WorldWideScience

Sample records for vacuum uhv conditions

  1. UHV testing of upgraded vacuum chambers for Indus-1

    International Nuclear Information System (INIS)

    Sindal, B.K.; Kumar, K.V.A.N.P.S.; Ramshiroman; Bhange, Nilesh; Yadav, D.P.; Sridhar, R.; Shukla, S.K.

    2013-01-01

    Indus-1 is a 450 MeV, 100 mA dedicated electron storage ring operating at pressure 10 -10 mbar range without beam and 10 -9 mbar range with beam using triode sputter ion pump (SIP) and titanium sublimation pump (TSP) combination. Indus-1 storage ring is presently working with six operational beam lines installed at three bending magnets. To accommodate two more beam lines and to reduce number of demountable joints, up-gradation of Indus-1 UHV system was planned. Salient features of upgraded vacuum system are bending magnet vacuum chambers with one extra port for additional beam line and straight section vacuum chambers with integrated TSP body. Half of the Indus-1 storage ring vacuum envelope with two bending magnet vacuum chamber and six straight section vacuum chambers were assembled with pumps, gauges etc, leak tested and tested for its UHV performance. Ultimate vacuum 5x10 -10 mbar with SIP and 2x10 -10 mbar after TSP pumping were achieved. Residual gas analyser (RGA) spectrum recorded for residual gas analysis indicated the imprints of a typical all metal UHV system having H 2 as major gas. This paper describes UHV testing of upgraded, newly fabricated vacuum chambers for Indus-1 storage ring. (author)

  2. A compact combined ultrahigh vacuum scanning tunnelling microscope (UHV STM) and near-field optical microscope

    International Nuclear Information System (INIS)

    Woolley, R A J; Hayton, J A; Cavill, S; Ma, Jin; Beton, P H; Moriarty, P

    2008-01-01

    We have designed and constructed a hybrid scanning near-field optical microscope (SNOM)–scanning tunnelling microscope (STM) instrument which operates under ultrahigh vacuum (UHV) conditions. Indium tin oxide (ITO)-coated fibre-optic tips capable of high quality STM imaging and tunnelling spectroscopy are fabricated using a simple and reliable method which foregoes the electroless plating strategy previously employed by other groups. The fabrication process is reproducible, producing robust tips which may be exchanged under UHV conditions. We show that controlled contact with metal surfaces considerably enhances the STM imaging capabilities of fibre-optic tips. Light collection (from the cleaved back face of the ITO-coated fibre-optic tip) and optical alignment are facilitated by a simple two-lens arrangement where the in-vacuum collimation/collection lens may be adjusted using a slip-stick motor. A second in-air lens focuses the light (which emerges from the UHV system as a parallel beam) onto a cooled CCD spectrograph or photomultiplier tube. The application of the instrument to combined optical and electronic spectroscopy of Au and GaAs surfaces is discussed

  3. UHV facility at pelletron

    International Nuclear Information System (INIS)

    Gupta, S.K.; Hattangadi, V.A.

    1993-01-01

    One of the important requirements of a heavy ion accelerator is the maintenance of a clean, ultrahigh vacuum (UHV) environment in the accelerating tubes as well as in the beamlines. This becomes necessary in order to minimise transmission losses of the ion beam due to charge exchange or scattering during collisions with the residual gas atoms. In view of these considerations, as an essential ancillary facility, a UHV laboratory with all required facilities has been set up for the pelletron accelerator and the work done in this laboratory is described. First the pelletron accelerator vacuum system is described in brief. The UHV laboratory facilities are described. Our operational experience with the accelerator vacuum system is discussed. The development of accelerator components carried out by the UHV laboratory is also discussed. (author)

  4. Vacuum Acceptance Tests for the UHV Room Temperature Vacuum System of the LHC during LS1

    CERN Document Server

    Cattenoz, G; Bregliozzi, G; Calegari, D; Gallagher, J; Marraffa, A; Chiggiato, P

    2014-01-01

    During the CERN Large Hadron Collider (LHC) first long shut down (LS1), a large number of vacuum tests are carried out on consolidated or newly fabricated devices. In such a way, the vacuum compatibility is assessed before installation in the UHV system of the LHC. According to the equipment’s nature, the vacuum acceptance tests consist in functional checks, leak test, outgassing rate measurements, evaluation of contaminants by Residual Gas Analysis (RGA), pumping speed measurements and qualification of the H2 sticking probability of Non-Evaporable-Getter (NEG) coating. In this paper, the methods used for the tests and the acceptance criteria are described. A summary of the measured vacuum characteristics for the tested components is also given.

  5. UHV testing of vacuum components and diagnostic devices, related to installation of Undulators in Indus-2

    International Nuclear Information System (INIS)

    Ratnakala, K.C.; Tiwari, S.K.; Bhange, N.J.; Yadav, D.P.; Babbar, L.K.; Netram; Sridhar, R.

    2015-01-01

    Two Insertion Devices, both planar Undulators (U1 and U2), have been successfully installed and commissioned in Indus-2, in Raja Ramanna Centre for Advanced Technology, Indore. The radiation from these Undulators are expected to be 2 to 3 orders of magnitude brighter than the radiation from the Bending Magnets. As required for the installation of these Insertion Devices in Indus-2 ring, two vacuum sections (LS 2 and LS 3) were modified. Apart from the main Undulator chambers (which were procured from the Manufacturer), several other components were developed in UHVT Section and Beam Diagnostic Section, for this purpose. The components include Taper chambers, Beam Position Indicators (both Insertion Device BPI-s and Upgraded BPI-s) and RF shielded bellows.Taper chambers were needed for the smooth transition of cross-section of vacuum envelope, from the normal straight section chamber (with dimensions: 36 mm x 86 mm) to the Undulator chamber (with dimensions: 17 mm x 81 mm). These chambers were required at both entry and exit of Undulator chambers. IDBPI-s and Upgraded BPI-s were needed for the precise monitoring of electron beam position, before the entry into the Undulator and after exiting the Undulator, at various critical positions. Bellows were required to be connected at various positions, during the assembly of vacuum chambers, for the mechanical flexibility. RF shielding was mandatory inside these bellows, to provide a smooth contour of the vacuum envelope, inside these bellows. All these components were tested in the UHV Lab, and confirmed for their UHV compatibility, prior to the actual assembly in the ring. Afterwards, these components were successfully installed in Indus-2 ring, by December, 2014. This paper narrates the UHV-tests carried out, including the assembly, leak-testing, baking, pumping etc. and the results. (author)

  6. Influence of the target surface contamination on UHV screening energies

    Energy Technology Data Exchange (ETDEWEB)

    Targosz-Sleczka, N; Czerski, K; Kilic, A I [Institute of Physics, University of Szczecin, Szczecin (Poland); Huke, A; Martin, L; Heide, P [Institut fuer Atomare Physik und Optik, Technische Universitaet Berlin, Berlin (Germany); Blauth, D; Winter, H, E-mail: natalia.targosz@wmf.univ.szczecin.p [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Berlin (Germany)

    2010-01-01

    The d + d fusion reactions have been investigated in the Zirconium environment under ultra high vacuum (UHV) conditions for projectile energies below 30 keV. The experimentally determined screening energy value of 497 {+-} 7 eV is larger than the previous results by a factor of almost two. Despite the UHV conditions a small deviation between experimental data and the theoretical curve arising from the target surface contamination could be still observed at the lowest projectile energies. Calculations made under the assumption of formation of a Zirconium oxide contamination, show that every atomic monolayer reduces the estimated screening energy significantly.

  7. Influence of the target surface contamination on UHV screening energies

    International Nuclear Information System (INIS)

    Targosz-Sleczka, N; Czerski, K; Kilic, A I; Huke, A; Martin, L; Heide, P; Blauth, D; Winter, H

    2010-01-01

    The d + d fusion reactions have been investigated in the Zirconium environment under ultra high vacuum (UHV) conditions for projectile energies below 30 keV. The experimentally determined screening energy value of 497 ± 7 eV is larger than the previous results by a factor of almost two. Despite the UHV conditions a small deviation between experimental data and the theoretical curve arising from the target surface contamination could be still observed at the lowest projectile energies. Calculations made under the assumption of formation of a Zirconium oxide contamination, show that every atomic monolayer reduces the estimated screening energy significantly.

  8. Systematic UHV-AFM experiments on Na nano-particles and nano-structures in NaCl

    OpenAIRE

    Sugonyako, A.V.; Turkin, A.A.; Gaynutdinov, R.; Vainshtein, D.I.; Hartog, H.W. den; Bukharaev, A.A.

    2005-01-01

    Results of systematic AFM (atomic force microscopy) experiments on heavily and moderatly irradiated NaCl samples are presented. The sodium nanoparticles and structures of nanoparticles are poduced in sodium chloride during irradiation. The AFM images of the nanoparticles have been obtained in ultra high vacuum (UHV) in the non-contact mode with an Omicron UHV AFM/STM system. The sizes and arrangements of the observed particles depend on the irradiation conditions. The melting behaviour of the...

  9. Oxygen accumulation on metal surfaces investigated by XPS, AES and LEIS, an issue for sputter depth profiling under UHV conditions

    Energy Technology Data Exchange (ETDEWEB)

    Steinberger, R., E-mail: roland.steinberger@jku.at [Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Celedón, C.E., E-mail: carlos.celedon@usm.cl [Institut für Experimentalphysik, Abteilung für Atom- und Oberflächenphysik, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Departamento de Física, Universidad Técnica Federico Santa María, Valaparaíso, Casilla 110-V (Chile); Bruckner, B., E-mail: barbara.bruckner@jku.at [Institut für Experimentalphysik, Abteilung für Atom- und Oberflächenphysik, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Roth, D., E-mail: dietmar.roth@jku.at [Institut für Experimentalphysik, Abteilung für Atom- und Oberflächenphysik, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Duchoslav, J., E-mail: jiri.duchoslav@jku.at [Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Arndt, M., E-mail: martin.arndt@voestalpine.com [voestalpine Stahl GmbH, voestalpine-Straße 3, 4031 Linz (Austria); Kürnsteiner, P., E-mail: p.kuernsteiner@mpie.de [Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); and others

    2017-07-31

    Highlights: • Investigation on the impact of residual gas prevailing in UHV chambers. • For some metals detrimental oxygen uptake could be observed within shortest time. • Totally different behavior was found: no changes, solely adsorption and oxidation. • The UHV residual gas may severely corrupt results obtained from depth profiling. • A well-considered data acquisition sequence is the key for reliable depth profiles. - Abstract: Depth profiling using surface sensitive analysis methods in combination with sputter ion etching is a common procedure for thorough material investigations, where clean surfaces free of any contamination are essential. Hence, surface analytic studies are mostly performed under ultra-high vacuum (UHV) conditions, but the cleanness of such UHV environments is usually overrated. Consequently, the current study highlights the in principle known impact of the residual gas on metal surfaces (Fe, Mg, Al, Cr and Zn) for various surface analytics methods, like X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and low-energy ion scattering (LEIS). The investigations with modern, state-of-the-art equipment showed different behaviors for the metal surfaces in UHV during acquisition: (i) no impact for Zn, even after long time, (ii) solely adsorption of oxygen for Fe, slight and slow changes for Cr and (iii) adsorption accompanied by oxide formation for Al and Mg. The efficiency of different counter measures was tested and the acquired knowledge was finally used for ZnMgAl coated steel to obtain accurate depth profiles, which exhibited before serious artifacts when data acquisition was performed in an inconsiderate way.

  10. Oxygen accumulation on metal surfaces investigated by XPS, AES and LEIS, an issue for sputter depth profiling under UHV conditions

    Science.gov (United States)

    Steinberger, R.; Celedón, C. E.; Bruckner, B.; Roth, D.; Duchoslav, J.; Arndt, M.; Kürnsteiner, P.; Steck, T.; Faderl, J.; Riener, C. K.; Angeli, G.; Bauer, P.; Stifter, D.

    2017-07-01

    Depth profiling using surface sensitive analysis methods in combination with sputter ion etching is a common procedure for thorough material investigations, where clean surfaces free of any contamination are essential. Hence, surface analytic studies are mostly performed under ultra-high vacuum (UHV) conditions, but the cleanness of such UHV environments is usually overrated. Consequently, the current study highlights the in principle known impact of the residual gas on metal surfaces (Fe, Mg, Al, Cr and Zn) for various surface analytics methods, like X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and low-energy ion scattering (LEIS). The investigations with modern, state-of-the-art equipment showed different behaviors for the metal surfaces in UHV during acquisition: (i) no impact for Zn, even after long time, (ii) solely adsorption of oxygen for Fe, slight and slow changes for Cr and (iii) adsorption accompanied by oxide formation for Al and Mg. The efficiency of different counter measures was tested and the acquired knowledge was finally used for ZnMgAl coated steel to obtain accurate depth profiles, which exhibited before serious artifacts when data acquisition was performed in an inconsiderate way.

  11. UHV testing of spare straight section chambers of Indus-2

    International Nuclear Information System (INIS)

    Tiwari, S.K.; Ratnakala, K.C.; Sridhar, R.; Bhange, N.J.; Netram; Shukla, S.K.

    2015-01-01

    The vacuum system of Synchrotron Radiation Source, Indus-2, in RRCAT has been functioning up to the mark, continuously for last 10 years. To continue the same trouble-free functioning, it was planned to procure spares for all critical vacuum components, test for UHV performance and keep ready for installation, in case of requirement. As a part of this planning, fifteen chambers made of Aluminium alloy (6063 T6), procured as spare straight section chambers for Indus-2, and were tested for UHV performance. They were tested in batches of 2 or 3 chambers, depending upon their length, and the similar testing-procedure was followed. This paper narrates the tests carried out, and the results obtained. Ultimate vacuum in the range (2 to 9) x 10 -10 mbar was achieved. (author)

  12. ELETTRA vacuum system

    International Nuclear Information System (INIS)

    Bernardini, M.; Daclon, F.; Giacuzzo, F.; Miertusova, J.; Pradal, F.; Kersevan, R.

    1993-01-01

    Elettra is a third-generation synchrotron light source which is being built especially for the use of high brilliance radiation from insertion devices and bending magnets. The UHV conditions in a storage ring lead to a longer beam lifetime - one of the most important criterion. The Elettra vacuum system presents some pecularities which cannot be found in any already existing machine. The final version of bending magnet vacuum chamber is presented. After chemical and thermal conditioning the specific outgassing rate of about 1.5e-12 Torr. liters sec -1 cm -2 was obtained. A microprocessor-controlled system has been developed to perform bake-out at the uniform temperature. The etched-foil type heaters are glued to the chamber and Microtherm insulation is used. UHV pumps based on standard triode sputter-ion pumps were modified with ST 707 NEG (Non Evaporable Getter) modules. A special installation enables the resistive activation of getters and significantly increases pumping speed for hydrogen and other residual gases (except methane and argon). All these technological innovations improve vacuum conditions in Elettra storage ring and consequently also the other parameters of the light source

  13. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    International Nuclear Information System (INIS)

    Sloan Roberts, F.; Anderson, Scott L.

    2013-01-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry

  14. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    Energy Technology Data Exchange (ETDEWEB)

    Sloan Roberts, F.; Anderson, Scott L. [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)

    2013-12-15

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  15. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: a modular vacuum ultraviolet source.

    Science.gov (United States)

    Roberts, F Sloan; Anderson, Scott L

    2013-12-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.

  16. Behaviour of gas conditions during vacuum arc discharges used for deposition of thin films

    International Nuclear Information System (INIS)

    Strzyzewski, J.; Langner, J.; Sadowski, M.; Witkowski, J.; Mirowski, R.; Catani, L.; Cianchi, A.; Russo, R.; Tazzari, S.

    2005-01-01

    The vacuum arc, which is one of the oldest techniques used for the deposition of thin films, is now widely used for the Plasma Immersion Ion Implantation and Deposition (PIII and D) in laboratory and industry. Despite of high progress in this field observed during last three decades, involving e.g. magnetic filters for the elimination of micro-droplets, some problems have not been resolved so far. The paper concerns an important problem which is connected with the inclusion of some impurities in the deposited metal film. It was found that appearance of contaminants in the film is induced mainly by water vapour remnants inside the vacuum chamber. The high adsorption of such contaminants by the deposited thin films is observed particularly in so-called getter materials, as niobium and titanium. Such materials can absorb impurities from the surrounding and dissolve them inside the layer. In order to eliminate this problem, in 2000 a new approach was proposed to perform arc discharges at the ultra-high vacuum (UHV) conditions. It was demonstrated experimentally that the deposited pure Nb-films have similar properties to the bulk-Nb samples. These results are very promising from the point of the application of such coating processes in super-conducting RF cavities of future charged-particle accelerators. The paper describes different methods used for the reduction of the background pressure in the UHV stand below 10 -10 hPa. The most important methods involve the selection of appropriate materials and the backing of whole vacuum system. In order to reduce the contaminants a laser triggering system has been applied instead of a common system, which used high-voltage discharges along the surface of an insulated trigger electrode. Particular attention is paid to a comparison of different gas conditions during arc discharges at high-vacuum conditions (background pressure in the range of 10 -8 -10 -7 hPa) and at UHV experiments (background pressure within the range of 10 -11

  17. Cold-walled UHV/CVD batch reactor for the growth of Si1_x/Gex layers

    DEFF Research Database (Denmark)

    Thomsen, Erik Vilain; Christensen, Carsten; Andersen, C.R.

    1997-01-01

    A novel cold-walled, lamp-heated, ultrahigh vacuum chemical vapor deposition (UHV/CVD) batch system for the growth of SiGe layers is presented. This system combines the batch capability of the standard UHV/CVD furnace with the temperature processing available in rapid thermal processing (Rm...

  18. Micro-four-point probes in a UHV scanning electron microscope for in-situ surface-conductivity measurements

    DEFF Research Database (Denmark)

    Shiraki, I.; Nagao, T.; Hasegawa, S.

    2000-01-01

    For in-situ measurements of surface conductivity in ultrahigh vacuum (UHV), we have installed micro-four-point probes (probe spacings down to 4 mum) in a UHV scanning electron microscope (SEM) combined with scanning reflection-high-energy electron diffraction (RHEED). With the aid of piezoactuators...

  19. Development of fast heating electron beam annealing setup for ultra high vacuum chamber

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sadhan Chandra [UGC-DAE Consortium For Scientific Research, University Campus, Khandwa Road, Indore 452 001, MP (India); School of Electronics, Devi Ahilya University, Indore 452001, MP (India); Institute of Physics, University of Greifswald, Felix Hausdroff Str. 6 (Germany); Majumdar, Abhijit, E-mail: majuabhijit@gmail.com, E-mail: majumdar@uni-greifswald.de; Hippler, R. [Institute of Physics, University of Greifswald, Felix Hausdroff Str. 6 (Germany); Katiyal, Sumant [School of Electronics, Devi Ahilya University, Indore 452001, MP (India); Shripathi, T. [UGC-DAE Consortium For Scientific Research, University Campus, Khandwa Road, Indore 452 001, MP (India)

    2014-02-15

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 ºC with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (∼10{sup −6} mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 ºC of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

  20. Development of fast heating electron beam annealing setup for ultra high vacuum chamber

    International Nuclear Information System (INIS)

    Das, Sadhan Chandra; Majumdar, Abhijit; Hippler, R.; Katiyal, Sumant; Shripathi, T.

    2014-01-01

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 ºC with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (∼10 −6 mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 ºC of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C

  1. Design of a UHV-compatible rf plasma source and its application to self-assembled layers of CoPt3 nanoparticles

    International Nuclear Information System (INIS)

    Gehl, B.; Leist, U.; Aleksandrovic, V.; Nickut, P.; Zielasek, V.; Weller, H.; Al-Shamery, K.; Baeumer, M.

    2006-01-01

    A compact, versatile, and simple rf plasma source with capacitive coupling compatible to ultrahigh vacuum (UHV) requirements was designed and built to allow sequences of sample surface modification in plasma and surface preparation and analysis in vacuum without breaking the vacuum. The plasma source was operated at working pressures of less than 1 to a few millibars. Sample transfer to UHV was performed at pressures around 10 -9 mbar. For easy integration into an existing UHV setup, the sample recipient and transfer system were made to accept standard commercial sample holders. Preliminary experiments were performed by exposing monolayers of colloidal CoPt 3 nanoparticles to oxygen and hydrogen plasmas. The structural and chemical effects of the plasma treatments were analyzed with scanning electron microscopy and x-ray photoelectron spectroscopy

  2. Stepping motor adaptor actuator for a commercial uhv linear motion feedthrough

    International Nuclear Information System (INIS)

    Iarocci, M.; Oversluizen, T.

    1989-01-01

    An adaptor coupling has been developed that will allow the attachment of a standard stepping motor to a precision commercial (Varian) uhv linear motion feedthrough. The assembly, consisting of the motor, motor adaptor, limit switches, etc. is clamped to the feedthrough body which can be done under vacuum conditions if necessary. With a 500 step/rev. stepping motor the resolution is 1.27 μm per step. We presently use this assembly in a remote location for the precise positioning of a beam sensing monitor. 2 refs., 3 figs

  3. A fibre-coupled UHV-compatible variable angle reflection-absorption UV/visible spectrometer

    Science.gov (United States)

    Stubbing, J. W.; Salter, T. L.; Brown, W. A.; Taj, S.; McCoustra, M. R. S.

    2018-05-01

    We present a novel UV/visible reflection-absorption spectrometer for determining the refractive index, n, and thicknesses, d, of ice films. Knowledge of the refractive index of these films is of particular relevance to the astrochemical community, where they can be used to model radiative transfer and spectra of various regions of space. In order to make these models more accurate, values of n need to be recorded under astronomically relevant conditions, that is, under ultra-high vacuum (UHV) and cryogenic cooling. Several design considerations were taken into account to allow UHV compatibility combined with ease of use. The key design feature is a stainless steel rhombus coupled to an external linear drive (z-shift) allowing a variable reflection geometry to be achieved, which is necessary for our analysis. Test data for amorphous benzene ice are presented as a proof of concept, the film thickness, d, was found to vary linearly with surface exposure, and a value for n of 1.43 ± 0.07 was determined.

  4. Rolling contact fatigue in a vacuum test equipment and coating analysis

    CERN Document Server

    Danyluk, Michael

    2014-01-01

    This book deals with wear and performance testing of thin solid film lubrication and hard coatings in an ultra-high vacuum (UHV), a process which enables rapid accumulation of stress cycles compared with testing in oil at atmospheric pressure. The authors' lucid and authoritative narrative broadens readers' understanding of the benefits of UHV testing: a cleaner, shorter test is achieved in high vacuum, disturbance rejection by the deposition controller may be optimized for maximum fatigue life of the coating using rolling contact fatigue testing (RCF) in a high vacuum, and RCF testing in UHV

  5. Evaluation of CBA first string full cell vacuum system

    International Nuclear Information System (INIS)

    Foerster, C.L.; Briggs, J.; Christianson, C.; Stattel, P.

    1983-01-01

    The CBA (Colliding Beam Accelerator, formerly known as ISABELLE) Full Cell Magnet System consisting of six superconducting dipole magnets and two superconducting quadrupole magnets requires two separate vacuum systems. One, known as beam vacuum operates below 3 x 10 -11 Torr and the other, known as insulating vacuum, operates at less than 10 -7 Torr to isolate cryo circuits from atmosphere and from the uhv beam tubes. The uhv bore tube is isolated from the 4.0 0 K magnet by thirty-six (36) layers of superinsulation and insulating vacuum. Heat load measurements on the bore tube have been completed and found to agree with data obtained in smaller controlled experiments. Measurements of helium, accumulated on cryogenic pumped charcoal panels over many weeks, have verified sensitive helium mass spectrometer leak detection methods for vacuum integrity, providing sound design of the welded complex. The Full Cell was assembled and operated under conditions that would exist in the completed machine. Pressures below 2 x 10 -11 Torr beam vacuum requirement and below 2 x 10 -7 Torr insulating vacuum, were routinely achieved during all phases of the Full Cell operation and support systems testing

  6. Ultra high vacuum compatible microwave beam launcher for ECRH in SST - 1

    International Nuclear Information System (INIS)

    Shukla, B.K.; Sathyanarayana, K.; Biswas, P.; Pragnesh, D.; Bora, D.

    2005-01-01

    Microwave beam launcher for Electron Cyclotron Resonance Heating (ECRH) system is used to focus the microwave beam at plasma center of SST -1. The beam launcher consists of an ultra high vacuum (UHV) compatible mirror box with two mirrors mounted in it. One mirror is focusing mirror while other one is a plane mirror. The total volume of the launcher is ∼ 60000 cc and the total surface area exposed to UHV is around ∼ 1.0x10 4 cm 2 . The mirrors are cooled with water for high power and long pulse operation. UHV compatible SS hoses provide flexible cooling connection to the mirrors. Flexible cooling connection helps in adjustment and steering of the mirrors. SS hoses are welded at both the ends and this is necessary to avoid any flange connection inside ultra high vacuum. The system has been tested for UHV compatibility. The leak rate is checked with helium leak detector and found better than l x 10 -9 mbar.lt/s. The system has been baked to 150 deg C for ∼14 hours and the ultimate vacuum achieved with turbomolecular pump (TMP) is ∼ 5x10 -9 mbar. The mirror assembly is tested for leak in pressurized condition using a sniffer probe. The mirrors of the launcher along with the welded bellow are pressurized with helium gas up to a water equivalent pressure of ∼3kg/cm 2 . No increase in the background (∼-10 -6 mbar.lt/s) of the sniffer probes has been observed during the test. The plane mirror is connected with two UHV linear motion feedthroughs with suitable hinges and smooth movement is checked in vacuum. (author)

  7. Ultra-high vacuum technology for accelerators

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Hilleret, Noël; Strubin, Pierre M

    2002-01-01

    The lectures will start with a review of the basics of vacuum physics required to build Ultra High Vacuum (UHV) systems, such as static and dynamic outgassing. Before reviewing the various pumping and measurement devices, including the most modern one like Non Evaporable Getter (NEG) coatings, an overview of adequate materials to be used in UHV systems will be given together with their treatment (e.g. cleaning procedures and bake out). Practical examples based on existing or future accelerators will be used to illustrate the topics. Finally, a short overview of modern vacuum controls and interlocks will be given.

  8. An all aluminum alloy UHV components

    International Nuclear Information System (INIS)

    Sugisaki, Kenzaburo

    1985-01-01

    An all aluminum components was developed for use with UHV system. Aluminum alloy whose advantage are little discharge gas, easy to bake out, light weight, little damage against radieactivity radiation is used. Therefore, as it is all aluminum alloy, baking is possible. Baking temperature is 150 deg C in case of not only ion pump, gate valve, angle valve but also aluminum components. Ion pump have to an ultrahigh vacuum of order 10 -9 torr can be obtained without baking, 10 -10 torr order can be obtained after 24 hour of baking. (author)

  9. Simulations and Vacuum Tests of a CLIC Accelerating Structure

    CERN Document Server

    Garion, C

    2011-01-01

    The Compact LInear Collider, under study, is based on room temperature high gradient structures. The vacuum specificities of these cavities are low conductance, large surface areas and a non-baked system. The main issue is to reach UHV conditions (typically 10-7 Pa) in a system where the residual vacuum is driven by water outgassing. A finite element model based on an analogy thermal/vacuum has been built to estimate the vacuum profile in an accelerating structure. Vacuum tests are carried out in a dedicated set-up, the vacuum performances of different configurations are presented and compared with the predictions.

  10. Comparative TEM study of bonded silicon/silicon interfaces fabricated by hydrophilic, hydrophobic and UHV wafer bonding

    International Nuclear Information System (INIS)

    Reznicek, A.; Scholz, R.; Senz, S.; Goesele, U.

    2003-01-01

    Wafers of Czochralski-grown silicon were bonded hydrophilically, hydrophobically and in ultrahigh vacuum (UHV) at room temperature. Wafers bonded hydrophilically adhere together by hydrogen bonds, those bonded hydrophobically by van der Waals forces and UHV-bonded ones by covalent bonds. Annealing the pre-bonded hydrophilic and hydrophobic wafer pairs in argon for 2 h at different temperatures increases the initially low bonding energy. UHV-bonded wafer pairs were also annealed to compare the results. Transmission electron microscopy (TEM) investigations show nano-voids at the interface. The void density depends on the initial bonding strength. During annealing the shape, coverage and density of the voids change significantly

  11. Design of the CLIC Quadrupole Vacuum Chambers

    CERN Document Server

    Garion, C

    2010-01-01

    The Compact Linear Collider, under study, requires vacuum chambers with a very small aperture, of the order of 8 mm in diameter, and with a length up to around 2 m for the main beam quadrupoles. To keep the very tight geometrical tolerances on the quadrupoles, no bake out is allowed. The main issue is to reach UHV conditions (typically 10-9 mbar static pressure) in a system where the vacuum performance is driven by water outgassing. For this application, a thinwalled stainless steel vacuum chamber with two ante chambers equipped with NEG strips, is proposed. The mechanical design, especially the stability analysis, is shown. The key technologies of the prototype fabrication are given. Vacuum tests are carried out on the prototypes. The test set-up as well as the pumping system conditions are presented.

  12. Conformational studies of self-organized regioregular poly(3-dodecylthiophene)s using non-contact atomic force microscopy in ultra high vacuum condition

    International Nuclear Information System (INIS)

    Tanaka, Shukichi; Grevin, Benjamin; Rannou, Patrice; Suzuki, Hitoshi; Mashiko, Shinro

    2006-01-01

    Conformations of one of the variations of π-conjugated poly-alkylthiophene, poly(3-dodecylthiophene)s (P3DDT)s on the surface in ultra high vacuum (UHV) were investigated by non-contact atomic force microscopy (NC-AFM) operated by frequency-modulation mode (FM-mode). From individual molecules to several multi-layered ones, polymer chains on the surface were clearly resolved on conducting highly oriented pyrolytic graphite (HOPG) substrates and insulating mica ones, respectively. Solvent evaporation was found to have two stages, which influenced the diffusion, ordering, and adhesion processes of polymer chains on the substrate. To keep the ordered conformations of deposited polymer chains when they are transferred from ambient condition to UHV, these evaporation processes should be carefully considered. The initial conformation of polymers on the substrate was found to depend strongly on the lattice matching conditions and interactions between polymers and substrates. Formations of stripe-like structures of P3DDT polymers were found on the mica substrates, which is promising for device application

  13. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M

    2000-10-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx}35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat}Xe gas targets.

  14. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Loveland, W.; Jakobsson, B.; Whitlow, H.J.; Bouanani, M. El; Univ. of North Texas, Denton, TX

    2000-01-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼ 35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  15. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Uppsala Univ. (Sweden). The Svedberg Lab.; Veldhuizen, E.J. van; Aleklett, K. [Uppsala Univ., (Sweden). Dept. of Radiation Sciences; Westerberg, L. [Uppsala University (Sweden). The Svedberg Lab.; Lyapin, V.G. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Loveland, W. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry; Bondorf, J. [Niels Bohr Inst., Copenhagen (Denmark); Jakobsson, B. [Lund Univ. (Sweden). Dept. of Physics; Whitlow, H.J. [Lund Univ. (Sweden). Dept. of Nuclear Physics; Bouanani, M. El [Lund Univ. (Sweden). Dept. of Nuclear Physics; Univ. of North Texas, Denton, TX (United States). Dept. of Physics

    2000-07-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx} 35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat} Xe gas targets.

  16. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M.

    2000-01-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  17. Ultrasensitive leak detection during ultrahigh vacuum evacuation by quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Chen Xu; Huang Tianbin; Wang Ligong; Jin Qiji; Cha Liangzhen

    2006-01-01

    One must do ultrasensitive leak detection during ultrahigh-vacuum (UHV) evacuation, especially just before the device is sealed off from the vacuum system, to guarantee the longevity of the sealed high-vacuum or even UHV devices with small volume. A quadrupole mass spectrometer (QMS) with an UHV evacuation system can be used under accumulation mode to do the testing. Possible accumulate modes, as well as their advantages and shortcomings, are studied experimentally and discussed in this paper. We found that the opening action of the metal valve during accumulation mode always severely affects the height of the peak indicated by QMS and causes considerable errors. If we determine the leak rate by the peak area instead of the peak height, the situation is much improved. This method has proven quite useful in ensuring the tightness quality for complex sealed UHV devices with small volumes. Ultrasensitive leak detection has been carried out for such real evacuating devices, and a leak rate of 2x10 -14 Pa·m 3 /s was detected, which is far lower than its dynamic mode and the detection limit of the current advanced commercial leak detectors

  18. New design of a variable-temperature ultrahigh vacuum scanning tunneling microscope

    NARCIS (Netherlands)

    Mugele, Friedrich Gunther; Rettenberger, A.; Boneberg, J.; Leiderer, P.

    1998-01-01

    We present the design of a variable-temperature ultrahigh vacuum (UHV) scanning tunneling microscope which can be operated between 20 and 400 K. The microscope is mounted directly onto the heat exchanger of a He continuous flow cryostat without vibration isolation inside the UHV chamber. The coarse

  19. Vacuum technology Practice for scientific instruments

    CERN Document Server

    Yoshimura, Nagamitsu

    2008-01-01

    Nanotechnology has reached a level where almost every new development and even every new product uses features of nanoscopic properties of materials. As a consequence, an enormous amount of scientific instruments is used in order to synthesize and analyze new structures and materials. Due to the surface sensitivity of such materials, many of these instruments require ultrahigh vacuum that has to be provided under extreme conditions like very high voltages. In this book, Yoshimura provides a review of the UHV related development during the last decades. His very broad experience in the design enables him to present us this detailed reference. After a general description how to design UHV systems, he covers all important issue in detail, like pumps, outgasing, Gauges, and Electrodes for high voltages. Thus, this book serves as reference for everybody using UVH in his scientific equipment

  20. The use of non-destructive testing in COSY, an ultrahigh vacuum research plant of KFA, Juelich

    International Nuclear Information System (INIS)

    Schroeder, G.; Pauly, F.; Stechemesser, H.

    1993-01-01

    This report shows that the development, the construction and the later successful operation of ultra-high vacuum (UHV) plants in the pressure range of ≤ 10 -10 mbar is not possible without the use of highly sensitive non-destructive testing. Using the example of the large scale precision plant COSY, it is shown that only by observing basic UHV manufacturing conditions and the thorough use of the helium leak-finding technique and mass-spectrometric residual gas analysis can the required leakage rates ( -10 mbar. 1 . s -1 ) and surface cleanliness be achieved. (orig.) [de

  1. LHC : The World's Largest Vacuum Systems being commissioned at CERN

    CERN Document Server

    Jiménez, J M

    2008-01-01

    When it switches on in 2008, the 26.7 km Large Hadron Collider (LHC) at CERN, will have the world's largest vacuum system operating over a wide range of pressures and employing an impressive array of vacuum technologies. This system is composed by 54 km of UHV vacuum for the circulating beams and 50 km of insulation vacuum around the cryogenic magnets and the liquid helium transfer lines. Over the 54 km of UHV beam vacuum, 48 km of this are at cryogenic temperature (1.9 K). The remaining 6 km of beam vacuum containing the insertions for "cleaning" the proton beams, radiofrequency cavities for accelerating the protons as well as beam-monitoring equipment is at ambient temperature and uses non-evaporable getter (NEG) coatings - a vacuum technology that was born and industrialized at CERN. The pumping scheme is completed using 780 ion pumps to remove noble gases and to provide pressure interlocks to the 303 vacuum safety valves. Pressure readings are provided by 170 Bayard-Alpert gauges and 1084 gauges (Pirani a...

  2. Ultra high vacuum technology

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    A short introduction for some basic facts and equations. Subsquently, discussion about: Building blocks of an ultrahigh vacuum system - Various types of pumps required to reach uhv and methods to reduce these effects - Outgassing phenomena induced by the presence of a particle beam and the most common methods to reduce these effects It will be given some practical examples from existing CERN accelerators and discuss the novel features of the future LHC vacuum system.

  3. Vacuum system for the tokamak fusion test reactor (TFTR)

    International Nuclear Information System (INIS)

    Lange, W.J.; Green, D.; Sink, D.A.

    1976-01-01

    The vacuum system for TFTR is described. Insofar as possible, conventional and ultrahigh vacuum (UHV) components and technology will be employed. Subassemblies will be prebaked in vacuum to reduce subsequent outgassing, and assembly will employ TIG welding and metal gaskets. It is not anticipated that the totally assembled torus with its numerous diagnostic appendages will be baked in situ to a high temperature, however a lower bakeout temperature (approximately 250 0 C) is under consideration. Final vacuum conditioning will be performed using discharge cleaning to obtain a specific outgassing rate of less than or = to 10 -10 Torr liter/sec cm 2 hydrogen isotopes and less than or = to 10 -12 Torr liter/sec cm 2 of other gases, and a base pressure of less than or = to 5 x 10 -8 Torr

  4. Evaporation under vacuum condition

    International Nuclear Information System (INIS)

    Mizuta, Satoshi; Shibata, Yuki; Yuki, Kazuhisa; Hashizume, Hidetoshi; Toda, Saburo; Takase, Kazuyuki; Akimoto, Hajime

    2000-01-01

    In nuclear fusion reactor design, an event of water coolant ingress into its vacuum vessel is now being considered as one of the most probable accidents. In this report, the evaporation under vacuum condition is evaluated by using the evaporation model we have developed. The results show that shock-wave by the evaporation occurs whose behavior strongly depends on the initial conditions of vacuum. And in the case of lower initial pressure and temperature, the surface temp finally becomes higher than other conditions. (author)

  5. Advanced Photon Source accelerator ultrahigh vacuum guide

    International Nuclear Information System (INIS)

    Liu, C.; Noonan, J.

    1994-03-01

    In this document the authors summarize the following: (1) an overview of basic concepts of ultrahigh vacuum needed for the APS project, (2) a description of vacuum design and calculations for major parts of APS, including linac, linac waveguide, low energy undulator test line, positron accumulator ring (PAR), booster synchrotron ring, storage ring, and insertion devices, and (3) cleaning procedures of ultrahigh vacuum (UHV) components presently used at APS

  6. Silver endotaxy in silicon under various ambient conditions and their use as surface enhanced Raman spectroscopy substrates

    International Nuclear Information System (INIS)

    Juluri, R.R.; Ghosh, A.; Bhukta, A.; Sathyavathi, R.; Satyam, P.V.

    2015-01-01

    Search for reliable, robust and efficient substrates for surface enhanced Raman spectroscopy (SERS) leads to the growth of various shapes and nanostructures of noble metals, and in particular, Ag nanostructures for this purpose. Coherently embedded (also known as endotaxial) Ag nanostructures in silicon substrates can be made robust and reusable SERS substrates. In this paper, we show the possibility of the growth of Ag endotaxial structures in Si crystal during Ar and low-vacuum annealing conditions while this is absent in O 2 and ultra high vacuum (UHV) annealing conditions and along with their respective use as SERS substrates. Systems annealed under air-annealing and low-vacuum conditions were found to show larger enhancement factors (typically ≈ 5 × 10 5 in SERS measurement for 0.5 nM Crystal Violet (CV) molecule) while the systems prepared under UHV-annealing conditions (where no endotaxial Ag structures were formed) were found to be not effective as SERS substrates. Extensive electron microscopy, synchrotron X-ray diffraction and Rutherford backscattering spectrometry techniques were used to understand the structural aspects. - Highlights: • Various aspects on the growth of endotaxial Ag nanostructures are presented. • Optimum amount of oxygen is necessary for the growth of endotaxial structures. • Reaction of oxygen with GeOx and SiOx plays a crucial role. • Ag nanostructures prepared under UHV conditions show low SERS activity • SERS enhancement is better for low-vacuum and argon annealing conditions

  7. Baking controller for synchrotron beamline vacuum systems

    International Nuclear Information System (INIS)

    Garg, C.K.; Kane, S.R.; Dhamgaye, V.P.

    2003-01-01

    The 2.5 GeV electron storage ring Indus-2 is a hard X-ray Synchrotron Radiation (SR) Source. Nearly 27 beamlines will be installed on Indus-2 and they will cater to different experiments and applications. Most of the beamlines will be in Ultra High Vacuum (UHV) the only exception being hard X-rays beamlines. However the front ends of all the beamlines will be in UHV. Practicing UHV requires efforts and patience. Evacuating any chamber, volume gases can be removed easily. However, outgassing phenomena like desorption, diffusion and permeation restricts the system to attain UHV. All processes except the volume gas removal are temperature dependent. At ambient temperature, gas pressure decreases so slowly that outgassing limit (i.e. 10 -10 1/s/cm 2 ) can hardly be achieved on a practical time scale. Also there are three orders of magnitude difference in outgassing between baked and unbaked systems. Depending on the vacuum chamber and the components inside it, the thermal outgassing (baking) of system is required and can be done at various temperatures between 150 degC to 450 deg C. For whole baking cycle, constant monitoring and controlling of the systems is required which takes tens of hours. This paper describes the automation for such baking system, which will be used for SR beamlines

  8. Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts

    International Nuclear Information System (INIS)

    Mayr, Lukas; Klötzer, Bernhard; Penner, Simon; Rameshan, Raffael; Rameshan, Christoph

    2014-01-01

    An ultra-high vacuum (UHV) setup for “real” and “inverse” model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7°, “magic angle”) and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown

  9. Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts

    Science.gov (United States)

    Mayr, Lukas; Rameshan, Raffael; Klötzer, Bernhard; Penner, Simon; Rameshan, Christoph

    2014-05-01

    An ultra-high vacuum (UHV) setup for "real" and "inverse" model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7°, "magic angle") and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown.

  10. Quartz microbalance device for transfer into ultrahigh vacuum systems

    International Nuclear Information System (INIS)

    Stavale, F.; Achete, C. A.; Niehus, H.

    2008-01-01

    An uncomplicated quartz microbalance device has been developed which is transferable into ultrahigh vacuum (UHV) systems. The device is extremely useful for flux calibration of different kinds of material evaporators. Mounted on a commercial specimen holder, the device allows fast quartz microbalance transfer into the UHV and subsequent positioning exactly to the sample location where subsequent thin film deposition experiments shall be carried out. After backtransfer into an UHV sample stage, the manipulator may be loaded in situ with the specimen suited for the experiment. The microbalance device capability is demonstrated for monolayer and submonolayer vanadium depositions with an achieved calibration sensitivity of less the 0.001 ML coverage.

  11. Ultra high vacuum system for Isabelle full cell

    International Nuclear Information System (INIS)

    Skelton, R.; Briggs, J.; Chou, T.S.; Foerster, C.; Stattel, P.

    1979-01-01

    A vacuum system consisting of a 40 m long 8.8 cm diameter stainless steel tube, pumped by 7 pumping stations, has been assembled using automatic welding methods. All components have been fired at 950 0 C in a vacuum furnace at a pressure -4 Torr. Each pumping station contains a Ti-sublimator, a 30 liter/s ion pump and an UHV gauge. After assembly, the entire system was baked out at 250 0 C for 24 hours. A pressure -11 Torr was reached after titanium flash. Surface treatment of stainless for 10 -11 Torr operation, bake out and conditioning cycle to read 1 x 10 -11 Torr, and leak checking at low pressures are discussed

  12. Baking of SST-1 vacuum vessel modules and sectors

    International Nuclear Information System (INIS)

    Pathan, Firozkhan S; Khan, Ziauddin; Yuvakiran, Paravastu; George, Siju; Ramesh, Gattu; Manthena, Himabindu; Shah, Virendrakumar; Raval, Dilip C; Thankey, Prashant L; Dhanani, Kalpesh R; Pradhan, Subrata

    2012-01-01

    SST-1 Tokamak is a steady state super-conducting tokamak for plasma discharge of 1000 sec duration. The plasma discharge of such long time duration can be obtained by reducing the impurities level, which will be possible only when SST-1 vacuum chamber is pumped to ultra high vacuum. In order to achieve UHV inside the chamber, the baking of complete vacuum chamber has to be carried out during pumping. For this purpose the C-channels are welded inside the vacuum vessel. During baking of vacuum vessel, these welded channels should be helium leak tight. Further, these U-channels will be in accessible under operational condition of SST-1. So, it will not possible to repair if any leak is developed during experiment. To avoid such circumstances, a dedicated high vacuum chamber is used for baking of the individual vacuum modules and sectors before assembly so that any fault during welding of the channels will be obtained and repaired. This paper represents the baking of vacuum vessel modules and sectors and their temperature distribution along the entire surface before assembly.

  13. A new UHV micro positioning system for high load

    Energy Technology Data Exchange (ETDEWEB)

    Colldelram, Carles, E-mail: ccolldelram@cells.es; Nicolas, Josep, E-mail: jnicolas@cells.es; Nikitina, Liudmila, E-mail: lnikitina@cells.es [ALBA Synchrotron, Carretera BP 1413, de Cerdanyola del Vallès a Sant Cugat del Vallès, Km. 3,3, 08290 Cerdanyola del Vallès, Barcelona (Spain)

    2016-07-27

    In this work we report the design and performance of a novel compact in-vacuum actuator, designed to be compatible with all the motions required for the scissor-type ESRF mirror bender. These mirror benders include several linear actuators, which drive the mirror bending torques, as well as the main alignment motions such as pitch and translation along the normal to the mirror surface. The motions are provided by compact linear actuators, which consist of motor, reduction, spindle and nut, encapsulated on a closed air volume to provide vacuum compatibility. The actuator includes a hydroformed bellows to transmit the force to the actuator tip, and an electrical feedthrough for the motor cables. The design boundaries for these actuators are quite tight, as they must be integrated in a narrow volume, must be UHV compatible and must provide high resolution, for a relatively high load. As a result, they have limited mechanical performance, and in some cases poor reliability. To overcome these problems, we designed and implemented a different concept. In the proposed concept, the motor rotation is converted onto a linear motion by means of a cam instead of a spindle and a nut. This allows for much shorter and stiffer transmission system, with similar dimensions. The vacuum compatibility is intrinsic for this solution, since the whole mechanism of the actuator is UHV compatible. All motions are preloaded and guided by vacuum compatible (hybrid metal-ceramics) ball bearings. This allows the system reaching a repeatability and backlash well within the micron. The absence of friction allows for a high reliability and releases the maintenance needs of the system. The transmission is intrinsically irreversible, and the system can hold a load of 250 N within a few nanometers without any holding current on the motors. This allows the system to move reliably also in micro-stepping mode, providing a resolution well below the half-step nominal resolution of 100 nm. Performances

  14. A new UHV micro positioning system for high load

    International Nuclear Information System (INIS)

    Colldelram, Carles; Nicolas, Josep; Nikitina, Liudmila

    2016-01-01

    In this work we report the design and performance of a novel compact in-vacuum actuator, designed to be compatible with all the motions required for the scissor-type ESRF mirror bender. These mirror benders include several linear actuators, which drive the mirror bending torques, as well as the main alignment motions such as pitch and translation along the normal to the mirror surface. The motions are provided by compact linear actuators, which consist of motor, reduction, spindle and nut, encapsulated on a closed air volume to provide vacuum compatibility. The actuator includes a hydroformed bellows to transmit the force to the actuator tip, and an electrical feedthrough for the motor cables. The design boundaries for these actuators are quite tight, as they must be integrated in a narrow volume, must be UHV compatible and must provide high resolution, for a relatively high load. As a result, they have limited mechanical performance, and in some cases poor reliability. To overcome these problems, we designed and implemented a different concept. In the proposed concept, the motor rotation is converted onto a linear motion by means of a cam instead of a spindle and a nut. This allows for much shorter and stiffer transmission system, with similar dimensions. The vacuum compatibility is intrinsic for this solution, since the whole mechanism of the actuator is UHV compatible. All motions are preloaded and guided by vacuum compatible (hybrid metal-ceramics) ball bearings. This allows the system reaching a repeatability and backlash well within the micron. The absence of friction allows for a high reliability and releases the maintenance needs of the system. The transmission is intrinsically irreversible, and the system can hold a load of 250 N within a few nanometers without any holding current on the motors. This allows the system to move reliably also in micro-stepping mode, providing a resolution well below the half-step nominal resolution of 100 nm. Performances

  15. Atmospheric pressure reaction cell for operando sum frequency generation spectroscopy of ultrahigh vacuum grown model catalysts

    Science.gov (United States)

    Roiaz, Matteo; Pramhaas, Verena; Li, Xia; Rameshan, Christoph; Rupprechter, Günther

    2018-04-01

    A new custom-designed ultrahigh vacuum (UHV) chamber coupled to a UHV and atmospheric-pressure-compatible spectroscopic and catalytic reaction cell is described, which allows us to perform IR-vis sum frequency generation (SFG) vibrational spectroscopy during catalytic (kinetic) measurements. SFG spectroscopy is an exceptional tool to study vibrational properties of surface adsorbates under operando conditions, close to those of technical catalysis. This versatile setup allows performing surface science, SFG spectroscopy, catalysis, and electrochemical investigations on model systems, including single crystals, thin films, and deposited metal nanoparticles, under well-controlled conditions of gas composition, pressure, temperature, and potential. The UHV chamber enables us to prepare the model catalysts and to analyze their surface structure and composition by low energy electron diffraction and Auger electron spectroscopy, respectively. Thereafter, a sample transfer mechanism moves samples under UHV to the spectroscopic cell, avoiding air exposure. In the catalytic cell, SFG spectroscopy and catalytic tests (reactant/product analysis by mass spectrometry or gas chromatography) are performed simultaneously. A dedicated sample manipulation stage allows the model catalysts to be examined from LN2 temperature to 1273 K, with gaseous reactants in a pressure range from UHV to atmospheric. For post-reaction analysis, the SFG cell is rapidly evacuated and samples are transferred back to the UHV chamber. The capabilities of this new setup are demonstrated by benchmark results of CO adsorption on Pt and Pd(111) single crystal surfaces and of CO adsorption and oxidation on a ZrO2 supported Pt nanoparticle model catalyst grown by atomic layer deposition.

  16. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    International Nuclear Information System (INIS)

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user's risk and may lead to rejection of the whole assembly

  17. Precision mechanical design of an UHV-compatible artificial channel-cut x-ray monochromator

    International Nuclear Information System (INIS)

    Shu, D.; Narayanan, S.; Sandy, A.; Sprung, M.; Preissner, C.; Sullivan, J.

    2007-01-01

    A novel ultra-high-vacuum (UHV)-compatible x-ray monochromator has been designed and commissioned at the undulator beamline 8-ID-I at the Advanced Photon Source (APS) for x-ray photon correlation spectroscopy applications. To meet the challenging stability and x-ray optical requirements, the monochromator integrates two new precision angular positioning mechanisms into its crystal optics motion control system: An overconstrained weak-link mechanism that enables the positioning of an assembly of two crystals to achieve the same performance as a single channel-cut crystal, the so called 'artificial channel-cut crystal'; A ceramic motor driven in-vacuum sine-bar mechanism for the double crystal combined pitch motion. The mechanical design of the monochromator, as well as the test results of its positioning performance are presented in this paper.

  18. Precision mechanical design of an UHV-compatible artificial channel-cut x-ray monochromator.

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Narayanan, S.; Sandy, A.; Sprung, M.; Preissner, C.; Sullivan, J.; APS Engineering Support Division

    2007-01-01

    A novel ultra-high-vacuum (UHV)-compatible x-ray monochromator has been designed and commissioned at the undulator beamline 8-ID-I at the Advanced Photon Source (APS) for x-ray photon correlation spectroscopy applications. To meet the challenging stability and x-ray optical requirements, the monochromator integrates two new precision angular positioning mechanisms into its crystal optics motion control system: An overconstrained weak-link mechanism that enables the positioning of an assembly of two crystals to achieve the same performance as a single channel-cut crystal, the so called 'artificial channel-cut crystal'; A ceramic motor driven in-vacuum sine-bar mechanism for the double crystal combined pitch motion. The mechanical design of the monochromator, as well as the test results of its positioning performance are presented in this paper.

  19. Proceedings of the 5th meeting on ultra high vacuum techniques for accelerators and storage rings

    International Nuclear Information System (INIS)

    Horikoshi, Gen-ichi

    1984-08-01

    This is the proceedings of the 5th meeting on UHV Techniques for Accelerators and Storage Rings held at KEK, March 26-27, 1984. More than 110 vacuum scientists attended the meeting, and 23 reports were presented. Main subjects were, of course, concerning with the vacuum systems for large accelerators and plasma devices under planning or construction in Japan. At the same time, many reports on the general problems of vacumm science were also presented. The subjects of these reports were outgassing phenomenon, surface problems, new type UHV pumps and others. (author)

  20. Vacuum considerations: summary

    International Nuclear Information System (INIS)

    Blechschmidt, D.; Halama, H.J.

    1978-01-01

    A summary is given of the efforts of a vacuum systems study group of the workshop on a Heavy Ion Demonstration Experiment (HIDE) for heavy ion fusion. An inadequate knowledge of cross-sections prevents a more concrete vacuum system design. Experiments leading to trustworthy numbers for charge exchange, stripping and capture cross-sections are badly needed and should start as soon as possible. In linacs, beam loss will be almost directly proportional to the pressure inside the tanks. The tanks should, therefore, be built in such a way that they can be baked-out in situ to improve their vacuum, especially if the cross-sections turn out to be higher than anticipated. Using standard UHV techniques and existing pumps, an even lower pressure can be achieved. The vacuum system design for circular machines will be very difficult, and in some cases, beyond the present state-of-the-art

  1. UHV mirror mounts for photophysics beamline at Indus-I

    International Nuclear Information System (INIS)

    Meenakshi Raja Rao, P.; Bhattacharya, S.S.; Das, N.C.; Rajasekhar, B.N.; Roy, A.P.

    1995-01-01

    Photophysics beamline makes use of a combination of two toroidal mirrors and one meter Seya-Namioka Monochromator in its fore optics. The fore optics monochromatises and steers the synchrotron radiation source (SRS) beam from its tangent point to the sample situated at a distance of about five meters. Slit widths of the monochromator are of the order of 100μ and the sample size is one mm 2 . Hence it is essential to impart precision rotational and translational movements of the same order of magnitude to the mirrors with the use of appropriate mirror mounts. Since Indus-1 operates at a pressure -9 mbar, the mirror mounts should be UHV compatible and the movements should be actuated under UHV. The mirrors along with the mirror mounts are enclosed in UHV chambers. The mirror chambers have been fabricated at Centre for Advanced Technology (CAT) workshops and tested up to a pressure of 10 -9 mbar. The mirror mounts are designed, fabricated and leak checked (He leak rate -10 std cc/s) The precision movements are achieved with the help of bellow sealed shaft mechanism and adjustable screws provided with the kinematic mount of the mirror frame. The performance of the mirror mount was tested at atmospheric pressure by using a laser beam and found to be good. The minimum displacement of the laser beam at slit and sample positions is ∼ 70μ which is quite adequate for optical alignment. The performance of the mirror mount under UHV conditions is being evaluated. (author). 4 refs., 3 figs

  2. Design and qualification of an UHV system for operation on sounding rockets

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Jens, E-mail: jens.grosse@dlr.de; Braxmaier, Claus [Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, 28359, Germany and German Aerospace Center (DLR) Bremen, Bremen, 28359 (Germany); Seidel, Stephan Tobias; Becker, Dennis; Lachmann, Maike Diana [Institute of Quantum Optics, Leibniz University Hanover, Hanover, 30167 (Germany); Scharringhausen, Marco [German Aerospace Center (DLR) Bremen, Bremen, 28359 (Germany); Rasel, Ernst Maria [Institute of Quantum Optics, Leibniz University Hanover, Hanover, 30167, Bremen (Germany)

    2016-05-15

    The sounding rocket mission MAIUS-1 has the objective to create the first Bose–Einstein condensate in space; therefore, its scientific payload is a complete cold atom experiment built to be launched on a VSB-30 sounding rocket. An essential part of the setup is an ultrahigh vacuum system needed in order to sufficiently suppress interactions of the cooled atoms with the residual background gas. Contrary to vacuum systems on missions aboard satellites or the international space station, the required vacuum environment has to be reached within 47 s after motor burn-out. This paper contains a detailed description of the MAIUS-1 vacuum system, as well as a description of its qualification process for the operation under vibrational loads of up to 8.1 g{sub RMS} (where RMS is root mean square). Even though a pressure rise dependent on the level of vibration was observed, the design presented herein is capable of regaining a pressure of below 5 × 10{sup −10} mbar in less than 40 s when tested at 5.4 g{sub RMS}. To the authors' best knowledge, it is the first UHV system qualified for operation on a sounding rocket.

