Sample records for vacuum distillation method

  1. Vacuum distillation device

    Energy Technology Data Exchange (ETDEWEB)

    Hamer, J.A.; Burg, C.J. Van Der; Kanbier, D.; Heijden, P. Van Der.


    This invention relates to a vacuum distillation device comprising a vacuum distillation column, a furnace provided with a heat exchange tube, and a connecting conduit between the column and the heat exchange tube. Such a device is used to fractionate a hydrocarbon-containing feed sometimes referred to as long residue. An object of this invention is to provide a vacuum distillation device which allows vaporization of a major part of the feed upstream of the column inlet. To this end, the device according to the invention comprises a vacuum distillation device as described above, in which the inner diameter of the heat exchange tube increases along its length to between 2.4 and 3 times the inner diameter of the tube inlet, and in which the inner diameter of the connecting conduit gradually increases along its length to between 2.5 and 5.4 times the inner diameter of the tube outlet. During normal operation of the device of the invention, only less than 50 wt % of the feed is vaporized in the heat exchange tube in the furnace, and more feed is vaporized in the connecting conduit, so that at the outlet end of the conduit the feed comprises about 0.9 kg vapor per kg of feed. The invention provides improved heat transfer in the heat exchange tubes such that fouling is reduced, consequently more heat can be applied per unit of time in the heat exchange tube. This allows either heating of the feed to a higher temperature or increasing the throughput for the same temperature.


    Directory of Open Access Journals (Sweden)

    Zaid A. Abdulrahman


    Full Text Available Simulated column performance curves were constructed for existing paraffin separation vacuum distillation column in LAB plant (Arab Detergent Company/Baiji-Iraq. The variables considered in this study are the thermodynamic model option, top vacuum pressure, top and bottom temperatures, feed temperature, feed composition & reflux ratio. Also simulated columns profiles for the temperature, vapor & liquid flow rates composition were constructed. Four different thermodynamic model options (SRK, TSRK, PR, and ESSO were used, affecting the results within 1-25% variation for the most cases.The simulated results show that about 2% to 8 % of paraffin (C10, C11, C12, & C13 present at the bottom stream which may cause a problem in the LAB plant. The major variations were noticed for the top temperature & the  paraffin weight fractions at bottom section with top vacuum pressure. The bottom temperature above 240 oC is not recommended because the total bottom flow rate decreases sharply, where as  the weight fraction of paraffins decrease slightly. The study gives evidence about a successful simulation with CHEMCAD

  3. A technique for high recoveries from vacuum distillations

    Directory of Open Access Journals (Sweden)

    Richard F. Langler


    Full Text Available The design and use of a novel apparatus for a variant of vacuum distillation is described. Relative to a conventional device, the apparatus/technique described permits superior recovery of multigram quantities of moderately volatile liquids from vacuum distillations.

  4. Improved synthesis of [(18)F]FLETT via a fully automated vacuum distillation method for [(18)F]2-fluoroethyl azide purification. (United States)

    Ackermann, Uwe; Plougastel, Lucie; Goh, Yit Wooi; Yeoh, Shinn Dee; Scott, Andrew M


    The synthesis of [(18)F]2-fluoroethyl azide and its subsequent click reaction with 5-ethynyl-2'-deoxyuridine (EDU) to form [(18)F]FLETT was performed using an iPhase FlexLab module. The implementation of a vacuum distillation method afforded [(18)F]2-fluoroethyl azide in 87±5.3% radiochemical yield. The use of Cu(CH3CN)4PF6 and TBTA as catalyst enabled us to fully automate the [(18)F]FLETT synthesis without the need for the operator to enter the radiation field. [(18)F]FLETT was produced in higher overall yield (41.3±6.5%) and shorter synthesis time (67min) than with our previously reported manual method (32.5±2.5% in 130min). Copyright © 2014 Elsevier Ltd. All rights reserved.


    An analytical method based on vacuum distillation-gas chromatography-mass spectrometry (VD-GC-MS)was developed for determining volatile organo-metalloid contaminants in bio-solid materials. Methodperformance was evaluated for dimethylselenide (DMSe), dimethyldisel...


    Directory of Open Access Journals (Sweden)

    Selcuk Selimli


    Full Text Available The subject of this study is the seawater distillation process enhancement through integration of the solar vacuum tube into the system. Positive effects on the rate of distillated freshwater achieved by means of the enhanced system have been investigated experimentally. Experiments were done in the Turkish city of Samsun in the Black Sea region. A distillation pond setup having the volume of 0.015m3 and a water surface area of 0.24m2 was constructed. The distillation pond is covered with a condensation glass and also equipped with a 0.15m solar vacuum tube that is inclined at an angle of 30o to the ground, a feed water tank connected with a ball cock, and distillated fresh water tank. Experimental results have shown that the rate of distilled fresh water was enhanced for about 62.5% by integrating the solar vacuum tube and the natural distillation pond. Isolation of the condensation glass not only prevents the light transmission to the pond but also heat loss from the pond; hence the rate of the distillated fresh water is increased for about 137.5% due to the natural distillation.

  7. Single-laboratory validation of a method for the determination of select volatile organic compounds in foods by using vacuum distillation with gas chromatography/mass spectrometry. (United States)

    Nyman, Patricia J; Limm, William; Begley, Timothy H; Chirtel, Stuart J


    Recent studies showed that headspace and purge and trap methods have limitations when used to determine volatile organic compounds (VOCs) in foods, including matrix effects and artifact formation from precursors present in the sample matrix or from thermal decomposition. U.S. Environmental Protection Agency Method 8261A liberates VOCs from the sample matrix by using vacuum distillation at room temperature. The method was modified and validated for the determination of furan, chloroform, benzene, trichloroethene, toluene, and sytrene in infant formula, canned tuna (in water), peanut butter, and an orange beverage (orange-flavored noncarbonated beverage). The validation studies showed that the LOQ values ranged from 0.05 ng/g toluene in infant formula to 5.10 ng/g toluene in peanut butter. Fortified recoveries were determined at the first, second, and third standard additions, and concentrations ranged from 0.07 to 6.9 ng/g. When quantified by the method of standard additions, the recoveries ranged from 56 to 218% at the first standard addition and 89 to 117% at the third. The validated method was used to conduct a survey of the targeted VOCs in 18 foods. The amounts found ranged from none detected to 73.8 ng/g furan in sweet potato baby food.

  8. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan


    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  9. Purification of cadmium up to 5N+ by vacuum distillation

    Indian Academy of Sciences (India)

    Cadmium was refined by vacuum distillation, a technique suitable for low boiling and melting point materials, to remove the heavy and low vapour pressure impurities at ppm level. The detailed analysis of the purified Cd as well as raw Cd was done by ICP–OES techniques for 27 impurity elements. Purification was carried ...

  10. Vacuum membrane distillation by microchip with temperature gradient. (United States)

    Zhang, Yaopeng; Kato, Shinji; Anazawa, Takanori


    A multilayered microchip (25 x 95 mm) used for vacuum distillation is designed, fabricated and tested by rectification of a water-methanol mixture. The polymer chip employs a cooling channel to generate a temperature gradient along a distillation channel below, which is separated into a channel (72 microm deep) for liquid phase and a channel (72 microm deep) for vapor phase by an incorporated microporous poly(tetrafluoroethylene) (PTFE) membrane. The temperature gradient is controlled by adjusting hotplate temperature and flow rate of cooling water to make the temperatures in the stripping section higher than the increasing boiling points of the water-enriched liquids and the temperatures in the rectifying section lower than the decreasing dew points of the methanol-enriched vapors. The effects of temperature gradient, feed composition, feed flow rate and membrane pore size on the micro distillation are also investigated. A theoretical plate number up to 1.8 is achieved at the optimum conditions.

  11. Improvement of Egyptian vacuum distillates by urea dewaxing

    Directory of Open Access Journals (Sweden)

    Ehssan M.R. Nassef


    Full Text Available The dewaxing of paraffinic lube stocks is an essential step in the production of lubricants to improve the operability of machines especially in winter. The present work deals with study of the urea dewaxing process of two types of Egyptian vacuum distillates. The effect of different compositions of methanol to water saturated with urea and yield of the oil, percent of wax, pour point, refractive index, viscosity, viscosity index and specific gravity of the oil produced from the two types of distillates (I and II were evaluated. The operating conditions of the urea adduct formation with n-paraffins using methanol to water mixture achieved the best pour point at −3.88 °C from an initial temperature of 4.4 °C for distillate I at (25/75 methanol to water. At the same ratio of methanol to water the best specific gravity of oil produced changed from 0.865 to 0.867, with viscosity index of 80. Percent yield of 50% for oil and percent wax of 50% were obtained. Results for distillate II, of higher specific gravity, are comparatively higher than those for distillate I. Experiments were carried out at room temperature.


    Directory of Open Access Journals (Sweden)

    AbdulMunem A. Karim


    Full Text Available    This study deals with  kinetics of hydrodesulphurization (HDS reaction of vacuum gas oil (611-833 K which was distillated from Kirkuk crude oil and which was obtained by blending the fractions, light vacuum gas oil (611 - 650 K, medium vacuum gas oil (650-690 K, heavy vacuum gas oil (690-727 K and very heavy vacuum gas oil (727-833 K.   The vacuum gas oil was hydrotreated on a commercial cobalt-molybdenum alumina catalyst presulfied at specified conditions in a laboratory trickle bed reactor. The reaction temperature range (583-643 K,liquid hourly space velocity range (1.5-3.75 h-1 and hydrogen pressure was kept constant at 3.5 MPa with hydrogen to oil ratio about 250 lt/lt.           The conversion results for desulphurization reaction appeared to obey the second order reaction. According to this model, the rate constants for desulphurization reaction were determined. Finally, the apparent activation energy (Ea, enthalpy of activation ( H* and entropy ( S* were calculated based on the values of rate constant (k2 and were equal 80.3792 KJ/mole, 75.2974 KJ/mole and 197.493 J/mole, respectively.

  13. High-temperature vacuum distillation separation of plutonium waste salts

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E. [Los Alamos National Lab., NM (United States)


    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen.

  14. Removal of inhibitors from lignocellulosic hydrolyzates by vacuum membrane distillation. (United States)

    Chen, Jingwen; Zhang, Yaqin; Wang, Yafei; Ji, Xiaosheng; Zhang, Lin; Mi, Xigeng; Huang, He


    In this study, vacuum membrane distillation (VMD) was used to remove two prototypical fermentation inhibitors (acetic acid and furfural) from lignocellulose hydrolyzates. The effect of operating parameters, such as feed temperature and feed velocity, on the removal efficiencies of inhibitors was investigated. Under optimal conditions, more than 98% of furfural could be removed by VMD. However, the removal efficiency of acetic acid was considerably lower. After furfural and acetic acid were selectively removed from hydrolyzates by VMD, ethanol production efficiency increased by 17.8% compared to original hydrolyzates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Vacuum Distillation Residue Upgrading by an Indigenous Bacillus Cereus

    Directory of Open Access Journals (Sweden)

    Mitra Sadat Tabatabaee


    Full Text Available Background:Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly.Results:A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332. This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR, as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively.Conclusion:Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils.

  16. Research Regarding the Anticorosiv Protection of Atmospheric and Vacuum Distillation Unit that Process Crude Oil


    M. Morosanu; M. G. Petrescu; N. N. Antonescu


    Due to high boiling temperature, organic acids are present in the warmer areas of metal equipment from atmospheric and vacuum distillation units and determine, increased corrosion processes in furnace tubes, transfer lines, metal equipment within the distillation columns etc. In order to protect the corrosion of metal equipment from atmospheric and vacuum distillation units, against acids, de authors researched solution which integrates corrosion inhibitors and selecting materials for equi...

  17. Vacuum membrane distillation of seawater reverse osmosis brines. (United States)

    Mericq, Jean-Pierre; Laborie, Stéphanie; Cabassud, Corinne


    Seawater desalination by Reverse Osmosis (RO) is an interesting solution for drinking water production. However, because of limitation by the osmotic pressure, a high recovery factor is not attainable. Consequently, large volumes of brines are discharged into the sea and the flow rate produced (permeate) is limited. In this paper, Vacuum Membrane Distillation (VMD) is considered as a complementary process to RO to further concentrate RO brines and increase the global recovery of the process. VMD is an evaporative technology that uses a membrane to support the liquid-vapour interface and enhance the contact area between liquid and vapour in comparison with conventional distillation. This study focuses on VMD for the treatment of RO brines. Simulations were performed to optimise the operating conditions and were completed by bench-scale experiments using actual RO brines and synthetic solutions up to a salt concentration of 300 g L(-1). Operating conditions such as a highly permeable membrane, high feed temperature, low permeate pressure and a turbulent fluid regime allowed high permeate fluxes to be obtained even for a very high salt concentration (300 g L(-1)). For the membrane studied, temperature and concentration polarisation were shown to have little effect on permeate flux. After 6 to 8 h, no organic fouling or biofouling was observed for RO brines. At high salt concentrations, scaling occurred (mainly due to calcium precipitation) but had only a limited impact on the permeate flux (24% decrease for a permeate specific volume of 43L m(-2) for the highest concentration of salt). Calcium carbonate and calcium sulphate precipitated first due to their low solubility and formed mixed crystal deposits on the membrane surface. These phenomena only occurred on the membrane surface and did not totally cover the pores. The crystals were easily removed simply by washing the membrane with water. A global recovery factor of 89% can be obtained by coupling RO and VMD

  18. Experimental and theoretical analyses of temperature polarization effect in vacuum membrane distillation

    KAUST Repository

    Alsaadi, Ahmad Salem


    This paper discusses the effect of temperature polarization in Vacuum Membrane Distillation (VMD). The main motivation for using VMD in this work is that this module configuration is much simpler and more suitable for this kind of investigation than the other MD configurations such as Direct Contact Membrane Distillation (DCMD). The coupling between heat and mass transfer mechanisms at the feed-membrane interface is presented from a theoretical point of view. In addition, a new simple graphical method and a mathematical model for determining VMD flux are presented. The two methods used in evaluating the extent of temperature polarization effect on water vapor flux (flux sensitivity factors and temperature polarization coefficient (TPC)) are also analyzed and compared. The effect of integrating a heat recovery system in a large scale module on the TPC coefficient has also been studied and presented in this paper. © 2014 Elsevier B.V.





    This article concerns the study of the thermal cracking as undesirable phenomenon in the vacuum distillation of atmospheric residue of crude oil. In this point, we have sought to identify and characterize the effect of the increase in the temperature of vacuum distillation on the separation and the modification of the constituents of atmospheric residue of crude oil whose origin is Arabian Light. This study has been carried out by several techniques of analysis such as the density (ASTM D4052...

  20. Recovery of volatile aroma compounds from black currant juice by vacuum membrane distillation

    DEFF Research Database (Denmark)

    Bagger-Jørgensen, Rico; Meyer, Anne S.; Warming, C.


    This study evaluated the recovery of seven characteristic black currant aroma compounds by vacuum membrane distillation (VMD) carried out at low temperatures (10-45 degreesC) and at varying feed flow rates (100-500 l/h) in a lab scale membrane distillation set tip. VMD at feed flow from 100 to 500...

  1. Treatment of batik waste using distillation method (United States)

    Riyanto, Sidiq, Nurma Yunita; Hidayah, Nailil


    In this study has been the treatment of batik waste using distillation method. This study aims to the treatment of batik waste using distillation method. Batik is a world heritage that has an impact on economic improvement and environmental damage. Batik waste is a hazardous and toxic waste material. Batik waste in this research has been taken from Batik Industry in Yogyakarta, Indonesia. Batik waste of 5 L is included in the distillation apparatus, then the distillation run for 4 hours. The distillation product of solids and liquids is collected and analyzed. The solid produced at the distillation boiler was analyzed by FTIR. The distillation liquid was analyzed ammonia and COD concentration using UV-Vis Spectrophotometer. The result of the analysis showed that based on FTIR spectra obtained by dye with high purity. The analysis results shown are of ammonia, COD and pH were 0.652 mg/L, 238.31 mg/L, and 7.306, respectively. The compounds produced by boiler are the azo dye based on the spectrum at wave numbers 1554.07 cm-1. The conclusion of this research is that the distillation method is very suitable for the treatment of the batik waste at small batik industry. Advantages of distillation techniques that can be obtained two products are water and dye that can be used in batik industry.


    Directory of Open Access Journals (Sweden)



    Full Text Available This article concerns the study of the thermal cracking as undesirable phenomenon in the vacuum distillation of atmospheric residue of crude oil. In this point, we have sought to identify and characterize the effect of the increase in the temperature of vacuum distillation on the separation and the modification of the constituents of atmospheric residue of crude oil whose origin is Arabian Light. This study has been carried out by several techniques of analysis such as the density (ASTM D4052, distillation (ASTM D1160, determination of heavy metals nickel and vanadium (IFP9422, dosing of Conradson Carbon (ASTM D189, dosing of asphaltenes (ASTM D2549 and dosage of PCI (polycyclic aromatics (ASTM D 5186. The results showed a clear idea on the decomposition of the atmospheric residue and their influence on the performance of the vacuum distillation unit.

  3. Simultaneous concentration and detoxification of lignocellulosic hydrolyzates by vacuum membrane distillation coupled with adsorption. (United States)

    Zhang, Yaqin; Li, Ming; Wang, Yafei; Ji, Xiaosheng; Zhang, Lin; Hou, Lian


    Low sugar concentration and the presence of various inhibitors are the major challenges associated with lignocellulosic hydrolyzates as a fermentation broth. Vacuum membrane distillation (VMD) process can be used to concentrate sugars and remove inhibitors (furans) efficiently, but it's not desirable for the removal of less volatile inhibitors such as acetic acid. In this study, a VMD-adsorption process was proposed to improve the removal of acetic acid, achieving simultaneous concentration and detoxification of lignocellulosic hydrolyzates by one step process. Results showed that sugars were concentrated with high rejections (>98%) and little sugar loss (<2%), with the significant reduction in nearly total furans (99.7%) and acetic acid (83.5%) under optimal operation conditions. Fermentation results showed the ethanol production of hydrolyzates concentrated and detoxified using the VMD-adsorption method were approximately 10-fold greater than from untreated hydrolyzates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Study of Performance of Coaxial Vacuum Tube Solar Collector on Ethanol Distillation Process (United States)

    Sutomo; Ramelan, A. H.; Mustafa; Tristono, T.


    Coaxial vacuum tube solar collectors can generate heat up to 80°C is possibly used for ethanol distillation process that required temperature 79°C only. This study reviews the performance of coaxial collector vacuum tube used for ethanol distillation process. This experimental research was conducted in a closed space using a halogen lamp as a solar radiation simulator. We had done on three different of the radiation values, i.e. 998 W/m2, 878 W/m2 and 782 W/m2. The pressure levels of vacuum tube collector cavity in the research were 1; 0.5; 0.31; 0.179; and 0.043 atmospheres. The Research upgraded the 30% of ethanol to produce the concentration of 77% after distillation. The result shows that the performance of coaxial collector vacuum tube used for ethanol distillation process has the negative correlation to the level of the collector tube cavity pressure. The productivity will increase while the collector tube cavity pressure decreased. Therefore, the collector efficiency has the negative correlation also to the level of collector tube cavity pressure. The best performance achieved when it operated at a pressure of 0.043 atmosphere with radiation intensity 878 W / m2, and the value of efficiency is 57.8%.

  5. Increasing the Performance of Vacuum Membrane Distillation Using Micro-Structured Hydrophobic Aluminum Hollow Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Chia-Chieh Ko


    Full Text Available This study develops a micro-structured hydrophobic alumina hollow fiber with a high permeate flux of 60 Lm−2h−1 and salt rejection over 99.9% in a vacuum membrane distillation process. The fiber is fabricated by phase inversion and sintering, and then modified with fluoroalkylsilanes to render it hydrophobic. The influence of the sintering temperature and feeding temperature in membrane distillation (MD on the characteristics of the fiber and MD performance are investigated. The vacuum membrane distillation uses 3.5 wt % NaCl aqueous solution at 70 °C at 0.03 bar. The permeate flux of 60 Lm−2h−1 is the highest, compared with reported data and is higher than that for polymeric hollow fiber membranes.

  6. Transport phenomena and fouling in vacuum enhanced direct contact membrane distillation: Experimental and modelling

    KAUST Repository

    Naidu, Gayathri


    The application of vacuum to direct contact membrane distillation (vacuum enhanced direct contact membrane distillation, V-DCMD) removed condensable gasses and reduced partial pressure in the membrane pores, achieving 37.6% higher flux than DCMD at the same feed temperature. Transfer mechanism and temperature distribution profile in V-DCMD were studied. The empirical flux decline (EFD) model represented fouling profiles of V-DCMD. In a continuous V-DCMD operation with moderate temperature (55 degrees C) and permeate pressure (300 mbar) for treating wastewater ROC, a flux of 16.0 +/- 0.3 L/m(2) h and high quality distillate were achieved with water flushing, showing the suitability of V-DCMD for ROC treatment. (C) 2016 Elsevier B.V. All rights reserved.

  7. Treatment of 2,4,6-trinitrotoluene (TNT) red water by vacuum distillation. (United States)

    Zhao, Quanlin; Ye, Zhengfang; Zhang, Mohe


    2,4,6-Trinitrotoluene (TNT) red water from Chinese explosive industry was treated by vacuum distillation. The water quality before and after distillation was evaluated using high performance liquid chromatograph, UV-vis spectroscopy, Gas Chromatography/Mass Spectroscopy (GC/MS) and other physical and chemical analyses. The acute toxicity of TNT red water and its distillate was evaluated by determining the luminescence inhibition of Vibrio qinghaiensis sp. Nov. The results showed that the parameters except pH of the distillate met the criterion specified by the Chinese discharge standard for water pollutants from ordnance industry. Distillation removed chemical oxygen demand almost completely and the chrominance was reduced from 100,000 degrees to 17 degrees . The concentrations of 2,4-dinitrotoluene-3-sulfonate and 2,4-dinitrotoluene-5-sulfonate decreased from 20 x 10(3) and 31 x 10(3)mg L(-1) to 1.3 and 1.8 mg L(-1), respectively. GC/MS results showed that most of the organic components of TNT red water can be removed by distillation. The acute toxicity of water sample after distillation reduced 96%, compared with that of unprocessed TNT red water. (c) 2010 Elsevier Ltd. All rights reserved.

  8. The Isolation of Sitronellal and Rhodinol from Lemongrass Oil Using Vacuum Distillation Fractination

    Directory of Open Access Journals (Sweden)

    Fitriana Djafar


    Full Text Available The main componenet of lemongrass oil that is sitronellal and rhodinol (sitronellol and geraniol was isolated by using vacuum of distillation fraksinasi. Variably the research included the variable continue to, that is the sample weight (300 mL and process time (4 hours; and the variable changed, that is the pressure (80, 95 and 100 mbar and the temperature (145, 150, and 160o C. Results of the analysis of the ras material showed that lemongrass oil that came from Kota Panjang, Gayo Lues, Province Aceh had the content sitronellal that was high that is of 51.067% and rhodinol of 30.761%. The characteristics from lemongrass oil was yellow faded, the ray index 1.466, the specific gravity 0.889 solubility in alcohol 1:1 clear and the round of optics 19.15. The distillation sitronellal, 28.87% rhodinol (22.60% geraniol and 6.27% sitronellol and 11% other component. The condition for the process that was good enough in the isolation sitronellol used distillation vacuum of fraksinasi with the temperature and the pressure that were low that is 145o C and 80 mbar. The condition for the process that was quite good in the isolation rhodinol was use to use vacuum of distillation fraksinasi in the temperature and the pressure that were not too high and or low that is 150o C and 95 mbar.


    Energy Technology Data Exchange (ETDEWEB)

    Pierce, R.; Pak, D.


    Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current

  10. Steam pyrolysis of shale oil vacuum distillates for petrochemical intermediates production

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.D.; Dickson, P.F.; Yesavage, V.F.


    Vacuum distillations of shale oil may be worthwhile since it produces a good steam pyrolysis feedstock. Maximum ethylene yield was 28.8% for the simulated in situ distillate and 22.6% for the Tosco II distillate. Yields are as good or better than those obtainable from conventional feedstocks. Severity of cracking is increased by increasing the residence time and temperature. The effect of steam to hydrocarbon ratio cannot be determined from the data. Trends observed with increasing severity were: (a) ethylene yield rises to a maximum, then slowly decreases; (b) propylene and butadiene yields continually decrease; (c) methane and hydrogen yields increase; (d) weight percent solids increased. Short residence times, in general, give the highest yields of valuable components. 2 tables, 4 figs.

  11. Hydrothermal liquefaction of microalgae for biocrude production: Improving the biocrude properties with vacuum distillation. (United States)

    Eboibi, Blessing Elo-Oghene; Lewis, David Milton; Ashman, Peter John; Chinnasamy, Senthil


    This paper proposes a two-part process for producing biocrude with reduced impurities. The biocrude was produced from hydrothermal liquefaction (HTL) of Spirulina sp. and Tetraselmis sp. in a batch reactor at both 300 and 350°C, 5min, and 16%w/w solid feed composition. The resultant biocrudes were vacuum distilled at a maximum temperature of 360°C. It was shown that biocrude quality could be enhanced without using catalyst by vacuum distillation (VD). The biocrude yield for Spirulina sp. was 36wt% at 300°C, 42wt% at 350°C, and for Tetraselmis sp. was 34wt% at 300°C, and 58wt% at 350°C. VD of Spirulina sp. biocrude obtained at 300 and 350°C led to 62 and 67wt% distilled biocrudes yield, respectively. VD of Tetraselmis sp. biocrude obtained at 300°C was 70wt%, and 73wt% at 350°C. The higher heating values (HHV) increased from 32MJ/kg to 40MJ/kg. There were substantial reductions in oxygen, metallic content, and boiling point ranges in distilled biocrudes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Purification of cadmium up to 5N+ by vacuum distillation

    Indian Academy of Sciences (India)


    electric vehicle and remote area storage systems. The problem connected with profound purification and characterization of the materials that are used for the synthesis of electronic materials remains critical. The advantage of methods providing efficient purification using rather simple and cheap equipment is evident. As.

  13. In-situcross-linked PVDF membranes with enhanced mechanical durability for vacuum membrane distillation

    KAUST Repository

    Zuo, Jian


    A novel and effective one-step method has been demonstrated to fabricate cross-linked polyvinylidene fluoride (PVDF) membranes with better mechanical properties and flux for seawater desalination via vacuum membrane distillation (VMD). This method involves the addition of two functional nonsolvent additives; namely, water and ethylenediamine (EDA), into the polymer casting solution. The former acts as a pore forming agent, while the latter performs as a cross-linking inducer. The incorporation of water tends to increase membrane flux via increasing porosity and pore size but sacrifices membrane mechanical properties. Conversely, the presence of EDA enhances membrane mechanical properties through in-situ cross-linking reaction. Therefore, by synergistically combining the effects of both functional additives, the resultant PVDF membranes have shown good MD performance and mechanical properties simultaneously. The parameters that affect the cross-link reaction and membrane mechanical properties such as reaction duration and EDA concentration have been systematically studied. The membranes cast from an optimal reaction condition comprising 0.8 wt % EDA and 3-hour reaction not only shows a 40% enhancement in membrane Young\\'s Modulus compared to the one without EDA but also achieves a good VMD flux of 43.6 L/m2-h at 60°C. This study may open up a totally new approach to design next-generation high performance MD membranes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4013–4022, 2016

  14. 2,3-Butanediol recovery from fermentation broth by alcohol precipitation and vacuum distillation. (United States)

    Jeon, Sangjun; Kim, Duk-Ki; Song, Hyohak; Lee, Hee Jong; Park, Sunghoon; Seung, Doyoung; Chang, Yong Keun


    This study presents a new and effective downstream process to recover 2,3-butanediol (2,3-BD) from fermentation broth which is produced by a recombinant Klebsiella pneumoniae strain. The ldhA-deficient K. pneumoniae strain yielded about 90 g/L of 2,3-BD, along with a number of by-products, such as organic acids and alcohols, in a 65 h fed-batch fermentation. The pH-adjusted cell-free fermentation broth was firstly concentrated until 2,3-BD reached around 500 g/L by vacuum evaporation at 50°C and 50 mbar vacuum pressure. The concentrated solution was further treated using light alcohols, including methanol, ethanol, and isopropanol, for the precipitation of organic acids and inorganic salts. Isopropanol showed the highest removal efficiency, in which 92.5% and 99.8% of organic acids and inorganic salts were precipitated, respectively. At a final step, a vacuum distillation process enabled the recovery of 76.2% of the treated 2,3-BD, with 96.1% purity, indicating that fermentatively produced 2,3-BD is effectively recovered by a simple alcohol precipitation and vacuum distillation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Research Regarding the Anticorosiv Protection of Atmospheric and Vacuum Distillation Unit that Process Crude Oil

    Directory of Open Access Journals (Sweden)

    M. Morosanu


    Full Text Available Due to high boiling temperature, organic acids are present in the warmer areas of metal equipment from atmospheric and vacuum distillation units and determine, increased corrosion processes in furnace tubes, transfer lines, metal equipment within the distillation columns etc. In order to protect the corrosion of metal equipment from atmospheric and vacuum distillation units, against acids, de authors researched solution which integrates corrosion inhibitors and selecting materials for equipment construction. For this purpose, we tested the inhibitor PET 1441, which has dialchilfosfat in his composition and inhibitor based on phosphate ester. In this case, to the metal surface forms a complex phosphorous that forms of high temperature and high fluid speed. In order to form the passive layer and to achieve a 90% protection, we initially insert a shock dose, and in order to ensure further protection there is used a dose of 20 ppm. The check of anticorrosion protection namely the inhibition efficiency is achieved by testing samples made from steel different.

  16. [Prediction of the side-cut product yield of atmospheric/vacuum distillation unit by NIR crude oil rapid assay]. (United States)

    Wang, Yan-Bin; Hu, Yu-Zhong; Li, Wen-Le; Zhang, Wei-Song; Zhou, Feng; Luo, Zhi


    In the present paper, based on the fast evaluation technique of near infrared, a method to predict the yield of atmos- pheric and vacuum line was developed, combined with H/CAMS software. Firstly, the near-infrared (NIR) spectroscopy method for rapidly determining the true boiling point of crude oil was developed. With commercially available crude oil spectroscopy da- tabase and experiments test from Guangxi Petrochemical Company, calibration model was established and a topological method was used as the calibration. The model can be employed to predict the true boiling point of crude oil. Secondly, the true boiling point based on NIR rapid assay was converted to the side-cut product yield of atmospheric/vacuum distillation unit by H/CAMS software. The predicted yield and the actual yield of distillation product for naphtha, diesel, wax and residual oil were compared in a 7-month period. The result showed that the NIR rapid crude assay can predict the side-cut product yield accurately. The near infrared analytic method for predicting yield has the advantages of fast analysis, reliable results, and being easy to online operate, and it can provide elementary data for refinery planning optimization and crude oil blending.

  17. Treatment of heavy-metal wastewater by vacuum membrane distillation: effect of wastewater properties (United States)

    Ji, Zhongguang


    Heavy metal wastewater is a common byproduct in heavy metal industries. Membrane distillation is considered as promising technology to treat such wastewater. The treatment of heavy metal wastewater by vacuum membrane distillation (VMD) was conducted in this work. The effects of pH, calcium and EDTA on VMD performance were investigated. VMD process showed a good acid resistance as the solution pH above 0. When the solution pH was 0, the permeate conductivity was below 40μS·cm-1. Calcium and EDTA were found to have influence on VMD performance to some extent. VMD process was proved to be suitable for heavy metal wastewater as long as the impurity content was in control of a certain degree.

  18. Comparison of a novel distillation method versus a traditional distillation method in a model gin system using liquid/liquid extraction. (United States)

    Greer, Derek; Pfahl, Les; Rieck, Jim; Daniels, Tim; Garza, Oscar


    This research studied a novel form of distillation (high vacuum distillation) as a method for preserving volatile aroma chemicals important to the organoleptic attributes of a four botanical model gin as well as the degradation products generated during the heating required in traditional methods of gin distillation. A 2 (5) factorial experiment was conducted in a partially confounded incomplete block design and analyzed using the PROC MIXED procedure from SAS. A model gin was made of dried juniper berries (Juniperus communis), coriander seed (Coriandrum sativum), angelica root (Angelica archangelica), and dry lemon peel (Citrus limonum). This was distilled on a traditional still utilizing atmospheric pressure and a heating mantel to initiate phase separation as well as a novel still (high vacuum) utilizing high vacuum pressures below 0.1 mmHg and temperatures below -15 degrees C to initiate phase separation. The degradation products (alpha-pinene, alpha-phellandrene, E-caryophyllene, and beta-myrcene) were present at greater levels (approximately 10 times) in the traditional still-made gin as compared to the novel gin.

  19. Layer modeling of zinc removal from metallic mixture of waste printed circuit boards by vacuum distillation. (United States)

    Gao, Yujie; Li, Xingang; Ding, Hui


    A layer model was established to elucidate the mechanism of zinc removal from the metallic mixture of waste printed circuit boards by vacuum distillation. The removal process was optimized by response surface methodology, and the optimum operating conditions were the chamber pressure of 0.1Pa, heating temperature of 923K, heating time of 60.0min, particle size of 70 mesh (0.212mm) and initial mass of 5.25g. Evaporation efficiency of zinc, the response variable, was 99.79%, which indicates that the zinc can be efficiently removed. Based on the experimental results, a mathematical model, which bears on layer structure, evaporation, mass transfer and condensation, interprets the mechanism of the variable effects. Especially, in order to reveal blocking effect on the zinc removal, the Blake-Kozeny-Burke-Plummer equation was introduced into the mass transfer process. The layer model can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes

    KAUST Repository

    Ghaffour, Noreddine


    Vacuumed gap membrane distillation (VAGMED) modules, and multi-stage VAGMED systems and processes using the modules are provided. In an embodiment, the membrane distillation modules (10) can comprise: a) a condenser (12) including a condensation surface (15); b) a first passageway (13) having an inlet for receiving a first feed stream (14) and an outlet through which the first stream can pass out of the first passageway, the first passageway configured to bring the first feed stream into thermal communication with the condensation surface; c) an evaporator (17) including a permeable evaporation surface allowing condensable gas to pass there through; d) a second passageway (18) having an inlet for receiving a second feed stream (19) and an outlet through which the second feed stream can pass out of the second passageway, the second passageway configured to bring the second feed stream into communication with the permeable evaporation surface; and e) an enclosure (24) providing a vacuum compartment within which the condenser, the evaporator and the first and second passageways of the module are contained.

