research has become possible with the development of automated microscopy imaging, for which cell nucleus segmentation commonly constitutes the core step. Although several promising methods exist for segmenting the nuclei of monolayer isolated and less-confluent cells, it still remains an open problem to segment the nuclei of more-confluent cells, which tend to grow in overlayers. To address this problem, we propose a new model-based nucleus segmentation algorithm. This algorithm models how a human locates a nucleus by identifying the nucleus boundaries and piecing them together. In this algorithm, we define four types of primitives to represent nucleus boundaries at different orientations and construct an attributed relational graph on the primitives to represent their spatial relations. Then, we reduce the nucleus identification problem to finding predefined structural patterns in the constructed graph and also use the primitives in region growing to delineate the nucleus borders. Working with fluorescence microscopy images, our experiments demonstrate that the proposed algorithm identifies nuclei better than previous nucleus segmentation algorithms.

  11. Suprachiasmatic Nucleus Interaction with the Arcuate Nucleus; Essential for Organizing Physiological Rhythms

    NARCIS (Netherlands)

    Buijs, Frederik N.; Guzmán-Ruiz, Mara; León-Mercado, Luis; Basualdo, Mari Carmen; Escobar, Carolina; Kalsbeek, Andries; Buijs, Ruud M.

    2017-01-01

    The suprachiasmatic nucleus (SCN) is generally considered the master clock, independently driving all circadian rhythms. We recently demonstrated the SCN receives metabolic and cardiovascular feedback adeptly altering its neuronal activity. In the present study, we show that microcuts effectively

  12. The brain decade in debate: VI. Sensory and motor maps: dynamics and plasticity

    Directory of Open Access Journals (Sweden)

    A. Das

    2001-12-01

    Full Text Available This article is an edited transcription of a virtual symposium promoted by the Brazilian Society of Neuroscience and Behavior (SBNeC. Although the dynamics of sensory and motor representations have been one of the most studied features of the central nervous system, the actual mechanisms of brain plasticity that underlie the dynamic nature of sensory and motor maps are not entirely unraveled. Our discussion began with the notion that the processing of sensory information depends on many different cortical areas. Some of them are arranged topographically and others have non-topographic (analytical properties. Besides a sensory component, every cortical area has an efferent output that can be mapped and can influence motor behavior. Although new behaviors might be related to modifications of the sensory or motor representations in a given cortical area, they can also be the result of the acquired ability to make new associations between specific sensory cues and certain movements, a type of learning known as conditioning motor learning. Many types of learning are directly related to the emotional or cognitive context in which a new behavior is acquired. This has been demonstrated by paradigms in which the receptive field properties of cortical neurons are modified when an animal is engaged in a given discrimination task or when a triggering feature is paired with an aversive stimulus. The role of the cholinergic input from the nucleus basalis to the neocortex was also highlighted as one important component of the circuits responsible for the context-dependent changes that can be induced in cortical maps.

  13. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li; Wu, Zhou; Baba, Masashi [Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582 (Japan); Peters, Christoph [Institute fuer Molekulare Medizin und Zellforshung, Albert-Ludwings-Universitaet Freiburg, D-79104 Freiburg (Germany); Uchiyama, Yasuo [Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo (Japan); Nakanishi, Hiroshi, E-mail: nakan@dent.kyushu-u.ac.jp [Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582 (Japan)

    2010-08-27

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy

  14. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    International Nuclear Information System (INIS)

    Sun, Li; Wu, Zhou; Baba, Masashi; Peters, Christoph; Uchiyama, Yasuo; Nakanishi, Hiroshi

    2010-01-01

    Research highlights: → Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. → CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. → CB-deficiency significantly increased the mean survival ratio of injured neurons. → Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy-induced mortor neuron

  15. Endogenous leptin contributes to baroreflex suppression within the solitary tract nucleus of aged rats

    Science.gov (United States)

    Arnold, Amy C.

    2014-01-01

    The decline in cardiovagal baroreflex function that occurs with aging is accompanied by an increase in circulating leptin levels. Our previous studies showed that exogenous leptin impairs the baroreflex sensitivity for control of heart rate in younger rats, but the contribution of this hormone to baroreflex dysfunction during aging is unknown. Thus we assessed the effect of bilateral leptin microinjection (500 fmol/60 nl) within the solitary tract nucleus (NTS) on the baroreflex sensitivity in older (66 ± 2 wk of age) urethane/chloralose anesthetized Sprague-Dawley rats with elevated circulating leptin levels. In contrast to the 63% reduction observed in younger rats, leptin did not alter the baroreflex sensitivity for bradycardia evoked by phenylephrine in older rats (0.76 ± 0.19 baseline vs. 0.71 ± 0.15 ms/mmHg after leptin; P = 0.806). We hypothesized that this loss of sensitivity reflected endogenous suppression of the baroreflex by elevated leptin, rather than cardiovascular resistance to the peptide. Indeed, NTS administration of a leptin receptor antagonist (75 pmol/120 nl) improved the baroreflex sensitivity for bradycardia in older rats (0.73 ± 0.13 baseline vs. 1.19 ± 0.26 at 10 min vs. 1.87 ± 0.32 at 60 min vs. 1.22 ± 0.54 ms/mmHg at 120 min; P = 0.002), with no effect in younger rats. There was no effect of the leptin antagonist on the baroreflex sensitivity for tachycardia, responses to cardiac vagal chemosensitive fiber activation, or resting hemodynamics in older rats. These findings suggest that the actions of endogenous leptin within the NTS, either produced locally or derived from the circulation, contribute to baroreflex suppression during aging. PMID:25260611