  3. CHICSi - a compact ultra-high vacuum compatible detector system for nuclear reaction experiments at storage rings. I. General structure, mechanics and UHV compatibility

    International Nuclear Information System (INIS)

    Westerberg, L.; Avdeichikov, V.; Carlen, L.; Golubev, P.; Jakobsson, B.; Rouki, C.; Siwek, A.; Veldhuizen, E.J. van; Whitlow, H.J.

    2003-01-01

    CELSIUS Heavy-Ion Collision Silicon detector system (CHICSi) is a large solid angle, barrel-shaped detector system, housing up to 600 detector telescopes arranged in rotational symmetry around the beam axis. CHICSi measures charged particles and fragments from nuclear reactions. It operates at internal targets of storage rings. In order to optimize space and momentum-space coverage and minimize the low-energy detection limits, CHICSi is designed for use in ultra-high vacuum (UHV, ∼10 -8 Pa) inside a cluster-jet target chamber. This calls for materials in mechanical support, detectors, Very Large Scale Integrated (VLSI) electronics, connectors, cables and other signal transport devices with very low outgassing. Two auxiliary detector systems, which will operate in coincidence with CHICSi, a heavy-recoil, time-of-flight system (HR-TOF) also placed inside the target chamber and a projectile fragmentation wall (PF-WALL) located outside the chamber, have also been constructed. In total, this combined system registers more than 80% of all charged particles and fragments from typical heavy-ion reactions at energies of a few hundreds of MeV per nucleon

  4. CHICSi - a compact ultra-high vacuum compatible detector system for nuclear reaction experiments at storage rings. I. General structure, mechanics and UHV compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, L.; Avdeichikov, V.; Carlen, L.; Golubev, P.; Jakobsson, B. E-mail: bo.jakobsson@kosufy.lu.se; Rouki, C.; Siwek, A.; Veldhuizen, E.J. van; Whitlow, H.J

    2003-03-11

    CELSIUS Heavy-Ion Collision Silicon detector system (CHICSi) is a large solid angle, barrel-shaped detector system, housing up to 600 detector telescopes arranged in rotational symmetry around the beam axis. CHICSi measures charged particles and fragments from nuclear reactions. It operates at internal targets of storage rings. In order to optimize space and momentum-space coverage and minimize the low-energy detection limits, CHICSi is designed for use in ultra-high vacuum (UHV, {approx}10{sup -8} Pa) inside a cluster-jet target chamber. This calls for materials in mechanical support, detectors, Very Large Scale Integrated (VLSI) electronics, connectors, cables and other signal transport devices with very low outgassing. Two auxiliary detector systems, which will operate in coincidence with CHICSi, a heavy-recoil, time-of-flight system (HR-TOF) also placed inside the target chamber and a projectile fragmentation wall (PF-WALL) located outside the chamber, have also been constructed. In total, this combined system registers more than 80% of all charged particles and fragments from typical heavy-ion reactions at energies of a few hundreds of MeV per nucleon.

  5. Formation of an intermolecular charge-transfer compound in UHV codeposited tetramethoxypyrene and tetracyanoquinodimethane

    DEFF Research Database (Denmark)

    Medjanik, K.; Perkert, S.; Naghavi, S.

    2010-01-01

    Ultrahigh vacuum (UHV)-deposited films of the mixed phase of tetramethoxypyrene and tetracyanoquinodimethane (TMP -TCNQ ) on gold have been studied using ultraviolet photoelectron spectroscopy (UPS), x-ray diffraction (XRD), infrared (IR) spectroscopy, and scanning tunneling spectroscopy (STS......). The formation of an intermolecular charge-transfer (CT) compound is evident from the appearance of new reflexes in XRD (d =0.894nm and d =0.677nm). A softening of the CN stretching vibration (redshift by 7 cm⊃-1) of TCNQ is visible in the IR spectra, being indicative of a CT on the order of 0.3e from TMP...

  6. Particle Swarm Optimization-based BP Neural Network for UHV DC Insulator Pollution Forecasting

    Directory of Open Access Journals (Sweden)

    Fangcheng Lü

    2014-02-01

    Full Text Available In order to realize the forecasting of the UHV DC insulator's pollution conditions, we introduced a PSOBP algorithm. A BP neural network (BPNN with leakage current, temperature, relative humidity and dew point as input neurons, and ESDD as output neuron was built to forecast the ESDD. The PSO was used to optimize the the BPNN, which had great improved the convergence rate of the BP neural network. The dew point as a brand new input unit has improved the iteration speed of the PSOBP algorithm in this study. It was the first time that the PSOBP algorithm was applied to the UHV DC insulator pollution forecasting. The experiment results showed that the method had great advantages in accuracy and speed of convergence. The research showed that this algorithm was suitable for the UHV DC insulator pollution forecasting.

  7. Perspective: Chemical reactions in ionic liquids monitored through the gas (vacuum)/liquid interface.

    Science.gov (United States)

    Maier, F; Niedermaier, I; Steinrück, H-P

    2017-05-07

    This perspective analyzes the potential of X-ray photoelectron spectroscopy under ultrahigh vacuum (UHV) conditions to follow chemical reactions in ionic liquids in situ. Traditionally, only reactions occurring on solid surfaces were investigated by X-ray photoelectron spectroscopy (XPS) in situ. This was due to the high vapor pressures of common liquids or solvents, which are not compatible with the required UHV conditions. It was only recently realized that the situation is very different when studying reactions in Ionic Liquids (ILs), which have an inherently low vapor pressure, and first studies have been performed within the last years. Compared to classical spectroscopy techniques used to monitor chemical reactions, the advantage of XPS is that through the analysis of their core levels all relevant elements can be quantified and their chemical state can be analyzed under well-defined (ultraclean) conditions. In this perspective, we cover six very different reactions which occur in the IL, with the IL, or at an IL/support interface, demonstrating the outstanding potential of in situ XPS to gain insights into liquid phase reactions in the near-surface region.

  8. Safety and operational aspects in in-situ electrical baking of large vacuum systems of Indus accelerators

    International Nuclear Information System (INIS)

    Bhatnagar, Prateek; Bhange, Nilesh; Joshi, Sujata; Sridhar, R.

    2016-01-01

    In order to achieve pressures in UHV (Ultra High Vacuum) range, the vacuum chambers and associated vacuum components, necessarily made of UHV compatible materials, should be baked sufficiently long enough so as to reduce outgassing rates. The baking period usually ranges from 48 hours to 72 hours for an electrical load of more than 30 kW per sector, in which baking temperatures, a characteristic parameter and specific to material, range from 150°C-180°C for Aluminium alloy and 250°C-300°C for SS (stainless steel). Indus accelerators vacuum installations include more than 300 m long vacuum chamber which are subjected to rigorous, standardized and labour intensive electrical baking procedure involving an intelligent ON-OFF distributed temperature control system with in-built defence of electrical safety and expandability as per the needs. The paper discusses various in built electrical safely features, operational aspects, work practices and challenges involved in accomplishing an interrupt free continuous electrical baking for distributed electrical load of more than 30 kW for a typical vacuum segment of Indus accelerator. (author)

  9. SLC polarized beam source ultra-high-vacuum design

    International Nuclear Information System (INIS)

    Lavine, T.L.; Clendenin, J.E.; Garwin, E.L.; Hoyt, E.W.; Hoyt, M.W.; Miller, R.H.; Nuttall, J.A.; Schultz, D.C.; Wright, D.

    1991-05-01

    This paper describes the design of the ultra-high vacuum system for the beam-line from the 160-kV polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10 -11 -Torr-range pressure for adequate quantum efficiency and longevity. The photo-cathode is illuminated by 3-nsec-long laser pulses. Photo-cathode maintenance and improvements require occasional substitution of guns with rapid restoration of UHV conditions. Differential pumping is crucial since the pressure in the injector is more than 10 times greater than the photocathode can tolerate, and since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line contains a differential pumping region isolated by a pair of valves. Exchange of guns requires venting only this isolated region which can be restored to UHV rapidly by baking. The differential pumping is performed by non-evaporable getters (NEGs) and an ion pump. 3 refs., 3 figs

  10. Sample mounting and transfer for coupling an ultrahigh vacuum variable temperature beetle scanning tunneling microscope with conventional surface probes

    International Nuclear Information System (INIS)

    Nafisi, Kourosh; Ranau, Werner; Hemminger, John C.

    2001-01-01

    We present a new ultrahigh vacuum (UHV) chamber for surface analysis and microscopy at controlled, variable temperatures. The new instrument allows surface analysis with Auger electron spectroscopy, low energy electron diffraction, quadrupole mass spectrometer, argon ion sputtering gun, and a variable temperature scanning tunneling microscope (VT-STM). In this system, we introduce a novel procedure for transferring a sample off a conventional UHV manipulator and onto a scanning tunneling microscope in the conventional ''beetle'' geometry, without disconnecting the heating or thermocouple wires. The microscope, a modified version of the Besocke beetle microscope, is mounted on a 2.75 in. outer diameter UHV flange and is directly attached to the base of the chamber. The sample is attached to a tripod sample holder that is held by the main manipulator. Under UHV conditions the tripod sample holder can be removed from the main manipulator and placed onto the STM. The VT-STM has the capability of acquiring images between the temperature range of 180--500 K. The performance of the chamber is demonstrated here by producing an ordered array of island vacancy defects on a Pt(111) surface and obtaining STM images of these defects

  11. Experience with the UHV box coater and the evaporation procedure for VUV reflective coatings on the HADES RICH mirror

    CERN Document Server

    Maier-Komor, P; Wieser, J; Ulrich, A

    1999-01-01

    An UHV box coater was set up for the deposition of highly reflective layers in the vacuum ultraviolet (VUV) wavelength range on large-area mirror substrates. The VUV mirrors are needed for the ring imaging Cherenkov (RICH) detector of the high-acceptance di-electron spectrometer (HADES). The complete dry vacuum system is described. The spatial deposition distribution from the evaporation sources was measured. The reflectivity of the Al mirror layer was optimized for the wavelength range of 145-210 nm by varying the thickness of the MgF sub 2 protective layer. The setup for measuring the reflectivity in the VUV range is described and reflectivity data are presented.

  12. Requirements and guidelines for NSLS experimental beam line vacuum systems: Revision A

    International Nuclear Information System (INIS)

    Foerster, C.; Halama, H.; Thomlinson, W.

    1986-10-01

    Requirements are provided for NSLS beam line front ends and vacuum interlocks. Guidelines are provided for UHV beam line vacuum systems, including materials, vacuum hardware (pumps, valves, and flanges), acoustic delay lines and beam line fast valves, instrumentation, fabrication and testing, and the NSLS cleaning facility. Also discussed are the design review for experimenters' equipment that would be connected to the NSLS and acceptance tests for any beam line to be connected with the ring vacuum. Also appended are a description of the acoustic delay line as well as the NSLS vacuum standards and NSLS procedures

  13. Local stabilization of single-walled carbon nanotubes on Si(100)-2 x 1:H via nanoscale hydrogen desorption with an ultrahigh vacuum scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Albrecht, Peter M; Lyding, Joseph W

    2007-01-01

    An ultrahigh vacuum scanning tunnelling microscope (UHV-STM) was used to modify the interface between isolated ∼10 A-diameter single-walled carbon nanotubes (SWNTs) and the hydrogen-passivated Si(100) surface. Room-temperature UHV-STM desorption of hydrogen at the SWNT/H-Si(100) interface resulted in the local mechanical stabilization of tubes originally perturbed by the rastered STM tip under nominal imaging conditions. For the section of the SWNT contacted by depassivated Si, a topographic depression of 1.5 A (1 A) was measured in the case of parallel (nearly perpendicular) alignment between the tube axis and the Si dimer rows, in agreement with existing first-principles calculations. The compatibility of hydrogen-resist UHV-STM nanolithography with SWNTs adsorbed on H-Si(100) would enable the atomically precise placement of single molecules in proximity to the tube for the bottom-up fabrication of molecular electronic devices

  14. Preparation of hydrosol suspensions of elemental and core–shell nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum conditions

    International Nuclear Information System (INIS)

    Binns, Chris; Prieto, Pilar; Baker, Stephen; Howes, Paul; Dondi, Ruggero; Burley, Glenn; Lari, Leonardo; Kröger, Roland; Pratt, Andrew; Aktas, Sitki; Mellon, John K.

    2012-01-01

    We report a new method to produce liquid suspensions of nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum (UHV) conditions. The water is injected from outside the vacuum as a molecular beam onto a substrate maintained at 77 K and forms an ice layer with a UHV vapour pressure. Molecular dynamics simulations confirm that the nanoparticles are soft-landed close to the surface of the growing ice layer. We show that the un-agglomerated size distribution within the liquid is similar to the gas-phase size distribution and demonstrate that the inclusion of surfactants in the injected water prevents agglomeration. The method allows the flexibility and tight size control available with gas-phase production methods to be applied to making nanoparticle suspensions with any desired properties. This is important for practical applications, especially in medicine. We have extended the method to include core–shell nanoparticles, in which there is flexible control over the core size and shell thickness and free choice of the material in either. Here, we report the production of suspensions of Cu, Ag and Au elemental nanoparticles and Fe-Au and Fe-Fe-oxide core–shell nanoparticles with diameters in the range 5–15 nm. We demonstrate the power of the method in practical applications in the case of Fe-Fe-oxide nanoparticles, which have a specific absorption rate of an applied oscillating magnetic field that is significantly higher than available Fe-oxide nanoparticle suspensions and the highest yet reported. These will thus have a very high-performance in the treatment of tumours by magnetic nanoparticle hyperthermia.

  15. UHV A.C. transmission: Technology and prospects

    International Nuclear Information System (INIS)

    Cauzillo, B.A.; Manzoni, G.; Nicolini, P.

    1992-04-01

    At the beginning of the 70's, UHV transmission was regarded as imminent in many countries in view of the expected concentration of generating units (possibly of the nuclear type and grouped together in a few large plants, each of several GW), and research projects were therefore launched in the U.S.A., Canada, Italy, Japan, USSR, etc. Nowadays, the expected introduction of UHV transmission seems remote due to the slowdown in electricity growth and to the tendency towards distributed generation. Nevertheless, there are exceptions: the 1,200 kV 2,400 km-long transmission system in operation in Siberia-Kazahkstan-Urals, and the 1,100 kV 200 km double-circuit line under construction in Japan (which will, however, be operated at 500 kV up to the end of the century). In addition, in Italy, the research programme of a 1000 kV project has now been completed and a 1,050 kV pilot plant is under construction in Tuscany, consisting of a short 1,050kV line and a 420/1,050 kV 1,200 MVA substation. The technology of UHV AC transmission has therefore been proved effective and may represent an available option for the power systems of the next century. From the power system planning point-of-view, UHV's favourable characteristics lie in the possibility of transmitting large amount of power, of the order of 5 GW per circuit, with lower costs, reduced losses, and less land occupation than in the case of EHV lines

  16. Micro-damage propagation in ultra-high vacuum seals

    CERN Document Server

    Lutkiewicz, P; Garion, C

    2010-01-01

    The paper addresses a fundamental problem of tightness of ultra-high vacuum systems (UHV) at cryogenic temperatures in the light of continuum damage mechanics (CDM). The problem of indentation of a rigid punch into an elastic-plastic half-space is investigated based on rate independent plasticity with mixed kinematic and isotropic hardening. The micro-damage fields are modeled by using an anisotropic approach with a kinetic law of damage evolution suitable for ductile materials and cryogenic temperatures. The model has been experimentally validated and the results are used to predict the onset of macro-cracking (loss of tightness) and the corresponding load (contact pressure). The algorithm is applied in the design of UHV systems for particle accelerators. (C) 2009 Published by Elsevier Ltd.

  17. An ultra-high vacuum scanning tunneling microscope operating at sub-Kelvin temperatures and high magnetic fields for spin-resolved measurements

    Science.gov (United States)

    Salazar, C.; Baumann, D.; Hänke, T.; Scheffler, M.; Kühne, T.; Kaiser, M.; Voigtländer, R.; Lindackers, D.; Büchner, B.; Hess, C.

    2018-06-01

    We present the construction and performance of an ultra-low-temperature scanning tunneling microscope (STM), working in ultra-high vacuum (UHV) conditions and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single-shot 3He magnet cryostat in combination with a 4He dewar system. At a base temperature (300 mK), the cryostat has an operation time of approximately 80 h. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV chamber system, where samples and STM tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, in particular, enables spin-resolved tunneling measurements. We present test measurements using well-known samples and tips based on superconductors and metallic materials such as LiFeAs, Nb, Fe, and W. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.

  18. Ultra high vacuum system of the 3 MeV electron beam accelerator

    International Nuclear Information System (INIS)

    Puthran, G.P.; Jayaprakash, D.; Mishra, R.L.; Ghodke, S.R.; Majumder, R.; Mittal, K.C.; Sethi, R.C.

    2003-01-01

    Full text: A 3 MeV electron beam accelerator is coming up at the electron beam centre, Kharghar, Navi Mumbai. A vacuum of the order of 1x10 -7 mbar is desired in the beam line of the accelerator. The UHV system is spread over a height of 6 meters. The total surface area exposed to vacuum is 65,000 cm 2 and the volume is 200 litres. Distributed pumping is planned, to avoid undesirable vacuum gradient between any two sections of the beam-line. The electron beam is scanned in an area of 6 cms x 100 cms and it comes out of the scan-horn through a titanium foil of 50 micron thick. Hence the vacuum system is designed in such a way that, in the event of foil rupture during beam extraction, the electron gun, accelerating column and the pumps can be protected from sudden air rush. The vacuum in the beam-line can also be maintained in this condition. After changing the foil, scan-horn area can be separately pumped to bring the vacuum level as desired and can be opened to the beam-line. The design, vacuum pumping scheme and the safety aspects are discussed in this paper

  19. UHV seal studies for the advanced photon source storage ring vacuum system

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Ferry, R.J.; Niemann, R.C.; Roop, B.

    1991-01-01

    The Advanced Photon Source (APS) Storage Ring Vacuum Chambers (SRVC) are constructed of aluminum. The chamber design incorporates aluminum alloy 2219-T87 Conflat flanges welded to an aluminum alloy 6063-T5 extruded chamber body. Vacuum connections to the aluminum Conflat chamber flanges are by means of 304 stainless steel Conflat flanges. To evaluate the Conflat seal assemblies relative to vacuum bake cycles, a Conflat Bake Test Assembly (CBTA) was constructed, and thermal cycling tests were performed between room temperature and 150 degrees C on both stainless steel to aluminum Conflat assemblies and aluminum to aluminum Conflat assemblies. A Helicoflex Bake Test Assembly (HBTA) was similarly constructed to evaluate Helicoflex seals. Both Conflat and Helicoflex seals were studied in a SRVC Sector String Test arrangement of five SRVC sections. The CBTA, HBTA and SRVC tests and their results are reported. 3 refs., 2 figs., 2 tabs

  20. Baking system for vacuum components in INDUS-2

    International Nuclear Information System (INIS)

    Bhange, Nilesh J.; Bhatnagar, Prateek; Shukla, S.K.

    2005-01-01

    Optimized bake-out procedures are very important for the overall reliability of vacuum system. In this process the UHV components like Sputter ion pump (SIP), Titanium sublimation pump (TSP) are subjected to temperature rise for sufficiently long period of time. Baking is necessary for obtaining low out gassing rates. In order to provide controlled baking of UHV (Ultra High Vacuum) components for INDUS-II an intelligent ON/OFF control system was needed. For that purpose distributed control system was suitable. For fulfillment of this need modular baking system was developed. This system contains Temperature controller unit (TCU), Pressure Monitoring Unit (PMU), and Temperature control and pressure Monitoring Interface Software (TCPMIS). Each TCU is an eight channel temperature controlling unit. PMU is eight channel pressure monitoring unit to which analog data from gauges like Penning, BA Gauge controllers is given. TCPMIS is a user interface software developed for, controlling up to 5 TCU's. In this way 40 channel temperature control, data logging of 40 channel temperature and logging of eight channel pressures was realized. The present paper describes details about computer controlled baking system. (author)

  1. Plasma diagnostic development and UHV testing for the ALPHA collaboration at Marquette University

    Science.gov (United States)

    Tharp, T. D.; Alpha Collaboration

    2017-10-01

    At Marquette, we are developing the next generation of nonneutral plasma diagnostics for the ALPHA experiment at CERN. ALPHA is building a new vertical experiment to test the gravitational interaction of antihydrogen with Earth. This expansion requires significant changes to the design of our plasma diagnostic suites: the next generation of tools must be able to measure plasmas from two directions, and must be capable of operating in a horizontal position. The diagnostic suite includes measurements of plasma density, shape, and temperature. The hardware used includes a MicroChannel Plate (MCP), a Faraday Cup, and an electron gun. In addition, we are building a vacuum chamber to test the viability of 3-d printed components for UHV compatibility, with target pressures of 10-10 mbar.

  2. Corona Onset Characteristics of Bundle Conductors in UHV AC Power Lines at 2200 m Altitude

    Directory of Open Access Journals (Sweden)

    Shilong Huang

    2018-04-01

    Full Text Available The corona onset characteristic of bundle conductors is an important limiting factor for the design of UHV AC power lines in high-altitude areas. An experimental study on the corona characteristics of 8 × LGJ630, 6 × LGJ720, 8 × LGJ720 and 10 × LGJ720 bundle conductors commonly used in UHV power lines under dry and wet conductor conditions, as well as artificial moderate and heavy rain conditions, was conducted in Ping’an County, Xining City (elevation 2200 m. By using the tangent line method, the corona onset voltages and onset electric field of four types of conductors at high altitudes are obtained for the first time. In addition, the calculation model of corona onset voltage considering the outer strands’ effect on the electric field and the geometric factor in the corona cage in high altitude areas is established. The comparison of the calculation results and experimental results under dry conditions verifies the model’s correctness. Based on the results, an optimal selection scheme for high altitudes is proposed. The roughness coefficient was also calculated and analysed: the roughness coefficient of bundled conductors was between 0.59 and 0.77, and the roughness coefficient of the wet conductor was between the dry and rainy conditions. Both the experimental data and the calculation model can provide a reference for conductor selection for UHV AC power lines for use in high-altitude areas.

  3. Vacuum system of SST-1 Tokamak

    International Nuclear Information System (INIS)

    Khan, Ziauddin; Pathan, Firozkhan; George, Siju; Semwal, Pratibha; Dhanani, Kalpesh; Paravastu, Yuvakiran; Thankey, Prashant; Ramesh, Gattu; Himabindu, Manthena; Pradhan, Subrata

    2013-01-01

    Highlights: ► Air leaks developed during ongoing SST-1 cooldown campaign were detected online using RGA. ► The presence of N 2 and O 2 gases with the ratio of their partial pressures with ∼3.81:1 confirmed the air leaks. ► Baking of SST-1 was done efficiently by flowing hot N 2 gas in C-channels welded on inner surfaces without any problem. ► In-house fabricated demountable bull nose couplers were demonstrated for high temperature and pressure applications. ► Cryopumping effect was observed when liquid helium cooled superconducting magnets reached below 63 K. -- Abstract: Vacuum chambers of Steady State Superconducting (SST-1) Tokamak comprises of the vacuum vessel and the cryostat. The plasma will be confined inside the vacuum vessel while the cryostat houses the superconducting magnet systems (TF and PF coils), LN 2 cooled thermal shields and hydraulics for these circuits. The vacuum vessel is an ultra-high (UHV) vacuum chamber while the cryostat is a high-vacuum (HV) chamber. In order to achieve UHV inside the vacuum vessel, it would be baked at 150 °C for longer duration. For this purpose, U-shaped baking channels are welded inside the vacuum vessel. The baking will be carried out by flowing hot nitrogen gas through these channels at 250 °C at 4.5 bar gauge pressure. During plasma operation, the pressure inside the vacuum vessel will be raised between 1.0 × 10 −4 mbar and 1.0 × 10 −5 mbar using piezoelectric valves and control system. An ultimate pressure of 4.78 × 10 −6 mbar is achieved inside the vacuum vessel after 100 h of pumping. The limitation is due to the development of few leaks of the order of 10 −5 mbar l/s at the critical locations of the vacuum vessel during baking which was confirmed with the presence of nitrogen gas and oxygen gas with the ratio of ∼3.81:1 indicating air leak. Similarly an ultimate vacuum of 2.24 × 10 −5 mbar is achieved inside the cryostat. Baking of the vacuum vessel up to 110 °C with ±10

  4. Vacuum status-display and sector-conditioning programs

    International Nuclear Information System (INIS)

    Skelly, J.; Yen, S.

    1989-01-01

    Two programs have been developed for observation and control of the AGS vacuum system, which include these notable features: they incorporate a graphical user interface, and they are driven by a relational database which describes the vacuum system. The vacuum system comprises some 440 devices organized into 28 vacuum sectors. The Status Display Program invites menu selection of a sector, interrogates the relational database for relevant vacuum devices, acquires live readbacks, and posts a graphical display of their status. The Sector Conditioning Program likewise invites sector selection, produces the same status display, and also implements process control logic on the sector devices to pump the sector down from atmospheric pressure to high vacuum over a period extending for several hours. As additional devices are installed in the vacuum system, the devices are likewise added to the relational database; these programs then automatically include the new devices. 2 refs., 1 fig

  5. Application of Copper Cladding Aluminum Composites in UHV Portable Earthing and Short-circuiting Wires

    Directory of Open Access Journals (Sweden)

    Zhu Jianjun

    2018-01-01

    Full Text Available Aiming at the heavy weight and inconvenience when carrying and installing copper earthing wires on the UHV transmission lines, in this paper, we present the use of copper clad aluminum(CCA composite materials as a lightweight method for UHV earthing wire conductor. Theoretical calculations and tests of the fusing current in a short time for copper and CCA material are conducted. The results show that the theoretical value of the earthing wire conductor's fusing current corresponds with the test value on condition of the conductor cross section greater than 4mm2 as well as fusing time less than 1.5s. The CCA-10 earthing wires get 36.2% weight reduction compared with copper wires.

  6. Portable ultrahigh-vacuum sample storage system for polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Nishimura, Yusaku F.; Suzuki, Ryo; Beniya, Atsushi; Isomura, Noritake [Toyota Central R& D Labs., Inc., Yokomichi 41-1, Nagakute, Aichi 480-1192 (Japan); Uehara, Hiromitsu; Asakura, Kiyotaka; Takakusagi, Satoru [Catalysis Research Center, Hokkaido University, Kita 21-10, Sapporo, Hokkaido 001-0021 (Japan); Nimura, Tomoyuki [AVC Co., Ltd., Inada 1450-6, Hitachinaka, Ibaraki 312-0061 (Japan)

    2016-03-15

    A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstrated by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.

  7. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  8. The new PVLAS apparatus for detection of magnetic birefringence of vacuum

    International Nuclear Information System (INIS)

    Della Valle, F.; Di Domenico, G.; Gastaldi, U.; Milotti, E.; Messineo, G.; Pengo, R.; Piemontese, L.; Ruoso, G.; Zavattini, G.

    2013-01-01

    The PVLAS experiment aims at the observation and measurement of the effect of magnetic birefringence of vacuum (MBV) predicted by Quantum Electrodynamics. We describe here the new PVLAS apparatus which is currently being set up in INFN Ferrara. The apparatus features two rotating permanent dipole magnets and an ellipsometer operating under UHV with a high finesse Fabry–Perot cavity

  9. Preservation of atomically clean silicon surfaces in air by contact bonding

    DEFF Research Database (Denmark)

    Grey, Francois; Ljungberg, Karin

    1997-01-01

    When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find that the or...... reconstruction from oxidation in air, Contact bonding opens the way to novel applications of reconstructed semiconductor surfaces, by preserving their atomic structure intact outside of a UHV chamber. (C) 1997 American Institute of Physics.......When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find...... that the ordered atomic structure of the surfaces is protected from oxidation, even after the bonded samples have been in air for weeks. Further, we show that silicon surfaces that have been cleaned and hydrogen-passivated in UHV can be contacted in UHV in a similarly hermetic fashion, protecting the surface...

  10. Vacuum system of SST-1 Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Ziauddin, E-mail: ziauddin@ipr.res.in [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382 428 (India); Pathan, Firozkhan; George, Siju; Semwal, Pratibha; Dhanani, Kalpesh; Paravastu, Yuvakiran; Thankey, Prashant; Ramesh, Gattu; Himabindu, Manthena; Pradhan, Subrata [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382 428 (India)

    2013-10-15

    Highlights: ► Air leaks developed during ongoing SST-1 cooldown campaign were detected online using RGA. ► The presence of N{sub 2} and O{sub 2} gases with the ratio of their partial pressures with ∼3.81:1 confirmed the air leaks. ► Baking of SST-1 was done efficiently by flowing hot N{sub 2} gas in C-channels welded on inner surfaces without any problem. ► In-house fabricated demountable bull nose couplers were demonstrated for high temperature and pressure applications. ► Cryopumping effect was observed when liquid helium cooled superconducting magnets reached below 63 K. -- Abstract: Vacuum chambers of Steady State Superconducting (SST-1) Tokamak comprises of the vacuum vessel and the cryostat. The plasma will be confined inside the vacuum vessel while the cryostat houses the superconducting magnet systems (TF and PF coils), LN{sub 2} cooled thermal shields and hydraulics for these circuits. The vacuum vessel is an ultra-high (UHV) vacuum chamber while the cryostat is a high-vacuum (HV) chamber. In order to achieve UHV inside the vacuum vessel, it would be baked at 150 °C for longer duration. For this purpose, U-shaped baking channels are welded inside the vacuum vessel. The baking will be carried out by flowing hot nitrogen gas through these channels at 250 °C at 4.5 bar gauge pressure. During plasma operation, the pressure inside the vacuum vessel will be raised between 1.0 × 10{sup −4} mbar and 1.0 × 10{sup −5} mbar using piezoelectric valves and control system. An ultimate pressure of 4.78 × 10{sup −6} mbar is achieved inside the vacuum vessel after 100 h of pumping. The limitation is due to the development of few leaks of the order of 10{sup −5} mbar l/s at the critical locations of the vacuum vessel during baking which was confirmed with the presence of nitrogen gas and oxygen gas with the ratio of ∼3.81:1 indicating air leak. Similarly an ultimate vacuum of 2.24 × 10{sup −5} mbar is achieved inside the cryostat. Baking of the

  11. Risk Evaluation on UHV Power Transmission Construction Project Based on AHP and FCE Method

    OpenAIRE

    Huiru Zhao; Sen Guo

    2014-01-01

    Ultra high voltage (UHV) power transmission construction project is a high-tech power grid construction project which faces many risks and uncertainty. Identifying the risk of UHV power transmission construction project can help mitigate the risk loss and promote the smooth construction. The risk evaluation on “Zhejiang-Fuzhou” UHV power transmission construction project was performed based on analytic hierarchy process (AHP) and fuzzy comprehensive evaluation (FCE) method in this paper. Afte...

  12. In situ conditioning for proton storage ring vacuum systems

    International Nuclear Information System (INIS)

    Blechschmidt, D.

    1978-01-01

    Average pressure and vacuum-stability limit as expected in the presence of a proton beam were measured after in situ treatments such as bakeout under various conditions, argon glow-discharge cleaning and sputter deposition of titanium. Measurements were carried out for test pipes made of stainless steel (untreated, electropolished, or cooled to 77 K), pure titanium and aluminum alloy. The measurement method used to obtain the vacuum-stability limit in the laboratory and in a prototype system is described. The results can be applied also to other systems of different geometry by use of scaling laws. In situ conditioning generally has a stronger influence on vacuum performance than a particular choice of material. Bakeout gives low average pressures and rather good vacuum stability. Glow discharges also increase the vacuum stability but have only a small effect on the static pressure. Coating the beam-pipe wall with titanium by in situ sputtering provides large linear pumping, thus a lower pressure and an extremely good vacuum stability

  13. Design and performance of main vacuum pumping system of SST-1 Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Ziauddin, E-mail: ziauddin@ipr.res.in; Pathan, Firozkhan; George, Siju; Dhanani, Kalpesh; Paravastu, Yuvakiran; Semwal, Pratibha; Pradhan, Subrata

    2014-01-15

    Highlights: •SST-1 Tokamak was successfully commissioned. •Vacuum vessel and cryostat were pumped down to 6.3 × 10{sup −7} mbar and 1.3 × 10{sup −5} mbar. •Leaks developed during baking were detected in-situ by RGA and confirmed later on. •Cryo-pumping effect was observed when LN2 thermal shields reached below 273 K. •Non-standard aluminum wire-seals have shown leak tightness < 1.0 × 10{sup −9} mbar l/s. -- Abstract: Steady-state Superconducting Tokamak (SST-1) was installed and it is commissioning for overall vacuum integrity, magnet systems functionality in terms of successful cool down to 4.5 K and charging up to 10 kA current was started from August 2012. Plasma operation of 100 kA current for more than 100 ms was also envisaged. It is comprised of vacuum vessel (VV) and cryostat (CST). Vacuum vessel, an ultra-high (UHV) vacuum chamber with net volume of 23 m{sup 3} was maintained at the base pressure of 6.3 × 10{sup −7} mbar for plasma confinement. Cryostat, a high-vacuum (HV) chamber with empty volume 39 m{sup 3} housing superconducting magnet system, bubble thermal shields and hydraulics for these circuits, maintained at 1.3 × 10{sup −5} mbar in order to provide suitable environment for these components. In order to achieve these ultimate vacuums, two numbers of turbo-molecular pumps (TMP) are installed in vacuum vessel while three numbers of turbo-molecular pumps are installed in cryostat. Initial pumping of both the chambers was carried out by using suitable Roots pumps. PXI based real time controlled system is used for remote operation of the complete pumping operation. In order to achieve UHV inside the vacuum vessel, it was baked at 150 °C for longer duration. Aluminum wire-seals were used for all non-circular demountable ports and a leak tightness < 1.0 × 10{sup −9} mbar l/s were achieved.

  14. Development and Measurement of Strain Free RF Photoinjector Vacuum Windows

    CERN Document Server

    Biedron, Sandra G

    2004-01-01

    RF photoinjectors produce the highest brightness electron bunches only under nearly ideal illumination by a drive laser. The vacuum window used to introduce the laser beam is an essential element that may potentially degrade any distribution, making it difficult or impossible to know the actual uniformity achieved at the cathode. Because of the necessity to obtain ultrahigh vacuum near the photoinjector, some restrictions are imposed on the fabrication technology available to manufacture distortion-free windows. At the UV wavelengths commonly used for photoinjectors, it is challenging to measure and eliminate degradation caused by vacuum windows. Here, we discuss the initial laser-based measurements of a strain-free, coated, UHV window manufactured by Insulator Seal in collaboration with members of Brookhaven and Argonne National Laboratories.

  15. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, Alan J., E-mail: alane@ku.edu, E-mail: jwu@ku.edu; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Wu, Judy Z., E-mail: alane@ku.edu, E-mail: jwu@ku.edu [Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045 (United States); Yu, Haifeng; Zhao, Shiping [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-15

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al{sub 2}O{sub 2}/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ∼1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al{sub 2}O{sub 3} tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  16. The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction

    DEFF Research Database (Denmark)

    Velazquez-Palenzuela, Amado Andres; Masini, Federico; Pedersen, Anders Filsøe

    2015-01-01

    Mass-selected platinum–gadolinium alloy nanoparticles (PtxGd NPs) are synthesized for the first time as oxygen reduction reaction (ORR) electrocatalysts using the gas aggregation technique, under ultrahigh vacuum (UHV) conditions. The morphology of the PtxGd catalysts is characterized, and their ......Mass-selected platinum–gadolinium alloy nanoparticles (PtxGd NPs) are synthesized for the first time as oxygen reduction reaction (ORR) electrocatalysts using the gas aggregation technique, under ultrahigh vacuum (UHV) conditions. The morphology of the PtxGd catalysts is characterized...

  17. Accelerator tube vacuum conditions in the NSF tandem

    International Nuclear Information System (INIS)

    Groome, A.E.

    1979-08-01

    The Nuclear Structure Facility currently under construction at the Daresbury Laboratory contains a 30 MV tandem Van de Graaff accelerator with a modular design of accelerator tube. The vacuum system requirements are specified to limit beam loss due to charge-state-changing collisions in the residual gas. This report gives an assessment of some of the parameters affecting the vacuum pressure in an operational machine. Measurements are made of the vacuum conductance and outgassing rate of accelerator tube modules. An assessment is made of the effects of temperature rise, beam mis-steering and the presence of suppression magnets on the ultimate vacuum obtainable. Predictions are made of the pressure profile throughout the machine and consideration is given to operational problems such as tube conditioning and temporary loss of pumping. A schematic diagram of the tandem and its vacuum system is shown. (author)

  18. An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large scale imaging.

    Science.gov (United States)

    Diaconescu, Bogdan; Nenchev, Georgi; de la Figuera, Juan; Pohl, Karsten

    2007-10-01

    We describe the design and performance of a fast-scanning, variable temperature scanning tunneling microscope (STM) operating from 80 to 700 K in ultrahigh vacuum (UHV), which routinely achieves large scale atomically resolved imaging of compact metallic surfaces. An efficient in-vacuum vibration isolation and cryogenic system allows for no external vibration isolation of the UHV chamber. The design of the sample holder and STM head permits imaging of the same nanometer-size area of the sample before and after sample preparation outside the STM base. Refractory metal samples are frequently annealed up to 2000 K and their cooldown time from room temperature to 80 K is 15 min. The vertical resolution of the instrument was found to be about 2 pm at room temperature. The coarse motor design allows both translation and rotation of the scanner tube. The total scanning area is about 8 x 8 microm(2). The sample temperature can be adjusted by a few tens of degrees while scanning over the same sample area.

  19. Development of vacuum brazing furnace

    International Nuclear Information System (INIS)

    Singh, Rajvir; Yedle, Kamlesh; Jain, A.K.

    2005-01-01

    In joining of components where welding process is not possible brazing processes are employed. Value added components, high quality RF systems, UHV components of high energy accelerators, carbide tools etc. are produced using different types of brazing methods. Furnace brazing under vacuum atmosphere is the most popular and well accepted method for production of the above mentioned components and systems. For carrying out vacuum brazing successfully it is essential to have a vacuum brazing furnace with latest features of modern vacuum brazing technology. A vacuum brazing furnace has been developed and installed for carrying out brazing of components of copper, stainless steel and components made of dissimilar metals/materials. The above furnace has been designed to accommodate jobs of 700mm diameter x 2000mm long sizes with job weight of 500kgs up to a maximum temperature of 1250 degC at a vacuum of 5 x 10 -5 Torr. Oil diffusion pumping system with a combination of rotary and mechanical booster pump have been employed for obtaining vacuum. Molybdenum heating elements, radiation shield of molybdenum and Stainless Steel Grade 304 have been used. The above furnace is computer controlled with manual over ride facility. PLC and Pentium PC are integrated together to maneuver steps of operation and safety interlocks of the system. Closed loop water supply provides cooling to the system. The installation of the above system is in final stage of completion and it will be ready for use in next few months time. This paper presents insights of design and fabrication of a modern vacuum brazing furnace and its sub-system. (author)

  20. The design and implementation of on-line monitoring system for UHV compact shunt capacitors

    Science.gov (United States)

    Tao, Weiliang; Ni, Xuefeng; Lin, Hao; Jiang, Shengbao

    2017-08-01

    Because of the large capacity and compact structure of the UHV compact shunt capacitor, it is difficult to take effective measures to detect and prevent the faults. If the fault capacitor fails to take timely maintenance, it will pose a threat to the safe operation of the system and the life safety of the maintenance personnel. The development of UHV compact shunt capacitor on-line monitoring system can detect and record the on-line operation information of UHV compact shunt capacitors, analyze and evaluate the early fault warning signs, find out the fault capacitor or the capacitor with fault symptom, to ensure safe and reliable operation of the system.

  1. UHV-compatible sputtering additive for surface physics examination of large area HTSL/isolator thin film. Final report

    International Nuclear Information System (INIS)

    Koch, H.; Beyer, J.; Knappe, S.; Ludwig, F.; Menkel, S.; Quan, Z.; Schurig, T.

    1996-06-01

    In the course of the project, a manufacturing technique for the production of cryo-electronic high temperature superconductor (HTSL) components is to be developed, which includes the thin film separation process and the structuring technique. A special sputtering process using a linear hollow cathode is to be applied as the thin film separation process for the HTSL YBa 2 Cu 3 O 7-δ . The sputtering plant which was to be built up by the UHV method in advance, should be connected to an existing UHV multi-chamber plant for the manufacture and surface analysis of thin films, in order to be able to connect precise reproducible sample production conditions with a controlled sample transfer and informative in-situ analysis. (orig./MM) [de

  2. Method of radiation degradation of PTFE under vacuum conditions

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, Sergey E-mail: sergey_korenev@steris.com

    2004-10-01

    A new method of radiation degradation of Polytetrafluoroethylene (PTFE) under vacuum conditions is considered in this report. The combination of glow gas discharge and electrical surface discharge (on surface and inside PTFE) increases the efficiency of thermal-radiation degradation. The main mechanism of this degradation method consists of the breaking of C-C and C-F bonds. The vacuum conditions allow decreasing of the concentration of toxic compounds, such as a HF. Experimental results for degradation of PTFE are presented.

  3. Method of radiation degradation of PTFE under vacuum conditions

    Science.gov (United States)

    Korenev, Sergey

    2004-09-01

    A new method of radiation degradation of Polytetrafluoroethylene (PTFE) under vacuum conditions is considered in this report. The combination of glow gas discharge and electrical surface discharge (on surface and inside PTFE) increases the efficiency of thermal-radiation degradation. The main mechanism of this degradation method consists of the breaking of C-C and C-F bonds. The vacuum conditions allow decreasing of the concentration of toxic compounds, such as a HF. Experimental results for degradation of PTFE are presented.

  4. Initial conditioning of the TFTR vacuum vessel

    International Nuclear Information System (INIS)

    Dylla, H.F.; Blanchard, W.R.; Krawchuk, R.B.; Hawryluk, R.J.; Owens, D.K.

    1984-01-01

    We report on the initial conditioning of the Tokamak Fusion Test Reactor (TFTR) vacuum vessel prior to the initiation of first plasma discharges, and during subsequent operation with high power ohmically-heated plasmas. Following evacuation of the 86 m 3 vessel with the 10 4 1/s high vacuum pumping system, the vessel was conditioned by a 15 A dc glow discharge in H 2 at a pressure of 5 mTorr. Rapid-pulse discharge cleaning was used subsequently to preferentially condition the graphite plasma limiters. The effectiveness of the discharge cleaning was monitored by measuring the exhaust rates of the primary discharge products (CO/C 2 H 4 , CH 4 , and H 2 O). After 175 hours of glow discharge treatment, the equivalent of 50 monolayers of C and O was removed from the vessel, and the partial pressures of impurity gases were reduced to the range of 10 -9 -10 -10 Torr

  5. Giant Persistent Photoconductivity of the WO3 Nanowires in Vacuum Condition

    Directory of Open Access Journals (Sweden)

    Huang Kai

    2011-01-01

    Full Text Available Abstract A giant persistent photoconductivity (PPC phenomenon has been observed in vacuum condition based on a single WO3 nanowire and presents some interesting results in the experiments. With the decay time lasting for 1 × 104 s, no obvious current change can be found in vacuum, and a decreasing current can be only observed in air condition. When the WO3 nanowires were coated with 200 nm SiO2 layer, the photoresponse almost disappeared. And the high bias and high electric field effect could not reduce the current in vacuum condition. These results show that the photoconductivity of WO3 nanowires is mainly related to the oxygen adsorption and desorption, and the semiconductor photoconductivity properties are very weak. The giant PPC effect in vacuum condition was caused by the absence of oxygen molecular. And the thermal effect combining with oxygen re-adsorption can reduce the intensity of PPC.

  6. The fabrication of a double-layer atom chip with through silicon vias for an ultra-high-vacuum cell

    International Nuclear Information System (INIS)

    Chuang, Ho-Chiao; Lin, Yun-Siang; Lin, Yu-Hsin; Huang, Chi-Sheng

    2014-01-01

    This study presents a double-layer atom chip that provides users with increased diversity in the design of the wire patterns and flexibility in the design of the magnetic field. It is more convenient for use in atomic physics experiments. A negative photoresist, SU-8, was used as the insulating layer between the upper and bottom copper wires. The electrical measurement results show that the upper and bottom wires with a width of 100 µm can sustain a 6 A current without burnout. Another focus of this study is the double-layer atom chips integrated with the through silicon via (TSV) technique, and anodically bonded to a Pyrex glass cell, which makes it a desired vacuum chamber for atomic physics experiments. Thus, the bonded glass cell not only significantly reduces the overall size of the ultra-high-vacuum (UHV) chamber but also conducts the high current from the backside to the front side of the atom chip via the TSV under UHV (9.5 × 10 −10  Torr). The TSVs with a diameter of 70 µm were etched through by the inductively coupled plasma ion etching and filled by the bottom-up copper electroplating method. During the anodic bonding process, the electroplated copper wires and TSVs on atom chips also need to pass the examination of the required bonding temperature of 250 °C, under an applied voltage of 1000 V. Finally, the UHV test of the double-layer atom chips with TSVs at room temperature can be reached at 9.5 × 10 −10  Torr, thus satisfying the requirements of atomic physics experiments under an UHV environment. (paper)

  7. Recovery process of wall condition in KSTAR vacuum vessel after temporal machine-vent for repair

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Pyo, E-mail: kpkim@nfri.er.ke; Hong, Suk-Ho; Lee, Hyunmyung; Song, Jae-in; Jung, Nam-Yong; Lee, Kunsu; Chu, Yong; Kim, Hakkun; Park, Kaprai; Oh, Yeong-Kook

    2015-10-15

    Highlights: • Efforts have been made to obtain vacuum condition that is essential for the plasma experiments. • For example, the vacuum vessel should be vented to repair in-vessel components such as diagnostic shutter, and PFC damaged by high energy plasma. • Here, we present the recovery process of wall condition in KSTAR after temporal machine-vent for repair. • It is found that an acceptable vacuum condition has been achieved only by plasma based wall conditioning techniques such as baking, GDC, and boronization. • This study was that the proper recovering method of the vacuum condition should be developed according to the severity of the accident. - Abstract: Efforts have been made to obtain vacuum condition that is essential for the plasma experiments. Under certain situations, for example, the vacuum vessel should be vented to repair in-vessel components such as diagnostic shutter, exchange of window for diagnostic equipment, and PFC damaged by high energy plasma. For the quick restart of the campaign, a recovery process was established to make the vacuum condition acceptable for the plasma experiment. In this paper, we present the recovery process of wall condition in KSTAR after temporal machine-vent for repair. It is found that an acceptable vacuum condition has been achieved only by plasma based wall conditioning techniques such as baking, GDC, and boronization. This study was that the proper recovering method of the vacuum condition should be developed according to the severity of the accident.

  8. Conditioning of the vacuum chamber of the Tokamak Novillo

    International Nuclear Information System (INIS)

    Valencia A, R.; Lopez C, R.; Melendez L, L.; Chavez A, E.; Colunga S, S.; Gaytan G, E.

    1992-03-01

    The obtained experimental results of the implementation of two techniques of present time for the conditioning of the internal wall of the chamber of discharges of the Tokamak Novillo are presented, which has been designed, built and put in operation in the Laboratory of Plasma Physics of the National Institute of Nuclear Research (ININ). These techniques are: the vacuum baking and the low energy pulsed discharges, which were applied after having reached an initial pressure of the order of 10 -7 Torr. with a system of turbomolecular pumping previous preparation of surfaces and vacuum seals. The analysis of residual gases was carried out with a mass spectrometer before and after conditioning. The obtained results show that the vacuum baking it was of great effectiveness to reduce the value of the initial pressure in short time, in more of a magnitude order and the low energy discharges reduced the oxygen at worthless levels with regard to the initial values. (Author)

  9. The vacuum interlock system for the PETRA III beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Degenhardt, Markus; Hahn, Ulrich; Hesse, Mathias; Schulte-Schrepping, Horst [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2008-07-01

    The storage ring PETRA at DESY in Hamburg is being reconstructed into the third generation source for synchrotron radiation, PETRA III. The up to 100 m long beamlines are large UHV-systems that guide the synchrotron radiation from the storage ring to the experiments. Each beamline will be equipped with a vacuum interlock system to ensure the safe operation of the vacuum components. In particular the task of the vacuum interlock is to prevent faulty operations that can cause a ventilation of the vacuum system or a damage of vacuum components by the high power synchrotron radiation beam. The interlock system will be implemented as a PLC that is connected to a distributed input/output layer via a field bus system. As a specialty, the PLC will be realised as a soft-PLC running on a PC with a real time windows operating system. Another specialty is the visualisation and remote control of the vacuum interlock system by means of a website. At the beamline the interlock will be operated via a touch panel that displays the visualisation website. Additionally, the interlock can be remotely operated from any location by opening the visualisation website with a browser. The interlock is protected against unauthorised operation by a login page. All relevant interlock data will be fed into the existing network-based archive system.

  10. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    International Nuclear Information System (INIS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al_2O_3 model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al_2O_3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al_2O_3 model catalyst and core–shell pellet were only

  11. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amende, Max, E-mail: max.amende@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Kaftan, Andre, E-mail: andre.kaftan@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Bachmann, Philipp, E-mail: philipp.bachmann@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Brehmer, Richard, E-mail: richard.brehmer@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Preuster, Patrick, E-mail: patrick.preuster@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Koch, Marcus, E-mail: marcus.koch@crt.cbi.uni-erlangen.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); and others

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al{sub 2}O{sub 3} model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al{sub 2}O{sub 3} catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al{sub 2}O{sub 3} model catalyst and

  12. Simple UHV offset manipulator with independent theta and phi rotations

    International Nuclear Information System (INIS)

    Jamison, K.D.; Dunning, F.B.

    1984-01-01

    A simple UHV offset manipulator is described that not only allows a target crystal to be moved to any point on a circle centered on the manipulator axis but also provides indepedent theta and phi rotations at each position

  13. SQUID-magnetometry on Fe monolayers on GaAs(001) in UHV

    Energy Technology Data Exchange (ETDEWEB)

    Kebe, T

    2006-12-11

    This thesis deals with the characterization of the growth and of the magnetic properties of ultrathin Fe films on GaAs(001). In particular, a scanning SQUID (superconducting quantum interference device) magnetometer was used in ultrahigh vacuum (UHV), whose performance has been improved within the scope of this thesis. By probing the magnetic stray field of a magnetized film, the absolute remanent magnetization can be determined with submonolayer sensitivity. In the context of this thesis the magnetic stray field has been calculated analytically. The combined use of SQUID and ferromagnetic resonance (FMR) on the same film in UHV allows for the independent determination of the magnetization and the magnetic anisotropy constants as a function of temperature, film thickness, topography of the substrate and oxygen exposure. The results of this thesis are: 1. The thickness dependent remanent magnetization from 2 to 20 monolayer (ML) Fe on GaAs(001) without cap layer was measured as a function of temperature. 2. The continuous in-plane reorientation of the magnetization (from [1 1 0] to [1 0 0]) of Fe films with increasing film thickness was observed using the scanning SQUID technique and showed good agreement with FMR measurements. 3. The influence of controlled oxygen exposure on the remanent magnetization and the magnetic anisotropy constants of 5 to 16 ML Fe was investigated. A faster reduction of the magnetization is found for the thinner Fe films when the volume of the Fe oxide is taken into consideration. At low oxygen exposure (<10 Langmuir), the perpendicular uniaxial anisotropy constant K{sub 2} {sub perpendicular} {sub to} is reduced by about 40% whereas other anisotropy contributions remain virtually unchanged. In addition, structural investigations using IV-LEED during the oxygen exposure were carried out. 4. An 8.6 ML Fe/GaAs(001) film which was exposed to 25000 L O{sub 2} exhibits a spontaneous magnetization perpendicular to the film plane at low

  14. Scanning probe microscopy competency development

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M.E.; Reagor, D.W.; Jia, Quan Xi [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The project collaborators developed an ultra-high vacuum scanning tunneling microscope (UHV-STM) capability, integrated it with existing scanning probe microscopes, and developed new, advanced air-based scanning force techniques (SPMs). Programmatic, basic, and industrially related laboratory research requires the existence of SPMs, as well as expertise capable of providing local nano-scale information. The UHV-STM capability, equipped with load-lock system and several surface science techniques, will allow introduction, examination, and reaction of surfaces prepared under well-controlled vacuum conditions, including the examination of morphology and local bonding associated with the initial stages of film growth under controlled growth conditions. The resulting capabilities will enable the authors to respond to a variety of problems requiring local characterization of conducting and nonconducting surfaces in liquids, air, and UHV.

  15. Scattering, Adsorption, and Langmuir-Hinshelwood Desorption Models for Physisorptive and Chemisorptive Gas-Surface Systems

    Science.gov (United States)

    2013-09-01

    quantum effects by incorporating Zero- Point Energy ( ZPE ) in the initial conditions [19; 108]. Desorption calculations, in order to be incorporated...TST Transition State Theory TTPD Threshold Temperature-Programmed Desorption UHV Ultra-High Vacuum XHV Extreme-High Vacuum ZPE Zero-Point Energy 141

  16. Recent results on cleaning and conditioning the ATF vacuum system

    International Nuclear Information System (INIS)

    Langley, R.A.; Clark, T.L.; Glowienka, J.C.; Goulding, R.H.; Mioduszewski, P.K.; Rasmussen, D.A.; Rayburn, T.F.; Schaich, C.R.; Shepard, T.D.; Simpkins, J.E.; Yarber, J.L.

    1990-01-01

    Techniques for cleaning and conditioning the vacuum vessel of the Advanced Toroidal Facility (ATF) and its internal components are described. The vacuum vessel cleaning technique combines baking to 150 degree C and glow discharges with hydrogen gas. Chromium gettering is used to further condition the system. The major internal components are the anodized aluminum baffles in the Thomson scattering system, a graphite-shielded ICRF antenna, two graphite limiters, and a diagnostic graphite plate. Three independent heating systems are used to bake some of the major components of the system. The major characteristics used for assessing cleanliness and conditioning progress are the maximum pressure attained during bakeout, the results of gas analysis, and revelant plasma parameters (e.g., time to radiative decay). Details of the various cleaning and conditioning procedures and results are presented

  17. High capacity getter pump for UHV operation

    International Nuclear Information System (INIS)

    Manini, P.; Marino, M.; Belloni, F.; Porro, M.