  1. Performance Investigation of O-Ring Vacuum Membrane Distillation Module for Water Desalination

    Directory of Open Access Journals (Sweden)

    Adnan Alhathal Alanezi


    Full Text Available A new O-ring flat sheet membrane module design was used to investigate the performance of Vacuum Membrane Distillation (VMD for water desalination using two commercial polytetrafluoroethylene (PTFE and polyvinylidene fluoride (PVDF flat sheet hydrophobic membranes. The design of the membrane module proved its applicability for achieving a high heat transfer coefficient of the order of 103 (W/m2 K and a high Reynolds number (Re. VMD experiments were conducted to measure the heat and mass transfer coefficients within the membrane module. The effects of the process parameters, such as the feed temperature, feed flow rate, vacuum degree, and feed concentration, on the permeate flux have been investigated. The feed temperature, feed flow rate, and vacuum degree play an important role in enhancing the performance of the VMD process; therefore, optimizing all of these parameters is the best way to achieve a high permeate flux. The PTFE membrane showed better performance than the PVDF membrane in VMD desalination. The obtained water flux is relatively high compared to that reported in the literature, reaching 43.8 and 52.6 (kg/m2 h for PVDF and PTFE, respectively. The salt rejection of NaCl was higher than 99% for both membranes.

  2. Metal–Organic Framework-Functionalized Alumina Membranes for Vacuum Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Jian Zuo


    Full Text Available Nature-mimetic hydrophobic membranes with high wetting resistance have been designed for seawater desalination via vacuum membrane distillation (VMD in this study. This is achieved through molecular engineering of metal–organic framework (MOF-functionalized alumina surfaces. A two-step synthetic strategy was invented to design the hydrophobic membranes: (1 to intergrow MOF crystals on the alumina tube substrate and (2 to introduce perfluoro molecules onto the MOF functionalized membrane surface. With the first step, the surface morphology, especially the hierarchical roughness, can be controlled by tuning the MOF crystal structure. After the second step, the perfluoro molecules function as an ultrathin layer of hydrophobic floss, which lowers the surface energy. Therefore, the resultant membranes do not only possess the intrinsic advantages of alumina supports such as high stability and high water permeability, but also have a hydrophobic surface formed by MOF functionalization. The membrane prepared under an optimum condition achieved a good VMD flux of 32.3 L/m2-h at 60 °C. This study may open up a totally new approach for design of next-generation high performance membrane distillation membranes for seawater desalination.

  3. Recycling of coal seam gas-associated water using vacuum membrane distillation. (United States)

    Heidarpour, Farideh; Shi, Jeffrey; Chae, So-Ryong


    Coal seam gas-associated water (CSGAW), which is a by-product of coal seam gas (CSG) production typically contains significant amounts of salts and has potential environmental issues. In this study, we optimized a bench-scale vacuum membrane distillation (VMD) process with flat-sheet hydrophobic polytetrafluoroethylene (PTFE) membranes for the treatment of synthetic CSGAW (conductivity = 15 mS/cm). To study performance of the VMD process, we explored the effects of feed temperature (T(f) = 60, 70, and 80°C), feed flow rate (V(f) = 60, 120, and 240 mL/min), and vacuum pressure (P(v) = 3, 6, and 9 kPa) on water permeability through the PTFE membrane in the VMD process. Under the optimum conditions (i.e. T(f) = 80°C, V(f) = 240 mL/min, P(v) = 3 kPa), water permeability and rejection efficiency of salts by the VMD process were found to be 5.5 L/m(2)/h (LMH) and 99.9%, respectively, after 2 h filtration. However, after 8 h operation, the water permeability decreased by 70% compared with the initial flux due to the formation of fouling layer of calcium, chloride, sodium, magnesium, and potassium on the membrane surface.

  4. Distillation Kinetics of Solid Mixtures of Hydrogen Peroxide and Water and the Isolation of Pure Hydrogen Peroxide in Ultrahigh Vacuum (United States)

    Teolis, B. D.; Baragiola, R. A.


    We present results of the growth of thin films of crystalline H2O2 and H2O2.2H2O (dihydrate) in ultrahigh vacuum by distilling an aqueous solution of hydrogen peroxide. We traced the process using infrared reflectance spectroscopy, mass loss on a quartz crystal microbalance, and in a few cases ultraviolet-visible reflectance. We find that the different crystalline phases-water, dihydrate, and hydrogen peroxide-have very different sublimation rates, making distillation efficient to isolate the less volatile component, crystalline H2O2.

  5. Influence of essential oil fractionation by vacuum distillation on acaricidal activity against the cattle tick

    Directory of Open Access Journals (Sweden)

    Fernando Cidade Torres


    Full Text Available The aim of this work was to study the influence of essential oil fractionation on acaricidal activity against the cattle tick Rhipicephalus (Boophilus microplus. The citronella (Cymbopogon winterianus J. and pepper tree (Schinus molle L. essential oils were fractionated by vacuum distillation yielding fractions that were analyzed by the GC/MS. Laboratory tests were carried out to determine the effect of the total essential oil and fractions on larvae of the cattle tick R. (B. microplus. The fractions 04 and 05 of the C. winterianus essential oil were the most active showing LC50 values of 1.20 and 1.34 μL/mL, respectively. The LC50 of the total oil was 3.30 μL/mL while the effect of the fractions 01, 02 and 03 was less pronounced, with LC50 values of 4.37, 4.24 and 3.49 μL/mL, respectively. The fraction 03 of the S. molle essential oil was the most active showing LC50 value of 8.80 μL/mL while the fractions 01 and 02 did not show toxic effects on the larvae.

  6. Evaluation of Controller Tuning Methods Applied to Distillation Column Control

    DEFF Research Database (Denmark)

    Nielsen, Kim; W. Andersen, Henrik; Kümmel, Professor Mogens

    A frequency domain approach is used to compare the nominal performance and robustness of dual composition distillation column control tuned according to Ziegler-Nichols (ZN) and Biggest Log Modulus Tuning (BLT) for three binary distillation columns, WOBE, LUVI and TOFA. The scope...... of this is to examine whether ZN and BLT design yield satisfactory control of distillation columns. Further, PI controllers are tuned according to a proposed multivariable frequency domain method. A major conclusion is that the ZN tuned controllers yield undesired overshoot and oscillation and poor stability robustness...

  7. Calculation of ternary Si-Fe-Al phase equilibrium in vacuum distillation by molecular interaction volume model

    Directory of Open Access Journals (Sweden)

    Liu K.


    Full Text Available The vacuum distillation of aluminum from Si-Fe-Al ternary alloy with high content of Al is studied by a molecular interaction volume model (MIVM in this paper. The vapor-liquid phase equilibrium of the Si-Fe-Al system in vacuum distillation has been calculated using only the properties of pure components and the activity coefficients. A significant advantage of the model lies in its ability to predict the thermodynamic properties of liquid alloys using only binary infinite dilution activity coefficients. The thermodynamic activities and activity coefficients of components of the related Si-Fe, Si- Al and Fe-Al binary and the Si-Fe-Al ternary alloy systems are calculated based on the MIVM. The computational activity values are presented graphically, and evaluated with the reported experiment data in the literature, which shows that the prediction effect of the proposed model is of stability and reliability.

  8. PLS models for determination of SARA analysis of Colombian vacuum residues and molecular distillation fractions using MIR-ATR

    Directory of Open Access Journals (Sweden)

    Jorge A. Orrego-Ruiz


    Full Text Available In this work, prediction models of Saturates, Aromatics, Resins and Asphaltenes fractions (SARA from thirty-seven vacuum residues of representative Colombian crudes and eighteen fractions of molecular distillation process were obtained. Mid-Infrared (MIR Attenuated Total Reflection (ATR spectroscopy in combination with partial least squares (PLS regression analysis was used to estimate accurately SARA analysis in these kind of samples. Calibration coefficients of prediction models were for saturates, aromatics, resins and asphaltenes fractions, 0.99, 0.96, 0.97 and 0.99, respectively. This methodology permits to control the molecular distillation process since small differences in chemical composition can be detected. Total time elapsed to give the SARA analysis per sample is 10 minutes.

  9. Removing lead from metallic mixture of waste printed circuit boards by vacuum distillation: factorial design and removal mechanism. (United States)

    Li, Xingang; Gao, Yujie; Ding, Hui


    The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper-lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2013 Elsevier Ltd. All rights reserved.


    Directory of Open Access Journals (Sweden)

    Meilyn González Cortés


    Full Text Available Energy consumption was determined in two schemes of alcohol distillation. In the first scheme, columns operate at a pressure close to atmospheric pressure and the second one works with vacuum pressures. An analysis of energy integration in the ASPEN PINCH software is done, determining the minimum requirements of hot and cold utilities in each process. The composite curves showed that there are possibilities for energy recovery in both processes. A minimum ΔT (ΔTmín optimum of 25oC for conventional distillation and 20oC for double effect distillation was obtained. The grids diagram showed the minimum number of exchange units with differences according to the real processes and utilities over consumption for both distillation schemes. The minimum consumption of utilities obtained from energy integration resulted in savings of 52% for double effect distillation and 75% for conventional distillation.


    Directory of Open Access Journals (Sweden)

    Arletis Cruz Llerena


    Full Text Available The comparison between three methods to calculate the exergy of the currents involved in the exergetic balance of alcoholic distillation columns is presented. Exergy of the currents was considered as: 1 flow exergies, 2 heat exergies and 3 the sum of flow exergy and chemical exergy. The implementation of the exergetic analysis was examined as a key point to improve the efficiency of the process. A case study, where the methods are applied for the evaluation of the exergy is analyzed; differences among the methods were obtained between the 15% and 30 %. The influence of the studied columns in total work capacity loss was determined, concluding that regardless of the method, the distillation column has shown the higher loss. An economic analysis was made applying the first method to the case study, where the percentage of ethanol in wine increases from 5.8 ºGL to 9 ºGL, which led to a decrease of vapor consumption of 23.66%, an exergetic yield increase of 28.02 % and a combustion gas flow reduction of 24 627 034.4 m3/year.

  12. Hydrocracking of n-hexadecane and vacuum distillates over a zeolitic catalyst in the presence of organic nitrogen compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zelentsov, Y.N.; Safonov, G.A.; Osipov, L.M.; Plyusnin, A.N.


    In n-hexadecane (HD) hydrocracking over a commercial zeolite-containing catalyst (U.S.S.R. grade GK-8) at 325/sup 0/-410/sup 0/C, strong concentration maxima for C/sub 4/-C/sub 7/ products and high concentrations of isoproducts, except for iso-C/sub 16/, were observed. Addition of quinoline at 0.078 mole/l. drastically reduced the yields of both cracking and isomerization products but did not change their ratio or product distribution, which were also independent of temperature. Apparently, both reactions occur at the same active sites which are blocked by quinoline. The cracking stage precedes the more rapid isomerization. In hydrocracking of a 340/sup 0/-490/sup 0/C bp vacuum distillate of a west-Siberian crude, in which the initial content of basic nitrogen (0.042% by wt) had been reduced by TiCl/sub 4/ extraction or increased by the addition of a nitrogen base concentrate, an increase in the nitrogen content from 0.02 to 0.072% reduced the degree of cracking from 100 to 70% at 410/sup 0/C and from 91.6 to 35.4/sup 0/C. The yield of the light fraction (< 160/sup 0/C bp) at 410/sup 0/C decreased from 74.3 to 20% and that of the 160/sup 0/-360/sup 0/C fraction increased from 25.7 to 50.5%.


    An adaptation of Office of Solid Waste and Emergency Response' Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW-846) method 8261 to analyze milk for an expanded list of volatile organic compounds is presented. The milk matriz exhibits a strong affinity for o...

  14. Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system. (United States)

    Li, Xue-Mei; Zhao, Baolong; Wang, Zhouwei; Xie, Ming; Song, Jianfeng; Nghiem, Long D; He, Tao; Yang, Chi; Li, Chunxia; Chen, Gang


    This study examined the performance of a novel hybrid system of forward osmosis (FO) combined with vacuum membrane distillation (VMD) for reclaiming water from shale gas drilling flow-back fluid (SGDF). In the hybrid FO-VMD system, water permeated through the FO membrane into a draw solution reservoir, and the VMD process was used for draw solute recovery and clean water production. Using a SGDF sample obtained from a drilling site in China, the hybrid system could achieve almost 90% water recovery. Quality of the reclaimed water was comparable to that of bottled water. In the hybrid FO-VMD system, FO functions as a pre-treatment step to remove most contaminants and constituents that may foul or scale the membrane distillation (MD) membrane, whereas MD produces high quality water. It is envisioned that the FO-VMD system can recover high quality water not only from SGDF but also other wastewaters with high salinity and complex compositions.

  15. Vacuum sealing and cooling as methods to preserve surgical specimens

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Engvad, Birte; Nielsen, Ole


    Recently, vacuum-based preservation of surgical specimens has been proposed as a safe alternative to formalin fixation at the surgical theater. The method seems feasible from a practical point of view, but no systematic study has examined the effect of vacuum sealing alone with respect to tissue...... preservation. In this study, we therefore subjected tissue samples from 5 different organs to treatments with and without vacuum sealing and cooling at 4°C to study the effect of vacuum sealing of surgical specimens with respect to tissue preservation and compare it with the effect of cooling. No preserving...... effect of vacuum sealing was observed with respect to cellular morphology, detection of immunohistochemical epitopes, or RNA integrity. In contrast, storage at 4°C was shown to preserve tissue to a higher degree than storage at room temperature for all included endpoints, independently of whether...

  16. Tools for Reactive Distillation Column Design: Graphical and Stage-to-Stage Computation Methods

    DEFF Research Database (Denmark)

    Sanchez Daza, O.; Cisneros, Eduardo Salvador P.; Hostrup, Martin


    Based on the element mass balance concept, a graphical design method and a stage-to-stage multicomponent design method for reactive distillation columns have been developed. For distillation columns comprising reactive and non-reactive stages, a simple design strategy based on reactive and non......-reactive bubble point calculations is proposed. This strategy tracks the conversion and temperature between the feed and the end stages of the column. An illustrative example highlights the verification of the design strategy through rigorous simulation....



    Meilyn González Cortés; Anneley Fariñas Díaz; Yenisleidy Martínez Martínez


    Energy consumption was determined in two schemes of alcohol distillation. In the first scheme, columns operate at a pressure close to atmospheric pressure and the second one works with vacuum pressures. An analysis of energy integration in the ASPEN PINCH software is done, determining the minimum requirements of hot and cold utilities in each process. The composite curves showed that there are possibilities for energy recovery in both processes. A minimum ΔT (ΔTmín) optimum of 25oC for conve...

  18. Molecular Grafting of Fluorinated and Nonfluorinated Alkylsiloxanes on Various Ceramic Membrane Surfaces for the Removal of Volatile Organic Compounds Applying Vacuum Membrane Distillation. (United States)

    Kujawa, Joanna; Al-Gharabli, Samer; Kujawski, Wojciech; Knozowska, Katarzyna


    Four main tasks were presented: (i) ceramic membrane functionalization (TiO2 5 kDa and 300 kDa), (ii) extended material characterization (physicochemistry and tribology) of pristine and modified ceramic samples, (iii) evaluation of chemical and mechanical stability, and finally (iv) assessment of membrane efficiency in vacuum membrane distillation applied for volatile organic compounds (VOCs) removal from water. Highly efficient molecular grafting with four types of perfluoroalkylsilanes and one nonfluorinated agent was developed. Materials with controllable tribological and physicochemical properties were achieved. The most meaningful finding is associated with the applicability of fluorinated and nonfluorinated grafting agents. The results of contact angle, hysteresis of contact angle, sliding angle, and critical surface tension as well as Young's modulus, nanohardness, and adhesion force for grafting by these two modifiers are comparable. This provides insight into the potential applicability of environmental friendly hydrophobic and superhydrophobic surfaces. The achieved hydrophobic membranes were very effective in the removal of VOCs (butanol, methyl-tert-butyl ether, and ethyl acetate) from binary aqueous solutions in vacuum membrane distillation. The correlation between membrane effectiveness and separated solvent polarity was compared in terms of material properties and resistance to the wetting (kinetics of wetting and in-depth liquid penetration). Material properties were interpreted considering Zisman theory and using Kao diagram. The significant influence of surface chemistry on the membrane performance was noticed (5 kDa, influence of hydrophobic nanolayer and separation controlled by solution-diffusion model; 300 kDa, no impact of surface chemistry and separation controlled by liquid-vapor equilibrium).

  19. Systems and methods for reactive distillation with recirculation of light components (United States)

    Stickney, Michael J [Nassau Bay, TX; Jones, Jr., Edward M.


    Systems and methods for producing gas-to-liquids products using reactive distillation are provided. The method for producing gas-to-liquids products can include reacting a feedstock in a column having a distillation zone and a reaction zone to provide a bottoms stream and an overhead stream. A first portion of the overhead stream can be recycled to the column at the top of the reaction zone and second portion of the overhead stream can be recycled to the column at the bottom of the reaction zone.

  20. Improving distillation method and device of tritiated water analysis for ultra high decontamination efficiency. (United States)

    Fang, Hsin-Fa; Wang, Chu-Fang; Lin, Chien-Kung


    It is important that monitoring environmental tritiated water for understanding the contamination dispersion of the nuclear facilities. Tritium is a pure beta radionuclide which is usually measured by Liquid Scintillation Counting (LSC). The average energy of tritum beta is only 5.658 keV that makes the LSC counting of tritium easily be interfered by the beta emitted by other radionuclides. Environmental tritiated water samples usually need to be decontaminated by distillation for reducing the interference. After Fukushima Nucleaer Accident, the highest gross beta concentration of groundwater samples obtained around Fukushima Daiichi Nuclear Power Station is over 1,000,000 Bq/l. There is a need for a distillation with ultra-high decontamination efficiency for environmental tritiated water analysis. This study is intended to improve the heating temperature control for better sub-boiling distillation control and modify the height of the container of the air cooling distillation device for better fractional distillation effect. The DF of Cs-137 of the distillation may reach 450,000 which is far better than the prior study. The average loss rate of the improved method and device is about 2.6% which is better than the bias value listed in the ASTM D4107-08. It is proven that the modified air cooling distillation device can provide an easy-handling, water-saving, low cost and effective way of purifying water samples for higher beta radionuclides contaminated water samples which need ultra-high decontamination treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Systems and methods for analyzing liquids under vacuum (United States)

    Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua


    Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.

  2. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh [Purdue Univ., West Lafayette, IN (United States)


    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  3. Control of a Linear Distillation Column Using Type-2 Fuzzy Method Optimized by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Abbas Asgari


    Full Text Available The distillation process is important process in the chemical industry and has wide application in industry. Distillation tower is used by chemical engineers as a popular tool to separate materials and is the most common method for separating materials. Keeping constant the product composition in the distillation column is very important from control perspective. Control of these complicated processes need intelligent methods to adopt the appropriate decision for control based on the behavior of the system. Between intelligent methods, fuzzy technique has superior response in complex systems control and so is used in this study. In this article at first, a type-1fuzzy controller is designed for linear model of distillation tower. In design of this Fuzzy controller, genetic algorithm (GA is used for optimization of fuzzy rules base. It has been shown that the fuzzy controller is better than conventional PI one. Then the type-1 fuzzy controller has been replaced with type-2 fuzzy controller and has been shown that the performance of type-2 is better than type-1 in various points of view. In this study, the MATLAB/SIMULINK software has been used for modeling and implementing the proposed methods.

  4. Spectrophotometric method for quantitative measuring essential oil in aromatic water and distillate with rose smell (United States)

    Semenova, E.; Presnyakova, V.; Goncharov, D.; Goncharov, M.; Presnyakova, E.; Presnyakov, S.; Moiseeva, I.; Kolesnikova, S.


    In this connection, we improved the express methods of determining the mixture of volatile aromatic substances by the spectrophotometry of aromatic water and steam distillate of essential oil raw materials (traditional or biotechnological with rose smell). Direct spectrophotometry of distillation water is impossible because it is a colloid of liquid oil and law is not observed. Therefore, it is necessary to dissolve 1 ml of distillate in ethanol in the ratio 1:4, in this case we take real solution with no lipophilic fall-out on the walls of cuvette, also the light absorption law is observed. There are stable maximums in spectrums of studied oils. Optical density of these maximums is a result of summary absorption of terpenoid components (aromatic and monoterpene alcohols, its ethers). Optical density of tested and standard solutions is measured in appropriate wavelengths. Spectrophotometric method of determination of essential oil quantity in aromatic water with rose smell differs with high sensitivity (10-5-10-6 gmol/l) and allows to determine oil concentration from 0,900 to 0,008 mg with an error less than 1%. At that, 1 ml is enough for analysis. It’s expedient to apply this method while operating with small quantity of water distillate in biochemical and biotechnological researches and also as express control for extraction and hydrodistillation of essential oil raw material (rose petals and flowers from different origin, eremothecium cultural liquid etc.).

  5. Evaluation method of membrane performance in membrane distillation process for seawater desalination. (United States)

    Chung, Seungjoon; Seo, Chang Duck; Choi, Jae-Hoon; Chung, Jinwook


    Membrane distillation (MD) is an emerging desalination technology as an energy-saving alternative to conventional distillation and reverse osmosis method. The selection of appropriate membrane is a prerequisite for the design of an optimized MD process. We proposed a simple approximation method to evaluate the performance of membranes for MD process. Three hollow fibre-type commercial membranes with different thicknesses and pore sizes were tested. Experimental results showed that one membrane was advantageous due to the highest flux, whereas another membrane was due to the lowest feed temperature drop. Regression analyses and multi-stage calculations were used to account for the trade-offeffects of flux and feed temperature drop. The most desirable membrane was selected from tested membranes in terms of the mean flux in a multi-stage process. This method would be useful for the selection of the membranes without complicated simulation techniques.

  6. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method (United States)

    Bruno, Thomas J; Allen, Samuel


    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC. PMID:26401423

  7. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method. (United States)

    Bruno, Thomas J; Allen, Samuel


    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC.

  8. Total sulfur determination in residues of crude oil distillation using FT-IR/ATR and variable selection methods. (United States)

    Müller, Aline Lima Hermes; Picoloto, Rochele Sogari; de Azevedo Mello, Paola; Ferrão, Marco Flores; de Fátima Pereira dos Santos, Maria; Guimarães, Regina Célia Lourenço; Müller, Edson Irineu; Flores, Erico Marlon Moraes


    Total sulfur concentration was determined in atmospheric residue (AR) and vacuum residue (VR) samples obtained from petroleum distillation process by Fourier transform infrared spectroscopy with attenuated total reflectance (FT-IR/ATR) in association with chemometric methods. Calibration and prediction set consisted of 40 and 20 samples, respectively. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). Different treatments and pre-processing steps were also evaluated for the development of models. The pre-treatment based on multiplicative scatter correction (MSC) and the mean centered data were selected for models construction. The use of siPLS as variable selection method provided a model with root mean square error of prediction (RMSEP) values significantly better than those obtained by PLS model using all variables. The best model was obtained using siPLS algorithm with spectra divided in 20 intervals and combinations of 3 intervals (911-824, 823-736 and 737-650 cm(-1)). This model produced a RMSECV of 400 mg kg(-1) S and RMSEP of 420 mg kg(-1) S, showing a correlation coefficient of 0.990. Copyright © 2011 Elsevier B.V. All rights reserved.


    Directory of Open Access Journals (Sweden)

    A. Narvaes-Garcia


    Full Text Available AbstractIn this paper, three quality or performance indices (Luyben's capacity factor, total annual costs, and annual profit were applied for the design of a batch distillation column working at variable reflux. This work used the Fenske-Underwood-Gilliland short-cut method to solve a problem of four components (benzene, toluene, ethyl-benzene, and ortho-xylene that needed to be separated and purified to a mole fraction of 0.97 or better. The performance of the system was evaluated using distillation columns with 10, 20, 30, 40 and 50 theoretical stages with a boil-up vapor flow set at 100 kmol/h. It was found that the annual profit was the best quality index, while the best case for variable reflux was the column with 50 stages. It was confirmed that the best case always required a reflux ratio close to the minimum.

  10. Design of Batch Distillation Columns Using Short-Cut Method at Constant Reflux

    Directory of Open Access Journals (Sweden)

    Asteria Narvaez-Garcia


    Full Text Available A short-cut method for batch distillation columns working at constant reflux was applied to solve a problem of four components that needed to be separated and purified to a mole fraction of 0.97 or better. Distillation columns with 10, 20, 30, 40, and 50 theoretical stages were used; reflux ratio was varied between 2 and 20. Three quality indexes were used and compared: Luyben’s capacity factor, total annual cost, and annual profit. The best combinations of theoretical stages and reflux ratio were obtained for each method. It was found that the best combinations always required reflux ratios close to the minimum. Overall, annual profit was the best quality index, while the best combination was a distillation column with 30 stages, and reflux ratio’s of 2.0 for separation of benzene (i, 5.0 for the separation of toluene (ii, and 20 for the separation of ethylbenzene (iii and purification of o-xylene (iv.

  11. TBARs distillation method: revision to minimize the interference from yellow pigments in meat products. (United States)

    Díaz, P; Linares, M B; Egea, M; Auqui, S M; Garrido, M D


    The aim was to study the effect of the incubation method and TBA reagent (concentration/solvent) on yellow pigment interference in meat products. Distillates from red sausage, sucrose, malondialdehyde and a mixture of sucrose-malondialdehyde were reacted with four different TBA solutions at five different temperature/time relations. Two TBA solutions were prepared at 20mM using 90% glacial acetic acid or 3.86% perchloric acid. In addition, an 80mM TBA solution was prepared using distilled water adjusted to pH4 and another using 0.8% TBA in distilled water. The temperature/time relations were: (1) 35min in a boiling water bath; (2) 70°C/30min; (3) 40°C/90min; (4) room temperature (r.t.) (24°C) in dark conditions for 20h; and (5) 60min in a boiling water bath. The results showed that aqueous or diluted acid solutions of TBA reagent and the application of 100°C for less than 1h provided the best conditions to minimize the presence of yellow pigments and maximize pink pigment formation in meat products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines

    KAUST Repository

    Burger, Jessica L.


    © This article not subject to U.S. Copyright. Published 2015 by the American Chemical Society. Incremental but fundamental changes are currently being made to fuel composition and combustion strategies to diversify energy feedstocks, decrease pollution, and increase engine efficiency. The increase in parameter space (by having many variables in play simultaneously) makes it difficult at best to propose strategic changes to engine and fuel design by use of conventional build-and-test methodology. To make changes in the most time- and cost-effective manner, it is imperative that new computational tools and surrogate fuels are developed. Currently, sets of fuels are being characterized by industry groups, such as the Coordinating Research Council (CRC) and other entities, so that researchers in different laboratories have access to fuels with consistent properties. In this work, six gasolines (FACE A, C, F, G, I, and J) are characterized by the advanced distillation curve (ADC) method to determine the composition and enthalpy of combustion in various distillate volume fractions. Tracking the composition and enthalpy of distillate fractions provides valuable information for determining structure property relationships, and moreover, it provides the basis for the development of equations of state that can describe the thermodynamic properties of these complex mixtures and lead to development of surrogate fuels composed of major hydrocarbon classes found in target fuels.

  13. Influence of distillation time and sample mass on sulfur dioxide analysis in passion fruit juice through Monier-Williams method

    Directory of Open Access Journals (Sweden)

    Anita Akiko Takahashi


    Full Text Available AbstractThis study aimed to evaluate the effect of the distillation time and the sample mass on the total SO2 content in integral passion fruit juice (Passiflora sp. For the SO2 analysis, a modified version of the Monier-Williams method was used. In this experiment, the distillation time and the sample mass were reduced to half of the values proposed in the original method. The analyses were performed in triplicate for each distilling time x sample mass binomial, making a total of 12 tests, which were performed on the same day. The significance of the effects of the different distillation times and sample mass were evaluated by applying one-factor analysis of variance (ANOVA. For a 95% confidence limit, it was found that the proposed amendments to the distillation time, sample mass, and the interaction between distilling time x sample mass were not significant (p > 0.05 in determining the SO2 content in passion fruit juice. In view of the results that were obtained it was concluded that for integral passion fruit juice it was possible to reduce the distillation time and the sample mass in determining the SO2 content by the Monier-Williams method without affecting the result.

  14. Modern applications for a total sulfur reduction distillation method - what’s old is new again (United States)


    Background The use of a boiling mixture of hydriodic acid, hypophosphorous acid, and hydrochloric acid to reduce any variety of sulfur compounds has been in use in various applications since the first appearance of this method in the literature in the 1920’s. In the realm of sulfur geochemistry, this method remains a useful, but under-utilized technique. Presented here is a detailed description of the distillation set-up and procedure, as well as an overview of potential applications of this method for marine sulfur biogeochemistry/isotope studies. The presented applications include the sulfur isotope analysis of extremely low amounts of sulfate from saline water, the conversion of radiolabeled sulfate into sulfide, the extraction of refractory sulfur from marine sediments, and the use of this method to assess sulfur cycling in Aarhus Bay sediments. Results The STrongly Reducing hydrIodic/hypoPhosphorous/hydrochloric acid (STRIP) reagent is capable of rapidly reducing a wide range of sulfur compounds, including the most oxidized form, sulfate, to hydrogen sulfide. Conversion of as little as approximately 5 micromole sulfate is possible, with a sulfur isotope composition reproducibility of 0.3 permil. Conclusions Although developed many decades ago, this distillation method remains relevant for many modern applications. The STRIP distillation quickly and quantitatively converts sulfur compounds to hydrogen sulfide which can be readily collected in a silver nitrate trap for further use. An application of this method to a study of sulfur cycling in Aarhus Bay demonstrates that we account for all of the sulfur compounds in pore-water, effectively closing the mass balance of sulfur cycling. PMID:24808759

  15. Methods for identification and verification using vacuum XRF system (United States)

    Schramm, Fred (Inventor); Kaiser, Bruce (Inventor)


    Apparatus and methods in which one or more elemental taggants that are intrinsically located in an object are detected by x-ray fluorescence analysis under vacuum conditions to identify or verify the object's elemental content for elements with lower atomic numbers. By using x-ray fluorescence analysis, the apparatus and methods of the invention are simple and easy to use, as well as provide detection by a non line-of-sight method to establish the origin of objects, as well as their point of manufacture, authenticity, verification, security, and the presence of impurities. The invention is extremely advantageous because it provides the capability to measure lower atomic number elements in the field with a portable instrument.

  16. An Analytical Method to Measure Free-Water Tritium in Foods using Azeotropic Distillation. (United States)

    Soga, Keisuke; Kamei, Toshiyuki; Hachisuka, Akiko; Nishimaki-Mogami, Tomoko


    A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant has raised concerns about the discharge of contaminated water containing tritium ((3)H) from the nuclear power plant into the environment and into foods. In this study, we explored convenient analytical methods to measure free-water (3)H in foods using a liquid scintillation counting and azeotropic distillation method. The detection limit was 10 Bq/L, corresponding to about 0.01% of 1 mSv/year. The (3)H recoveries were 85-90% in fruits, vegetables, meats and fishes, 75-85% in rice and cereal crops, and less than 50% in sweets containing little water. We found that, in the case of sweets, adding water to the sample before the azeotropic distillation increased the recovery and precision. Then, the recoveries reached more than 75% and RSD was less than 10% in all food categories (13 kinds). Considering its sensitivity, precision and simplicity, this method is practical and useful for (3)H analysis in various foods, and should be suitable for the safety assessment of foods. In addition, we examined the level of (3)H in foods on the Japanese market. No (3)H radioactivity was detected in any of 42 analyzed foods.

  17. Methods for batch fabrication of cold cathode vacuum switch tubes (United States)

    Walker, Charles A [Albuquerque, NM; Trowbridge, Frank R [Albuquerque, NM


    Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.

  18. Comparative study of the essential oil and hydrolate composition of Lythrum salicaria L. obtained by hydro-distillation and microwave distillation methods

    Directory of Open Access Journals (Sweden)

    A. Manayi


    Full Text Available Essential oils are considered as very complex natural mixtures containing numerous components at quite various concentrations. Lythrum salicaria has not been previously subjected to examination of its volatile oil. The present study was carried out to evaluate the essential oil composition of the flowering aerial parts of the plant by using conventionally hydro-distillation (HD and microwave assisted hydro-distillation (MAH methods along with the aromatic water obtained by hydro-distillation. Components of these three samples were recognized by GC/MS. Identification of components resulted in recognition of 14 (98% oil, 32 (98.4%, and 10 (95.5% compounds for HD, its hydrolate, and MAH samples, respectively. The predominant constituents in the HD oil were bis (2-ethylhexyl phthalate (29.2%, n-hexadecanoic acid (22%, and pentacosane (9.5%. The major constituents of the hydrolate were elucidated as 2(4H-benzofuranone-5,6,7,7a-tetrahydro-4,4,7a-trimethyl (6.4%, neryl acetone (6%, pentanoic acid (5.7%, nonanoic acid (5.6%, and octanoic acid (5.5%. Accordingly, bis (2-ethylhexyl phthalate (43.2%, methyl-cyclopentane (36.5%, and pentacosane (4.7% were assessed as the main components of MAH oil. Comparing the three samples compositions, it was concluded that the extraction procedure led to variations in quality and quantity of volatiles. Besides, bis (2-ethylhexyl phthalate, the common plasticizer, was identified as the main pollutant in both HD and MAH oils. The presence of this substance in the oils provided the evidence of contaminations that was absorbed from water into the plant suggesting GC/MS as a suitable method for its detection in plant materials.