  16. GABAergic projections to the oculomotor nucleus in the goldfish (Carassius auratus

    Directory of Open Access Journals (Sweden)

    M. Angeles eLuque

    2011-02-01

    Full Text Available The mammalian oculomotor nucleus receives a strong -aminobutyric acid (GABAergic synaptic input, whereas such projections have rarely been reported in fish. In order to determine whether this synaptic organization is preserved across vertebrates, we investigated the GABAergic projections to the oculomotor nucleus in the goldfish by combining retrograde transport of biotin dextran amine, injected into the antidromically identified oculomotor nucleus, and GABA immunohistochemistry. The main source of GABAergic afferents to the oculomotor nucleus was the ipsilateral anterior octaval nucleus, with only a few, if any, GABAergic neurons being located in the contralateral tangential and descending nuclei of the octaval column. In mammals there is a nearly exclusive ipsilateral projection from vestibular neurons to the oculomotor nucleus via GABAergic inhibitory inputs; thus, the vestibulooculomotor GABAergic circuitry follows a plan that appears to be shared throughout the vertebrate phylogeny. The second major source of GABAergic projections was the rhombencephalic reticular formation, primarily from the medial area but, to a lesser extent, from the inferior area. A few GABAergic oculomotor projecting neurons were also observed in the ipsilateral nucleus of the medial longitudinal fasciculus. The GABAergic projections from neurons located in both the reticular formation surrounding the abducens nucleus and the nucleus of the medial reticular formation have primarily been related to the control of saccadic eye movements. Finally, all retrogradely labeled internuclear neurons of the abducens nucleus, and neurons in the cerebellum (close to the caudal lobe, were negative for GABA. These data suggest that the vestibuloocular and saccadic inhibitory GABAergic systems appear early in vertebrate phylogeny to modulate the firing properties of the oculomotor nucleus motoneurons.

  17. Stanovení vagového prahu a možnosti jeho využití Determination of the vagal threshold and changes of it's using

    Directory of Open Access Journals (Sweden)

    Aleš Gába

    2008-01-01

    Full Text Available Cílem této studie bylo navrhnout jednoduchý matematický postup, podle kterého by bylo možno stanovit takovou hraniční intenzitu zatížení, nad kterou se redukovaná vagová aktivita dále výrazně nemění a kardiovaskulární systém je dominantně řízen zvyšující se aktivitou sympatoadrenálního systému (vagový práh – TVA. Testovaný soubor tvořilo 10 mužů ve věku 27,24 ± 3,23 let s hodnotou maximální spotřeby kyslíku 50,24 ± 4,63 ml.kg–1.min–1. Aktivita ANS byla hodnocena pomocí neinvazivní metody spektrální analýzy (SA variability srdeční frekvence (HRV. Změny v autonomní kardiální regulaci byly posuzovány během chůze na běhátku v setrvalém stavu při intenzitách zatížení od 20 % do 70 % maximální tepové rezervy (MTR. Zvýšení intenzity zatížení o 10 % MTR v rozmezí od 20 % do 70 % MTR vedlo vždy k signifikantnímu snížení aktivity vagu. Navržený postup pro stanovení deflekčního bodu křivky závislosti PHF na intenzitě zatížení, za kterým již PHF výrazně neklesá, umožnil identifikovat TVA na úrovni 43,63 ± 4,66 % MTR. Navržený algoritmus stanovení TVA dovoluje odhadnout při tělesné práci "bezpečnou" intenzitu zatížení, při které je ještě zachována aktivita vagu a aktivita sympatiku se ještě výrazně nezvyšuje. Stanovení TVA se může uplatnit zejména při preskripci intenzity zatížení v rámci programu pohybové aktivity u pacientů s redukovanou aktivitou ANS a se zvýšeným rizikem náhlé srdeční příhody. Exercise intensity causes changes in the activity of both branches of the autonomic nervous system (ANS as involved in cardiovascular system regulation. Reduction in vagal activity and an increase in sympatho-adrenal activity is associated with an increase in death risk from both cardiac and arrhythmic causes during exercise. The main aim of this work was to develop a simple mathematic algorithm for determination of

  18. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1993-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  19. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  20. Direct and indirect spino-cerebellar pathways: shared ideas but different functions in motor control

    Directory of Open Access Journals (Sweden)

    Juan eJiang

    2015-07-01

    Full Text Available The impressive precision of mammalian limb movements relies on internal feedback pathways that convey information about ongoing motor output to cerebellar circuits. The spino-cerebellar tracts (SCT in the cervical, thoracic and lumbar spinal cord have long been considered canonical neural substrates for the conveyance of internal feedback signals. Here we consider the distinct features of an indirect spino-cerebellar route, via the brainstem lateral reticular nucleus (LRN, and the implications of this pre-cerebellar ‘detour’ for the execution and evolution of limb motor control. Both direct and indirect spino-cerebellar pathways signal spinal interneuronal activity to the cerebellum during movements, but evidence suggests that direct SCT neurons are mainly modulated by rhythmic activity, whereas the LRN also receives information from systems active during postural adjustment, reaching and grasping. Thus, while direct and indirect spino-cerebellar circuits can both be regarded as internal copy pathways, it seems likely that the direct system is principally dedicated to rhythmic motor acts like locomotion, while the indirect system also provides a means of pre-cerebellar integration relevant to the execution and coordination of de