    1993-01-01

    UHV pumps based on non-evaporable getter coated strips find widespread use in particle accelerators, synchrotron radiation machines and nuclear fusion experimental devices. Depending on the geometric constraints, pressure operation conditions and the foreseen gas loads, optimized getter structures, such as modules and cartridges, can be designed and assembled into a high-efficiency pump. In the present paper, the design and performance of a newly conceived High Capacity Getter Pump (HCGP) based on sintered getter bodies, in the shape of blades instead of strips, is illustrated. The porosity and the specific surface area of the blades and their arrangement in the cartridge have been optimized to significantly increase sorption capacity at a given speed. These pumps are well suited for those applications where a very high gas load is expected during the machine operation. The sintered getter bodies increase surface area and capacity, requiring less frequent reactivation and facilitating greater overall life of the pump. A discussion of the experimental results in terms of sorption speed and capacity for various gases is presented

  18. Fretting Wear Damage Mechanism of Uranium under Various Atmosphere and Vacuum Conditions

    Directory of Open Access Journals (Sweden)

    Zhengyang Li

    2018-04-01

    Full Text Available A fretting wear experiment with uranium has been performed on a linear reciprocating tribometer with ball-on-disk contact. This study focused on the fretting behavior of the uranium under different atmospheres (Ar, Air (21% O2 + 78% N2, and O2 and vacuum conditions (1.05 and 1 × 10−4 Pa. Evolution of friction was assessed by coefficient of friction (COF and friction-dissipated energy. The oxide of the wear surface was evaluated by Raman spectroscopy. The result shows that fretting wear behavior presents strong atmosphere and vacuum condition dependence. With increasing oxygen content, the COF decreases due to abrasive wear and formation of oxide film. The COF in the oxygen condition is at least 0.335, and it has a maximum wear volume of about 1.48 × 107 μm3. However, the COF in a high vacuum condition is maximum about 1.104, and the wear volume is 1.64 × 106 μm3. The COF in the low vacuum condition is very different: it firstly increased and then decreased rapidly to a steady value. It is caused by slight abrasive wear and the formation of tribofilm after thousands of cycles.

  19. Ultra high vacuum systems for accelerators

    International Nuclear Information System (INIS)

    Loefgren, P.

    2001-01-01

    Full text: In order to perform controlled, stable, and reproducible experiments, several research areas today require very low pressures. Maybe the most important example is the research that is performed in storage rings and accelerators where the lifetime and stability of particle beams depends critically on the vacuum conditions. Although the vacuum requirements ultimately depend on the kind of experiments that is performed, the studies of more and more rare and exotic species in storage rings and accelerators today pushes the demands on the vacuum conditions towards lower and lower pressures. The final pressure obtained in the vacuum system can often be the key factor for the outcome of an experiment. Pioneering work in vacuum technology has therefore often been performed at storage rings and accelerator facilities around the world. In order to reach pressures in the low UHV regime and lower (below 10 -11 mbar), several aspects have to be considered which implies choosing the proper materials, pumps and vacuum gauges. In the absence of gases inleaking from the outside, the rate of gas entering a vacuum system is determined by the release of molecules adsorbed on the surfaces and the outgassing from the bulk of the vacuum chamber walls. This means that the choice of material and, equally important, the pre treatment of the material, must be such that these rates are minimised. Today the most widely used material for vacuum applications are stainless steel. Besides its many mechanical advantages, it is resistant to corrosion and oxidation. If treated correctly the major gas source in a stainless steel chamber is hydrogen outgassing from the chamber walls. The hydrogen outgassing can be decreased by vacuum firing at 950 deg. C under vacuum. In addition to choosing the right materials the choice of vacuum pumps is important for the final pressure. Since no vacuum pump is capable of taking care of all kinds of gases found in the rest gas at pressures below 10 -11

  20. Recent results on cleaning and conditioning the ATF vacuum system

    International Nuclear Information System (INIS)

    Langley, R.A.; Clark, T.L.; Glowienka, J.C.

    1989-01-01

    Techniques for cleaning and conditioning the vacuum vessel of the Advanced Toroidal Facility (ATF) and its internal components are described. The vacuum vessel cleaning technique combines baking to 150/degree/C and glow discharges with hydrogen gas. Chromium gettering is used to further condition the system. The major internal components are the anodized aluminum baffles in the Thomson scattering system, a graphite-shielded ICRF antenna, two graphite limiters, and a diagnostic graphite plate. Three independent heating systems are used to bake some of the major components of the system. The major characteristics used for assessing cleanliness and conditioning progress are the maximum pressure attained during bakeout, the results of gas analysis, and relevant plasma parameters (e.g., time to radiative decay). Details of the various cleaning and conditioning procedures and results are presented. 5 refs., 8 figs., 3 tabs

  1. Harmonic voltage excess problem test and analysis in UHV and EHV grid particular operation mode

    Science.gov (United States)

    Lv, Zhenhua; Shi, Mingming; Fei, Juntao

    2018-02-01

    The test and analysis of the power quality of some 1000kV UHV transmission lines and 500kV EHV transmission lines is carried out. It is found that there is harmonic voltage excess problems when the power supply of the UHV and EHV voltage line is single-ended or single-loop, the problem basically disappeared after the operation mode change, different operating conditions, the harmonic current has not been greatly affected, indicating that the harmonic voltage changes mainly caused by the system harmonic impedance. With the analysis of MATLAB Simulink system model, it can be seen that there are specific harmonic voltage excess in the system under the specific operating mode, which results in serious distortion of the specific harmonic voltage. Since such phenomena are found in 500kV and 1000kV systems, it is suggested that the test evaluation work should be done under the typical mode of operation in 500kV, 1000kV Planning and construction process to prevent the occurrence of serious distortion and the regional harmonic current monitoring and suppression work should be done.

  2. Skating on thin ice: surface chemistry under interstellar conditions

    Science.gov (United States)

    Fraser, H.; van Dishoeck, E.; Tielens, X.

    Solid CO2 has been observed towards both active star forming regions and quiescent clouds (Gerakines et. al. (1999)). The high abundance of CO2 in the solid phase, and its low abundance in the gas phase, support the idea that CO2 is almost exclusively formed in the solid state. Several possible formation mechanisms have been postulated (Ruffle &Herbst (2001): Charnley &Kaufman (2000)), and the detection of CO2 towards quiescent sources such as Elias 16 (Whittet et. al. (1998)) clearly suggests that CO2 can be produced in the absence of UV or electron mediated processes. The most likely route is via the surface reactions between O atoms, or OH radicals, and CO. The tools of modern surface- science offer us the potential to determine many of the physical and chemical attributes of icy interstellar grain mantles under highly controlled conditions, that closely mimic interstellar environments. The Leiden Surface Reaction Simulation Device ( urfreside) combines UHV (UltraS High Vacuum) surface science techniques with an atomic beam to study chemical reactions occurring on the SURFACE and in the BULK of interstellar ice grain mimics. By simultaneously combining two or more surface analysis techniques, the chemical kinetics, reaction mechanisms and activation energies can be determined directly. The experiment is aimed at identifying the key barrierless reactions and desorption pathways on and in H2 O and CO ices under interstellar conditions. The results from traditional HV (high vacuum) and UHV studies of the CO + O and CO + OH reactions will be presented in this paper. Charnley, S.B., & Kaufman, M.J., 2000, ApJ, 529, L111 Gerakines, P.A., 1999, ApJ, 522, 357 Ruffle, D.P., & Herbst, E., 2001, MNRAS, 324, 1054 Whittet, D.C.B., et.al., 1998, ApJ, 498, L159

  3. Design of a -1 MV dc UHV power supply for ITER NBI

    Science.gov (United States)

    Watanabe, K.; Yamamoto, M.; Takemoto, J.; Yamashita, Y.; Dairaku, M.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; Umeda, N.; Sakamoto, K.; Inoue, T.

    2009-05-01

    Procurement of a dc -1 MV power supply system for the ITER neutral beam injector (NBI) is shared by Japan and the EU. The Japan Atomic Energy Agency as the Japan Domestic Agency (JADA) for ITER contributes to the procurement of dc -1 MV ultra-high voltage (UHV) components such as a dc -1 MV generator, a transmission line and a -1 MV insulating transformer for the ITER NBI power supply. The inverter frequency of 150 Hz in the -1 MV power supply and major circuit parameters have been proposed and adopted in the ITER NBI. The dc UHV insulation has been carefully designed since dc long pulse insulation is quite different from conventional ac insulation or dc short pulse systems. A multi-layer insulation structure of the transformer for a long pulse up to 3600 s has been designed with electric field simulation. Based on the simulation the overall dimensions of the dc UHV components have been finalized. A surge energy suppression system is also essential to protect the accelerator from electric breakdowns. The JADA contributes to provide an effective surge suppression system composed of core snubbers and resistors. Input energy into the accelerator from the power supply can be reduced to about 20 J, which satisfies the design criteria of 50 J in total in the case of breakdown at -1 MV.

  4. Risk Assessment Method of UHV AC/DC Power System under Serious Disasters

    Directory of Open Access Journals (Sweden)

    Rishang Long

    2016-12-01

    Full Text Available Based on the theory of risk assessment, the risk assessment method for an ultra-high voltage (UHV AC/DC hybrid power system under severe disaster is studied. Firstly, considering the whole process of cascading failure, a fast failure probability calculation method is proposed, and the whole process risk assessment model is established considering the loss of both fault stage and recovery stage based on Monte Carlo method and BPA software. Secondly, the comprehensive evaluation index system is proposed from the aspects of power system structure, fault state and economic loss, and the quantitative assessment of system risk is carried out by an entropy weight model. Finally, the risk assessment of two UHV planning schemes are carried out and compared, which proves the effectiveness of the research work.

  5. Tip preparation for usage in an ultra-low temperature UHV scanning tunneling microscope

    Directory of Open Access Journals (Sweden)

    S. Ernst, S. Wirth, M. Rams, V. Dolocan and F. Steglich

    2007-01-01

    Full Text Available This work deals with the preparation and characterization of tungsten tips for the use in UHV low-temperature scanning tunneling microscopy and spectroscopy (STM and STS, respectively. These specific environments require in situ facilities for tip conditioning, for further sharpening of the tips, as well as for reliable tip characterization. The implemented conditioning methods include direct resistive annealing, annealing by electron bombardment, and self-sputtering with noble gas ions. Moreover, results from in situ tip characterization by field emission and STM experiments were compared to ex situ scanning electron microscopy. Using the so-prepared tips, high resolution STM images and tunneling spectra were obtained in a temperature range from ambient down to 350 mK, partially with applied magnetic field, on a variety of materials.

  6. Vacuum system of the compact Energy Recovery Linac

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T., E-mail: tohru.honda@kek.jp; Tanimoto, Y.; Nogami, T.; Takai, R.; Obina, T.; Asaoka, S.; Uchiyama, T.; Nakamura, N. [High Energy Accelerator Research Organization (KEK) (1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan) (Japan)

    2016-07-27

    The compact Energy Recovery Linac (cERL), a test accelerator to establish important technologies demanded for future ERL-based light sources, was constructed in late 2013 at KEK. The accelerator was successfully commissioned in early 2014, and demonstrated beam circulation with energy recovery. In the cERL vacuum system, low-impedance vacuum components are required to circulate high-intensity, low-emittance and short-bunch electron beams. We therefore developed ultra-high-vacuum (UHV)-compatible flanges that can connect beam tubes seamlessly, and employed retractable beam monitors, namely, a movable Faraday cup and screen monitors. In most parts of the accelerator, pressures below 1×10{sup −7} Pa are required to mitigate beam-gas interactions. Particularly, near the photocathode electron gun and the superconducting (SC) cavities, pressures below 1×10{sup −8} Pa are required. The beam tubes in the sections adjoining the SC cavities were coated with non-evaporable getter (NEG) materials, to reduce gas condensation on the cryo-surfaces. During the accelerator commissioning, stray magnetic fields from the permanent magnets of some cold cathode gauges (CCGs) were identified as a source of the disturbance to the beam orbit. Magnetic shielding was specially designed as a remedy for this issue.

  7. Plasma modeling of MFTF-B and the sensitivity to vacuum conditions

    International Nuclear Information System (INIS)

    Porter, G.D.; Rensink, M.

    1984-01-01

    The Mirror Fusion Test Facility (MFTF-B) is a large tandem mirror device currently under construction at Lawrence Livermore National Laboratory. The completed facility will consist of a large variety of components. Specifically, the vacuum vessel that houses the magnetic coils is basically a cylindrical vessel 60 m long and 11 m in diameter. The magnetics system consists of some 28 superconducting coils, each of which is located within the main vacuum vessel. Twenty of these coils are relatively simple solenoidal coils, but the remaining eight are of a more complicated design to provide an octupole component to certain regions of the magnetic field. The vacuum system is composed of a rough vacuum chain, used to evacuate the vessel from atmospheric pressure, and a high vacuum system, used to maintain good vacuum conditions during a plasma shot. High vacuum pumping is accomplished primarily by cryogenic panels cooled to 4.5 0 K. The MFTF-B coil set is shown together with typical axial profiles of magnetic field (a), electrostatic potential (b), and plasma density (c). The plasma is divided into nine regions axially, as labelled on the coil set in Figure 1. The central cell, which is completely azimuthally symmetric, contains a large volume plasma that is confined by a combination of the magnetic fields and the electrostatic potentials in the yin-yang cell

  8. Pyrolysis of propane under vacuum carburizing conditions. An experimental and modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Khan, R.U.; Bajohr, S.; Buchholz, D.; Reimert, R. [Engler-Bunte-Institut, Bereich Gas, Erdoel und Kohle, Engler Bunte Ring 1, Universitaet Karlsruhe, 76131 Karlsruhe (Germany); Minh, H.D.; Norinaga, K.; Janardhanan, V.M.; Tischer, S.; Deutschmann, O. [Institute of Chemical Technology, University of Karlsruhe, 76128 Karlsruhe (Germany)

    2008-03-15

    Propane has been pyrolyzed in a flow reactor system at different temperatures ranging from 640 C to 1010 C and at 8 mbar of partial pressure which are typical vacuum carburizing conditions for steel. Nitrogen was used as a carrier gas. The products of pyrolysis were collected and analyzed by gas chromatography. The reactor was numerically simulated by 1D and 2D flow models coupled to a detailed gas phase reaction mechanism. The gas atmosphere composition has been predicted under the conditions of vacuum carburizing of steel. (author)

  9. Standard Model Vacuum Stability and Weyl Consistency Conditions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Gillioz, Marc; Krog, Jens

    2013-01-01

    At high energy the standard model possesses conformal symmetry at the classical level. This is reflected at the quantum level by relations between the different beta functions of the model. These relations are known as the Weyl consistency conditions. We show that it is possible to satisfy them...... order by order in perturbation theory, provided that a suitable coupling constant counting scheme is used. As a direct phenomenological application, we study the stability of the standard model vacuum at high energies and compare with previous computations violating the Weyl consistency conditions....

  10. Conditioning of vacuum chamber by RF plasma

    International Nuclear Information System (INIS)

    Elizondo, J.I.; Nascimento, I.C. do

    1985-01-01

    A new conditioning vaccum chamber system is presented. It consists in hydrogen plasm generation by microwaves with low electronic temperature (Te approx. 5eV) and low ionization degree. The ions and neutral atoms generated in the reaction: e + H 2 -> H+ H+ e, bomb the chamber walls combinig themselves to impurities of surface and generating several compounds: H 2 O, CO, CH 4 , CO 2 etc. The vacuum system operates continuosly and remove these compounds. A microwave system using magnetron valve (f=2,45 GHz, P=800W) was constructed for TBR (Brazilian tokamak). The gas partial pressures were monitored before, during and after conditioning showing the efficiency of the process. (M.C.K.) [pt

  11. TPX vacuum vessel transient thermal and stress conditions

    International Nuclear Information System (INIS)

    Feldshteyn, Y.; Dinkevich, S.; Feng, T.; Majumder, D.

    1995-01-01

    The TPX vacuum vessel provides the vacuum boundary for the plasma and the mechanical support for the internal components. Another function of the vacuum vessel is to contain neutron shielding water in the double wall space during normal operation. This double wall space serves as a heat reservoir for the entire vacuum vessel during bakeout. The vacuum vessel and the internal components are subjected to thermal stresses induced by a nonuniform temperature distribution within the structure during bakeout. A successful Conceptual Design Review in March 1993 has established superheated steam as the heating source of the vacuum vessel. A transient bakeout mode of the vacuum vessel and in-vessel components has been analyzed to evaluate transient period duration, proper temperature level, actual thermal stresses and performance of the steam equipment. Thermally, the vacuum vessel structure may be considered as an adiabatic system because it is perfectly insulated by the strong surrounding vacuum and multiple layers of superinsulation. Important aspects of the analysis are described herein

  12. Transmission Technologies and Operational Characteristic Analysis of Hybrid UHV AC/DC Power Grids in China

    Science.gov (United States)

    Tian, Zhang; Yanfeng, Gong

    2017-05-01

    In order to solve the contradiction between demand and distribution range of primary energy resource, Ultra High Voltage (UHV) power grids should be developed rapidly to meet development of energy bases and accessing of large-scale renewable energy. This paper reviewed the latest research processes of AC/DC transmission technologies, summarized the characteristics of AC/DC power grids, concluded that China’s power grids certainly enter a new period of large -scale hybrid UHV AC/DC power grids and characteristics of “strong DC and weak AC” becomes increasingly pro minent; possible problems in operation of AC/DC power grids was discussed, and interaction or effect between AC/DC power grids was made an intensive study of; according to above problems in operation of power grids, preliminary scheme is summarized as fo llows: strengthening backbone structures, enhancing AC/DC transmission technologies, promoting protection measures of clean energ y accessing grids, and taking actions to solve stability problems of voltage and frequency etc. It’s valuable for making hybrid UHV AC/DC power grids adapt to operating mode of large power grids, thus guaranteeing security and stability of power system.

  13. Risk Evaluation of a UHV Power Transmission Construction Project Based on a Cloud Model and FCE Method for Sustainability

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2015-03-01

    Full Text Available In order to achieve the sustainable development of energy, Ultra High Voltage (UHV power transmission construction projects are being established in China currently. Their high-tech nature, the massive amount of money involved, and the need for multi-agent collaboration as well as complex construction environments bring many challenges and risks. Risk management, therefore, is critical to reduce the risks and realize sustainable development of projects. Unfortunately, many traditional risk assessment methods may not perform well due to the great uncertainty and randomness inherent in UHV power construction projects. This paper, therefore, proposes a risk evaluation index system and a hybrid risk evaluation model to evaluate the risk of UHV projects and find out the key risk factors. This model based on a cloud model and fuzzy comprehensive evaluation (FCE method combines the superiority of the cloud model for reflecting randomness and discreteness with the advantages of the fuzzy comprehensive evaluation method in handling uncertain and vague issues. For the sake of proving our framework, an empirical study of “Zhejiang-Fuzhou” UHV power transmission construction project is presented. As key contributions, we find the risk of this project lies at a “middle” to “high” level and closer to a “middle” level; the “management risk” and “social risk” are identified as the most important risk factors requiring more attention; and some risk control recommendations are proposed. This article demonstrates the value of our approach in risk identification, which seeks to improve the risk control level and the sustainable development of UHV power transmission construction projects.

  14. Long distance transmission of bulk power: the EHV-UHV DC challenge

    Energy Technology Data Exchange (ETDEWEB)

    Clerici, A; Valtorta, G

    1994-12-31

    This paper deals with technical and economical analysis of transmission of powers in the range from 1000 to 5000 MW and distances included between 1000 to 4000 km. The advantages of adoption of UHV DC transmission are evident especially for the longest distances and the largest power levels considered. (author) 4 refs., 9 figs.

  15. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hao, E-mail: hc000211@ohio.edu [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Preissner, Curt; Freeland, John W. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rosenmann, Daniel [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Kersell, Heath; Hla, Saw-Wai [Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rose, Volker, E-mail: vrose@anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2016-01-28

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  16. RGA studies on aluminium chambers for transport line-2 of CLIC facility at CERN

    International Nuclear Information System (INIS)

    Kumar, K.V.A.N.P.S.; Yadav, Praveen Kumar; Sindal, B.K.; Tiwari, S.K.; Tripti, B.; Shukla, S.K.

    2009-01-01

    The Aluminium Chambers for Transport Line-2 (TL-2) of CLIC (Compact Linear Collider) facility were developed by RRCAT, Indore under the CERN-DAE collaboration work. The ultimate vacuum required for these chambers is in 10 -10 mbar range. The design and fabrication of the chambers were done at Workshop-A, RRCAT, Indore. Ultra High Vacuum (UHV) Section at RRCAT, Indore was involved in qualifying tests of these chambers for their ultimate vacuum testing and the residual gas spectrum studies as per CERN requirements. The UHV testing part was established and the RGA studies were conducted using Residual Gas Analyser (RGA, 1-100 AMU range, Make: Spectra/MKS, USA). The RGAs were used for vacuum diagnostics like checking for leaks and the vacuum quality in the chambers. Using the RGA, we could also observe out the pumping speed behaviour of a UHV Gauge (Varian UHV-24 type) and the retention-cum-evaluation of captured gases by Sputter Ion Pump was also studied. In this paper, these experiences are reported during ultimate testing of TL-2 chambers for CLIC facility. (author)

  17. Scanning slit for HIE-ISOLDE: vibrational test (linear motion actuator from UHV design, speed = 2.5 mm/s)

    CERN Document Server

    Bravin, E; Sosa, A

    2014-01-01

    This report summarizes the results of a series of tests performed on the prototype HIE-ISOLDE diagnostic box (HIE-DB) regarding the vibrations and drifts in the transverse position of the scanning blade while moving inside or outside the box. To monitor the transverse position of the blade, a series of 0.1 mm diameter holes were drilled on it and their positions were tracked with an optical system. The linear motion actuator was acquired from UHV design (model LSM38-150-SS), is driven by a stepper motor and has all the guiding mechanisms outside vacuum. The maximum speed of the scanning blade during the tests was 2.5 mm/s. The transverse movement of the slit in the direction perpendicular to the movement was lower than 50 m, and is dominated by the displacement of the contact point of the applied force on the lead-screw. An offset on the slit position was observed while changing the direction of movement of the blade, its amplitude being of the order of 30 m. The amplitudes of the displacements of the transve...

  18. Method and apparatus for scientific analysis under low temperature vacuum conditions

    Science.gov (United States)

    Winefordner, James D.; Jones, Bradley T.

    1990-01-01

    A method and apparatus for scientific analysis of a sample under low temperature vacuum conditions uses a vacuum chamber with a conveyor belt disposed therein. One end of the conveyor belt is a cool end in thermal contact with the cold stage of a refrigerator, whereas the other end of the conveyor belt is a warm end spaced from the refrigerator. A septum allows injection of a sample into the vacuum chamber on top of the conveyor belt for spectroscopic or other analysis. The sample freezes on the conveyor belt at the cold end. One or more windows in the vacuum chamber housing allow spectroscopic analysis of the sample. Following the spectroscopic analysis, the conveyor belt may be moved such that the sample moves toward the warm end of the conveyor belt where upon it evaporates, thereby cleaning the conveyor belt. Instead of injecting the sample by way of a septum and use of a syringe and needle, the present device may be used in series with capillary-column gas chromatography or micro-bore high performance liquid chromatography.

  19. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  20. Multiscale investigation of graphene layers on 6H-SiC(000-1)

    OpenAIRE

    Tiberj, Antoine; Huntzinger, Jean-Roch; Camassel, Jean; Hiebel, Fanny; Mahmood, Ather; Mallet, Pierre; Naud, Cecile; Veuillen, Jean-Yves

    2011-01-01

    Abstract In this article, a multiscale investigation of few graphene layers grown on 6H-SiC(000-1) under ultrahigh vacuum (UHV) conditions is presented. At 100-μm scale, the authors show that the UHV growth yields few layer graphene (FLG) with an average thickness given by Auger spectroscopy between 1 and 2 graphene planes. At the same scale, electron diffraction reveals a significant rotational disorder between the first graphene layer and the SiC surface, although well-defined preferre...

  1. Conditioning of the vacuum system of the TPS storage ring without baking in situ

    International Nuclear Information System (INIS)

    Chan, C.K.; Chang, C.C.; Shueh, C.; Yang, I.C.; Wu, L.H.; Chen, B.Y.; Cheng, C.M.; Huang, Y.T.; Chuang, J.Y.; Cheng, Y.T.; Hsiao, Y.M.; Sheng, Albert

    2017-01-01

    To shorten the machine downtime, a maintenance procedure without baking in situ has been developed and applied to maintain and to upgrade the vacuum system of the TPS storage ring. The data of photon-stimulated desorption (PSD) reveal no obvious discrepancy between baking and not baking the vacuum system in situ. A beam-conditioning dose of extent only 11.8 A h is required to recover quickly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.

  2. Conditioning of the vacuum system of the TPS storage ring without baking in situ

    Energy Technology Data Exchange (ETDEWEB)

    Chan, C.K., E-mail: ckchan@nsrrc.org.tw; Chang, C.C.; Shueh, C.; Yang, I.C.; Wu, L.H.; Chen, B.Y.; Cheng, C.M.; Huang, Y.T.; Chuang, J.Y.; Cheng, Y.T.; Hsiao, Y.M.; Sheng, Albert

    2017-04-11

    To shorten the machine downtime, a maintenance procedure without baking in situ has been developed and applied to maintain and to upgrade the vacuum system of the TPS storage ring. The data of photon-stimulated desorption (PSD) reveal no obvious discrepancy between baking and not baking the vacuum system in situ. A beam-conditioning dose of extent only 11.8 A h is required to recover quickly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.

  3. Conditioning of the vacuum system of the TPS storage ring without baking in situ

    Science.gov (United States)

    Chan, C. K.; Chang, C. C.; Shueh, C.; Yang, I. C.; Wu, L. H.; Chen, B. Y.; Cheng, C. M.; Huang, Y. T.; Chuang, J. Y.; Cheng, Y. T.; Hsiao, Y. M.; Sheng, Albert

    2017-04-01

    To shorten the machine downtime, a maintenance procedure without baking in situ has been developed and applied to maintain and to upgrade the vacuum system of the TPS storage ring. The data of photon-stimulated desorption (PSD) reveal no obvious discrepancy between baking and not baking the vacuum system in situ. A beam-conditioning dose of extent only 11.8 A h is required to recover quickly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.

  4. Ultra high vacuum activities and required modification at 14 UD BARC-TIFR pelletron accelerator facility

    International Nuclear Information System (INIS)

    Sharma, S.C.; Ninawe, N.G.; Ramjilal; Bhagwat, P.V.; Salvi, S.B.

    2003-01-01

    Full text: The 14 UD pelletron accelerator is working round the clock since 1989. The accelerator is housed inside a tank which is 6 meter in diameter and 25 meter long. The accelerator tank is pressurized with SF 6 at 80 to 100 PSIG in order to achieve 14MV. In pelletron, ions are extracted from SNICS are pre-accelerated up to 300 keV before being injected into low energy accelerator tube. In the terminal which is at high potential (4MV to 14 MV), the ion beam pass through the stripper and positive ions with high charge states are produced. The high energy beams are focussed and analyzed by 90 deg magnet. The analyzed beam is then transported to the various experimental ports. In order to achieve uniform ultra high vacuum (to reduce the loss of intensity and spread in the energy of ions beams) in more than 100 metre and 100 mm diameter beam lines including magnet chambers and various beam diagnostic devices, combination of getter-ion pumps and turbo pumps are being used at Pelletron Accelerator Facility. The 14 UD pelletron is equipped with a combination of foil and gas stripper in high voltage terminal section. The foil and gas stripper in the terminal section are mainly used for stripping of light and heavy ions respectively. The gas stripper plays a great role for stripping of heavy ions and its efficiency depends on gas stripper parameters and supporting pumps. The gas stripper is originally installed with getter pumps. These pumps required periodic replacement of titanium cartridges and slowly the pumping speed used to diminish with time. A new recirculation turbo molecular pumps based system is being designed to improve good beam transmission. Details of design will be presented. Proton beam of tens of MeV energy and μA range current is in demand to carry out specific radiochemistry experiments in this facility. It is proposed to built and accommodate a proton experimental setup in the tower area of the existing facility. Details of required UHV system for

  5. Ultrahigh vacuum STM/STS studies of the Bi-O surface in Bi2Sr2CuOy single crystals

    International Nuclear Information System (INIS)

    Ikeda, Kazuto; Tomeno, Izumi; Takamuku, Kenshi; Yamaguchi, Koji; Itti, Rittaporn; Koshizuka, Naoki

    1992-01-01

    Scanning tunneling microscopic and spectroscopic studies were made on cleaved surfaces of Bi 2 Sr 2 CuO y single crystals using an ultrahigh-vacuum scanning tunneling microscope (UHV-STM). The modulation structures of the Bi-O surface were observed at room temperature with atomic resolution. The tunneling spectra showed electronic gap structures similar to those observed for the Bi-O surface of superconducting Bi-2212 single crystals. This suggests that superconductivity is not directly related to the electronic structure observed in the Bi-O plane. (orig.)

  6. Design of UHV chamber assembly and mirror mounts for high resolution VUV beam line at INDUS-1

    International Nuclear Information System (INIS)

    Saksena, G.D.; Sinha, A.K.; Bhattacharya, S.S.

    1993-01-01

    The reflecting optical system is designed for the high resolution VUV spectroscopy facility to be installed at INDUS-1. The fore-optics system consists of three cylindrical mirrors (M1, M2 and M3) to accept a 60 mrad (horizontal) x 6 mrad (vertical) diverging synchrotron beam from the storage ring in order to focus the image on the entrance slit of the vacuum spectrometer located at 13 m from the source point. In this paper we present some important details regarding mechanical design of the high resolution beam line consisting of mirror mounts, UHV chambers, associated mechanisms and beam pipes. The mirrors are mounted in an adjustable three point kinematic holder. In addition, these mounts are provided with a multi-plane alignment provision. Mirror mounts are placed inside VHV chambers which are provided with three translational and two rotational movements to facilitate initial as well as final on-line fine-tuned alignments. Beam pipes are connected to the VHV chambers through flanged bellows. Chambers, associated mechanisms, beam pipes with its non-rigid support and related pumping stations are positioned in the support structure rigidly. (author). 2 figs

  7. UHV equipment for light line of the Laboratorio Nacional de Luz Sincrotron - LNLS

    International Nuclear Information System (INIS)

    Pacheco, J.G.; Fonseca, P.T.; Castro, A.R.B. de

    1991-01-01

    The construction of light line for spectral range from 12 to 310 eV of Laboratorio Nacional de Luz Sincrotron (LNLS) is presented. The basic parameters of light line are shown. The components of UHV constructed in the LNLS considering installation aspects and final results are exposed. (M.C.K.)

  8. Surfaces of Intermetallics: Quasicrystals and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Yuen, Chad [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  9. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Hänsel-Ziegler, W.; Freund, H.-J. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Seiler, A. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Laboratorium für Applikationen der Synchrotronstrahlung, KIT Campus Süd, Kaiserstr. 12, 76131 Karlsruhe (Germany); Bondarchuk, O. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); CIC energiGUNE, Parque Tecnologico, C/Albert Einstein 48, CP 01510 Minano (Alava) (Spain); Risse, T., E-mail: risse@chemie.fu-berlin.de [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany)

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic

  10. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-02-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternative clean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended with gasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewable resources and the product has low emission which means environmental friendly. Ethanol can be produced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentation batch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivity and cell growth can be overcome by taking the product continuously from the fermentor. The process can be done by using a vacuum fermentation. The objective of this research is to investigate the effect of pressure and glucose concentration in ethanol fermentation. The research was conducted in laboratory scale and batch process. Equipment consists of fermentor with vacuum system. The observed responses were dried cells of yeast, concentration of glucose, and concentration of ethanol. Observations were made every 4 hours during a day of experiment. The results show that the formation of ethanol has a growth-associated product characteristic under vacuum operation. Vacuum condition can increase the cell formation productivity and the ethanol formation, as it is compared with fermentation under atmospheric condition. The maximum cells productivity and ethanol formation in batch operation under vacuum condition was reached at 166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at 141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivity and the yield of ethanol.

  11. Fabrication of Silicon nanostructures by UHV-STM lithography in Self-Assembled Monolayers

    International Nuclear Information System (INIS)

    Sundermann, M.; Brechling, A.; Rott, K.; Meyners, D.; Kleineberg, U.; Heinzmann, U.; Knueller, A.; Eck, W.; Goelzhueuser, A.; Grunze, M.

    2002-01-01

    Our approach utilizes UHV-STM writing in Self-Assembled Monolayers (SAM). SAMs form highly-ordered ultrathin (∼2-3 nm) monomolecular layers on top of pre-activated Si(100) or Si(111) surfaces. After patterning by UHV-STM writing in constant-current mode at different write parameters (gap voltage, electron dose) the modified Self-Assembled Monolayer serves as an etch mask for an anisotropic wet etch transfer (two-step etch process in aqueous solutions of 5 % HF and 1 M KOH), of the write structure into the silicon substrate. The corresponding silicon nano-structures have been analyzed afterwards by AFM or SEM to characterize the pattern accuracy. We have studied the suitability of three different types of SAMs on silicon single-crystals. Alkyl-chain-type SAMs like Octadecylsilane (ODS) monolayer have been formed by immersion of hydroxylated Si(100) in Octadecyltrichlorosilane (CH 3 (CH 27 SiCl 3 ) while SAMs with aromatic spacer groups such as Hydroxybiphenyl (HBP, (C 6 H 6 ) 2 OH) and Ethoxybiphenyl silane (EBP, (C 6 H 6 ) 2 O(CH 2 ) 3 Si(OCH 3 ) 3 ) are formed on Si(111). (Authors)

  12. Layout of the manipulator-arm (boom) for the TFTR fusion reactor (Princeton, USA) under UHV-conditions

    International Nuclear Information System (INIS)

    Klaubert, J.

    1987-01-01

    This presentation shows the main criteria for the layout of the manipulator - arm and the antechamber - vessel of the TFTR - FUSION - REACTOR at Princeton University, PLASMA PHYSICS LABORATORY (USA). The main problem during layout of a manipulator system like the TFTR - Boom has been the limitation of the vertical deflections due to deadweight of the construction. The design problem is rather a deformation problem and a problem of stability than a stress problem. The way of optimizing the ratio between stiffness and deadweight is the most important part during the complete design - process. Additional earthquake requirements need further investigations for a satisfying layout (horizontal forces, weak-axis of moment of inertia). The details of the construction (welding, connections etc.) have to be designed in respect to UHV - requirements --> no holes and no fillet welds (outgasing - rate.) are allowed. All weldings have to be designed as bevel-welds. This manipulator system is designed for working in a plane system (two degrees of freedom). A manipulator system with the same operating capabilities in a three degree of freedom system needs larger cross sections for the different beam-elements than those of the discussed TFTR - BOOM

  13. Low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy combined with molecular beam epitaxy for in situ two-dimensional materials' studies

    Science.gov (United States)

    Sheng, Shaoxiang; Li, Wenbin; Gou, Jian; Cheng, Peng; Chen, Lan; Wu, Kehui

    2018-05-01

    Tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with the Raman spectroscopy, is capable to access the local structure and chemical information simultaneously. However, the application of ambient TERS is limited by the unstable and poorly controllable experimental conditions. Here, we designed a high performance TERS system based on a low-temperature ultrahigh-vacuum scanning tunneling microscope (LT-UHV-STM) and combined with a molecular beam epitaxy (MBE) system. It can be used for growing two-dimensional (2D) materials and for in situ STM and TERS characterization. Using a 2D silicene sheet on the Ag(111) surface as a model system, we achieved an unprecedented 109 Raman single enhancement factor in combination with a TERS spatial resolution down to 0.5 nm. The results show that TERS combined with a MBE system can be a powerful tool to study low dimensional materials and surface science.

  14. POLARIMETER: A Soft X-Ray 8-Axis UHV-Diffractometer at BESSY II

    Directory of Open Access Journals (Sweden)

    Andrey Sokolov

    2016-11-01

    Full Text Available A versatile UHV-polarimeter for the EUV XUV spectral range is described which incorporates two optical elements: a phase retarder and a reflection analyzer. Both optics are azimuthally rotatable around the incident synchrotron radiation beam and the incidence angle is freely selectable. This allows for a variety of reflectometry, polarimetry and ellipsometry applications on magnetic or non-magnetic samples and multilayer optical elements.

  15. Development of an inspection robot under iter relevant vacuum and temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hatchressian, J-C; Bruno, V; Gargiulo, L; Bayetti, P; Cordier, J-J; Samaille, F [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA Cadarache, F-13108 Saint Paul-Lez-Durance Cedex (France); Keller, D; Perrot, Y; Friconneau, J-P [CEA, LIST, Service de Robotique Interactive, 18 route du Panorama, BP6, Fontenay aux Roses F-92265 France (France); Palmer, J D [EFDA-CSU Max-Planck-Institut fuer Plasma Physik Boltzmannstr.2, D-85748 Garching Germany (Germany)

    2008-03-15

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In vessel inspection operations without loss of conditioning could be very mandatory. Within this framework, the aim of the Articulated Inspection Arm (AIA) project is to demonstrate the feasibility of a multi-purpose in-vessel Remote Handling inspection system. It is a long reach, composed of 5 segments with in all 8 degrees of freedom, limited payload carrier (up to 10kg) and a total range of 8m. The project is currently developed by the CEA within the European work program. Some tests will validate chosen concepts for operations under ITER relevant vacuum and temperature conditions. The presence of magnetic fields, radiation and neutron beams will not be considered. This paper deals with the choices of the materials to minimize the out-gassing under vacuum and high temperature during conditioning, the implantation of the electronics which are enclosed in boxes with special gaskets, the design of the first embedded process which is a viewing system.

  16. Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffer, Saskia [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.

  17. Lipid oxidation and color changes of goose meat stored under vacuum and modified atmosphere conditions.

    Science.gov (United States)

    Orkusz, A; Haraf, G; Okruszek, A; Werenska-Sudnik, M

    2017-03-01

    The objective of the work was to investigate the color and lipid oxidation changes of goose breast meat packaged in vacuum and modified atmosphere (MA) conditions consisting of 80% O2, 20% CO2, and stored in refrigerated conditions at 4°C. Color stability was monitored by determining total heme pigments concentration; relative concentration of myoglobin, oxymyoglobin, and metmyoglobin; parameters of color L*, a*, b*, and sensory evaluation of the surface color. Lipid stability was measured by determining thiobarbituric acid reactive substances (TBARS). The samples were examined in 24 h after slaughter (unpacked muscles) and on d 4, 7, 9, 11 of storage (muscles packed in vacuum and in MA). Through the time of storage, samples packed in MA had higher TBARS values in comparison to the meat packed in vacuum. For samples packed in two types of atmospheres, the total pigments concentration decreased gradually within 11 d of storage. It was observed that relative metmyoglobin concentration increased whereas relative oxymyoglobin concentration decreased in total heme pigments in the MA stored muscle. The relative concentration of all three myoglobin forms sample packed in vacuum remained unchanged. The color parameters (L*, a*, b*) did not change for 11 d of storage for the vacuum packed meat. The value of the color parameter a* decreased and the value of the color parameters L* and b* increased in the samples packaged in MA. The data prove that if you store goose meat in MA (consisting of 80% O2, 20% CO2) or vacuum, the unchanged surface color is preserved for 9 and 11 day, respectively.Vacuum appears to be a better method as regards the maintaining of lipid stability in goose meat. © 2016 Poultry Science Association Inc.

  18. TFTR ultrahigh-vacuum pumping system incorporating mercury diffusion pumps

    International Nuclear Information System (INIS)

    Sink, D.A.; Sniderman, M.

    1976-06-01

    The TFTR vacuum vessel will have a system of four 61 cm diameter mercury diffusion pumps to provide a base pressure in the 10 -8 to 10 -9 Torr range as well as a low impurity level within the vessel. The system, called the Torus Vacuum Pumping System (TVPS), will be employed with the aid of an occasional 250 0 C bakeout in situ as well as periodic applications of aggressive discharge cleaning. The TVPS is an ultrahigh-vacuum (UHV) system using no elastomers as well as being a closed system with respect to tritium or any tritiated gases. The backing system employing approximately 75 all-metal isolation valves is designed with the features of redundancy and flexibility employed in a variety of ways to meet the fundamental requirements and functions enumerated for the TVPS. Since the design, is one which is a modification of the conceptual design of the TVPS, those features which have changed are discussed. Calculations are presented for the major performance parameters anticipated for the TVPS and include conductances, effective pumping speeds, base pressures, operating parameters, getter pump parameters, and calculations of time constants associated with leak checking. Modifications in the vacuum pumping system for the guard regions on the twelve bellows sections are presented so that it is compatible with the main TVPS. The bellows pumping system consists of a mechanical pump unit, a zirconium aluminum getter pump unit and a residual gas analyzer. The control and management of the TVPS is described with particular attention given to providing both manual and automatic control at a local station and at the TFTR Central Control. Such operations as testing, maintenance, leak checking, startup, bakeout, and various other operations are considered in some detail. Various aspects related to normal pulsing, discharge cleaning, non-tritium operations and tritium operations are also taken into consideration. A cost estimate is presented

  19. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation

    OpenAIRE

    Schroeder, Jeremy; Thomson, W.; Howard, B.; Schell, N.; Näslund, Lars-Åke; Rogström, Lina; Johansson-Jöesaar, Mats P.; Ghafoor, Naureen; Odén, Magnus; Nothnagel, E.; Shepard, A.; Greer, J.; Birch, Jens

    2015-01-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (greater than50 keV), high photon flux (greater than10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (less than1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation...

  20. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1998-01-01

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  1. Monte Carlo method implemented in a finite element code with application to dynamic vacuum in particle accelerators

    CERN Document Server

    Garion, C

    2009-01-01

    Modern particle accelerators require UHV conditions during their operation. In the accelerating cavities, breakdowns can occur, releasing large amount of gas into the vacuum chamber. To determine the pressure profile along the cavity as a function of time, the time-dependent behaviour of the gas has to be simulated. To do that, it is useful to apply accurate three-dimensional method, such as Test Particles Monte Carlo. In this paper, a time-dependent Test Particles Monte Carlo is used. It has been implemented in a Finite Element code, CASTEM. The principle is to track a sample of molecules during time. The complex geometry of the cavities can be created either in the FE code or in a CAD software (CATIA in our case). The interface between the two softwares to export the geometry from CATIA to CASTEM is given. The algorithm of particle tracking for collisionless flow in the FE code is shown. Thermal outgassing, pumping surfaces and electron and/or ion stimulated desorption can all be generated as well as differ...

  2. A compact sub-Kelvin ultrahigh vacuum scanning tunneling microscope with high energy resolution and high stability.

    Science.gov (United States)

    Zhang, L; Miyamachi, T; Tomanić, T; Dehm, R; Wulfhekel, W

    2011-10-01

    We designed a scanning tunneling microscope working at sub-Kelvin temperatures in ultrahigh vacuum (UHV) in order to study the magnetic properties on the nanoscale. An entirely homebuilt three-stage cryostat is used to cool down the microscope head. The first stage is cooled with liquid nitrogen, the second stage with liquid (4)He. The third stage uses a closed-cycle Joule-Thomson refrigerator of a cooling power of 1 mW. A base temperature of 930 mK at the microscope head was achieved using expansion of (4)He, which can be reduced to ≈400 mK when using (3)He. The cryostat has a low liquid helium consumption of only 38 ml/h and standing times of up to 280 h. The fast cooling down of the samples (3 h) guarantees high sample throughput. Test experiments with a superconducting tip show a high energy resolution of 0.3 meV when performing scanning tunneling spectroscopy. The vertical stability of the tunnel junction is well below 1 pm (peak to peak) and the electric noise floor of tunneling current is about 6fA/√Hz. Atomic resolution with a tunneling current of 1 pA and 1 mV was achieved on Au(111). The lateral drift of the microscope at stable temperature is below 20 pm/h. A superconducting spilt-coil magnet allows to apply an out-of-plane magnetic field of up to 3 T at the sample surface. The flux vortices of a Nb(110) sample were clearly resolved in a map of differential conductance at 1.1 K and a magnetic field of 0.21 T. The setup is designed for in situ preparation of tip and samples under UHV condition.

  3. The UHV Experimental Chamber For Optical Measurements (Reflectivity and Absorption) and Angle Resolved Photoemission of the BEAR Beamline at ELETTRA

    International Nuclear Information System (INIS)

    Pasquali, L.; Nannarone, S.; De Luisa, A.

    2004-01-01

    The experimental station of the BEAR (Bending magnet for Emission, Absorption and Reflectivity) beamline at ELETTRA (Trieste, Italy) is an UHV chamber conceived to fully exploit the spectroscopic possibilities offered by the light spot produced by the beamline. Spectroscopies include reflectivity (θ-2θ and diffuse), optical absorption, fluorescence and angle resolved photoemission. The chamber can be rotated around the beam axis to select the s (TE) or p (TM) incidence conditions and/or the position of the ellipse of polarization with respect to the sample. Photon detectors (e.g. photodiodes) and electron detector (hemispherical analyzer - 1 deg. angular resolution, 20 meV energy resolution) cover about completely the full 2π solid angle above the sample surface in any light incidence condition

  4. Upgrade of RHIC Vacuum Systems for High Luminosity Operation

    CERN Document Server

    Hseuh Hsiao Chaun; Smart, Loralie; Todd, Robert J; Weiss, Daniel

    2005-01-01

    With increasing ion beam intensity during recent RHIC operations, pressure rises of several decades were observed at most room temperature sections and at a few cold sections. The pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam ion induced desorption and have been one of the major intensity and luminosity limiting factors for RHIC. Improvement of the warm sections has been carried out in the last few years. Extensive in-situ bakes, additional UHV pumping, anti-grazing ridges and beam tube solenoids have been implemented. Several hundred meters of NEG coated beam pipes have been installed and activated. Vacuum monitoring and interlock were enhanced to reduce premature beam aborts. Preliminary measures, such as pumping before cool down to reduce monolayer condensates, were also taken to suppress the pressure rises in the cold sections. The effectiveness of these measures in reducing the pressure rises during machine studies and during physics runs are discussed...

  5. Vacuum type D initial data

    Science.gov (United States)

    García-Parrado Gómez-Lobo, Alfonso

    2016-09-01

    A vacuum type D initial data set is a vacuum initial data set of the Einstein field equations whose data development contains a region where the space–time is of Petrov type D. In this paper we give a systematic characterisation of a vacuum type D initial data set. By systematic we mean that the only quantities involved are those appearing in the vacuum constraints, namely the first fundamental form (Riemannian metric) and the second fundamental form. Our characterisation is a set of conditions consisting of the vacuum constraints and some additional differential equations for the first and second fundamental forms These conditions can be regarded as a system of partial differential equations on a Riemannian manifold and the solutions of the system contain all possible regular vacuum type D initial data sets. As an application we particularise our conditions for the case of vacuum data whose data development is a subset of the Kerr solution. This has applications in the formulation of the nonlinear stability problem of the Kerr black hole.

  6. Registration properties of different types of CR-39 in vacuum conditions of irradiation

    International Nuclear Information System (INIS)

    Golovchenko, A.N.; Tret'yakova, S.P.

    1991-01-01

    Sensitivity change has been studied of different types of CR-39 detectors (Pershore, Tastrak, Intercast, Ma-ND/α) in dependence on holding time of detector in vacuum chamber at the residual pressure P ≅ 2x10 -2 and ≅ 5x10 -3 Pa before their irradiation with alpha particles from thin 238 Pu source and accelerated charged ions with atomic number Z=2-10 and energy of 9.1 MeV/nucleon. Polymer of Intercast Company turned out to be the most stable one to vacuum effect, and detector does not change the sensitivity up to response function REL 200 ≅ 1 MeVxcm 2 xmg -1 in the mentioned experiment conditions. 7 refs.; 3 figs

  7. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Luan; Tao, Franklin, E-mail: franklin.tao.2011@gmail.com [Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045 (United States)

    2016-06-15

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  8. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    International Nuclear Information System (INIS)

    Nguyen, Luan; Tao, Franklin

    2016-01-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  9. Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests

    Science.gov (United States)

    Wong, Wayne A.

    2003-01-01

    The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in

  10. Soft X-ray diffractometer for synchrotron radiation

    CERN Document Server

    Gau, T S; Liu, K Y; Chung, C H; Chen, C K; Lai, S C; Shu, C H; Huang, Y S; Chao, C H; Lee, Y R; Chen, C T; Chang, S L

    2001-01-01

    An ultra-high vacuum soft X-ray diffractometer has been constructed and commissioned at the Synchrotron Radiation Research Center (SRRC) to investigate materials structures in mesoscale. The diffractometer, housed in a UHV tank, consists of a 6-circle goniometer, together with the systems for beam-collimation, signal detection, vacuum, and control panels. The kappa-phi (cursive,open) Greek-psi goniostat is adopted for the sample orientation. Crystal samples can be rotated along a given reciprocal lattice vector by using psi scan. Two orthogonal axes, gamma (or 2 theta) and delta, are used to move the detector. The detector is a semiconductor pin diode, which can be used in UHV ambient. This 6-circle goniometer allows for sample scanning of a wide range in the momentum space. The motors used for goniometer rotation and slit selection are UHV compatible. The UHV tank is placed on an XYZ table capable of positioning the center of the goniometer onto the incident beam. Test experiments have been carried on the 1-...

  11. An ultra-high-vacuum multiple grating chamber and scan drive with improved grating change

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Holly, D.J.; Middleton, F.H.; Wallace, D.J.; Wisconsin Univ., Stoughton, WI; Wisconsin Univ., Stoughton, WI

    1989-01-01

    We describe a new grating chamber and scan drive which has been designed, built, and tested by Physical Sciences Laboratory of the University of Wisconsin for the new high flux, high-resolution spectroscopy branch line of the TOK hybrid wiggler/undulator on the NSLS VUV ring. The chamber will contain spherical gratings to be used in the Spherical Grating Monochromator (SGM) configuration introduced by Chen and Sette. The grating chamber houses five 180 mm x 35 mm x 30 mm gratings capable of scanning a range of 12 degree (-14 degree to +8 degree with respect to the incoming beam direction) for VUV and soft X-ray diffraction. The gratings can be switched and precisely indexed while under ultra-high vacuum (UHV) at any scan angle and are mechanically isolated from the vacuum chamber to prevent inaccuracies due to chamber distortions. The gratings can separately be adjusted for height, yaw, pitch, and roll, with the latter three performed while in vacuo. The scan drive provides a resolution of 0.03 arc sec with linearity over the 12 degree range of ∼1.5 arc sec and absolute reproducibility of 1 arc sec. 5 refs., 5 figs

  12. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-04-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternativeclean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended withgasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewableresources and the product has low emission which means environmental friendly. Ethanol can beproduced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentationbatch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivityand cell growth can be overcome by taking the product continuously from the fermentor. Theprocess can be done by using a vacuum fermentation. The objective of this research is toinvestigate the effect of pressure and glucose concentration in ethanol fermentation. The researchwas conducted in laboratory scale and batch process. Equipment consists of fermentor withvacuum system. The observed responses were dried cells of yeast, concentration of glucose, andconcentration of ethanol. Observations were made every 4 hours during a day of experiment. Theresults show that the formation of ethanol has a growth-associated product characteristic undervacuum operation. Vacuum condition can increase the cell formation productivity and the ethanolformation, as it is compared with fermentation under atmospheric condition. The maximum cellsproductivity and ethanol formation in batch operation under vacuum condition was reached at166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivityand the yield of ethanol.

  13. Vacuum Technology

    Energy Technology Data Exchange (ETDEWEB)

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  14. Infrared spectroscopy of model electrochemical interfaces in ultrahigh vacuum: some implications for ionic and chemisorbate solvation at electrode surfaces

    Science.gov (United States)

    Villegas, Ignacio; Kizhakevariam, Naushad; Weaver, Michael J.

    1995-07-01

    The utility of infrared reflection-absorption spectroscopy (IRAS) for examining structure and bonding for model electrochemical interfaces in ultrahigh vacuum (UHV) is illustrated, focusing specifically on the solvation of cations and chemisorbed carbon monoxide on Pt(111). These systems were chosen partly in view of the availability of IRAS data (albeit limited to chemisorbate vibrations) for the corresponding in-situ metal-solution interfaces, enabling direct spectral comparisons to be made with the "UHV electrochemical model" systems. Kelvin probe measurements of the metal-UHV surface potential changes (ΔΦ) attending alterations in the interfacial composition are also described: these provide the required link to the in-situ electrode potentials as well as yielding additional insight into surface solvation. Variations in the negative electronic charge density and, correspondingly, in the cation surface concentration (thereby mimicking charge-induced alterations in the electrode potential below the potential of zero charge) are achieved by potassium atom dosage onto Pt(111). Of the solvents selected for discussion here — deuterated water, methanol, and acetonitrile — the first two exhibit readily detectable vibrational bands which provide information on the ionic solvation structure. Progressively dosing these solvents onto Pt(111) in the presence of low potassium coverages yields marked alterations in the solvent vibrational bands which can be understood in terms of sequential cation solvation. Comparison between these spectra for methanol with analogous data for sequential methanol solvation of gas-phase alkali cations enables the influence of the interfacial environment to be assessed. The effects of solvating chemisorbed CO are illustrated for acetonitrile; the markedly larger shifts in CO frequencies and binding sites for dilute CO adlayers can be accounted for in terms of short-range coadsorbate interactions in addition to longer-range Stark effects

  15. AFM of metallic nano-particles and nano-structures in heavily irradiated NaCl

    NARCIS (Netherlands)

    Gaynutdinov, R; Vainshtein, DI; Hak, SJ; Tolstikhina, A; Den Hartog, HW

    2003-01-01

    AFM investigations are reported for heavily, electron irradiated NaCl crystals in ultra high vacuum (UHV) in the non-contact mode-with an UHV AFM/STM Omicron system. To avoid chemical reactions between the radiolytic Na and oxygen and water, the irradiated samples were cleaved and prepared for the

  16. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.

    Science.gov (United States)

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J

    2015-09-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.

  17. The measurement of vacuum at high voltage terminal of the FOTIA facility at BARC

    International Nuclear Information System (INIS)

    Kansara, M.J.; Sapna, P.; Subrahmanyam, N.B.V.; Bhatt, J.P.; Gupta, S.K.; Singh, P.