  19. Development of a test method for distillation of diesel-biodiesel-alcohols mixtures at reduced pressure (United States)

    Niculescu, R.; Iosub, I.; Clenci, A.; Zaharia, C.; Iorga-Simăn, V.


    Increased environmental awareness and depletion of fossil petroleum resources are driving the automotive industry to seek out and use alternative fuels. For instance, the biofuel is a major renewable energy source to supplement declining fossil fuel resources. The addition of alcohols like methanol and ethanol is practical in biodiesel blends due to its miscibility with the pure biodiesel. Alcohols also improve physico-chemical properties of biodiesel blends, which lead to improved combustion efficiency. Proper volatility of fuels is critical to the operation of internal combustion engines with respect to both performance and emissions. Volatility may be characterised by various measurements, the most common of which are vapour pressure, distillation and the vapour/liquid ratio. The presence of ethanol or other oxygenates may affect these properties and, as a result, performance and emissions, as well. However, in the case of diesel-biodiesel-alcohols mixtures, the variance of component volatility makes difficult the analysis of the overall volatility. Thus, the paper presents an experimental method of distilling diesel-biodiesel-alcohols mixtures by adjusting the boiler pressure of an i-Fischer Dist equipment.

  20. Nutritional value of Brazilian distillers dried grains with solubles for pigs as determined by different methods

    Directory of Open Access Journals (Sweden)

    Anderson Corassa

    Full Text Available ABSTRACT The objective of this study was to determine the digestibility coefficient (DC of nutrients and the digestible energy (DE, and metabolizable energy (ME values of distillers dried grains with solubles (DDGS produced in Brazil by different methods. Eight barrows with 23.3±4.1 kg were housed in metabolic cages in a randomized block design and fed diets containing 0, 200, 400, and 600 g kg–1 of corn DDGS. We determined the digestibility of dry matter (DM, organic matter (OM, crude protein (CP, ether extract (EE, mineral matter (MM, neutral detergent fiber (NDF, and gross energy (GE by the total collection (TC and chromium oxide marker (Cr methods. Distillers dried grains with solubles provided the respective DM, OM, CP, EE, MM, NDF, and GE values of 910, 863, 286, 66.9, 46.8, 500 g kg–1, and 4,780 kcal kg–1. The DE and ME values of DDGS were 3,739 and 3,401 kcal kg–1 and 3,691 and 3,213 kcal kg–1 as determined by TC and Cr methods, respectively. The growing inclusion of DDGS did not affect the DE or ME values. The digestibility coefficients of DM, OM, CP, EE, MM, and NDF were 767, 765, 827, 691, 883, and 821 g kg–1, respectively, by the total collection method. The Cr underestimated the values of all variables compared with TC method. Levels up to 600 g kg–1 of the test ingredient do not influence the DE and ME of DDGS, but compromises the digestibility coefficients of DM, OM, and NDF.

  1. Test methods for evaluating the filtration and particulate emission characteristics of vacuum cleaners. (United States)

    Willeke, K; Trakumas, S; Grinshpun, S A; Reponen, T; Trunov, M; Friedman, W


    The overall filtration efficiency of a vacuum cleaner traditionally has been tested by placing the vacuum cleaner in a test chamber and measuring aerosol concentrations at the chamber inlet and outlet. The chamber test method was refined and validated in this study. However, this chamber test method shows an overall filtration efficiency of close to 100% for most of the industrial vacuum cleaners and for most of the newly developed household vacuum cleaners of midprice range or higher because all these vacuum cleaners have a high-efficiency particulate air (HEPA) or other highly efficient filter installed at the exhaust. A new test method was therefore developed through which the vacuum cleaner was probed in various internal locations so that the collection efficiency of the individual components could be determined. For example, the aerosol concentration upstream of the final HEPA filter can thus be measured, which permits one to estimate the life expectancy of this expensive component. The probed testing method is particularly suitable for field evaluations of vacuum cleaners because it uses compact, battery-operated optical particle size spectrometers with internal data storage. Both chamber and probed tests gave the same results for the aerosol filtration efficiency. The probed testing method, however, also gives information on the performance of the individual components in a vacuum cleaner. It also can be used to determine the dust pickup efficiency and the degree of reaerosolization of particles collected in the vacuum cleaner.

  2. Methods for characterization of mechanical and electrical prosthetic vacuum pumps. (United States)

    Komolafe, Oluseeni; Wood, Sean; Caldwell, Ryan; Hansen, Andrew; Fatone, Stefania


    Despite increasingly widespread adoption of vacuum-assisted suspension systems in prosthetic clinical practices, there remain gaps in the body of scientific knowledge guiding clinicians' choices of existing products. In this study, we identified important pump-performance metrics and developed techniques to objectively characterize the evacuation performance of prosthetic vacuum pumps. The sensitivity of the proposed techniques was assessed by characterizing the evacuation performance of two electrical (Harmony e-Pulse [Ottobock; Duderstadt, Germany] and LimbLogic VS [Ohio Willow Wood; Mt. Sterling, Ohio]) and three mechanical (Harmony P2, Harmony HD, and Harmony P3 [Ottobock]) prosthetic pumps in bench-top testing. Five fixed volume chambers ranging from 33 cm(3) (2 in.(3)) to 197 cm(3) (12 in.(3)) were used to represent different air volume spaces between a prosthetic socket and a liner-clad residual limb. All measurements were obtained at a vacuum gauge pressure of 57.6 kPa (17 inHg). The proposed techniques demonstrated sensitivity to the different electrical and mechanical pumps and, to a lesser degree, to the different setting adjustments of each pump. The sensitivity was less pronounced for the mechanical pumps, and future improvements for testing of mechanical vacuum pumps were proposed. Overall, this study successfully offers techniques feasible as standards for assessing the evacuation performance of prosthetic vacuum pump devices.

  3. Hydrocracking of n-hexadecane and vacuum distillates of crude with the aid of zeolite-containing catalyst in the presence of organic compounds of nitrogen. [Effect of nitrogen compounds on geolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zelentsov, Y.N.; Safonov, G.A.; Osipov, L.M.; Plyusnin, A.N.


    Hydrocracking is a major, and increasingly used, process in the refining of heavy crude, and it is chiefly based on the use of zeolite-containing catalysts which are adversely affected by the presence of organic compounds of nitrogen. In this connection, the hydrocracking of n-hexadecane with and without quinoline--a common ingredient of nitric bases of crude--as well as of the 340-490/sup 0/C vacuum-distilled fraction of West Siberian crude with and without nitric bases, performed with the aid of GK-8 zeolite-containing catalyst, was investigated. It was fouond that the presence of nitric bases markedly reduces the degree of breakup, hydrogenation, and isomerization during the hydrocracking, apparently owing to the inhibition of the active centers of zeolite by the nitric bases. Analysis of discrete fractions of hydrogenates obtained during the hydrocracking of vacuum distillate at various pressures showed that under the above conditions the naphthene cycles forming during the hydrogenation of aromatic hydrocarbons are virtually unamenable to breakup.

  4. Processing of heavy oil vacuum distillate from the skimmer at 600 atm using a fixed arrangement of the Catalyst (Kontakt) 8376 to diesel oil with a low solidification point

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, G.


    Dr. Grassl summarized his experimentation by pointing out the doubled yield obtained by hydrocracking of 85% vacuum distillate as compared to the original heavy oil from the skimmer (hot catch pot). The vacuum distillate of the skimmer heavy oil from Ka804 (Catalyst) obtained from Silesian coal was processed into diesel-oil using Tungsten Kontakt 8376 with a throughput of .6 to 1.0 and no loss of Kontakt. During the same series approximately 60% diesel-oil with cetane number 45 and a solidification point under -60/sup 0/C at 6.2% gasification was obtained using injection. At a .8 throughput and 434 to 460/sup 0/C the yield obtained up to 330/sup 0/ amounted to approximately .50. A 10 kg sample of the described diesel-oil with the characteristics listed in the chart was sent to the Reichsforschungsministerium for inspection. Dr. Grassl noted that by recycling the constituents over 330/sup 0/, the yield decreased while the cetane number was slightly improved. The gasification dropped to 2.4%, whereas the solidification point remained unchanged. Raising the temperature to 450 to 468/sup 0/ and the throughput to 1.0 resulted in cracking improvements but also caused the optimum of hydrogenation to be exceeded which was noticeable by the beginning precipitation of coronene. 1 table, 1 chart.

  5. Treatment with activated carbon and other adsorbents as an effective method for the removal of volatile compounds in agricultural distillates. (United States)

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Patelski, Piotr; Dziekońska-Kubczak, Urszula; Jusel, Tomaš


    This study investigates the effect of treatment with activated carbon and other adsorbents on the chemical composition and organoleptics of a barley malt-based agricultural distillate. Contact with activated carbon is one of the methods by which the quality of raw distillates and spirit beverages can be improved. Samples placed in contact with 1 g activated carbon (SpiritFerm) per 100 ml distillate with ethanol content of 50% v/v for 1 h showed the largest reductions in the concentrations of most volatile compounds (aldehydes, alcohols, esters). Increasing the dose of adsorbent to over 1 g 100 ml -1 did not improve the purity of the agricultural distillate significantly. Of the tested compounds, acetaldehyde and methanol showed the lowest adsorption on activated carbon. The lowest concentrations of these congeners (expressed in mg l -1 alcohol 100% v/v) were measured in solutions with ethanol contents of 70-80% v/v, while solutions with an alcoholic strength by volume of 40% did not show statistically significant decreases in these compounds in relation the control sample. The reductions in volatile compounds were compared with those for other adsorbents based on silica or activated carbon and silica. An interesting alternative to activated carbon was found to be an adsorbent prepared from activated carbon and silica (Spiricol). Treatment with this adsorbent produced distillate with the lowest concentrations of acetaldehyde and isovaleraldehyde, and led to the greatest improvement in its organoleptics.

  6. The two-step vacuum-microwave method for histoprocessing

    NARCIS (Netherlands)

    Boon, ME; WalsPaap, CH; Visinoni, FA; Kok, LP


    When microwaving and vacuum is combined, decrease of boiling temperature can be exploited in the histoprocessing procedures allowing a completely novel approach for impregnating tissue with paraffin. We found that, if the pressure is sufficiently low in the paraffin step, no ethyl-alcohol step is

  7. Method of treatment of a mixture of air and at least partially radioactive rare gases. [Cryogenic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Faugeras, P.; Lecoq, P.; Miquel, P.; Rouyer, H.; Simonet, G.


    The method of treatment of a mixture of air and at least partially radioactive gases such as xenon and krypton in particular, especially gaseous effluents derived from the reprocessing of irradiated nuclear fuels, comprises a stage of concentration of the rare gases in solution in liquid oxygen by cryogenic distillation of the light gases and especially nitrogen from the liquefied mixture.

  8. Reference test methods for total water in lint cotton by Karl Fischer Titration and low temperature distillation (United States)

    In a study of comparability of total water contents (%) of conditioned cottons by Karl Fischer Titration (KFT) and Low Temperature Distillation (LTD) reference methods, we demonstrated a match of averaged results based on a large number of replications and weighing the test specimens at the same tim...

  9. Integration of membrane distillation into traditional salt farming method: Process development and modelling (United States)

    Hizam, S.; Bilad, M. R.; Putra, Z. A.


    Farmers still practice the traditional salt farming in many regions, particularly in Indonesia. This archaic method not only produces low yield and poor salt quality, it is also laborious. Furthermore, the farming locations typically have poor access to fresh water and are far away from electricity grid, which restrict upgrade to a more advanced technology for salt production. This paper proposes a new concept of salt harvesting method that improves the salt yield and at the same time facilitates recovery of fresh water from seawater. The new concept integrates solar powered membrane distillation (MD) and photovoltaic cells to drive the pumping. We performed basic solar still experiments to quantify the heat flux received by a pond. The data were used as insight for designing the proposed concept, particularly on operational strategy and the most effective way to integrate MD. After the conceptual design had been developed, we formulated mass and energy balance to estimate the performance of the proposed concept. Based on our data and design, it is expected that the system would improve the yield and quality of the salt production, maximizing fresh water harvesting, and eventually provides economical gain for salt farmers hence improving their quality of life. The key performance can only be measured via experiment using gain output ratio as performance indicator, which will be done in a future study.

  10. Yield, Composition and Antioxidant Capacity of the Essential Oil of Sweet Basil and Holy Basil as Influenced by Distillation Methods. (United States)

    Shiwakoti, Santosh; Saleh, Osama; Poudyal, Shital; Barka, Abdulssamad; Qian, Yanping; Zheljazkov, Valtcho D


    The profile and bioactivity of essential oil (EO) depends on genetic, environmental, and other factors. We hypothesized that the basil EO may be influenced by the distillation methods. Hence, a study was conducted to evaluate the effect of steam distillation (SD) and hydrodistillation (HD) extraction method on the yield, composition, and bioactivity of EO of sweet basil (Ocimum basilicum) and holy basil (Ocimum tenuiflorum). In both basil species, the EO yield (content) was significantly higher from SD than from HD. There were significant differences in the compounds' concentrations of EO obtained from SD and HD as well, however, the same compounds were identified in the EO from HD and SD. In the EO of O. basilicum, the concentration of 74% of the identified compounds were higher in SD than HD, whereas in the EO of O. tenuiflorum, the concentration of 84% of identified compounds were higher in SD than in HD. However, the concentrations of two of the major compounds of O. basilicum EO (estragole and methyl cinnamate) and a major compound of O. tenuiflorum EO (methyl eugenol) were significantly higher in HD than in SD. The type of distillation did not affect the antioxidant capacity of basil EO within the species. This study demonstrated that the type of distillation may significantly affect oil yield and composition but not the antioxidant capacity of the EO from sweet and holy basil. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  11. Systems and Methods for Fabricating Carbon Nanotube-Based Vacuum Electronic Devices (United States)

    Manohara, Harish (Inventor); Toda, Risaku (Inventor); Del Castillo, Linda Y. (Inventor); Murthy, Rakesh (Inventor)


    Systems and methods in accordance with embodiments of the invention proficiently produce carbon nanotube-based vacuum electronic devices. In one embodiment a method of fabricating a carbon nanotube-based vacuum electronic device includes: growing carbon nanotubes onto a substrate to form a cathode; assembling a stack that includes the cathode, an anode, and a first layer that includes an alignment slot; disposing a microsphere partially into the alignment slot during the assembling of the stack such that the microsphere protrudes from the alignment slot and can thereby separate the first layer from an adjacent layer; and encasing the stack in a vacuum sealed container.

  12. Catalytic distillation process (United States)

    Smith, L.A. Jr.


    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  13. Membrane for distillation including nanostructures, methods of making membranes, and methods of desalination and separation

    KAUST Repository

    Lai, Zhiping


    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure provide membranes, methods of making the membrane, systems including the membrane, methods of separation, methods of desalination, and the like.

  14. Matrix assisted ionization in vacuum, a sensitive and widely applicable ionization method for mass spectrometry. (United States)

    Trimpin, Sarah; Inutan, Ellen D


    An astonishingly simple new method to produce gas-phase ions of small molecules as well as proteins from the solid state under cold vacuum conditions is described. This matrix assisted ionization vacuum (MAIV) mass spectrometry (MS) method produces multiply charged ions similar to those that typify electrospray ionization (ESI) and uses sample preparation methods that are nearly identical to matrix-assisted laser desorption/ionization (MALDI). Unlike these established methods, MAIV does not require a laser or voltage for ionization, and unlike the recently introduced matrix assisted ionization inlet method, does not require added heat. MAIV-MS requires only introduction of a crystalline mixture of the analyte incorporated with a suitable small molecule matrix compound such as 3-nitrobenzonitrile directly to the vacuum of the mass spectrometer. Vacuum intermediate pressure MALDI sources and modified ESI sources successfully produce ions for analysis by MS with this method. As in ESI-MS, ion formation is continuous and, without a laser, little chemical background is observed. MAIV, operating from a surface offers the possibility of significantly improved sensitivity relative to atmospheric pressure ionization because ions are produced in the vacuum region of the mass spectrometer eliminating losses associated with ion transfer from atmospheric pressure to vacuum. Mechanistic aspects and potential applications for this new ionization method are discussed.

  15. A method to measure vacuum birefringence at FCC-ee

    CERN Document Server

    Uggerhøj, Ulrik I


    It is well-known that the Heisenberg-Euler-Schwinger effective Lagrangian predicts that a vacuum with a strong static electromagnetic field turns birefringent. We propose a scheme that can be implemented at the planned FCC-ee, to measure the nonlinear effect of vacuum birefringence in electrodynamics arising from QED corrections. Our scheme employs a pulsed laser to create Compton backscattered photons off a high energy electron beam, with the FCC-ee as a particularly interesting example. These photons will pass through a strong static magnetic field, which changes the state of polarization of the radiation - an effect proportional to the photon energy. This change will be measured by the use of an aligned single-crystal, where a large difference in the pair production cross-sections can be achieved. In the proposed experimental setup the birefringence effect gives rise to a difference in the number of pairs created in the analyzing crystal, stemming from the fact that the initial laser light has a varying st...

  16. Measurement of vacuum pressure with a magneto-optical trap: A pressure-rise method. (United States)

    Moore, Rowan W G; Lee, Lucie A; Findlay, Elizabeth A; Torralbo-Campo, Lara; Bruce, Graham D; Cassettari, Donatella


    The lifetime of an atom trap is often limited by the presence of residual background gases in the vacuum chamber. This leads to the lifetime being inversely proportional to the pressure. Here, we use this dependence to estimate the pressure and to obtain pressure rate-of-rise curves, which are commonly used in vacuum science to evaluate the performance of a system. We observe different rates of pressure increase in response to different levels of outgassing in our system. Therefore, we suggest that this is a sensitive method which will find useful applications in cold atom systems, in particular, where the inclusion of a standard vacuum gauge is impractical.

  17. Experimental Study on Solar Cooling Tube Using Thermal/Vacuum Emptying Method

    Directory of Open Access Journals (Sweden)

    Huizhong Zhao


    Full Text Available A solar cooling tube using thermal/vacuum emptying method was experimentally studied in this paper. The coefficient of performance (COP of the solar cooling tube was mostly affected by the vacuum degree of the system. In past research, the thermal vacuum method, using an electric oven and iodine-tungsten lamp to heat up the adsorbent bed and H2O vapor to expel the air from the solar cooling tube, was used to manufacture solar cooling tubes. This paper presents a novel thermal vacuum combined with vacuum pump method allowing an increased vacuum state for producing solar cooling tubes. The following conclusions are reached: the adsorbent bed temperature of solar cooling tube could reaches up to 233°C, and this temperature is sufficient to meet desorption demand; the refrigerator power of a single solar cooling tube varies from 1 W to 12 W; the total supply refrigerating capacity is about 287 kJ; and the COP of this solar cooling tube is about 0.215.

  18. Simple, reliable, and nondestructive method for the measurement of vacuum pressure without specialized equipment. (United States)

    Yuan, Jin-Peng; Ji, Zhong-Hua; Zhao, Yan-Ting; Chang, Xue-Fang; Xiao, Lian-Tuan; Jia, Suo-Tang


    We present a simple, reliable, and nondestructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to the collision rate constant between cold atoms and the background gas with a coefficient k, which can be calculated by means of the simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curves of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atomic systems and meets the miniaturization requirement of commercial applications.

  19. Non-vacuum deposition methods for thin film solar cell: Review (United States)

    Yang, Ruisheng; Mazalan, Elham; Chaudhary, Kashif Tufail; Haider, Zuhaib; Ali, Jalil


    Solar power is a promising abundant, pollution free, inexhaustible and clean source of energy. Development of cost-effective solar system with high conversion efficiency is the key challenge in field of solar panel manufacturing industry. Different non-vacuum deposition methods have been developed to reduce the cost of solar panel system along with high conversion efficiency. In this paper, a review is presented with major focus on three non-vacuum deposition methods, as spin coating, dip coating and spray coating. Each mentioned deposition technique is discussed in details along with role of different deposition parameters on the characteristics of grown solar thin films.

  20. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi


    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  1. An applicable method for efficiency estimation of operating tray distillation columns and its comparison with the methods utilized in HYSYS and Aspen Plus (United States)

    Sadeghifar, Hamidreza


    Developing general methods that rely on column data for the efficiency estimation of operating (existing) distillation columns has been overlooked in the literature. Most of the available methods are based on empirical mass transfer and hydraulic relations correlated to laboratory data. Therefore, these methods may not be sufficiently accurate when applied to industrial columns. In this paper, an applicable and accurate method was developed for the efficiency estimation of distillation columns filled with trays. This method can calculate efficiency as well as mass and heat transfer coefficients without using any empirical mass transfer or hydraulic correlations and without the need to estimate operational or hydraulic parameters of the column. E.g., the method does not need to estimate tray interfacial area, which can be its most important advantage over all the available methods. The method can be used for the efficiency prediction of any trays in distillation columns. For the efficiency calculation, the method employs the column data and uses the true rates of the mass and heat transfers occurring inside the operating column. It is highly emphasized that estimating efficiency of an operating column has to be distinguished from that of a column being designed.

  2. A simple, reliable, and no-destructive method for the measurement of vacuum pressure


    Yuan, Jinpeng; Ji, Zhonghua; Zhao, Yanting; Chang, Xuefang; Xiao, Liantuan; Jia, Suotang


    We present a simple, reliable, and no-destructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to collision rate constant between cold atoms and background gas with a coefficient k, which can be calculated by simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curve of cold atoms under different trappin...

  3. Influence of phenological stages and method of distillation on Iranian cultivated Bay leaves volatile oil. (United States)

    Amin, Gh; Sourmaghi, M H Salehi; Jaafari, S; Hadjagaee, R; Yazdinezhad, A


    Leaves of Bay (Laurus nobilis L.) were collected in different phonological stages and air-dried. Volatile oil of the leaves were obtained using hydro- and steam distillation and the chemical composition were analyzed by GC and GC/Mass and identified in comparison with authentic compounds. The yield of essential oil were 0.8 to 1.5 v/w% and the major compounds were; 1,8 Cineol, alpha-terpinyl acetate and Sabinene. Because of the interesting yield of the oil and presence of 1,8-Cineol as the major compounds, the bearing ripe fruit stage in the mid of September is the best time for harvesting the Bay leaves in Iran.

  4. Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods. (United States)

    Pietilä, Heidi; Perämäki, Paavo; Piispanen, Juha; Starr, Mike; Nieminen, Tiina; Kantola, Marjatta; Ukonmaanaho, Liisa


    Most often, only total mercury concentrations in soil samples are determined in environmental studies. However, the determination of extremely toxic methylmercury (MeHg) in addition to the total mercury is critical to understand the biogeochemistry of mercury in the environment. In this study, N2-assisted distillation and acidic KBr/CuSO4 solvent extraction methods were applied to isolate MeHg from wet peat soil samples collected from boreal forest catchments. Determination of MeHg was performed using a purge and trap GC-ICP-MS technique with a species-specific isotope dilution quantification. Distillation is known to be more prone to artificial MeHg formation compared to solvent extraction which may result in the erroneous MeHg results, especially with samples containing high amounts of inorganic mercury. However, methylation of inorganic mercury during the distillation step had no effect on the reliability of the final MeHg results when natural peat soil samples were distilled. MeHg concentrations determined in peat soil samples after distillation were compared to those determined after the solvent extraction method. MeHg concentrations in peat soil samples varied from 0.8 to 18 μg kg(-1) (dry weight) and the results obtained with the two different methods did not differ significantly (p=0.05). The distillation method with an isotope dilution GC-ICP-MS was shown to be a reliable method for the determination of low MeHg concentrations in unpolluted soil samples. Furthermore, the distillation method is solvent-free and less time-consuming and labor-intensive when compared to the solvent extraction method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The study of some physical properties and energy aspects of potatoes drying process by the infrared-vacuum method

    Directory of Open Access Journals (Sweden)

    N Hafezi


    Full Text Available Introduction Potato (Solanumtuberosum L. is one of the unique and most potential crops having high productivity, supplementing major food requirement in the world. Drying is generally carried out for two main reasons, one to reduce the water activity which eventually increases the shelf life of food and second to reduce the weight and bulk of food for cheaper transport and storage. The quality evaluation of the dried product was carried out on the basis of response variables such as rehydration ratio, shrinkage percentage, color and the overall acceptability. Drying is the most energy intensive process in food industry. Therefore, new drying techniques and dryers must be designed and studied to minimize the energy cost in drying process. Considering the fact that the highest energy consumption in agriculture is associated with drying operations, different drying methods can be evaluated to determine and compare the energy requirements for drying a particular product. Thermal drying operations are found in almost all industrial sectors and are known, according to various estimates, to consume 10-25% of the national industrial energy in the developed world. Infrared radiation drying has the unique characteristics of energy transfer mechanism. Kantrong et al. (2012 were studied the drying characteristics and quality of shiitake mushroom undergoing microwave-vacuum combined with infrared drying. Motevali et al. (2011 were evaluated energy consumption for drying of mushroom slices using various drying methods including hot air, microwave, vacuum, infrared, microwave-vacuum and hot air-infrared. The objectives of this research were to experimental study of drying kinetics considering quality characteristics including the rehydration and color distribution of potato slices in a vacuum- infrared dryer and also assessment of specific energy consumption and thermal utilization efficiency of potato slices during drying process. Materials and Methods A

  6. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method. (United States)

    Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard


    We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying. © 2015 Institute of Food Technologists®

  7. Volatile Oil Constituents of Rosa canina L.: Quality As Affected by the Distillation Method

    Directory of Open Access Journals (Sweden)

    Karim Hosni


    Full Text Available The volatile oils of R. canina flowers were isolated by hydrodistillation (HD and traditional dry distillation (DD and analyzed by HRGC-FID and GC-MS. Compared to HD, DD at 50°C leads to the isolation of high quality oil which contains the highest content of oxygenated compounds (83%. The main components are the 2-phenethyl alcohol and eugenol. The percentage of the 2-phenethyl alcohol, a highly desirable component in rose oil, was significantly higher (58.4% in DD extract when compared to that of HD one (13.6%. As temperature increased (100°C during DD, the oil quality decreased. The most significant changes were observed in 2-phenethyl alcohol percentage (4.5%. Moreover, an increase of alkanes/alkenes and the production of furan derivatives were observed. So, DD at moderate temperature (50°C seemed more suitable to improve the volatile oil quality and hence, to make more value of R. canina.

  8. Development of a method for the production of sup 1 sup 3 sup 1 I by the dry distillation technique of tellurium oxide irradiated

    CERN Document Server

    Dias, L A P


    The objective of this work is to develop and study a new processing method of sup 1 sup 3 sup 1 I from irradiated targets of tellurium oxide at the IEA-R1 reactor form IPEN/CNEN/SP. The implementation of this method aims to assure the national distribution of this isotope, meeting the increasing market and updating the Brazilian technological capability in this developing area. The separation method consists of the distillation of sup 1 sup 3 sup 1 I from a tellurium oxide target, collecting it onto a sodium hydroxide solution, not leading to high amounts of liquid waste, what usually occurs in wet distillation procedures. The variables studied were: distillation lime and temperature and volume of the method and the good quality of sup 1 sup 3 sup 1 I. The last conditions were: 760 deg C, 3 hours of distillation for the sintered targets and 760 deg C and 1 hour of distillation for the powder target, using 5 mL of the NaOH absorption solution. The calculations of activation and separation wield showed that is ...

  9. Comparison of two methods for determination of tomato paste solids: vacuum oven versus microwave oven. (United States)

    Jazaeri, Sahar; Kakuda, Yukio; Gismondi, Stephen; Wigle, Doug G


    Two analytical procedures used to determine total, soluble, and insoluble solids in tomato paste were evaluated. The microwave oven (MO) method was compared to the vacuum oven (VO) method. The VO method is tedious and measured the three solids fractions in the paste directly, while the MO method measured the total solids directly but used an equation to calculate the water-soluble and -insoluble solids. The MO method was faster and less labor-intensive, and yielded small but statistically significant higher values for total and insoluble solids and lower statistically significant values for soluble solids.

  10. Matrix Assisted Ionization Vacuum (MAIV), a New Ionization Method for Biological Materials Analysis Using Mass Spectrometry* (United States)

    Inutan, Ellen D.; Trimpin, Sarah


    The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) for the mass spectrometric analysis of peptides and proteins had a dramatic impact on biological science. We now report that a wide variety of compounds, including peptides, proteins, and protein complexes, are transported directly from a solid-state small molecule matrix to gas-phase ions when placed into the vacuum of a mass spectrometer without the use of high voltage, a laser, or added heat. This ionization process produces ions having charge states similar to ESI, making the method applicable for high performance mass spectrometers designed for atmospheric pressure ionization. We demonstrate highly sensitive ionization using intermediate pressure MALDI and modified ESI sources. This matrix and vacuum assisted soft ionization method is suitable for the direct surface analysis of biological materials, including tissue, via mass spectrometry. PMID:23242551

  11. A rapid and sensitive method for dimethylsulphide analysis in Brazilian sugar cane sugar spirits and other distilled beverages

    Directory of Open Access Journals (Sweden)

    Cardoso Daniel R.


    Full Text Available A purge and trap concentrator coupled to gas chromatography was used to quantify dimethylsulphide in distilled beverages. A very good performance was obtained using a HP-FFAP column and a mass selective detector operating in SIM mode (m/z 62: detection limit 8 x 10-9 mol L-1; good repeatability and total time of analysis 25 minutes. The method has been applied for sixty samples of alcoholic beverages (cachaças, tiquiras, grappas, whiskies, brandies, vodkas, rum and a tequila. The cachaças exhibit the highest content of dimethylsulphide (median 3.16 x 10-4 mol L-1, followed by grappa (median 1.45 x 10-4 mol L-1. The presence of dimethylsulphide was not observed in the samples of rum.

  12. Apparatus and method for rapid cooling of large area substrates in vacuum (United States)

    Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.


    The present invention is directed to an apparatus and method for rapid cooling of a large substrate in a vacuum environment. A first cooled plate is brought into close proximity with one surface of a flat substrate. The spatial volume between the first cooling plate and the substrate is sealed and brought to a higher pressure than the surrounding vacuum level to increase the cooling efficiency. A second cooled plate is brought into close proximity with the opposite surface of the flat substrate. A second spatial volume between the second cooling plate and the substrate is sealed and the gas pressure is equalized to the gas pressure in the first spatial volume. The equalization of the gas pressure on both sides of the flat substrate eliminates deflection of the substrate and bending stress in the substrate.

  13. A New Freezing Method Using Pre-Dehydration by Microwave-Vacuum Drying (United States)

    Tsuruta, Takaharu; Hamidi, Nurkholis

    Partial dehydration by microwave-vacuum drying has been applied to tuna and strawberry in order to reduce cell-damages caused by the formation of large ice-crystals during freezing. The samples were subjected to microwave vacuum drying at pressure of 5 kPa and temperature less than 27°C to remove small amount of water prior to freezing. The tuna were cooled by using the freezing chamber at temperature -50°C or -150°C, while the strawberries were frozen at temperature -30°C or -80°C, respectively. The temperature transients in tuna showed that removing some water before freezing made the freezing time shorter. The observations of ice crystal clearly indicated that rapid cooling and pre-dehydration prior to freezing were effective in minimizing the size of ice crystal. It is also understood that the formation of large ice crystals has a close relation to the cell damages. After thawing, the observation of microstructure was done on the tuna and strawberry halves. The pre-dehydrated samples showed a better structure than the un-dehydrated one. It is concluded that the pre-dehydration by microwave-vacuum drying is one promising method for the cryo-preservation of foods.

  14. Invariant vacuum (United States)

    Robles-Pérez, Salvador


    We apply the Lewis-Riesenfeld invariant method for the harmonic oscillator with time dependent mass and frequency to the modes of a charged scalar field that propagates in a curved, homogeneous and isotropic spacetime. We recover the Bunch-Davies vacuum in the case of a flat DeSitter spacetime, the equivalent one in the case of a closed DeSitter spacetime and the invariant vacuum in a curved spacetime that evolves adiabatically. In the three cases, it is computed the thermodynamical magnitudes of entanglement between the modes of the particles and antiparticles of the invariant vacuum, and the modification of the Friedmann equation caused by the existence of the energy density of entanglement. The amplitude of the vacuum fluctuations are also computed.

  15. Methods for the improvement of electrical insulation in vacuum in the presence of transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Masanori; Suehiro, Junya; Shigematsu, Hidetaka; Yano, Shinsuke (Kyushu Univ., Faculty of Engineering, Fukuoka, (Japan))


    When a transverse magnetic field is applied to an insulating system in vacuum, its dielectric strength deteriorates considerably and this breaking characteristic is considered to be caused by generation of impact ionization between the atoms of residual gas and electrons due to the cycloid movements of the latter. In this study, taking the above breaking mechanism into consideration, proposed were methods using a spiral spacer and an electric field control electrode as the methods of improving dielectric strength in vacuum of the cryogenic equipment generating such a strong magnetic field as superconducting magnet, etc.. Concerning the former method in case when a spiral pitch is infinitive and the latter method in case when a grounding electrode is installed in the neighborhood of the inside electrode, the respective effectiveness was demonstrated by experiments. In other words, with regard to the coaxial cylindrical electrode system, in case when no method of improving electrical insulation was applied, the breaking voltage decreased from about 20kV to about 1kV as the transverse magnetic field was made stronger, but in case when a spacer was used, the decline of electrical insulation could be suppressed within several kV up to the magnetic field of 4.65T and the magnetic field at which the decline of the breaking voltage started was increased three times by using a control electrode. 7 refs., 14 figs.

  16. Search for a solvent using the UNIFAC method for separation of coal tar distillate by liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Egashira, R.; Watanabe, K. [Tokyo Institute of Technology, Tokyo (Japan)


    Firstly, the functional groups composing the solvent predicted to be appropriate for the separation of coal tar distillate were selected. Secondly, liquid-liquid equilibria between coal tar distillates and solvents containing fictitious components consisting of the above selected functional groups were estimated by UNIFAC to determine the effects of these groups on the distribution coefficients. Finally, according to these results, solvents containing real components were selected and compared. These results provide useful information for the selection of appropriate extracting solvents.

  17. Optimization and Comparison of Ultrasound-Assisted Extraction of Estragole from Tarragon Leaves with Hydro-Distillation Method

    Directory of Open Access Journals (Sweden)

    Mohammad Bagher Gholivand


    Full Text Available A comparative study of ultrasound-assisted extraction (UAE and hydro-distillation was performed for fast extraction of estragole from tarragon (Artemisia dracunculus L. dried leaves. Several influential parameters of the UAE procedure in the extraction of estragole (type of solvent, extraction cycles, solvent to material ratio, irradiation time and particle size were investigated and optimized. It was found that UAE offers a more rapid extraction of estragole than hydrodistillation. The optimum parameters were solvent to material ratio of 8:1 v/m, 96% (w/w ethanol in water as extraction solvent, particle size of 1.18 mm, irradiation time of 5 min, output power of 63 W, 9 pulses, and ultrasonic frequency of 20 kHz. The recovery of estragole by UAE under optimal conditions was 44.4% based on dry extract. The benefit of ultrasound was to decrease the extraction time (5 min relative to the classical hydrodistillation method (3 h. The experimental results also indicated that ultrasound-assisted extraction is a simple, rapid and effective method for extraction of the volatile oil components of tarragon.

  18. A simple method for purification of deodorizer distillate from Indian rice (Oryza Sativa bran oil and preparation of phytosterols

    Directory of Open Access Journals (Sweden)

    Raja Rajan, R. G.


    Full Text Available Samples of rice bran oil deodorizer distillates (RBO DOD-1 and RBO DOD-2 were studied for their physicochemical characteristics. The samples were semisolid and had a dark color. The free fatty acid values were 59.2% and 86.0%, the unsaponifiable matter was 18.7% and 7.75% and the phytosterol contents were 8.71% and 4.22%, respectively for the deodorizer distillates studied. A simple method of silica gel percolation was developed to purify DOD to obtain phytosterol concentrate fractions (PCF and a brown color and bad odor fraction (BCBOF. The color values were reduced by 72.8% and 73.0% of lovibond units in the PCF for DOD-1 and DOD-2 respectively, had no bad odor and were increased in the phytosterol concentration to 12.4% and 5.9%. The PCF was further processed to prepare high purity phytosterols. An HPLC analysis of the phytosterol mixture showed it to be formed by β-sitosterol (38.2%, stigmasterol (34.9%, campesterol (9.5% and other sterols (17.4%.Se estudiaron las características físico-químicas de muestras de destilados de desodorización de aceites de salvado de arroz (RBO DOD-1 y RBO DOD-2. Las muestras eran semi-sólidas y tenían un color oscuro. Los valores de ácidos grasos libres fueron 59,2% y 86,0%, materia insaponificable 18,7% y 7,75% y contenido de fitoesteroles de 8,71% y 4,22%, respectivamente, para los destilados de desodorización estudiados. Se desarrolló un método simple de filtración mediante sílica gel para purificar DOD y obtener concentrados de fitosteroles (PCF y una fracción de color marrón y olor desagradable (BCBOF. Los valores de color se redujeron en un 72,8% y el 73,0% de unidades Lovibond en el PCF para DOD-1 y DOD-2, respectivamente, no tenían mal olor y aumentaron su concentración en fitoesteroles al 12,4% y 5,9%. El PCF se procesó adicionalmente para preparar fitosteroles de alta pureza. El análisis por HPLC mostró que la mezcla de fitosteroles estaba formada por β-sitosterol (38

  19. Comparison of filter bag, cyclonic, and wet dust collection methods in vacuum cleaners. (United States)

    Trakumas, S; Willeke, K; Reponen, T; Grinshpun, S A; Friedman, W


    In this study, methods were developed for comparative evaluation of three primary dust collection methods employed in vacuum cleaners: filter bag, cyclonic, and wet primary dust collection. The dry collectors were evaluated with KCl test aerosols that are commonly used in filter testing. However, these aerosols cannot be used for evaluating wet collectors due to their hygroscopicity. Therefore, the wet collectors were evaluated with nonhygroscopic test particles. Both types of test aerosol indicated similar collection efficiencies in tests with dry collectors. The data show that high initial collection efficiency can be achieved by any one of the three dust collection methods: up to 50% for 0.35 microm particles, and close to 100% for 1.0 microm and larger particles. The degree of dependence of the initial collection efficiency on airflow rate was strongly related to the type and manufacturing of the primary dust collector. Collection efficiency decreased most with decreasing flow rate for the tested wet collectors. The tested cyclonic and wet collectors showed high reentrainment of already collected dust particles. After the filter bag collectors had been loaded with test dust, they also reemitted particles. The degree of reentrainment from filter bags depends on the particulate load and the type of filter material used. Thus, the overall particle emissions performance of a vacuum cleaner depends not only on the dust collection efficiency of the primary collector and other filtration elements employed, but also on the degree of reentrainment of already collected particles.

  20. Rapid method to predict the storage stability of middle distillates; Schnelltest zur Vorhersage der Lagerstabilitaet von Mitteldestillaten

    Energy Technology Data Exchange (ETDEWEB)

    Depta, H.; Wehn, R. [RWE - Gesellschaft fuer Forschung und Entwicklung mbH, Wesseling (Germany); Kohlmeyer, U. [Deutsche Shell AG, Hamburg (Germany)


    In the literature, various quick tests to predict the ageing stability of middle distillates are described. 59 gasoil components and finished products were tested, using methods recommended by a detailed literature study DGMK-Report 484, namely: - the colorimetric/spectrophotometric method according to R.K. Solly and S.J. Marshman, - the quantification of Soluble Macromolecular Oxidatively Reactive Species (SMORS) according to M.A. Wechter and D.R. Hardy, - the determination of phenalene and phenalenone as well as non-basic nitrogenous aromatics. ASTM D 4625-92 was used as a reference test (storage at 43 C over a period of 12 weeks, with air contact). The results obtained showed that none of the methods mentioned above are suitable as a reliable quick test, because the regression analysis shows no acceptable correlation between the data obtained and the insolubles derived from the reference test. The hypothesis of Pedley et al., referring to the ageing mechanism of middle distillates, could not be confirmed. The spectrophotometric method gives the best result, considering the total nitrogen content. The accuracy of the prediction of ASTM-Test results is about 75%. The additionally carried out `Rancimat-Test` does not correlate at all with the insolubles based on ASTM D 4625-92. The insolubles as determined according to ASTM D 4625 neither do correlate with the amount of sediments which are formed after one year`s storage under genuine conditions. On the other hand, the supplementarily conducted `Shell Window Test` allows a prediction of the longterm storage behaviour with a likelihood of 78% which is expected to improve after a revision of the method with regard to reproducible test conditions. (orig.) [Deutsch] In der Literatur werden verschiedene Schnelltests zur Vorhersage der Alterungsstabilitaet von Mitteldestillaten beschrieben. An 59 Gasoel-Komponenten und -Fertigprodukten wurden die in der Literaturrecherche DGMK-Bericht 484 empfohlenen Methoden ueberprueft

  1. Effects of operating parameters and fluid properties on the efficiency of a new vacuum evaporation method

    Directory of Open Access Journals (Sweden)

    Rösti Johannes


    Full Text Available A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex as produced by a rotor submerged in the liquid. Contrary to the state of the art the new process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to wine must showed evaporation rates in the upper range of thin-film evaporators. A test series was conducted to study the effect of the variation of process parameters. The heating power and thus the fluid temperature has the most important influence on the vaporisation rate. A second test series using sucrose solution of different concentration comes to the conclusion that this method is suitable for aqueous solutions but the vapour production rate drops significantly with increased sugar content using the current rotor design. The simplicity of the construction and the process handling make this new method a promising development for the wine production.

  2. Novel in situ method (vacuum assisted electroless plating) modified porous cathode for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ren; Lue, Zhe; Chen, Kongfa; Ai, Na; Li, Shuyan; Wei, Bo [Center for the Condensed Matter Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Su, Wenhui [Center for the Condensed Matter Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Department of Condensed Matter Physics, Jilin University, Changchun 130023 (China); International Centre for Materials Physics, Academia Sinica, Shenyang 110015 (China)


    A novel in situ method - vacuum assisted electroless plating (VA-EP) is developed to modify the porous structure of various materials. The advantage of this method is that it can form a metal network based on the already-given structure. We utilize this method to deposit silver (VA-EPA) in porous perovskite cathode Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) for an intermediate temperature solid oxide fuel cell (IT-SOFC) in the present research. The results of investigation show the performance of the modified cathode (VA-EPA-BSCF) enhances greatly, for example, the polarization resistance of VA-EPA-BSCF decreases by 60% at 600 C compared to BSCF. (author)

  3. Application of the Advanced Distillation Curve Method to the Comparison of Diesel Fuel Oxygenates: 2,5,7,10-Tetraoxaundecane (TOU), 2,4,7,9-Tetraoxadecane (TOD), and Ethanol/Fatty Acid Methyl Ester (FAME) Mixtures. (United States)

    Burger, Jessica L; Lovestead, Tara M; LaFollette, Mark; Bruno, Thomas J


    Although they are amongst the most efficient engine types, compression-ignition engines have difficulties achieving acceptable particulate emission and NO x formation. Indeed, catalytic after-treatment of diesel exhaust has become common and current efforts to reformulate diesel fuels have concentrated on the incorporation of oxygenates into the fuel. One of the best ways to characterize changes to a fuel upon the addition of oxygenates is to examine the volatility of the fuel mixture. In this paper, we present the volatility, as measured by the advanced distillation curve method, of a prototype diesel fuel with novel diesel fuel oxygenates: 2,5,7,10-tetraoxaundecane (TOU), 2,4,7,9-tetraoxadecane (TOD), and ethanol/fatty acid methyl ester (FAME) mixtures. We present the results for the initial boiling behavior, the distillation curve temperatures, and track the oxygenates throughout the distillations. These diesel fuel blends have several interesting thermodynamic properties that have not been seen in our previous oxygenate studies. Ethanol reduces the temperatures observed early in the distillation (near ethanol's boiling temperature). After these early distillation points (once the ethanol has distilled out), B100 has the greatest impact on the remaining distillation curve and shifts the curve to higher temperatures than what is seen for diesel fuel/ethanol blends. In fact, for the 15% B100 mixture most of the distillation curve reaches temperatures higher than those seen diesel fuel alone. In addition, blends with TOU and TOD also exhibited uncommon characteristics. These additives are unusual because they distill over most the distillation curve (up to 70%). The effects of this can be seen both in histograms of oxygenate concentration in the distillate cuts and in the distillation curves. Our purpose for studying these oxygenate blends is consistent with our vision for replacing fit-for-purpose properties with fundamental properties to enable the development of

  4. Microwave-Osmotic/Microwave-Vacuum Drying of Whole Cranberries: Comparison with Other Methods. (United States)

    Wray, Derek; Ramaswamy, Hosahalli S


    A novel drying method for frozen-thawed whole cranberries was developed by combining microwave osmotic dehydration under continuous flow medium spray (MWODS) conditions with microwave vacuum finish-drying. A central composite rotatable design was used to vary temperature (33 to 67 °C), osmotic solution concentration (33 to 67 °B), contact time (5 to 55 min), and flow rate (2.1 to 4.1 L/min) in order to the determine the effects of MWODS input parameters on quality of the dried berry. Quality indices monitored included colorimetric and textural data in addition to anthocyanin retention and cellular structure. Overall it was found that the MWODS-MWV process was able to produce dried cranberries with quality comparable to freeze dried samples in much shorter time. Additionally, cranberries dried via the novel process exhibited much higher quality than those dried via either vacuum or convective air drying in terms of color, anthocyanin content, and cellular structure. © 2015 Institute of Food Technologists®

  5. Standard Test Method for Tension and Vacuum Testing Metallized Ceramic Seals

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This test method covers procedures for conducting tension and vacuum tests on metal-ceramic seals to determine the bond strength of brazed, metallized ceramics. This test method is not to be considered as an absolute tension test for the ceramic. 1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  6. Cyclic distillation technology - A mini-review

    DEFF Research Database (Denmark)

    Bîldea, Costin Sorin; Pătruţ, Cătălin; Jørgensen, Sten Bay


    Process intensification in distillation systems has received much attention during the pastdecades, with the aim of increasing both energy and separation efficiency. Varioustechniques, such as internal heat-integrated distillation, membrane distillation, rotating packedbed, dividing-wall columns...... and reactive distillation were studied and reported in literature. All these techniques employ the conventional continuous counter-current contact of vapor andliquid phases. Cyclic distillation technology is based on an alternative operating mode usingseparate phase movement which leads to key practical...... advantages in both chemical andbiochemical processes. This article provides a mini-review of cyclic distillation technology.The topics covered include the working principle, design and control methods, main benefitsand limitations as well as current industrial applications. Cyclic distillation can...

  7. Measurement of Heat Losses on The Milking Machine Electric Motor at Various Regulations of Vacuum Using Methods of Thermal Imagery

    Directory of Open Access Journals (Sweden)

    Jan Kudělka


    Full Text Available To ensure the desirable vacuum in the milking machines, use is currently made predominantly of rotary vacuum pumps. These vacuum pumps are driven by a squirrel-cage induction motor. Until recently, the vacuum in the system to achieve the required value was controlled by a main control valve sucking in ambient air into the system. During the milking process itself and during other activities (flushing, sanitation, this control method consumed a large amount of electricity. The technical solution to electricity demand reduction was introduced with the emergence and development of frequency converters. The frequency converters control the operation of the asynchronous electric motor so that the actual delivery of the vacuum pumps equals the volume of air sucked into the vacuum pipe. The motor supply by the frequency converter brings about a host of adverse phenomena. This paper is dedicated to motor heating and heat losses on the surface of the electric motor at different regulations of vacuum in milking machines. The objective of the paper is to determine the immediate specific heat flows along the surface of the electric motor of the milking machine during milking using a control valve regulation and a control using the frequency converter, and compare the resulting value. The specific heat flows were determined by means of a non-traditional method of temperature field measurement using a system of thermal imagery. The calculated and measured data obtained from both these systems were statistically evaluated and compared. Use was made of a milking machine located in the cooperative Hospodářské obchodní družstvo (HOD Jabloňov.

  8. Methods of Fire Debris Preparation for Detection of Accelerants. (United States)

    Caddy, B; Smith, F P; Macy, J


    Forensic scientists use various techniques to separate accelerants from fire debris samples before instrumental identification of added fuels. Among the choices available, traditional micro-distillation, steam distillation, vacuum distillation, headspace, heated headspace, and several vapor adsorption/desorption methods provide various advantages and disadvantages. This communication reviews the development of these techniques from the 1950s and comparison studies performed. Copyright © 1991 Central Police University.

  9. Cascade Distillation Subsystem Development: Progress Toward a Distillation Comparison Test (United States)

    Callahan, M. R.; Lubman, A.; Pickering, Karen D.


    Recovery of potable water from wastewater is essential for the success of long-duration manned missions to the Moon and Mars. Honeywell International and a team from NASA Johnson Space Center (JSC) are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The wastewater processor, referred to as the Cascade Distillation Subsystem (CDS), utilizes an innovative and efficient multistage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage subsystem unit has been designed, built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for performance testing. A major test objective of the project is to demonstrate the advancement of the CDS technology from the breadboard level to a subsystem level unit. An initial round of CDS performance testing was completed in fiscal year (FY) 2008. Based on FY08 testing, the system is now in development to support an Exploration Life Support (ELS) Project distillation comparison test expected to begin in early 2009. As part of the project objectives planned for FY09, the system will be reconfigured to support the ELS comparison test. The CDS will then be challenged with a series of human-gene-rated waste streams representative of those anticipated for a lunar outpost. This paper provides a description of the CDS technology, a status of the current project activities, and data on the system s performance to date.

  10. Sterilization of Bacillus atrophaeus using OH radicals supplied by vacuum ultraviolet method (United States)

    Yonetamari, Kenta; Tokumitsu, Yusuke; Yonemori, Seiya; Ono, Ryo; Yasuda, Hachiro; Mizuno, Akira


    Sterilization by cold plasma has widely been performed. It is well known that reactive oxygen species (ROS) has a potential of sterilization. However, it is not clear which ROS is effective on sterilization because a lot of types of ROS are produced in plasma. In this study, sterilization effect of OH radicals by vacuum ultraviolet (VUV) method was investigated. This method utilizes photodissociation reaction to produce ROS so it can produce ROS selectively. Wet and dry helium with and without 1% O2 gas was used to demonstrate sterilization effect of OH radicals. Gases were flowed in a quartz tube (inner diameter 2 mm, outer diameter 4 mm) at a flow rate of 1.5 L/min. The produced ROS flowed out of the quartz tube nozzle. A Xe2 excimer lamp emitting 172 +/- 7 nm VUV light was placed parallel to the quartz tube with a distance of 8 mm. The distance between the lower end of the lamp and the nozzle of quartz tube was changed from 3 to 15 cm. As a target of sterilization, Bacillus atrophaeus (ATCC 9372) was used. The density of OH radicals was measured using laser-induced fluorescence (LIF). As a result, sterilization using VUV method was verified. This result showed that OH radicals sterilized the bacteria.

  11. Catalytic distillation structure (United States)

    Smith, L.A. Jr.


    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  12. New method for sternal closure after vacuum-assisted therapy in deep sternal infections after cardiac surgery. (United States)

    Reiss, Nils; Schuett, Ulrich; Kemper, Michael; Bairaktaris, Andreas; Koerfer, Reiner


    The treatment of nonhealing and infected sternotomies after cardiac surgery is a challenging task with increased rates of mortality and morbidity, as well as high costs. A local vacuum therapy (ie, the vacuum-assisted closure system) permits the treatment of deep sternal infections due to continuous aspiration and a sealed dressing that stimulates granulation tissue formation. Aggressive vacuum-assisted closure treatment of the sternum in postoperative deep wound infection enhances sternal preservation and the speed of potential rewiring. After some weeks of vacuum-assisted closure therapy, a complete preparation of the substernal structures is necessary. In this context, laceration of the right ventricle is a rare but life-threatening complication. We describe a new technique for sternal closure after vacuum-assisted wound treatment using Nitinol clips (Praesidia, Bologna, Italy), which can prevent these severe complications. Without any preparation of the substernal tissue the clips can be inserted in the parasternal space with consecutive proper stabilization of the sternum. This new method represents an easy, low-cost and complication-free procedure.

  13. Design and fabrication of vacuum glazing units using a new low temperature hermetic glass edge sealing method


    Memon, S.; Eames, PC


    This poster aims at presenting experimental investigations for the fabrication of vacuum glazing using a new low temperature (less than 200C) based hermetic edge sealing method, as shown in Fig. 1. To date two materials indium and solder glass have been used for sealing the edges of the glass sheets in a vacuum glazing. Indium is a low temperature sealing material, melts at 157C, but is very expensive. Solder glass is a high temperature sealing material, melts at around 450C, but has limit...

  14. Chatter suppression methods of a robot machine for ITER vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huapeng; Wang, Yongbo, E-mail:; Li, Ming; Al-Saedi, Mazin; Handroos, Heikki


    Highlights: •A redundant 10-DOF serial-parallel hybrid robot for ITER assembly and maintains is presented. •A dynamic model of the robot is developed. •A feedback and feedforward controller is presented to suppress machining vibration of the robot. -- Abstract: In the process of assembly and maintenance of ITER vacuum vessel (ITER VV), various machining tasks including threading, milling, welding-defects cutting and flexible hose boring are required to be performed from inside of ITER VV by on-site machining tools. Robot machine is a promising option for these tasks, but great chatter (machine vibration) would happen in the machining process. The chatter vibration will deteriorate the robot accuracy and surface quality, and even cause some damages on the end-effector tools and the robot structure itself. This paper introduces two vibration control methods, one is passive and another is active vibration control. For the passive vibration control, a parallel mechanism is presented to increase the stiffness of robot machine; for the active vibration control, a hybrid control method combining feedforward controller and nonlinear feedback controller is introduced for chatter suppression. A dynamic model and its chatter vibration phenomena of a hybrid robot is demonstrated. Simulation results are given based on the proposed hybrid robot machine which is developed for the ITER VV assembly and maintenance.

  15. Method and apparatus for controlling electrode gap during vacuum consumable arc remelting (United States)

    Fisher, R.W.; Maroone, J.P.; Tipping, D.W.; Zanner, F.J.

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  16. Evaluation of vacuum-assisted biopsy as a new method for histological diagnosis of soft-tissue tumors


    Klein, Torsten


    Background: The exact pre-operative diagnosis of a low invasive and complication-poor biopsy-method is often problematic. Often, the taken tissue-specimen is not sufficient impeded in order to investigate the exact histopathology of soft-tissue-tumors, which complicates an adequate operative therapy. Vacuum-assisted-biopsy is a new method whose valence histopathology diagnosis for the praeoperative of soft-tissue-tumors, has not yet examined scientifically. The feasibility and the exact pre-o...

  17. Vacuum electronics

    CERN Document Server

    Eichmeier, Joseph A


    Nineteen experts from the electronics industry, research institutes and universities have joined forces to prepare this book. ""Vacuum Electronics"" covers the electrophysical fundamentals, the present state of the art and applications, as well as the future prospects of microwave tubes and systems, optoelectronics vacuum devices, electron and ion beam devices, light and X-ray emitters, particle accelerators and vacuum interrupters. These topics are supplemented by useful information about the materials and technologies of vacuum electronics and vacuum technology.

  18. Vacuum encapsulated hermetically sealed diamond amplified cathode capsule and method for making same (United States)

    Rao, Triveni; Walsh, John; Gangone, Elizabeth


    A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.

  19. Canonical distillation of entanglement (United States)

    Das, Tamoghna; Kumar, Asutosh; Kumar Pal, Amit; Shukla, Namrata; Sen(De), Aditi; Sen, Ujjwal


    Distilling highly entangled quantum states from weaker ones is a process that is crucial for efficient and long-distance quantum communication, and has implications for several other quantum information protocols. We introduce the notion of distillation under limited resources, and specifically focus on the energy constraint. The corresponding protocol, which we call the canonical distillation of entanglement, naturally leads to the set of canonically distillable states. We show that for non-interacting Hamiltonians, almost no states are canonically distillable, while the situation can be drastically different for interacting ones. Several paradigmatic Hamiltonians are considered for bipartite as well as multipartite canonical distillability. The results have potential applications for practical quantum communication devices.

  20. Investigation on the properties of nano copper matrix composite via vacuum arc melting method (United States)

    Liu, Yi; Leng, Jinfeng; Wu, Qirui; Zhang, Shaochen; Teng, Xinying


    Copper and copper matrix composites (CMCs) are widely used as electrical contact materials in electrical switch systems due to their excellent electrical properties. Graphene has great mechanical, physical and electrical properties, which is competent as an attractive reinforcing material for fabricating CMCs. Therefore, graphene was added to CMCs to improve the mechanical properties. In this study, graphene-reinforced copper matrix composites (Gr/Cu composites) were obtained. The xGr/Cu (x  =  0, 0.1, 0.3 and 0.5 wt.%) composites were fabricated via the vacuum arc melting method and compared the performance of them. The mechanical properties and electrical properties were obtained by measuring the hardness and conductivity. The microstructure of Gr/Cu composites was observed by optical microscopy (OM) and scanning electron microscopy (SEM). With the addition of graphene from 0 wt.% to 0.5 wt.%, the densities of materials decreased from 97.0% to 95.7%. With the increasing of graphene content, the hardness of composites increased at beginning and then decreased. In this range of adding amount, the hardness of 0.3Gr/Cu composite was up to 66.8 HB and increased by 15.4% compared to Al2O3/Cu composites without graphene. With the addition of graphene powder, the international annealing copper standard IACS% of Gr/Cu composites decreased from 86.16 to 69.86. The range of decline and the percentage of decline range are middle and 18.9%, respectively.

  1. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon


    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  2. Characterization of petroleum distillates by GC-AED (coupling with gas chromatography and atomic emission detection); Caracterisation des distillats petroliers par couplage chromatographie en phase gazeuse et detection par emission atomique

    Energy Technology Data Exchange (ETDEWEB)

    Baco, F.


    This thesis describes the characterization of atmospheric petroleum distillates (kerosenes and gas-oils) and vacuum distillates by hyphenated technic of Gas Chromatography and Atomic Emission Detector (GC-AED). A gas chromatographic simulated distillation, which gives the weight % of sample as a function of the petroleum cut temperature, was adapted to the GC-AED to obtain an original information about the elemental composition profile. After generalities, historic of the development of the instrument and the first petroleum applications are described. In the experimental part, analytical conditions used, different technics of characterisation of distillates and the base of samples analyzed are exposed. After a study of the GC-AED`s performances for the target elements (C, H, S, N), a quantitative method for the elemental analysis of distillates was developed and validated at three levels: total elemental analysis, simulated distillation and elemental composition as a function of the distillation profile. Finally, different ways for the applications of the GC-AED in order to characterize the distillates were explored, in particular to classify products and predict some petroleum properties (cetane number, density,...). The more interesting outlook seems to be the prediction of some properties as a function of the distillation profile. (author) 155 refs.

  3. Method of reusably sealing a silicone rubber vacuum bag to a mold for composite manufacture (United States)

    Steinbach, John (Inventor)


    A silicone rubber vacuum bag for use in composite article manufacture is reusably sealed to a mold, without mechanical clamping means. The mold-mating portion of the bag is primed with a silicone rubber adhesive, which is cured thereto, and a layer of semiadhesive sealer is applied between the primed mold-mating portion of the bag and the mold.

  4. An Effective Vacuum Assisted Extraction Method for the Optimization of Labdane Diterpenoids from Andrographis paniculata by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ya-Qi Wang


    Full Text Available An effective vacuum assisted extraction (VAE technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM. Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.

  5. Vacuum extraction

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne


    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validationof the developed OSATS scale for vacuum...

  6. System for monitoring and controlling unit operations that include distillation


    Cypes, Stephen; Uhrich, M; Kolosov, Oleg; Carlson, Eric; Padowitz, David; Bennett, James; Matsiev, L


    Fluid sensor methods and systems adapted for monitoring and/or controlling distillation operations in fluidic systems, such as bath distillation operations or continuous distillation operations, are disclosed. Preferred embodiments are directed to process monitoring and/or process control for unit operations involving endpoint determination of a distillation, for example, as applied to a liquid-component-switching operation (e.g., a solvent switehing operation), a liquid-liquid separation ope...

  7. Advanced Distillation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode


    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were

  8. Methods of Preventing the Spread of Zinc Contamination During Vacuum Processing

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, Paul S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duncan, Andrew J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stoner, Kevin J. [Savannah River Tritium Enterprise, Aiken, SC (United States)


    Radioactive zinc, 65Zn, was detected after a thermal vacuum process that extracted a desired product from articles out of a commercial light water reactor. While the facility is designed to handle radioactive materials, the location of the 65Zn was in an area that is not designed for gamma emitting contaminants. A series of experiments were conducted to entrain the contaminant in an easily replaceable trap within the process piping. The experiments were conducted with increasing levels of complexity. Initially a simple apparatus was developed to determine the effect of substrate temperature on the vapor capture, this was followed by experiments to determine the effect of filter pore size on pumping and trapping, finally the interactive effects of both pore size and temperature were evaluated. The testing was conducted on a system that used a roughing vacuum pump using model and prototypic materials. It was determined that heating the substrate to nominally 200°C resulted in effective trapping on the model as well as prototypic material.

  9. Vacuum decay container closure integrity leak test method development and validation for a lyophilized product-package system. (United States)

    Patel, Jayshree; Mulhall, Brian; Wolf, Heinz; Klohr, Steven; Guazzo, Dana Morton


    A leak test performed according to ASTM F2338-09 Standard Test Method for Nondestructive Detection of Leaks in Packages by Vacuum Decay Method was developed and validated for container-closure integrity verification of a lyophilized product in a parenteral vial package system. This nondestructive leak test method is intended for use in manufacturing as an in-process package integrity check, and for testing product stored on stability in lieu of sterility tests. Method development and optimization challenge studies incorporated artificially defective packages representing a range of glass vial wall and sealing surface defects, as well as various elastomeric stopper defects. Method validation required 3 days of random-order replicate testing of a test sample population of negative-control, no-defect packages and positive-control, with-defect packages. Positive-control packages were prepared using vials each with a single hole laser-drilled through the glass vial wall. Hole creation and hole size certification was performed by Lenox Laser. Validation study results successfully demonstrated the vacuum decay leak test method's ability to accurately and reliably detect those packages with laser-drilled holes greater than or equal to approximately 5 μm in nominal diameter. All development and validation studies were performed at Whitehouse Analytical Laboratories in Whitehouse, NJ, under the direction of consultant Dana Guazzo of RxPax, LLC, using a VeriPac 455 Micro Leak Test System by Packaging Technologies & Inspection (Tuckahoe, NY). Bristol Myers Squibb (New Brunswick, NJ) fully subsidized all work. A leak test performed according to ASTM F2338-09 Standard Test Method for Nondestructive Detection of Leaks in Packages by Vacuum Decay Method was developed and validated to detect defects in stoppered vial packages containing lyophilized product for injection. This nondestructive leak test method is intended for use in manufacturing as an in-process package integrity

  10. [A method of vacuum aspiration in early pregnancy in women with a history of severe gynecologic diseases]. (United States)

    Khoreva, L A


    Early (with the regular menstrual period absent for 6 to 20 days) artificial abortions were carried out in 61 women with a history of uterine myomas, cicatrix on the uterus, and developmental defects of the genitals. Analysis of early complications has shown that their incidence is virtually the same as in healthy women: 3.3%. Vacuum aspiration is an effective and safe method for early artificial abortions. A course of rehabilitation measures in the postoperative period reduces the incidence of early complications and is conducive to timely recovery of the normal cycle.

  11. A Microwave-Assisted Simultaneous Distillation and Extraction Method for the Separation of Polysaccharides and Essential Oil from the Leaves of Taxus chinensis Var. mairei

    Directory of Open Access Journals (Sweden)

    Chunjian Zhao


    Full Text Available An efficient microwave-assisted simultaneous distillation and extraction (MA-SDE method has been developed for the separation of polysaccharides and essential oil from Taxus chinensis var. mairei. The key operating parameters for MA-SDE were optimized by single factor and central composite design experiments, and the optimal conditions were found to include a particle size of 60–80 mesh, liquid/solid ratio of 22.5 mL/g, extraction time of 17.5 min, microwave power of 547 W, and dichloromethane was used as the extraction solvent of the essential oil. The yields obtained for polysaccharides and essential oil under the optimized conditions were 6.39% ± 0.12% and 0.27% ± 0.03%, respectively. The MA-SDE method was also compared with conventional heat reflux extraction (HRE and hydrodistillation extraction (HDE. The MA-SDE method not only allowed for the simultaneous extraction of polysaccharides and essential oil, but also completed the task with a much shorter extraction time of 17.5 min (HRE and HDE required 3 and 6 h, respectively. Furthermore, the MA-SDE method gave increased extraction yields for polysaccharides (1.14-fold higher than HRE and essential oil (1.23-fold higher than HDE. Based on these results, this MA-SDE method represents a rapid and efficient technique for the simultaneous extraction of polysaccharides and essential oil.

  12. Measurement of Heat Losses on The Milking Machine Electric Motor at Various Regulations of Vacuum Using Methods of Thermal Imagery

    National Research Council Canada - National Science Library

    Kudělka, Jan; Fryč, Jiří; Trávníček, Petr


    .... These vacuum pumps are driven by a squirrel-cage induction motor. Until recently, the vacuum in the system to achieve the required value was controlled by a main control valve sucking in ambient air into the system...

  13. VACUUM TRAP (United States)

    Gordon, H.S.


    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  14. Torsional Behaviour and Finite Element Analysis of the Hybrid Laminated Composite Shafts: Comparison of VARTM with Vacuum Bagging Manufacturing Method

    Directory of Open Access Journals (Sweden)

    Mehmet Emin Taşdelen


    Full Text Available Braided sleeve composite shafts are produced and their torsional behavior is investigated. The braided sleeves are slid over an Al tube to create very strong and rigid tubular form shafts and they are in the form of 2/2 twill biaxial fiber fabric that has been woven into a continuous sleeve. Carbon and glass fibers braided sleeves are used for the fabrication of the composite shafts. VARTM (vacuum assisted resin transfer molding and Vacuum Bagging are the two different types of manufacturing methods used in the study. Torsional behaviors of the shafts are investigated experimentally in terms of fabrication methods and various composite materials parameters such as fiber types, layer thickness, and ply angles. Comparing the two methods in terms of the torque forces and strain angles, the shafts producing entirely carbon fiber show the highest torque capacities; however, considering the cost and performance criteria, the hybrid shaft made up of carbon and glass fibers is the optimum solution for average demanded properties. Additionally, FE (finite element model of the shafts was created and analyzed by using ANSYS workbench environment. Results of finite element analysis are compared with the values of twisting angle and torque obtained by experimental tests.

  15. Development of an ionic liquid-based microwave-assisted method for simultaneous extraction and distillation for determination of proanthocyanidins and essential oil in Cortex cinnamomi. (United States)

    Liu, Ye; Yang, Lei; Zu, Yuangang; Zhao, Chunjian; Zhang, Lin; Zhang, Ying; Zhang, Zhonghua; Wang, Wenjie


    Cortex cinnamomi is associated with many health benefits and is used in the food and pharmaceutical industries. In this study, an efficient ionic liquid-based microwave-assisted simultaneous extraction and distillation (ILMSED) technique was used to extract cassia oil and proanthocyanidins from Cortex cinnamomi; these were quantified by gas chromatography/mass spectrometry (GC-MS) and the vanillin-HCl colorimetric method, respectively. 0.5M 1-butyl-3-methylimidazolium bromide ionic liquid was selected as solvent. The optimum parameters of dealing with 20.0 g sample were 230 W microwave irradiation power, 15 min microwave extraction time and 10 liquid-solid ratio. The yields of essential oil and proanthocyanidins were 1.24 ± 0.04% and 4.58 ± 0.21% under the optimum conditions. The composition of the essential oil was analysed by GC-MS. Using the ILMSED method, the energy consumption was reduced and the extraction yields were improved. The proposed method was validated using stability, repeatability, and recovery experiments. The results indicated that the developed ILMSED method provided a good alternative for the extraction of both the essential oil and proanthocyanidins from Cortex cinnamomi. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Microwave-Assisted Hydro-Distillation of Essential Oil from Rosemary: Comparison with Traditional Distillation. (United States)

    Moradi, Sara; Fazlali, Alireza; Hamedi, Hamid


    Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary ( Rosmarinus officinalis L. ) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min , compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation.