    2003-01-01

    Full text: In FOTIA, the ion beams accelerated by the low energy tube are injected into the high-energy accelerating tube using the 180 deg folding magnet. In order to have maximum transmission through the magnet chamber the vacuum in this section should be in the range of 10 -8 Torr. The chamber is very narrow (14 mm x 24 mm) and offers low conductance to the vacuum system. For maintaining the required UHV inside this chamber and associated beam lines inside the high voltage terminal at 6 MV, a sputter ion pump (120 litres/sec) is used. However, the control of the ion pump and measurement of the vacuum in the chamber has to be done from the control consol located at ground potential. This has been accomplished through a fibre optic data telemetry system, which offers electrical isolation of 6 MV. This fibre optic system is integrated to the main control system of the FOTIA. For controlling and monitoring the ion pump DOUT and ADC modules of the CAMAC system are used to provide interfacing signals to the fibre optic system. For the measurement of the vacuum, the gauge output provided by the ion pump is converted to a suitable light signal (1 kHz to 10 kHz) and is transmitted to the fibre optic link box (located at ground). At ground level this light signal is converted back to a voltage signal and transmitted to ADC module of the CAMAC system. This voltage signal is calibrated against the vacuum measured in the terminal, which is available in the control room via computer connected to the CAMAC system. In this paper, details of the above system will be presented

  18. X-ray in-situ study of copper electrodeposition on UHV prepared GaAs(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gruender, Yvonne

    2008-06-02

    For this work a unique setup for in-situ electrochemical studies was employed and improved. This setup permits UHV preparation of the GaAs(001) surface with a defined surface termination (arsenic-rich or gallium-rich) and its characterization by SXRD in UHV, under ambient pressure in inert gas and in electrolyte under potential control without passing through air. The GaAs(001) surfaces were capped by amorphous arsenic. This permitted to ship them through ambient air. Afterwards smooth well defined GaAs(001) surfaces could be recovered by thermal annealing in UHV. A first investigation of the arsenic capped sample was done by atomic force microscopy (AFM) and Surface X-Ray Diffraction (SXRD). The non bulk like termination of the arsenic buried GaAs(001) surface was revealed. For the electrochemical metal deposition, arsenic terminated (2 x 4) reconstructed and gallium terminated (4 x 2) reconstructed GaAs(001) surfaces were employed. These surfaces were characterized by STM, LEED and a first time by SXRD. The surfaces are smooth, however, a higher degree of disorder than for MBE prepared reconstructed GaAs(001) is found. After exposure of the sample to nitrogen, the surfaces were then again studied by SXRD. These two steps characterizing the bare GaAs(001) surfaces permitted us to get a better knowledge of the starting surface and its influence on the later electrodeposited copper. At ambient pressure both reconstructions are lifted, but the surface is not bulk-like terminated as can be deduced from the crystal truncation rods. Epitaxial copper clusters grow upon electrodeposition on the UHV prepared GaAs(001) surface. The copper lattice is rotated and inclined with respect to the GaAs substrate lattice, leading to eight symmetry equivalent domains. The influence of the surface termination as well as the nucleation potential on the structure of the electrodeposited copper were investigated. The tilt and rotation angles do not depend on the deposition potential but

  19. Photoelectron emission yield experiments on evolution of sub-gap states in amorphous In-Ga-Zn-O thin films with post deposition hydrogen treatment

    International Nuclear Information System (INIS)

    Hayashi, Kazushi; Hino, Aya; Tao, Hiroaki; Ochi, Mototaka; Goto, Hiroshi; Kugimiya, Toshihiro

    2015-01-01

    Total photoyield emission spectroscopy (TPYS) was applied to study the evolution of sub-gap states in hydrogen-treated amorphous In-Ga-Zn-O (a-IGZO) thin films. The a-IGZO thin films were subjected to hydrogen radicals and subsequently annealed in ultra-high vacuum (UHV) conditions. A clear onset of the electron emission was observed at around 4.3 eV from the hydrogen-treated a-IGZO thin films. After successive UHV annealing at 300 °C, the onset in the TPYS spectra was shifted to 4.15 eV, and the photoelectron emission from the sub-gap states was decreased as the annealing temperature was increased. In conjunction with the results of thermal desorption spectrometer, it was deduced that the hydrogen atoms incorporated in the a-IGZO thin films induced metastable sub-gap states at around 4.3 eV from vacuum level just after the hydrogenation. It was also suggested that the defect configuration was changed due to the higher temperature UHV annealing, and that the hydrogen atoms desorbed with the involvement of Zn atoms. These experiments produced direct evidence to show the formation of sub-gap states as a result of hydrogen incorporation into the a-IGZO thin films

  20. Photoelectron emission yield experiments on evolution of sub-gap states in amorphous In-Ga-Zn-O thin films with post deposition hydrogen treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kazushi, E-mail: hayashi.kazushi@kobelco.com; Hino, Aya; Tao, Hiroaki; Ochi, Mototaka; Goto, Hiroshi; Kugimiya, Toshihiro [Electronics Research Laboratory, Kobe Steel, Ltd., 1-5-5 Takatsuka-dai, Nishi-ku, Kobe 651-2271 (Japan)

    2015-09-14

    Total photoyield emission spectroscopy (TPYS) was applied to study the evolution of sub-gap states in hydrogen-treated amorphous In-Ga-Zn-O (a-IGZO) thin films. The a-IGZO thin films were subjected to hydrogen radicals and subsequently annealed in ultra-high vacuum (UHV) conditions. A clear onset of the electron emission was observed at around 4.3 eV from the hydrogen-treated a-IGZO thin films. After successive UHV annealing at 300 °C, the onset in the TPYS spectra was shifted to 4.15 eV, and the photoelectron emission from the sub-gap states was decreased as the annealing temperature was increased. In conjunction with the results of thermal desorption spectrometer, it was deduced that the hydrogen atoms incorporated in the a-IGZO thin films induced metastable sub-gap states at around 4.3 eV from vacuum level just after the hydrogenation. It was also suggested that the defect configuration was changed due to the higher temperature UHV annealing, and that the hydrogen atoms desorbed with the involvement of Zn atoms. These experiments produced direct evidence to show the formation of sub-gap states as a result of hydrogen incorporation into the a-IGZO thin films.

  1. Design and performance of an ultra-high vacuum spin-polarized scanning tunneling microscope operating at 30 mK and in a vector magnetic field.

    Science.gov (United States)

    von Allwörden, Henning; Eich, Andreas; Knol, Elze J; Hermenau, Jan; Sonntag, Andreas; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A

    2018-03-01

    We describe the design and performance of a scanning tunneling microscope (STM) that operates at a base temperature of 30 mK in a vector magnetic field. The cryogenics is based on an ultra-high vacuum (UHV) top-loading wet dilution refrigerator that contains a vector magnet allowing for fields up to 9 T perpendicular and 4 T parallel to the sample. The STM is placed in a multi-chamber UHV system, which allows in situ preparation and exchange of samples and tips. The entire system rests on a 150-ton concrete block suspended by pneumatic isolators, which is housed in an acoustically isolated and electromagnetically shielded laboratory optimized for extremely low noise scanning probe measurements. We demonstrate the overall performance by illustrating atomic resolution and quasiparticle interference imaging and detail the vibrational noise of both the laboratory and microscope. We also determine the electron temperature via measurement of the superconducting gap of Re(0001) and illustrate magnetic field-dependent measurements of the spin excitations of individual Fe atoms on Pt(111). Finally, we demonstrate spin resolution by imaging the magnetic structure of the Fe double layer on W(110).

  2. Design and performance of an ultra-high vacuum spin-polarized scanning tunneling microscope operating at 30 mK and in a vector magnetic field

    Science.gov (United States)

    von Allwörden, Henning; Eich, Andreas; Knol, Elze J.; Hermenau, Jan; Sonntag, Andreas; Gerritsen, Jan W.; Wegner, Daniel; Khajetoorians, Alexander A.

    2018-03-01

    We describe the design and performance of a scanning tunneling microscope (STM) that operates at a base temperature of 30 mK in a vector magnetic field. The cryogenics is based on an ultra-high vacuum (UHV) top-loading wet dilution refrigerator that contains a vector magnet allowing for fields up to 9 T perpendicular and 4 T parallel to the sample. The STM is placed in a multi-chamber UHV system, which allows in situ preparation and exchange of samples and tips. The entire system rests on a 150-ton concrete block suspended by pneumatic isolators, which is housed in an acoustically isolated and electromagnetically shielded laboratory optimized for extremely low noise scanning probe measurements. We demonstrate the overall performance by illustrating atomic resolution and quasiparticle interference imaging and detail the vibrational noise of both the laboratory and microscope. We also determine the electron temperature via measurement of the superconducting gap of Re(0001) and illustrate magnetic field-dependent measurements of the spin excitations of individual Fe atoms on Pt(111). Finally, we demonstrate spin resolution by imaging the magnetic structure of the Fe double layer on W(110).

  3. Evaluation of supercapacitors for space applications under thermal vacuum conditions

    Science.gov (United States)

    Chin, Keith C.; Green, Nelson W.; Brandon, Erik J.

    2018-03-01

    Commercially available supercapacitor cells from three separate vendors were evaluated for use in a space environment using thermal vacuum (Tvac) testing. Standard commercial cells are not hermetically sealed, but feature crimp or double seam seals between the header and the can, which may not maintain an adequate seal under vacuum. Cells were placed in a small vacuum chamber, and cycled between three separate temperature set points. Charging and discharging of cells was executed following each temperature soak, to confirm there was no significant impact on performance. A final electrical performance check, visual inspection and mass check following testing were also performed, to confirm the integrity of the cells had not been compromised during exposure to thermal cycling under vacuum. All cells tested were found to survive this testing protocol and exhibited no significant impact on electrical performance.

  4. The preparation of Nb3Ge thin film superconductors in a UHV evaporation and sputter device

    International Nuclear Information System (INIS)

    Krevet, B.; Schauer, W.; Wuechner, F.

    1978-10-01

    Thin film techniques like evaporation or sputtering are remarkbly suitable to vary the metallurgical and physical properties of superconductors in a wide range. In the case of the A15-compound Nb 3 Ge only these preparation techniques allow us to produce a metastable pure phase in stoichiometric composition and to study its superconducting properties. The presen report describes two UHV-plants to produce superconducting films by multisource coevaporation and cosputtering. Of special importance are the constancy, monitoring and control of the evaporation rate, and the thermalization of the sputter components on the other hand. The experimental methods used are explained in detail and discussed together with the results of Nb 3 Ge films. With the preparation parameters suitably chosen both techniques allow to prepare reproducibly Nb 3 Ge films with 21 K transition temperature (onset); under optimized conditions Tc values up to 22.3 K have been reached. (orig.) [de

  5. AFM of metallic nano-particles and nano-structures in heavily irradiated NaCl

    OpenAIRE

    Gaynutdinov, R; Vainshtein, DI; Hak, SJ; Tolstikhina, A; Den Hartog, HW

    2003-01-01

    AFM investigations are reported for heavily, electron irradiated NaCl crystals in ultra high vacuum (UHV) in the non-contact mode-with an UHV AFM/STM Omicron system. To avoid chemical reactions between the radiolytic Na and oxygen and water, the irradiated samples were cleaved and prepared for the experiments in UHV At the surface of freshly cleaved samples, we have observed sodium nano-precipitates with shapes, which depend on the irradiation dose and the volume fraction of the radiolytic Na...

  6. Conditioning of the vacuum chamber of the Tokamak Novillo; Acondicionamiento de la camara de vacio del Tokamak Novillo

    Energy Technology Data Exchange (ETDEWEB)

    Valencia A, R; Lopez C, R; Melendez L, L; Chavez A, E; Colunga S, S; Gaytan G, E

    1992-03-15

    The obtained experimental results of the implementation of two techniques of present time for the conditioning of the internal wall of the chamber of discharges of the Tokamak Novillo are presented, which has been designed, built and put in operation in the Laboratory of Plasma Physics of the National Institute of Nuclear Research (ININ). These techniques are: the vacuum baking and the low energy pulsed discharges, which were applied after having reached an initial pressure of the order of 10{sup -7} Torr. with a system of turbomolecular pumping previous preparation of surfaces and vacuum seals. The analysis of residual gases was carried out with a mass spectrometer before and after conditioning. The obtained results show that the vacuum baking it was of great effectiveness to reduce the value of the initial pressure in short time, in more of a magnitude order and the low energy discharges reduced the oxygen at worthless levels with regard to the initial values. (Author)

  7. New model for colour kinetics of plum under infrared vacuum condition and microwave drying.

    Science.gov (United States)

    Chayjan, Reza Amiri; Alaei, Behnam

    2016-01-01

    Quality of dried foods is affected by the drying method and physiochemical changes in tissue. The drying method affects properties such as colour. The colour of processed food is one of the most important quality indices and plays a determinant role in consumer acceptability of food materials and the processing method. The colour of food materials can be used as an indirect factor to determine changes in quality, since it is simpler and faster than chemical methods. The study focused on the kinetics of colour changes of plum slices, under infrared vacuum and microwave conditions. Drying the samples was implemented at the absolute pressures of 20 and 60 kPa, drying temperatures of 50 and 60°C and microwave power of 90, 270, 450 and 630 W. Colour changes were quantified by the tri-stimulus L* (whiteness/darkness), a* (redness/greenness) and b* (yellowness/blueness) model, which is an international standard for color measurement developed by the Commission Internationale d'Eclairage (CIE). These values were also used to calculate total colour change (∆E), chroma, hue angle, and browning index (BI). A new model was used for mathematical modelling of colour change kinetics. The drying process changed the colour parameters of L*, a*, and b*, causing a colour shift toward the darker region. The values of L* and hue angle decreased, whereas the values of a*, b*, ∆E, chroma and browning index increased during exposure to infrared vacuum conditions and microwave drying. Comparing the results obtained using the new model with two conventional models of zero-order and first-order kinetics indicated that the new model presented more compatibility with the data of colour kinetics for all colour parameters and drying conditions. All kinetic changes in colour parameters can be explained by the new model presented in this study. The hybrid drying system included infrared vacuum conditions and microwave power for initial slow drying of plum slices and provided the desired

  8. Explosion bonding of dissimilar materials for fabricating APS front end components: Analysis of metallurgical and mechanical properties and UHV applications

    International Nuclear Information System (INIS)

    Li, Yuheng; Shu, Deming; Kuzay, T.M.

    1994-01-01

    The front end beamline section contains photon shutters and fixed masks. These components are made of OFHC copper and GlidCOP AL-15. Stainless steels (304 or 316) are also used for connecting photon shutters and fixed masks to other components that operate in the ultrahigh vacuum system. All these dissimilar materials need to be joined together. However, bonding these dissimilar materials is very difficult because of their different mechanical and thermal properties and incompatible metallurgical properties. Explosion bonding is a bonding method in which the controlled energy of a detonating explosive is used to create a metallurgical bond between two or more similar or dissimilar materials. No intermediate filler metal, for example, a brazing compound or soldering alloy, is needed to promote bonding, and no external heat need be applied. A study of the metallurgical and mechanical properties and YGV applications of GlidCop AL-15, OFHC copper, and 304 stainless steel explosion-bonded joints has been done. This report contains five parts: an ultrasonic examination of explosion-bonded joints and a standard setup; mechanical-property and thermal-cycle tests of GlidCop AL-15/304 stainless steel explosion-bonded joints; leak tests of a GlidCop AL-15/304 stainless steel explosion-bonded interfaces for UHV application; metallurgical examination of explosion-bonded interfaces and failure analysis, and discussion and conclusion

  9. The realm of the vacuum

    International Nuclear Information System (INIS)

    Buchholz, D.; Wanzenberg, R.

    1992-01-01

    The spacelike asymptotic structure of physical states in local quantum theory is analysed. It is shown that this structure can be described in terms of a vacuum state if the theory satisfies a condition of timelike asymptotic abelianess. Theories which violate this condition can have an involved asymptotic vacuum structure as is illustrated by a simple example. (orig.)

  10. Interwell coupling effect in Si/SiGe quantum wells grown by ultra high vacuum chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Loh Ter-Hoe

    2007-01-01

    Full Text Available AbstractSi/Si0.66Ge0.34coupled quantum well (CQW structures with different barrier thickness of 40, 4 and 2 nm were grown on Si substrates using an ultra high vacuum chemical vapor deposition (UHV-CVD system. The samples were characterized using high resolution x-ray diffraction (HRXRD, cross-sectional transmission electron microscopy (XTEM and photoluminescence (PL spectroscopy. Blue shift in PL peak energy due to interwell coupling was observed in the CQWs following increase in the Si barrier thickness. The Si/SiGe heterostructure growth process and theoretical band structure model was validated by comparing the energy of the no-phonon peak calculated by the 6 + 2-bandk·pmethod with experimental PL data. Close agreement between theoretical calculations and experimental data was obtained.

  11. Controlled planar interface synthesis by ultrahigh vacuum diffusion bonding/deposition

    International Nuclear Information System (INIS)

    Kim, M. J.; Carpenter, R. W.; Cox, M. J.; Xu, J.

    2000-01-01

    An ultrahigh vacuum (UHV) diffusion bonding/deposition instrument was designed and constructed, which can produce homophase and heterophase planar interfaces from a wide array of materials. The interfaces are synthesized in situ by diffusion bonding of two substrates with or without various interfacial layers, at temperatures up to about 1500 degree sign C. Substrate surfaces can be heat treated, ion-beam sputter cleaned, and chemically characterized in situ by Auger electron spectroscopy prior to deposition and/or bonding. Bicrystals can be synthesized by bonding two single-crystal substrates at a specified orientation. Interfacial layers can be deposited by electron beam evaporation and/or sputter deposition in any layered or alloyed combination on the substrates before bonding. The instrument can accommodate cylindrical and/or wafer type specimens whose sizes are sufficient for fracture mechanical testing to measure interface bond strength. A variety of planar interfaces of metals, semiconductors, and ceramics were synthesized. Examples of bonded stainless steel/Ti/stainless steel, Si/Si, and sapphire/sapphire interfaces are presented. (c) 2000 Materials Research Society

  12. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    Science.gov (United States)

    Pathan, F. S.; Khan, Z.; Semwal, P.; Raval, D. C.; Joshi, K. S.; Thankey, P. L.; Dhanani, K. R.

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN2 panels during sniffer test and pressure drop test using helium gas.

  13. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pathan, F S; Khan, Z; Semwal, P; Raval, D C; Joshi, K S; Thankey, P L; Dhanani, K R [Institute for Plasma Research, Bhat, Gandhinagar - 382 428, Gujarat (India)], E-mail: firose@ipr.res.in

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN{sub 2} panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN{sub 2} panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN{sub 2} panels during sniffer test and pressure drop test using helium gas.

  14. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    International Nuclear Information System (INIS)

    Pathan, F S; Khan, Z; Semwal, P; Raval, D C; Joshi, K S; Thankey, P L; Dhanani, K R

    2008-01-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN 2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN 2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN 2 panels during sniffer test and pressure drop test using helium gas

  15. Magnons in ultrahigh vacuum deposited Fe/Ag multilayers

    International Nuclear Information System (INIS)

    El Kiadi, I.; Lassri, H.; Benkirane, K.; Bensassi, B.

    2007-01-01

    We have grown Fe/Ag multilayers with Ag buffer layer, by evaporation under UHV conditions on glass substrates. The magnetic properties of Fe/Ag multilayers are examined as a function of Fe layer thickness t Fe . The temperature dependence of the spontaneous magnetization M(T) is well described by a T 3/2 law in all multilayers. A spin-wave theory has been used to explain the temperature dependence of the magnetization and the approximate values for the bulk exchange interaction J b and surface exchange interaction J s for various Fe layer thicknesses have been obtained

  16. Modern vacuum physics

    CERN Document Server

    Chambers, Austin

    2005-01-01

    Modern Vacuum Physics presents the principles and practices of vacuum science and technology along with a number of applications in research and industrial production. The first half of the book builds a foundation in gases and vapors under rarefied conditions, The second half presents examples of the analysis of representative systems and describes some of the exciting developments in which vacuum plays an important role. The final chapter addresses practical matters, such as materials, components, and leak detection. Throughout the book, the author''s explanations are presented in terms of first principles and basic physics, augmented by illustrative worked examples and numerous figures.

  17. ACADEMIC TRAINING

    CERN Multimedia

    Françoise Benz

    2002-01-01

    8, 9, 10, 11, 12 April LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Ultra-high vacuum technology for accelerators by N. Hilleret, CERN-LHC(1-2) - C. Benvenuti, CERN-EST(3) P. Strubin, CERN-LHC (4-5) The lectures will start with a review of the basics of vacuum physics required to build Ultra High Vacuum (UHV) systems, such as static and dynamic outgassing. Before reviewing the various pumping and measurement devices, including the most modern one like Non Evaporable Getter (NEG) coatings, an overview of adequate materials to be used in UHV systems will be given, together with their treatment (e.g. cleaning procedures and bake out). Practical examples based on existing or future accelerators will be used to illustrate the topics. Finally, a short overview of modern vacuum controls and interlocks will be given.

  18. P3-approximation for gaseous media and vacuum

    International Nuclear Information System (INIS)

    Raevskaya, V.E.

    1986-01-01

    The problems connected with calculation of neutron field in a fuel assembly (FA) of a gas cooled reactor are discussed. The problem of P 3 -approximation applicability for the description of neutron fields in closed vacuum and gas volumes is considered. Under the assumption of the field azimuthal symmetry derived are the formulas for determination of the field in cylindrical vacuum layer of multizone FA as well as the solution for the cluster central zone, where the rods with vacuum between them are placed. Because of the finiteness of voids surrounded by medium it is possible to use the condition of neutron flux density continuity as the boundary conditions for the interface with vacuum. For representation of boundary conditions for rod surfaces and the cluster central zone with vacuum the addition theorems for the field in vacuum between the roads are derived. The formulas for mean neutron fluxes in vacuum cylindrical layer and in vacuum between rods are derived. The numerical calculations performed according to various programs confirmed the validity of the derived formulas

  19. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  20. Electrospray ionization deposition of BSA under vacuum conditions

    Science.gov (United States)

    Hecker, Dominic; Gloess, Daniel; Frach, Peter; Gerlach, Gerald

    2015-05-01

    Vacuum deposition techniques like thermal evaporation and CVD with their precise layer control and high layer purity often cannot be applied for the deposition of chemical or biological molecules. The molecules are usually decomposed by heat. To overcome this problem, the Electrospray ionization (ESI) process known from mass spectroscopy is employed to transfer molecules into vacuum and to deposit them on a substrate. In this work, a homemade ESI tool was used to deposit BSA (Bovine serum albumin) layers with high deposition rates. Solutions with different concentrations of BSA were prepared using a methanol:water (MeOH:H2O) mixture (1:1) as solvent. The influence of the substrate distance on the deposition rate and on the transmission current was analyzed. Furthermore, the layer thickness distribution and layer adhesion were investigated.

  1. Surface chemistry of tribochemical reactions explored in ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Lara-Romero, Javier; Maya-Yescas, Rafael; Rico-Cerda, Jose Luis; Rivera-Rojas, Jose Luis; Castillo, Fernando Chinas; Kaltchev, Matey; Tysoe, Wilfred T.

    2006-01-01

    The thermal decomposition of model extreme-pressure lubricant additives on clean iron was studied in ultrahigh vacuum conditions using molecular beam strategies. Methylene chloride and chloroform react to deposit a solid film consisting of FeCl 2 and carbon, and evolve only hydrogen into the gas phase. No gas-phase products and less carbon on the surface are detected in the case of carbon tetrachloride. Dimethyl and diethyl disulfide react on clean iron to deposit a saturated sulfur plus carbon layer at low temperatures (∼600 K) and an iron sulfide film onto a Fe + C underlayer at higher temperatures (∼950 K). Methane is the only gas-phase product when dimethyl disulfide reacts with iron. Ethylene and hydrogen are detected when diethyl disulfide is used

  2. Catalytic growth of ZnO nanostructures by r.f. magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Arroyo-Hernández María

    2011-01-01

    Full Text Available Abstract The catalytic effect of gold seed particles deposited on a substrate prior to zinc oxide (ZnO thin film growth by magnetron sputtering was investigated. For this purpose, selected ultra thin gold layers, with thicknesses close to the percolation threshold, are deposited by thermal evaporation in ultra high vacuum (UHV conditions and subsequently annealed to form gold nanodroplets. The ZnO structures are subsequently deposited by r.f. magnetron sputtering in a UHV chamber, and possible morphological differences between the ZnO grown on top of the substrate and on the gold are investigated. The results indicate a moderate catalytic effect for a deposited gold underlayer of 4 nm, quite close to the gold thin film percolation thickness.

  3. dc breakdown conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum

    Directory of Open Access Journals (Sweden)

    A. Descoeudres

    2009-03-01

    Full Text Available The rf accelerating structures of the Compact Linear Collider (CLIC require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of dc and rf breakdown, a dc breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultrahigh vacuum in a simple setup. Conditioning speeds and breakdown fields of several metals and alloys have been measured. The average breakdown field after conditioning ranges from 100  MV/m for Al to 850  MV/m for stainless steel, and is around 170  MV/m for Cu which is the present base-line material for CLIC structures. The results indicate clearly that the breakdown field is limited by the cathode. The presence of a thin cuprous oxide film at the surface of copper electrodes significantly increases the breakdown field. On the other hand, the conditioning speed of Mo is improved by removing oxides at the surface with a vacuum heat treatment, typically at 875°C for 2 hours. Surface finishing treatments of Cu samples only affect the very first breakdowns. More generally, surface treatments have an effect on the conditioning process itself, but not on the average breakdown field reached after the conditioning phase. In analogy to rf, the breakdown probability has been measured in dc with Cu and Mo electrodes. The dc data show similar behavior as rf as a function of the applied electric field.

  4. Oxidation and Reduction of Liquid SnPb (60/40) under Ambient and Vacuum Conditions

    DEFF Research Database (Denmark)

    Kuhmann, Jochen Friedrich; Maly, K.; Preuss, A.

    1998-01-01

    One of the most straightforward approaches to fluxless solder bonding is using vacuum conditions to prevent further oxidation and, where needed, to reduce solder oxides by the use of molecular hydrogen (H-2).(1-3) This study On oxidation and reduction of solder oxides on SnPb (60/40) is aimed...... to provide a better understanding for fluxless solder bonding applications under controlled atmospheric conditions; By means of scanning Auger spectroscopy it is shown, that growth of oxide films on metallic SnPb above the eutectic temperature can be significantly reduced by decreasing the O-2 partial...

  5. Shape Memory Alloy connectors for Ultra High Vacuum applications: a breakthrough for accelerator technologies

    CERN Document Server

    AUTHOR|(CDS)2091326; Garion, Cedric

    Beam-pipe coupling in particle accelerators is nowadays provided by metallic flanges that are tightly connected by several screws or heavy collars. Their installation and dismounting in radioactive areas contribute to the radiation doses received by the technical personnel. Owing to the increased proton-beam intensity and luminosity of the future High-Luminosity LHC (HL-LHC), radioactivity in some specific zones will be significantly higher than in the present LHC; the presence of the technical staff in these areas will be strictly controlled and minimized. Remote interventions are being considered, too. Shape Memory Alloys (SMAs) offer a unique possibility to generate tight connections and fast clamping/unclamping by remotely changing the temperature of the junction unit. In fact, SMAs exhibit unique strain and stress recovery capabilities which are related to reversible phase transition mechanisms, induced thermally or mechanically. In this PhD work, a novel Ultra-High Vacuum (UHV) coupling system based on ...

  6. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  7. [Ambulant treatment of wounds by vacuum sealing].

    Science.gov (United States)

    Ziegler, U E; Schmidt, K; Breithaupt, B; Menig, R; Debus, E S; Thiede, A

    2000-01-01

    The treatment of chronic wounds by vacuum sealing as an outpatient procedure is a new method of wound conditioning before closing the defect. The quality of life for the patient in his usual surrounding is maintained. Financial aspects also play a role in this treatment since costs for the health care system can be reduced. Various vacuum pumps, drainages and polymere foams are available and suitable for the outpatient treatment. The most important condition is to regularly check the vacuum. This can performed by the patient, the relatives or nursing staff. The main complication consists in loss of vacuum but technical and local or systemic complications can also appear. Individually applied vacuum dressings (polyvinyl foam, drainage tube and polymere foil) are practical. The ideal pump systems for the outpatient treatment are still not trial.

  8. Vacuum energy and Casimir force in the presence of a dimensional parameter in the boundary condition

    International Nuclear Information System (INIS)

    Lebedev, S.L.

    2001-01-01

    The Hamiltonian for a scalar field that satisfies the boundary condition -∂ n φ=(1/δ)φ must include a surface potential energy. The corresponding term in the Casimir energy E-tilde C proves to be a leading one when the dimension of the region is l ∼ δ. The energy E-tilde C does not involve arbitrariness associated with regularization and is an unambiguously determined function of the field mass m, the size l, and the penetration depth δ. The inclusion of the surface term is of importance for ensuring that the derivative -∂ E-tilde C /∂l is equal to the ll component of the vacuum energy-momentum tensor. The Casimir energy E-tilde C is related to its volume component E C by a Legendre transformation where the quantity conjugate to 1/δ is the product of the vacuum surface energy and δ. If δ is negative and if h-bar/mc> vertical bar δ vertical bar, there exists a critical value l=l c (δ) above which (l>l c ) the vacuum is unstable; if a self-interaction of the form φ 4 is taken into account, this will lead to a phase transition accompanied by the formation of a condensate of the field φ. If δ=+0 or ∞ and if the dimensionalities are even, it is possible to construct a vacuum energy-momentum tensor (not only energy) that is finite over the entire space. Specially chosen counterterms leave unchanged the analytic dependence of the vacuum energy on the dimensionality of space and the character of the coordinate dependence of the energy density for x>h-bar/mc

  9. Evacuation of the NET vacuum chamber

    International Nuclear Information System (INIS)

    Muller, R.A.

    1987-01-01

    Parametric calculations of the evacuation process were carried out for the NET-vacuum chamber involving two blanket designs. The results show that with an acceptable vacuum pumping capacity the required start vacuum conditions can be realized within reasonable time. The two blanket concepts do not differ remarkably in their evacuation behaviour. The remaining large pressure differences between the different locations of the vacuum chamber can be reduced if approximately 30% of the total gas flow is extracted from the heads of the blanket replacement ports

  10. Evacuation of the NET vacuum chamber

    International Nuclear Information System (INIS)

    Mueller, R.

    1986-01-01

    Parametric calculations of the evacuation process were carried out for the NET-vacuum chamber involving two blanket designs. The results show that with an acceptable vacuum pumping capacity the required start vacuum conditions can be realized within reasonable time. The two blanket concepts do not differ remarkably in their evacuation behaviour. The remaining large pressure differences between the different locations of the vacuum chamber can be reduced if approximately 30% of the total gas flow is extracted from the heads of the blanket replacement ports. (author)

  11. Modeling of complex gas distribution systems operating under any vacuum conditions: Simulations of the ITER divertor pumping system

    International Nuclear Information System (INIS)

    Vasileiadis, N.; Tatsios, G.; Misdanitis, S.; Valougeorgis, D.

    2016-01-01

    Highlights: • An integrated s/w for modeling complex rarefied gas distribution systems is presented. • Analysis is based on kinetic theory of gases. • Code effectiveness is demonstrated by simulating the ITER divertor pumping system. • The present s/w has the potential to support design work in large vacuum systems. - Abstract: An integrated software tool for modeling and simulation of complex gas distribution systems operating under any vacuum conditions is presented and validated. The algorithm structure includes (a) the input geometrical and operational data of the network, (b) the definition of the fundamental set of network loops and pseudoloops, (c) the formulation and solution of the mass and energy conservation equations, (d) the kinetic data base of the flow rates for channels of any length in the whole range of the Knudsen number, supporting, in an explicit manner, the solution of the conservation equations and (e) the network output data (mainly node pressures and channel flow rates/conductance). The code validity is benchmarked under rough vacuum conditions by comparison with hydrodynamic solutions in the slip regime. Then, its feasibility, effectiveness and potential are demonstrated by simulating the ITER torus vacuum system with the six direct pumps based on the 2012 design of the ITER divertor. Detailed results of the flow patterns and paths in the cassettes, in the gaps between the cassettes and along the divertor ring, as well as of the total throughput for various pumping scenarios and dome pressures are provided. A comparison with previous results available in the literature is included.

  12. Conditioning of SST-1 Tokamak Vacuum Vessel by Baking and Glow Discharge Cleaning

    International Nuclear Information System (INIS)

    Khan, Ziauddin; George, Siju; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Pathan, Firozkhan S.; Paravastu, Yuvakiran; Raval, Dilip C.; Babu, Gattu Ramesh; Khan, Mohammed Shoaib; Pradhan, Subrata

    2016-01-01

    Highlights: • SST-1 Tokamak was successfully commissioned. • Vacuum vessel was pumped down to 4.5 × 10"–"8 mbar after baking and continuous GDC. • GDC reduced the water vapour by additional 57% while oxygen was reduced by 50%. • Under this condition, an initial plasma breakdown with current of 40 kA for 75 ms was achieved. - Abstract: Steady-state Superconducting Tokamak (SST-1) vacuum vessel (VV) adopts moderate baking at 110 ± 10 °C and the limiters baking at 250 ± 10 °C for ∼ 200 h followed by glow discharge cleaning in hydrogen (GDC-H) with 0.15 A/m"2 current density towards its conditioning prior to plasma discharge experiment. The baking in SST-1 reduces the water (H_2O) vapor by 95% and oxygen (O_2) by 60% whereas the GDC reduces the water vapor by an additional 57% and oxygen by another 50% as measured with residual gas analyzer. The minimum breakdown voltage for H-GDC in SST-1 tokamak was experimentally observed to 300 V at 8 mbar cm. As a result of these adherences, SST-1 VV achieves an ultimate of 4.5 × 10"−"8 mbar with two turbo-molecular pumps with effective pumping speed of 3250 l/s. In the last campaign, SST-1 has achieved successful plasma breakdown, impurity burn through and a plasma current of ∼ 40 kA for 75 ms.

  13. Conditioning of SST-1 Tokamak Vacuum Vessel by Baking and Glow Discharge Cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Ziauddin, E-mail: ziauddin@ipr.res.in; George, Siju; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Pathan, Firozkhan S.; Paravastu, Yuvakiran; Raval, Dilip C.; Babu, Gattu Ramesh; Khan, Mohammed Shoaib; Pradhan, Subrata

    2016-02-15

    Highlights: • SST-1 Tokamak was successfully commissioned. • Vacuum vessel was pumped down to 4.5 × 10{sup –8} mbar after baking and continuous GDC. • GDC reduced the water vapour by additional 57% while oxygen was reduced by 50%. • Under this condition, an initial plasma breakdown with current of 40 kA for 75 ms was achieved. - Abstract: Steady-state Superconducting Tokamak (SST-1) vacuum vessel (VV) adopts moderate baking at 110 ± 10 °C and the limiters baking at 250 ± 10 °C for ∼ 200 h followed by glow discharge cleaning in hydrogen (GDC-H) with 0.15 A/m{sup 2} current density towards its conditioning prior to plasma discharge experiment. The baking in SST-1 reduces the water (H{sub 2}O) vapor by 95% and oxygen (O{sub 2}) by 60% whereas the GDC reduces the water vapor by an additional 57% and oxygen by another 50% as measured with residual gas analyzer. The minimum breakdown voltage for H-GDC in SST-1 tokamak was experimentally observed to 300 V at 8 mbar cm. As a result of these adherences, SST-1 VV achieves an ultimate of 4.5 × 10{sup −8} mbar with two turbo-molecular pumps with effective pumping speed of 3250 l/s. In the last campaign, SST-1 has achieved successful plasma breakdown, impurity burn through and a plasma current of ∼ 40 kA for 75 ms.

  14. Focused ion-beam line profiles: A study of some factors affecting beam broadening

    International Nuclear Information System (INIS)

    Templeton, I.M.; Champion, H.G.

    1995-01-01

    The current--density profile of a focused ion beam (FIB) has a central peak accompanied by broader ''wings'' that, while unimportant in lithographic applications, can lead to unwanted effects during an implantation operation. The origin of the wings, and hence the best way to minimize them, is not clear and needs further study. We have measured the line profiles of several of the ions available in our FIB machine as a function of a number of variables, under ultrahigh vacuum (UHV) conditions. No effects are observed from changes in emission current or deliberate defocusing of the objective lens. There are some changes with beam aperture and/or current, but the biggest differences seem to be associated with a change of source type and hence, possibly, with a change in the source/extractor configuration or in the alloy and the emission process. The wing amplitudes are appreciably lower than many previously observed, and their profiles, at least for the lighter ions studied (Be ++ , Be + , and B + ), are Gaussian rather than exponential. It seems possible that our UHV conditions may have eliminated a scattering mechanism responsible for the larger, exponential wings previously observed. The corresponding beam and rectangle-edge profiles have been calculated. copyright 1995 American Vacuum Society

  15. UHV-cluster-tool for fabrication of thin film structures and transport- and noise properties of YBa2Cu3O7-δ grain boundary-SQUIDs

    International Nuclear Information System (INIS)

    Back, Christoph

    2007-01-01

    A UHV-thin-film-deposition system for the fabrication of thin film structures of metals and oxides was designed and optimized. For oxide materials, Pulsed Laser Deposition (PLD) was implemented. Epitaxial thin film growth can be analyzed during the PLD process by high-pressure RHEED (Reflection High-Energy Electron Diffraction). Furthermore layer-by-layer growth can be triggered by Pulsed Laser Intervall Deposition (PLiD). Heteroepitaxial multilayers can be fabricated automatically. Metal thin films can be grown by planar magnetron sputtering and by electron beam evaporation. Furthermore the system contains an rf-plasma source for surface cleaning and Ion Beam Etching (IBE). The three different deposition techniques are located in separate vacuum chambers which are connected by a central handling chamber allowing to combine all these processes in-situ. Furthermore superconducting quantum interference devices (SQUIDs) were fabricated out of epitaxially grown high-temperature superconducting YBa 2 Cu 3 O 7 -films on bicrystals. The SQUIDs were structured using a combined process of ion milling and chemical wet etching. By this combined etching process, edge signals that appear during imaging of flux quanta by low temperature scanning microscopy can be avoided. The transport- and noise properties of the SQUIDs were investigated. (orig.)

  16. Effects of vacuum heat treatment on the photoelectric work function and surface morphology of multilayered silver–metal electrical contacts

    International Nuclear Information System (INIS)

    Akbi, Mohamed; Bouchou, Aïssa; Zouache, Noureddine

    2014-01-01

    Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermodynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver–metal (Ag–Me) electrical contacts (Ag–Ni (60/40) and Ag–W (50/50)), before and after surface heat treatments at 513 K–873 K, under UHV conditions (residual gas pressure of 1.4 × 10 −7 mbar). The electron work function (EWF) of silver alloyed contacts was measured photoelectrically, using both Fowler's method of isothermal curves and linearized Fowler plots. An interesting fact brought to light by this investigation is that after vacuum heat treatments, the diffusion and/or evaporation phenomena, affecting the atomic composition of the alloy surface, somehow confine the EWF of the silver–nickel alloy, Φ(Ag–Ni), determined at room temperature in interval]Φ(Ag), Φ(Ni) [=] 4.26 eV, 4.51 eV[. Surface analysis of two specimens before and after heating showed a significant increase of tungsten atomic proportion on the contact surface for Ag–W contacts after VH treatments. A multilayer model, taking into account the strong intergranular and volume segregation gives a good interpretation of the obtained results.

  17. Vacuum brazing of OFE Copper-316L stainless steel transition joints without electroplating stainless steel part for application in particle accelerators

    International Nuclear Information System (INIS)

    Yadav, D.P.; Kumar, Abhay; Ganesh, P.

    2015-01-01

    Brazed transition Joints between OFE copper and type 316L austenitic stainless steel (SS) find extensive applications in particle accelerators all over the world. In contrast to excellent wettability of OFE copper, austenitic SS is well known for its poor wettability for BVAg-8 ( 72 Ag/ 28 Cu; melting point: 1052 K) braze filler metal (BFM). High surface wettability is believed to be necessary to drag molten BFM into the capillary gap between mating metallic surfaces. Therefore, the widely accepted practice for vacuum brazing of such transition joints involves electroplating of SS parts with nickel or copper to enhance its wettability. A recently concluded in-house study, involving Nb to Ni-plated 316L SS brazing, has demonstrated that satisfactory ingress of BFM into a capillary joint between two dissimilar metals is possible if the poor wettability of one of the mating surfaces is compensated by good wettability of its counterpart. In the light of these observations, the present study was undertaken to explicitly evaluate the requirement of electroplating the SS part for establishment of sound OFE copper-316L SS brazed joints suitable for service in ultra-high vacuum (UHV) of particle accelerators

  18. Development of a vacuum superinsulation panel

    Energy Technology Data Exchange (ETDEWEB)

    Timm, H; Seefeldt, D; Nitze, C

    1983-05-01

    After completion of the investigations the vacuum-insulated panel is available as prototype. The aim of the investigations was to optimize and to finalize the vacuum superinsulation system with regard to a pressure-resistant, temperature-resistant thermal insulation of high efficiency. In this connection, particularly investigations with regard to vacuum-tight sealing, compression and evacuation of powder filling as well as special material investigations were performed. The application-specific utilization of the vacuum-insulated panel and the adjustment to special operational conditions can now be started. Application possibilities are at present seen in coverings or linings with high temperature and/or pressure requirements.

  19. Troubleshooting vacuum systems steam turbine surface condensers and refinery vacuum towers

    CERN Document Server

    Lieberman, Norman P

    2012-01-01

    Vacuum systems are in wide spread use in the petrochemical plants, petroleum refineries and power generation plants. The existing texts on this subject are theoretical in nature and only deal with how the equipment functions when in good mechanical conditions, from the viewpoint of the equipment vendor.  In this much-anticipated volume, one of the most well-respected and prolific process engineers in the world takes on troubleshooting vacuum systems, and especially steam ejectors, an extremely complex and difficult subject that greatly effects the profitability of the majority of the world'

  20. Infrared thermal annealing device

    International Nuclear Information System (INIS)

    Gladys, M.J.; Clarke, I.; O'Connor, D.J.

    2003-01-01

    A device for annealing samples within an ultrahigh vacuum (UHV) scanning tunneling microscopy system was designed, constructed, and tested. The device is based on illuminating the sample with infrared radiation from outside the UHV chamber with a tungsten projector bulb. The apparatus uses an elliptical mirror to focus the beam through a sapphire viewport for low absorption. Experiments were conducted on clean Pd(100) and annealing temperatures in excess of 1000 K were easily reached

  1. Comparison of vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification systems.

    Science.gov (United States)

    Han, Young Keun; Miller, Kevin M

    2009-08-01

    To compare vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification machines. Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA. The vacuum rise time under normal and enhanced aspiration modes, vacuum limit accuracy, and occlusion break surge of the Infiniti Vision System, Stellaris Vision Enhancement System, and WhiteStar Signature Phacoemulsification System were tested. Vacuum rise time and limit accuracy were measured at limit settings of 400 mm Hg and 600 mm Hg. Surge area was recorded at vacuum limit settings of 200 mm Hg, 300 mm Hg, 400 mm Hg, and 500 mm Hg. The Infiniti had the fastest vacuum rise times under normal and enhanced aspiration modes. At 4 seconds, the vacuum limit accuracy was greatest with the Infiniti at the 400 mm Hg limit and the Signature at the 600 mm Hg limit. The Stellaris did not reach either vacuum target. The Infiniti performed better than the other 2 machines during testing of occlusion break surge at all vacuum limit settings above 200 mm Hg. Under controlled laboratory test conditions, the Infiniti had the fastest vacuum rise time, greatest vacuum limit accuracy at 400 mm Hg, and least occlusion break surge. These results can be explained by the lower compliance of the Infiniti system.

  2. Visualization of hydrogen gas evolution during deformation and fracture in SCM 440 steel with different tempering conditions

    International Nuclear Information System (INIS)

    Horikawa, Keitaro; Ando, Nobuaki; Kobayashi, Hidetoshi; Urushihara, Wataru

    2012-01-01

    Highlights: ► We visualize emission sites of hydrogen atoms on the microstructures during deformation. ► Hydrogen atoms are emitted from slip lines and inclusions when deformed. ► We show the sequence of hydrogen gas evolution during deformation. ► Hydrogen evolution amount will increase if the steels with high strength are tested. - Abstract: In the present study, the hydrogen gas evolution behavior was investigated in SCM 440 steel by using a hydrogen microprint technique (HMT) and a testing machine equipped with a quadrupole mass spectrometer (QMS) in a ultrahigh vacuum (UHV) atmosphere. SCM 440 steels prepared by varying the tempering temperature over the range 200–700 °C were evaluated in order to elucidate the relationship between the hydrogen gas evolution and the tempered microstructures in the deformation. Cathodic hydrogen charging was carried out with a current density of 100 A/m 2 for 1 h at room temperature. For comparison, a tensile specimen was prepared without hydrogen charging. The HMT showed that silver particles, which are indicative of the hydrogen emission sites, were present mainly in the matrix as well as on the slip lines after the deformation. It is believed that the silver particles on the slip lines represent the effect of hydrogen transportation due to mobile dislocations. In addition, accumulation of silver particles around non-metallic inclusions such as Al 2 O 3 was also identified. This tendency was observed for different tempering conditions. From the relationship between the stress–strain curves and the hydrogen evolution, determined by using QMS under a UHV atmosphere, it was found that the hydrogen gas evolution behavior varied with the deformation stage.

  3. Spectroscopic study of cystine adsorption on pyrite surface: From vacuum to solution conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arenillas, M.; Mateo-Marti, E., E-mail: mateome@cab.inta-csic.es

    2015-09-08

    Highlights: • Successful adsorption of cystine on pyrite surface under several conditions. • Detailed XPS spectroscopic characterization of cystine adsorption on pyrite surface. • Spectroscopy evidence, oxidation and anoxic conditions adjust molecular adsorption. • Molecular chemistry on pyrite is driven depending on the surrounding conditions. • The cystine/pyrite(100) model is in good agreement with Wächtershäuser’s theory. - Abstract: We characterized the adsorption of cystine molecules on pyrite surface via X-ray photoelectron spectroscopy. Anoxic conditions were simulated under ultra-high-vacuum conditions. In contrast, to simulate oxidation conditions, the molecules were adsorbed on pyrite surface from solution. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Molecular adsorption under anoxic conditions was observed to be more favorable, concentrating a large number of molecules on the surface and two different chemical species. In contrast, the presence of oxygen induced an autocatalytic oxidation process on the pyrite surface, which facilitated water binding on pyrite surface and partially blocked molecular adsorption. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the system explored in this study holds interesting implications for supporting catalyzed prebiotic chemistry reactions.

  4. Spectroscopic study of cystine adsorption on pyrite surface: From vacuum to solution conditions

    International Nuclear Information System (INIS)

    Sanchez-Arenillas, M.; Mateo-Marti, E.

    2015-01-01

    Highlights: • Successful adsorption of cystine on pyrite surface under several conditions. • Detailed XPS spectroscopic characterization of cystine adsorption on pyrite surface. • Spectroscopy evidence, oxidation and anoxic conditions adjust molecular adsorption. • Molecular chemistry on pyrite is driven depending on the surrounding conditions. • The cystine/pyrite(100) model is in good agreement with Wächtershäuser’s theory. - Abstract: We characterized the adsorption of cystine molecules on pyrite surface via X-ray photoelectron spectroscopy. Anoxic conditions were simulated under ultra-high-vacuum conditions. In contrast, to simulate oxidation conditions, the molecules were adsorbed on pyrite surface from solution. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Molecular adsorption under anoxic conditions was observed to be more favorable, concentrating a large number of molecules on the surface and two different chemical species. In contrast, the presence of oxygen induced an autocatalytic oxidation process on the pyrite surface, which facilitated water binding on pyrite surface and partially blocked molecular adsorption. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the system explored in this study holds interesting implications for supporting catalyzed prebiotic chemistry reactions

  5. ITER diagnostic system: Vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.M., E-mail: Kaushal.Patel@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Drevon, J.M. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Encheva, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Kashchuk, Y. [Institution “PROJECT CENTER ITER”, 1, Akademika Kurchatova pl., Moscow (Russian Federation); Maquet, Ph. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France)

    2013-10-15

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10{sup −7} Pa, irrespective of plasma operation, and a leak rate of less than 10{sup −10} Pa m{sup 3} s{sup −1}. In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions

  6. ITER diagnostic system: Vacuum interface

    International Nuclear Information System (INIS)

    Patel, K.M.; Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L.; Drevon, J.M.; Encheva, A.; Kashchuk, Y.; Maquet, Ph.; Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J.

    2013-01-01

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10 −7 Pa, irrespective of plasma operation, and a leak rate of less than 10 −10 Pa m 3 s −1 . In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions will be described

  7. Comprehending the structure of a vacuum vessel and in-vessel components of fusion machines. 1. Comprehending the vacuum vessel structure

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Nakahira, Masataka

    2006-01-01

    The functions, conditions and structure of vacuum vessel using tokamak fusion machines are explained. The structural standard and code of vacuum vessel, process of vacuum vessel design, and design of ITER vacuum vessel are described. Production and maintenance of ultra high vacuum, confinement of radioactive materials, support of machines in vessel and electromagnetic force, radiation shield, plasma vertical stability, one-turn electric resistance, high temperature baking heat and remove of nuclear heat, reduce of troidal ripple, structural standard, features of safety of nuclear fusion machines, subjects of structural standard of fusion vacuum vessel, design flow of vacuum vessel, establishment of radial build, selections of materials, baking and cooling method, basic structure, structure of special parts, shield structure, and of support structure, and example of design of structure, ITER, are stated. (S.Y.)

  8. Relaxation of vacuum energy in q-theory

    Science.gov (United States)

    Klinkhamer, F. R.; Savelainen, M.; Volovik, G. E.

    2017-08-01

    The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially flat Friedmann-Robertson-Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach, the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological constant problem.

  9. Fast valve for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Oversluizen, T.

    1981-01-01

    A prototype fast closing, all metal, UHV-compatible valve has been built to protect the NSLS storage rings from sudden vacuum failures which may occur in the experimental beamlines. When triggered, an area of 10 x 140 mm is covered by a spring-driven, guillotine type blade, which forms a high impedance to the inrushing gas. This fast closure assures the protection of the ring vacuum from contamination before the slower UHV valve can be sealed off. Closing times on the order of 3 to 5 msec have been measured. The valve is triggered by a commercial solenoid, powered by a 16,800 μF capacitor bank at 100 volts. Because the valve is situated in a high radiation area, it is remotely resettable

  10. High quality single atomic layer deposition of hexagonal boron nitride on single crystalline Rh(111) four-inch wafers

    Energy Technology Data Exchange (ETDEWEB)

    Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klöckner, M.; Kälin, T.; Osterwalder, J.; Greber, T., E-mail: greber@physik.uzh.ch [Physik-Institut, Universität Zürich, CH-8057 Zürich (Switzerland); Weinl, M.; Gsell, S.; Schreck, M. [Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)

    2014-03-15

    The setup of an apparatus for chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) and its characterization on four-inch wafers in ultra high vacuum (UHV) environment is reported. It provides well-controlled preparation conditions, such as oxygen and argon plasma assisted cleaning and high temperature annealing. In situ characterization of a wafer is accomplished with target current spectroscopy. A piezo motor driven x-y stage allows measurements with a step size of 1 nm on the complete wafer. To benchmark the system performance, we investigated the growth of single layer h-BN on epitaxial Rh(111) thin films. A thorough analysis of the wafer was performed after cutting in atmosphere by low energy electron diffraction, scanning tunneling microscopy, and ultraviolet and X-ray photoelectron spectroscopies. The apparatus is located in a clean room environment and delivers high quality single layers of h-BN and thus grants access to large area UHV processed surfaces, which had been hitherto restricted to expensive, small area single crystal substrates. The facility is versatile enough for customization to other UHV-CVD processes, e.g., graphene on four-inch wafers.

  11. In Situ Analysis of the Tribochemical Films Formed by SiC Sliding Against Mo in Partial Pressures of SO2, O2, and H2S Gases

    National Research Council Canada - National Science Library

    Singer, I. L; Le Mogne, T; Donnet, C; Martin, J. M

    1996-01-01

    X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were used to identify gas reaction layers and tribochemical films formed during reciprocating sliding tests in an ultrahigh vacuum (UHV) tribometer...

  12. Preliminary studies for the LHCb vertex detector vacuum system

    CERN Document Server

    Doets, M; Van Bakel, N; Van den Brand, J F J; van den Brand, Jo

    2000-01-01

    We lay down some general considerations which will serve as a starting point for design studies of a realistic LHCb vertex detector vacuum system. Based on these considerations, we propose a design strategy and identify issues to be further studied. In particular we try to outline some boundary conditions imposed by LHC and LHCb on the vacuum system. We discuss two possibilities for the LHCb vertex detector vacuum system. The preferred strategy uses a differentially pumped vacuum system with the silicon detectors separated from the beam line vacuum. Some estimations on static vacuum pressures and gas flows are presented.

  13. Hydrogen poisoning of the CO oxidation reaction on Pt and Pd under ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Strozier, J.A.

    1977-01-01

    The poisoning by hydrogen of the catalyzed oxidation of CO on Pt and Pd under ultrahigh vacuum conditions was investigated. ac pulsing techniques are used in which the pressure of the reactant CO in the reaction chamber is modulated periodically by means of a fast piezoelectric ultrahigh vacuum valve, and the ac component of the product CO 2 is recorded mass spectroscopically by phase-sensitive techniques. The ac CO 2 production rate is measured as a function of hydrogen pressure (1 - 10 x 10 -9 toor) at constant CO and O 2 pressures (approximately equal to 5 x 10 -8 torr), and constant temperature (approximately equal to 700 K). Exact theoretical calculations of CO 2 production rates were carried out employing several models, i.e., oxygen burn-off by hydrogen, incorporating both the Eley-Rideal and Langmuir-Hinshelwood mechanisms. From a comparison with the experimental results, the probable reaction is of the Langmuir-Hinshelwood type and the relevant rate constant is also determined. These results are compared with other results in the literature on hydrogen oxidation on the surface of Pt

  14. Design and performance of an UHV beamline to produce low and hyperthermal energy ion beams

    International Nuclear Information System (INIS)

    Adler, D.L.; Cooper, B.H.

    1988-01-01

    We have constructed and tested an UHV beamline to produce beams of alkali metal and noble gas ions over the energy range 0 angular divergence, and nanoamps of current at 25 eV in a 4-mm beam spot with +- 2 0 angular divergence. By applying Liouville's theorem to the beam's emittance and using waist-to-waist transport through the beam optics, the current on the sample is maximized while limiting the spot size and angular divergence. To achieve useful current at the lowest energies, special attention was paid to minimizing space-charge effects. Beam emittances measured at the sample position are consistent with Liouville's theorem. Equations for waist-to-waist transport are derived in the Appendix

  15. CHICSi--a compact ultra-high vacuum compatible detector system for nuclear reaction experiments at storage rings. III. readout system

    Energy Technology Data Exchange (ETDEWEB)

    Carlen, L.; Foerre, G.; Golubev, P.; Jakobsson, B. E-mail: bo.jakobsson@kosufy.lu.se; Kolozhvari, A.; Marciniewski, P.; Siwek, A.; Veldhuizen, E.J. van; Westerberg, L.; Whitlow, H.J.; Oestby, J.M

    2004-01-11

    (CHICSi) Celsius Heavy Ion Collaboration Si detector system is a high granularity, modular detector telescope array for operation around the cluster-jet target/circulating beam intersection of the CELSIUS storage ring at the The. Svedberg Laboratory in Uppsala, Sweden. It is able to provide identity and momentum vector of up to 100 charged particles and fragments from proton-nucleus and nucleus-nucleus collisions at intermediate energies, 50-1000A MeV. All detector telescopes as well as the major part of electronic readout system are placed inside the target chamber in ultra-high vacuum (UHV, 10{sup -9}-10{sup -7} Pa). This requires Very Large Scale Integrated (VLSI) microchip for the spectroscopic signal processing and the generation and transport of digital control signals. Eighteen telescopes, read out with chip-on-board technique by ceramics Mother Boards (MB) and corresponding 18 microchips are mounted on a 450x45 mm{sup 2} Grand Mother Board (GMB), processed on FR4 glass-fibre material. Each of these 28 GMB units contains a daisy-chain organisation of the VLSI chips and associated protection circuits. Analogue-to-digital conversion of the spectroscopic signals is performed on a board outside the chamber which is connected on one side to a power distribution board, directly attached to a UHV mounting flange, and on the other side to the VME-based data acquisition system (CHICSiDAQ). This in its turn is connected via a fibre-optic link to the general TSL acquisition system (SVEDAQ), and in this way data from auxiliary detector systems, read out in CAMAC mode, can be stored in coincidence with CHICSi data.