  17. System and method for preventing stator permanent magnet demagnetization during vacuum pressure impregnation

    Energy Technology Data Exchange (ETDEWEB)

    Raminosoa, Tsarafidy; Alexander, James Pellegrino; EL-Refaie, Ayman Mohamed Fawzi


    A permanent magnet electrical machine includes a stator having conductive windings wound thereon and one or more permanent magnets embedded in the stator. A magnetic keeper element is positioned on the stator so as to form a magnetic flux path with the permanent magnets, with the magnetic keeper element closing the magnetic flux path of the permanent magnets by providing a low reluctance flux path to magnetic flux generated by the permanent magnets. A vacuum pressure impregnation (VPI) process is performed on the stator to increase a thermal conductivity of the windings, with the VPI process including a curing step that is performed at a selected temperature. The magnetic keeper element sets an operating point of the permanent magnets to an internal flux density level above a demagnetization threshold associated with the selected temperature at which the curing step is performed.

  18. Vacuum Technology

    Energy Technology Data Exchange (ETDEWEB)

    Biltoft, P J


    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  19. Optimization of process parameters for microwave-vacuum puffing of black radish slices using the response surface method. (United States)

    Pawlak, Tomasz; Ryniecki, Antoni; Siatkowski, Idzi


    Due to the health-promoting value of black radish, authors decided to investigate the feasibility of forming - from its roots - chips, using the process of microwave-vacuum puffing. In order to produce desirable quality of chips, there is a need to determine the most advantageous values of process parameters. The main goal of the paper is to investigate the possibility of determining the best processing conditions for microwave-vacuum formation of black radish chips that can maximize the chips expansion ratio while maintaining consumer acceptability of sensory quality of chips. The raw material for analyses comprised fresh roots of black radish {raphanns sativus linne varietas niger). A three-level, one-factor central composite experimental design (DOE) was applied. The response surface method (RSM) was used as a part of the Statistica software and the R computer program for optimization. Response surfaces were built using the second degree polynomial that includes principal effects of processing parameters values and their interactions. A regression model was derived, based on results of natural experiments, that give a satisfactory prediction level (R² = 0.96) of the expansion ratio of black radish chips as a function of processing conditions. Then, the best values of process parameters were found using the RSM. The best processing parameters values were determined to be 0.39 kg kg⁻¹ wb (wet basis) moisture content of pre-dehydrated radish slices, 14.5 kPa vacuum absolute pressure and 80 s of microwave heating time during puffing (for the 650 W power output of the microwave generator). Optimized process of puffing of black radish slices using the RSM provided a satisfactory high value of the sensory quality index of chips. In this paper we do not analyze the physical structure of chips. In the future more research needs to be done in this area.

  20. Vacuum mechatronics (United States)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo


    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  1. Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component (United States)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)


    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.


    Barton, J.


    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  3. Ultra high vacuum technology

    CERN Multimedia

    CERN. Geneva


    A short introduction for some basic facts and equations. Subsquently, discussion about: Building blocks of an ultrahigh vacuum system - Various types of pumps required to reach uhv and methods to reduce these effects - Outgassing phenomena induced by the presence of a particle beam and the most common methods to reduce these effects It will be given some practical examples from existing CERN accelerators and discuss the novel features of the future LHC vacuum system.

  4. Comparison of Kinetic-based and Artificial Neural Network Modeling Methods for a Pilot Scale Vacuum Gas Oil Hydrocracking Reactor

    Directory of Open Access Journals (Sweden)

    Sepehr Sadighi


    Full Text Available An artificial neural network (ANN and kinetic-based models for a pilot scale vacuum gas oil (VGO hydrocracking plant are presented in this paper. Reported experimental data in the literature were used to develop, train, and check these models. The proposed models are capable of predicting the yield of all main hydrocracking products including dry gas, light naphtha, heavy naphtha, kerosene, diesel, and unconverted VGO (residue. Results showed that kinetic-based and artificial neural models have specific capabilities to predict yield of hydrocracking products. The former is able to accurately predict the yield of lighter products, i.e. light naphtha, heavy naphtha and kerosene. However, ANN model is capable of predicting yields of diesel and residue with higher precision. The comparison shows that the ANN model is superior to the kinetic-base models.  © 2013 BCREC UNDIP. All rights reservedReceived: 9th April 2013; Revised: 13rd August 2013; Accepted: 18th August 2013[How to Cite: Sadighi, S., Zahedi, G.R. (2013. Comparison of Kinetic-based and Artificial Neural Network Modeling Methods for a Pilot Scale Vacuum Gas Oil Hydrocracking Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2: 125-136. (doi:10.9767/bcrec.8.2.4722.125-136][Permalink/DOI:

  5. Elementary Analysis of Petroleum Distillates by Gc-Aed: Validation and Application to the Calculation of Distillation Profile Properties

    Directory of Open Access Journals (Sweden)

    Baco F.


    Full Text Available This article describes the development of elementary analysis in the distillation profile of petroleum cuts by gas phase chromatography-atomic emission detection (GC-AED coupling and shows the application perspectives to characterisation of middle distillates of a piece of information unheard of until now on a routine basis. The performances of the analytical assembly used have been studied for carbon, hydrogen, sulphur and nitrogen analysis. Simulated distillation, a gas phase chromatography analysis which enables determining the weight percentage of distilled matter in relation to the boiling point of petroleum cuts, has been adapted to GC-AED coupling. We have developed a method giving access to three types of information: global elementary composition, simulated distillation and elementary composition in distillation profile, i. e. by fraction (% of the distilled product. The analysis of the atmospheric distillates has been assessed in terms of precision and bias for these various types of information. The validation was carried out notably by comparison with the results obtained using reference analytical methods, on preparative distillation cuts of representative samples. The application of GC-AED to characterisation of distillates is discussed, in particular for classification purposes and for predicting petroleum properties in the distillation profile. The cetane number of gas oils was taken as an example to illustrate the latter application.

  6. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. (United States)

    Wojdyło, Aneta; Figiel, Adam; Oszmiański, Jan


    The objective of this study was to evaluate the application of vacuum-microwave drying (240, 360, and 480 W) in the production process of dehydrated strawberry and to compare and contrast the quality of these dehydrated strawberries in terms of their polyphenol compounds, concentration of some heat liable components, and color to that of freeze-dried, convective, and vacuum-dried strawberry. Thus, the effect of vacuum-microwave drying and other drying methods on the antioxidant activity of berries was evaluated. Whole fresh and dried fruits were assessed for phenolics (anthocyanins, flavanols, hydroxycinnamic acids, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that ellagic acid and flavanol changes were affected by drying techniques and cultivar. Drying destroyed anthocyanins, flavanols, and ascorbic acid, and there was a significant decrease in antioxidant activity. The most striking result was that conventional and vacuum drying decreased antioxidant activity in both cultivars, whereas contradictory results were found for vacuum-microwave processed strawberry. This study has demonstrated that vacuum-microwave drying, especially at 240 W, can produce high-quality products, with the additional advantage of reduced processing times, compared to other processes such as freeze-drying.

  7. Cosmic vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)


    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  8. Integrated Process Design and Control of Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted


    In this work, integrated process design and control of reactive distillation processes is presented. Simple graphical design methods that are similar in concept to non-reactive distillation processes are used, such as reactive McCabe-Thiele method and driving force approach. The methods are based...... of this approach, it is shown that designing the reactive distillation process at the maximum driving force results in an optimal design in terms of controllability and operability. It is verified that the reactive distillation design option is less sensitive to the disturbances in the feed at the highest driving...

  9. Integrated Process Design and Control of Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted


    In this work, integrated design and control of reactive distillation processes is presented. Simple graphical design methods that are similar in concept to non-reactive distillation processes are used, such as reactive McCabe-Thiele method and driving force approach. The methods are based...... of this approach, it is shown that designing the reactive distillation process at the maximum driving force results in an optimal design in terms of controllability and operability. It is verified that the reactive distillation design option is less sensitive to the disturbances in the feed at the highest driving...

  10. Electron Cloud Measurements of Coated and Uncoated Vacuum Chambers in the CERN SPS by Means of the Microwave Transmission Method

    CERN Document Server

    Federmann, S; Mahner, E; Costa Pinto, P; Taborelli, M; Salvant, B; Seebacher, D; Yin Vallgren, C


    Electron cloud is a limitation to increasing the beam current in the CERN SPS in the frame of an intensity upgrade of the LHC complex. Coating the vacuum chamber with a thin amorphous carbon layer is expected to reduce the electron cloud build-up. Three SPS MBB magnets have been coated to study the performance of this carbon coating. The microwave transmission method is one possible way to monitor electron cloud and hence to test the effect of the coating. In this paper the evolution of the experimental setup for measurements of the electron cloud using LHC type beams will be described. Due to the low revolution frequency of about 43 kHz serious electromagnetic compatibility problems as well as intermodulation have been found. These effects and their mitigation are described. Finally, we present the measurement results illustrating the possible reduction due to the carbon coating.

  11. Vacuum II

    CERN Document Server

    Franchetti, G


    This paper continues the presentation of pumps begun in ‘Vacuum I’. The main topic here is gauges and partial-pressure measurements. Starting from the kinetics of gases, the various strategies for measuring vacuum pressures are presented at an introductory level, with some reference to hardware devices. Partial-pressure measurement techniques are introduced, showing that the principles of ion selection have a direct similarity to particle dynamics in accelerators.

  12. Applicability of DFT model in reactive distillation (United States)

    Staszak, Maciej


    The density functional theory (DFT) applicability to reactive distillation is discussed. Brief modeling techniques description of distillation and rectification with chemical reaction is provided as a background for quantum method usage description. The equilibrium and nonequilibrium distillation models are described for that purpose. The DFT quantum theory is concisely described. The usage of DFT in the modeling of reactive distillation is described in two parts. One of the fundamental and very important component of distillation modeling is vapor-liquid equilibrium description for which the DFT quantum approach can be used. The representative DFT models, namely COSMO-RS (Conductor like Screening Model for Real Solvents), COSMOSPACE (COSMO Surface Pair Activity Coefficient) and COSMO-SAC (SAC - segment activity coefficient) approaches are described. The second part treats the way in which the chemical reaction is described by means of quantum DFT method. The intrinsic reaction coordinate (IRC) method is described which is used to find minimum energy path of substrates to products transition. The DFT is one of the methods which can be used for that purpose. The literature data examples are provided which proves that IRC method is applicable for chemical reaction kinetics description.

  13. Membrane distillation for milk concentration

    NARCIS (Netherlands)

    Moejes, S.N.; Romero Guzman, Maria; Hanemaaijer, J.H.; Barrera, K.H.; Feenstra, L.; Boxtel, van A.J.B.


    Membrane distillation is an emerging technology to concentrate liquid products while producing high quality water as permeate. Application for desalination has been studied extensively the past years, but membrane distillation has also potential to produce concentrated food products like

  14. Distillation with labelled transition systems

    DEFF Research Database (Denmark)

    Hamilton, Geoffrey William; Jones, Neil


    In this paper, we provide an improved basis for the " distillation" program transformation. It is known that superlinear speedups can be obtained using distillation, but cannot be obtained by other earlier automatic program transformation techniques such as deforestation, positive supercompilation...

  15. A rational method for developing and testing stable flexible indium- and vacuum-free multilayer tandem polymer solar cells comprising up to twelve roll processed layers

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks; Dam, Henrik Friis; Andreasen, Birgitta


    We demonstrate a method for the preparation of multijunction polymer solar cells without the use of vacuum evaporation methods or indium tin oxide (ITO). The entire layer stack is prepared by printing or coating of each layer. The number of layers typically employed in complete devices exceeds te...

  16. Method for producing evaporation inhibiting coating for protection of silicon--germanium and silicon--molybdenum alloys at high temperatures in vacuum (United States)

    Chao, P.J.


    A method is given for protecting Si--Ge and Si-- Mo alloys for use in thermocouples. The alloys are coated with silicon to inhibit the evaporation of the alloys at high tempenatures in a vacuum. Specific means and methods are provided. (5 fig) (Official Gazette)

  17. Comportement en vapocraquage de molécules modèles et de distillats sous vide hydrotraités. Première partie : potentialité de craquage, réacteur à profil de température rectangulaire et à court temps de séjour Steam-Cracking Behavior of Model Molecules and Hydrotreated Vacuum Distillates

    Directory of Open Access Journals (Sweden)

    Berthelin M.


    Full Text Available Dans le cadre de la valorisation des coupes lourdes par vapocraquage, des distillats sous vide plus ou moins hydrotraités et des molécules modèles ont été pyrolysés. Cette étude a été réalisée sur un micropilote dont la partie réactionnelle est chauffée entre 680 et 860°C, par induction électromagnétique haute fréquence; le débit total peut varier de 60 à 800 g/h avec une perte de charge inférieure à 0,3 bar. Deux réacteurs tubulaires spiralés de rapport surface/volume allant jusqu'à 2000 m-1 permettent d'atteindre des temps de séjour de 10 à 400 millisecondes. Un indice quantifiant l'aptitude de chaque molécule à produire de l'éthylène, du propylène et des composés lourds, a permis l'établissement d'une échelle de potentialité de craquage, permettant d'orienter les performances d'un catalyseur de prétraitement : optimisation de la consommation d'hydrogène, meilleure valorisation des charges lourdes lors du vapocraquage. Grâce au profil de température rectangulaire du micropilote, des gains très importants de rendements d'éthylène et une production très faible d'asphaltènes ont été mis en évidence par pyrolyse de distillats sous vide hydrotraités. L'importance primordiale de la température dans le couple température-temps de séjour a été confirmée. Within the framework of the upgrading of heavy cuts for steam cracking, more or less hydrotreated vacuum distillates and model molecules were pyrolyzed. This research was done in a micropilot plant in which the reaction section was heated to between 680 and 860°C by high-frequency electromagnetic induction. The total flow rate can vary from 60 to 800 g/h with a pressure drop of less than 0. 3 bar. Two spiral tubular reactors with a high surface/volume ratio of up to 2000 m-1 enable residence times of 10 to 400 milliseconds to be obtained. An index quantifying the capacity of each molecule to produce ethylene, propylene and heavy compounds was used

  18. Effect of cooking method, distiller's grains, and vitamin E supplementation on the vitamin content of value cuts from beef steers fed wet distiller's grains and solubles and supplemental vitamin E. (United States)

    Kim, Y N; Giraud, D W; Masrizal, M A; Hamouz, F L; Watanabe, K; Schnepf, M I; de Mello, A S; Erickson, G E; Calkins, C R; Driskell, J A


    Vitamin E, thiamin, riboflavin, niacin, vitamin B(6), and vitamin B(12) concentrations of flat iron steaks and petite tenders from steers fed finishing rations containing 0% and 40% corn wet distiller's grains and solubles (WDGS) with and without supplemental vitamin E were determined. Feeding treatment groups were: 0% WDGS with basal vitamin E, 0% WDGS with supplemental vitamin E (500 IU daily), 40% WDGS with basal vitamin E, and 40% WDGS and supplemental vitamin E. Cattle can be fed 40% WDGS diets more economically than corn diets. The incorporation of 40% WDGS, with and without vitamin E, was hypothesized to have little effect on the vitamin concentrations of these value meat cuts. Flat iron steaks and petite tenders were broiled and/or grilled to 70 degrees C internal temperature. Mean cooking yields ranged from 68.7% to 78.2%. The majority of the vitamin concentrations of broiled and of grilled meat were significantly different (P meat. Vitamin E concentrations of raw and cooked meat from steers that received supplemental vitamin E were significantly higher (P vitamin E. Significant differences in thiamin, riboflavin, vitamin B(6), and vitamin B(12) concentrations in raw flat iron steaks and in vitamin B(6) in raw petite tenders were observed by WDGS. Thiamin, vitamin B(6), and vitamin B(12) concentrations of broiled flat iron steaks were significantly different (P vitamin concentrations of the flat iron steaks and petite tenders were observed by WDGS, vitamin E supplementation, and cooking treatments, but most of the vitamin concentrations were statistically similar.

  19. Surface code implementation of block code state distillation (United States)

    Fowler, Austin G.; Devitt, Simon J.; Jones, Cody


    State distillation is the process of taking a number of imperfect copies of a particular quantum state and producing fewer better copies. Until recently, the lowest overhead method of distilling states produced a single improved |A〉 state given 15 input copies. New block code state distillation methods can produce k improved |A〉 states given 3k + 8 input copies, potentially significantly reducing the overhead associated with state distillation. We construct an explicit surface code implementation of block code state distillation and quantitatively compare the overhead of this approach to the old. We find that, using the best available techniques, for parameters of practical interest, block code state distillation does not always lead to lower overhead, and, when it does, the overhead reduction is typically less than a factor of three. PMID:23736868

  20. Augmented Method to Improve Thermal Data for the Figure Drift Thermal Distortion Predictions of the JWST OTIS Cryogenic Vacuum Test (United States)

    Park, Sang C.; Carnahan, Timothy M.; Cohen, Lester M.; Congedo, Cherie B.; Eisenhower, Michael J.; Ousley, Wes; Weaver, Andrew; Yang, Kan


    The JWST Optical Telescope Element (OTE) assembly is the largest optically stable infrared-optimized telescope currently being manufactured and assembled, and is scheduled for launch in 2018. The JWST OTE, including the 18 segment primary mirror, secondary mirror, and the Aft Optics Subsystem (AOS) are designed to be passively cooled and operate near 45K. These optical elements are supported by a complex composite backplane structure. As a part of the structural distortion model validation efforts, a series of tests are planned during the cryogenic vacuum test of the fully integrated flight hardware at NASA JSC Chamber A. The successful ends to the thermal-distortion phases are heavily dependent on the accurate temperature knowledge of the OTE structural members. However, the current temperature sensor allocations during the cryo-vac test may not have sufficient fidelity to provide accurate knowledge of the temperature distributions within the composite structure. A method based on an inverse distance relationship among the sensors and thermal model nodes was developed to improve the thermal data provided for the nanometer scale WaveFront Error (WFE) predictions. The Linear Distance Weighted Interpolation (LDWI) method was developed to augment the thermal model predictions based on the sparse sensor information. This paper will encompass the development of the LDWI method using the test data from the earlier pathfinder cryo-vac tests, and the results of the notional and as tested WFE predictions from the structural finite element model cases to characterize the accuracies of this LDWI method.

  1. Cascade Distillation System Development (United States)

    Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah


    NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.

  2. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods (United States)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin


    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient (R 2 ), varience (S 2 ) and root mean square deviation (D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  3. Method of manufacturing a fully integrated and encapsulated micro-fabricated vacuum diode (United States)

    Resnick, Paul J.; Langlois, Eric


    Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.

  4. Fully integrated and encapsulated micro-fabricated vacuum diode and method of manufacturing same

    Energy Technology Data Exchange (ETDEWEB)

    Resnick, Paul J.; Langlois, Eric


    Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.

  5. 27 CFR 27.40 - Distilled spirits. (United States)


    ... OF THE TREASURY LIQUORS IMPORTATION OF DISTILLED SPIRITS, WINES, AND BEER Tax On Imported Distilled Spirits, Wines, and Beer Distilled Spirits § 27.40 Distilled spirits. (a) A tax is imposed on all... each proof gallon. All products of distillation, by whatever name known, which contain distilled...

  6. Aroma Stripping under various Forms of Membrane Distillation Processes: Experiments and modeling

    DEFF Research Database (Denmark)

    Jonsson, Gunnar Eigil

    Concentration of fruit juices by membrane distillation is an interesting process as it can be done at low temperature giving a gentle concentration process with little deterioration of the juices. Since the juices contains many different aroma compounds with a wide range of chemical properties...... such as volatility, activity coefficient and vapor pressure, it is important to know how these aroma compounds will eventually pass through the membrane. Experiments have been made on an aroma model solution and on black currant juice in a lab scale membrane distillation set up which can be operated in various types...... of MD configurations: Vacuum Membrane Distillation , Sweeping Gas Membrane Distillation , Direct Contact Membrane Distillation and Osmotic Membrane Distillation. The influence of feed temperature and feed flow rate on the permeate flux and concentration factor for different types of aroma compounds have...

  7. Treatment of anastomotic leakage after rectal resection with transrectal vacuum-assisted drainage (VAC). A method for rapid control of pelvic sepsis and healing

    DEFF Research Database (Denmark)

    Nagell, Carl Frederik Otto; Holte, Kathrine


    functional result is not uncommon. Vacuum-assisted closure (VAC) has been shown to accelerate wound healing by increasing local blood flow, reducing bacterial load and stimulating growth of granulation tissue. In this paper, we describe VAC as a method for treating anastomotic leakage after rectal resection...

  8. Vacuum induced photoresist outgassing (United States)

    Waterman, Justin; Mbanaso, Chimaobi; Denbeaux, Gregory


    In order to continue the trend toward smaller feature sizes in lithography, new methods of lithography will be needed. A likely method for printing features 32 nm and smaller is extreme ultraviolet (EUV) lithography. EUV allows for features to be printed that are smaller than the current methods can achieve. However, outgassing of the photoresist is a concern for EUV lithography. The outgassed components can lead to contamination of the optics, degrading the reflectivity and hence lowering throughput of the exposure tools. Outgassing due to EUV exposure has been investigated by many groups. However, there were no complete investigations available of vacuum induced outgassing. In this paper, several methods were employed to investigate the outgassing due to vacuum. It was found that the vacuum induced outgassing outgassed a similar number of molecules as the outgassing due to EUV exposure. Furthermore, almost all of the outgassing was completed after about two minutes in vacuum. To mitigate the potential concern of outgassing due to vacuum causing contamination of optics, this work shows that photoresist coated silicon wafers only require about two minutes of pumping prior to insertion near the optics within EUV lithography tools.

  9. Improvement of Egyptian vacuum distillates by urea dewaxing

    National Research Council Canada - National Science Library

    Nassef, Ehssan M.R; Salah, Hesham S


    .... The effect of different compositions of methanol to water saturated with urea and yield of the oil, percent of wax, pour point, refractive index, viscosity, viscosity index and specific gravity...

  10. Lactose and galactose content in cheese results in overestimation of moisture by vacuum oven and microwave methods. (United States)

    Lee, H; Rankin, S A; Fonseca, L M; Milani, F X


    Moisture determination in cheese is a critical test for regulatory compliance, functionality, and economic reasons. Common methods for moisture determination in cheese rely upon the thermal volatilization of water from cheese and calculation of moisture content based on the resulting loss of mass. Residual sugars, such as lactose and galactose, are commonly present in cheeses at levels ranging from trace amounts to 5%. These sugars are capable of reacting with other compounds in cheese, especially under the thermal conditions required for moisture determination, to yield volatile reaction products. The hypothesis of this work is that residual sugars in cheese will be converted into volatile compounds over the course of moisture determination at a level sufficient to result in overestimated cheese moisture. A full-factorial statistical design was used to evaluate the effects of cheese type, sugar type, sugar level, method type, and all interactions. Cheddar and low-moisture, part-skim (LMPS) Mozzarella cheeses were prepared with 1, 3, and 5% added lactose or galactose, and subjected to either vacuum oven or microwave-based moisture determination methods. Browning index and colorimetry were measured to characterize the color and extent of browning. Volatile analyses were performed to provide chemical evidence of the reactions proposed. The presence of residual sugars altered moisture calculations as a function of cheese type, sugar type, sugar level, method type, and numerous interactions. At higher concentrations of residual sugar, the percentage moisture determinations were increased by values of up to 1.8. Measures of browning reactions, including browning index, colorimetry, and volatile profiles demonstrate that the proposed browning reactions played a causative role. This work establishes the need to consider cheese type, sugar type, sugar levels, and method type as a means of more accurately determining moisture levels. Copyright © 2014 American Dairy Science

  11. Vacuum Valve

    CERN Multimedia


    This valve was used in the Intersecting Storage Rings (ISR) to protect against the shock waves that would be caused if air were to enter the vacuum tube. Some of the ISR chambers were very fragile, with very thin walls - a design required by physicists on the lookout for new particles.

  12. Comparison of vacuum metal deposition and 1,2-indandione/ninhydrin reagent method for the development of fingerprints on renminbi


    Cong Wang; Zunlei Qian; Wei Li; Yaping Luo


    It is extremely difficult to develop fingerprints from the surface of currency. There are studies reporting that the high vacuum metal deposition (VMD) method can be used to detect fingerprints on certain types of currency notes. Both VMD and 1,2-indandione/ninhydrin techniques are employed to visualize latent fingermarks on porous surfaces, such as paper. The current study explores whether the VMD method or 1,2-indandione/ninhydrin reagent method is more effective in the development of finge...

  13. Static multiplicities in heterogeneous azeotropic distillation sequences

    DEFF Research Database (Denmark)

    Esbjerg, Klavs; Andersen, Torben Ravn; Jørgensen, Sten Bay


    In this paper the results of a bifurcation analysis on heterogeneous azeotropic distillation sequences are given. Two sequences suitable for ethanol dehydration are compared: The 'direct' and the 'indirect' sequence. It is shown, that the two sequences, despite their similarities, exhibit very...... different static behavior. The method of Petlyuk and Avet'yan (1971), Bekiaris et al. (1993), which assumes infinite reflux and infinite number of stages, is extended to and applied on heterogeneous azeotropic distillation sequences. The predictions are substantiated through simulations. The static sequence...

  14. Catalytic distillation extends its reach

    Energy Technology Data Exchange (ETDEWEB)

    Rock, K.; McGuirk, T. [Catalytic Distillation Technologies, Houston, TX (United States); Gildert, G.R. [Catalytic Distillation Technologies, Pasadena, TX (United States)


    Since the early 1980s, catalytic distillation processes have been selected by more than a hundred operators for various applications. Since such a unit performs both reaction and distillation simultaneously, a combined column can replace a separate, fixed-bed reactor and distillation column, thereby eliminating equipment and reducing capital costs. And, compared to the conventional approach, catalytic distillation may also improve other factors, such as reactant conversion, selectivity, mass transfer, operating pressure, oligomer formation and catalyst fouling. The constant washing of the catalyst by liquid flowing down the column and the distillation of high-boiling foulants results in extended catalyst life. Four selective hydrogenation applications of catalytic distillation are discussed: Butadiene selective hydrogenation combined within an MTBE unit; Pentadiene selective hydrogenation; C{sub 4} acetylene conversion; and Benzene saturation.

  15. Robust Geometric Control of a Distillation Column

    DEFF Research Database (Denmark)

    Kymmel, Mogens; Andersen, Henrik Weisberg


    A frequency domain method, which makes it possible to adjust multivariable controllers with respect to both nominal performance and robustness, is presented. The basic idea in the approach is that the designer assigns objectives such as steady-state tracking, maximum resonance peaks, bandwidth, m...... is used to examine and improve geometric control of a binary distillation column....

  16. Application of inhibiting protection at the crude oil atmospheric distillation units

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, Ivanka; Petkova, Nedyalka [Crude oil Processing and Petrochemistry R and D Institute - Corrosion Scientific Laboratory, LUKOIL Neftochim Bourgas JSC - 8104 Bourgas (Bulgaria)]|[Ondeo Nalco Gmbh (Austria)


    Due to the hydrolysis and cracking during the crude oil atmospheric distillation, there are chlorides (organic and inorganic) and sulfur compounds present in the crude oil to be further processed, which results in corrosion mainly of the condensation-cooling equipment. The corrosion occurs because of the combined impact of hydrogen chloride and hydrogen sulfide in the presence of condensed moisture. The experience shows that the effective methods for corrosion prevention in the crude oil Atmospheric Distillation Units are the following: - maximum dehydration and desalting of the crude oil by means of contemporary highly effective de-emulsifiers, which can be dissolved in crude oil; - application of neutralizing compounds with alkali properties; - injection of effective film-forming inhibitors in the pipe-lines of the atmospheric distillation columns (towers) in order to protect against corrosion the inner surface of the metal equipment. The present Report covers the results of an industrial trial carried out in crude oil Atmospheric Distillation Unit AD-4 in the Atmospheric and Vacuum Distillation Plant of Lukoil Neftochim Bourgas JSC with reagents of the company 'Ondeo Nalco Energy'. Their efficiency is compared with the existing inhibiting system, composed of copper-ammonia complex (CAC- 4), manufactured in Bulgaria and Dodigen 481, manufactured in Germany. A system, consisting of film-forming and neutralizing type of inhibitors has been applied in order to reach the highest possible rate of corrosion protection of the process equipment at the crude oil Atmospheric Distillation Units. The choice of this system, consisting of film-forming and neutralizing type of inhibitors, as well as the establishment of the optimum dosage rate of these inhibitors in the industrial environment has been accomplished after a series of research of various inhibitors of this company following express laboratory methods under conditions, which are as similar as possible to

  17. Refining of Cd and Zn from interstitial impurities using distillation with a ZrFe getter filter

    Directory of Open Access Journals (Sweden)

    Scherban’ A. P.


    Full Text Available Behavior of interstitial impurities in Cd and Zn is analysed in terms of thermodynamics. The authors consider reduction reactions of cadmium, zinc and carbon oxides, as well as zinc nitride with the getter material from the Zr-Fe alloy, depending on temperature and vacuum. Optimum initial temperature and vacuum conditions for the processes of deep refining of Cd and Zn from interstitial impurities has been developed. It has been shown experimentally that the proposed refining method provides a more effective cleaning of cadmium and zinc from the interstitial impurities than the distillation without a filter: the impurity content is reduced more than tenfold compared to the concentration in the input metal.

  18. Decontamination by fractional distillation of a radioactive mixture of perchlorethylene, bitumen, and sludges from chemical co-precipitations; Decontamination par distillation fractionnee d'un melange radioactif constitue par du perchlorethylene, du bitume et des boues de coprecipitation chimique

    Energy Technology Data Exchange (ETDEWEB)

    Lefillatre, G.; Hullo, R. [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule


    It is not possible to incinerate the contaminated organic waste containing chlorine, produced at the Marcoule Centre. The only valid method for these solvents of average activity is fractional distillation. This report presents a pilot fractional distillation plant designed for decontaminating the residual solvents produced by the Centre's Waste Processing Station. These contaminated solvents come from the decontamination of a screw extrusion apparatus with perchlorethylene; this equipment is used for coating the radioactive sludges with bitumen. The pilot plant operates discontinuously and is used to decontaminate the perchlorethylene, to separate the perchlorethylene from the water, and to process the distillation residue. The electrically heated boiler is fitted with a removable base in the form of a disposable container. The installations decontamination factor is 3.4 x 10{sup 6} when solvents with a specific activity of 0.23 Ci/m{sup 3} are used. The average flow-rate for a distillation run is 10 l/hr at atmospheric pressure, and 21 l/hr at a residual pressure of 40 torr. The decontamination factor for the installation is better at atmospheric pressure than in a vacuum. (authors) [French] Les effluents organiques contamines chlores du Centre de Marcoule ne peuvent etre incineres. Le seul mode de traitement qui s'impose pour ces solvants de moyenne activite s'avere etre la distillation fractionnee. Ce rapport presente une installation pilote de distillation fractionnee qui a ete concue pour decontaminer des solvants residuaires provenant de la Station de Traitement des Effluents du Centre. Ces solvants contamines resultent de la decontamination au moyen de perchlorethylene d'une extrudeuse a vis servant a l'enrobage par le bitume des boues radioactives de cette station. L'installation pilote fonctionne en discontinu et assure a la fois la decontamination du perchlorethylene, la separation du perchlorethylene et de l'eau et le


    NARCIS (Netherlands)


    A novel histoprocessing method for paraffin sections is presented in which the combination of vacuum and microwave exposure is the key element. By exploiting the decrease in boiling temperature under vacuum, the liquid molecules in the tissues have been successfully extracted and exchanged at

  20. Dealcoholized wines by spinning cone column distillation: phenolic compounds and antioxidant activity measured by the 1,1-diphenyl-2-picrylhydrazyl method. (United States)

    Belisario-Sánchez, Yulissa Y; Taboada-Rodríguez, Amaury; Marín-Iniesta, Fulgencio; López-Gómez, Antonio


    Spinning cone column (SCC) distillation has been shown to be a commercially suitable technique for dealcoholized wine (DW) manufacturing, but there are not enough studies about its influence on the DW quality. So, the effect of this technique on the antioxidant activity (% of remaining 1,1-diphenyl-2-picrylhydrazyl radical) and the phenolic compound composition of red, rose, and white DW, obtained at pilot plant scale, has been analyzed. Nineteen raw wines (RWs) from different grape varieties and five different Spanish viticultural regions have been studied before and after dealcoholization. The total phenolic content, flavonols, tartaric esters, and anthocyanins, was determined by spectrophotometry, while the content of phenolic compounds such as stilbenes (trans- and cis-resveratrol), flavonols (rutin, quercetin, and myricetin), flavan-3-ols [(+)-catechin and (-)-epicatechin], anthocyanins (malvidin 3-glucoside), and non-flavonoids (gallic, caffeic, and p-coumaric acids) was determined by high-performance liquid chromatography (HPLC). The resveratrol contents in red wines were between 1.81 and 34.01 mg/L in RWs and between 2.12 and 39.57 mg/L in DWs, Merlot being the grape producing the RWs and DWs with higher resveratrol content. In general, the percent of remaining DPPH(*) was similar or slightly higher (until 5 units of % of remaining DPPH(*)) in DWs versus RWs. This small difference may be due to removal of SO2 (that is an antioxidant) from RWs during distillation. DWs and RWs show similar contents of the studied phenolic compounds, with a tendency, in some cases, to exhibit increases after dealcoholization, caused by the concentration effect via removal of the ethanol. From this work, we can deduce that SCC distillation is a dealcoholization technique minimally destructive with the wine phenolic compounds.

  1. Constraint control of distillation processes

    NARCIS (Netherlands)

    Roffel, B.; Fontein, H.J.


    There is a growing interest to design and operate chemical processes for reduced energy consumption. As an example a comparison is made between the distillation of binary mixtures in a conventional distillation column, a vapour recompression system and a two column heat integrated system. For all

  2. Studies in Petroleum Composition the Distribution of Nitrogen Species, Metals and Coke Precursors During High Vacuum Distillation of Petroleum Étude de composition du pétrole Répartition des espèces azotées, des métaux et des précurseurs du coke pendant la distillation sous vide poussé du pétrole

    Directory of Open Access Journals (Sweden)

    Long R. B.


    Full Text Available Application of separation techniques to residua and other heavy feedstocks raises the issue of the most appropriate distillation cut-point for the maximum yield of useful (gas-oil type liquids. This publication addresses this specific issue and describes the influence of deepdistillation (to 1289°F+ on the composition and quality of the volatiles/nonvolatiles from a 950°F+ residuum. The techniques employed to estimate the composition/quality of the 950-1289°F and 1289°F+ fractions are deasphalting and clay-adsorption separation of each whole fraction. The data show that further distillation of the 950°F+ residuum can recover essentially all of the saturate content of the feed in the overhead product at 1289°F atmos. equiv. cut point. However, appreciable amounts of oxygen- and nitrogen-containing polar compounds are also taken overhead leading to a carbon residue value for the distillate of 8. 2 wt%. The metals and the coke precursors in the distillate lie mainly in the polar fraction along with the nitrogen compounds. However, at these high molecular weights the distillate also shows coke precursors in the saturate fraction and more extensively in the aromatic fraction. Distillation is an impurity (carbon precursors, heteroatoms, metals concentrating process. As the cut-point increases, the impurity content of the distillate increases but to a lesser extent than that of the corresponding residuum. L'application des techniques de séparation aux résidus et autres matières lourdes conduit à s'interroger sur le point de coupe de distillation adéquat qui va permettre d'obtenir le rendement maximum en liquides utiles (type gazole. Il faut reconnaître que la distillation est un processus de concentration des impuretés (produits de tête, hétéroatomes, métaux. Lorsque le point de coupe s'élève, le contenu en impuretés du distillat augmente, mais il augmente moins que celui du résidu correspondant. La présente publication

  3. Hydrocarbon type analysis by thin-layer chromatography with flame-ionization detection: vacuum gas oils, heavy feeds, and hydroprocessed products. (United States)

    Barman, Bhajendra N


    Thin-layer chromatography with flame-ionization detection (TLC-FID) provides quantitative hydrocarbon type data as well as distribution of aromatics by ring number. This method has been applied to obtain amounts of saturates, aromatics, and polars in heavy oil distillates such as light vacuum gas oils and heavy vacuum gas oils derived from different crude sources. TLC-FID chromatograms and resultant quantitative hydrocarbon type data show that these distillates vary markedly in aromatic contents and aromatic ring types. Similar observations are made with several fluid catalytic cracking feeds. Effects of process parameters such as operating pressure and temperature on hydroconversion of aromatics and polars from a heavy oil are assessed by TLC-FID. It has been demonstrated that there is a preferential reduction of higher polycyclic aromatic hydrocarbons and polars with an increase of both hydrogen partial pressure and reactor temperature.

  4. Mathematical modeling of alcohol distillation columns

    Directory of Open Access Journals (Sweden)

    Ones Osney Pérez


    Full Text Available New evaluation modules are proposed to extend the scope of a modular simulator oriented to the sugar cane industry, called STA 4.0, in a way that it can be used to carry out x calculation and analysis in ethanol distilleries. Calculation modules were developed for the simulation of the columns that are combined in the distillation area. Mathematical models were supported on materials and energy balances, equilibrium relations and thermodynamic properties of the ethanol-water system. Ponchon-Savarit method was used for the evaluation of the theoretical stages in the columns. A comparison between the results using Ponchon- Savarit method and those obtained applying McCabe-Thiele method was done for a distillation column. These calculation modules for ethanol distilleries were applied to a real case for validation.

  5. Raman spectroscopy for the characterization of different fractions of hemp essential oil extracted at 130 °C using steam distillation method (United States)

    Hanif, Muhammad Asif; Nawaz, Haq; Naz, Saima; Mukhtar, Rubina; Rashid, Nosheen; Bhatti, Ijaz Ahmad; Saleem, Muhammad


    In this study, Raman spectroscopy along with Principal Component Analysis (PCA) is used for the characterization of pure essential oil (pure EO) isolated from the leaves of the Hemp (Cannabis sativa L.,) as well as its different fractions obtained by fractional distillation process. Raman spectra of pure Hemp essential oil and its different fractions show characteristic key bands of main volatile terpenes and terpenoids, which significantly differentiate them from each other. These bands provide information about the chemical composition of sample under investigation and hence can be used as Raman spectral markers for the qualitative monitoring of the pure EO and different fractions containing different active compounds. PCA differentiates the Raman spectral data into different clusters and loadings of the PCA further confirm the biological origin of the different fractions of the essential oil.

  6. Controlled irrigation of a structured packing as a method for increasing the efficiency of liquid mixture separation in the distillation column (United States)

    Pavlenko, A. N.; Zhukov, V. E.; Pecherkin, N. I.; Nazarov, A. D.; Li, X.; Li, H.; Gao, X.; Sui, H.


    The use of modern structured packing in the distillation columns allows much more even distribution of the liquid film over the packing surface, but it does not completely solve the problem of uniform distribution of flow parameters over the entire height of the packing. Negative stratification of vapor along the packing height caused by different densities of vapor mixture components and higher temperature in the lower part of the column leads to formation of large-scale maldistributions of temperature and mixture composition over the column cross-section even under the conditions of uniform irrigation of packing with liquid. In these experiments, the idea of compensatory action of liquid distributor on the large-scale maldistribution of mixture composition over the column cross-section was implemented. The experiments were carried out in the distillation column with the diameter of 0.9 m on 10 layers of the Mellapak 350Y packing with the total height of 2.1 m. The mixture of R-21 and R-114 was used as the working mixture. To irrigate the packing, the liquid distributorr with 126 independently controlled solenoid valves overlapping the holes with the diameter of 5 mm, specially designed by the authors, was used. Response of the column to the action of liquid distributor was observed in real time according to the indications of 3 groups of thermometers mounted in 3 different cross-sections of the column. The experiments showed that the minimal correction of the drip point pattern in the controlled liquid distributor can significantly affect the pattern of flow parameter distribution over the cross-section and height of the mass transfer surface and increase separation efficiency of the column within 20%.

  7. MgB{sub 2} superconducting thin films sequentially fabricated using DC magnetron sputtering and thermionic vacuum arc method

    Energy Technology Data Exchange (ETDEWEB)

    Okur, S. [Physics Department, Izmir Institute of Technology (Turkey)], E-mail:; Kalkanci, M. [Material Science Program, Izmir Institute of Technology (Turkey); Pat, S.; Ekem, N.; Akan, T. [Physics Department, Osmangazi University (Turkey); Balbag, Z. [Department of Science and Mathematics Education, Osmangazi University (Turkey); Musa, G. [Plasma and Radiation, National Institute for Physics of Laser (Romania); Tanoglu, M. [Mechanical Engineering Department, Izmir Institute of Technology (Turkey)


    In this work, we discuss fabrication and characterization of MgB{sub 2} thin films obtained by sequential deposition and annealing of sandwich like Mg/B/Mg thin films on glass substrates. Mg and B films were prepared using DC magnetron sputtering and thermionic vacuum arc techniques, respectively. The MgB{sub 2} thin films showed superconducting critical transition at 33 K after annealing at 650 deg. C.


    Directory of Open Access Journals (Sweden)

    A. N. Chichko


    Full Text Available The computer simulation of the characteristics of manufacturing technology of the iron casting «body» for different correlations of feeder, slag traps and riser, recommended for the molds obtained by vacuum-film forming is carried out. The volume evolution of filling of the casting is calculated and dependences of speed instability and its projections on period of filling in assigned points of the mold are established.

  9. Influence des catalyseurs hétérogènes sur le coprocessing d'un lignite du Berguedà avec un résidu de distillation sous vide Influence of Heterogeneous Catalysts on the Coprocessing of Berguedà Lignite with a Vacuum Residue

    Directory of Open Access Journals (Sweden)

    Moros A.


    Full Text Available Cet article étudie le co-traitement catalytique sous atmosphère d'hydrogène d'un lignite de la Catalogne (Espagne avec un résidu de distillation sous vide, en utilisant sept catalyseurs hétérogènes différents. Cinq d'entre eux sont de conception propre : quatre à base de fer avec des quantités respectives de 6, 10, 18 et 25 % en poids d'oxydes et un à base de fer-molybdène avec des quantités de 25 et 10 % respectivement. Tous ces catalyseurs sont déposés sur gamma-alumine. Les deux autres sont des catalyseurs commerciaux d'hydrotraitement à base de cobalt-molybdène et nickel-molybdène. Des essais à blanc ont été également réalisés avec de la gamma-alumine et sans catalyseur. Les résultats expérimentaux montrent que la performance des catalyseurs a été modifiée à cause de la présence d'une grande quantité de matière minérale contenue dans le charbon. Ces résultats sont confirmés par le fait que les trois valeurs maximales de conversion du charbon ont été obtenues lors de l'utilisation du catalyseur à base de fer à 25 %, avec ou sans molybdène, et sans catalyseur. Le pourcentage de fer dans les autres catalyseurs n'affecte pas de façon significative la conversion du charbon ou la production d'huile. Par ailleurs, la production d'huile augmente lors de l'utilisation des catalyseurs commerciaux d'hydrotraitement, mais la qualité des produits obtenus ne diffère pas réellement de celle obtenue avec les autres catalyseurs. Seven different heterogeneous catalysts are tested for the catalytic coprocessing of a Catalan lignite with vacuum residue under atmosphere of hydrogen. Four of these catalysts were iron-based catalysts supported on gamma-alumina with increasing loading of iron oxide. The fifth was a bimodal catalyst of iron and molybdenum. The last two catalysts were commercial hydrotreatment catalysts. Also, tests were conducted with gamma-alumina and without catalyst. The experimental results show that

  10. Distillation process using microchannel technology (United States)

    Tonkovich, Anna Lee [Dublin, OH; Simmons, Wayne W [Dublin, OH; Silva, Laura J [Dublin, OH; Qiu, Dongming [Carbondale, IL; Perry, Steven T [Galloway, OH; Yuschak, Thomas [Dublin, OH; Hickey, Thomas P [Dublin, OH; Arora, Ravi [Dublin, OH; Smith, Amanda [Galloway, OH; Litt, Robert Dwayne [Westerville, OH; Neagle, Paul [Westerville, OH


    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  11. Vacuum lubricants based on neutral oil

    Energy Technology Data Exchange (ETDEWEB)

    Artem' yeva, V.P.; Potanina, V.A.; Kucheryavaya, N.N.; Orlova, S.N.; Gorbacheva, S.G.


    Basic parameters for high-vacuum pumps such as minimal residual vapor pressure, rapid operation and vacuum collapse resistance depend on type and properties of hydraulic fluids, which include mineral oils, esters of organic alcohols and acids and organic silicon compounds. Mineral oils have been used most because of their thermal stability and low cost. This article reports studies of such oils based on domestic naphthene-paraffin hydrocarbons and medical vaseline processed from Balakhan petroleum. Neutral naphthene oil with 90% saturated hydrocarbons was found suitable for vacuum oils after purification and distillation. Its origin as a by-product of sulfonate additive production, and resultant low cost, recommend this oil for full production.

  12. Vacuum phenomenon. (United States)

    Yanagawa, Youichi; Ohsaka, Hiromichi; Jitsuiki, Kei; Yoshizawa, Toshihiko; Takeuchi, Ikuto; Omori, Kazuhiko; Oode, Yasumasa; Ishikawa, Kouhei


    This article describes the theory of the formation of the vacuum phenomenon (VP), the detection of the VP, the different medical causes, the different locations of the presentation of the VP, and the differential diagnoses. In the human body, the cavitation effect is recognized on radiological studies; it is called the VP. The mechanism responsible for the formation of the VP is as follows: if an enclosed tissue space is allowed to expand as a rebound phenomenon after an external impact, the volume within the enclosed space will increase. In the setting of expanding volume, the pressure within the space will decrease. The solubility of the gas in the enclosed space will decrease as the pressure of the space decreases. Decreased solubility allows a gas to leave a solution. Clinically, the pathologies associated with the VP have been reported to mainly include the normal joint motion, degeneration of the intervertebral discs or joints, and trauma. The frequent use of CT for trauma patients and the high spatial resolution of CT images might produce the greatest number of chances to detect the VP in trauma patients. The VP is observed at locations that experience a traumatic impact; thus, an analysis of the VP may be useful for elucidating the mechanism of an injury. When the VP is located in the abdomen, it is important to include perforation of the digestive tract in the differential diagnosis. The presence of the VP in trauma patients does not itself influence the final outcome.

  13. 27 CFR 19.316 - Distillation. (United States)


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Distillation. 19.316 Section 19.316 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production § 19.316 Distillation. The distillation...

  14. Integrated process of distillation with side reactors for synthesis of organic acid esters (United States)

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T


    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  15. Esential oils extraction: a 24-hour steam distillation systematic methodology. (United States)

    Božović, Mijat; Navarra, Alberto; Garzoli, Stefania; Pepi, Federico; Ragno, Rino


    Steam distillation is known to be the most prevalent method of essential oil extraction. Despite many studies on extraction methods, there is no report about the impact of distillation process duration on the yield and oil quality. A new 24-h steam distillation process for extraction of plant essential oils is presented. For improving the total yield, prolonged and continued isolation was used. A selection of plant species from Lamiaceae and Apiaceae families was subjected to direct steam distillation and essential oils were collected at different times (1, 2, 3, 6, 12 and 24 h). The analysis included either annual or perennial species monitored in terms of different harvesting time. From these studies, it is conclusively that there is no rule about appropriate extraction time, and different plants need different periods for the essential oils to achieve the desired quality or quantity of extract. Thus, extraction duration is directly dependent on what the study is conducted for.

  16. arXiv Analytical methods for vacuum simulations in high energy accelerators for future machines based on LHC performances

    CERN Document Server

    Aichinger, Ida; Chiggiato, Paolo

    The Future Circular Collider (FCC), currently in the design phase, will address many outstanding questions in particle physics. The technology to succeed in this 100 km circumference collider goes beyond present limits. Ultra-high vacuum conditions in the beam pipe is one essential requirement to provide a smooth operation. Different physics phenomena as photon-, ion- and electron- induced desorption and thermal outgassing of the chamber walls challenge this requirement. This paper presents an analytical model and a computer code PyVASCO that supports the design of a stable vacuum system by providing an overview of all the gas dynamics happening inside the beam pipes. A mass balance equation system describes the density distribution of the four dominating gas species $\\text{H}_2, \\text{CH}_4$, $\\text{CO}$ and $\\text{CO}_2$. An appropriate solving algorithm is discussed in detail and a validation of the model including a comparison of the output to the readings of LHC gauges is presented. This enables the eval...

  17. Multilevel distillation of magic states for quantum computing (United States)

    Jones, Cody


    We develop a procedure for distilling magic states used in universal quantum computing that requires substantially fewer initial resources than prior schemes. Our distillation circuit is based on a family of concatenated quantum codes that possess a transversal Hadamard operation, enabling each of these codes to distill the eigenstate of the Hadamard operator. A crucial result of this design is that low-fidelity magic states can be consumed to purify other high-fidelity magic states to even higher fidelity, which we call multilevel distillation. When distilling in the asymptotic regime of infidelity ɛ→0 for each input magic state, the number of input magic states consumed on average to yield an output state with infidelity O(ɛ2r) approaches 2r+1, which comes close to saturating the conjectured bound in another investigation [Bravyi and Haah, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.86.052329 86, 052329 (2012)]. We show numerically that there exist multilevel protocols such that the average number of magic states consumed to distill from error rate ɛin=0.01 to ɛout in the range 10-5-10-40 is about 14log10(1/ɛout)-40; the efficiency of multilevel distillation dominates all other reported protocols when distilling Hadamard magic states from initial infidelity 0.01 to any final infidelity below 10-7. These methods are an important advance for magic-state distillation circuits in high-performance quantum computing and provide insight into the limitations of nearly resource-optimal quantum error correction.

  18. Efficiency of fermionic quantum distillation (United States)

    Herbrych, J.; Feiguin, A. E.; Dagotto, E.; Heidrich-Meisner, F.


    We present a time-dependent density-matrix renormalization group investigation of the quantum distillation process within the Fermi-Hubbard model on a quasi-one-dimensional ladder geometry. The term distillation refers to the dynamical, spatial separation of singlons and doublons in the sudden expansion of interacting particles in an optical lattice, i.e., the release of a cloud of atoms from a trapping potential. Remarkably, quantum distillation can lead to a contraction of the doublon cloud, resulting in an increased density of the doublons in the core region compared to the initial state. As a main result, we show that this phenomenon is not limited to chains that were previously studied. Interestingly, there are additional dynamical processes on the two-leg ladder such as density oscillations and self-trapping of defects that lead to a less efficient distillation process. An investigation of the time evolution starting from product states provides an explanation for this behavior. Initial product states are also considered since in optical lattice experiments, such states are often used as the initial setup. We propose configurations that lead to a fast and efficient quantum distillation.

  19. Physico-chemical characterization of products from vacuum oil under delayed coking process by infrared spectroscopy and chemometrics methods (United States)

    Meléndez, L. V.; Cabanzo, R.; Mejía-Ospino, E.; Guzmán, A.


    Eight vacuum residues and their delayed coking liquids products from Colombian crude were study by infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and principal component analysis (PCA). For the samples the structural parameters of aromaticity factor (fa), alifaticity (A2500-3100cm-1), aromatic condensation degree (GCA), length of aliphatic chains (LCA) and aliphatic chain length associated with aromatic (LACAR) were determined through the development of a methodology, which includes the previous processing of spectroscopy data, identifying the regions in the IR spectra of greatest variance using PCA and molecules patterns. The parameters were compared with the results obtained from proton magnetic resonance (1H-NMR) and 13C-NMR. The results showed the influence and correlation of structural parameters with some physicochemical properties such as API gravity, weight percent sulphur (% S) and Conradson carbon content (% CCR)

  20. Distillation Designs for the Lunar Surface (United States)

    Boul, Peter J.; Lange,Kevin E.; Conger, Bruce; Anderson, Molly


    Gravity-based distillation methods may be applied to the purification of wastewater on the lunar base. These solutions to water processing are robust physical separation techniques, which may be more advantageous than many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams.

  1. [Endoscopic vacuum-assisted closure]. (United States)

    Wedemeyer, J; Lankisch, T


    Anastomotic leakage in the upper and lower intestinal tract is associated with high morbidity and mortality. Within the last 10 years endoscopic treatment options have been accepted as sufficient treatment option of these surgical complications. Endoscopic vacuum assisted closure (E-VAC) is a new innovative endoscopic therapeutic option in this field. E-VAC transfers the positive effects of vacuum assisted closure (VAC) on infected cutaneous wounds to infected cavities that can only be reached endoscopically. A sponge connected to a drainage tube is endoscopically placed in the leakage and a continuous vacuum is applied. Sponge and vacuum allow removal of infected fluids and promote granulation of the leakage. This results in clean wound grounds and finally allows wound closure. Meanwhile the method was also successfully used in the treatment of necrotic pancreatitis.

  2. Ocean thermocline driven membrane distillation process

    KAUST Repository

    Francis, Lijo


    Systems and methods using membrane distillation are provided for desalinating water, for example for the production of potable water, to address freshwater requirements. In an aspect the systems and methods do not require applying an external heat source, or the energy cost of the heating source, to heat the feed stream to the membrane. In an aspect, the sensible heat present in surface seawater is used for the heat energy for the warm stream fed to the membrane, and deep seawater is used as the cold/coolant feed to the membrane to provide the needed temperature gradient or differential across the membrane.

  3. Development on the cryogenic hydrogen isotopes distillation process technology for tritium removal (Final report)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ki Woung; Kim, Yong Ik; Na, Jeong Won; Ku, Jae Hyu; Kim, Kwang Rak; Jeong, Yong Won; Lee, Han Soo; Cho, Young Hyun; Ahn, Do Hee; Baek, Seung Woo; Kang, Hee Seok; Kim, You Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    While tritium exposure to the site-workers in Wolsung NPP is up to about 40% of the total personnel exposure, Ministry of Science and Technology has asked tritium removal facility for requirement of post heavy-water reactor construction. For the purpose of essential removal of tritium from the Wolsung heavy-water reactor system, a preliminary study on the cryogenic Ar-N{sub 2} and H{sub 2}-D{sub 2} distillation process for development of liquid-phase catalytic exchange cryogenic hydrogen distillation process technology. The Ar-N{sub 2} distillation column showed good performance with approximately 97% of final Ar concentration, and a computer simulation code was modified using these data. A simulation code developed for cryogenic hydrogen isotopes (H{sub 2}, HD, D{sub 2}, HT, DT, T{sub 2}) distillation column showed good performance after comparison with the result of a JAERI code, and a H{sub 2}-D{sub 2} distillation column was made. Gas chromatography for hydrogen isotopes analysis was established using a vacuum sampling loop, and a schematic diagram of H{sub 2}-D{sub 2} distillation process was suggested. A feasibility on modification of H{sub 2}-D{sub 2} distillation process control system using Laser Raman Spectroscopy was studied, and the consideration points for tritium storage system for Wolsung tritium removal facility was suggested. 31 tabs., 79 figs., 68 refs. (Author).

  4. Study of distillation and degradation of perfluoro polyether; Estudo da destilacao e degradacao do perfluoropolieter

    Energy Technology Data Exchange (ETDEWEB)

    Lopergolo, Lilian Cristine


    Perfluoro-polyethers, PFPE, were first synthesised by Sianesi and collaborators giving rise to a new lubricant oils and greases classes with several applications. Perfluoro polyethers have excellent properties, for instance: high chemical stability and thermal stability, high density, high radiation resistance and excellent lubricating properties. FOMBLIN-Y oil is one of the perfluoro polyethers used as a lubricant in vacuum systems applied in the UF{sub 6} enrichment installations. Due to its excellent properties and for its applications in the nuclear field, IPEN-CNEN/S P had the interest to dominate its production technology with the aim to substitute the commercial FOMBLIN-Y oil used in the national consumption. The FOMBLIN-Y oil synthesis method, adopted in IPEN-CNEN/S P, made by the photooxidation of the hexa fluoro propylene. In this work we study the fraction separation of the national available production with restricted an increased molecular weights which was obtained by fraction distillation in a vacuum according to the ASTM D-1160 norm. We also study the catalytic effect of metals on the thermal stability of perfluoro polyethers. The inertness of perfluoro polyethers at temperatures higher than 300 deg C is strongly affected by presence of some metals. Al and Ti alloys cause fluid degradation at 250 deg C. This degradation is very important because it has a yield increase of the perfluoro polyethers production. (author)

  5. Extractive distillation of hydrocarbon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, F.M.; Brown, R.E.; Johnson, M.M.


    This patent describes a process for separating at least one aromatic hydrocarbon containing 6-12 carbon atoms per molecule from at least one close-boiling alkane by extractive distillation of a feed consisting essentially of the at least one aromatic hydrocarbon and the at least one alkane in the presence of a solvent consisting essentially of N-methyl-2-thiopyrrolidone, optionally in combination with at least one cosolvent selected from the group consisting of glycol compounds, sulfolane compounds and N-({beta}-mercaptoalkyl)-2-pyrrolidone compounds; wherein the extractive distillation process produces an overhead distillate product which contains a smaller volume percentage of the at least one alkane than the feed, and a bottoms product which contains the solvent and a larger volume percentage of the at least one aromatic hydrocarbon and a smaller volume percentage of the at least one alkane than the feed; and wherein the at least one aromatic hydrocarbon is separated from the solvent and recovered from the bottoms product. This patent also describes a process for separating at least one cycloalkane containing 5-10 carbon atoms per molecule from at least one close-boiling alkane by extracting distillation of a feed consisting essentially of the at least one cycloalkane and the at least one alkane in the presence of a solvent consisting essentially of N-methyl-2-thiopyrrolidone, optionally in combination with at least one cosolvent selected from the group consisting of glycol compounds, sulfone compounds and N-({beta}-mercaptoalkyl)-2-pyrrolidone compounds.

  6. Characterisation of the spoilage microbiota in raw salmon (Salmo salar) steaks stored under vacuum or modified atmosphere packaging combining conventional methods and PCR-TTGE. (United States)

    Macé, Sabrina; Cornet, Josiane; Chevalier, Frédérique; Cardinal, Mireille; Pilet, Marie-France; Dousset, Xavier; Joffraud, Jean-Jacques


    In order to characterise the spoilage related to microbiota of raw salmon, a combination of culture-dependent and -independent methods, including PCR-TTGE, was used to analyse 3 raw salmon batches stored for 3 days at chilled temperature in modified atmosphere packaging (MAP) (50% CO₂/50% N₂) or under vacuum. Sensory evaluation, microbiological enumeration and chemical analysis were performed after 3, 7 and 10 days of storage. At the onset of spoilage, 65 bacterial isolates were picked from the plates. Thus, 13 different genera or species were identified by phenotypic and molecular tests: Serratia spp., Photobacterium phosphoreum, Yersinia intermedia, Hafnia alvei, Buttiauxella gaviniae, Pseudomonas sp., Carnobacterium maltaromaticum, Carnobacterium divergens, Lactococcus piscium, Lactobacillus fuchuensis, Vagococcus carniphilus, Leuconostoc gasicomitatum and Brochothrix thermosphacta. The PCR-TTGE profiles and band identification enabled a shift of the dominant populations during the storage to be visualised for all the batches, probably due to the temperature change and the packaging. At the beginning of storage, Pseudomonas sp. dominated the raw salmon microbiota while in the following days (7 and 10), P. phosphoreum and L. piscium were identified as the main bacterial groups. This study enhances the knowledge of MAP and vacuum-packed raw salmon spoilage microbiota. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. 21 CFR 184.1848 - Starter distillate. (United States)


    ... distillate) is a steam distillate of the culture of any or all of the following species of bacteria grown on... formate, ethyl acetate, acetone, ethyl alcohol, 2-butanone, acetic acid, and acetoin. (b) The ingredient...

  8. Cyclic distillation technology - A mini-review

    NARCIS (Netherlands)

    Bîldea, Costin Sorin; Pătruţ, Cătălin; Jørgensen, Sten Bay; Abildskov, Jens; Kiss, Anton A.


    Process intensification in distillation systems has received much attention during past decades, with the aim of increasing both energy and separation efficiency. Various techniques, such as internal heat-integrated distillation, membrane distillation, rotating packed bed, dividing-wall columns and

  9. Dynamic Effects of Diabatization in Distillation Columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens


    The dynamic eects of diabatization in distillation columns are investigated in simulation with primary focus on the heat-integrated distillation column (HIDiC). A generic, dynamic, rst-principle model has been formulated, which is exible to describe various diabatic distillation congurations. Dyn...

  10. Energy consumption maps for quaternary distillation sequences

    DEFF Research Database (Denmark)

    Gomez-Castro, F.I.; Ramírez-Vallejo, N.E.; Segovia-Hernandez, J.G.


    Thermally coupled distillation columns represent a very interesting option for the intensification of distillation systems in order to reduce the energy consumption, and, as a consequence, the environmental impact of the separation process. Several thermally coupled distillation schemes can be ge...

  11. The investigation of special information distilling method of land use in karst area based on CBERS-02B and analysis on application: a case study of Duyun, Guizhou (United States)

    Hu, Juan; Luo, Miao; An, Yulun


    This paper explores the optimal methods for processing CBERS-02B images and using them to classify the land uses of karst mountain areas with 3S technologies, especially the RS digital image processing technology. Through multiple experiments and analysis, the difficulty of CBERS-02B images in distinguishing water from mountain shades, construction land from dry land and paddy field are satisfactorily removed. And the combination of band 421, based on OIF method, is proved optimal for classifying the land uses of karst areas. After comparing and evaluating the effect of HIS, PCA and HPC based image fusion methods, the HIS transformation based image fusion method is found best for CBERS-02B HR and CCD data fusion in the case of karst highland mountains. Based on the experiments, this paper proves that CBERS images are capable of large scale land use classification for karst areas, a competent substitute of TM images for karst mountain area land use survey.

  12. Driving Force Based Design of Cyclic Distillation

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Fjordbak; Huusom, Jakob Kjøbsted; Abildskov, Jens


    Driving force based design is adopted from conventional continuous distillation to cyclic distillation. This leads to a definition of the operating line representation for the cyclic distillation process. A possible realization of the driving force design is presented, which implies operation...... with mixed phase feeds. A range of binary test cases, benzene toluene, methanol water, and ethanol water, are evaluated. The advantage of the design approach in cyclic distillation is shown to be analogous to the advantages obtained in conventional continuous distillation, including a minimal utility...

  13. 136Xe enrichment through cryogenic distillation (United States)

    Back, H. O.; Bottenus, D. R.; Clayton, C.; Stephenson, D.; TeGrotenhuis, W.


    The next generation of 136Xe neutrinoless double beta decay experiments will require on the order of 5 tons of enriched 136Xe. By estimating the relative volatilities of the xenon isotopes and using standard chemical engineering techniques we explore the feasibility of using cryogenic distillation to produce 5 tons of 80% enriched 136Xe in 5-6 years. With current state-of-the-art distillation column packing materials we can estimate the total height of a traditional cryogenic distillation column. We also report on how Micro Channel Distillation may reduce the overall size of a distillation system for 136Xe production.

  14. Vacuum technology in the chemical industry

    CERN Document Server

    Jorisch, Wolfgang


    Based on the very successful German edition and a seminar held by the German Engineers` Association (VDI) on a regular basis for years now, this English edition has been thoroughly updated and revised to reflect the latest developments. It supplies in particular the special aspects of vacuum technology, applied vacuum pump types and vacuum engineering in the chemical, pharmaceutical and process industry application-segments. The text includes chapters dedicated to latest European regulations for operating in hazardous zones with vacuum systems, methods for process pressure control and regulati

  15. A straightforward method for Vacuum-Ultraviolet flux measurements: The case of the hydrogen discharge lamp and implications for solid-phase actinometry

    Energy Technology Data Exchange (ETDEWEB)

    Fulvio, D., E-mail:, E-mail:; Brieva, A. C.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Cuylle, S. H.; Linnartz, H. [Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, P.O. box 9513, 2300 RA Leiden (Netherlands); Henning, T. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)


    Vacuum-Ultraviolet (VUV) radiation is responsible for the photo-processing of simple and complex molecules in several terrestrial and extraterrestrial environments. In the laboratory such radiation is commonly simulated by inexpensive and easy-to-use microwave-powered hydrogen discharge lamps. However, VUV flux measurements are not trivial and the methods/devices typically used for this purpose, mainly actinometry and calibrated VUV silicon photodiodes, are not very accurate or expensive and lack of general suitability to experimental setups. Here, we present a straightforward method for measuring the VUV photon flux based on the photoelectric effect and using a gold photodetector. This method is easily applicable to most experimental setups, bypasses the major problems of the other methods, and provides reliable flux measurements. As a case study, the method is applied to a microwave-powered hydrogen discharge lamp. In addition, the comparison of these flux measurements to those obtained by O{sub 2} actinometry experiments allow us to estimate the quantum yield (QY) values QY{sub 122} = 0.44 ± 0.16 and QY{sub 160} = 0.87 ± 0.30 for solid-phase O{sub 2} actinometry.

  16. Production and composition of cider spirits distilled in "alquitara". (United States)

    Madrera, Roberto Rodríguez; Valles, Belén Suarez; Hevia, Ana García; Fernandez, Ovidio García; Tascón, Norman Fernandez; Alonso, Juan José Mangas


    The capacity of alquitara (a traditional distillation system) to produce cider brandies is evaluated. To do so, the chemical composition of 12 fractions obtained during the distillation process and the cider brandies obtained from five ciders were analyzed (alcohol strength, methanol, volatile substances, furfural, and metals), taking into account European and Spanish legislation. During the course of distillation, an important increase in methanol, furfural, 2-phenylethanol, and metals in the last fractions was observed, while fusel oils were more abundant in the first fractions collected. Only acetaldehyde behaved differently, showing a minimum concentration in the middle fractions that might be explained by its formation on the surface of alquitara. On the other hand, the final distillates obtained by means of this method complied with the considered regulations. Worth highlighting in this regard are the low levels of a potential toxin such as methanol, as well as the detection of a constant ratio for methanol, ethanol, and fusel oil for the pairs of cider/spirits analyzed, which could be interpreted as an indication of good uniformity in the distillation system and method, thus guaranteeing product quality.

  17. Exploring the interaction between flows and composition in reactive distillation

    DEFF Research Database (Denmark)

    Estrada-Villagrana, A.D.; Bogle, I. David L.; Cisneros, Eduardo Salvador P.


    In this paper a new equilibrium approach is used to simulate the closed loop behaviour of the MTBE production process to study the interactions between flows and composition. This will facilitate the application of the existing methods for analysis of distillation systems. Results show that the o......In this paper a new equilibrium approach is used to simulate the closed loop behaviour of the MTBE production process to study the interactions between flows and composition. This will facilitate the application of the existing methods for analysis of distillation systems. Results show...

  18. Influence of distillation on performance, emission, and combustion of a DI diesel engine, using tyre pyrolysis oil diesel blends

    Directory of Open Access Journals (Sweden)

    Murugan Sivalingam


    Full Text Available Conversion of waste to energy is one of the recent trends in minimizing not only the waste disposal but also could be used as an alternate fuel for internal combustion engines. Fuels like wood pyrolysis oil, rubber pyrolysis oil are also derived through waste to energy conversion method. Early investigations report that tyre pyrolysis oil derived from vacuum pyrolysis method seemed to possess properties similar to diesel fuel. In the present work, the crude tyre pyrolisis oil was desulphurised and distilled to improve the properties and studied the use of it. Experimental studies were conducted on a single cylinder four-stroke air cooled engine fuelled with two different blends, 30% tyre pyrolysis oil and 70% diesel fuel (TPO 30 and 30% distilled tyre pyrolysis oil and 70% diesel fuel (DTPO 30. The results of the performance, emission and combustion characteristics of the engine indicated that NOx is reduced by about 8% compared to tire pyrolysis oil and by about 10% compared to diesel fuel. Hydrocarbon emission is reduced by about 2% compared to TPO 30 operation. Smoke increased for DTPO 30 compared to TPO 30 and diesel fuel.