  16. CHICSi--a compact ultra-high vacuum compatible detector system for nuclear reaction experiments at storage rings. III. readout system

    International Nuclear Information System (INIS)

    Carlen, L.; Foerre, G.; Golubev, P.; Jakobsson, B.; Kolozhvari, A.; Marciniewski, P.; Siwek, A.; Veldhuizen, E.J. van; Westerberg, L.; Whitlow, H.J.; Oestby, J.M.

    2004-01-01

    (CHICSi) Celsius Heavy Ion Collaboration Si detector system is a high granularity, modular detector telescope array for operation around the cluster-jet target/circulating beam intersection of the CELSIUS storage ring at the The. Svedberg Laboratory in Uppsala, Sweden. It is able to provide identity and momentum vector of up to 100 charged particles and fragments from proton-nucleus and nucleus-nucleus collisions at intermediate energies, 50-1000A MeV. All detector telescopes as well as the major part of electronic readout system are placed inside the target chamber in ultra-high vacuum (UHV, 10 -9 -10 -7 Pa). This requires Very Large Scale Integrated (VLSI) microchip for the spectroscopic signal processing and the generation and transport of digital control signals. Eighteen telescopes, read out with chip-on-board technique by ceramics Mother Boards (MB) and corresponding 18 microchips are mounted on a 450x45 mm 2 Grand Mother Board (GMB), processed on FR4 glass-fibre material. Each of these 28 GMB units contains a daisy-chain organisation of the VLSI chips and associated protection circuits. Analogue-to-digital conversion of the spectroscopic signals is performed on a board outside the chamber which is connected on one side to a power distribution board, directly attached to a UHV mounting flange, and on the other side to the VME-based data acquisition system (CHICSiDAQ). This in its turn is connected via a fibre-optic link to the general TSL acquisition system (SVEDAQ), and in this way data from auxiliary detector systems, read out in CAMAC mode, can be stored in coincidence with CHICSi data

  17. Baking results of KSTAR vacuum vessel

    International Nuclear Information System (INIS)

    Kim, S. T.; Kim, Y. J.; Kim, K. M.; Im, D. S.; Joung, N. Y.; Yang, H. L.; Kim, Y. S.; Kwon, M.

    2009-01-01

    The Korea Superconducting Tokamak Advanced Research (KSTAR) is an advanced superconducting tokamak designed to establish a scientific and technological basis for an attractive fusion reactor. The fusion energy in the tokamak device is released through fusion reactions of light atoms such as deuterium or helium in hot plasma state, of which temperature reaches several hundreds of millions Celsius. The high temperature plasma is created in the vacuum vessel that provides ultra high vacuum status. Accordingly, it is most important for the vacuum condition to keep clean not only inner space but also surface of the vacuum vessel to make high quality plasma. There are two methods planned to clean the wall surface of the KSTAR vacuum vessel. One is surface baking and the other is glow discharge cleaning (GDC). To bake the vacuum vessel, De-Ionized (DI) water is heated to 130 .deg. C and circulated in the passage between double walls of the vacuum vessel (VV) in order to bake the surface. The GDC operation uses hydrogen and inert gas discharges. In this paper, general configuration and brief introduction of the baking result will be reported

  18. Baking results of KSTAR vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. T.; Kim, Y. J.; Kim, K. M.; Im, D. S.; Joung, N. Y.; Yang, H. L.; Kim, Y. S.; Kwon, M. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The Korea Superconducting Tokamak Advanced Research (KSTAR) is an advanced superconducting tokamak designed to establish a scientific and technological basis for an attractive fusion reactor. The fusion energy in the tokamak device is released through fusion reactions of light atoms such as deuterium or helium in hot plasma state, of which temperature reaches several hundreds of millions Celsius. The high temperature plasma is created in the vacuum vessel that provides ultra high vacuum status. Accordingly, it is most important for the vacuum condition to keep clean not only inner space but also surface of the vacuum vessel to make high quality plasma. There are two methods planned to clean the wall surface of the KSTAR vacuum vessel. One is surface baking and the other is glow discharge cleaning (GDC). To bake the vacuum vessel, De-Ionized (DI) water is heated to 130 .deg. C and circulated in the passage between double walls of the vacuum vessel (VV) in order to bake the surface. The GDC operation uses hydrogen and inert gas discharges. In this paper, general configuration and brief introduction of the baking result will be reported.

  19. Investigating steam penetration using thermometric methods in dental handpieces with narrow internal lumens during sterilizing processes with non-vacuum or vacuum processes.

    Science.gov (United States)

    Winter, S; Smith, A; Lappin, D; McDonagh, G; Kirk, B

    2017-12-01

    Dental handpieces are required to be sterilized between patient use. Vacuum steam sterilization processes with fractionated pre/post-vacuum phases or unique cycles for specified medical devices are required for hollow instruments with internal lumens to assure successful air removal. Entrapped air will compromise achievement of required sterilization conditions. Many countries and professional organizations still advocate non-vacuum sterilization processes for these devices. To investigate non-vacuum downward/gravity displacement, type-N steam sterilization of dental handpieces, using thermometric methods to measure time to achieve sterilization temperature at different handpiece locations. Measurements at different positions within air turbines were undertaken with thermocouples and data loggers. Two examples of widely used UK benchtop steam sterilizers were tested: a non-vacuum benchtop sterilizer (Little Sister 3; Eschmann, Lancing, UK) and a vacuum benchtop sterilizer (Lisa; W&H, Bürmoos, Austria). Each sterilizer cycle was completed with three handpieces and each cycle in triplicate. A total of 140 measurements inside dental handpiece lumens were recorded. The non-vacuum process failed (time range: 0-150 s) to reliably achieve sterilization temperatures within the time limit specified by the international standard (15 s equilibration time). The measurement point at the base of the handpiece failed in all test runs (N = 9) to meet the standard. No failures were detected with the vacuum steam sterilization type B process with fractionated pre-vacuum and post-vacuum phases. Non-vacuum downward/gravity displacement, type-N steam sterilization processes are unreliable in achieving sterilization conditions inside dental handpieces, and the base of the handpiece is the site most likely to fail. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  20. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  1. Tribological reactions of perfluoroalkyl polyether oils with stainless steel under ultrahigh vacuum conditions at room temperature

    Science.gov (United States)

    Mori, Shigeyuki; Morales, Wilfredo

    1989-01-01

    The reaction between three types of commercial perfluoroalkyl polyether (PFPE) oils and stainless steel 440C was investigated experimentally during sliding under ultrahigh vacuum conditions at room temperature. It is found that the tribological reaction of PFPE is mainly affected by the activity of the mechanically formed fresh surfaces of metals rather than the heat generated at the sliding contacts. The fluorides formed on the wear track act as a boundary layer, reducing the friction coefficient.

  2. Vacuum chamber-free centrifuge with magnetic bearings.

    Science.gov (United States)

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  3. Visualization of hydrogen gas evolution during deformation and fracture in SCM 440 steel with different tempering conditions

    Energy Technology Data Exchange (ETDEWEB)

    Horikawa, Keitaro, E-mail: horikawa@me.es.osaka-u.ac.jp [Department of Mechanical Science and Bioengineering, School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); Ando, Nobuaki; Kobayashi, Hidetoshi [Department of Mechanical Science and Bioengineering, School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); Urushihara, Wataru [Surface Design and Corrosion Research Section, Materials Research Laboratory, Kobe Steel, Ltd., Kobe 651-2271 (Japan)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer We visualize emission sites of hydrogen atoms on the microstructures during deformation. Black-Right-Pointing-Pointer Hydrogen atoms are emitted from slip lines and inclusions when deformed. Black-Right-Pointing-Pointer We show the sequence of hydrogen gas evolution during deformation. Black-Right-Pointing-Pointer Hydrogen evolution amount will increase if the steels with high strength are tested. - Abstract: In the present study, the hydrogen gas evolution behavior was investigated in SCM 440 steel by using a hydrogen microprint technique (HMT) and a testing machine equipped with a quadrupole mass spectrometer (QMS) in a ultrahigh vacuum (UHV) atmosphere. SCM 440 steels prepared by varying the tempering temperature over the range 200-700 Degree-Sign C were evaluated in order to elucidate the relationship between the hydrogen gas evolution and the tempered microstructures in the deformation. Cathodic hydrogen charging was carried out with a current density of 100 A/m{sup 2} for 1 h at room temperature. For comparison, a tensile specimen was prepared without hydrogen charging. The HMT showed that silver particles, which are indicative of the hydrogen emission sites, were present mainly in the matrix as well as on the slip lines after the deformation. It is believed that the silver particles on the slip lines represent the effect of hydrogen transportation due to mobile dislocations. In addition, accumulation of silver particles around non-metallic inclusions such as Al{sub 2}O{sub 3} was also identified. This tendency was observed for different tempering conditions. From the relationship between the stress-strain curves and the hydrogen evolution, determined by using QMS under a UHV atmosphere, it was found that the hydrogen gas evolution behavior varied with the deformation stage.

  4. Vacuum-plasma coverings on the aircraft

    International Nuclear Information System (INIS)

    Shvetsov, V.D.; Teksin, Eh.K.; Lysyak, A.A.

    1998-01-01

    In the article are considered the perspectives of vacuum-plasma coverings using for engine components protection. The influence of operating factors on the durability of components which has the vacuum-plasma coverings is show.Leads in using the concept of informational parameter of quality.The recommendation about organization of engine with abolished components maintenance by methods of flyable conditions or reliability level are given

  5. Vacuum decay in an interacting multiverse

    Science.gov (United States)

    Robles-Pérez, S.; Alonso-Serrano, A.; Bastos, C.; Bertolami, O.

    2016-08-01

    We examine a new multiverse scenario in which the component universes interact. We focus our attention to the process of "true" vacuum nucleation in the false vacuum within one single element of the multiverse. It is shown that the interactions lead to a collective behavior that might lead, under specific conditions, to a pre-inflationary phase and ensued distinguishable imprints in the comic microwave background radiation.

  6. Vacuum decay in an interacting multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Pérez, S. [Centro de Física “Miguel Catalán”, Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid (Spain); Estación Ecológica de Biocosmología, Pedro de Alvarado, 14, 06411 Medellín (Spain); Alonso-Serrano, A. [Centro de Física “Miguel Catalán”, Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid (Spain); Estación Ecológica de Biocosmología, Pedro de Alvarado, 14, 06411 Medellín (Spain); School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington 6140 (New Zealand); Bastos, C., E-mail: catarina.bastos@tecnico.ulisboa.pt [GoLP, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bertolami, O. [Departamento de Física e Astronomia and Centro de Física do Porto, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2016-08-10

    We examine a new multiverse scenario in which the component universes interact. We focus our attention to the process of “true” vacuum nucleation in the false vacuum within one single element of the multiverse. It is shown that the interactions lead to a collective behavior that might lead, under specific conditions, to a pre-inflationary phase and ensued distinguishable imprints in the comic microwave background radiation.

  7. Vacuum decay in an interacting multiverse

    International Nuclear Information System (INIS)

    Robles-Pérez, S.; Alonso-Serrano, A.; Bastos, C.; Bertolami, O.

    2016-01-01

    We examine a new multiverse scenario in which the component universes interact. We focus our attention to the process of “true” vacuum nucleation in the false vacuum within one single element of the multiverse. It is shown that the interactions lead to a collective behavior that might lead, under specific conditions, to a pre-inflationary phase and ensued distinguishable imprints in the comic microwave background radiation.

  8. Magnetically enhanced vacuum arc thruster

    International Nuclear Information System (INIS)

    Keidar, Michael; Schein, Jochen; Wilson, Kristi; Gerhan, Andrew; Au, Michael; Tang, Benjamin; Idzkowski, Luke; Krishnan, Mahadevan; Beilis, Isak I

    2005-01-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally

  9. Magnetically enhanced vacuum arc thruster

    Energy Technology Data Exchange (ETDEWEB)

    Keidar, Michael [University of Michigan, Ann Arbor 48109 MI (United States); Schein, Jochen [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Wilson, Kristi [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Gerhan, Andrew [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Au, Michael [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Tang, Benjamin [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Idzkowski, Luke [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Krishnan, Mahadevan [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Beilis, Isak I [Tel Aviv University, Tel Aviv (Israel)

    2005-11-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally.

  10. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is

  11. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc,max ~95 K and (Bi1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc,max 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major di erences in the band structure. First, the Fermi surface segments close to ( π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is consistent with

  12. Vacuum stability of a general scalar potential of a few fields

    Energy Technology Data Exchange (ETDEWEB)

    Kannike, Kristjan [NICPB, Tallinn (Estonia)

    2016-06-15

    We calculate analytical vacuum stability or bounded from below conditions for general scalar potentials of a few fields. After a brief review of copositivity, we show how to find positivity conditions for more complicated potentials. We discuss the vacuum stability conditions of the general potential of two real scalars, without and with the Higgs boson included in the potential. As further examples, we give explicit vacuum stability conditions for the two Higgs doublet model with no explicit CP breaking, and for the Z{sub 3} scalar dark matter with an inert doublet and a complex singlet. We give a short overview of positivity conditions for tensors of quartic couplings via tensor eigenvalues. (orig.)

  13. UV-Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption studies of model and bulk heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig Richmond [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (TPD) have been used to investigate the surface structure of model heterogeneous catalysts in ultra-high vacuum (UHV). UV-Raman spectroscopy has been used to probe the structure of bulk model catalysts in ambient and reaction conditions. The structural information obtained through UV-Raman spectroscopy has been correlated with both the UHV surface analysis and reaction results. The present day propylene and ethylene polymerization catalysts (Ziegler-Natta catalysts) are prepared by deposition of TiCl4 and a Al(Et)3 co-catalyst on a microporous Mg-ethoxide support that is prepared from MgCl2 and ethanol. A model thin film catalyst is prepared by depositing metallic Mg on a Au foil in a UHV chamber in a background of TiCl4 in the gas phase. XPS results indicate that the Mg is completely oxidized to MgCl2 by TiCl4 resulting in a thin film of MgCl2/TiClx, where x = 2, 3, and 4. To prepare an active catalyst, the thin film of MgCl2/TiClx on Au foil is enclosed in a high pressure cell contained within the UHV chamber and exposed to ~1 Torr of Al(Et)3.

  14. Nuclear criticality safety calculations for a K-25 site vacuum cleaner

    International Nuclear Information System (INIS)

    Shor, J.T.; Haire, M.J.

    1997-02-01

    A modified Nilfisk model GSJ dry vacuum cleaner is used throughout the K-25 Site to collect dry forms of highly enriched uranium (HEU). When vacuuming, solids are collected in a cyclone-type separator vacuum cleaner body. Calculations were done with the SCALE (KENO V.a) computer code to establish conditions at which a nuclear criticality event might occur if the vacuum cleaner was filled with fissile solution. Conditions evaluated included full (12-in. water) reflection and nominal (1-in. water) reflection, and full (100%) and 20% 235 U enrichment. Validation analyses of SCALE/KENO and the SCALE 27-group cross sections for nuclear criticality safety applications indicate that a calculated k eff + 2σ eff + 2σ ≥ 0.9605 is considered unsafe and may be critical. Critical conditions were calculated to be 70 g U/L for 100% 235 U and full 12-in. water reflection. This corresponds to a minimum critical mass of approximately 1,400 g 235 U for the approximate 20.0-L volume of the vacuum cleaner. The actual volume of the vacuum cleaner is smaller than the modeled volume because some internal materials of construction were assumed to be fissile solution. The model was an overestimate, for conservatism, of fissile solution occupancy. At nominal reflection conditions, the critical concentration in a vacuum cleaner full of UO 2 F 2 solution was calculated to be 100 g 235 U/L, or 2,000 g mass of 100% 235 U. At 20% 235 U for the 20.0-L volume of the vacuum cleaner. At 15% 235 U enrichment and full reflection, critical conditions were not reached at any possible concentration of uranium as a uranyl fluoride solution. At 17.5% 235 U enrichment, criticality was reached at approximately 1,300 g U/L which is beyond saturation at 25 C

  15. dc breakdown conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum

    CERN Document Server

    Descoeudres, A; Calatroni, S; Taborelli, M; Wuensch, W

    2009-01-01

    RF accelerating structures of the Compact Linear Collider (CLIC) require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of DC and RF breakdown, a DC breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultra-high vacuum in a simple setup. Conditioning speeds and breakdown fields of several metals and alloys have been measured. The average breakdown field after conditioning ranges from 100 MV/m for Al to 850 MV/m for stainless steel, and is around 170 MV/m for Cu which is the present base-line material for CLIC structures. The results indicate clearly that the breakdown field is limited by the cathode. The presence of a thin cuprous oxide film at the surface of copper electrodes significantly increases the breakdown field. On the other hand, the conditioning speed of Mo is improved by removing oxides at t...

  16. Vacuum decay in an interacting multiverse

    Directory of Open Access Journals (Sweden)

    S. Robles-Pérez

    2016-08-01

    Full Text Available We examine a new multiverse scenario in which the component universes interact. We focus our attention to the process of “true” vacuum nucleation in the false vacuum within one single element of the multiverse. It is shown that the interactions lead to a collective behavior that might lead, under specific conditions, to a pre-inflationary phase and ensued distinguishable imprints in the comic microwave background radiation.

  17. UHV-TEM/TED observation of Ag islands grown on Si( 1 1 1 ) 3× 3-Ag surface

    Science.gov (United States)

    Oshima, Yoshifumi; Nakade, Hiroyuki; Shigeki, Sinya; Hirayama, Hiroyuki; Takayanagi, Kunio

    2001-11-01

    Growths of Ag islands on Si(1 1 1)3×3-Ag surface at room temperature were observed by UHV transmission electron microscopy and diffraction. The Ag islands grown after six monolayer deposition had neither (1 0 0) nor (1 1 0) orientation, but had two complex epitaxial orientations dominantly. One was striped islands which gave rise to a diffraction pattern commensurate with the 3×3 lattice of the Si(1 1 1) surface. The other was the coagulated islands whose diffraction pattern indicated the Ag(1 -3 4) sheet grown parallel to the Si(1 1 1) surface.

  18. MoS2-Filled PEEK Composite as a Self-Lubricating Material for Aerospace Applications

    Science.gov (United States)

    Theiler, Geraldine; Gradt, Thomas

    2010-01-01

    At BAM, several projects were conducted in the past years dealing with the tribological properties of friction couples at cryogenic temperature and in vacuum environment. Promising candidates for vacuum application are MoS2-filled PEEK/PTFE composites, which showed a friction coefficient as low as 0.03 in high vacuum. To complete the tribological profile of these composites, further tests were performed in ultra-high vacuum (UHV) at room temperature. In this paper, friction and stick slip behavior, as well as outgassing characteristics during the test are presented.

  19. Performance evaluation on vacuum pumps using nanolubricants

    Energy Technology Data Exchange (ETDEWEB)

    Lue, Yeou Feng; Hsu, Yu Chun; Teng, Tun Ping [Dept. of Industrial EducationNational Taiwan Normal University, Taiwan (China)

    2016-09-15

    This study produced alumina (Al{sub 2}O{sub 3}) nanovacuum-pump lubricants (NVALs) by involving the dispersion of Al{sub 2}O{sub 3} nanoparticles in a vacuum-pump lubricant (VAL) with oleic as a dispersant. Experiments were conducted to evaluate the suspension performance, thermal conductivity, viscosity, specific heat, tribological performance and vacuum-pump performance of the NVALs. The experimental results obtained from the vacuum-pump performance tests show that the NVALs with Al{sub 2}O{sub 3} concentration of 0.2 wt.% and oleic concentration of 0.025 wt.% yielded the lowest electricity consumption, conserving 2.39% of electricity compared with the VAL. No marked difference was observed between the temperatures of the vacuum pump using VAL and NVAL. Furthermore, evacuation (i.e., the minimal pressure of -99.5 kPa) was reached faster by the vacuum pump with the NVALs, and the evacuation time could be reduced by 4.91% under optimal conditions. In addition, the vacuum pump with the NVALs exhibited superior overall effectiveness under relatively lower ambient temperatures.

  20. Leybold vacuum handbook

    CERN Document Server

    Diels, K; Diels, Kurt

    1966-01-01

    Leybold Vacuum Handbook presents a collection of data sets that are essential for numerical calculation of vacuum plants and vacuum processes. The title first covers vacuum physics, which includes gas kinetics, flow phenomena, vacuum gauges, and vapor removal. Next, the selection presents data on vacuum, high vacuum process technology, and gas desorption and gettering. The text also deals with materials, vapor pressure, boiling and melting points, and gas permeability. The book will be of great interest to engineers and technicians that deals with vacuum related technologies.

  1. Vacuum Exhaust Process in Pilot-Scale Vacuum Pressure Swing Adsorption for Coal Mine Ventilation Air Methane Enrichment

    Directory of Open Access Journals (Sweden)

    Xiong Yang

    2018-04-01

    Full Text Available Recovery and treatment of methane from coal mine ventilation air methane (VAM with cost-effective technologies have been an ongoing challenge due to low methane concentrations. In this study, a type of coconut shell-based active carbon was employed to enrich VAM with a three-bed vacuum pressure swing adsorption unit. A new vacuum exhaust step for the VPSA process was introduced. The results show that the vacuum exhaust step can increase the methane concentration of the product without changing adsorption and desorption pressure. Under laboratory conditions, the concentration of product increased from 0.4% to 0.69% as the vacuum exhaust ratio increased from 0 to 3.1 when the feed gas concentration was 0.2%. A 500 m³/h pilot-scale test system for VAM enrichment was built rendering good correlation with the laboratory results in terms of the vacuum exhaust step. By using a two-stage three-bed separation unit, the VAM was enriched from 0.2% to over 1.2%.

  2. Indian Vacuum Society: The Indian Vacuum Society

    Science.gov (United States)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  3. Surface development of a brazing alloy during heat treatment-a comparison between UHV and APXPS

    Science.gov (United States)

    Rullik, L.; Johansson, N.; Bertram, F.; Evertsson, J.; Stenqvist, T.; Lundgren, E.

    2018-01-01

    In an attempt to bridge the pressure gap, APXPS was used to follow the surface development of an aluminum brazing sheet during heating in an ambient oxygen-pressure mimicking the environment of an industrial brazing furnace. The studied aluminum alloy brazing sheet is a composite material consisting of two aluminum alloy standards whose surface is covered with a native aluminum oxide film. To emphasize the necessity of studies of this system in ambient sample environments it is compared to measurements in UHV. Changes in thickness and composition of the surface oxide were followed after heating to 300 °C, 400 °C, and 500 °C. The two sets presented in this paper show that the surface development strongly depends on the environment the sample is heated in.

  4. Overlayer structure of subphthalocyanine derivative deposited on Au (111) surface by a spray-jet technique

    International Nuclear Information System (INIS)

    Suzuki, Hitoshi; Yamada, Toshiki; Miki, Hideki; Mashiko, Shinro

    2006-01-01

    A new spray-jet technique was used to deposit subphthalocyanine derivative (chloro[tri-tert-butyl subphthalocyaninato]boron (TBSubPc)) on Au (111) surface in an ultra-high vacuum (UHV) chamber. The deposited molecular overlayer was observed with UHV scanning tunneling microscopy (STM) at 77 K. The STM images showed that TBSubPc molecules formed a stripe pattern with regular spacing, indicating that they preferentially adsorbed along the herringbone structure of the Au (111) surface. This behavior was very similar to that of TBSubPc molecules deposited by thermal evaporation

  5. Safety Analysis in Large Volume Vacuum Systems Like Tokamak: Experiments and Numerical Simulation to Analyze Vacuum Ruptures Consequences

    Directory of Open Access Journals (Sweden)

    A. Malizia

    2014-01-01

    Full Text Available The large volume vacuum systems are used in many industrial operations and research laboratories. Accidents in these systems should have a relevant economical and safety impact. A loss of vacuum accident (LOVA due to a failure of the main vacuum vessel can result in a fast pressurization of the vessel and consequent mobilization dispersion of hazardous internal material through the braches. It is clear that the influence of flow fields, consequence of accidents like LOVA, on dust resuspension is a key safety issue. In order to develop this analysis an experimental facility is been developed: STARDUST. This last facility has been used to improve the knowledge about LOVA to replicate a condition more similar to appropriate operative condition like to kamaks. By the experimental data the boundary conditions have been extrapolated to give the proper input for the 2D thermofluid-dynamics numerical simulations, developed by the commercial CFD numerical code. The benchmark of numerical simulation results with the experimental ones has been used to validate and tune the 2D thermofluid-dynamics numerical model that has been developed by the authors to replicate the LOVA conditions inside STARDUST. In present work, the facility, materials, numerical model, and relevant results will be presented.

  6. Optimization of frozen wild blueberry vacuum drying process

    Directory of Open Access Journals (Sweden)

    Šumić Zdravko M.

    2015-01-01

    Full Text Available The objective of this research was to optimize the vacuum drying of frozen blueberries in order to preserve health benefits phytochemicals using response surface methodology. The drying was performed in a new design of vacuum dryer equipment. Investigated range of temperature was 46-74°C and of pressure 38-464 mbar. Total solids, total phenolics, vitamin C, anthocyanin content and total color change were used as quality indicators of dried blueberries. Within the experimental range of studied variables, the optimum conditions of 60 °C and 100 mbar were established for vacuum drying of blueberries. Separate validation experiments were conducted at optimum conditions to verify predictions and adequacy of the second-order polynomial models. Under these optimal conditions, the predicted amount of total phenolics was 3.70 mgCAE/100dw, vitamin C 59.79 mg/100gdw, anthocyanin content 2746.33 mg/100gdw, total solids 89.50% and total color change 88.83. [Projekat Ministarstva nauke Republike Srbije, br. TR 31044

  7. Multiscale investigation of graphene layers on 6H-SiC(000-1

    Directory of Open Access Journals (Sweden)

    Hiebel Fanny

    2011-01-01

    Full Text Available Abstract In this article, a multiscale investigation of few graphene layers grown on 6H-SiC(000-1 under ultrahigh vacuum (UHV conditions is presented. At 100-μm scale, the authors show that the UHV growth yields few layer graphene (FLG with an average thickness given by Auger spectroscopy between 1 and 2 graphene planes. At the same scale, electron diffraction reveals a significant rotational disorder between the first graphene layer and the SiC surface, although well-defined preferred orientations exist. This is confirmed at the nanometer scale by scanning tunneling microscopy (STM. Finally, STM (at the nm scale and Raman spectroscopy (at the μm scale show that the FLG stacking is turbostratic, and that the domain size of the crystallites ranges from 10 to 100 nm. The most striking result is that the FLGs experience a strong compressive stress that is seldom observed for graphene grown on the C face of SiC substrates.

  8. Treatment of uranium-bearing wastewater by vacuum membrane distillation

    International Nuclear Information System (INIS)

    Duan Xiaolin; Li Qicheng; Chen Bingbing

    2006-01-01

    The removal of uranium from wastewater was carried out by vacuum membrane distillation (VMD) using microporous polypropylene membrane. The effects of feed temperature, mass concentration of U, flow rate and vacuum-side pressure on permeation flux and rejection were studied. The optimum experimental conditions are as follows: feed flow rate is 0.5 m/s, feed temperature is 55 degree C, vacuum-side pressure is 2.66 kPa. When the mass concentrations of U in the feed solution range from 1 mg/L to 9 mg/L, the membrane flux is 3.5 kg/(m 2 ·h) and the rejection rate is 99.1% under the optimum conditions. The water separated from uranium solution by vacuum membrane distillation could meet the state-controlled discharge standard 0.05 mg/L. The VMD as a novel technology will play an important role in the treatment of uranium-bearing wastewater. (authors)

  9. A 2-100 keV, UHV ion impact spectrometer for ion-solid interaction studies

    International Nuclear Information System (INIS)

    Berg, J.A. Van den; Armour, D.G.; Verheij, L.K.

    1978-01-01

    A 2 to 100 keV ion accelerator has been constructed as part of an ion impact spectrometer in which a number of analytical techniques have been combined to allow a comprehensive study of the interaction of low- and medium-energy ions with solids to be carried out under carefully controlled conditions. The overall requirements of the ion beam system in terms of ion species, beam purity, uniformity, energy spread and intensity were dictated by the interest in carrying out low-energy ion scattering, Rutherford back-scattering and thermal desorption experiments. The accelerator design utilises the principle of low-energy extraction and mass analysis, and post-acceleration up to the required high energy. The ions are produced in a duoplasmatron ion source and a parallel beam is obtained after mass selection, utilising a quadrupole triplet lens in conjunction with a 60 0 stigmatic focusing magnetic analyser. Proton and rare gas ion beams of 1 to 100 nA are routinely obtained on target. The 54 cm diameter, UHV target chamber is pumped by a 270 1 s -1 turbo-molecular pump in conjunction with an in-line titanium sublimator, and typical base pressures of 1 to 4 x 10 -11 Torr are achieved. The target is supported in a precision, three-axis goniometer and the detection system, at present comprising a 90 mm mean diameter hemispherical energy analyser and channel electron multiplier, is mounted on a two-axis manipulator. Preliminary measurements using the system have employed the low-energy ion scattering technique to study the oxidation of a Ni(110) surface. (author)

  10. Characterization of selective solar absorber under high vacuum.

    Science.gov (United States)

    Russo, Roberto; Monti, Matteo; di Giamberardino, Francesco; Palmieri, Vittorio G

    2018-05-14

    Total absorption and emission coefficients of selective solar absorbers are measured under high vacuum conditions from room temperature up to stagnation temperature. The sample under investigation is illuminated under vacuum @1000W/m 2 and the sample temperature is recorded during heat up, equilibrium and cool down. During stagnation, the absorber temperature exceeds 300°C without concentration. Data analysis allows evaluating the solar absorptance and thermal emittance at different temperatures. These in turn are useful to predict evacuated solar panel performances at operating conditions.

  11. Waveguide quantum electrodynamics in squeezed vacuum

    Science.gov (United States)

    You, Jieyu; Liao, Zeyang; Li, Sheng-Wen; Zubairy, M. Suhail

    2018-02-01

    We study the dynamics of a general multiemitter system coupled to the squeezed vacuum reservoir and derive a master equation for this system based on the Weisskopf-Wigner approximation. In this theory, we include the effect of positions of the squeezing sources which is usually neglected in the previous studies. We apply this theory to a quasi-one-dimensional waveguide case where the squeezing in one dimension is experimentally achievable. We show that while dipole-dipole interaction induced by ordinary vacuum depends on the emitter separation, the two-photon process due to the squeezed vacuum depends on the positions of the emitters with respect to the squeezing sources. The dephasing rate, decay rate, and the resonance fluorescence of the waveguide-QED in the squeezed vacuum are controllable by changing the positions of emitters. Furthermore, we demonstrate that the stationary maximum entangled NOON state for identical emitters can be reached with arbitrary initial state when the center-of-mass position of the emitters satisfies certain conditions.

  12. Metastable electroweak vacuum. Implications for inflation

    International Nuclear Information System (INIS)

    Lebedev, Oleg; Westphal, Alexander

    2012-10-01

    Within the Standard Model, the current Higgs and top quark data favor metastability of the electroweak vacuum, although the uncertainties are still significant. The true vacuum is many orders of magnitude deeper than ours and the barrier separating the two is tiny compared to the depth of the well. This raises a cosmological question: how did the Higgs field get trapped in the shallow minimum and why did it stay there during inflation? The Higgs initial conditions before inflation must be fine-tuned to about one part in 10 8 in order for the Higgs field to end up in the right vacuum. In this note, we show that these problems can be resolved if there is a small positive coupling between the Higgs and the inflaton.

  13. Electroweak vacuum stability in the Higgs-Dilaton theory

    Energy Technology Data Exchange (ETDEWEB)

    Shkerin, A. [Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL),CH-1015, Lausanne (Switzerland); Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary prospect 7a, 117312, Moscow (Russian Federation)

    2017-05-30

    We study the stability of the Electroweak (EW) vacuum in a scale-invariant extension of the Standard Model and General Relativity, known as a Higgs-Dilaton theory. The safety of the EW vacuum against possible transition towards another vacuum is a necessary condition for the model to be phenomenologically acceptable. We find that, within a wide range of parameters of the theory, the decay rate is significantly suppressed compared to that of the Standard Model. We also discuss properties of a tunneling solution that are specific to the Higgs-Dilaton theory.

  14. Analysis of conditions for magnetron discharge initiation at vacuum camera testing

    International Nuclear Information System (INIS)

    Tzeneva, Raina; Dineff, Peter; Darjanova, Denitza

    2002-01-01

    Models of electric field distribution for two typical cases of vacuum camera internal pressure control are investigated. New relations between the maximum magnetron discharge current value I max and the maximum electric field strength radial component value E τ max are established. (Author)

  15. Ultra-high vacuum system of the Brookhaven National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, C.L.

    1995-12-31

    The rings of the National Synchrotron Light Source (NSLS) have been supplying light to numerous users for approximately a decade and we recently enjoyed a fully conditioned machine vacuum at design currents. A brief description of the X-Ray storage ring, the VUV storage ring and their current supply is given along with some of their features. The ultra-high vacuum system employed for the storage rings and their advantages for the necessary stored beam environments are discussed including, a brief history of time. After several hundred amp hours of stored beam current operation, very little improvement in machine performance was seen due to conditioning. Sections of the rings were vented, to dry nitrogen and replacement components were pre-baked and pre-argon glow conditioned prior to installation. Very little machine conditioning was needed to return to operation after recovering vacuum due to well established conditioning procedures. All straight sections in the X-Ray ring and the VUV ring have been filled with various insertion devices and most are fully operational. Each storage ring has a computer controlled total pressure and partial pressure monitoring system for the ring and its beam ports, to insure good vacuum.

  16. Development of a large lithium coolant system for operation under vacuum

    International Nuclear Information System (INIS)

    Kolowith, R.; Schwartz, K.E.; Meadows, G.E.; Berg, J.D.

    1983-11-01

    Argon and vacuum systems for the Experimental Lithium System (ELS) were tested to demonstrate vacuum-break capability, vacuum pumping performance, and vacuum sensor compatibility with a hostile liquid metal vapor/aerosol environment. Mechanical, diffusion and cryogenic vacuum pumps were evaluated. High-vacuum levels in the 10 -3 Pa range were achieved over a 270 0 C flowing lithium system. Ionization, thermal conductivity, capacitance manometer, and compound-type pressure sensors were evaluated to determine the effects of this potentially deleterious environment. Screening elbows were evaluated as pressure sensor protective devices. A dual-purpose vacuum-level/nitrogen partial-pressure sensor was evaluated as a means of detecting air in-leakage. Several types of static mechanical vacuum seals were also evaluated. Measurements of the vapor/aerosol generation were made at several system locations and operating conditions

  17. Vacuum mechatronics

    Science.gov (United States)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  18. Audible Noise Measurement and Analysis of the Main Power Apparatus in UHV GIS Substations

    Directory of Open Access Journals (Sweden)

    Zhou Nian Guang

    2016-01-01

    Full Text Available Investigation of audible noise characteristics of the main power apparatus in UHV GIS substations provides essential statistics for the noise prediction and control. Noise pressure level, spectrum and attenuation characteristics of the main transformers and high voltage (HV reactors are measured and analyzed in this paper. The result shows that the main transformer and HV reactor have identical A-weighted equivalent sound pressure level. The medium- and low-frequency noises are the primary components in the spectral. More attention should be paid to the low-frequency bands in the noise control process. The noise of cooling fan has a large influence on that of the main transformer. Without the consideration of corona noise, the average A-weighted sound pressure level shows an overall decreasing trend with the increase of the propagation distance. Obvious interference phenomenon of the noises at 100 and 200Hz exists in the noise propagation process.

  19. Metastable electroweak vacuum. Implications for inflation

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Oleg; Westphal, Alexander [DESY Theory Group, Hamburg (Germany)

    2012-10-15

    Within the Standard Model, the current Higgs and top quark data favor metastability of the electroweak vacuum, although the uncertainties are still significant. The true vacuum is many orders of magnitude deeper than ours and the barrier separating the two is tiny compared to the depth of the well. This raises a cosmological question: how did the Higgs field get trapped in the shallow minimum and why did it stay there during inflation? The Higgs initial conditions before inflation must be fine-tuned to about one part in 10{sup 8} in order for the Higgs field to end up in the right vacuum. In this note, we show that these problems can be resolved if there is a small positive coupling between the Higgs and the inflaton.

  20. Vacuum counterexamples to the cosmic censorship hypothesis

    International Nuclear Information System (INIS)

    Miller, B.D.

    1981-01-01

    In cylindrically symmetric vacuum spacetimes it is possible to specify nonsingular initial conditions such that timelike singularities will (necessarily) evolve from these conditions. Examples are given; the spacetimes are somewhat analogous to one of the spherically symmetric counterexamples to the cosmic censorship hypothesis

  1. The new 0.5 ohm, 60 kA beam dumping system under test in the laboratory

    CERN Multimedia

    1974-01-01

    In the foreground are the four ultra-high-vacuum tanks which house the deflection structure. In the background are the thirty 15 ohm high-voltage cables that connect the six pulse-forming networks to the spark gap and to the UHV tanks.

  2. A comparison of pulsed and continuous atom transfer between two magneto-optical traps

    International Nuclear Information System (INIS)

    Ram, S. P.; Tiwari, S. K.; Mishra, S. R.

    2010-01-01

    We present the experimental results for a comparison between pulsed and continuous transfer of cold 87 Rb atoms between a vapor chamber magneto-optical trap (VC-MOT) and an ultra-high vacuum magneto-optical trap (UHV-MOT) when using a resonant push beam. We find that employing repetitive cycles of a pulsed and unfocused push beam on an unsaturated VC-MOT cloud results in a significantly higher number of atoms transferred to the UHV-MOT than the number obtained with a continuous push beam focused on a continuous VC-MOT. In pulsed transfer, we find that both the VC-MOT loading duration and the push beam duration play important roles in the transfer process and govern the number of atoms transferred to the UHV-MOT. The parameters and processes affecting the transfer have been investigated and are discussed.

  3. ALICE's first vacuum bakeout a success

    CERN Multimedia

    2007-01-01

    At the beginning of April, the ALICE central beryllium beam pipe and absorber beam pipes were successfully conditioned. The installation and bakeout shell surround the beam pipe (lower left), running through the middle of the ITS and TPC. Notice the high-tech cooling system, an additional precaution to avoid overheating the ALICE detection equipment.One end of the vacuum sector during the bakeout and pure gas refill. It is unusual for a vacuum sector to end as it does in the middle of a non-accessible detector and made the installation and cabling of the bakeout equipment a more difficult procedure. Just before Easter, the first bakeout and NEG activation of experimental chambers in the LHC was carried out, followed by ultra pure gas refill. The bakeout consisted of externally heating the chambers under vacuum in order to lower their outgassing. This same heating process also activates the NEG, a coating on the inside surface of the beam vacuum chambers, which pumps the residual gas. ALICE's bakeout was pa...

  4. Modification of Ultra-High Vacuum Surfaces Using Free Radicals

    CERN Document Server

    Vorlaufer, G

    2002-01-01

    In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption of surface adsorbates are usually the factors which determine pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchrotron radiation and bombardment by energetic ions and electrons, surface properties like the molecular desorption yield or secondary electron yield can strongly influence the performance of the accelerator. Well-established treatment methods like vacuum bake-out or glow-discharge cleaning have been successfully applied in the past to condition ultra-high vacuum surfaces, but these methods are sometimes difficult to carry out, for example if the vacuum chambers are not accessible. In this work, an alternative treatment method is investigated. This method is based on the strong chemical reactivity of free radicals, electrically neutral fragments of molecules. Free radicals (in the case of this work, nitrogen and oxygen radi...

  5. Tests of an environmental and personnel safe cleaning process for Brookhaven National Laboratory accelerator and storage ring components

    International Nuclear Information System (INIS)

    Foerster, C.L.; Lanni, C.; Lee, R.; Mitchell, G.; Quade, W.

    1997-01-01

    A large measure of the successful operation of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) for over a decade can be attributed to the cleaning of its ultrahigh vacuum (UHV) components during and after construction. A new UHV cleaning process, which has to be environmentally and personnel safe, is needed to replace the harsh, unfriendly process which is still in use. Dow Advanced Cleaning Systems was contracted to develop a replacement process without the use of harsh chemicals and which must clean vacuum surfaces as well as the existing process. Acceptance of the replacement process was primarily based on photon stimulated desorption (PSD) measurements of beam tube samples run on NSLS beam line U10B. One meter long beam tube samples were fabricated from aluminum, 304 stainless steel, and oxygen-free copper. Initially, coupon samples were cleaned and passed preliminary testing for the proposed process. Next, beam tube samples of each material were cleaned, and the PSD measured on beam line U10B using white light with a critical energy of 487 eV. Prior to cleaning, the samples were contaminated with a mixture of cutting oils, lubricants, vacuum oils, and vacuum grease. The contaminated samples were then baked. Samples of each material were also cleaned with the existing process after the same preparation. Beam tube samples were exposed to between 10 22 and 10 23 photons per meter for a PSD measurement. Desorption yields for H 2 , CO, CO 2 , CH 4 , and H 2 O are reported for both the existing cleaning and for the replacement cleaning process. Preliminary data, residual gas scans, and PSD results are given and discussed. The new process is also compared with new cleaning methods developed in other laboratories. After modification, the new UHV cleaning process was accepted by BNL

  6. Three-dimensional analysis of a vacuum window connected to waveguide

    International Nuclear Information System (INIS)

    Nakatsuka, H.; Yoshida, N.

    1988-01-01

    Recently, as the experimental tokamak-type system for nuclear fusion has become larger, the additional heating system by microwave power has become more and more important. In this heating system the pillbox-type vacuum window is arranged for isolation, but discharge by local concentration of the electric field and destruction by local heating in this window are becoming serious problems. So far designing the system of the vacuum window and deciding on the matching condition, it is indispensable to know exactly the characteristics of the electromagnetic field. But the electromagnetic field inside such a system is very complicated because of its three-dimensional structure with various medium conditions. For the analysis of this complicated field numerical methods are generally known to be useful. The analysis by Bergeron's method has been shown to be effective for problems of this type involving complex boundary and medium conditions in three-dimensional space. In this paper, the authors show Bergeron's formulation of the pillbox-type vacuum window system and the fundamental characteristics of the electromagnetic field within this system. For an effective additional heating system in the experimental tokamak-type system the pillbox-type vacuum window is proposed to isolate each part. In this paper, the authors describe Bergeron's formulation of the pillbox-type vacuum window connected to cylindrical waveguides and show the fundamental characteristics of the electromagnetic field within this system

  7. Wireless embedded control system for atomically precise manufacturing

    KAUST Repository

    Khan, Yasser; Randall, John N.

    2011-01-01

    This paper will explore the possibilities of implementing a wireless embedded control system for atomically precise manufacturing. The manufacturing process, similar to Scanning Tunneling Microscopy, takes place within an Ultra High Vacuum (UHV) chamber at a pressure of 10-10 torr. In order to create vibration isolation, and to keep internal noise to a minimum, a wireless link inside the UHV chamber becomes essential. We present a MATLAB simulation of the problem, and then demonstrate a hardware scheme between a Gumstix computer and a Linux based laptop for controlling nano-manipulators with three degrees of freedom. © 2011 IEEE.

  8. Wireless embedded control system for atomically precise manufacturing

    KAUST Repository

    Khan, Yasser

    2011-04-01

    This paper will explore the possibilities of implementing a wireless embedded control system for atomically precise manufacturing. The manufacturing process, similar to Scanning Tunneling Microscopy, takes place within an Ultra High Vacuum (UHV) chamber at a pressure of 10-10 torr. In order to create vibration isolation, and to keep internal noise to a minimum, a wireless link inside the UHV chamber becomes essential. We present a MATLAB simulation of the problem, and then demonstrate a hardware scheme between a Gumstix computer and a Linux based laptop for controlling nano-manipulators with three degrees of freedom. © 2011 IEEE.

  9. Design and Implementation of Temperature Controller for a Vacuum Distiller

    OpenAIRE

    Muslim, M. Aziz; N., Goegoes Dwi; F., Ahmad Salmi; R., Akhbar Prachaessardhi

    2014-01-01

    This paper proposed design and implementation of temperature controller for a vacuum distiller. The distiller is aimed to provide distillation process of bioethanol in nearly vacuum condition. Due to varying vacuum pressure, temperature have to be controlled by manipulating AC voltage to heating elements. Two arduino based control strategies have been implemented, PID control and Fuzzy Logic control. Control command from the controller was translated to AC drive using TRIAC based dimmer circu...

  10. Development of a maintenance manipulator for TFTR

    International Nuclear Information System (INIS)

    Holloway, C.

    1986-01-01

    The maintenance manipulator is a device permanently connected to the Tokamak Fusion Test Reactor (TFTR) vacuum vessel and is located in close proximity to the tokamak. It is used for the inspection and maintenance of in-vessel components whilst the machine remains under vacuum. The total system comprises a vacuum vessel ante-chamber that houses the manipulator, an articulated boom and carriage that transports and positions a dexterous end-effector, and end-effector that supports maintenance tooling, and an inspection system. Because of the maintenance manipulator's operating environment, there are many challenging engineering features, i.e., temperatures up to 150 0 C, changing magnetic fields in space and time that act on the manipulator whilst it is at rest, neutron neutron fluxes of up to 10/sup 11/cm/sup -2/s/sup -1/, and, last but not least, UHV conditions. This paper describes the development of the vacuum system, the maintenance manipulator, and inspective devices. It includes the methods employed to overcome the engineering difficulties and the application of information gained from other advanced technology programs, such as space and nuclear fission

  11. Vacuum Baking To Remove Volatile Materials

    Science.gov (United States)

    Muscari, J. A.

    1985-01-01

    Outgassing reduced in some but not all nonmetallic materials. Eleven polymeric materials tested by determining outgassing species as temperature of conditioned and unconditioned materials raised to 300 degrees C. Conditioning process consisted of vacuum bake for 24 hours at 80 degrees C in addition to usual cure. Baking did not change residual gas percentage of water molecules.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Among various gas analytical techniques, mass spectrometry has many advantages. Hence, an ultra high vacuum (UHV) compatible mass spectrometry based evolved gas analysis (EGA–MS) system has been developed. This system consists of a measurement chamber housing a mass spectrometer, spinning rotor gauge ...

  13. MR findings of intravertebral vacuum cleft: Report of two cases

    International Nuclear Information System (INIS)

    Lee, Sung Moon; Suh, Soo Jhi; Suh, Kyung Jin

    1994-01-01

    Intravertebral vacuum cleft in collapsed vertebra was considered as a typical finding of avascular necrosis. However, several authors reported some cases of intravertebral vacuum cleft in primary or secondary neoplasm, or in spondylitis emphasizing the differential diagnosis. MRI is known to be a useful diagnostic modality for differentiation between benign and malignanct conditions causing vertebral collapse. We report MRI findings of two cases with intravertebral vacuum cleft diagnosed as posttraumatic collapse with avascular necrosis on radiological and clinical bases

  14. MR findings of intravertebral vacuum cleft: Report of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Moon; Suh, Soo Jhi [School of Medicine, Keimyung University, Taegu (Korea, Republic of); Suh, Kyung Jin [College of Medicine, Kyungpook National University, Taegu (Korea, Republic of)

    1994-07-15

    Intravertebral vacuum cleft in collapsed vertebra was considered as a typical finding of avascular necrosis. However, several authors reported some cases of intravertebral vacuum cleft in primary or secondary neoplasm, or in spondylitis emphasizing the differential diagnosis. MRI is known to be a useful diagnostic modality for differentiation between benign and malignanct conditions causing vertebral collapse. We report MRI findings of two cases with intravertebral vacuum cleft diagnosed as posttraumatic collapse with avascular necrosis on radiological and clinical bases.

  15. Deflated-Victims of vacuum

    International Nuclear Information System (INIS)

    Sanders, Roy E.

    2007-01-01

    Atmospheric pressure combined with a partial vacuum within chemical plant or refinery tanks can result in some ego-deflating moments. This article will review three catastrophic vessel failures in detail and touch on several other incidents. A 4000-gal acid tank was destroyed by a siphoning action; a well maintained tank truck was destroyed during a routine delivery; and a large, brand new refinery mega-vessel collapsed as the steam within it condensed. Seasoned engineers are aware of the frail nature of tanks and provide safeguards or procedures to limit damages. The purpose of this paper is to ensure this new generation of chemical plant/refinery employees understand the problems of the past and take the necessary precautions to guard against tank damages created by partial vacuum conditions

  16. Evaluation of ISABELLE full cell ultra high vacuum system

    International Nuclear Information System (INIS)

    Foerster, C.L.; Briggs, J.; Chou, T.S.; Stattel, P.

    1980-01-01

    The ISABELLE Full Cell Vacuum System consisting of a 40 m long, by 8.8 cm diameter stainless steel tube pumped by seven pumping stations was assembled and processed for 10 -12 Torr operation. Evaluation and testing of the system and its sub-assemblies has been completed. Detail design of system components and the determination of the conditioning process was completed. The best procedure to rough pump, leak test, vacuum bake the system, condition pumps, degas gauges, turn on ion pumps and flash sublimation pumps was established. Pressures below 2 x 10 -11 Torr are now routinely achieved in normal operation of the Full Cell. This includes pump down after replacement of various components and pump down after back fill with moist unfiltered air. The techniques developed for the Full Cell will be used to build the ISABELLE Ultra High Vacuum System

  17. MEA vacuum system

    International Nuclear Information System (INIS)

    Stroo, R.; Schwebke, H.; Heine, E.

    1984-01-01

    This report describes construction and operation of the MEA vacuum system of NIKHEF (Netherlands). First, the klystron vacuum system, beam transport system, diode pump and a triode pump are described. Next, the isolation valve and the fast valves of the vacuum system are considered. Measuring instruments, vacuum system commands and messages of failures are treated in the last chapter. (G.J.P.)

  18. Ion effects in the SLC electron damping ring under exceptionally poor vacuum conditions

    International Nuclear Information System (INIS)

    Zimmermann, F.; Krejcik, P.; Minty, M.; Pritzkau, D.; Raubenheimer, T.; Ross, M.; Woodley, M.

    1997-10-01

    In 1996, due to a catastrophic kicker chamber failure in the SLC electron damping ring, the ring vacuum system was contamianted for several months. During this time, the vertical emittance of the beam extracted from the ring was increased by a large factor (4--20). The emittance slowly decreased as the vacuum pressure gradually improved. At the same time, an intermittent vertical instability was observed. Both the emittance blow-up and the instability behavior depended strongly on beam current, ring pressure, number of bunches in the ring (1 or 2), duty cycle, store time and betatron tunes. In this report, the authors describe the observations, and compare them with predictions from classical ion-trapping and ion-instability theories

  19. Insulation vacuum and beam vacuum overpressure release

    CERN Document Server

    Parma, V

    2009-01-01

    There is evidence that the incident of 19th September caused a high pressure build-up inside the cryostat insulation vacuum which the existing overpressure devices could not contain. As a result, high longitudinal forces acting on the insulation vacuum barriers developed and broke the floor and the floor fixations of the SSS with vacuum barriers. The consequent large longitudinal displacements of the SSS damaged chains of adjacent dipole cryo-magnets. Estimates of the helium mass flow and the pressure build- up experienced in the incident are presented together with the pressure build-up for an even more hazardous event, the Maximum Credible Incident (MCI). The strategy of limiting the maximum pressure by the installation of addition pressure relieve devices is presented and discussed. Both beam vacuum lines were ruptured during the incident in sector 3-4 giving rise to both mechanical damage and pollution of the system. The sequence, causes and effects of this damage will be briefly reviewed. We will then an...

  20. Maple sugaring with vacuum pumping during the fall season

    Science.gov (United States)

    H. Clay Smith; Alan G., Jr. Snow

    1971-01-01

    Vacuum pumping of sugar maple trees during the late fall and early winter months is not advisable in northern Vermont. However, fall pumping may be profitable in other areas of the sugar maple range. It is recommended that the weather pattern in a given locale be observed; and if conditions are favorable, vacuum pumping should be tried on a small scale before...

  1. Pb chains on ordered Si(3 3 5) surface

    International Nuclear Information System (INIS)

    Kisiel, M.; Skrobas, K.; Zdyb, R.; Mazurek, P.; Jalochowski, M.

    2007-01-01

    The electronic band structure of the Si(3 3 5)-Au surface decorated with Pb atoms was studied with angle resolved photoelectron spectroscopy (ARPES) in ultra high vacuum (UHV) conditions. The photoemission spectra were measured in two perpendicular directions, along and across the steps. In the direction parallel to the step edges the ARPES spectra show strongly dispersive electron energy band while in the perpendicular direction there is no electronic dispersion at all. This confirms one-dimensional character of the system. The theoretical band dispersion calculated within a tight-binding model was fitted to that obtained from the experiment

  2. Preparation of atomically clean and flat Si(1 0 0) surfaces by low-energy ion sputtering and low-temperature annealing

    International Nuclear Information System (INIS)

    Kim, J.C.; Ji, J.-Y.; Kline, J.S.; Tucker, J.R.; Shen, T.-C.

    2003-01-01

    Si(1 0 0) surfaces were prepared by wet-chemical etching followed by 0.3-1.5 keV Ar ion sputtering, either at elevated or room temperature (RT). After a brief anneal under ultrahigh vacuum (UHV) conditions, the resulting surfaces were examined by scanning tunneling microscopy. We find that wet-chemical etching alone cannot produce a clean and flat Si(1 0 0) surface. However, subsequent 300 eV Ar ion sputtering at room temperature followed by a 700 deg. C anneal yields atomically clean and flat Si(1 0 0) surfaces suitable for nanoscale device fabrication

  3. Electron emission from MOS electron emitters with clean and cesium covered gold surface

    DEFF Research Database (Denmark)

    Nielsen, Gunver; Thomsen, Lasse Bjørchmar; Johansson, Martin

    2009-01-01

    MOS (metal-oxide-semiconductor) electron emitters consisting of a Si substrate, a SiO2 tunnel barrier and a Ti (1 nm)/Au(7 nm) top-electrode, with an active area of 1 cm(2) have been produced and studied with surface science techniques under UHV (ultra high vacuum) conditions and their emission...... characteristics have been investigated. It is known, that deposition of an alkali metal on the emitting surface lowers the work function and increases the emission efficiency. For increasing Cs coverages the surface has been characterized by X-ray Photoelectron Spectroscopy (XPS), Ion Scattering Spectroscopy (ISS...

  4. Benchmarking Pt and Pt-lanthanide sputtered thin films for oxygen electroreduction

    DEFF Research Database (Denmark)

    Zamburlini, Eleonora; Jensen, Kim Degn; Stephens, Ifan E.L.

    2017-01-01

    Platinum-lanthanide alloys are very promising as active and stable catalysts for the oxygen reduction reaction (ORR) in low-temperature fuel cells. We have fabricated Pt and Pt5Gd metallic thin films via (co-)sputtering deposition in an ultra-high vacuum (UHV) chamber. The electrochemical ORR...

  5. A simple compact UHV and high magnetic field compatible inertial nanopositioner

    Science.gov (United States)

    Pang, Zongqiang; Li, Xiang; Xu, Lei; Rong, Zhou; Liu, Ruilan

    2015-01-01

    We present a novel simple piezoelectric nanopositioner which just has one piezoelectric scanner tube (PST) and one driving signal, using two short quartz rods and one BeCu spring which form a triangle to press the central shaft and can promise the nanopositioner's rigidity. Applying two pulse inverted voltage signals on the PST's outer and inner electrodes, respectively, according to the principle of piezoelectricity, the PST will elongate or contract suddenly while the central shaft will keep stationary for its inertance, so the central shaft will be sliding a distance relative to quartz rods and spring, and then withdraw the pulse voltages slowly, the central shaft will move upward or downward one step. The heavier of the central shaft, the better moving stability, so the nanopositioner has high output force. Due to its compactness and mechanical stability, it can be easily implanted into some extreme conditions, such as ultrahigh vacuum, ultralow temperature, and high magnetic field.

  6. Historical evolution toward achieving ultrahigh vacuum in JEOL electron microscopes

    CERN Document Server

    Yoshimura, Nagamitsu

    2014-01-01

    This book describes the developmental history of the vacuum system of the transmission electron microscope (TEM) at the Japan Electron Optics Laboratory (JEOL) from its inception to its use in today’s high-technology microscopes. The author and his colleagues were engaged in developing vacuum technology for electron microscopes (JEM series) at JEOL for many years. This volume presents a summary and explanation of their work and the technology that makes possible a clean ultrahigh vacuum. The typical users of the TEM are top-level researchers working at the frontiers of new materials or with new biological specimens. They often use the TEM under extremely severe conditions, with problems sometimes occurring in the vacuum system of the microscopes. JEOL engineers then must work as quickly as possible to improve the vacuum evacuation system so as to prevent the recurrence of such problems. Among the wealth of explanatory material in this book are examples of users’ reports of problems in the vacuum system of...

  7. KINETIC MODELS STUDY OF HYDRODESULPHURIZATION VACUUM DISTILLATE REACTION

    Directory of Open Access Journals (Sweden)

    AbdulMunem A. Karim

    2013-05-01

    Full Text Available    This study deals with  kinetics of hydrodesulphurization (HDS reaction of vacuum gas oil (611-833 K which was distillated from Kirkuk crude oil and which was obtained by blending the fractions, light vacuum gas oil (611 - 650 K, medium vacuum gas oil (650-690 K, heavy vacuum gas oil (690-727 K and very heavy vacuum gas oil (727-833 K.   The vacuum gas oil was hydrotreated on a commercial cobalt-molybdenum alumina catalyst presulfied at specified conditions in a laboratory trickle bed reactor. The reaction temperature range (583-643 K,liquid hourly space velocity range (1.5-3.75 h-1 and hydrogen pressure was kept constant at 3.5 MPa with hydrogen to oil ratio about 250 lt/lt.           The conversion results for desulphurization reaction appeared to obey the second order reaction. According to this model, the rate constants for desulphurization reaction were determined. Finally, the apparent activation energy (Ea, enthalpy of activation ( H* and entropy ( S* were calculated based on the values of rate constant (k2 and were equal 80.3792 KJ/mole, 75.2974 KJ/mole and 197.493 J/mole, respectively.

  8. Influence of a high vacuum on the precise positioning using an ultrasonic linear motor.

    Science.gov (United States)

    Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu

    2011-01-01

    This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.

  9. Influence of a high vacuum on the precise positioning using an ultrasonic linear motor

    International Nuclear Information System (INIS)

    Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu

    2011-01-01

    This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.

  10. Structural Analysis of the NCSX Vacuum Vessel

    International Nuclear Information System (INIS)

    Fred Dahlgren; Art Brooks; Paul Goranson; Mike Cole; Peter Titus

    2004-01-01

    The NCSX (National Compact Stellarator Experiment) vacuum vessel has a rather unique shape being very closely coupled topologically to the three-fold stellarator symmetry of the plasma it contains. This shape does not permit the use of the common forms of pressure vessel analysis and necessitates the reliance on finite element analysis. The current paper describes the NCSX vacuum vessel stress analysis including external pressure, thermal, and electro-magnetic loading from internal plasma disruptions and bakeout temperatures of up to 400 degrees centigrade. Buckling and dynamic loading conditions are also considered

  11. Surface science and model catalysis with ionic liquid-modified materials.

    Science.gov (United States)

    Steinrück, H-P; Libuda, J; Wasserscheid, P; Cremer, T; Kolbeck, C; Laurin, M; Maier, F; Sobota, M; Schulz, P S; Stark, M

    2011-06-17

    Materials making use of thin ionic liquid (IL) films as support-modifying functional layer open up a variety of new possibilities in heterogeneous catalysis, which range from the tailoring of gas-surface interactions to the immobilization of molecularly defined reactive sites. The present report reviews recent progress towards an understanding of "supported ionic liquid phase (SILP)" and "solid catalysts with ionic liquid layer (SCILL)" materials at the microscopic level, using a surface science and model catalysis type of approach. Thin film IL systems can be prepared not only ex-situ, but also in-situ under ultrahigh vacuum (UHV) conditions using atomically well-defined surfaces as substrates, for example by physical vapor deposition (PVD). Due to their low vapor pressure, these systems can be studied in UHV using the full spectrum of surface science techniques. We discuss general strategies and considerations of this approach and exemplify the information available from complementary methods, specifically photoelectron spectroscopy and surface vibrational spectroscopy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Stoichiometric and Oxygen-Deficient VO2 as Versatile Hole Injection Electrode for Organic Semiconductors.

    Science.gov (United States)

    Fu, Keke; Wang, Rongbin; Katase, Takayoshi; Ohta, Hiromichi; Koch, Norbert; Duhm, Steffen

    2018-03-28

    Using photoemission spectroscopy, we show that the surface electronic structure of VO 2 is determined by the temperature-dependent metal-insulator phase transition and the density of oxygen vacancies, which depends on the temperature and ultrahigh vacuum (UHV) conditions. The atomically clean and stoichiometric VO 2 surface is insulating at room temperature and features an ultrahigh work function of up to 6.7 eV. Heating in UHV just above the phase transition temperature induces the expected metallic phase, which goes in hand with the formation of oxygen defects (up to 6% in this study), but a high work function >6 eV is maintained. To demonstrate the suitability of VO 2 as hole injection contact for organic semiconductors, we investigated the energy-level alignment with the prototypical organic hole transport material N, N'-di(1-naphthyl)- N, N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found, rendering an Ohmic contact for holes.

  13. Development of the control algorithm of processes of intensive hygrothermal impact on capillary and porous materials in the conditions of the vacuum

    Directory of Open Access Journals (Sweden)

    Larina Ludmila

    2017-01-01

    Full Text Available Objective of this research is creation of an algorithm of a control system of the modes of the intensive hygrothermal influence (IGI in the conditions of a vacuum when performing the corresponding operations: moistening; the subsequent, if necessary, cyclic drying from within preparation of top of footwear; damp thermal treatment on universal installation with adjustable parameters of a working environment. For assessment of quality of the intensified hygrothermal impact on preparations of top of footwear the integrated criteria of efficiency of processes were used. Ensuring automatic control of parameters of processes of IGV on preparations of top of footwear in universal vacuum installation will allow to control quality of preparations upon transition from performance of one operation to another according to standard manufacturing techniques of footwear.

  14. Vacuum System and Modeling for the Materials Plasma Exposure Experiment

    International Nuclear Information System (INIS)

    Lumsdaine, Arnold; Meitner, Steve; Graves, Van; Bradley, Craig; Stone, Chris

    2017-01-01

    Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breaking vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.

  15. Subsurface hydrogen bonds at the polar Zn-terminated ZnO(0001) surface

    DEFF Research Database (Denmark)

    Hellström, Matti; Beinik, Igor; Broqvist, Peter

    2016-01-01

    techniques, we find that the polar Zn-terminated ZnO(0001) surface becomes excessively Zn deficient during high-temperature annealing (780 K) in ultrahigh vacuum (UHV). The Zn vacancies align themselves into rows parallel to the [10-10] direction, and the remaining surface Zn ions alternately occupy wurtzite...

  16. Vacuum mechatronics first international workshop

    Energy Technology Data Exchange (ETDEWEB)

    Belinski, S.E.; Shirazi, M.; Hackwood, S.; Beni, G. (eds.) (California Univ., Santa Barbara, CA (USA))

    1989-01-01

    This report contains papers on the following topics: proposed epitaxial thin film growth in the ultra-vacuum of space; particle monitoring and control in vacuum processing equipment; electrostatic dust collector for use in vacuum systems; materials evaluation of an electrically noisy vacuum slip ring assembly; an overview of lubrication and associated materials for vacuum service; the usage of lubricants in a vacuum environment; guidelines and practical applications for lubrication in vacuum; recent development in leak detector and calibrator designs; the durability of ballscrews for ultrahigh vacuum; vacuum-compatible robot for self-contained manufacturing systems; the design, fabrication, and assembly of an advanced vacuum robotics system for space payload calibration; design criteria for mechanisms used in space; and concepts and requirements for semiconductor multiprocess integration in vacuum. These papers are indexed separately elsewhere.

  17. Mechanical behaviour of vacuum chambers and beam screens under quench conditions in dipole and quadrupole fields

    CERN Document Server

    Rathjen, C

    2002-01-01

    A method based on analytical formulas is described to calculate bending moments, stresses, and deformations of vacuum chambers and beam screens in dipole and in quadrupole fields during a magnet quench. Solutions are given for circular and racetrack shaped structures. Without the need of time consuming calculations the solutions enable a quick design and verification of vacuum chambers and beam screens.

  18. Analysis of an innovative solar water desalination system using gravity induced vacuum

    International Nuclear Information System (INIS)

    Ayhan, T.; Al-Madani, H.

    2007-01-01

    This study presents the theoretical analysis, design and appropriate models of a new desalination system using gravity induced vacuum. The system utilizes natural means (gravity and atmospheric pressure) to create a vacuum under which water can be rapidly evaporated at much lower temperatures with less energy than conventional techniques. This technique is developed to overcome water storage, in the areas where good solar radiation (or waste heat sources) and sea water (or waste water sources). The developed system consists of an evaporator connected to condenser by means of a vacuum tank. The vapour produced in the evaporator is driven to condenser through the vacuum tank, where it condenses and collected as a product. Vacuum equivalent to 7 kPa (abs) or less can be created depending on ambient temperature of Bahrain climatic conditions. The effect of various operating conditions, namely water levels in condensation and evaporating columns on the system performance were studied. The theoretical analysis and preliminary experimental results show that the performance of this system depends on the condensation temperature

  19. Fundamentals of a moderate thermocracking-deep deasphalting combined process of Karamay vacuum residue

    Energy Technology Data Exchange (ETDEWEB)

    Zhiming, X; Tonghua, L.; Suogi, Z.; Renan, W. [University of Petroleum, State Key Laboratory of Heavy Oil Processing, Beijing (China); Lailong, L.; Zhen, L. [Karamay Petrochemical Company, Petrochemical Research Institute, Karamay (China)

    2004-07-01

    Thermocracking of heavy oil vacuum residue was carried out to determine the optimum conditions for the thermal cracking of Karamay vacuum residue prior to coke formation. The vacuum residue and the cracked residue after distillation were separated using supercritical fluid extraction and fractionation techniques. Sixteen and thirteen fractions and non-extractable end cuts respectively were separated, and their properties, compositions and average structures determined. Solubility parameters of the end cuts were measured, and those of the fractions calculated. The solubility parameter of the end cut of distilled residue was found to have greatly increased. It was determined that when the difference of the end cut and the extractable fractions amounts to 6.37MPa1/2, in the case of Karamay vacuum residue coke will deposit under thermocracking conditions. Based on the results of a series of solvent deep deasphalting experiments, a scheme for vacuum residue thermocracking and deasphalting of the cracked residue was proposed.

  20. Integrated enhanced bioremediation and vacuum extraction for remediation of a hydrocarbon release in response to oscillating hydrologic conditions 'Traverse Co-Bio-Vac'

    International Nuclear Information System (INIS)

    Korreck, W.M.; Armstrong, J.M.; Douglass, R.H.

    1992-01-01

    The use of enhanced in-situ biological treatment and vacuum extraction has been demonstrated to be successful in the remediation of ground water and soil contaminated with hydrocarbons. Seasonal fluctuations in the ground water causes the zone of contamination to be in the either saturated or unsaturated zone of the aquifer. In order to address these conditions, an integrated engineering design approach is being taken for the full scale remediation of an aviation of an aviation gasoline spill at the US Coast Guard Air Station at Traverse City, Township, Michigan. Enhanced aerobic biodegradation will be utilized during the periods of high water table whereby most of the contaminated interval is saturated. Carbon treated water will be utilized from the existing ground water plume. Oxygen will be injected via an oxygen generator to saturate the process stream prior to discharge to the aquifer. During low water table conditions, the same infrastructure will be utilized as a modified vacuum extraction system. The same injection wells used during the high water table would then be used during the low table condition as vapor extraction wells. The vapors will be routed to an above-ground catalytic incinerator for compound destruction. This integrated approach, entitled 'Traverse Co-Bio-Vac,' should reduce the capital costs of installing a full scale remedial system as well allowing the system to operate efficiently depending on water table conditions. The system is expected to be constructed in 1992

  1. Experimental studies of self-suppression of vacuum ultraviolet generation in Xe

    International Nuclear Information System (INIS)

    Judish, J.P.; Allman, S.L.; Garrett, W.R.; Payne, M.G.

    1988-11-01

    Vacuum ultraviolet light in the range 116 nm to 117 nm was produced by using a two-photon resonant four-wave mixing scheme in Xe. The buildup of coherent cancellation of the two-photon resonant transition employed in the generation of the vacuum ultraviolet, with resulting limitations imposed on the achievable vacuum ultraviolet intensity was investigated. Under certain predicted conditions, increases in the intensity of one of the pumping beams, ∼1500 nm infrared, or tuning this beam towards resonance with the 5p 5 7s(3/2) 1 level of Xe led, not to increases, but decreases in the vacuum ultraviolet generated. 3 refs., 3 figs

  2. A comparison between atmospheric/humidity and vacuum cyanoacrylate fuming of latent fingermarks.

    Science.gov (United States)

    Farrugia, Kevin J; Fraser, Joanna; Friel, Lauren; Adams, Duncan; Attard-Montalto, Nicola; Deacon, Paul

    2015-12-01

    A number of pseudo-operational trials were set up to compare the atmospheric/humidity and vacuum cyanoacrylate fuming processes on plastic carrier bags. The fuming processes were compared using two-step cyanoacrylate fuming with basic yellow 40 (BY40) staining and a one-step fluorescent cyanoacrylate fuming, Lumicyano 4%. Preliminary work using planted fingermarks and split depletions were performed to identify the optimum vacuum fuming conditions. The first pseudo-operational trial compared the different fuming conditions (atmospheric/humidity vs. vacuum) for the two-step process where an additional 50% more marks were detected with the atmospheric/humidity process. None of the marks by the vacuum process could be observed visually; however, a significant number of marks were detected by fluorescence after BY40 staining. The second trial repeated the same work in trial 1 using the one-step cyanoacrylate process, Lumicyano at a concentration of 4%. Trial 2 provided comparable results to trial 1 and all the items were then re-treated with Lumicyano 4% at atmospheric/humidity conditions before dyeing with BY40 to provide the sequences of process A (Lumicyano 4% atmospheric-Lumicyano 4% atmospheric-BY40) and process B (Lumicyano 4% vacuum-Lumicyano 4% atmospheric-BY40). The number of marks (visual and fluorescent) was counted after each treatment with a substantial increase in the number of detected marks in the second and third treatments of the process. The increased detection rate after the double Lumicyano process was unexpected and may have important implications. Trial 3 was performed to investigate whether the amount of cyanoacrylate and/or fuming time had an impact on the results observed in trial 2 whereas trial 4 assessed if the double process using conventional cyanoacrylate, rather than Lumicyano 4%, provided an increased detection rate. Trials 3 and 4 confirmed that doubling the amount of Lumicyano 4% cyanoacrylate and fuming time produced a lower

  3. Magnetically induced vacuum decay

    International Nuclear Information System (INIS)

    Xue Shesheng

    2003-01-01

    We study the fermionic vacuum energy of vacua with and without application of an external magnetic field. The energetic difference of two vacua leads to the vacuum decaying and the vacuum energy being released. In the context of quantum field theories, we discuss why and how the vacuum energy can be released by spontaneous photon emission and/or paramagnetically screening the external magnetic field. In addition, we quantitatively compute the vacuum energy released, the paramagnetic screening effect, and the rate and spectrum of spontaneous photon emission. The possibilities of experimentally detecting such an effect of vacuum-energy release and that this effect accounts for the anomalous x-ray pulsar are discussed

  4. Spherical collapse model in time varying vacuum cosmologies

    International Nuclear Information System (INIS)

    Basilakos, Spyros; Plionis, Manolis; Sola, Joan

    2010-01-01

    We investigate the virialization of cosmic structures in the framework of flat Friedmann-Lemaitre-Robertson-Walker cosmological models, in which the vacuum energy density evolves with time. In particular, our analysis focuses on the study of spherical matter perturbations, as they decouple from the background expansion, 'turn around', and finally collapse. We generalize the spherical collapse model in the case when the vacuum energy is a running function of the Hubble rate, Λ=Λ(H). A particularly well-motivated model of this type is the so-called quantum field vacuum, in which Λ(H) is a quadratic function, Λ(H)=n 0 +n 2 H 2 , with n 0 ≠0. This model was previously studied by our team using the latest high quality cosmological data to constrain its free parameters, as well as the predicted cluster formation rate. It turns out that the corresponding Hubble expansion history resembles that of the traditional ΛCDM cosmology. We use this Λ(t)CDM framework to illustrate the fact that the properties of the spherical collapse model (virial density, collapse factor, etc.) depend on the choice of the considered vacuum energy (homogeneous or clustered). In particular, if the distribution of the vacuum energy is clustered, then, under specific conditions, we can produce more concentrated structures with respect to the homogeneous vacuum energy case.

  5. R&D ERL: Vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  6. Electroweak vacuum instability and renormalized Higgs field vacuum fluctuations in the inflationary universe

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori [Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan); Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan)

    2017-08-01

    In this work, we investigated the electroweak vacuum instability during or after inflation. In the inflationary Universe, i.e., de Sitter space, the vacuum field fluctuations < δ φ {sup 2} > enlarge in proportion to the Hubble scale H {sup 2}. Therefore, the large inflationary vacuum fluctuations of the Higgs field < δ φ {sup 2} > are potentially catastrophic to trigger the vacuum transition to the negative-energy Planck-scale vacuum state and cause an immediate collapse of the Universe. However, the vacuum field fluctuations < δ φ {sup 2} >, i.e., the vacuum expectation values have an ultraviolet divergence, and therefore a renormalization is necessary to estimate the physical effects of the vacuum transition. Thus, in this paper, we revisit the electroweak vacuum instability from the perspective of quantum field theory (QFT) in curved space-time, and discuss the dynamical behavior of the homogeneous Higgs field φ determined by the effective potential V {sub eff}( φ ) in curved space-time and the renormalized vacuum fluctuations < δ φ {sup 2} >{sub ren} via adiabatic regularization and point-splitting regularization. We simply suppose that the Higgs field only couples the gravity via the non-minimal Higgs-gravity coupling ξ(μ). In this scenario, the electroweak vacuum stability is inevitably threatened by the dynamical behavior of the homogeneous Higgs field φ, or the formations of AdS domains or bubbles unless the Hubble scale is small enough H < Λ {sub I} .

  7. Vacuum system for ISABELLE

    International Nuclear Information System (INIS)

    Hobson, J.P.

    1975-01-01

    An analysis is presented of the proposed vacuum system for the planned ISABELLE storage rings with respect to acceptability and practicality from the vacuum viewport. A comparison is made between the proposed vacuum system and the vacuum system at the CERN ISR, and some comments on various design and operational parameters are made

  8. Design and construction of vacuum control system on EAST

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, Y.; Hu, Q.S.; Wang, X.M.; Zhang, X.D.; Hu, J.S.; Yang, Y.; Gu, X.M.

    2008-01-01

    The construction of experimental advanced superconducting tokamak (EAST) was finished at the end of 2006 in Hefei, China. Its vacuum system, an important subsystem, has been commissioned in February 2006. The design and construction of this vacuum control system are described in this paper. The requirements for remote automation, distributed control and centralized management, high reliability and expansibility have been taken into account in the design. There are three levels of control in vacuum control system. The bottom level control is performed on the local instruments manually; the medium level control is based on Siemens S7-400 PLC; the top level control is conducted on IPCs with communication through profi b us network. In addition remote handling and centralized monitoring could be realized by a remote control server. The control system could achieve pumping and fueling of the whole vacuum system. Besides that, it also includes the data acquisition of the pressure and temperature. The details are discussed on the monitoring of vacuum system states including cooling water, power and compressed air, etc., safeguards of plasma chamber and cryostat chamber and vacuum equipments, choosing of control modes corresponding to the plasma discharge and wall conditioning. At the end, the parts of EAST device protection system related to vacuum and gas injection system will also be introduced

  9. Vacuum extraction

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne

    2012-01-01

    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two-part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validation of the developed OSATS scale for vac...

  10. Compactified vacuum in ten dimensions

    International Nuclear Information System (INIS)

    Wurmser, D.

    1987-01-01

    Since the 1920's, theories which unify gravity with the other fundamental forces have called for more than the four observed dimensions of space-time. According to such a theory, the vacuum consists of flat four-dimensional space-time described by the Minkowski metric M 4 and a compactified space B. The dimensions of B are small, and the space can only be observed at distance scales smaller than the present experimental limit. These theories have had serious difficulties. The equations of gravity severely restrict the possible choices for the space B. The allowed spaces are complicated and difficult to study. The vacuum is furthermore unstable in the sense that a small perturbation causes the compactified dimensions to expand indefinitely. There is an addition a semi-classical argument which implies that the compactified vacuum by annihilated by virtual black holes. It follows that a universe with compactified extra dimensions could not have survived to the present. These results were derived by applying the equations of general relativity to spaces of more than four dimensions. The form of these equations was assumed to be unchanged by an increase in the number of dimensions. The authors illustrate the effect of such terms by considering the example B = S 6 where S 6 is the six-dimensional sphere. Only when the extra terms are included is this choice of the compactified space allowed. He explore the effect of a small perturbation on such a vacuum. The ten-dimensional spherically symmetric potential is examined, and I determine conditions under which the formation of virtual black holes is forbidden. The examples M 4 x S 6 is still plagued by the semi-classical instability, but this result does not hold in general. The requirement that virtual black holes be forbidden provides a test for any theory which predicts a compactified vacuum

  11. Criteria for vacuum breakdown in rf cavities

    International Nuclear Information System (INIS)

    Peter, W.; Faehl, R.J.; Kadish, A.; Thode, L.E.

    1983-01-01

    A new high-voltage scaling based on Kilpatrick's criterion is presented that suggests that voltages more than twice the Kilpatrick limit can be obtained with identical initial conditions of vacuum and surface cleanliness. The calculations are based on the experimentally observed decrease in secondary electron emission with increasing ion-impact energy above 100 keV. A generalized secondary-emission package has been developed to simulate actual cavity dynamics in conjunction with our 2 1/2-dimensional fully electromagnetic particle-in-cell code CEMIT. The results are discussed with application to the suppression of vacuum breakdown in rf accelerator devices

  12. Large eddy simulation of Loss of Vacuum Accident in STARDUST facility

    International Nuclear Information System (INIS)

    Benedetti, Miriam; Gaudio, Pasquale; Lupelli, Ivan; Malizia, Andrea; Porfiri, Maria Teresa; Richetta, Maria

    2013-01-01

    Highlights: ► Fusion safety, plasma material interaction. ► Numerical and experimental data comparison to analyze the consequences of Loss of Vacuum Accident that can provoke dust mobilization inside the Vacuum Vessel of the Nuclear Fusion Reactor ITER-like. -- Abstract: The development of computational fluid dynamic (CFD) models of air ingress into the vacuum vessel (VV) represents an important issue concerning the safety analysis of nuclear fusion devices, in particular in the field of dust mobilization. The present work deals with the large eddy simulations (LES) of fluid dynamic fields during a vessel filling at near vacuum conditions to support the safety study of Loss of Vacuum Accidents (LOVA) events triggered by air income. The model's results are compared to the experimental data provided by STARDUST facility at different pressurization rates (100 Pa/s, 300 Pa/s and 500 Pa/s). Simulation's results compare favorably with experimental data, demonstrating the possibility of implementing LES in large vacuum systems as tokamaks

  13. Development and Testing of an ISRU Soil Mechanics Vacuum Test Facility

    Science.gov (United States)

    Kleinhenz, Julie E.; Wilkinson, R. Allen

    2014-01-01

    For extraterrestrial missions, earth based testing in relevant environments is key to successful hardware development. This is true for both early component level development and system level integration. For In-Situ Resource Utilization (ISRU) on the moon, hardware must interface with the surface material, or regolith, in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, properly conditioned bed of lunar regolith simulant. However, in earth-based granular media, such as lunar regolith simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. A mid-size chamber (3.66 m tall, 1.5 m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64 m deep by 0.914 m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types were used. Data obtained from an electric cone penetrometer can be used to determine strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off-gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5 Torr, regardless of the pump rate. The slow off-gassing of the soil at low pressure lead to long test times; a full week to reach 10(exp -5) Torr. Robotic soil manipulation would enable multiple ISRU hardware test within the same vacuum cycle. The feasibility of a robotically controlled auger and tamper was explored at vacuum conditions.

  14. Vacuum pumping of tritium in fusion power reactors

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    Compound cryopumps of three different designs will be tested with deuterium-tritium (DT) mixtures under simulated fusion reactor conditions at the Tritium Systems Test Assembly (TSTA) now being constructed at the Los Alamos Scientific Laboratory (LASL). The first of these pumps is already in operation, and its preliminary performance is presented. The supporting vacuum facility necessary to regenerate these fusion facility cryopumps is also described. The next generation of fusion system vacuum pumps may include non-cryogenic or conventional-cryogenic hybrid systems, several of which are discussed

  15. EAST-AIA deployment under vacuum: Calibration of laser diagnostic system using computer vision

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang, E-mail: yangyang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Song, Yuntao; Cheng, Yong; Feng, Hansheng; Wu, Zhenwei; Li, Yingying; Sun, Yongjun; Zheng, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Bruno, Vincent; Eric, Villedieu [CEA-IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2016-11-15

    Highlights: • The first deployment of the EAST articulated inspection arm robot under vacuum is presented. • A computer vision based approach to measure the laser spot displacement is proposed. • An experiment on the real EAST tokamak is performed to validate the proposed measure approach, and the results shows that the measurement accuracy satisfies the requirement. - Abstract: For the operation of EAST tokamak, it is crucial to ensure that all the diagnostic systems are in the good condition in order to reflect the plasma status properly. However, most of the diagnostic systems are mounted inside the tokamak vacuum vessel, which makes them extremely difficult to maintain under high vacuum condition during the tokamak operation. Thanks to a system called EAST articulated inspection arm robot (EAST-AIA), the examination of these in-vessel diagnostic systems can be performed by an embedded camera carried by the robot. In this paper, a computer vision algorithm has been developed to calibrate a laser diagnostic system with the help of a monocular camera at the robot end. In order to estimate the displacement of the laser diagnostic system with respect to the vacuum vessel, several visual markers were attached to the inner wall. This experiment was conducted both on the EAST vacuum vessel mock-up and the real EAST tokamak under vacuum condition. As a result, the accuracy of the displacement measurement was within 3 mm under the current camera resolution, which satisfied the laser diagnostic system calibration.

  16. Vacuum electron acceleration by coherent dipole radiation

    International Nuclear Information System (INIS)

    Troha, A.L.; Van Meter, J.R.; Landahl, E.C.; Alvis, R.M.; Hartemann, F.V.; Troha, A.L.; Van Meter, J.R.; Landahl, E.C.; Alvis, R.M.; Li, K.; Luhmann, N.C. Jr.; Hartemann, F.V.; Unterberg, Z.A.; Kerman, A.K.

    1999-01-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell's equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a plane wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. copyright 1999 The American Physical Society

  17. Quality of Meat ( from Male Fallow Deer ( Packaged and Stored under Vacuum and Modified Atmosphere Conditions

    Directory of Open Access Journals (Sweden)

    N. Piaskowska

    2016-12-01

    Full Text Available This study evaluated the effect of vacuum and modified atmosphere (40% CO2+60% N2, MA packaging on the chemical composition, physicochemical properties and sensory attributes of chill-stored meat from 10 fallow deer (Dama dama bucks at 17 to 18 months of age. The animals were hunter-harvested in the forests of north-eastern Poland. During carcass dressing (48 to 54 h post mortem, both musculus longissimus muscles were cut out. Each muscle was divided into seven sections which were allocated to three groups: 0, A, and B. Samples 0 were immediately subjected to laboratory analyses. Samples A were vacuum-packaged, and samples B were packaged in MA. Packaged samples were stored for 7, 14, and 21 days at 2°C. The results of the present study showed that the evaluated packaging systems had no significant effect on the quality of fallow deer meat during chilled storage. However, vacuum-packaged meat samples were characterised by greater drip loss. Vacuum and MA packaging contributed to preserving the desired physicochemical properties and sensory attributes of meat during 21 days of storage. Regardless of the packaging method used, undesirable changes in the colour, water-holding capacity and juiciness of meat, accompanied by tenderness improvement, were observed during chilled storage.

  18. Relaxed plasma-vacuum systems

    International Nuclear Information System (INIS)

    Spies, G.O.; Lortz, D.; Kaiser, R.

    2001-01-01

    Taylor's theory of relaxed toroidal plasmas (states of lowest energy with fixed total magnetic helicity) is extended to include a vacuum between the plasma and the wall. In the extended variational problem, one prescribes, in addition to the helicity and the magnetic fluxes whose conservation follows from the perfect conductivity of the wall, the fluxes whose conservation follows from the assumption that the plasma-vacuum interface is also perfectly conducting (if the wall is a magnetic surface, then one has the toroidal and the poloidal flux in the vacuum). Vanishing of the first energy variation implies a pressureless free-boundary magnetohydrostatic equilibrium with a Beltrami magnetic field in the plasma, and in general with a surface current in the interface. Positivity of the second variation implies that the equilibrium is stable according to ideal magnetohydrodynamics, that it is a relaxed state according to Taylor's theory if the interface is replaced by a wall, and that the surface current is nonzero (at least if there are no closed magnetic field lines in the interface). The plane slab, with suitable boundary conditions to simulate a genuine torus, is investigated in detail. The relaxed state has the same double symmetry as the vessel if, and only if, the prescribed helicity is in an interval that depends on the prescribed fluxes. This interval is determined in the limit of a thin slab

  19. Optimization of Edwards vacuum coating unit model E12E for the production of thin films

    International Nuclear Information System (INIS)

    Ruiz P, H.S.

    1995-01-01

    This work is about an Edwards vacuum coating unit model E12E, it shows the principle of vacuum thermal evaporation, some observations in the operation of vacuum diffusion pumps, mechanical pumps, vacuum gauge, Penning and Pirani, and some equations of leak vacuum, after the modifications and additions of Edwards vacuum coating unit for optimization, the last part contains a concise introduction about thin films and one specific application, it also contains the recommendations and requirements to keep the system in good conditions. (Author)

  20. Device for supporting the vacuum vessel of a thermonuclear device

    International Nuclear Information System (INIS)

    Sato, Hiroshi.

    1980-01-01

    Purpose: To hold a vacuum vessel securely at a predetermined position. Constitution: A vacuum vessel is supported on its one side to the standard mounting location of a support frame by way of a pin junction. The vacuum vessel is provided at its upper and lower positions with movable mounting portions, which are connected by way of connecting rods to fixed mounting locations on the upper and lower frames. The fixed mounting locations are disposed on a vertical plane including the axis of the torus center. This arrangement enables to hold even a large vacuum vessel at an exact predetermined position even under high temperature conditions without limiting the container's thermal expansion relative to the changes in temperature, thereby providing an extremely high rigidity against electromagnetic forces, earthquakes, etc. (Furukawa, Y.)

  1. Effects of filtered cathodic vacuum arc deposition (FCVAD) conditions on photovoltaic TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Aramwit, C. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Intarasiri, S. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Bootkul, D. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Department of General Science, Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Supsermpol, B.; Seanphinit, N. [Department of General Science, Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Western Digital Thailand Co. Ltd., Ayutthaya 13160 (Thailand); Ruangkul, W. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-08-15

    Highlights: • Titanium dioxide films were synthesized using the FCVAD technique. • Various FCVAD conditions were tested. • The TiO{sub 2} films were characterized. • The FCVAD condition effects on the film characteristics were studied. • The O{sub 2} pressure had the most important effect on the film quality. - Abstract: Titanium dioxide (TiO{sub 2}) films for photovoltaic applications were synthesized using filtered cathodic vacuum arc deposition (FCVAD) technique. Various deposition conditions were tested for an optimal film formation. The conditions included the oxygen (O{sub 2}) pressure which was varied from a base pressure 10{sup −5} to 10{sup −4}, 10{sup −3}, 10{sup −2} and 10{sup −1} Torr, sample holder bias varied using 0 or −250 V, deposition time varied from 10, 20 to 30 min, and deposition distance varied from 1 to 3 cm. The deposited films were also annealed and compared with unannealed ones. The films under various conditions were characterized using optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS) and Raman spectroscopy techniques. The film transparency increased and thickness decreased to a nanoscale with increasing of the O{sub 2} pressure. The transparent deposited films contained stoichiometric titanium and oxygen under the medium O{sub 2} pressure. The as-deposited films were TiO{sub 2} containing some rutile but no anatase which needed annealing to form.

  2. Local effects of the quantum vacuum in Lorentz-violating electrodynamics

    Science.gov (United States)

    Martín-Ruiz, A.; Escobar, C. A.

    2017-02-01

    The Casimir effect is one of the most remarkable consequences of the nonzero vacuum energy predicted by quantum field theory. In this paper we use a local approach to study the Lorentz violation effects of the minimal standard model extension on the Casimir force between two parallel conducting plates in the vacuum. Using a perturbative method similar to that used for obtaining the Born series for the scattering amplitudes in quantum mechanics, we compute, at leading order in the Lorentz-violating coefficients, the relevant Green's function which satisfies given boundary conditions. The standard point-splitting technique allow us to express the vacuum expectation value of the stress-energy tensor in terms of the Green's function. We discuss its structure in the region between the plates. We compute the renormalized vacuum stress, which is obtained as the difference between the vacuum stress in the presence of the plates and that of the vacuum. The Casimir force is evaluated in an analytical fashion by two methods: by differentiating the renormalized global energy density and by computing the normal-normal component of the renormalized vacuum stress. We compute the local Casimir energy, which is found to diverge as approaching the plates, and we demonstrate that it does not contribute to the observable force.

  3. Thermofluid experiments for Fusion Reactor Safety. Visualization of exchange flows through breaches of a vacuum vessel in a fusion reactor under the LOVA condition

    International Nuclear Information System (INIS)

    Fujii, Sadao; Shibazaki, Hiroaki; Takase, Kazuyuki; Kunugi, Tomoaki.

    1997-01-01

    Exchange flow rates through breaches of a vacuum vessel in a fusion reactor under the LOVA (Loss of VAcuum event) conditions were measured quantitatively by using a preliminary LOVA apparatus and exchange flow patterns over the breach were visualized qualitatively by smoke. Velocity distributions in the exchange flows were predicted from the observed flow patterns by using the correlation method in the flow visualization procedures. Mean velocities calculated from the predicted velocity distributions at the outside of the breach were in good agreement with the LOVA experimental results when the exchange flow velocities were low. It was found that the present flow visualization and the image processing system might be an useful procedure to evaluate the exchange flow rates. (author)

  4. Cosmic vacuum

    International Nuclear Information System (INIS)

    Chernin, Artur D

    2001-01-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  5. Cosmic vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2001-11-30

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  6. Gauge groups and topological invariants of vacuum manifolds

    International Nuclear Information System (INIS)

    Golo, V.L.; Monastyrsky, M.I.

    1978-01-01

    The paper is concerned with topological properties of the vacuum manifolds in the theories with the broken gauge symmetry for the groups of the type SO(k) x U(n), SO(k) x SO(p) x U(r). For the Ginsburg-Landau theory of the superfluid 3 He the gauge transformations are discussed. They provide the means to indicate all possible types of the vacuum manifolds, which are likely to correspond to distinct phases of the superfluid 3 He. Conditions on the existence of the minimums of the Ginsburg-Landau functional are discussed

  7. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    International Nuclear Information System (INIS)

    KRAHN, D.E.

    2000-01-01

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included

  8. Vacuum level effects on gait characteristics for unilateral transtibial amputees with elevated vacuum suspension.

    Science.gov (United States)

    Xu, Hang; Greenland, Kasey; Bloswick, Donald; Zhao, Jie; Merryweather, Andrew

    2017-03-01

    The elevated vacuum suspension system has demonstrated unique health benefits for amputees, but the effect of vacuum pressure values on gait characteristics is still unclear. The purpose of this study was to investigate the effects of elevated vacuum levels on temporal parameters, kinematics and kinetics for unilateral transtibial amputees. Three-dimensional gait analysis was conducted in 9 unilateral transtibial amputees walking at a controlled speed with five vacuum levels ranging from 0 to 20inHg, and also in 9 able-bodied subjects walking at self-preferred speed. Repeated ANOVA and Dunnett's t-test were performed to determine the effect of vacuum level and limb for within subject and between groups. The effect of vacuum level significantly affected peak hip external rotation and external knee adduction moment. Maximum braking and propulsive ground reaction forces generally increased for the residual limb and decreased for the intact limb with increasing vacuum. Additionally, the intact limb experienced an increased loading due to gait asymmetry for several variables. There was no systematic vacuum level effect on gait. Higher vacuum levels, such as 15 and 20inHg, were more comfortable and provided some relief to the intact limb, but may also increase the risk of osteoarthritis of the residual limb due to the increased peak external hip and knee adduction moments. Very low vacuum should be avoided because of the negative effects on gait symmetry. A moderate vacuum level at 15inHg is suggested for unilateral transtibial amputees with elevated vacuum suspension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber

    Science.gov (United States)

    Routh, D. E.; Sharma, G. C. (Inventor)

    1984-01-01

    An apparatus is disclosed which includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a dc magnetron sputtering system. A gas inlet introduces various gases to the vacuum chamber and creates various gas plasma during the sputtering steps. The rotating turntables insure that the respective wafers are present under the sputtering guns for an average amount of time such that consistency in sputtering and deposition is achieved. By continuous and sequential processing of the wafers in a common vacuum chamber without removal, the adverse affects of exposure to atmospheric conditions are eliminated providing higher quality circuit contacts and functional device.

  10. Introduction to vacuum technology: supplementary study material developed for IVS sponsored vacuum courses

    International Nuclear Information System (INIS)

    Bhusan, K.G.

    2008-01-01

    Vacuum technology has advanced to a large extent mainly from the demands of experimental research scientists who have more than ever understood the need for clean very low pressure environments. This need only seems to increase as the lowest pressures achievable in a laboratory setup are dropping down by the decade. What is not usually said is that conventional techniques of producing ultrahigh vacuum have also undergone a metamorphosis in order to cater to the multitude of restrictions in modern day scientific research. This book aims to give that practical approach to vacuum technology. The basics are given in the first chapter with more of a definition oriented approach - which is practically useful. The second chapter deals with the production of vacuum and ultrahigh vacuum with an emphasis on the working principles of several pumps and their working pressure ranges. Measurement of low pressures, both total and partial is presented in the third chapter with a note on leak detection and mass spectrometric techniques. Chapter 4 gives an overview of the materials that are vacuum compatible and their material properties. Chapter 5 gives the necessary methods to be followed for cleaning of vacuum components especially critical if ultrahigh vacuum environment is required. The practical use of a ultrahigh vacuum environment is demonstrated in Chapter 6 for production of high quality thin films through vapour deposition

  11. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    Science.gov (United States)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  12. Optimization of Vacuum Impregnation with Calcium Lactate of Minimally Processed Melon and Shelf-Life Study in Real Storage Conditions.

    Science.gov (United States)

    Tappi, Silvia; Tylewicz, Urszula; Romani, Santina; Siroli, Lorenzo; Patrignani, Francesca; Dalla Rosa, Marco; Rocculi, Pietro

    2016-10-05

    Vacuum impregnation (VI) is a processing operation that permits the impregnation of fruit and vegetable porous tissues with a fast and more homogeneous penetration of active compounds compared to the classical diffusion processes. The objective of this research was to investigate the impact on VI treatment with the addition of calcium lactate on qualitative parameters of minimally processed melon during storage. For this aim, this work was divided in 2 parts. Initially, the optimization of process parameters was carried out in order to choose the optimal VI conditions for improving texture characteristics of minimally processed melon that were then used to impregnate melons for a shelf-life study in real storage conditions. On the basis of a 2 3 factorial design, the effect of Calcium lactate (CaLac) concentration between 0% and 5% and of minimum pressure (P) between 20 and 60 MPa were evaluated on color and texture. Processing parameters corresponding to 5% CaLac concentration and 60 MPa of minimum pressure were chosen for the storage study, during which the modifications of main qualitative parameters were evaluated. Despite of the high variability of the raw material, results showed that VI allowed a better maintenance of texture during storage. Nevertheless, other quality traits were negatively affected by the application of vacuum. Impregnated products showed a darker and more translucent appearance on the account of the alteration of the structural properties. Moreover microbial shelf-life was reduced to 4 d compared to the 7 obtained for control and dipped samples. © 2016 Institute of Food Technologists®.

  13. Decay of the de Sitter vacuum

    Science.gov (United States)

    Anderson, Paul R.; Mottola, Emil; Sanders, Dillon H.

    2018-03-01

    The decay rate of the Bunch-Davies state of a massive scalar field in the expanding flat spatial sections of de Sitter space is determined by an analysis of the particle pair creation process in real time. The Feynman definition of particle and antiparticle Fourier mode solutions of the scalar wave equation and their adiabatic phase analytically continued to the complexified time domain show conclusively that the Bunch-Davies state is not the vacuum state at late times. The closely analogous creation of charged particle pairs in a uniform electric field is reviewed and Schwinger's result for the vacuum decay rate is recovered by this same real time analysis. The vacuum decay rate in each case is also calculated by switching the background field on adiabatically, allowing it to act for a very long time, and then adiabatically switching it off again. In both the uniform electric field and de Sitter cases, the particles created while the field is switched on are verified to be real, in the sense that they persist in the final asymptotic flat zero-field region. In the de Sitter case, there is an interesting residual dependence of the rate on how the de Sitter phase is ended, indicating a greater sensitivity to spatial boundary conditions. The electric current of the created particles in the E -field case and their energy density and pressure in the de Sitter case are also computed, and the magnitude of their backreaction effects on the background field estimated. Possible consequences of the Hubble scale instability of the de Sitter vacuum for cosmology, vacuum dark energy, and the cosmological "constant" problem are discussed.

  14. Pumping behavior of sputter ion pumps

    International Nuclear Information System (INIS)

    Chou, T.S.; McCafferty, D.

    The ultrahigh vacuum requirements of ISABELLE is obtained by distributed pumping stations. Each pumping station consists of 1000 l/s titanium sublimation pump for active gases (N 2 , H 2 , O 2 , CO, etc.), and a 20 l/s sputter ion pump for inert gases (methane, noble gases like He, etc.). The combination of the alarming production rate of methane from titanium sublimation pumps (TSP) and the decreasing pumping speed of sputter ion pumps (SIP) in the ultrahigh vacuum region (UHV) leads us to investigate this problem. In this paper, we first describe the essential physics and chemistry of the SIP in a very clean condition, followed by a discussion of our measuring techniques. Finally measured methane, argon and helium pumping speeds are presented for three different ion pumps in the range of 10 -6 to 10 -11 Torr. The virtues of the best pump are also discussed

  15. A highly miniaturized vacuum package for a trapped ion atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    Schwindt, Peter D. D., E-mail: pschwin@sandia.gov; Jau, Yuan-Yu; Partner, Heather; Casias, Adrian; Wagner, Adrian R.; Moorman, Matthew; Manginell, Ronald P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Kellogg, James R.; Prestage, John D. [Jet Propulsion Laboratory, Pasadena, California 91109 (United States)

    2016-05-15

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm{sup 3} in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it was sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of {sup 171}Y b{sup +}. The fractional frequency stability of the clock was measured to be 2 × 10{sup −11}/τ{sup 1/2}.

  16. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  17. Vacuum storage of yellow-poplar pollen

    Science.gov (United States)

    James R. Wilcox

    1966-01-01

    Vacuum-drying, followed by storage in vacuo or in an inert gas, is effective for storing pollen of many species. It permits storage at room environments without rigid controls of either temperature or humidity, an advantage that becomes paramount during long-distance transfers of pollen when critical storage conditions are impossible to maintain. In...

  18. Vacuum fluctuations in an ancestor vacuum: A possible dark energy candidate

    Science.gov (United States)

    Aoki, Hajime; Iso, Satoshi; Lee, Da-Shin; Sekino, Yasuhiro; Yeh, Chen-Pin

    2018-02-01

    We consider an open universe created by bubble nucleation, and study possible effects of our "ancestor vacuum," a de Sitter space in which bubble nucleation occurred, on the present universe. We compute vacuum expectation values of the energy-momentum tensor for a minimally coupled scalar field, carefully taking into account the effect of the ancestor vacuum by the Euclidean prescription. We pay particular attention to the so-called supercurvature mode, a non-normalizable mode on a spatial slice of the open universe, which has been known to exist for sufficiently light fields. This mode decays in time most slowly, and may leave residual effects of the ancestor vacuum, potentially observable in the present universe. We point out that the vacuum energy of the quantum field can be regarded as dark energy if mass of the field is of order the present Hubble parameter or smaller. We obtain preliminary results for the dark energy equation of state w (z ) as a function of the redshift.

  19. Improvement of initial vacuum condition along 2008-2010 KSTAR campaign by vessel baking

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Pyo, E-mail: kpkim@nfri.er.ke [National Fusion Research Institute, Gwahagno 113, Daejeon 305-333 (Korea, Republic of); Hong, S.H.; Jung, N.Y.; Kim, S.T.; Kim, H.T.; Lee, K.S.; Kim, K.M.; Bang, E.N.; Chang, Y.B.; Kim, H.K.; Chu, Y.; Kim, Y.O.; Park, S.H.; Woo, I.S.; Hong, J.S.; Kim, S.W.; Park, K.R.; Na, H.K.; Yang, H.L.; Kim, Y.S. [National Fusion Research Institute, Gwahagno 113, Daejeon 305-333 (Korea, Republic of)

    2011-10-15

    Korea Superconducting Tokamak Advanced Research (KSTAR) is upgraded for its KSTAR 3rd campaign for new target mission to produce the D-shaped plasma with a target plasma current of 500 kA and/or pulse length of 5 s. New Plasma Facing Components (PFCs) are installed which leads to the increase of the surface area of the vessel by a factor of about 5. The vacuum conditioning such as the vessel baking has been performed in order to remove various kinds of impurities including H{sub 2}O, carbon and oxygen for the plasma. The total outgassing rate in the KSTAR 1st campaign was measured as 1.5 x 10{sup -4} mbar l s{sup -1} which is increased by a factor of 3 (6.49 x 10{sup -4} mbar l s{sup -1}) in the KSTAR 3rd campaign. Nevertheless, the outgassing rates per unit area have been decreased from 9.31 x 10{sup -5} mbar l m{sup -2} s{sup -1} to 1.22 x 10{sup -5} mbar l m{sup -2} s{sup -1} due to the upgrade of baking system and series of baking operation.

  20. Improvement of initial vacuum condition along 2008-2010 KSTAR campaign by vessel baking

    International Nuclear Information System (INIS)

    Kim, Kwang Pyo; Hong, S.H.; Jung, N.Y.; Kim, S.T.; Kim, H.T.; Lee, K.S.; Kim, K.M.; Bang, E.N.; Chang, Y.B.; Kim, H.K.; Chu, Y.; Kim, Y.O.; Park, S.H.; Woo, I.S.; Hong, J.S.; Kim, S.W.; Park, K.R.; Na, H.K.; Yang, H.L.; Kim, Y.S.

    2011-01-01

    Korea Superconducting Tokamak Advanced Research (KSTAR) is upgraded for its KSTAR 3rd campaign for new target mission to produce the D-shaped plasma with a target plasma current of 500 kA and/or pulse length of 5 s. New Plasma Facing Components (PFCs) are installed which leads to the increase of the surface area of the vessel by a factor of about 5. The vacuum conditioning such as the vessel baking has been performed in order to remove various kinds of impurities including H 2 O, carbon and oxygen for the plasma. The total outgassing rate in the KSTAR 1st campaign was measured as 1.5 x 10 -4 mbar l s -1 which is increased by a factor of 3 (6.49 x 10 -4 mbar l s -1 ) in the KSTAR 3rd campaign. Nevertheless, the outgassing rates per unit area have been decreased from 9.31 x 10 -5 mbar l m -2 s -1 to 1.22 x 10 -5 mbar l m -2 s -1 due to the upgrade of baking system and series of baking operation.

  1. Compact UHV valve with field replaceable windows

    International Nuclear Information System (INIS)

    Johnson, E.D.; Freeman, J.; Powell, F.

    1991-01-01

    There are many applications in synchrotron radiation research where window valves can be usefully employed. Examples include gas cells for monochromator calibration, filters for high order light rejection, and as vacuum isolation elements between machine and experimental vacua. Often these devices are fairly expensive, and have only fixed (ie non-removable) windows. The development of a new type of seal technology by VAT for their series 01 valves provides a gate surface which is free from obstructions due to internal mechanical elements. This feature allows a threaded recess to be machined into the gate to receive a removable window frame which can carry standard size Luxel thin film windows. The combination of these features results in a DN 40 (2.75in. conflat flange) valve which provides a clear aperture of 21mm diameter for the window material. 8 refs., 2 figs

  2. High-quality EuO thin films the easy way via topotactic transformation

    Science.gov (United States)

    Mairoser, Thomas; Mundy, Julia A.; Melville, Alexander; Hodash, Daniel; Cueva, Paul; Held, Rainer; Glavic, Artur; Schubert, Jürgen; Muller, David A.; Schlom, Darrell G.; Schmehl, Andreas

    2015-07-01

    Epitaxy is widely employed to create highly oriented crystalline films. A less appreciated, but nonetheless powerful means of creating such films is via topotactic transformation, in which a chemical reaction transforms a single crystal of one phase into a single crystal of a different phase, which inherits its orientation from the original crystal. Topotactic reactions may be applied to epitactic films to substitute, add or remove ions to yield epitactic films of different phases. Here we exploit a topotactic reduction reaction to provide a non-ultra-high vacuum (UHV) means of growing highly oriented single crystalline thin films of the easily over-oxidized half-metallic semiconductor europium monoxide (EuO) with a perfection rivalling that of the best films of the same material grown by molecular-beam epitaxy or UHV pulsed-laser deposition. As the technique only requires high-vacuum deposition equipment, it has the potential to drastically improve the accessibility of high-quality single crystalline films of EuO as well as other difficult-to-synthesize compounds.

  3. Empirical Formulas for Calculation of Negative Pressure Difference in Vacuum Pipelines

    Directory of Open Access Journals (Sweden)

    Marek Kalenik

    2015-10-01

    Full Text Available The paper presents the analysis of results of empirical investigations of a negative pressure difference in vacuum pipelines with internal diameters of 57, 81, 102 mm. The investigations were performed in an experimental installation of a vacuum sewage system, built in a laboratory hall on a scale of 1:1. The paper contains a review of the literature concerning two-phase flows (liquid-gas in horizontal, vertical and diagonal pipelines. It presents the construction and working principles of the experimental installation of vacuum sewage system in steady and unsteady conditions during a two-phase flow of water and air. It also presents a methodology for determination of formula for calculation of a negative pressure difference in vacuum pipelines. The results obtained from the measurements of the negative pressure difference Δpvr in the vacuum pipelines were analyzed and compared with the results of calculations of the negative pressure difference Δpvr, obtained from the determined formula. The values of the negative pressure difference Δpvr calculated for the vacuum pipelines with internal diameters of 57, 81, and 102 mm with the use of Formula (19 coincide with the values of Δpvr measured in the experimental installation of a vacuum sewage system. The dependence of the negative pressure difference Δpvr along the length of the vacuum pipelines on the set negative pressure in the vacuum container pvzp is linear. The smaller the vacuum pipeline diameter, the greater the negative pressure difference Δpvr is along its length.

  4. Experiences on vacuum conditioning in the cryostat of KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Pyo, E-mail: kpkim@nfri.er.ke [National Fusion Research Institute, Daejeon (Korea, Republic of); Woo, I.S.; Chang, Y.B.; Kwag, S.W.; Song, N.H.; Bang, E.N.; Hong, J.S.; Chu, Y.; Park, K.R. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Highlights: ► The vacuum of the cryostat has been stably maintained during the KSTAR operation. ► The detected cold leak at the PF/CS coils and CS structure. ► The present helium leak makes no issue for the cryostat operation. -- Abstract: Korea Superconducting Tokamak Advanced Research (KSTAR) device has been successfully operated for the plasma experiment from KSTAR 1st campaign to 4th campaign. The main pumping system for the cryostat has to maintain the target pressure below 1.0 × 10{sup −4} mbar at room temperature and 1.0 × 10{sup −5} mbar at extremely low temperature for the plasma experiment against the air leak coming from ports of vessel and/or the helium leak from cooling loops in the cryostat. No leak has been detected at room temperature. Unexpectedly, the cold-leak appeared in the cryostat at temperature around 50 K during the cool-down in the KSTAR 2nd campaign. We carefully analyzed the characteristics of detected cold leak because it can cause the increase of the base pressure in the cryostat. After the cool-down, the leak detection was performed to locate the position and size of the leak by the pressurizing the loops. As a result, it is found that the cold leak was located at cooling loops for PF/CS coils and CS structure. Nevertheless, the vacuum inside the cryostat was well maintained below 6.0 × 10{sup −8} mbar during the entire operation period. The impact of the He-leak in present status on the plasma operation is negligible. However, we have found that the leak rate increases as a function of time. Therefore careful monitoring on cold-leak is an important technical issue for the operation of superconducting tokamak.