  19. Nanoscale Vacuum Channel Transistor. (United States)

    Han, Jin-Woo; Moon, Dong-Il; Meyyappan, M


    Vacuum tubes that sparked the electronics era had given way to semiconductor transistors. Despite their faster operation and better immunity to noise and radiation compared to the transistors, the vacuum device technology became extinct due to the high power consumption, integration difficulties, and short lifetime of the vacuum tubes. We combine the best of vacuum tubes and modern silicon nanofabrication technology here. The surround gate nanoscale vacuum channel transistor consists of sharp source and drain electrodes separated by sub-50 nm vacuum channel with a source to gate distance of 10 nm. This transistor performs at a low voltage (3 microamperes). The nanoscale vacuum channel transistor can be a possible alternative to semiconductor transistors beyond Moore's law.

  20. A principal component analysis of transmission spectra of wine distillates (United States)

    Rogovaya, M. V.; Sinitsyn, G. V.; Khodasevich, M. A.


    A chemometric method of decomposing multidimensional data into a small-sized space, the principal component method, has been applied to the transmission spectra of vintage Moldovan wine distillates. A sample of 42 distillates aged from four to 7 years from six producers has been used to show the possibility of identifying a producer in a two-dimensional space of principal components describing 94.5% of the data-matrix dispersion. Analysis of the loads into the first two principal components has shown that, in order to measure the optical characteristics of the samples under study using only two wavelengths, it is necessary to select 380 and 540 nm, instead of the standard 420 and 520 nm, to describe the variability of the distillates by one principal component or 370 and 520 nm to describe the variability by two principal components.

  1. Influence of Different Isolation Methods on Chemical Composition and Bioactivities of the Fruit Peel Oil of Citrus medica L. var. sarcodactylis (Noot. Swingle

    Directory of Open Access Journals (Sweden)

    Gang Deng


    Full Text Available Background: The chemical composition and bioactivities of essential oils (EOs of fingered citron (Citrus medica L. var. sarcodactylis (Noot. Swingle are considerably sensitive and lapsible during high-temperature processing of traditional separating techniques. In the present research, vacuum distillation and ultrafiltration were utilized in order to process the concentrated juice from fingered citron, obtaining a high-quality essential oil. Methods: In order to compare the essential oils obtained by conventional means, the chemical compositions of the essential oils were analyzed using GC-MS, before antimicrobial and antioxidant screening assays were carried out. Results: Oil which had been subjected to vacuum distillation was shown to maintain most of the distinctiveness of the fingered citron, due to its high content of characteristic flavor components and low content of cyclic oxygenated monoterpenoids. Interestingly, the oil obtained by ultrafiltration showed notable in vitro antimicrobial activity. The DPPH· radical-scavenging assay method revealed that the antioxidant abilities were as follows, presented in descending order: vacuum distillation oil > hydrodistillation oil > ultrafiltration oil. Conclusions: The essential oil obtained by vacuum distillation could be combined with the juice produced from fingered citron to create one of the most promising techniques in the fine-processing of citron fruits.

  2. Influence of Different Isolation Methods on Chemical Composition and Bioactivities of the Fruit Peel Oil of Citrus medica L. var. sarcodactylis (Noot.) Swingle (United States)

    Deng, Gang; Craft, Jonathan D.; Steinberg, Kelly Marie; Li, Pei Lei; Pokharel, Suraj Kumar; Setzer, William N.


    Background: The chemical composition and bioactivities of essential oils (EOs) of fingered citron (Citrus medica L. var. sarcodactylis (Noot.) Swingle) are considerably sensitive and lapsible during high-temperature processing of traditional separating techniques. In the present research, vacuum distillation and ultrafiltration were utilized in order to process the concentrated juice from fingered citron, obtaining a high-quality essential oil. Methods: In order to compare the essential oils obtained by conventional means, the chemical compositions of the essential oils were analyzed using GC-MS, before antimicrobial and antioxidant screening assays were carried out. Results: Oil which had been subjected to vacuum distillation was shown to maintain most of the distinctiveness of the fingered citron, due to its high content of characteristic flavor components and low content of cyclic oxygenated monoterpenoids. Interestingly, the oil obtained by ultrafiltration showed notable in vitro antimicrobial activity. The DPPH· radical-scavenging assay method revealed that the antioxidant abilities were as follows, presented in descending order: vacuum distillation oil > hydrodistillation oil > ultrafiltration oil. Conclusions: The essential oil obtained by vacuum distillation could be combined with the juice produced from fingered citron to create one of the most promising techniques in the fine-processing of citron fruits. PMID:28930217

  3. Construction and commissioning of a hydrogen cryogenic distillation system for tritium recovery at ICIT Rm. Valcea

    Energy Technology Data Exchange (ETDEWEB)

    Ana, George, E-mail: [Institute for Cryogenic and Isotopic Technologies, Rm. Valcea (Romania); Cristescu, Ion [Karlsruhe Istitute for Technologies, Tritium Laboratory, Eggenstein-Leopoldshaffen (Germany); Draghia, Mirela [ISTECH, Timisoara (Romania); Bucur, Ciprian; Balteanu, Ovidiu; Vijulie, Mihai; Popescu, Gheorghe; Costeanu, Claudiu; Sofilca, Nicolae; Stefan, Iulia; Daramus, Robert; Niculescu, Alina; Oubraham, Anisoara; Spiridon, Ionut; Vasut, Felicia; Moraru, Carmen; Brad, Sebastian [Institute for Cryogenic and Isotopic Technologies, Rm. Valcea (Romania); Pasca, Gheorghe [ISTECH, Timisoara (Romania)


    Highlights: • Cryogenic distillation (CD) process is being employed for tritium separation from tritiated hydrogen mixtures. • Process control and safety phylosophy with the detritiation plant from Rm. Vâlcea. • Tests undertaken prior to commissioning of the CD system from Rm. Vâlcea. • Preliminary experiments with the CD system (non-radiological). - Abstract: Cryogenic distillation (CD) of hydrogen in combination with Liquid Phase Catalytic Exchange (LPCE) or Combined Electrolytic Catalytic Exchange (CECE) process is used for tritium removal/recovery from tritiated water. Tritiated water is being obtained after long time operation of CANDU reactors, or in case of ITER mainly by the Detritiation System (DS). The cryogenic distillation system (CDS) used to remove/recover tritium from a hydrogen stream consists of a cascade of cryogenic distillation columns and a refrigeration unit which provides the cooling capacity for the condensers of CD columns. The columns, together with the condensers and the process heat-exchangers are accommodated in a vacuumed cold box. In the particularly case of the ICIT Plant, the cryogenic distillation cascade consists of four columns with diameters between 100–7 mm and it has been designed to process up to 10 mc/h of tritiated deuterium. This paper will present the steps undertaken for construction and commissioning of a pilot plant for tritium removal/recovery by cryogenic distillation of hydrogen. The paper will show besides preliminary data obtained during commissioning, also general characteristics of the plant and its equipments.

  4. Biodiesel of distilled hydrogenated fat and biodiesel of distilled residual oil: fuel consumption in agricultural tractor

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Felipe Thomaz da; Lopes, Afonso; Silva, Rouverson Pereira da; Oliveira, Melina Cais Jejcic; Furlani, Carlos Eduardo Angeli [Universidade Estadual Paulista (UNESP), Jaboticabal, SP (Brazil); Dabdoub, Miguel Joaquim [Universidade de Sao Paulo (USP), Ribeirao Preto (Brazil)


    Great part of the world-wide oil production is used in fry process; however, after using, such product becomes an undesirable residue, and the usual methods of discarding of these residues, generally contaminate the environment, mainly the rivers. In function of this, using oil and residual fat for manufacturing biodiesel, besides preventing ambient contamination, turning up an undesirable residue in to fuel. The present work had as objective to evaluate the fuel consumption of a Valtra BM100 4x2 TDA tractor functioning with methylic biodiesel from distilled hydrogenated fat and methylic biodiesel from distilled residual oil, in seven blends into diesel. The work was conducted at the Department of Agricultural Engineering, at UNESP - Jaboticabal, in an entirely randomized block statistical design, factorial array of 2 x 7, with three repetitions. The factors combinations were two types of methylic distilled biodiesel (residual oil and hydrogenated fat) and seven blends (B{sub 0}, B{sub 5}, B{sub 1}5, B{sub 2}5, B{sub 5}0, B{sub 7}5 and B{sub 1}00). The results had evidenced that additioning 15% of biodiesel into diesel, the specific consumption was similar, and biodiesel of residual oil provided less consumption than biodiesel from hydrogenated fat. (author)

  5. Indian Vacuum Society: The Indian Vacuum Society (United States)

    Saha, T. K.


    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  6. Of vacuum and gas

    CERN Multimedia

    Katarina Anthony


    A new LHCb programme is delving into uncharted waters for the LHC: exploring how protons interact with noble gases inside the machine pipe. While, at first glance, it may sound risky for the overall quality of the vacuum in the machine, the procedure is safe and potentially very rich in rewards. The results could uncover the high-energy helium-proton cross-section (with all the implications thereof), explore new boundaries of the quark-gluon plasma and much more.   As the beam passes through LHCb, interactions with neon gas allow the experiment to measure the full beam profile. In this diagram, beam 1 (blue) and beam 2 (red) are measured by the surrounding VELO detector. It all begins with luminosity. In 2011, LHCb set out to further improve its notoriously precise measurements of the beam profile, using the so-called Beam-Gas Imaging (BGI) method. BGI does exactly what it says on the tin: a small amount of gas is inserted into the vacuum, increasing the rate of collisions around the interaction ...

  7. Microscale Digital Vacuum Electronic Gates (United States)

    Manohara, Harish (Inventor); Mojarradi, Mohammed M. (Inventor)


    Systems and methods in accordance with embodiments of the invention implement microscale digital vacuum electronic gates. In one embodiment, a microscale digital vacuum electronic gate includes: a microscale field emitter that can emit electrons and that is a microscale cathode; and a microscale anode; where the microscale field emitter and the microscale anode are disposed within at least a partial vacuum; where the microscale field emitter and the microscale anode are separated by a gap; and where the potential difference between the microscale field emitter and the microscale anode is controllable such that the flow of electrons between the microscale field emitter and the microscale anode is thereby controllable; where when the microscale anode receives a flow of electrons, a first logic state is defined; and where when the microscale anode does not receive a flow of electrons, a second logic state is defined.

  8. Brine Distribution after Vacuum Saturation

    DEFF Research Database (Denmark)

    Hedegaard, Kathrine; Andersen, Bertel Lohmann


    Experiments with the vacuum saturation method for brine in plugs of chalk showed that a homogeneous distribution of brine cannot be ensured at saturations below 20% volume. Instead of a homogeneous volume distribution the brine becomes concentrated close to the surfaces of the plugs...

  9. Comparison of vacuum metal deposition and 1,2-indandione/ninhydrin reagent method for the development of fingerprints on renminbi

    Directory of Open Access Journals (Sweden)

    Cong Wang


    Full Text Available It is extremely difficult to develop fingerprints from the surface of currency. There are studies reporting that the high vacuum metal deposition (VMD method can be used to detect fingerprints on certain types of currency notes. Both VMD and 1,2-indandione/ninhydrin techniques are employed to visualize latent fingermarks on porous surfaces, such as paper. The current study explores whether the VMD method or 1,2-indandione/ninhydrin reagent method is more effective in the development of fingerprints on renminbi (RMB. Uncirculated, circulated, and water-exposed RMB was utilized in this study, along with five donors who ranged in their age and potential to leave fingermarks. Samples were aged for a determined period (for uncirculated and circulated RMB, times were 1, 3, 5, 10, and 35 days; for water-exposed RMB, exposure time was 1 day and then treated with VMD and 1,2-indandione/ninhydrin. The results suggested that the 1,2-indandione/ninhydrin reagent yielded a better effect for both circulated and uncirculated RMB. For the RMB exposed to water, VMD performed better and gave limited results in terms of fingerprint development, which could serve as a reference for actual forensic cases.

  10. Control of distributed heat transfer mechanisms in membrane distillation plants

    KAUST Repository

    Laleg-Kirati, Taous-Meriem


    Various examples are provided that are related to boundary control in membrane distillation (MD) processes. In one example, a system includes a membrane distillation (MD) process comprising a feed side and a permeate side separated by a membrane boundary layer; and processing circuitry configured to control a water production rate of the MD process based at least in part upon a distributed heat transfer across the membrane boundary layer. In another example, a method includes determining a plurality of estimated temperature states of a membrane boundary layer separating a feed side and a permeate side of a membrane distillation (MD) process; and adjusting inlet flow rate or inlet temperature of at least one of the feed side or the permeate side to maintain a difference temperature along the membrane boundary layer about a defined reference temperature based at least in part upon the plurality of estimated temperature states.

  11. Abdominal intrauterine vacuum aspiration. (United States)

    Tjalma, W A A


    Evaluating and "cleaning" of the uterine cavity is probably the most performed operation in women. It is done for several reasons: abortion, evaluation of irregular bleeding in premenopausal period, and postmenopausal bleeding. Abortion is undoubtedly the number one procedure with more than 44 million pregnancies terminated every year. This procedure should not be underestimated and a careful preoperative evaluation is needed. Ideally a sensitive pregnancy test should be done together with an ultrasound in order to confirm a uterine pregnancy, excluding extra-uterine pregnancy, and to detect genital and/or uterine malformations. Three out of four abortions are performed by surgical methods. Surgical methods include a sharp, blunt, and suction curettage. Suction curettage or vacuum aspiration is the preferred method. Despite the fact that it is a relative safe procedure with major complications in less than one percent of cases, it is still responsible for 13% of all maternal deaths. All the figures have not declined in the last decade. Trauma, perforation, and bleeding are a danger triage. When there is a perforation, a laparoscopy should be performed immediately, in order to detect intra-abdominal lacerations and bleeding. The bleeding should be stopped as soon as possible in order to not destabilize the patient. When there is a perforation in the uterus, this "entrance" can be used to perform the curettage. This is particularly useful if there is trauma of the isthmus and uterine wall, and it is difficult to identify the uterine canal. A curettage is a frequent performed procedure, which should not be underestimated. If there is a perforation in the uterus, then this opening can safely be used for vacuum aspiration.

  12. Evaluation of air gap membrane distillation process running under sub-atmospheric conditions: Experimental and simulation studies

    KAUST Repository

    Alsaadi, Ahmad S.


    The importance of removing non-condensable gases from air gap membrane distillation (AGMD) modules in improving the water vapor flux is presented in this paper. Additionally, a previously developed AGMD mathematical model is used to predict to the degree of flux enhancement under sub-atmospheric pressure conditions. Since the mathematical model prediction is expected to be very sensitive to membrane distillation (MD) membrane resistance when the mass diffusion resistance is eliminated, the permeability of the membrane was carefully measured with two different methods (gas permeance test and vacuum MD permeability test). The mathematical model prediction was found to highly agree with the experimental data, which showed that the removal of non-condensable gases increased the flux by more than three-fold when the gap pressure was maintained at the saturation pressure of the feed temperature. The importance of staging the sub-atmospheric AGMD process and how this could give better control over the gap pressure as the feed temperature decreases are also highlighted in this paper. The effect of staging on the sub-atmospheric AGMD flux and its relation to membrane capital cost are briefly discussed.

  13. Reactive Distillation and Air Stripping Processes for Water Recycling and Trace Contaminant Control (United States)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly


    Reactive distillation designs are considered to reduce the presence of volatile organic compounds in the purified water. Reactive distillation integrates a reactor with a distillation column. A review of the literature in this field has revealed a variety of functional reactive columns in industry. Wastewater may be purified by a combination of a reactor and a distiller (e.g., the EWRS or VPCAR concepts) or, in principle, through a design which integrates the reactor with the distiller. A review of the literature in reactive distillation has identified some different designs in such combinations of reactor and distiller. An evaluation of reactive distillation and reactive air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  14. Distillation and Air Stripping Designs for the Lunar Surface (United States)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly


    Air stripping and distillation are two different gravity-based methods, which may be applied to the purification of wastewater on the lunar base. These gravity-based solutions to water processing are robust physical separation techniques, which may be advantageous to many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation models and air stripping models. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for the for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Distillation processes are modeled separately and in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams. Components of the wastewater streams are ranked by Henry s Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support

  15. The vacuum disconnector

    Energy Technology Data Exchange (ETDEWEB)

    Schellekens, H.


    After showing the extended experience of Holec with vacuum disconnectors, the difficulties encountered in developing the type SVS vacuum bottle are indicated. The implications of demands imposed on price and dimensions are translated into design features. The function and the design of the getter is explained to show how Holec guarantees a 20 year approved vacuum in the bottle. Finally, the results of switching tests are mentioned to explain the reliability and capability of the new disconnector. 12 figs.

  16. Technological and energetic improvement of a propylene distillation column

    Directory of Open Access Journals (Sweden)

    Ostrovski Nikolaj


    Full Text Available A multicomponent distillation column for propylene purification was optimized in order to increase its energetic effectively. The ©-method coupled with the Soave-Redlich-Kwong equation of state for generating K-values and enthalpies was used. The optimal combination of pressure, temperature and reflux flow provided the decrease of steam consumption and loss of propylene with bottom flow.

  17. Studies on optimal design and operation of integrated distillation arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, Atle Christer


    During the last decades, there has been growing concern in the chemical engineering environment over the task of developing more cost- and energy efficient process equipment. This thesis discusses measures for improving the end-use energy efficiency of separation systems. It emphasises a certain class of integrated distillation arrangements, in particular it considers means for direct coupling of distillation columns so as to use the underlying physics to facilitate more energy efficient separations. The numerical methods discussed are well suited to solve models of distillation columns. A tear and grid method is proposed that to some extent exploits the sparsity, since the number of tear variables required for solving a distillation model usually is rather small. The parameter continuation method described is well suited for ill-conditioned problems. The analysis of integrated columns is extended beyond the scope of numerical simulations by means of analytical results that applies in certain limiting cases. The consept of preferred separation, which is important for prefractionator arrangements, is considered. From this analysis is derived information that is important for the practical operation of such columns. Finally, the proposed numerical methods are used to optimize Petlyuk arrangements for separating ternary and quaternary mixtures. 166 refs., 130 figs., 20 tabs.

  18. Evaluation of chemical composition of defect wine distillates


    Mihaljević Žulj, Marin; Posavec, Barbara; Škvorc, Melanija; Tupajić, Pavica


    The aim of this study was to evaluate the chemical composition of the distillate obtained from wine with off-flavour. The chemical composition of wine distillates obtained by distillation of Chardonnay wine with oxidation off-flavour was investigated. Distillation of wine was carried out using a simple distillation pot still by double distillation and separation the different portion of the first fraction. Volatile compounds of wine and wine distillates (acetaldehyde, ethyl acetate, methanol ...

  19. Dynamic effects of diabatization in distillation columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens


    The dynamic effects of diabatization in distillation columns are investigated in simulation emphasizing the heat-integrated distillation column (HIDiC). A generic, dynamic, first-principle model has been formulated, which is flexible enough to describe various diabatic distillation configurations....... Dynamic Relative Gain Array and Singular Value Analysis have been applied in a comparative study of a conventional distillation column and a HIDiC. The study showed increased input-output coupling due to diabatization. Feasible SISO control structures for the HIDiC were also found and control...

  20. Efficient entanglement distillation without quantum memory

    National Research Council Canada - National Science Library

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman


    ...) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps...

  1. Hybrid wind-power-distillation plant

    Directory of Open Access Journals (Sweden)

    Ninić Neven


    Full Text Available This paper reports and elaborates on the idea of a solar distiller and an offshore wind power plant operating together. The subject under discussion is a single-stage solar distillation plant with vaporization, using adiabatic expansion in the gravitational field inside a wind power plant supporting column. This scheme divides investment costs for electric power and distillate production. In the region of the Adriatic Sea, all electric power produced could be “converted” to hydrogen using less than 10% of the distillate produced.


    African Journals Online (AJOL)

    The coconut palm (cocos nucifera) which is currently grown in nearly 90 countries that spread along the tropical belt is a versatile plant. In Kenya the most important palm tree is the coconut palm. Other palms found in Kenya include the borassus palm (Borassus aethiopum), the doum palm (Hyphae coriacea) and the wild ...

  3. Mechanics and Physics of Precise Vacuum Mechanisms

    CERN Document Server

    Deulin, E. A; Panfilov, Yu V; Nevshupa, R. A


    In this book the Russian expertise in the field of the design of precise vacuum mechanics is summarized. A wide range of physical applications of mechanism design in electronic, optical-electronic, chemical, and aerospace industries is presented in a comprehensible way. Topics treated include the method of microparticles flow regulation and its determination in vacuum equipment and mechanisms of electronics; precise mechanisms of nanoscale precision based on magnetic and electric rheology; precise harmonic rotary and not-coaxial nut-screw linear motion vacuum feedthroughs with technical parameters considered the best in the world; elastically deformed vacuum motion feedthroughs without friction couples usage; the computer system of vacuum mechanisms failure predicting. This English edition incorporates a number of features which should improve its usefulness as a textbook without changing the basic organization or the general philosophy of presentation of the subject matter of the original Russian work. Exper...

  4. Effect of MAP, vacuum skin-pack and combined packaging methods on physicochemical properties of beef steaks stored up to 12days. (United States)

    Łopacka, Joanna; Półtorak, Andrzej; Wierzbicka, Agnieszka


    The physicochemical properties of M. longissimus lumborum steaks over 12days of storage at 2°C, and under three packaging conditions, were investigated: vacuum skin packaging (VSP); modified atmosphere packaging (MAP), and their combination with semi-permeable inner VSP film (VSP-MAP). Standard gas composition (80% O2/20% CO2) was used for MAP and VSP-MAP packaging. CIE L*a*b* color parameters of VSP-MAP samples were similar to those kept in MAP and significantly higher to those stored in VSP. Myoglobin oxidation was more evident in VSP-MAP and MAP samples than in VSP indicating increased oxidation processes. However, storage in MAP resulted in greater lipid oxidation compared both to VSP and VSP-MAP. No differences between treatments were observed in terms of Warner-Bratzler shear force values and drip loss. In general, these results suggest that the combination of VSP and MAP methods may be an efficient way to reduce negative quality changes typical for both systems used separately. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Potential method for gas production: high temperature co-pyrolysis of lignite and sewage sludge with vacuum reactor and long contact time. (United States)

    Yang, Xiao; Yuan, Chengyong; Xu, Jiao; Zhang, Weijiang


    Lignite and sewage sludge were co-pyrolyzed in a vacuum reactor with high temperature (900°C) and long contact time (more than 2h). Beneficial synergetic effect on gas yield was clearly observed. Gas yield of blend fuel was evidently higher than that of both parent fuels. The gas volume yield, gas lower heating value (LHV), fixed carbon conversion and H2/CO ratio were 1.42 Nm(3)/kg(blend fuel), 10.57 MJ/Nm(3), 96.64% and 0.88% respectively, which indicated this new method a feasible one for gas production. It was possible that sewage sludge acted as gasification agents (CO2 and H2O) and catalyst (alkali and alkaline earth metals) provider during co-pyrolysis, promoting CO2-char and H2O-char gasification which, as a result, invited the improvement of gas volume yield, gas lower heating value and fixed carbon conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. 40 CFR 721.4500 - Isopropylamine distillation residues and ethylamine distillation residues. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Isopropylamine distillation residues and ethylamine distillation residues. 721.4500 Section 721.4500 Protection of Environment... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4500 Isopropylamine distillation...

  7. The effects of packaging method (vacuum pouch vs. plastic tray) on spoilage in a cook-chill pork-based dish kept under refrigeration. (United States)

    Díaz, Pedro; Garrido, María Dolores; Bañón, Sancho


    The effects of two packaging methods on the spoilage of a cook-chill pork-based dish kept under refrigeration were studied. Raw pork cuts and pre-cooked tomato sauce were packed under vacuum "sous vide" in polyamide-polypropylene pouches (SV) or into translucent polypropylene trays under modified atmosphere (80% N(2)+20% CO(2)) and sealed with a top film (PT). Samples were cooked inside the pack at an oven temperature/time of 70 degrees C/7h, chilled at 3 degrees C and stored at 2 degrees C for up to 90days. Microbial (psychrotrophs, lactic-acid bacteria, Enterobacteriaceae, moulds and yeasts), physical-chemical (pH, water activity and total acidity) and sensory (colour, odour, flavour, texture and acceptance) parameters were determined. Heat penetration was faster in SV (2 degrees C/min) than in PT (1 degrees C/min) (core temperature). Both packaging methods were equally effective in protecting against microbial spoilage for 90 day at 2 degrees C. Minor counts were only detected for lactic-acid bacteria and anaerobic psychrotrophs in SV. No Enterobacteriaceae growth was found. Slight differences between SV and PT in pH and total acidity were observed. SV and PT had similar effects on the sensory preservation of the dishes. A gradual loss of acceptance of the cooked pork and tomato sauce was observed. Rancid flavour in PT and warmed-over-flavour in SV were noted in the final stages of storage. According to acceptance scores, the shelf-life of both SV and PT was 56 days at 2 degrees C. Both packaging methods can be used to manufacture sous vide meat-based dishes subsequently stored under refrigeration for catering use. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Multi-objective Optimization of Molecular Distillation Conditions for Oleic Acid from a Rich-in-Fatty Acid Model Mixture. (United States)

    Ketenoğlu, Onur; Erdoğdu, Ferruh; Tekin, Aziz


    Oleic acid is a commercially valuable compound and has many positive health effects. Determining optimum conditions in a physical separation process is an industrially significant point due to environmental and health related concerns. Molecular distillation avoids the use of chemicals and adverse effects of high temperature application. The objective of this study was to determine the molecular distillation conditions for oleic acid to increase its purity and distillation yield in a model fatty acid mixture. For this purpose, a short-path evaporator column was used. Evaporation temperature ranged from 110 to 190℃, while absolute pressure was from 0.05 to 5 mmHg. Results showed that elevating temperature generally increased distillation yield until a maximum evaporation temperature. Vacuum application also affected the yield at a given temperature, and amount of distillate increased at higher vacuums except the case applied at 190℃. A multi-objective optimization procedure was then used for maximizing both yield and oleic acid amounts in distillate simultaneously, and an optimum point of 177.36℃ and 0.051 mmHg was determined for this purpose. Results also demonstrated that evaporation of oleic acid was also suppressed by a secondary dominant fatty acid of olive oil - palmitic acid, which tended to evaporate easier than oleic acid at lower evaporation temperatures, and increasing temperature achieved to transfer more oleic acid to distillate. At 110℃ and 0.05 mmHg, oleic and palmitic acid concentrations in distillate were 63.67% and 24.32%, respectively. Outcomes of this study are expected to be useful for industrial process conditions.

  9. A new procedure for the determination of distillation temperature distribution of high-boiling petroleum products and fractions. (United States)

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian


    The distribution of distillation temperatures of liquid and semi-fluid products, including petroleum fractions and products, is an important process and practical parameter. It provides information on properties of crude oil and content of particular fractions, classified on the basis of their boiling points, as well as the optimum conditions of atmospheric or vacuum distillation. At present, the distribution of distillation temperatures is often investigated by simulated distillation (SIMDIS) using capillary gas chromatography (CGC) with a short capillary column with polydimethylsiloxane as the stationary phase. This paper presents the results of investigations on the possibility of replacing currently used CGC columns for SIMDIS with a deactivated fused silica capillary tube without any stationary phase. The SIMDIS technique making use of such an empty fused silica column allows a considerable lowering of elution temperature of the analytes, which results in a decrease of the final oven temperature while ensuring a complete separation of the mixture. This eliminates the possibility of decomposition of less thermally stable mixture components and bleeding of the stationary phase which would result in an increase of the detector signal. It also improves the stability of the baseline, which is especially important in the determination of the end point of elution, which is the basis for finding the final temperature of distillation. This is the key parameter for the safety process of hydrocracking, where an excessively high final temperature of distillation of a batch can result in serious damage to an expensive catalyst bed. This paper compares the distribution of distillation temperatures of the fraction from vacuum distillation of petroleum obtained using SIMDIS with that obtained by the proposed procedure. A good agreement between the two procedures was observed. In addition, typical values of elution temperatures of n-paraffin standards obtained by the two

  10. Vacuum polarization and Hawking radiation (United States)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  11. Microfabricated triggered vacuum switch (United States)

    Roesler, Alexander W [Tijeras, NM; Schare, Joshua M [Albuquerque, NM; Bunch, Kyle [Albuquerque, NM


    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  12. Thermal conductance measurement on vacuum glazing

    Energy Technology Data Exchange (ETDEWEB)

    Ng, N.; Collins, R.E.; So, L. [School of Physics, University of Sydney, A28, NSW 2006 (Australia)


    A method is described for measuring the thermal conductance of vacuum glazing that is well-suited for integration into the manufacturing process of such devices. The sample of vacuum glazing to be measured, initially at elevated temperature, is placed in contact with a second sample of vacuum glazing with a known thermal conductance. The external surfaces of the glazings are then cooled by forced flow of air at room temperature, and a measurement is made of the rate of decrease of the temperature of the contacting glass sheets of the two samples. The method is simple to implement, and can be automated. The results obtained with the method are quite reproducible. The measurement can be made as the production samples of vacuum glazing cool at the completion of the manufacturing process, resulting in significant savings in time and labour compared with other methods. (author)

  13. Production of Lunar Oxygen Through Vacuum Pyrolysis

    National Research Council Canada - National Science Library

    Matchett, John


    .... The vacuum pyrolysis method of oxygen production from lunar regolith presents a viable option for in situ propellant production because of its simple operation involving limited resources from earth...

  14. Insulation vacuum and beam vacuum overpressure release

    CERN Document Server

    Parma, V


    There is evidence that the incident of 19th September caused a high pressure build-up inside the cryostat insulation vacuum which the existing overpressure devices could not contain. As a result, high longitudinal forces acting on the insulation vacuum barriers developed and broke the floor and the floor fixations of the SSS with vacuum barriers. The consequent large longitudinal displacements of the SSS damaged chains of adjacent dipole cryo-magnets. Estimates of the helium mass flow and the pressure build- up experienced in the incident are presented together with the pressure build-up for an even more hazardous event, the Maximum Credible Incident (MCI). The strategy of limiting the maximum pressure by the installation of addition pressure relieve devices is presented and discussed. Both beam vacuum lines were ruptured during the incident in sector 3-4 giving rise to both mechanical damage and pollution of the system. The sequence, causes and effects of this damage will be briefly reviewed. We will then an...

  15. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Preliminary Design (United States)

    Callahan, Michael R.; Sargusingh, Miriam J.


    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.

  16. Novel configurations of solar distillation system for potable water production (United States)

    Riahi, A.; Yusof, K. W.; Sapari, N.; Singh, B. S.; Hashim, A. M.


    More and more surface water are polluted with toxic chemicals. Alternatively brackish and saline water are used as feed water to water treatment plants. Expensive desalination process via reverse osmosis or distillation is used in the plants. Thus, this conventional desalination is not suitable for low and medium income countries. A cheaper method is by solar distillation. However the rate of water production by this method is generally considered low. This research attempts to enhance water production of solar distillation by optimizing solar capture, evaporation and condensation processes. Solar radiation data was captured in several days in Perak, Malaysia. Three kinds of experiments were done by fabricating triangular solar distillation systems. First type was conventional solar still, second type was combined with 50 Watt solar photovoltaic panel and 40 Watt Dc heater, while third type was integrated with 12 Volt Solar battery and 40 Watt Dc heater. The present investigation showed that the productivity of second and third systems were 150% and 480% of the conventional still type, respectively. The finding of this research can be expected to have wide application in water supply particularly in areas where fresh surface water is limited.

  17. A Comprehensive Real-World Distillation Experiment (United States)

    Kazameas, Christos G.; Keller, Kaitlin N.; Luyben, William L.


    Most undergraduate mass transfer and separation courses cover the design of distillation columns, and many undergraduate laboratories have distillation experiments. In many cases, the treatment is restricted to simple column configurations and simplifying assumptions are made so as to convey only the basic concepts. In industry, the analysis of a…

  18. Recycling of Waste Acetone by Fractional Distillation (United States)

    Weires, Nicholas A.; Johnston, Aubrey; Warner, Don L.; McCormick, Michael M.; Hammond, Karen; McDougal, Owen M.


    Distillation is a ubiquitous technique in the undergraduate organic chemistry curriculum; the technique dates back to ca. 3500 B.C.E. With the emergence of green chemistry in the 1990s, the importance of emphasizing responsible waste management practices for future scientists is paramount. Combining the practice of distillation with the message…

  19. Membrane distillation against a pressure difference

    NARCIS (Netherlands)

    Keulen, L.; Ham, L.V. van der; Kuipers, N.J.M.; Hanemaaijer, J.H.; Vlugt, T.J.H.; Kjelstrup, S.


    Membrane distillation is an attractive technology for production of fresh water from seawater. The MemPower® concept, studied in this work, uses available heat (86 °C) to produce pressurized water (2.2 bar and 46 °C) by membrane distillation, which again can be used to power a turbine for

  20. 27 CFR 24.216 - Distilling material. (United States)


    ... containing aldehydes may be used in the fermentation of wine to be used as distilling material. Lees, filter..., DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.216 Distilling material. Wine may be produced on bonded wine premises from grapes and other fruit, natural fruit products, or...

  1. Modelling reactive distillation - an invited review

    NARCIS (Netherlands)

    Taylor, R.; Krishna, R.