  5. Note: Ultra-low birefringence dodecagonal vacuum glass cell

    Energy Technology Data Exchange (ETDEWEB)

    Brakhane, Stefan, E-mail: brakhane@iap.uni-bonn.de; Alt, Wolfgang; Meschede, Dieter; Robens, Carsten; Moon, Geol; Alberti, Andrea [Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, D-53115 Bonn (Germany)

    2015-12-15

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10{sup −8}. After baking the cell at 150 °C, we reach a pressure below 10{sup −10} mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  6. Mechanical properties of lunar materials under anhydrous, hard vacuum conditions: applications of lunar glass structural components

    International Nuclear Information System (INIS)

    Blacic, J.D.

    1984-01-01

    Lunar materials and derivatives such as glass may possess very high tensile strengths compared to equivalent materials on earth because of the absence of hydrolytic weakening processes on the moon and in the hard vacuum of free space. Hydrolyzation of Si-O bonds at crack tips or dislocations reduces the strength of silicates by about an order of magnitude in earth environments. However, lunar materials are extremely anhydrous and hydrolytic weakening will be suppressed in free space. Thus, the geomechanical properties of the moon and engineering properties of lunar silicate materials in space environments will be very different than equivalent materials under earth conditions where the action of water cannot be conveniently avoided. Possible substitution of lunar glass for structural metals in a variety of space engineering applications enhances the economic utilization of the moon. 26 references, 3 figures, 2 tables

  7. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    International Nuclear Information System (INIS)

    McPhee, William S.

    1999-01-01

    construct a pre-prototype of the nozzle, blast head with wind curtain, sensors, and dust separator and test this system to assess the performance of the new design under controlled conditions at the contractor's facility. In phase III, the Contractor shall design and construct a prototype of the High Productivity Vacuum Blasting System, based on the results of the pre-prototype design and testing performed. This unit will be a full-scale prototype and will be tested at a designated Department of Energy (DOE) facility. Based on the results, the system performance, the productivity, and the economy of the improved vacuum blasting system will be evaluated

  8. Influence of Gap Distance on Vacuum Arc Characteristics of Cup Type AMF Electrode in Vacuum Interrupters

    International Nuclear Information System (INIS)

    Cheng Shaoyong; Xiu Shixin; Wang Jimei; Shen Zhengchao

    2006-01-01

    The greenhouse effect of SF 6 is a great concern today. The development of high voltage vacuum circuit breakers becomes more important. The vacuum circuit breaker has minimum pollution to the environment. The vacuum interrupter is the key part of a vacuum circuit breaker. The interrupting characteristics in vacuum and arc-controlling technique are the main problems to be solved for a longer gap distance in developing high voltage vacuum interrupters. To understand the vacuum arc characteristics and provide effective technique to control vacuum arc in a long gap distance, the arc mode transition of a cup-type axial magnetic field electrode is observed by a high-speed charge coupled device (CCD) video camera under different gap distances while the arc voltage and arc current are recorded. The controlling ability of the axial magnetic field on vacuum arc obviously decreases when the gap distance is longer than 40 mm. The noise components and mean value of the arc voltage significantly increase. The effective method for controlling the vacuum arc characteristics is provided by long gap distances based on the test results. The test results can be used as a reference to develop high voltage and large capacity vacuum interrupters

  9. Vacuum-assisted delivery

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000514.htm Vacuum-assisted delivery To use the sharing features on this page, ... through the birth canal. When is Vacuum-assisted Delivery Needed? Even after your cervix is fully dilated ( ...

  10. R and D ERL: Vacuum

    International Nuclear Information System (INIS)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the ∼10 -9 torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2 o K is reduced to low 10 -11 torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The cryostat vacuum thermally

  11. Design of the MFTF external vacuum system

    International Nuclear Information System (INIS)

    Holl, P.M.

    1979-01-01

    As a result of major experiment success in the LLL mirror program on start-up and stabilization of plasmas in minimum-B magnetic geometry, a Mirror Fusion Test Facility (MFTF) is under construction. Completion is scheduled for September, 1981. MFTF will be used to bridge the gap between present day small mirror experiments and future fusion-reactor activity based on magnetic mirrors. The focal point of the Mirror Fusion Test Facility is the 35 foot diameter by 60 foot long vacuum vessel which encloses the superconducting magnets. High vacuum conditions in the vessel are required to establish and maintain a plasma, and to create and deliver energetic neutral atoms to heat the plasma at the central region

  12. Development of a focused ion beam micromachining system

    Energy Technology Data Exchange (ETDEWEB)

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  13. Nanoscale processes on insulating surfaces

    National Research Council Canada - National Science Library

    Gnecco, Enrico; Szymoński, Marek

    2009-01-01

    ... the group of Prof. Ernst Meyer in Basel, where he investigated friction processes on alkali halide surfaces in ultra high vacuum (UHV). The main result was the observation of a logarithmic velocity dependence of atomic friction, which was interpreted within a combination of the classical Tomlinson and Eyring models. After his Ph.D. he joined the ...

  14. Degradation of interface between boron subphthalocyanine chloride and fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Ming-Fai; Guan, Zhi-Qiang [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Chan, Chiu-Yee [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Ng, Tsz-Wai, E-mail: tszwaing@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Lee, Chun-Sing, E-mail: apcslee@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); City University of Hong Kong Shenzhen Research Institute, Shenzhen (China)

    2015-10-01

    Highlights: • SubPc/C{sub 60} device shows a fast Voc decade upon operation. • The HOMO-LUMO offset at a SubPc/C60 heterojunction decreases from 1.66 to 1.45 eV upon aging in UHV. • It is caused by internal deterioration of the donor/acceptor interface. - Abstract: Apart from external environmental factors, we herein show with ultra-violet photoemission spectroscopy (UPS) studies that degradation in organic photovoltaic (OPV) devices can also be caused by internal deterioration of the donor/acceptor interface. Albeit with impressive initial open circuit voltage (Voc), boron subphthalocyanine chloride (SubPc)/fullerene (C{sub 60}) device shows a fast Voc decade upon operation. UPS results show that the energy offset between the highest occupied molecular orbit (HOMO) of SubPc and the lowest unoccupied molecular orbit (LUMO) of C{sub 60} is reduced from 1.66 to 1.45 eV after aging in ultra-high vacuum (UHV) condition. This result is consistent with the change in built-in voltage of the corresponding device upon operation. The related charge interaction and degradation mechanism in the SubPc/C{sub 60} device are discussed.

  15. A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system

    Energy Technology Data Exchange (ETDEWEB)

    Maibach, Julia; Xu, Chao; Gustafsson, Torbjörn; Edström, Kristina [Department of Chemistry–Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Eriksson, Susanna K. [Department of Chemistry–Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala (Sweden); Åhlund, John [VG Scienta AB, Box 15120, SE-750 15 Uppsala (Sweden); Siegbahn, Hans; Rensmo, Håkan; Hahlin, Maria, E-mail: maria.hahlin@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2015-04-15

    We report a methodology for a direct investigation of the solid/liquid interface using high pressure x-ray photoelectron spectroscopy (HPXPS). The technique was demonstrated with an electrochemical system represented by a Li-ion battery using a silicon electrode and a liquid electrolyte of LiClO{sub 4} in propylene carbonate (PC) cycled versus metallic lithium. For the first time the presence of a liquid electrolyte was realized using a transfer procedure where the sample was introduced into a 2 mbar N{sub 2} environment in the analysis chamber without an intermediate ultrahigh vacuum (UHV) step in the load lock. The procedure was characterized in detail concerning lateral drop gradients as well as stability of measurement conditions over time. The X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the solid substrate and the liquid electrolyte can be observed simultaneously. The results show that the solid electrolyte interphase (SEI) composition for the wet electrode is stable within the probing time and generally agrees well with traditional UHV studies. Since the methodology can easily be adjusted to various high pressure photoelectron spectroscopy systems, extending the approach towards operando solid/liquid interface studies using liquid electrolytes seems now feasible.

  16. Degradation of interface between boron subphthalocyanine chloride and fullerene

    International Nuclear Information System (INIS)

    Lo, Ming-Fai; Guan, Zhi-Qiang; Chan, Chiu-Yee; Ng, Tsz-Wai; Lee, Chun-Sing

    2015-01-01

    Highlights: • SubPc/C 60 device shows a fast Voc decade upon operation. • The HOMO-LUMO offset at a SubPc/C60 heterojunction decreases from 1.66 to 1.45 eV upon aging in UHV. • It is caused by internal deterioration of the donor/acceptor interface. - Abstract: Apart from external environmental factors, we herein show with ultra-violet photoemission spectroscopy (UPS) studies that degradation in organic photovoltaic (OPV) devices can also be caused by internal deterioration of the donor/acceptor interface. Albeit with impressive initial open circuit voltage (Voc), boron subphthalocyanine chloride (SubPc)/fullerene (C 60 ) device shows a fast Voc decade upon operation. UPS results show that the energy offset between the highest occupied molecular orbit (HOMO) of SubPc and the lowest unoccupied molecular orbit (LUMO) of C 60 is reduced from 1.66 to 1.45 eV after aging in ultra-high vacuum (UHV) condition. This result is consistent with the change in built-in voltage of the corresponding device upon operation. The related charge interaction and degradation mechanism in the SubPc/C 60 device are discussed.

  17. Computer controlled vacuum control system for synchrotron radiation beam lines

    International Nuclear Information System (INIS)

    Goldberg, S.M.; Wang, C.; Yang, J.

    1983-01-01

    The increasing number and complexity of vacuum control systems at the Stanford Synchrotron Radiation Laboratory has resulted in the need to computerize its operations in order to lower costs and increase efficiency of operation. Status signals are transmitted through digital and analog serial data links which use microprocessors to monitor vacuum status continuously. Each microprocessor has a unique address and up to 256 can be connected to the host computer over a single RS232 data line. A FORTRAN program on the host computer will request status messages and send control messages via only one RS232 line per beam line, signal the operator when a fault condition occurs, take automatic corrective actions, warn of impending valve failure, and keep a running log of all changes in vacuum status for later recall. Wiring costs are thus greatly reduced and more status conditions can be monitored without adding excessively to the complexity of the system. Operators can then obtain status reports at various locations in the lab quickly without having to read a large number of meter and LED's

  18. Performance of a Rapid-Scan Vacuum Michelson Interferometer at the NSLS

    International Nuclear Information System (INIS)

    Brierly, P.; Dumas, P.; Smith, M.; Williams, G.P.

    2001-01-01

    A commercial Nicolet Magna series rapid-scan Michelson Fourier Transform Infrared (FTIR) was installed in a vacuum housing and integrated into the U4IR beamline at the National Synchrotron Light Source at Brookhaven National Laboratory. The frequency reference laser was mounted outside vacuum, but the moving mirror mechanism and the dynamic alignment system for the fixed mirror were in vacuum. The performance of the instrument was measured in the usual way by measuring the repeatability of data collected under specific conditions of aperture, resolution and mirror scanning velocity. We briefly discuss the beamline design, to put the interferometer in context, then present signal to noise data which we discuss in terms of both instrument performance and also storage ring stability. Under optimal conditions, the instrument has a reproducibility of 0.01% in 1 minute of measuring time at a resolution of 2 cmss, -1 , over a range from 100-3000 cm -1

  19. CryoCart Restoration and Vacuum Pipe Construction

    Science.gov (United States)

    Chaidez, Mariana

    2016-01-01

    Propulsion systems that utilize hypergolic propellants have been used to power space vehicles since the beginning of the space program. Liquid methane and oxygen propulsion systems have emerged as an alternative and have proven to be more environmentally friendly. The incorporation of liquid methane/liquid oxygen (LOX) into the propulsion system has demonstrated an increase in engine performance, as well as a reduction in the volume, size and complexity of the system. Consequently, reducing the total mass of the vehicle which is a crucial aspect that is considered when planning space missions to both the Moon and Mars [1]. Project Morpheus has made significant advancements in liquid oxygen/liquid methane propulsion system technologies by incorporating a LOX/methane propulsion system to a vertical test bed. The vehicle consisted of a 5,000 lb main engine and four 20 lb remote control system (RCS) engines that utilize liquid methane/LOX as its propellant [1]. The vehicle completed successful flight testing at Kennedy Space Center in 2014 which marked the completion of the Morpheus project. Subsequent projects utilizing Morpheus' vertical test bed have been developed to make further advancements. One of the subsequent projects consisted of the addition of a smaller 2,000 lb main engine and a cold helium heat exchanger which would make it possible for a pressurant tank systems to be send to Mars or the Moon by significantly decreasing the overall mass and volume of the pressurant tank. The hot fire tests of the integrated system with the smaller main engine and cold helium heat exchanger were successful at sea level, but further studies are being conducted to better understand how the vertical test bed will behave under thermal-vacuum conditions. For this reason, the integrated vehicle will be taken to Plum Brook to be tested in a chamber capable of simulating these conditions. To ensure that the vehicle will function properly under vacuum conditions, testing will be

  20. Vacuum evaporation of pure metals

    OpenAIRE

    Safarian, Jafar; Engh, Thorvald Abel

    2013-01-01

    Theories on the evaporation of pure substances are reviewed and applied to study vacuum evaporation of pure metals. It is shown that there is good agreement between different theories for weak evaporation, whereas there are differences under intensive evaporation conditions. For weak evaporation, the evaporation coefficient in Hertz-Knudsen equation is 1.66. Vapor velocity as a function of the pressure is calculated applying several theories. If a condensing surface is less than one collision...

  1. COMBINED THEORETICAL AND EXPERIMENTAL INVESTIGATION OF MECHANISMS AND KINETICS OF VAPOR-PHASE MERCURY UPTAKE BY CARBONACOUES SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Radisav D. Vidic

    2002-05-01

    The first part of this study evaluated the application of a versatile optical technique to study the adsorption and desorption of model adsorbates representative of volatile polar (acetone) and non-polar (propane) organic compounds on a model carbonaceous surface under ultra high vacuum (UHV) conditions. The results showed the strong correlation between optical differential reflectance (ODR) and adsorbate coverage determined by temperature programmed desorption (TPD). ODR technique was proved to be a powerful tool to investigate surface adsorption and desorption from UHV to high pressure conditions. The effects of chemical functionality and surface morphology on the adsorption/desorption behavior of acetone, propane and mercury were investigated for two model carbonaceous surfaces, namely air-cleaved highly oriented pyrolytic graphite (HOPG) and plasma-oxidized HOPG. They can be removed by thermal treatment (> 500 K). The presence of these groups almost completely suppresses propane adsorption at 90K and removal of these groups leads to dramatic increase in adsorption capacity. The amount of acetone adsorbed is independent of surface heat treatment and depends only on total exposure. The effects of morphological heterogeneity is evident for plasma-oxidized HOPG as this substrate provides greater surface area, as well as higher energy binding sites. Mercury adsorption at 100 K on HOPG surfaces with and without chemical functionalities and topological heterogeneity created by plasma oxidation occurs through physisorption. The removal of chemical functionalities from HOPG surface enhances mercury physisorption. Plasma oxidation of HOPG provides additional surface area for mercury adsorption. Mercury adsorption by activated carbon at atmospheric pressure occurs through two distinct mechanisms, physisorption below 348 K and chemisorption above 348 K. No significant impact of oxygen functionalities was observed in the chemisorption region. The key findings of this study

  2. Assessment of differences between products obtained in conventional and vacuum spray dryer

    Directory of Open Access Journals (Sweden)

    Fernanda de Melo RAMOS

    Full Text Available Abstract In this work, an experimental unit of a vacuum spray dryer was built. This prototype attempted to combine the advantages of freeze-drying (drying at low temperatures due to vacuum and spray drying (increase of surface area aiming the improvement of heat transfer efficiency. Maltodextrin solutions were dried in the vacuum operated equipment and in conventional spray dryer. The vacuum spray dryer system allowed obtaining powder at low temperatures due to the lowering of pressure conditions (2-5 kPa inside the drying chamber. The products obtained in the two systems were characterized and compared for particle size distribution, moisture content, water activity, bulk density and solubility in water. The processes yields were also evaluated and compared. The vacuum spray dryer system allowed the production of larger, more soluble and less dense particles than those obtained in the conventional configuration of the equipment, resulting in drier and, therefore, with lower water activity particles. Thus, the use of the vacuum spray dryer as a drying technique may be an alternative for the production of powder rich in thermosensitive compounds.

  3. Removal of salt from rare earth precipitates by vacuum distillation

    International Nuclear Information System (INIS)

    Yang, Hee-Chul; Eun, Hee-Chul; Cho, Yong-Zun; Park, Hwan-Seo; Kim, In-Tae

    2008-01-01

    This study investigated the distillation rates of LiCl-KCl eutectic salt from the rare earth (RE) precipitates originating from the oxygen-sparging RE precipitation process. The first part study investigated distillation rates of eutectic salt under different vacuums at high temperatures by using thermo-gravimetric furnace system. The second part study tested the removal efficiency of eutectic salt from RE precipitates by using the laboratory vacuum distillation furnace system. Investigated variables were the temperature, the degree of vacuum and the time. Salt distillation operation with a moderated distillation rate of 10 -4 - 10 -5 mole sec -1 cm -2 is possible at temperature less than 1300 K and vacuums of 5-50 Torr, by minimizing the potentials of the RE particle entrainment. An increase in the vaporizing surface area is relatively effective for removing the residual salt in pores of bulk of the precipitated RE particles, when compared to that for the vaporizing time. Over 99.9% of the salt removal from the salt-RE precipitate mixture could be achieved by increasing the vaporizing surface area under moderate vacuum conditions of 50 Torr at 1200 K. (author)

  4. The Planck Vacuum and the Schwarzschild Metrics

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-07-01

    Full Text Available The Planck vacuum (PV is assumed to be the source of the visible universe. So under conditions of sufficient stress, there must exist a pathway through which energy from the PV can travel into this universe. Conversely, the passage of energy from the visible universe to the PV must also exist under the same stressful conditions. The following examines two versions of the Schwarzschild metric equation for compatability with this open-pathway idea.

  5. Versatile piezoelectric pulsed molecular beam source for gaseous compounds and organic molecules with femtomole accuracy for UHV and surface science applications

    International Nuclear Information System (INIS)

    Schiesser, Alexander; Schaefer, Rolf

    2009-01-01

    This note describes the construction of a piezoelectric pulsed molecular beam source based upon a design presented in an earlier work [D. Proch and T. Trickl, Rev. Sci. Instrum. 60, 713 (1988)]. The design features significant modifications that permit the determination of the number of molecules in a beam pulse with an accuracy of 1x10 11 molecules per pulse. The 21 cm long plunger-nozzle setup allows the molecules to be brought to any point of the UHV chamber with very high intensity. Furthermore, besides typical gaseous compounds, also smaller organic molecules with a vapor pressure higher than 0.1 mbar at room temperature may serve as feed material. This makes the new design suitable for various applications in chemical and surface science studies.

  6. The Activation of Non-evaporable Getters Monitored by AES, XPS, SSIMS and Secondary Electron Yield Measurements

    CERN Document Server

    Scheuerlein, C

    2002-01-01

    In this thesis the potential of the three classical surface analysis techniques Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectrometry (SSIMS) for the characterisation of non-evaporable getter (NEG) materials is assessed and artefacts are described. The various NEG samples have been analysed in the context of the development of NEG thin film coatings for use in accelerator ultra high vacuum (UHV) systems. The secondary electron yield (SEY), which is a functional surface property of great importance for the application of NEG to accelerators, has been measured. The maximum SEY of an air exposed TiZr and TiZrV coating can be reduced from above 2.0 to below 1.1 during a 2 h heat treatment at 250 and 200 °C, respectively. Saturating an activated TiZrV surface in UHV increases the maximum SEY by about 0.1. Thus, in UHV the SEY of an activated NEG coating does not exceed the threshold value of 1.35, above which multipacting is predicted to occur in th...

  7. Gravitation and vacuum field

    International Nuclear Information System (INIS)

    Tevikyan, R.V.

    1986-01-01

    This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory

  8. Modeling Vacuum Arcs On Spacecraft Solar Panel Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft charging and subsequent vacuum arcing poses a significant threat to satellites in LEO and GEO plasma conditions. Localized arc discharges can cause a...

  9. Plasma expansion into a vacuum with an arbitrarily oriented external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    García-Rubio, F., E-mail: fernando.garcia.rubio@upm.es; Sanz, J. [E.T.S.I. Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid 28040 (Spain); Ruocco, A. [Universitá degli studi di Napoli Federico II, 80138 Napoli (Italy)

    2016-01-15

    Plasma expansion into a vacuum with an external magnetic field is studied under the ideal magnetohydrodynamic hypothesis. The inclination of the magnetic field with respect to the expansion direction is arbitrary, and both the perpendicular and the oblique cases are separately analyzed. A self-similar solution satisfying the boundary conditions is obtained. The interface with the vacuum is treated as a fluid surface, and jump conditions concerning the momentum conservation are imposed. The effect of the intensity of the magnetic field and its inclination is thoroughly studied, and the consistency of the solution for small and large inclinations is investigated.

  10. On a metastable vacuum burning phenomenon

    International Nuclear Information System (INIS)

    Berezin, V.A.; Tkachev, I.I.; Kuzmin, V.A.; AN SSSR, Moscow. Inst. Yadernykh Issledovanij)

    1983-02-01

    Equations of motion of an interface between two phases with arbitrary equations of state are obtained. It is found that there may take place a process of metastable vacuum burning. It is shown that under some conditions the process of the new phase bubble expansion is described by the detonation wave equations. Possible cosmological consequences of the metastable phase burning effect are briefly discussed. (author)

  11. Vacuum arc localization in CLIC prototype radio frequency accelerating structures

    CERN Document Server

    AUTHOR|(CDS)2091976; Koivunen, Visa

    2016-04-04

    A future linear collider capable of reaching TeV collision energies should support accelerating gradients beyond 100 MV/m. At such high fields, the occurrence of vacuum arcs have to be mitigated through conditioning, during which an accelerating structure’s resilience against breakdowns is slowly increased through repeated radio frequency pulsing. Conditioning is very time and resource consuming, which is why developing more efficient procedures is desirable. At CERN, conditioning related research is conducted at the CLIC high-power X-band test stands. Breakdown localization is an important diagnostic tool of accelerating structure tests. Abnormal position distributions highlight issues in structure design, manufacturing or operation and may consequently help improve these processes. Additionally, positioning can provide insight into the physics of vacuum arcs. In this work, two established positioning methods based on the time-difference-ofarrival of radio frequency waves are extended. The first method i...

  12. Commissioning of the vacuum straw tracker for the COSY-TOF spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, Matthias; Ritman, James; Voigtlaender, Pierre; Wintz, Peter [Institut fuer Kernphysik I, Forschungszentrum Juelich GmbH (Germany)

    2009-07-01

    The Straw-Tracker at COSY-TOF is a system of 3120 Straws arranged in 30 layers. These are operated at 1.2 bar drift-gas pressure in the TOF vacuum so that they are self-supporting, despite their mylar wrapping being only 30 {mu}m thick. As a result the total radiation length amounts to only 1 %. The operation with 1500 V anode voltage in medium vacuum at {approx}5.10{sup -3} mbar imposes stringent demands on detector design and handling. In this talk the system is introduced and it is reported on the commissioning during the year 2008. The emphasis is placed on vacuum operation and results on the efficiency and resolution under experiment conditions.

  13. Vacuum pumping concepts for ETF

    International Nuclear Information System (INIS)

    Homeyer, W.G.

    1980-09-01

    The Engineering Test Facility (ETF) poses unique vacuum pumping requirements due to its large size and long burn characteristics. These requirements include torus vacuum pumping initially and between burns and pumping of neutralized gas from divertor collector chambers. It was found that the requirements could be met by compound cryopumps in which molecular sieve 5A is used as the cryosorbent. The pumps, ducts, and vacuum valves required are large but fit with other ETF components and do not require major advances in vacuum pumping technology. Several additional design, analytical, and experimental studies were identified as needed to optimize designs and provide better design definition for the ETF vacuum pumping systems

  14. Experiments with background gas in a vacuum arc centrifuge

    International Nuclear Information System (INIS)

    Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.

    1996-01-01

    Since promising isotope separation results were first reported by Krishnan et al. in 1981, a range of vacuum arc centrifuge experiments have been conducted in laboratories around the world. The PCEN (Plasma CENtrifuge) vacuum arc centrifuge at the Brazilian National Institute for Space Research has been used for isotope separation studies with cathode materials of carbon and magnesium and also to investigate the performance in terms of the rotational velocity attained for different cathode materials. Here, a vacuum arc centrifuge has been operated with an initial filling gas of either argon or hydrogen for pressures ranging from 10 -3 to 10 -1 Pa. The angular velocity ω of the plasma has been determined by cross-correlating the signals from potential probes, and the electron temperature T has been deduced from Langmuir probe data. At high gas pressures and early times during the 14 ms plasma lifetime, high-frequency nonuniformities frequently observed in the vacuum discharge disappear, suggesting that the associated instability is suppressed. Under the same conditions, nonuniformities rotating with much lower angular velocities are observed in the plasma. Temperatures are reduced in the presence of the background gas, and the theoretical figure of merit for separation proportional to ω 2 /T is increased compared to its value in the vacuum discharge for both argon and hydrogen gas fillings

  15. Structure of Nonlocal quark vacuum condensate in non-perturbative QCD vacuum

    International Nuclear Information System (INIS)

    Xiang Qianfei; Ma Weixing; Zhou Lijuan; Jiang Weizhou

    2014-01-01

    Based on the Dyson-Schwinger Equations (DSEs) with the rainbow truncation, and Operator Product Expansion, the structure of nonlocal quark vacuum condensate in QCD, described by quark self-energy functions A_f and B_f given usually by the solutions of the DSEs of quark propagator, is predicted numerically. We also calculate the local quark vacuum condensate, quark-gluon mixed local vacuum condensate, and quark virtuality. The self-energy functions A_f and B_f are given by the parameterized quark propagator functions σ_v"f (p"2) and σ_s"f (p"2) of Roberts and Williams, instead of the numerical solutions of the DSEs. Our calculated results are in reasonable agreement with those of QCD sum rules, Lattice QCD calculations, and instanton model predictions, although the resulting local quark vacuum condensate for light quarks, u, d, s, are a little bit larger than those of the above theoretical predictions. We think the differences are caused by model dependence. The larger of strange quark vacuum condensate than u, d quark is due to the s quark mass which is more larger than u, d quark masses. Of course, the Roberts-Williams parameterized quark propagator is an empirical formulism, which approximately describes quark propagation. (authors)

  16. Estimating teat canal cross-sectional area to determine the effects of teat-end and mouthpiece chamber vacuum on teat congestion.

    Science.gov (United States)

    Penry, J F; Upton, J; Mein, G A; Rasmussen, M D; Ohnstad, I; Thompson, P D; Reinemann, D J

    2017-01-01

    The primary objective of this experiment was to assess the effect of mouthpiece chamber vacuum on teat-end congestion. The secondary objective was to assess the interactive effects of mouthpiece chamber vacuum with teat-end vacuum and pulsation setting on teat-end congestion. The influence of system vacuum, pulsation settings, mouthpiece chamber vacuum, and teat-end vacuum on teat-end congestion were tested in a 2×2 factorial design. The low-risk conditions for teat-end congestion (TEL) were 40 kPa system vacuum (Vs) and 400-ms pulsation b-phase. The high-risk conditions for teat-end congestion (TEH) were 49 kPa Vs and 700-ms b-phase. The low-risk condition for teat-barrel congestion (TBL) was created by venting the liner mouthpiece chamber to atmosphere. In the high-risk condition for teat-barrel congestion (TBH) the mouthpiece chamber was connected to short milk tube vacuum. Eight cows (32 quarters) were used in the experiment conducted during 0400 h milkings. All cows received all treatments over the entire experimental period. Teatcups were removed after 150 s for all treatments to standardize the exposure period. Calculated teat canal cross-sectional area (CA) was used to assess congestion of teat tissue. The main effect of the teat-end treatment was a reduction in CA of 9.9% between TEL and TEH conditions, for both levels of teat-barrel congestion risk. The main effect of the teat-barrel treatment was remarkably similar, with a decrease of 9.7% in CA between TBL and TBH conditions for both levels of teat-end congestion risk. No interaction between treatments was detected, hence the main effects are additive. The most aggressive of the 4 treatment combinations (TEH plus TBH) had a CA estimate 20% smaller than for the most gentle treatment combination (TEL plus TBL). The conditions designed to impair circulation in the teat barrel also had a deleterious effect on circulation at the teat end. This experiment highlights the importance of elevated mouthpiece

  17. Cold Vacuum Drying Instrument Air System Design Description. System 12

    International Nuclear Information System (INIS)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-01-01

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed and Instrument Air PandID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid PandID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility

  18. Cold Vacuum Drying Instrument Air System Design Description (SYS 12)

    Energy Technology Data Exchange (ETDEWEB)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-06-05

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed & Instrument Air P&ID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid P&ID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility.

  19. Shiva and Argus target diagnostics vacuum systems

    International Nuclear Information System (INIS)

    Glaros, S.S.; Mayo, S.E.; Campbell, D.; Holeman, D.

    1978-09-01

    The normal operation of LLL's Argus and Shiva laser irradiation facilities demand a main vacuum system for the target chamber and a separate local vacuum system for each of the larger appendage dianostics. This paper will describe the Argus and Shiva main vacuum systems, their respective auxiliary vacuum systems and the individual diagnostics with their respective special vacuum requirements and subsequent vacuum systems. Our latest approach to automatic computer-controlled vacuum systems will be presented

  20. CERN Vacuum-System Activities during the Long Shutdown 1: The LHC Beam Vacuum

    CERN Document Server

    Baglin, V; Chiggiato, P; Jimenez, JM; Lanza, G

    2014-01-01

    After the Long Shutdown 1 (LS1) and the consolidation of the magnet bus bars, the CERN Large Hadron Collider (LHC) will operate with nominal beam parameters. Larger beam energy, beam intensities and luminosity are expected. Despite the very good performance of the beam vacuum system during the 2010-12 physics run (Run 1), some particular areas require attention for repair, consolidation and upgrade. Among the main activities, a large campaign aiming at the repair of the RF bridges of some vacuum modules is conducted. Moreover, consolidation of the cryogenic beam vacuum systems with burst disk for safety reasons is implemented. In addition, NEG cartridges, NEG coated inserts and new instruments for the vacuum system upgrade are installed. Besides these activities, repair, consolidation and upgrades of other beam equipment such as collimators, kickers and beam instrumentations are carried out. In this paper, the motivation and the description for such activities, together with the expected beam vacuum performa...

  1. The AGS Booster vacuum systems

    International Nuclear Information System (INIS)

    Hseuh, H.C.

    1989-01-01

    The AGS Booster is a synchrotron for the acceleration of both protons and heavy ions. The design pressure of low 10 -11 mbar is required to minimize beam loss of the partially stripped heavy ions. To remove contaminants and to reduce outgassing, the vacuum chambers and the components located in them will be chemically cleaned, vacuum fired, baked then treated with nitric oxide. The vacuum sector will be insitu baked to a minimum of 200 degree C and pumped by the combination of sputter ion pumps and titanium sublimation pumps. This paper describes the design and the processing of this ultra high vacuum system, and the performance of some half-cell vacuum chambers. 9 refs., 7 figs

  2. The role of vacuum in the quality of TOF mass spectrometer

    International Nuclear Information System (INIS)

    Bhowmick, A.; Gadkari, S.C.; Yakhmi, J.V.; Sahni, V.C.

    2005-01-01

    The art in the designing of time-of-flight mass spectrometers has come across a long course of development. The present day state-of-the-art machines are essentially the outcome of knowledge from the advances in different other areas of technology. This article discusses exclusively the role of UHV to enhance the quality of the TOF mass spectrometers and its application to the recently developed high resolution TOF mass spectrometer at TP and PED-BARC. (author)

  3. TFCX pumped limiter and vacuum pumping system design and analysis

    International Nuclear Information System (INIS)

    Haines, J.R.

    1985-04-01

    Impurity control system design and performance studies were performed in support of the Tokamak Fusion Core Experiment (TFCX) pre-conceptual design. Efforts concentrated on pumped limiter and vacuum pumping system design configuration, thermal/mechanical and erosion lifetime performance of the limiter protective surface, and helium ash removal performance. The reference limiter design forms a continuous toroidal belt at the bottom of the device and features a flat surface with a single leading edge. The vacuum pumping system features large vacuum ducts (diameter approximately 1 m) and high-speed, compound cryopumps. Analysis results indicate that the limiter/vacuum pumping system design provides adequate helium ash removal. Erosion, primarily by disruption-induced vaporization and/or melting, limits the protective surface lifetime to about one calendar year or only about 60 full-power hours of operation. In addition to evaluating impurity control system performance for nominal TFCX conditions, these studies attempt to focus on the key plasma physics and engineering design issues that should be addressed in future research and development programs

  4. The symmetries of the vacuum

    International Nuclear Information System (INIS)

    Fleming, H.

    1985-01-01

    The vacuum equation of state required by cosmological inflation is taken seriously as a general property of the cosmological vacuum. This correctly restricts the class of theories which admit inflation. A model of such a vacuum is presented that leads naturally to the cosmological principle. (Author) [pt

  5. CHICSi - a compact ultra-high vacuum compatible detector system for nuclear reaction experiments at storage rings. II. Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, P.; Avdeichikov, V.; Carlen, L.; Jakobsson, B. E-mail: bo.jakobsson@kosufy.lu.se; Siwek, A.; Veldhuizen, E.J. van; Westerberg, L.; Whitlow, H.J

    2003-03-11

    We describe the detectors for identification of charged particles and fragments in CHICSi, a large solid angle multi-telescope system mounted inside an ultra-high vacuum (UHV), cluster-jet target chamber. CHICSi performs nuclear reaction experiments at storage rings. The telescopes consist of a first very thin, 10-14 {mu}m Si detector, a second 300 {mu}m (or possibly 500 {mu}m) ion implanted Si detector supplemented by a 6 mm GSO(Ce) scintillator read out by a photodiode (PD) or by a third 300 {mu}m Si detector. The telescopes provide full charge separation up to Z=17 and mass resolution up to A=9 in the energy range 0.7-60A MeV. The thin p-i-n diode detector, etched out from a 280 {mu}m Si wafer, and the GSO/PD detector, both exclusively developed for CHICSi, provide an energy resolution {<=}8%, while the standard 300 {mu}m detectors have {<=}2% energy resolution. Radiation stability of the Si detectors is confirmed up to an integrated flux of 10{sup 10} alpha particles. The GSO detector has 70% light collection efficiency with the optical coupling to the PD a simple open, 0.2 mm, gap. A new method, developed to perform absolute energy calibration for the GSO/PD detector is presented.

  6. CHICSi - a compact ultra-high vacuum compatible detector system for nuclear reaction experiments at storage rings. II. Detectors

    International Nuclear Information System (INIS)

    Golubev, P.; Avdeichikov, V.; Carlen, L.; Jakobsson, B.; Siwek, A.; Veldhuizen, E.J. van; Westerberg, L.; Whitlow, H.J.

    2003-01-01

    We describe the detectors for identification of charged particles and fragments in CHICSi, a large solid angle multi-telescope system mounted inside an ultra-high vacuum (UHV), cluster-jet target chamber. CHICSi performs nuclear reaction experiments at storage rings. The telescopes consist of a first very thin, 10-14 μm Si detector, a second 300 μm (or possibly 500 μm) ion implanted Si detector supplemented by a 6 mm GSO(Ce) scintillator read out by a photodiode (PD) or by a third 300 μm Si detector. The telescopes provide full charge separation up to Z=17 and mass resolution up to A=9 in the energy range 0.7-60A MeV. The thin p-i-n diode detector, etched out from a 280 μm Si wafer, and the GSO/PD detector, both exclusively developed for CHICSi, provide an energy resolution ≤8%, while the standard 300 μm detectors have ≤2% energy resolution. Radiation stability of the Si detectors is confirmed up to an integrated flux of 10 10 alpha particles. The GSO detector has 70% light collection efficiency with the optical coupling to the PD a simple open, 0.2 mm, gap. A new method, developed to perform absolute energy calibration for the GSO/PD detector is presented

  7. Regulating vacuum pump speed with feedback control

    International Nuclear Information System (INIS)

    Ludington, D.C.; Aneshansley, D.J.; Pellerin, R.; Guo, F.

    1992-01-01

    Considerable energy is wasted by the vacuum pump/motor on dairy farms. The output capacity (m 3 /min or cfm) of the vacuum pump always exceeds the capacity needed to milk cows and wash pipelines. Vacuum pumps run at full speed and load regardless of actual need for air. Excess air is admitted through a controller. Energy can be saved from electrical demand reduced by regulating vacuum pump speed according to air based on air usage. An adjustable speed drive (ASD) on the motor and controlled based upon air usage, can reduce the energy used by the vacuum pump. However, the ASD unit tested could not maintain vacuum levels within generally accepted guidelines when air usage changed. Adding a high vacuum reserve and a dual vacuum controller between the vacuum pump and the milking pipeline brought vacuum stability within guidelines. The ASD/dual vacuum system can reduce energy consumption and demand by at least 50 percent during milking and provide better vacuum stability than conventional systems. Tests were not run during washing cycles. Using 1990 costs and only the energy saved during milking, the simple payback on investment in new equipment for a 5 hp motor, speed controller and vacuum regulator would be about 5 years

  8. The Source of the Quantum Vacuum

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-01-01

    Full Text Available The quantum vacuum consists of virtual particles randomly appearing and disappearing in free space. Ordinarily the wavenumber (or frequency spectrum of the zero-point fields for these virtual particles is assumed to be unbounded. The unbounded nature of the spectrum leads in turn to an infinite energy density for the quantum vacuum and an infinite renormalization mass for the free particle. This paper argues that there is a more fundamental vacuum state, the Planck vacuum, from which the quantum vacuum emerges and that the “graininess” of this more fundamental vacuum state truncates the wavenumber spectrum and leads to a finite energy density and a finite renormalization mass.

  9. The Source of the Quantum Vacuum

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-01-01

    Full Text Available The quantum vacuum consists of virtual particles randomly appearing and disappearing in free space. Ordinarily the wavenumber (or frequency spectrum of the zero-point fields for these virtual particles is assumed to be unbounded. The unbounded nature of the spectrum leads in turn to an infinite energy density for the quantum vacuum and an infinite renormalization mass for the free particle. This paper argues that there is a more fundamental vacuum state, the Planck vacuum, from which the quantum vacuum emerges and that the "graininess" of this more fundamental vacuum state truncates the wavenumber spectrum and leads to a finite energy density and a finite renormalization mass.

  10. Investigation of lactose crystallization process during condensed milk cooling using native vacuum-crystallizer

    Directory of Open Access Journals (Sweden)

    E. I. Dobriyan

    2016-01-01

    Full Text Available One of the most general defects of condensed milk with sugar is its consistency heterogeneity – “candying”. The mentioned defect is conditioned by the presence of lactose big crystals in the product. Lactose crystals size up to 10 µm is not organoleptically felt. The bigger crystals impart heterogeneity to the consistency which can be evaluated as “floury”, “sandy”, “crunch on tooth”. Big crystals form crystalline deposit on the can or industrial package bottom in the form of thick layer. Industrial processing of the product with the defective process of crystallization results in the expensive equipment damage of the equipment at the confectionary plant accompanied with heavy losses. One of the factors influencing significantly lactose crystallization is the product cooling rate. Vacuum cooling is the necessary condition for provision of the product consistency homogeneity. For this purpose the vacuum crystallizers of “Vigand” company, Germany, are used. But their production in the last years has been stopped. All-Russian dairy research institute has developed “The references for development of the native vacuum crystallizer” according to which the industrial model has been manufactured. The produced vacuum – crystallizer test on the line for condensed milk with sugar production showed that the product cooling on the native vacuum-crystallizer guarantees production of the finished product with microstructure meeting the requirements of State standard 53436–2009 “Canned Milk. Milk and condensed cream with sugar”. The carried out investigations evidences that the average lactose crystals size in the condensed milk with sugar cooled at the native crystallizer makes up 6,78 µm. The granulometric composition of the product crystalline phase cooled at the newly developed vacuum-crystallizer is completely identical to granulometric composition of the product cooled at “Vigand” vacuum-crystallizer.

  11. Scroll vacuum pump

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Etsuo; Suganami, Takuya; Nishida, Mitsuhiro; Kitora, Yoshihisa; Yamamoto, Sakuei; Fujii, Kosaburo

    1988-02-25

    An effort is made to apply a scroll machine to development of a vacuum pump. In view of mechanical simplification and load patterns, the vacuum pump uses a rotating mechanism to produce paired vortices rotating around each center. Chip seal and atmospheric pressure are utilized for axial gap sealing while a spring and atmospheric pressure for the radial gap sealing. In both gaps, the sealing direction is stationary relative to the environment during rotation, making it much easier to achieve effective sealing as compared to oscillating pumps. Since the compression ratio is high in vacuum pumps, a zero top clearance form is adopted for the central portion of vortices and an gas release valve is installed in the rotating axis. A compact Oldham coupling with a small inertia force is installed behind the vortices to maintain the required phase relations between the vortices. These improvements result in a vacuum of 1 Pa for dry operation and 10/sup -2/ Pa for oil flooded operation of a single-stage scroll machine at 1800 rpm. (5 figs, 1 tab, 4 refs)

  12. Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.

  13. Cosmology with decaying vacuum energy

    International Nuclear Information System (INIS)

    Freese, K.; Adams, F.; Frieman, J.; Mottola, E.

    1987-09-01

    Motivated by recent attempts to solve the cosmological constant problem, we examine the observational consequences of a vacuum energy density which decays in time. For all times later than t ∼ 1 sec, the ratio of the vacuum to the total energy density of the universe must be small. Although the vacuum cannot provide the ''missing mass'' required to close the universe today, its presence earlier in the history of the universe could have important consequences. We discuss restrictions on the vacuum energy arising from primordial nucleosynthesis, the microwave and gamma ray background spectra, and galaxy formation. A small vacuum component at the era of nucleosynthesis, 0.01 5, but in some cases would severely distort the microwave spectrum. 9 refs., 3 figs

  14. Numerical analysis of high-speed Lithium jet flow under vacuum conditions

    International Nuclear Information System (INIS)

    Gordeev, Sergej; Groeschel, Friedrich; Stieglitz, Robert

    2016-01-01

    The EVEDA Li test loop (ELTL) [1] is aimed at validating the hydraulic stability of the Lithium (Li) target at a velocity up to 20 m/s at vacuum (≈10 −3 Pa). The ELTL has been designed to demonstrate the feasibility of the major components providing a neutron production liquid Li target for IFMIF. The rectangular shaped Li jet (cross-section 25 mm × 100 mm) necessitates for heat removal flow velocities of 15–20 m/s along a concave shaped back wall (curvature radius 250 mm) towards the outlet pipe, where the Li jet is subjected to vacuum before it finally enters the collecting quench tank. During the validation experiments within the ELTL acoustic waves within the target outlet pipe have been recorded, indicating potential cavitation processes in the jet impinging region, which may cause premature failures. In order to identify potential cavitation phenomena in correlation with the free jet flow in the outlet pipe a numerical study has been performed. The comparison measured and simulated acoustic emissions exhibits that experimentally deduced cavitation area coincides with the location of the jet wall impingement. The simulations further reveal that a part of the fluid after striking the wall even flows opposite to the gravity vector. This reversed flow is inherently unstable and characterized by waves at first growing and then bursting into droplets. The intense generation of small droplets increases significantly the Li free surface area and lead to a production of Li vapour, which is captured by the jet flow and reintroduced in the main flow. As the static pressure is recovered downstream due to jet impact, the vapour bubbles collapse and hence cavitation likely occurs.

  15. Numerical analysis of high-speed Lithium jet flow under vacuum conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, Sergej, E-mail: sergej.gordeev@kit.edu; Groeschel, Friedrich; Stieglitz, Robert

    2016-11-01

    The EVEDA Li test loop (ELTL) [1] is aimed at validating the hydraulic stability of the Lithium (Li) target at a velocity up to 20 m/s at vacuum (≈10{sup −3} Pa). The ELTL has been designed to demonstrate the feasibility of the major components providing a neutron production liquid Li target for IFMIF. The rectangular shaped Li jet (cross-section 25 mm × 100 mm) necessitates for heat removal flow velocities of 15–20 m/s along a concave shaped back wall (curvature radius 250 mm) towards the outlet pipe, where the Li jet is subjected to vacuum before it finally enters the collecting quench tank. During the validation experiments within the ELTL acoustic waves within the target outlet pipe have been recorded, indicating potential cavitation processes in the jet impinging region, which may cause premature failures. In order to identify potential cavitation phenomena in correlation with the free jet flow in the outlet pipe a numerical study has been performed. The comparison measured and simulated acoustic emissions exhibits that experimentally deduced cavitation area coincides with the location of the jet wall impingement. The simulations further reveal that a part of the fluid after striking the wall even flows opposite to the gravity vector. This reversed flow is inherently unstable and characterized by waves at first growing and then bursting into droplets. The intense generation of small droplets increases significantly the Li free surface area and lead to a production of Li vapour, which is captured by the jet flow and reintroduced in the main flow. As the static pressure is recovered downstream due to jet impact, the vapour bubbles collapse and hence cavitation likely occurs.

  16. Reactivity study on thermal cracking of vacuum residues

    Science.gov (United States)

    León, A. Y.; Díaz, S. D.; Rodríguez, R. C.; Laverde, D.

    2016-02-01

    This study focused on the process reactivity of thermal cracking of vacuum residues from crude oils mixtures. The thermal cracking experiments were carried out under a nitrogen atmosphere at 120psi between 430 to 500°C for 20 minutes. Temperature conditions were established considering the maximum fractional conversion reported in tests of thermogravimetry performed in the temperature range of 25 to 600°C, with a constant heating rate of 5°C/min and a nitrogen flow rate of 50ml/min. The obtained products were separated in to gases, distillates and coke. The results indicate that the behaviour of thermal reactivity over the chemical composition is most prominent for the vacuum residues with higher content of asphaltenes, aromatics, and resins. Finally some correlations were obtained in order to predict the weight percentage of products from its physical and chemical properties such as CCR, SARA (saturates, aromatics, resins, asphaltenes) and density. The results provide new knowledge of the effect of temperature and the properties of vacuum residues in thermal conversion processes.

  17. Approximated calculation of the vacuum wave function and vacuum energy of the LGT with RPA method

    International Nuclear Information System (INIS)

    Hui Ping

    2004-01-01

    The coupled cluster method is improved with the random phase approximation (RPA) to calculate vacuum wave function and vacuum energy of 2 + 1 - D SU(2) lattice gauge theory. In this calculating, the trial wave function composes of single-hollow graphs. The calculated results of vacuum wave functions show very good scaling behaviors at weak coupling region l/g 2 >1.2 from the third order to the sixth order, and the vacuum energy obtained with RPA method is lower than the vacuum energy obtained without RPA method, which means that this method is a more efficient one

  18. Cold Vacuum Drying (CVD) Facility Vacuum Purge System Chilled Water System Design Description. System 47-4

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    This system design description (SDD) addresses the Vacuum Purge System Chilled Water (VPSCHW) system. The discussion that follows is limited to the VPSCHW system and its interfaces with associated systems. The reader's attention is directed to Drawings H-1-82162, Cold Vacuum Drying Facility Process Equipment Skid PandID Vacuum System, and H-1-82224, Cold Vacuum Drying Facility Mechanical Utilities Process Chilled Water PandID. Figure 1-1 shows the location and equipment arrangement for the VPSCHW system. The VPSCHW system provides chilled water to the Vacuum Purge System (VPS). The chilled water provides the ability to condense water from the multi-canister overpack (MCO) outlet gases during the MCO vacuum and purge cycles. By condensing water from the MCO purge gas, the VPS can assist in drying the contents of the MCO

  19. Vacuum science, technology, and applications

    CERN Document Server

    Naik, Pramod K

    2018-01-01

    Vacuum plays an important role in science and technology. The study of interaction of charged particles, neutrals and radiation with each other and with solid surfaces requires a vacuum environment for reliable investigations. Vacuum has contributed immensely to advancements made in nuclear science, space, metallurgy, electrical/electronic technology, chemical engineering, transportation, robotics and many other fields. This book is intended to assist students, scientists, technicians and engineers to understand the basics of vacuum science and technology for application in their projects. The fundamental theories, concepts, devices, applications, and key inventions are discussed.

  20. Vacuum leak detector and method

    Science.gov (United States)

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  1. A double-multilayer monochromator using a modular design for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Yun, W.; Lai, B.; Barraza, J.; Kuzay, T.M.

    1994-01-01

    A novel double-multilayer monochromator has been designed for the Advanced Photon Source X-ray undulator beamline at Argonne National Laboratory. The monochromator consists of two ultra high-vacuum (UHV) compatible modular vessels, each with a sine-bar driving structure and a water-cooled multilayer holder. A high precision Y-Z stage is used to provide compensating motion for the second multilayer from outside the vacuum chamber so that the monochromator can fix the output monochromatic beam direction and angle during the energy scan in a narrow range. The design details for this monochromator are presented in this paper

  2. Growth of GaAs-nanowires on GaAs (111)B substrates induced by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Schott, Ruediger; Reuter, Dirk; Wieck, Andreas D. [Lehrstuhl fuer Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum (Germany)

    2011-07-01

    Semiconductor nanowires are a promising system for applications in the areas of electronics and photonics and also for exploring phenomena at the nanoscale. There are several approaches to grow nanowires at arbitrary sites on the wafer. We report about growing GaAs-nanowires on GaAs(111)B substrates via the vapour-liquid-solid (VLS) mechanism in an ultra-high-vacuum (UHV)-cluster of a molecular beam epitaxy (MBE) and a focused ion beam (FIB) system. Our idea is to implant metal seeds (especially Au) for the nanowire growth by in situ patterning using FIB. Due to the UHV transfer between the FIB and the MBE chamber, no further cleaning step of the substrate surface is necessary. Formations of organized GaAs-nanowires and high aspect ratios are observed.

  3. Technical specification for vacuum systems

    International Nuclear Information System (INIS)

    Khaw, J.

    1987-01-01

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10 -5 to 10 -11 Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components

  4. Effects of vacuum rapid thermal annealing on the electrical characteristics of amorphous indium gallium zinc oxide thin films

    Science.gov (United States)

    Lee, Hyun-Woo; Cho, Won-Ju

    2018-01-01

    We investigated the effects of vacuum rapid thermal annealing (RTA) on the electrical characteristics of amorphous indium gallium zinc oxide (a-IGZO) thin films. The a-IGZO films deposited by radiofrequency sputtering were subjected to vacuum annealing under various temperature and pressure conditions with the RTA system. The carrier concentration was evaluated by Hall measurement; the electron concentration of the a-IGZO film increased and the resistivity decreased as the RTA temperature increased under vacuum conditions. In a-IGZO thin-film transistors (TFTs) with a bottom-gate top-contact structure, the threshold voltage decreased and the leakage current increased as the vacuum RTA temperature increased. As the annealing pressure decreased, the threshold voltage decreased, and the leakage current increased. X-ray photoelectron spectroscopy indicated changes in the lattice oxygen and oxygen vacancies of the a-IGZO films after vacuum RTA. At higher annealing temperatures, the lattice oxygen decreased and oxygen vacancies increased, which suggests that oxygen was diffused out in a reduced pressure atmosphere. The formation of oxygen vacancies increased the electron concentration, which consequently increased the conductivity of the a-IGZO films and reduced the threshold voltage of the TFTs. The results showed that the oxygen vacancies and electron concentrations of the a-IGZO thin films changed with the vacuum RTA conditions and that high-temperature RTA treatment at low pressure converted the IGZO thin film to a conductor.

  5. A Study on the Development of Nonglass Solar Vacuum Tube Collector

    International Nuclear Information System (INIS)

    Oh, Seung Jin

    2008-02-01

    the ambient and gas emissions from the materials they were made of. The effect of vacuum levels inside a vacuum tube on the absorber plate were investigated in different conditions. Due to less heat losses to the ambient, the non-glass vacuum tube at vacuum level 10 -2 torr kept more heat at higher temperatures compared to the non-glass vacuum tube collectors whose vacuum levels were at 5 torr. However, the temperature was not linearly proportional to the vacuum level. Two types of solar collectors were used to investigate the ability of non-glass solar vacuum tube: one single glass evacuated tube and one non-glass vacuum tubes(10 -2 torr). The efficiency of a non-glass vacuum tube with 10 -2 torr was different from that of a single glass evacuated tube in which vacuum level is 10 -4 ∼10 -5 torr due to the transmittance of ZnO. Unlike glass evacuated tubes, non-glass solar vacuum tubes generally require some measures to prevent air infiltration through invisible pores of the tube wall and gas emission from the materials. If the problems related with vacuum inside a tube are solved, the non-glass vacuum collector will work more efficiently

  6. Gauge field vacuum structure in geometrical aspect

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    2003-01-01

    Vacuum conception is one of the main conceptions of quantum field theory. Its meaning in classical field theory is also very profound. In this case the vacuum conception is closely connected with ideas of the space-time geometry. The global and local geometrical space-time conceptions lead to different vacuum definitions and therefore to different ways of physical theory construction. Some aspects of the gauge field vacuum structure are analyzed. It is shown that in the gauge field theory the vacuum Einstein equation solutions describe the relativistic vacuum as common vacuum of all gauge fields and its sources. Instantons (both usual and hyperbolical) are regarded as nongravitating matter, because they have zero energy-momentum tensors and correspond to vacuum Einstein equations

  7. EKSTRAKSI MINYAK ATSIRI KULIT JERUK MANIS DENGAN METODE VACUUM MICROWAVE ASISSTED HYDRODISTILLATION

    Directory of Open Access Journals (Sweden)

    Megawati Megawati

    2015-12-01

    Full Text Available The objective of this research is to extract essential oil of sweet orange peel (Citrus sinensis using vacuum microwave assisted hydrodistillation (VMAHD method. The operation condition was at various orange peel mass (50, 100, and 150 g and extraction times (2, 4, 6, 8, and 10 min. The volume of water as solvent was about 300 mL. Before extraction, analysis of oil content in orange peel was conducted using solvent extraction by soxhlet method with 100 mL of n-hexane and 20 cycles number. The analysis resulted in the oils of sweet orange peel is about 3.2% v/w. Effect of extraction in vacuum conditions is studied by comparing the result of extraction in vacuum pressure to extraction at atmospheric pressure. The boiling temperature in atmospheric pressure was 80 oC and in vacuum pressure decreased to 50 oC. Thus oil yield in vacuum pressure is greater than at atmospheric pressure for 8 min of time. The experimental data showed that the oil yield is influenced by time; the longer time of extraction, oil yield obtained tends to be increased. In the material’s mass variation, oil yield tends to be decreased in percentage with increasing mass of material. The VMAHD method results on the oil content of 0.22% v/w yield obtained materials, test oil density of 0.84 g / mL, and essential oil dissolved in alcohol 70%. GC-MS analysis indicates that orange peel oil is composed of Limonene (96.69%, and Pinene (3.31%, which are in the class of sesquiterpenes

  8. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  9. Integration of cooking and vacuum cooling of carrots in a same vessel

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo Gonçalves Rodrigues

    2012-03-01

    Full Text Available Cooked vegetables are commonly used in the preparation of ready-to-eat foods. The integration of cooking and cooling of carrots and vacuum cooling in a single vessel is described in this paper. The combination of different methods of cooking and vacuum cooling was investigated. Integrated processes of cooking and vacuum cooling in a same vessel enabled obtaining cooked and cooled carrots at the final temperature of 10 ºC, which is adequate for preparing ready-to-eat foods safely. When cooking and cooling steps were performed with the samples immersed in boiling water, the effective weight loss was approximately 3.6%. When the cooking step was performed with the samples in boiling water or steamed, and the vacuum cooling was applied after draining the boiling water, water loss ranged between 15 and 20%, which caused changes in the product texture. This problem can be solved with rehydration using a small amount of sterile cold water. The instrumental textural properties of carrots samples rehydrated at both vacuum and atmospheric conditions were very similar. Therefore, the integrated process of cooking and vacuum cooling of carrots in a single vessel is a feasible alternative for processing such kind of foods.

  10. Vacuum metastability with black holes

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Philipp [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute, 31 Caroline Street North,Waterloo, ON, N2L 2Y5 (Canada); Moss, Ian G. annd [School of Mathematics and Statistics, Newcastle University,Newcastle Upon Tyne, NE1 7RU (United Kingdom)

    2015-08-24

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  11. Vacuum metastability with black holes

    International Nuclear Information System (INIS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G. annd

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  12. Minkowski vacuum transitions in (nongeometric) flux compactifications

    International Nuclear Information System (INIS)

    Herrera-Suarez, Wilberth; Loaiza-Brito, Oscar

    2010-01-01

    In this work we study the generalization of twisted homology to geometric and nongeometric backgrounds. In the process, we describe the necessary conditions to wrap a network of D-branes on twisted cycles. If the cycle is localized in time, we show how by an instantonic brane mediation, some D-branes transform into fluxes on different backgrounds, including nongeometric fluxes. As a consequence, we show that in the case of a IIB six-dimensional torus compactification on a simple orientifold, the flux superpotential is not invariant by this brane-flux transition, allowing the connection among different Minkowski vacuum solutions. For the case in which nongeometric fluxes are turned on, we also discuss some topological restrictions for the transition to occur. In this context, we show that there are some vacuum solutions protected to change by a brane-flux transition.

  13. Vacuum exhaust duct used for thermonuclear device

    International Nuclear Information System (INIS)

    Tachikawa, Nobuo; Kondo, Mitsuaki; Honda, Tsutomu.

    1990-01-01

    The present invention concerns a vacuum exhaust duct used for a thermonuclear device. A cylindrical metal liners is lined with a gap to the inside of a vacuum exhaust duct main body. Bellows are connected to both ends of the metal liners and the end of the bellows is welded to the vacuum exhaust duct main body. Futher, a heater is mounted to the metal liner on the side of the vacuum exhaust duct main body, and the metal liner is heated by the heater to conduct baking for the vacuum exhaust duct main body. Accordingly, since there is no requirement for elevating the temperature of the vacuum exhaust duct upon conducting baking, the vacuum exhaust duct scarcely suffers substantial deformation due to heat expansion. Further, there is also no substantial deformation for the bellows disposed between the outer circumference of the vacuum vessel and a portion of a vacuum exhaust duct, so that the durability of the bellows is greatly improved. (I.S.)

  14. Vacuum influence in the radurization of the Merluccius Merluccius Hubsi

    International Nuclear Information System (INIS)

    Ritacco, Miguel.

    1976-02-01

    A study was performed in order to determine the vacuum influence in the radurization of the merluce fillet in vaccum packed products irradiated at a dose of 0,5 Mrad. The product quality evaluation was performed using the periodical analysis of their organoleptic characteristics and determining the Trimetilamine values, Volatile Acid Number, Total Volatile Bases and Volatile Reducing Substances. The preservation state of the product was determined calculating the ''Edibility Index'' (Esub(I)). The results show that the vacuum packing conditions would allow to preserve at 4 deg C the merluce irradiated fillets during 48 days. (author) [es

  15. Vacuum ultraviolet photoabsorption spectroscopy of crystalline and amorphous benzene

    DEFF Research Database (Denmark)

    Dawes, Anita; Pascual, Natalia; Hoffmann, Soren V.

    2017-01-01

    We present the first high resolution vacuum ultraviolet photoabsorption study of amorphous benzene with com parisons to annealed crystalline benzene and the gas phase. Vapour deposited benzene layers w ere grow n at 25 K and annealed to 90 K under conditions pertinent to interstellaricy dust grains...

  16. Cold Vacuum Drying facility heating, ventilation, and Air Conditioning system design description

    International Nuclear Information System (INIS)

    SINGH, G.

    2000-01-01

    This System Design Description (SDD) addresses the HVAC system for the CVDF. The CVDF HVAC system consists of five subsystems: (1) Administration building HVAC system; (2) Process bay recirculation HVAC system; (3) Process bay local exhaust HVAC and process vent system; (4) Process general supply/exhaust HVAC system; and (5) Reference air system. The HVAC and reference air systems interface with the following systems: the fire protection control system, Monitoring and Control System (MCS), electrical power distribution system (including standby power), compressed air system, Chilled Water (CHW) system, drainage system, and other Cold Vacuum Drying (CVD) control systems not addressed in this SDD

  17. Oxygen effects on the interfacial electronic structure of titanyl phthalocyanine film: p-Type doping, band bending and Fermi level alignment

    International Nuclear Information System (INIS)

    Nishi, Toshio; Kanai, Kaname; Ouchi, Yukio; Willis, Martin R.; Seki, Kazuhiko

    2006-01-01

    The effect of oxygen doping on titanyl phthalocyanine (TiOPc) film was investigated by ultraviolet photoelectron spectroscopy (UPS). The electronic structure of the interface formed between TiOPc films deposited on highly oriented pyrolytic graphite (HOPG) was clearly different between the films prepared in ultrahigh vacuum (UHV) and under O 2 atmosphere (1.3 x 10 -2 Pa). The film deposited in UHV showed downward band bending characteristic of n-type semiconductor, possibly due to residual impurities working as unintentional n-type dopants. On the other hand, the film deposited under O 2 atmosphere showed upward band bending characteristic of p-type semiconductor. Such trends, including the conversion from n- to p-type, are in excellent correspondence with reported field effect transistor characteristics of TiOPc, and clearly demonstrates that bulk TiOPc film was p-doped with oxygen. In order to examine the Fermi level alignment between TiOPc film and the substrate, the energy of the highest occupied molecular orbital (HOMO) of TiOPc relative to the Fermi level of the conductive substrate was determined for various substrates. The alignment between the Fermi level of conductive substrate and Fermi level of TiOPc film at fixed energy in the bandgap was not observed for the TiOPc film prepared in UHV, possibly because of insufficient charge density in the TiOPc film. This situation was drastically changed when the TiOPc film exposed to O 2 , and clear alignment of the Fermi level fixed at 0.6 eV above the HOMO with the Fermi level of the conducting substrate was observed, probably by p-type doping effect of oxygen. These are the first direct and quantitative information about bulk oxygen doping from the viewpoint of the electronic structure. These results suggest that similar band bending with Fermi level alignment may be also achieved for other organic semiconductors under practical device conditions, and also call for caution at the comparison of experimental

  18. High vacuum test of the dynamic components of the cyclotron dee chamber at the 224 cm variable energy cyclotron

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.; Bandopadhyay, D.K.; Ghosh, D.K.; Gowariker, S.R.

    1979-01-01

    The 224 cm Variable Energy Cyclotron constructed and commissioned at Calcutta comprises a number of dynamic components in the high vacuum Dee Chamber. The static and dynamic conditions of these components have to be tested for high vacuum worthiness prior to their installation in the Dee Tank. A special set up was fabricated and used for simulating the Dee Chamber conditions and testing the components. A high vacuum of the order of 1 x 10 -5 torr was achieved under both dynamic and static conditions with and without coolant hydraulic pressures. The details of the set up, methods employed for the various tests carried out and the results obtained are described. (auth.)

  19. Use of tapered Pyrex capillary tubes to increase the mechanical stability of multiwall carbon nanotubes field emitters

    Science.gov (United States)

    Mousa, M. S.; Bani Ali, E. S.; Hagmann, M. J.

    2018-02-01

    In this study, NanocylTM NC 7000 Thin Multiwall Carbon Nanotubes (MWCNTs) were used with a high aspect ratio (>150) made by the process of catalytic chemical vapor deposition (CCVD). The field emitter tips were prepared by inserting these MWCT into fine glass capillary tubes that were pulled at high temperatures and then cut. Measurements were carried out under ultra-high vacuum (UHV) conditions with a base pressure of 10-9 mbar. The data show the effects of initial conditioning of MWCNT and hysteresis. Compression of the MWCNT by the capillary tubes appears to provide adequate mechanical support without requiring the use of a low-melting point electrically-conductive binder as has been used previously. Emission currents in excess of 1 μA were obtained so this technique shows promise as a reliable, stable, powerful electron source.

  20. Automatic electromagnetic valve for previous vacuum

    International Nuclear Information System (INIS)

    Granados, C. E.; Martin, F.

    1959-01-01

    A valve which permits the maintenance of an installation vacuum when electric current fails is described. It also lets the air in the previous vacuum bomb to prevent the oil ascending in the vacuum tubes. (Author)

  1. Distributed remote temperature monitoring system for INDUS-2 vacuum chambers

    International Nuclear Information System (INIS)

    Bhange, N.J.; Gothwal, P.; Fatnani, P.; Shukla, S.K.

    2011-01-01

    Indus-2, a 2.5 GeV Synchrotron Radiation Source (SRS) at Indore has a large vacuum system. The vacuum envelope of Indus-2 ring comprises of 16 dipole chambers as vital parts. Each chamber has 4 photon absorbers and three beam line ports blanked with end flanges. Temperature monitoring of critical vacuum components during operation of Indus-2 ring is an important requirement. The paper discusses a distributed, 160 channel remote temperature monitoring system developed and deployed for this purpose using microcontroller based, modular Temperature Monitoring Units (TMU). The cabling has been extensively minimized using RS485 system and keeping trip relay contacts of all units in series. For ensuring proper signal conditioning of thermocouple outputs (K-type) and successful operation over RS485 bus, many precautions were taken considering the close proximity to the storage ring. We also discuss the software for vacuum chamber temperature monitoring and safety system. The software developed using LabVIEW, has important features like modularity, client-server architecture, local and global database logging, alarms and trips, event and error logging, provision of various important configurations, communications handling etc. (author)

  2. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua provides information on the many aspects of vacuum technology, from material on the quantum theoretical aspects of the complex semi-conductors used for thermionic and photo-electric emission to data on the performance of commercially available pumps, gauges, and high-vacuum materials. The handbook satisfies the need of workers using vacuum apparatuses or works on the diverse applications of high-vacuum technology in research and industry. The book is a compilation of long articles prepared by experts in vacuum technology. Sufficient theoret

  3. Hadron Contribution to Vacuum Polarisation

    CERN Document Server

    Davier, M; Malaescu, B; Zhang, Z

    2016-01-01

    Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle–antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e− annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingre...

  4. Helical type vacuum container

    International Nuclear Information System (INIS)

    Owada, Kimio.

    1989-01-01

    Helical type vacuum containers in the prior art lack in considerations for thermal expansion stresses to helical coils, and there is a possibility of coil ruptures. The object of the present invention is to avoid the rupture of helical coils wound around the outer surface of a vacuum container against heat expansion if any. That is, bellows or heat expansion absorbing means are disposed to a cross section of a helical type vacuum container. With such a constitution, thermal expansion of helical coils per se due to temperature elevation of the coils during electric supply can be absorbed by expansion of the bellows or absorption of the heat expansion absorbing means. Further, this can be attained by arranging shear pins in the direction perpendicular to the bellows axis so that the bellows are not distorted when the helical coils are wound around the helical type vacuum container. (I.S.)

  5. PDX vacuum vessel stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.

    1975-01-01

    A stress analysis of PDX vacuum vessel is described and the summary of results is presented. The vacuum vessel is treated as a toroidal shell of revolution subjected to an internal vacuum. The critical buckling pressure is calculated. The effects of the geometrical discontinuity at the juncture of toroidal shell head and cylindrical outside wall, and the concavity of the cylindrical wall are examined. An effect of the poloidal field coil supports and the vessel outside supports on the stress distribution in the vacuum vessel is determined. A method evaluating the influence of circular ports in the vessel wall on the stress level in the vessel is outlined

  6. Ultra-high vacuum system of the Brookhaven National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Foerster, C.L.

    1995-01-01

    The rings of the National Synchrotron Light Source (NSLS) have been supplying light to numerous users for approximately a decade and recently a fully conditioned machine vacuum at design currents was obtained. A brief description of the x-ray storage ring, the VUV storage ring and their current supply is given along with some of their features. The ultra-high vacuum system employed for the storage rings and their advantages for the necessary stored beam environments are discussed including, a brief history of time. 15 refs., 2 tabs., 8 figs

  7. Quark and gluon condensate in vacuum

    International Nuclear Information System (INIS)

    Vajnshtejn, A.I.; Zakharov, V.I.; Shifman, M.A.

    1979-01-01

    The mechanism of quark confinement has been reviewed. The fact that coloured particles in a free state cannot be observed is connected with specific properties of vacuum in quantum chromodynamics. The basic hypothesis consists in the existence of vacuum fields, quark and gluon condensates, which affect the coloured objects. The vacuum transparent relative to noncharged ''white'' states serves as a source of the force acting upon the coloured particles. It has been a sucess to examine strictly the action of the vacuum fields on quarks when the distance between them is relatively small and the force of the vacuum fields on quarks is relatively small too. It is shown that the interaction with the vacuum fields manifests itself earlier than the forces connected with the gluon exchange do. It is assumed that the vacuum condensate of quarks and gluons and its relation to properties of resonances and to the bag model exist in reality. The dispersion sum rules are used for calculating masses and lepton widths of resonances

  8. CAS CERN Accelerator School vacuum technology. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1999-01-01

    These proceedings present the lectures given at the twelfth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Vacuum Technology'. Despite the importance of vacuum technology in the design and operation of particle accelerators at CERN and at the many other accelerators already installed around the world, this was the first time that CAS has organized a course devoted entirely to this topic. Perhaps this reflects the facts that vacuum has become one of the more critical aspects of future accelerators, and that many of the pioneers in the accelerator field are being replaced by new, younger personnel. The lectures start with the basic concepts of the physics and technology of vacuum followed by detailed descriptions of the many different types of gas-pumping devices and methods to measure the pressures achieved. The outgassing characteristics of the different materials used in the construction of vacuum systems and the optimisation of cleaning methods to reduce this outgassing are then explained together with the effects of the residual gases on the particle beams. Then follow chapters on leak detection, materials and vacuum system engineering. Finally, seminars are presented on designing vacuum systems, the history of vacuum devices, the LHC (large hadron collider) vacuum system, vacuum systems for electron storage rings, and quality assurance for vacuum. (orig.)

  9. ULTRARAPID VACUUM-MICROWAVE HISTOPROCESSING

    NARCIS (Netherlands)

    KOK, LP; BOON, ME

    A novel histoprocessing method for paraffin sections is presented in which the combination of vacuum and microwave exposure is the key element. By exploiting the decrease in boiling temperature under vacuum, the liquid molecules in the tissues have been successfully extracted and exchanged at

  10. Influence of microstructural change of the interface between Nd2Fe14B and Nd-O phases on coercivity of Nd-Fe-B films by oxidation and subsequent low-temperature annealing

    International Nuclear Information System (INIS)

    Matsuura, Masashi; Tezuka, Nobuki; Sugimoto, Satoshi; Goto, Ryota

    2011-01-01

    This study provides the influence of microstructural change of the interface between Nd 2 Fe 14 B and Nd-O phases on coercivity of Nd-Fe-B thin films during annealing at low temperature (∼350 deg. C). All films were prepared by using ultra high vacuum (UHV) magnetron sputtering, and the Nd-Fe-B layer was oxidized under Ar gas atmosphere (O 2 content; ∼2 Vol.ppm). Then, the films were annealed at 250-350 deg. C under UHV condition. After oxidation, the coercivity of Nd-Fe-B film decreased to around 40% of the coercivity of as-deposited Nd-Fe-B film. The Nd-rich phase changed from α-Nd to amorphous Nd(-O), and the interface of Nd 2 Fe 14 B/Nd(-O) became rough. In the Nd-Fe-B films oxidized and subsequent annealed at 350 deg. C, the coercivity decreased to around 20%. In the films, poly crystalline hcp Nd 2 O 3 phase crystallized in Nd-rich phase, and there were some steps at the surface of Nd 2 Fe 14 B phase contacting with hcp Nd 2 O 3 phase. Regardless of crystal orientation of Nd 2 Fe 14 B, the microstructural changes of the interface described above were observed.

  11. Effects of vacuum rapid thermal annealing on the electrical characteristics of amorphous indium gallium zinc oxide thin films

    Directory of Open Access Journals (Sweden)

    Hyun-Woo Lee

    2018-01-01

    Full Text Available We investigated the effects of vacuum rapid thermal annealing (RTA on the electrical characteristics of amorphous indium gallium zinc oxide (a-IGZO thin films. The a-IGZO films deposited by radiofrequency sputtering were subjected to vacuum annealing under various temperature and pressure conditions with the RTA system. The carrier concentration was evaluated by Hall measurement; the electron concentration of the a-IGZO film increased and the resistivity decreased as the RTA temperature increased under vacuum conditions. In a-IGZO thin-film transistors (TFTs with a bottom-gate top-contact structure, the threshold voltage decreased and the leakage current increased as the vacuum RTA temperature increased. As the annealing pressure decreased, the threshold voltage decreased, and the leakage current increased. X-ray photoelectron spectroscopy indicated changes in the lattice oxygen and oxygen vacancies of the a-IGZO films after vacuum RTA. At higher annealing temperatures, the lattice oxygen decreased and oxygen vacancies increased, which suggests that oxygen was diffused out in a reduced pressure atmosphere. The formation of oxygen vacancies increased the electron concentration, which consequently increased the conductivity of the a-IGZO films and reduced the threshold voltage of the TFTs. The results showed that the oxygen vacancies and electron concentrations of the a-IGZO thin films changed with the vacuum RTA conditions and that high-temperature RTA treatment at low pressure converted the IGZO thin film to a conductor.

  12. Selection of vacuum seals for EBT-P

    International Nuclear Information System (INIS)

    Dillow, C.F.; Adlon, G.L.; Stubblefield, V.E.

    1981-01-01

    Elmo Bumpy Torus Proof of Principle (EBT-P) is a magnetic fusion RandD facility being constructed by McDonnell Douglas Astronautics Company - St. Louis Division of Oak Ridge National Laboratory (ORNL). EBT-P is a truly unique fusion device requiring careful consideration in selecting both the primary vacuum seals on the toroidal vessel and the secondary vacuum seals in components such as vacuum pumps and and valves. The vacuum seal environment is described and the considerations in vacuum seal selection fully discussed. Methods for protecting vacuum seals in pumps and valves from the microwave environments are also presented

  13. Vacuum transitions in dual models

    International Nuclear Information System (INIS)

    Pashnev, A.I.; Volkov, D.V.; Zheltukhin, A.A.

    1976-01-01

    The investigation is continued of the spontaneous vacuum transition problem in the Neview-Schwartz dual model (NSDM). It is shown that vacuum transitions allow disclosing of supplementary degeneration in the resonance state spectrum. The dual amplitudes possess an internal structure corresponding to the presence of an infinite number of quarks with increasing masses and retained charges. The Adler principle holds. Analytic continuation on the constant of induced vacuum transitions makes it possible to establish the existence of spontaneous vacuum transitions in the NSDM. The consequence of this fact is the exact SU(2) symmetry of π, rho meson trajectories and the Higgs mechanism in the model. In this case the ratios of masses of particles leading trajectories are analogous to those obtained in the current algebra. It is shown that in the NSDM there arises chiral SU(2) x SU(2) x U(1) x U(1) x ... symmetry resulting from spontaneous vacuum transitions

  14. Vacuum maintenance in vacuum insulation panels exemplified with a staggered beam VIP

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jae-Sung; Jang, Choong Hyo; Jung, Haeyong; Song, Tae-Ho [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Guseong-dong 373-1, Yuseong-gu, Daejeon (Korea, Republic of)

    2010-05-15

    Thermal insulation performance of a vacuum insulation panel (VIP) is highly dependent on the inner pressure of the VIP. Long-term vacuum maintenance characteristics are investigated in this study for a VIP with an example of polymer staggered beam structure as the core material. Various gas sources deteriorating the vacuum level in the VIP are investigated based on theoretical models and experiments. Gas permeation occurring through heat-sealed flanges and pinholes in the barrier envelope is the largest gas leakage source. The calculated gas permeation rate is in accordance with the experimental result. To reduce these permeations, a three-side sealing envelope and double enveloping are proposed. Outgassing from the core material and inner surface of the envelope is also critical. It is significantly reduced by a baking pre-treatment in vacuum. When the estimated total gas load exceeds the allowable limit within a few years, a getter material may be applied. Double enveloping structure with a getter is promising as it ensures a lifetime of more than 20 years. (author)

  15. Vacuum guidelines for ISA insertions

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1976-01-01

    Vacuum requirements place design restrictions on the ISA insertions. The vacuum tube diameter, given a distance L between pumps, is determined by the desorption of molecules from the wall under the impact of ions created by the beam, whereas the thickness of the tube must be sufficient to prevent collapse. In addition, the entire vacuum chamber must be able to be baked out at approximately 200 0 C

  16. Particle contamination in vacuum systems

    International Nuclear Information System (INIS)

    Martignac, J.; Bonin, B.; Henriot, C.; Poupeau, J.P.; Koltchakian, I.; Kocic, D.; Herbeaux, Ch.; Marx, J.P.

    1996-01-01

    Many vacuum devices, like RF cavities, are sensitive to particle contamination. This fact has motivated a considerable effort of cleanliness from the SRF community. The present paper reports the first results of a general study trying to identify the most contaminating steps during assembly and vacuum operation of the cavity. The steps investigated here are gasket assembly, evacuation and venting of the vacuum system, and operation of sputter ion pumps. (author)

  17. Particle contamination in vacuum systems

    International Nuclear Information System (INIS)

    Martignac, J.; Bonin, B.; Henriot, C.; Poupeau, J.P.; Koltchakian, I.; Kocic, D.; Herbeaux, Ch.; Marx, J.P.

    1996-01-01

    Many vacuum devices, like RF cavities, are sensitive to particle contamination. This fact has motivated a considerable effort of cleanliness from the SRF community. The first results of a general study trying to identify the most contaminating steps during assembly and vacuum operation of the cavity is reported. The steps investigated here are gasket assembly, evacuation and venting of the vacuum system, and operation of sputter ion pumps. (author)

  18. Vacuum currents in braneworlds on AdS bulk with compact dimensions

    Science.gov (United States)

    Bellucci, S.; Saharian, A. A.; Vardanyan, V.

    2015-11-01

    The two-point function and the vacuum expectation value (VEV) of the current density are investigated for a massive charged scalar field with arbitrary curvature coupling in the geometry of a brane on the background of AdS spacetime with partial toroidal compactification. The presence of a gauge field flux, enclosed by compact dimensions, is assumed. On the brane the field obeys Robin boundary condition and along compact dimensions periodicity conditions with general phases are imposed. There is a range in the space of the values for the coefficient in the boundary condition where the Poincaré vacuum is unstable. This range depends on the location of the brane and is different for the regions between the brane and AdS boundary and between the brane and the horizon. In models with compact dimensions the stability condition is less restrictive than that for the AdS bulk with trivial topology. The vacuum charge density and the components of the current along non-compact dimensions vanish. The VEV of the current density along compact dimensions is a periodic function of the gauge field flux with the period equal to the flux quantum. It is decomposed into the boundary-free and brane-induced contributions. The asymptotic behavior of the latter is investigated near the brane, near the AdS boundary and near the horizon. It is shown that, in contrast to the VEVs of the field squared an denergy-momentum tensor, the current density is finite on the brane and vanishes for the special case of Dirichlet boundary condition. Both the boundary-free and brane-induced contributions vanish on the AdS boundary. The brane-induced contribution vanishes on the horizon and for points near the horizon the current is dominated by the boundary-free part. In the near-horizon limit, the latter is connected to the corresponding quantity for a massless field in the Minkowski bulk by a simple conformal relation. Depending on the value of the Robin coefficient, the presence of the brane can either

  19. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  20. Vacuum-insulated catalytic converter

    Science.gov (United States)

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  1. Spent nuclear fuel project cold vacuum drying facility vacuum and purge system design description

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Vacuum and Purge System (VPS) . The SDD was developed in conjunction with HNF-SD-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-002, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the VPS equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  2. Spent nuclear fuel project cold vacuum drying facility vacuum and purge system design description

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1998-01-01

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Vacuum and Purge System (VPS) . The SDD was developed in conjunction with HNF-SD-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-002, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the VPS equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  3. Color-magnetic permeability of QCD vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K

    1980-03-01

    In the very strong background gauge field the QCD true vacuum has been shown to have lower energy than the ''perturbative vacuum.'' The color-magnetic permeability of the QCD true vacuum is then calculated to be 1/2 within the quark-one-loop approximation.

  4. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Kikuchi, Mitsuru; Kurita, Gen-ichi; Onozuka, Masaki; Suzuki, Masaru.

    1997-01-01

    Heat of inner walls of a vacuum vessel that receive radiation heat from plasmas by way of first walls is removed by a cooling medium flowing in channels for cooling the inner walls. Nuclear heat generation of constitutional materials of the vacuum vessel caused by fast neutrons and γ rays is removed by a cooling medium flowing in cooling channels disposed in the vacuum vessel. Since the heat from plasmas and the nuclear heat generation are removed separately, the amount of the cooling medium flowing in the channels for cooling inner walls is increased for cooling a great amount of heat from plasmas while the amount of the cooling medium flowing in the channels for cooling the inside of the vacuum vessel is reduced for cooling the small amount of nuclear heat generation. Since the amount of the cooling medium can thus be optimized, the capacity of the facilities for circulating the cooling medium can be reduced. In addition, since the channels for cooling the inner walls and the channels of cooling medium formed in the vacuum vessel are disposed to the inner walls of the vacuum vessel on the side opposite to plasmas, integrity of the channels relative to leakage of the cooling medium can be ensured. (N.H.)

  5. Vacuum vessel for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Kurita, Gen-ichi [Japan Atomic Energy Research Inst., Tokyo (Japan); Onozuka, Masaki; Suzuki, Masaru

    1997-07-31

    Heat of inner walls of a vacuum vessel that receive radiation heat from plasmas by way of first walls is removed by a cooling medium flowing in channels for cooling the inner walls. Nuclear heat generation of constitutional materials of the vacuum vessel caused by fast neutrons and {gamma} rays is removed by a cooling medium flowing in cooling channels disposed in the vacuum vessel. Since the heat from plasmas and the nuclear heat generation are removed separately, the amount of the cooling medium flowing in the channels for cooling inner walls is increased for cooling a great amount of heat from plasmas while the amount of the cooling medium flowing in the channels for cooling the inside of the vacuum vessel is reduced for cooling the small amount of nuclear heat generation. Since the amount of the cooling medium can thus be optimized, the capacity of the facilities for circulating the cooling medium can be reduced. In addition, since the channels for cooling the inner walls and the channels of cooling medium formed in the vacuum vessel are disposed to the inner walls of the vacuum vessel on the side opposite to plasmas, integrity of the channels relative to leakage of the cooling medium can be ensured. (N.H.)

  6. The JET vacuum interspace system

    International Nuclear Information System (INIS)

    Orchard, J.; Scales, S.

    1999-01-01

    In the past JET has suffered from a number of vacuum leaks on components such as bellows, windows and feedthroughs due, in part, to the adverse conditions, including high mechanical forces, which may prevail during plasma operation. Therefore before the recent Tritium experiments on JET it was deemed prudent to manufacture and install items with a secondary containment or interspace in order to minimise the effect of failure of the primary vacuum barrier on both the leak integrity of the machine and the outcome of the experiments. This paper describes the philosophy, logistics, method and implementation of an integrated connection and monitoring system on the 330 interspaces currently in position on the JET machine. Using the JET leak database comparisons are drawn of leak failure rates of the components allied to the number of operational hours, prior to the system being present and after installation and commissioning, and the case of detection compared to the previous situation. An argument is also presented on the feasibility and adaptability of this system to any large complex machine and the benefits to be obtained in reduction of leaks and operational down time. (author)

  7. Wireless Integrated Microelectronic Vacuum Sensor System

    Science.gov (United States)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  8. Thermionic vacuum arc (TVA) technique for magnesium thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Balbag, M.Z., E-mail: zbalbag@ogu.edu.t [Eskisehir Osmangazi University, Education Faculty, Primary Education, Meselik Campus, Eskisehir 26480 (Turkey); Pat, S.; Ozkan, M.; Ekem, N. [Eskisehir Osmangazi University, Art and Science Faculty, Physics Department, Eskisehir 26480 (Turkey); Musa, G. [Ovidius University, Physics Department, Constanta (Romania)

    2010-08-15

    In this study, magnesium thin films were deposited on glass substrate by the Thermionic Vacuum Arc (TVA) technique for the first time. We present a different technique for deposition of high-quality magnesium thin films. By means of this technique, the production of films is achieved by condensing the plasma of anode material generated using Thermionic Vacuum Arc (TVA) under high vacuum conditions onto the surface to be coated. The crystal orientation and morphology of the deposited films were investigated by using XRD, EDX, SEM and AFM. The aim of this study is to search the use of TVA technique to coat magnesium thin films and to determine some of the physical properties of the films generated. Furthermore, this study will contribute to the scientific studies which search the thin films of magnesium or the compounds containing magnesium. In future, this study will be preliminary work to entirely produce magnesium diboride (MgB{sub 2}) superconductor thin film with the TVA technique.

  9. The influence of vacuum and annealing on the visible luminescence in ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    P R, Chithira; Theresa John, Teny, E-mail: teny@goa.bits-pilani.ac.in

    2017-05-15

    The ZnO nanoparticles synthesized by a simple solution based chemical bath deposition method were characterized using different experimental techniques. Photoluminescence (PL) studies were performed in ambient as well as in vacuum conditions. The emission spectra exhibit two bands corresponding to UV emission at 380 nm and a wide visible luminescence centered at 571 nm due to surface defects in ambient conditions. Under vacuum condition, the spectra show a reduction in the intensity of the wide visible luminescence and an enhancement in the UV emission. These nanoparticles were annealed at high temperatures in air. The wide visible luminescence remains at the same intensity in both ambient and in vacuum condition for the annealed samples indicating that some of the surface adsorbed defects are removed due to annealing. Fourier Transform Infrared Spectroscopy (FTIR) and Electron Spin Resonance (ESR) results reveal the presence of [OH{sup -}] related groups on the surface of the samples. An analysis of the O1s peak in ZnO using X-ray Photoelectron Spectroscopy (XPS) measurement confirms the presence of intrinsic defects such as oxygen related vacancies and adsorbed oxygen species in the sample. Our investigation shows that the green emission observed in ZnO samples is primarily due to oxygen vacancies.

  10. The influence of vacuum and annealing on the visible luminescence in ZnO nanoparticles

    International Nuclear Information System (INIS)

    P R, Chithira; Theresa John, Teny

    2017-01-01

    The ZnO nanoparticles synthesized by a simple solution based chemical bath deposition method were characterized using different experimental techniques. Photoluminescence (PL) studies were performed in ambient as well as in vacuum conditions. The emission spectra exhibit two bands corresponding to UV emission at 380 nm and a wide visible luminescence centered at 571 nm due to surface defects in ambient conditions. Under vacuum condition, the spectra show a reduction in the intensity of the wide visible luminescence and an enhancement in the UV emission. These nanoparticles were annealed at high temperatures in air. The wide visible luminescence remains at the same intensity in both ambient and in vacuum condition for the annealed samples indicating that some of the surface adsorbed defects are removed due to annealing. Fourier Transform Infrared Spectroscopy (FTIR) and Electron Spin Resonance (ESR) results reveal the presence of [OH - ] related groups on the surface of the samples. An analysis of the O1s peak in ZnO using X-ray Photoelectron Spectroscopy (XPS) measurement confirms the presence of intrinsic defects such as oxygen related vacancies and adsorbed oxygen species in the sample. Our investigation shows that the green emission observed in ZnO samples is primarily due to oxygen vacancies.

  11. “Shape memory” material provides a solution for the HL-LHC

    CERN Multimedia

    Anaïs Schaeffer & Stefania Pandolfi

    2016-01-01

    A collaboration between CERN and the University of Calabria is developing a new connection device for vacuum chambers based on Shape Memory Alloy (SMA) rings, for future use in the High-Luminosity LHC (HL-LHC). The unique characteristics of these materials, able to memorise different shapes at high and low temperatures, are being exploited to create a high-tech solution for sealing the vacuum chambers of the upgraded accelerator.   Proof of concept of a SMA connector for Ultra High Vacuum (UHV) chambers. (Picture: Fabrizio Niccoli) In particle accelerators, beams circulate inside vacuum chambers connected by flanges - complex engineering components which ensure the integrity of the vacuum system. Currently, there are two types of flanges used in the LHC: standard “ConFlat” flanges, which are bolted together; and the quick conical connection flanges used on radioactive components (for example collimators), which need large and heavy chain clamps. Clamping or unclamping...

  12. Isotropic extensions of the vacuum solutions in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Molina, C. [Universidade de Sao Paulo (USP), SP (Brazil); Martin-Moruno, Prado [Victoria University of Wellington (New Zealand); Gonzalez-Diaz, Pedro F. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain)

    2012-07-01

    Full text: Spacetimes described by spherically symmetric solutions of Einstein's equations are of paramount importance both in astrophysical applications and theoretical considerations. And among those, black holes are highlighted. In vacuum, Birkhoff's theorem and its generalizations to non-asymptotically flat cases uniquely fix the metric as the Schwarzschild, Schwarzschild-de Sitter or Schwarzschild-anti-de Sitter geometries, the vacuum solutions of the usual general relativity with zero, positive or negative values for the cosmological constant, respectively. In this work we are mainly interested in black holes in a cosmological environment. Of the two main assumptions of the cosmological principle, homogeneity is lost when compact objects are considered. Nevertheless isotropy is still possible, and we enforce this condition. Within this context, we investigate spatially isotropic solutions close - continuously deformable - to the usual vacuum solutions. We obtain isotropic extensions of the usual spherically symmetric vacuum geometries in general relativity. Exact and perturbative solutions are derived. Maximal extensions are constructed and their causal structures are discussed. The classes of geometries obtained include black holes in compact and non-compact universes, wormholes in the interior region of cosmological horizons, and anti-de Sitter geometries with excess/deficit solid angle. The tools developed here are applicable in more general contexts, with extensions subjected to other constraints. (author)

  13. Structural analysis of the ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Sannazzaro, G.; Ioki, K.; Johnson, G.; Onozuka, M.; Utin, Y. [ITER Joint Work Site, Garching (Germany); Nelson, B. [Oak Ridge National Lab., TN (United States); Swanson, J. [USHT, Raytheon, Princeton (United States)

    1998-07-01

    The ITER Vacuum Vessel (VV) must withstand a large number of loading conditions including electromagnetic, seismic, operational and upset pressure, thermal and test loads. All of the loading conditions and load combinations have been categorized and classified to permit the allowable stress to be defined in accordance with the recommendations of the ASME code. The most severe loading conditions for the VV are the toroidal field coil fast discharge (TFCFD) and the load combination of seismic and electromagnetic loads due to a plasma vertical instability. The areas of high stress are the regions around the VV and the blanket supports, and the attachment of the ports to the main shell. In all of the loading conditions and load combinations the calculated stresses are below the allowable values. (authors)

  14. Vacuum Bellows, Vacuum Piping, Cryogenic Break, and Copper Joint Failure Rate Estimates for ITER Design Use

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader

    2010-06-01

    The ITER international project design teams are working to produce an engineering design in preparation for construction of the International Thermonuclear Experimental Reactor (ITER) tokamak. During the course of this work, questions have arisen in regard to safety barriers and equipment reliability as important facets of system design. The vacuum system designers have asked several questions about the reliability of vacuum bellows and vacuum piping. The vessel design team has asked about the reliability of electrical breaks and copper-copper joints used in cryogenic piping. Research into operating experiences of similar equipment has been performed to determine representative failure rates for these components. The following chapters give the research results and the findings for vacuum system bellows, power plant stainless steel piping (amended to represent vacuum system piping), cryogenic system electrical insulating breaks, and copper joints.

  15. Surface Science at the Solid Liquid Interface

    Science.gov (United States)

    1993-10-06

    prominent experimental avenue, developed originally by Hubbard et al,_ involves emersing monocrystalline elec- As for metal surfaces in ultrahigh vacuum...reliable means of both preparing and dosateizn ordered monocrystalline metal surfaces in UHV has led to ing appropriate molecular components of...surface atoms in place of bottom panel of Fig. 2, equal intensity contours are shown 23 underlying surface atoms, the compression is 24/23 - I in the

  16. Big Bang or vacuum fluctuation

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1980-01-01

    Some general properties of vacuum fluctuations in quantum field theory are described. The connection between the ''energy dominance'' of the energy density of vacuum fluctuations in curved space-time and the presence of singularity is discussed. It is pointed out that a de-Sitter space-time (with the energy density of the vacuum fluctuations in the Einstein equations) that matches the expanding Friedman solution may describe the history of the Universe before the Big Bang. (P.L.)

  17. Lock-in amplifier- based rotating- analyzer spectroscopic ellipsometer with micro-controlled angular frequency

    Energy Technology Data Exchange (ETDEWEB)

    Flores C, J.M.; Nunez O, O.F.; Rodriguez P, G.; Lastras M, A.; Lastras M, L.F. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi (Mexico)

    2005-07-01

    We report on the development of a full operational rotating analyzer spectroscopic ellipsometer. This instrument employs a phase-sensitive amplifier to process the optical signal as an alternative to Fast Fourier Transform analysis. We describe electronic hardware designed to stabilize the rotation frequency of the analyzer prism as well as to drive the device for the positioning of the polarizer prism azimuth. The ellipsometer allows for dielectric function measurement in the energy range from 1.7-5.5 eV, in both ambient air and Ultra High Vacuum (UHV). UHV measurements can be carried out at a temperature as low as 150 K. To evaluate the ellipsometer performance we present results of the determination of the complex dielectric function of a number of semiconductors, namely, GaSb, GaAs, InGaAs, CdTe and CdHgTe. (Author)

  18. Four-probe measurements with a three-probe scanning tunneling microscope

    International Nuclear Information System (INIS)

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A.

    2014-01-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe

  19. Four-probe measurements with a three-probe scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Salomons, Mark [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A., E-mail: rwolkow@ualberta.ca [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  20. Four-probe measurements with a three-probe scanning tunneling microscope.

    Science.gov (United States)

    Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A

    2014-04-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  1. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Kikuchi, Mitsuru; Nagashima, Keisuke; Suzuki, Masaru; Onozuka, Masaki.

    1997-01-01

    A vacuum vessel main body and structural members at the inside and the outside of the vacuum vessel main body are constituted by structural materials activated by irradiation of neutrons from plasmas such as stainless steels. Shielding members comprising tungsten or molybdenum are disposed on the surface of the vacuum vessel main body and the structural members of the inside and the outside of the main body. The shielding members have a function also as first walls or a seat member for the first walls. Armor tiles may be disposed to the shielding members. The shielding members and the armor tiles are secured to a securing seat member disposed, for example, to an inner plate of the vacuum vessel main body by bolts. Since the shielding members are disposed, it is not necessary to constitute the vacuum vessel main body and the structural members at the inside and the outside thereof by using a low activation material which is less activated, such as a titanium alloy. (I.N.)

  2. Vacuum vessel for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Nagashima, Keisuke [Japan Atomic Energy Research Inst., Tokyo (Japan); Suzuki, Masaru; Onozuka, Masaki

    1997-07-11

    A vacuum vessel main body and structural members at the inside and the outside of the vacuum vessel main body are constituted by structural materials activated by irradiation of neutrons from plasmas such as stainless steels. Shielding members comprising tungsten or molybdenum are disposed on the surface of the vacuum vessel main body and the structural members of the inside and the outside of the main body. The shielding members have a function also as first walls or a seat member for the first walls. Armor tiles may be disposed to the shielding members. The shielding members and the armor tiles are secured to a securing seat member disposed, for example, to an inner plate of the vacuum vessel main body by bolts. Since the shielding members are disposed, it is not necessary to constitute the vacuum vessel main body and the structural members at the inside and the outside thereof by using a low activation material which is less activated, such as a titanium alloy. (I.N.)

  3. Vacuum pulse conditioning and risetime sharpening on a low nu/gamma multi-MEV electron beam accelerator

    International Nuclear Information System (INIS)

    Stringfield, R.M.; Bartsch, R.R.; Davis, H.A.; Sherwood, E.G.

    1986-01-01

    The surface flashover switch interrupts the cathode stalk of the vacuum transmission line near the load. The flashover voltage is controlled by varying the switch length, with a maximum flashover voltage of 3MV. A diode element immediately upstream of the switch allows current to build up in the inductance of the vacuum transmission line while the switch is open. Upon switch closure, the axial current flowing the the load acts as a bias current to magnetically inhibit current flow in the upstream diode. This diode serves the additional purpose, with or without the flashover switch, of diverting a controlled portion of the total machine current form the load by varying the AK spacing. This feature provides the capability to vary the current and voltage at the load outside the simple constraints of the accelerator's load line. An examination of the performance of the switch and the diode is presented

  4. Design consideration on the synchrotron ultrahigh vacuum system

    International Nuclear Information System (INIS)

    Tsujikawa, H.; Chida, K.; Mizobuchi, A.; Miyahara, A.

    1982-01-01

    Ultrahigh vacuum production for the high-energy heavy-ion accelerator poses special problems concerning beam-gas molecule and beam-wall interactions. In this paper, summary of the TARN ultrahigh vacuum system and design criteria of the synchrotron ultrahigh vacuum system are presented. On-beam pressure of 4 x 10 -11 Torr is achieved in the TARN ultrahigh vacuum system, of which experiences through the construction and the operation are described and discussed. With emphasis on the application of newly developed technique in the fabrication of vacuum chamber and ultrahigh vacuum pump for the synchrotron ultrahigh vacuum system. (author)

  5. Dynamical effects of QCD vacuum structure

    International Nuclear Information System (INIS)

    Ferreira, Erasmo

    1994-01-01

    The role of the QCD vacuum structure in the determination of the properties of states and processes occurring in the confinement regime of QCD is reviewed. The finite range of the vacuum correlations is discussed, and an analytical form is suggested for the correlation functions. The role of the vacuum quantum numbers in the phenomenology of high-energy scattering is reviewed. The vacuum correlation model of non-perturbative QCD is mentioned as a bridge between the fundamental theory and the description of the experiments. (author). 13 refs., 1 fig

  6. Vacuum technology in the chemical industry

    CERN Document Server

    Jorisch, Wolfgang

    2015-01-01

    Based on the very successful German edition and a seminar held by the German Engineers` Association (VDI) on a regular basis for years now, this English edition has been thoroughly updated and revised to reflect the latest developments. It supplies in particular the special aspects of vacuum technology, applied vacuum pump types and vacuum engineering in the chemical, pharmaceutical and process industry application-segments. The text includes chapters dedicated to latest European regulations for operating in hazardous zones with vacuum systems, methods for process pressure control and regulati

  7. Running vacuum cosmological models: linear scalar perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Perico, E.L.D. [Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP (Brazil); Tamayo, D.A., E-mail: elduartep@usp.br, E-mail: tamayo@if.usp.br [Departamento de Astronomia, Universidade de São Paulo, Rua do Matão 1226, CEP 05508-900, São Paulo, SP (Brazil)

    2017-08-01

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ( H {sup 2}) or Λ( R ). Such models assume an equation of state for the vacuum given by P-bar {sub Λ} = - ρ-bar {sub Λ}, relating its background pressure P-bar {sub Λ} with its mean energy density ρ-bar {sub Λ} ≡ Λ/8π G . This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely ρ-bar {sub Λ} = Σ {sub i} ρ-bar {sub Λ} {sub i} . Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ( H {sup 2}) scenario the vacuum is coupled with every matter component, whereas the Λ( R ) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.

  8. Vertical septum magnets for distributing the beam to the 4 PS Booster rings

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    To facilitate H- injection from Linac4 to the PS Booster via the transfer line the BI.SMV10 (Booster Injection Septum Magnet Vertical) provides the vertical deflection of the 160 MeV H- beam to rings 1, 2 and 4 of the Booster. Currently this system is capable of deflecting 50 MeV protons and comprises an assembly of ferrite type magnets in an “omega” section vacuum tank (see fig. 1). The current system shall be replaced with a UHV compatible vacuum chamber incorporating 3 sets of double septum magnets, pulsed from 3 individual power supplies via transformers with 12:1 ratio.

  9. A first wall material probe manipulator for the 'TEXTOR' tokamak

    International Nuclear Information System (INIS)

    Marmy, P.; Stiefel, U.

    1984-04-01

    Textor is a technology oriented tokamak of Euratom at the Kernforschungsanlage Juelich (KFA). Switzerland participates in its experimental program within the framework of the IEA agreement on Plasma Wall Interaction. A major task of EIR consists in the layout, construction and fabrication of a manipulator for the remote handling of up to 240 specimen candidate first wall materials. This operation has to be done without breaking the ultra high vacuum (UHV) and with wall temperatures up to 300 0 C. A great number of preexperiments involving different materials had to be carried out; the understanding of the tribology in ultra high vacuum could be improved. (Auth.)

  10. 46 CFR 154.804 - Vacuum protection.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either paragraph...

  11. ISRU Soil Mechanics Vacuum Facility: Soil Bin Preparation and Simulant Strength Characterization

    Science.gov (United States)

    Kleinhenz, Julie; Wilkinson, Allen

    2012-01-01

    Testing in relevant environments is key to exploration mission hardware development. This is true on both the component level (in early development) and system level (in late development stages). During ISRU missions the hardware will interface with the soil (digging, roving, etc) in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, conditioned simulant bed. However, in earth-based granular media, such as lunar soil simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. The Vacuum Facility #13, a mid-size chamber (3.66m tall, 1.5m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64m deep by 0.914m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types have been used. An electric cone penetrometer was used to measure simulant strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5Torr, regardless of the pump rate. However, slow off gassing of the soil lead to long test times, a full week, to reach 10-5Torr. This work highlights the need for robotic machine-simulant hardware and operations in vacuum to expeditiously perform (sub-)systems tests.

  12. Vacuum Mechatronics And Insvection For Self-Contained Manufacturing

    Science.gov (United States)

    Belinski, Steve E.; Shirazi, Majid; Seidel, Thomas E.; Hackwood, Susan

    1990-02-01

    The vacuum environment is increasingly being used in manufacturing operations, especially in the semiconductor industry. Shrinking linewidths and feature sizes dictate that cleanliness standards become continually more strict. Studies at the Center for Robotic Systems in Microelectronics (CRSM) indicate that a controlled vacuum enclosure can provide a superior clean environment. In addition, since many microelectronic fabrication steps are already carried out under vacuum, self-contained multichamber processing systems are being developed at a rapid pace. CRSM support of these systems includes the development of a research system, the Self-contained Automated Robotic Factory (SCARF), a vacuum-compatible robot, and investigations of particulate characterization in vacuum and inspection for multichamber systems. Successful development of complex and expensive multichamber systems is, to a great extent, dependent upon the discipline called vacuum mechatronics, which includes the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. Here the constituents of the vacuum mechatronics discipline are defined and reviewed in the context of the importance to self-contained in-vacuum manufacturing.

  13. Vacuum system for HIMAC synchrotrons

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sudou, M.; Sato, K.

    1994-01-01

    HIMAC synchrotrons are now under construction, which require vacuum chambers of large aperture and high vacuum of about 10 -9 torr. Wide thin wall vacuum chamber of 0.3 mm thickness reinforced with ribs has been developed as the chamber at dipole magnet. We have just now started to evacuate the lower ring. The obtained average value was about 5x10 -8 torr with turbo-molecular and sputter ion pumps, and 1.1x10 -9 torr after baking. (author)

  14. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Hagiwara, Koji; Imura, Yasuya.

    1979-01-01

    Purpose: To provide constituted method for easily performing baking of vacuum vessel, using short-circuiting segments. Constitution: At the time of baking, one turn circuit is formed by the vacuum vessel and short-circuiting segments, and current transformer converting the one turn circuit into a secondary circuit by the primary coil and iron core is formed, and the vacuum vessel is Joule heated by an induction current from the primary coil. After completion of baking, the short-circuiting segments are removed. (Kamimura, M.)

  15. The vacuum tribology model (VTM) of TriboLAB

    Science.gov (United States)

    Garmendia, I.; Landaberea, A.; Anglada, E.; Fernández-Sanz, R.; Santiago, R.; Herrada, F.; Encinas, J. M.

    2003-09-01

    TriboLAB is a tribology instrument that is planned for installation in the EuteF Flight Segment Platform, along with several other European scientific instruments. EuteF will be fixed onto an Express Pallet Adapter (ExPA), which provides standard structural, mechanical, electrical and communications interfaces to the Columbus External Payload Facility of the International Space Station (ISS). As a part of the model philosophy, a vacuum tribological model (VTM) has been developed to generate "on ground" tribological data of selected lubricants. The idea is to compare the results obtained "on ground" with those that will be produced in the space, in order to investigate the different behaviors of same tribological films and to be able to compare the performance of specific lubricants in Low Earth Orbit (LEO) conditions. The VTM is composed of six double experiment cells that perform respectively ball bearing (BB) experiments (with liquid and solid lubrication) and pin-on-disk (PoD) tests of solid lubricants. Thin films of alloyed MoS2 are being tested in the VTM under controlled vacuum conditions. In this work, the two sections of the VTM are described.

  16. Lubricant coating of dowel for the ITER vacuum vessel gravity support

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.Y. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Ahn, H.J., E-mail: hjahn@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bak, J.S. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Choi, C.H.; Ioki, K. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Zauner, C. [KRP-Mechatec Engineering GbR, 85748 Garching b, Muenchen (Germany)

    2012-08-15

    The ITER vacuum vessel gravity supports located in the lower level shall sustain loads in radial, toroidal and vertical directions. The hinge type VVGS consists of two hinges, upper and lower blocks and dowels. In order to develop the design concept and verify the structural integrity of the hinge system, the design analysis has been performed in detail. Inclination of 15 Degree-Sign for the hinge based supporting system was introduced to provide centering force to make stable equilibrium state of the vacuum vessel. Due to this inclination the hinges are rotated by the radial expansion of the VV during operation and baking, respectively. If a dowel is seized in the hinge, the supporting system can be highly stressed due to the restrained displacement in the seized dowel. Therefore, solid lubricant coatings were suggested on dowels in order to avoid seizing in the sliding area. In this work, several sets of coupons were made with different coating materials to investigate the effect according to the selection of coating material. Also, a test facility was designed to cover the ITER relevant loading and boundary conditions, e.g. vacuum condition, temperature, contact pressure, cycles, etc. From those test results, the optimized coating method was found to avoid seizure of dowel in the ITER VVGS.

  17. Vacuum selection on the string landscape

    International Nuclear Information System (INIS)

    Tetteh-Lartey, Edward

    2007-01-01

    I examine some nonanthropic approaches to the string landscape. These approaches are based on finding the initial conditions of the universe using the wave function of the multiverse to select the most probable vacuum out of this landscape. All approaches tackled so far seem to have their own problems and there is no clear-cut alternative to anthropic reasoning. I suggest that finding the initial conditions may be irrelevant since all possible vacua on the landscape are possible initial state conditions and eternal inflation could generate all the other vacua. We are now left to reason out why we are observing the small value of the cosmological constant. I address this issue in the context of noncritical string theory in which all values of the cosmological constant on the landscape are departures from the critical equilibrium state

  18. Definition and means of maintaining the process vacuum liquid detection interlock systems portion of the PFP safety envelope

    International Nuclear Information System (INIS)

    THOMAS, R.J.

    1999-01-01

    The Process Vacuum Liquid Detection interlock systems prevent intrusion of process liquids into the HEPA filters downstream of demisters No.6 and No.7 during Process Vacuum System operation. This prevents liquid intrusion into the filters, which could cause a criticality. The Safety Envelope (SE) includes the equipment, which detects the presence of liquids in the vacuum headers; isolates the filters; shuts down the vacuum pumps; and alarms the condition. This report identifies the equipment in the SE operating, maintenance, and surveillance procedures needed to maintain the SE equipment; and rationale for exclusion of some equipment and testing from the SE

  19. On the applicability of dye penetrant tests on vacuum components: Allowed or forbidden?

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Michael, E-mail: Michael.schroeder@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany); Biedermann, Christoph; Vilbrandt, Reinhard [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany)

    2013-10-15

    Highlights: The study aims to clarify the applicability of dye penetrant tests on components exposed to high-vacuum. The results show, that the PT application on components for use under vacuum conditions can in general be allowed. The test surface should have a simple geometry. No gaps or holes. An efficient cleaning after PT is necessary. If PT is foreseen TIG should used as the welding procedure. PT tested components should be baked out after the cleaning in a vacuum chamber at min 150 °C. -- Abstract: The penetrant testing (PT) is a common non-destructive procedure for the testing of components and in particular of welds. With PT it is possible to detect surface imperfections (e.g. cracks) which have a special potential to lead to the failure of the component or of the weld. PT is substantially more sensitive than a purely visual examination. Because the complicated geometries of fusion experiments make the accessibility for repairs during the operation extremely difficult, very high efforts on testing with sensitive procedures, for instance with dye penetrant testing during assembly is required. In contrast to this desire for widespread penetrant testing, however, is the general fear that dye penetrant tested components or welds, which are used in the vacuum, are contaminated by the dye in such a way that they do not fulfill the cleanliness requirements for vacuum components. Therefore dye penetrant testing of such vacuum components is usually considered problematic. This study aims to clarify the applicability of dye penetrant tests on components exposed to high-vacuum. Recommendations are formulated concerning the PT procedure of vacuum components and the cleaning procedures for penetrant tested areas under vacuum necessary after a dye penetrant test.

  20. Rotary bayonets for cryogenic and vacuum service

    International Nuclear Information System (INIS)

    Rucinski, R.A.; Dixon, K.D.; Krasa, R.; Krempetz, K.J.; Mulholland, G.T.; Trotter, G.R.; Urbin, J.B.

    1993-07-01

    Rotary bayonets were designed, tested, and installed for liquid nitrogen, liquid argon, and vacuum service. This paper will present the design, testing, and service record for two sizes of vacuum jacketed cryogenic rotary bayonets and two sizes of vacuum service rotary bayonets. Materials used in construction provide electrical isolation across the bayonet joint. The joint permits 360 degrees of rotation between the male and female pipe sections while maintaining integrity of service. Assemblies using three such joints were built to allow end connection points to be translated through at least 1 meter of horizontal travel while kept in service. Vacuum jacketed sizes built in-house at Fermi National Accelerator Laboratory are 1-1/2 in. inner pipe size, 3 in. vacuum jacket, and 4 in. inner pipe size, 6 in. vacuum jacket The single wall vacuum service bayonets are in 4 in. and 6 in. pipe sizes. The bayonets have successfully been in active service for over one year