    The design and operation issues for reactive distillation systems are considerably more complex than those involved for either conventional reactors or conventional distillation columns. The introduction of an in situ separation function within the reaction zone leads to complex interactions between

  2. Aromatic characterization of pot distilled kiwi spirits. (United States)

    López-Vázquez, Cristina; García-Llobodanin, Laura; Pérez-Correa, José Ricardo; López, Francisco; Blanco, Pilar; Orriols, Ignacio


    This study contributes fundamental knowledge that will help to develop a distillate of kiwi wine, made from kiwis of the Hayward variety grown in the southwest of Galicia (Spain). Two yeast strains, L1 (Saccharomyces cerevisiae ALB-6 from the EVEGA yeast collection) and L2 (S. cerevisiae Uvaferm BDX from Lallemand) were assessed to obtain a highly aromatic distillate. The kiwi spirits obtained were compared with other fruit spirits, in terms of higher alcohols, minor alcohols, monoterpenols, and other minor compounds, which are relevant in determining the quality and taste of the kiwi spirits. It was found that the kiwi juice fermented with yeast L1 produced a more aromatic distillate. In addition, kiwi distillates produced with both yeasts had the same ratio of trans-3-hexen-1-ol and cis-3-hexen-1-ol, which is lower than that found in other fruit distillates.

  3. Assessment of vacuum cleaners and vacuum cleaner bags recommended for allergic subjects. (United States)

    Vaughan, J W; Woodfolk, J A; Platts-Mills, T A


    High-quality vacuum cleaners and vacuum cleaner bags are often recommended to allergic patients as a means of reducing indoor allergen exposure. A number of vacuum cleaners on the market today claim to capture 99.9% of particles 0.3 microm or larger entering the vacuum cleaner, and many vacuum cleaner bags are now being sold as microfiltration bags. The purpose of this study was to compare the allergen-trapping abilities of vacuum cleaners and to use a new technique for testing vacuum cleaner bags that are recommended for allergic patients. Vacuum cleaners were tested in an 18-m(3) laboratory room permeated with dust containing high levels of cat allergen by using techniques previously described. Air was sampled with parallel filters in conjunction with a particle counter. The filters were assayed by ELISA for cat allergen (Fel d 1). Vacuum cleaner bags were tested by using a modified dust trap to pull sieved house dust containing a known amount of Fel d 1 across the material used for the bag. Allergen passing through the bag was trapped on a filter covering the exit of the trap and analyzed for Fel d 1. In general, vacuum cleaners designed for allergic patients leaked lower amounts of allergen (vacuum cleaner bags performed poorly (1250-2640 ng recovered) compared with most of the 2- and 3-layer microfiltration bags (0.53-2450 ng recovered). The range of allergen recovered from the 2-layer bags (0.93-2450 ng recovered) highlighted the variability found between manufacturers. The results suggest that although allergen leakage has been reduced, there is still room for improvement. A method of testing allergen leakage by using Fel d 1 should be applied to vacuum cleaners and bags recommended for allergic patients.

  4. Systematic Integrated Process Design and Control of Reactive Distillation Processes Involving Multi-elements

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted


    (including inert compounds) are encountered. The reactive distillation design methods and tools which are similar in concept to design of binary non-reactive distillations and binary reactive distillations are used for design of multi-element reactive distillation processes, such as driving force approach...... driving force approach. Next, through analytical, steady-state and closed-loop dynamic analysis it is verified that the control structure, disturbance rejection and energy requirement of the reactive distillation column is better than any other operation point that is not at the maximum driving force....... Furthermore, it is shown that the design at the maximum driving force can be both controlled using simple controllers such as PI as well as advanced controllers such as MPC....

  5. Low grade bioethanol for fuel mixing on gasoline engine using distillation process (United States)

    Abikusna, Setia; Sugiarto, Bambang; Suntoro, Dedi; Azami


    Utilization of renewable energy in Indonesia is still low, compared to 34% oil, 20% coal and 20% gas, utilization of energy sources for water 3%, geothermal 1%, 2% biofuels, and biomass 20%. Whereas renewable energy sources dwindling due to the increasing consumption of gasoline as a fuel. It makes us have to look for alternative renewable energy, one of which is bio ethanol. Several studies on the use of ethanol was done to the researchers. Our studies using low grade bio ethanol which begins with the disitillation independently utilize flue gas heat at compact distillator, produces high grade bio ethanol and ready to be mixed with gasoline. Stages of our study is the compact distillator design of the motor dynamic continued with good performance and emission testing and ethanol distilled. Some improvement is made is through the flue gas heat control mechanism in compact distillator using gate valve, at low, medium, and high speed engine. Compact distillator used is kind of a batch distillation column. Column design process using the shortcut method, then carried the tray design to determine the overall geometry. The distillation is done by comparing the separator with a tray of different distances. As well as by varying the volume of the feed and ethanol levels that will feed distilled. In this study, we analyzed the mixing of ethanol through variation between main jet and pilot jet in the carburetor separately interchangeably with gasoline. And finally mixing mechanism bio ethanol with gasoline improved with fuel mixer for performance.

  6. Some aspects of vacuum ultraviolet radiation physics

    CERN Document Server

    Damany, Nicole; Vodar, Boris


    Some Aspects of Vacuum Ultraviolet Radiation Physics presents some data on the state of research in vacuum ultraviolet radiation in association with areas of physics. Organized into four parts, this book begins by elucidating the optical properties of solids in the vacuum ultraviolet region (v.u.v.), particularly the specific methods of determination of optical constants in v.u.v., the properties of metals, and those of ionic insulators. Part II deals with molecular spectroscopy, with emphasis on the spectra of diatomic and simple polyatomic molecules, paraffins, and condensed phases. Part III

  7. Development of an Ionic Liquid-Based Ultrasonic/Microwave-Assisted Simultaneous Distillation and Extraction Method for Separation of Camptothecin, 10-Hydroxycamptothecin, Vincoside-Lactam, and Essential Oils from the Fruits of Camptotheca acuminata Decne

    Directory of Open Access Journals (Sweden)

    Chunjian Zhao


    Full Text Available An ionic liquid-based ultrasonic/microwave-assisted simultaneous distillation and extraction (IL-UMASDE method for isolating camptothecin (CPT, 10-hydroxycamptothecin (HCPT, vincoside-lactam (VCS-LT, and essential oils (EOs from Camptotheca acuminata Decne fruits was developed. The important parameters were optimized using single-factor and central composite design experiments. The optimum conditions were 0.75 M 1-octyl-3-methylimidazolium ([C8mim]Br as the extraction solvent, a liquid–solid ratio of 13.7 mL/g, an extraction time of 33.2 min, a microwave power of 582 W, and a fixed ultrasonic power of 50 W. The yields of CPT, HCPT, and VCS-LT obtained under the optimum conditions were 2.463, 0.164, and 0.297 mg/g, respectively; these are 1.08-, 1.12-, and 1.04-fold higher, respectively, than those obtained by conventional 55% ethanol heat reflux extraction (HRE. The extraction time for the equilibrium yields of CPT, HCPT and VCS-LT using IL-UMASDE was 33.6%, 58.5%, 63.1%, and 66.8%, respectively, less than the corresponding times using IL-MASDE, IL-ultrasonic-assisted extraction (IL-UAE, 55% ethanol UAE and 55% ethanol HRE. The yield of EOs obtained using IL-UMASDE was 0.793 mg/g, i.e., 1.31-fold higher than that obtained by conventional hydrodistillation extraction (HDE. The components of the EOs obtained using IL-UMASDE and HDE were similar. The extraction time for the equilibrium yields of EOs using IL-UMASDE is 33.6%, 58.5%, 52.6%, and 72.3% lower than those for IL-MASDE, water-UMASDE, water-MASDE, and HDE, respectively. Compared with other extraction methods, IL-UMASDE gave the highest yields of CPT, HCPT, VCS-LT, and EOs and also had the shortest extraction time. IL-UMASDE is a potential green and highly efficient technique for the extraction of CPT, HCPT, VCS-LT, and EOs from Camptotheca acuminata Decne fruits.

  8. Microbubble Distillation for Ethanol-Water Separation

    Directory of Open Access Journals (Sweden)

    Atheer Al-yaqoobi


    Full Text Available In the current study, a novel approach for separating ethanol-water mixture by microbubble distillation technology was investigated. Traditional distillation processes require large amounts of energy to raise the liquid to its boiling point to effect removal of volatile components. The concept of microbubble distillation by comparison is to heat the gas phase rather than the liquid phase to achieve separation. The removal of ethanol from the thermally sensitive fermentation broths was taken as a case of study. Consequently the results were then compared with those which could be obtained under equilibrium conditions expected in an “ideal” distillation unit. Microbubble distillation has achieved vapour compositions higher than that which could be obtained under traditional equilibrium conditions. The separation was achieved at liquid temperature significantly less than the boiling point of the mixture. In addition, it was observed that the separation efficiency of the microbubble distillation could be increased by raising the injected air temperature, while the temperature of the liquid mixture increased only moderately. The separation efficiency of microbubble distillation was compared with that of pervaporation for the recovery of bioethanol from the thermally sensitive fermentation broths. The technology could be controlled to give high separation and energy efficiency. This could contribute to improving commercial viability of biofuel production and other coproducts of biorefinery processing.

  9. Vacuum spin squeezing (United States)

    Hu, Jiazhong; Chen, Wenlan; Vendeiro, Zachary; Urvoy, Alban; Braverman, Boris; Vuletić, Vladan


    We investigate the generation of entanglement (spin squeezing) in an optical-transition atomic clock through the coupling to an optical cavity in its vacuum state. We show that if each atom is prepared in a superposition of the ground state and a long-lived electronic excited state, and viewed as a spin-1/2 system, then the collective vacuum light shift entangles the atoms, resulting in a squeezed distribution of the ensemble collective spin, without any light applied. This scheme reveals that even an electromagnetic vacuum can constitute a useful resource for entanglement and quantum manipulation. By rotating the spin direction while coupling to the vacuum, the scheme can be extended to implement two-axis twisting resulting in stronger squeezing.

  10. Handbook of vacuum technology

    CERN Document Server


    This comprehensive, standard work has been updated to remain an important resource for all those needing detailed knowledge of the theory and applications of vacuum technology. With many numerical examples and illustrations to visualize the theoretical issues.

  11. Cold Vacuum Drying Facility (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  12. Vacuum-assisted delivery (United States)

    ... the birth canal. The vacuum uses a soft plastic cup that attaches to the baby's head with suction. ... a numbing medicine placed in the vagina. The plastic cup will be placed on the baby's head. Then, ...

  13. Structural Decoupling and Disturbance Rejection in a Distillation Column

    DEFF Research Database (Denmark)

    Bahar, Mehrdad; Jantzen, Jan; Commault, C.


    Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references.......Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references....

  14. Power vacuum tubes handbook

    CERN Document Server

    Whitaker, Jerry


    Providing examples of applications, Power Vacuum Tubes Handbook, Third Edition examines the underlying technology of each type of power vacuum tube device in common use today. The author presents basic principles, reports on new development efforts, and discusses implementation and maintenance considerations. Supporting mathematical equations and extensive technical illustrations and schematic diagrams help readers understand the material. Translate Principles into Specific Applications This one-stop reference is a hands-on guide for engineering personnel involved in the design, specification,

  15. A Planck Vacuum Cosmology

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.


    Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.

  16. The electronic states of 1,2,3-triazole studied by vacuum ultraviolet photoabsorption and ultraviolet photoelectron spectroscopy, and a comparison with ab initio configuration interaction methods

    DEFF Research Database (Denmark)

    Palmer, Michael H.; Hoffmann, Søren Vrønning; Jones, Nykola C.


    The Rydberg states in the vacuum ultraviolet photoabsorption spectrum of 1,2,3-triazole have been measured and analyzed with the aid of comparison to the UV valence photoelectron ionizations and the results of ab initio configuration interaction (CI) calculations. Calculated electronic ionization...

  17. Stabilization flyuorytopodibnoyi structure in oxide vacuum condensate

    Directory of Open Access Journals (Sweden)

    О.М. Заславський


    Full Text Available  The influence of the oxide-stabilizer content, M'-cation radius and film deposition temperature on the stabilization of the fluorite-like solid solutions in the zirconium and hafnium oxides-based vacuum condensates, obtained by Laser-evaporating method, was investigated. The optimum parameters of the coatication of the isotropic thermostable coverings was determined. This results were explained by using of the high-speed condensation in vacuum theory.

  18. Efficient entanglement distillation without quantum memory (United States)

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman


    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  19. Efficient entanglement distillation without quantum memory. (United States)

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman


    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  20. Entanglement of Distillation for Lattice Gauge Theories. (United States)

    Van Acoleyen, Karel; Bultinck, Nick; Haegeman, Jutho; Marien, Michael; Scholz, Volkher B; Verstraete, Frank


    We study the entanglement structure of lattice gauge theories from the local operational point of view, and, similar to Soni and Trivedi [J. High Energy Phys. 1 (2016) 1], we show that the usual entanglement entropy for a spatial bipartition can be written as the sum of an undistillable gauge part and of another part corresponding to the local operations and classical communication distillable entanglement, which is obtained by depolarizing the local superselection sectors. We demonstrate that the distillable entanglement is zero for pure Abelian gauge theories at zero gauge coupling, while it is in general nonzero for the non-Abelian case. We also consider gauge theories with matter, and show in a perturbative approach how area laws-including a topological correction-emerge for the distillable entanglement. Finally, we also discuss the entanglement entropy of gauge fixed states and show that it has no relation to the physical distillable entropy.

  1. Conceptual design of distillation-based hybrid separation processes. (United States)

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang


    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  2. Nonlinear control of high purity distillation columns


    Groebel, Markus; Allgöwer, Frank; Storz, Markus; Gilles, Ernst Dieter


    Two simple models of distillation columns are studied to investigate their suitability for the practical use with exact I/O-linearization. An extension of exact I/O-linearization, the asymptotically exact I/O-linearization is applied to the control of a high purity distillation column, using one of these models to derive the static state feedback law. Simulation studies demonstrate the advantage of asymptotically exact I/O-linearization versus classical exact I/O-linearization techniques. Exp...

  3. Modification of Ultra-High Vacuum Surfaces Using Free Radicals

    CERN Document Server

    Vorlaufer, G


    In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption of surface adsorbates are usually the factors which determine pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchrotron radiation and bombardment by energetic ions and electrons, surface properties like the molecular desorption yield or secondary electron yield can strongly influence the performance of the accelerator. Well-established treatment methods like vacuum bake-out or glow-discharge cleaning have been successfully applied in the past to condition ultra-high vacuum surfaces, but these methods are sometimes difficult to carry out, for example if the vacuum chambers are not accessible. In this work, an alternative treatment method is investigated. This method is based on the strong chemical reactivity of free radicals, electrically neutral fragments of molecules. Free radicals (in the case of this work, nitrogen and oxygen radi...

  4. Vapor-barrier Vacuum Isolation System (United States)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)


    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  5. Integrated Process Design and Control of Multi-element Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted


    In this work, integrated process design and control of reactive distillation processes involving multi-elements is presented. The reactive distillation column is designed using methods and tools which are similar in concept to non-reactive distillation design methods, such as driving force approach....... The methods employed in this work are based on equivalent element concept. This concept facilitates the representation of a multi-element reactive system as equivalent binary light and heavy key elements. First, the reactive distillation column is designed at the maximum driving force where through steady......-state analysis it is shown that it has the least energy consumption and carbon footprint. Next, through analytical and dynamic analysis it is verified that the control structure, disturbance rejection and the controllability at the maximum driving force is the best compared to any other design alternative which...

  6. Designing of steam distillation system for essential oils


    川崎, 聖司; 池間, 洋一郎; 國吉, 和男; 秋永, 孝義; Kawasaki, Seiji; Ikema, Youitirou; Kuniyoshi, Kazuo; Akinaga, Takayoshi


    Different processing methods are required to extract essential oils from different plants. Most oils are extracted using steam distillation, during which the plant tissues break down, the essential oils and water vapor are released, then collected and cooled. The volatile essential oil condenses, separates and is easily isolated. In this process the steam is prepared in a separate chamber and piped into the tank. This is especially good for plant materials with high boiling point oils.Essenti...

  7. Systematic Integrated Process Design and Control of Binary Element Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted


    . It is shown that the same design-control principles that apply to a non-reacting binary system of compounds are also valid for a reactive binary system of elements for distillation columns. Application of this framework shows that designing the reactive distillation process at the maximum driving force...... to design-control of reactive distillation columns. These methods are based on the element concept where the reacting system of compounds is represented as elements. When only two elements are needed to represent the reacting system of more than two compounds, a binary element system is identified...

  8. Determination of Methanol Content in Herbal Distillates Produced in Urmia Using Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Mohammad Delirrad


    Full Text Available Background: Herbal distillates have been used for many centuries as drinks, flavors, and herbal medicine in Iran, especially in the city of Urmia. Recently, some studies claimed the presence of methanol in different types of herbal distillates. Methanol is a highly toxic compound which can cause acute or chronic toxicity in humans. Acute poisoning with methanol can cause different complications and even death while chronic methanol exposure has a wide range of nonspecific and misleading findings. The main purpose of this study was to determine methanol content in the commonly-used industrial herbal distillates produced in Urmia. Methods: Five samples of six types of most commonly used herbal distillates (peppermint, musk willow, lemon balm, pennyroyal, dill, and rose water were purchased from five active herbal distillates manufacturers in Urmia. All samples were transferred to the laboratory and methanol content of each sample was measured two times according to the standard method of analysis using spectrophotometer. Results: The lowest and highest concentration of methanol were found in rose water (mean=72.4±32.1 ppm and musk willow (mean=278.3±106 ppm samples, respectively. One-way ANOVA showed statistically significant differences among methanol concentrations in the studied herbal distillates (F=60.9, P <0.001. Discussion: Different amounts of methanol were found in herbal distillates and it seems that there are statistically significant differences in methanol concentrations of various types of herbal distillates. Therefore, considering the harmful effects of methanol on human health, further studies are required for determining permitted levels of methanol in herbal distillates.

  9. 7 CFR 160.8 - Steam distilled wood turpentine. (United States)


    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...

  10. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Design Status (United States)

    Sargusingh, Miriam C.; Callahan, Michael R.


    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. The CDS provides a similar function to the state of the art (SOA) vapor compressor distiller (VCD) currently employed on the International Space Station, but its control scheme and ancillary components are judged to be more straightforward and simpler to implement into a more reliable and efficient system. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). A preliminary design fo the CDS 2.0 was presented to the project in September 2014. Following this review, detailed design of the system continued. The existing ground test prototype was used as a platform to demonstrate key 2.0 design and operational concepts to support this effort and mitigate design risk. A volumetric prototype was also developed to evaluate the packaging design for operability and maintainability. The updated system design was reviewed by the AES LSS Project and other key stakeholders in September 2015. This paper details the status of the CDS 2.0 design.

  11. Improving Vacuum Cleaners (United States)


    Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.

  12. Vacuum Arc Ion Sources

    CERN Document Server

    Brown, I.


    The vacuum arc ion source has evolved into a more or less standard laboratory tool for the production of high-current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. Applications include primarily ion implantation for material surface modification research, and good performance has been obtained for the injection of high-current beams of heavy-metal ions, in particular uranium, into particle accelerators. As the use of the source has grown, so also have the operational characteristics been improved in a variety of different ways. Here we review the principles, design, and performance of vacuum arc ion sources.

  13. Baryogenesis in false vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta [KEK Theory Center, IPNS, KEK, Tsukuba, Ibaraki (Japan); Yamada, Masatoshi [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan)


    The null result in the LHC may indicate that the standard model is not drastically modified up to very high scales, such as the GUT/string scale. Having this in the mind, we suggest a novel leptogenesis scenario realized in the false vacuum of the Higgs field. If the Higgs field develops a large vacuum expectation value in the early universe, a lepton number violating process is enhanced, which we use for baryogenesis. To demonstrate the scenario, several models are discussed. For example, we show that the observed baryon asymmetry is successfully generated in the standard model with higher-dimensional operators. (orig.)

  14. A rotating quantum vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lorenci, V.A. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)


    It was investigated which mapping has to be used to compare measurements made in a rotating frame to those made in an inertial frame. Using a non-Galilean coordinate transformation, the creation-annihilation operators of a massive scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state(a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. Polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view were analysed. 65 refs.

  15. Handbook of vacuum physics

    CERN Document Server


    Handbook of Vacuum Physics, Volume 3: Technology is a handbook of vacuum physics, with emphasis on the properties of miscellaneous materials such as mica, oils, greases, waxes, and rubber. Accurate modern tables of physical constants, properties of materials, laboratory techniques, and properties of commercial pumps, gauges, and leak detectors are presented. This volume is comprised of 12 chapters and begins with a discussion on pump oils, divided into rotary pump oils and vapor pump oils. The next chapter deals with the properties and applications of greases, including outgassing and vapor pr

  16. A heat & mass integration approach to reduce capital and operating costs of a distillation configuration

    Energy Technology Data Exchange (ETDEWEB)

    Madenoor Ramapriya, Gautham [Purdue University; Jiang, Zheyu [Purdue University; Tawarmalani, Mohit [Purdue University; Agrawal, Rakesh [Purdue University


    We propose a general method to consolidate distillation columns of a distillation configuration using heat and mass integration. The proposed method encompasses all heat and mass integrations known till date, and includes many more. Each heat and mass integration eliminates a distillation column, a condenser, a reboiler and the heat duty associated with a reboiler. Thus, heat and mass integration can potentially offer significant capital and operating cost benefits. In this talk, we will study the various possible heat and mass integrations in detail, and demonstrate their benefits using case studies. This work will lay out a framework to synthesize an entire new class of useful configurations based on heat and mass integration of distillation columns.

  17. Modeling of steam distillation mechanism during steam injection process using artificial intelligence. (United States)

    Daryasafar, Amin; Ahadi, Arash; Kharrat, Riyaz


    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods.

  18. Modeling of Steam Distillation Mechanism during Steam Injection Process Using Artificial Intelligence (United States)

    Ahadi, Arash; Kharrat, Riyaz


    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods. PMID:24883365

  19. Technology handbook of vacuum physics

    CERN Document Server

    Beck, A H


    Handbook of Vacuum Physics, Volume 3: Technology is part of a series of publications that presents articles featuring the whole spectrum of vacuum physics. This particular volume presents materials that deal with technology concerns in vacuum mechanics. The first material talks about the utilization of ceramic materials in the construction of vacuum devices. The next paper details the application of vacuum physics in soldering and brazing process. The last article deals with the utilization of vacuum technology in high frequency heating. The book will be of great use to professionals involved

  20. High Efficient Secret Key Distillation for Long Distance Continuous Variable Quantum Key Distribution


    Zhao, Yi-bo; Han, Zheng-fu; Chen, Jin-jian; Gui, You-zhen; Guo, Guang-can


    The continuous variable quantum key distribution is expected to provide high secret key rate without single photon source and detector, but the lack of the secure and effective key distillation method makes it unpractical. Here, we present a secure single-bit-reverse-reconciliation protocol combined with secret information concentration and post-selection, which can distill the secret key with high efficiency and low computational complexity. The simulation results show that this protocol can...

  1. The minimum work requirement for distillation processes

    Energy Technology Data Exchange (ETDEWEB)

    Yunus, Cerci; Yunus, A. Cengel; Byard, Wood [Nevada Univ., Las Vegas, NV (United States). Dept. of Mechanical Engineering


    A typical ideal distillation process is proposed and analyzed using the first and second-laws of thermodynamics with particular attention to the minimum work requirement for individual processes. The distillation process consists of an evaporator, a condenser, a heat exchanger, and a number of heaters and coolers. Several Carnot engines are also employed to perform heat interactions of the distillation process with the surroundings and determine the minimum work requirement for processes. The Carnot engines give the maximum possible work output or the minimum work input associated with the processes, and therefore the net result of these inputs and outputs leads to the minimum work requirement for the entire distillation process. It is shown that the minimum work relation for the distillation process is the same as the minimum work input relation found by Cerci et al [1] for an incomplete separation of incoming saline water, and depends only on the properties of the incoming saline water and the outgoing pure water and brine. Also, certain aspects of the minimum work relation found are discussed briefly. (authors)

  2. LEP Vacuum Chamber

    CERN Multimedia


    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  3. The vacuum strikes back

    CERN Multimedia


    "Modern physics has shown that the vacuum, previously thought of as a stated of total nothingness, is really a seething background of virtual particles springing in and out of eixstence until they can seize enough energy to materialize as "real" particles." (1,5 page)

  4. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab


    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  5. ISR vacuum system

    CERN Multimedia

    CERN PhotoLab


    Some of the most important components of the vacuum system are shown. At the left, the rectangular box is a sputter-ion pump inside its bake-out oven. The assembly in the centre includes a sector valve, three roughing valves, a turbomolecular pump, a rotary backing pump and auxiliary equipment. At the right, the small elbow houses a Bayard-

  6. Furnace brazing under partial vacuum (United States)

    Mckown, R. D.


    Brazing furnace utilizing partial-vacuum technique reduces tooling requirements and produces better bond. Benefit in that partial vacuum helps to dissociate metal oxides that inhibit metal flow and eliminates heavy tooling required to hold parts together during brazing.

  7. Tritium handling in vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Gill, J.T. [Monsanto Research Corp., Miamisburg, OH (United States). Mound Facility; Coffin, D.O. [Los Alamos National Lab., NM (United States)


    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  8. Does osmotic distillation change the isotopic relation of wines?

    Directory of Open Access Journals (Sweden)

    Schmitt Matthias


    Full Text Available Currently partial alcohol reduction of wine is in the focus of research worldwide. There are several technologies available to achieve this target. These techniques are either based on distilling or membrane processes. Osmotic distillation, one of the possibilities, is a quite modern membrane process that can be used. During that process, wine is pumped in counter flow to water along a micro porous, hydrophobic membrane. The volatile components of the wine can permeate that membrane and are dissolved in water. The driving force of that process is the vapor pressure difference between the volatiles on the wine and water side of the membrane. The aim of this work was to determine if the alcohol reduction by osmotic distillation can change the isotopic relation in a wine. Can this enological practice change the composition of a wine in a way that an illegal water addition is simulated? Different wines were reduced by 2% alcohol v/v with varying process parameters. The isotopic analysis of the O 16/18 ratio in the wine were performed according to the OIV methods (353/2009 These analyses showed that the isotopic ratio is modified by an alcohol reduction of 2% v/v in a way that corresponds to an addition of 4–5% of external water.

  9. Conceptual analysis of single-feed heterogeneous distillation columns

    Directory of Open Access Journals (Sweden)

    Carlos Arturo Martinez Riascos


    Full Text Available Separation in heterogeneous distillation columns is attained by interaction of two liquid and one vapor phases, interaction of three phases involves complexities due to the determination of vapor-liquid-liquid equilibrium and hence, in the design of separation units. Nevertheless, the liquid-liquid equilibrium allows developing separations that may be unfeasible by vapor-liquid equilibrium. In this way, heterogeneous azeotropic distillation is a useful operation for the separation of azeotropic and close-boiling mixtures. In this work, a new methodology for evaluating the feasibility of this process is developed. This methodology is an extension of that proposed by Castillo et al. (1998 for homogeneous systems. Operation leaves for heterogeneous systems are calculated using the concept of pinch point curves in order to establish the process feasibility. Heterogeneous columns with external decanter are considered as the only heterogeneous stage (OHED: only heterogeneous external decanter. The initialization process for the column calculation requires the selection of the distillate composition using thermodynamic criteria in order to guarantee homogeneous phases within the column. A system with industrial and academic relevance was considered as case study: water-acetic acid-amyl acetate. Results show that the developed shortcut method allows evaluating process feasibility and estimating design parameters, without the use of trial and error procedures implemented, with the aid of simulation tools. 

  10. Reactive Distillation for Esterification of Bio-based Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.


    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  11. Study of the repartition of phthalate esters during distillation of wine for spirit production. (United States)

    Montevecchi, Giuseppe; Masino, Francesca; Di Pascale, Nicolas; Vasile Simone, Giuseppe; Antonelli, Andrea


    Due to health concerns and legal matters, an investigation to limit phthalates esters (PEAs) in spirits is necessary. A lab still was used to perform pilot distillations according to the official method for brandy production in order to explore the repartition into the distilled fractions of each PAE. The process was divided in two steps: a première chauffe and a bonne chauffe. The former step included the cut into heads, heart and tails, while the latter into heads, brandy, secondes, and tails. The behaviour of each PAE during distillation was affected by its own chemical nature. Dibutyl phthalate (DBP) was entirely carried over into the distillate, while bis(2-ethylhexyl) phthalate (DEHP) only partially, and diisononyl phthalate (DINP) accumulated in the stillage. During the bonne chauffe, DBP and DEHP accumulated in the secondes more than in the brandy. A rectification step of the secondes was demonstrated to considerably reduce PAEs concentration. Copyright © 2017. Published by Elsevier Ltd.

  12. Experimental entanglement distillation of mesoscopic quantum states

    DEFF Research Database (Denmark)

    Dong, Ruifang; Lassen, Mikael Østergaard; Heersink, Joel


    channel, the distribution of loss-intolerant entangled states is inevitably afflicted by decoherence, which causes a degradation of the transmitted entanglement. To combat the decoherence, entanglement distillation, a process of extracting a small set of highly entangled states from a large set of less...... entangled states, can be used(4-14). Here we report on the distillation of deterministically prepared light pulses entangled in continuous variables that have undergone non-Gaussian noise. The entangled light pulses(15-17) are sent through a lossy channel, where the transmission is varying in time similarly...

  13. Refreshment topics II: Design of distillation columns

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir


    Full Text Available For distillation column design it is necessary to define all the variable parameters such as component concentrations in different streams temperatures, pressures, mass and energy flow, which are used to represent the separation process of some specific system. They are related to each other according to specific laws, and if the number of such parameters exceeds the number of their relationships, in order to solve a problem some of them must be specified in advance or some constraints assumed for the mass balance, the balance of energy, phase equilibria or chemical equilibria. Knowledge of specific elements which are the constituents of a distillation unit must be known to define the number of design parameters as well as some additional apparati also necessary to realize the distilation. Each separate apparatus might be designed and constructed only if all the necessary and variable parameters for such a unit are defined. This is the right route to solve a distilation unit in many different cases. The construction of some distillation unit requires very good knowledge of mass, heat and momentum transfer phenomena. Moreover, the designer needs to know which kind of apparatus will be used in the distillation unit to realize a specific production process. The most complicated apparatus in a rectification unit is the distillation column. Depending on the complexity of the separation process one, two or more columns are often used. Additional equipment are heat exchangers (reboilers, condensers, cooling systems, heaters, separators, tanks for reflux distribution, tanks and pumps for feed transportation, etc. Such equipment is connected by pipes and valves, and for the normal operation of a distillation unit other instruments for measuring the flow rate, temperature and pressure are also required. Problems which might arise during the determination and selection of such apparati and their number requires knowledge of the specific systems which must

  14. Interferometric study on the mass transfer in cryogenic distillation under magnetic field (United States)

    Bao, S. R.; Zhang, R. P.; Y Rong, Y.; Zhi, X. Q.; Qiu, L. M.


    Cryogenic distillation has long been used for the mass production of industrial gases because of its features of high efficiency, high purity, and capability to produce noble gases. It is of great theoretical and practical significance to explore methods to improve the mass transfer efficiency in cryogenic distillation. The negative correlation between the susceptibility of paramagnetic oxygen and temperature provides a new possibility of comprehensive utilization of boiling point and susceptibility differences in cryogenic distillation. Starting from this concept, we proposed a novel distillation intensifying method by using gradient magnetic field, in which the magnetic forces enhance the transport of the oxygen molecules to the liquid phase in the distillation. In this study, a cryogenic testbed was designed and fabricated to study the diffusion between oxygen and nitrogen under magnetic field. A Mach-Zehnder interferometer was used to visualize the concentration distribution during the diffusion process. The mass transfer characteristics with and without magnetic field, in the chamber filled with the magnetized medium, were systematically studied. The concentration redistribution of oxygen was observed, and the stable stratified diffusion between liquid oxygen and nitrogen was prolonged by the non-uniform magnetic field. The experimental results show that the magnetic field can efficiently influence the mass transfer in cryogenic distillation, which can provide a new mechanism for the optimization of air separation process.

  15. Ultrahigh-vacuum field emitter array wafer tester

    Energy Technology Data Exchange (ETDEWEB)

    Gray, H.F.; Ardis, L.; Campisi, G.J.


    The device reported here allows the researcher the opportunity of gaining primitive yield information, threshold voltages, emission stability, and other information, e.g., gas effects, on field emitter arrays (FEA) which are microminiature ''vacuum tubes'' fabricated by microelectronic processing methods on silicon wafers, without scribing, dicing, and mounting each device on individual vacuum-compatible headers. This device also speeds up the entire data-acquisition process by requiring only one ultrahigh-vacuum pumpdown and one set of vacuum feedthroughs.

  16. Design of the Vacuum Feedthrough for the EAST ICRF Antenna (United States)

    Yang, Qingxi; Song, Yuntao; Wu, Songtao; Zhao, Yanping


    Detailed design of the vacuum feedthrough for the ion cyclotron radio frequency (ICRF) antenna in EAST, along with an electro-analysis and thermal structural analysis, is presented. The electric field, the voltage standing wave ratio (VSWR) and the stresses in the vacuum feedthrough are studied. A method using the rings of oxygen-free copper as the cushion and macro-beam plasma arc welding is applied in the assembly to protect the ceramic from being damaged during welding. The vacuum leak test on the prototype of vacuum feedthrough is introduced.

  17. Nonperturbative QED vacuum birefringence (United States)

    Denisov, V. I.; Dolgaya, E. E.; Sokolov, V. A.


    In this paper we represent nonperturbative calculation for one-loop Quantum Electrodynamics (QED) vacuum birefringence in presence of strong magnetic field. The dispersion relations for electromagnetic wave propagating in strong magnetic field point to retention of vacuum birefringence even in case when the field strength greatly exceeds Sauter-Schwinger limit. This gives a possibility to extend some predictions of perturbative QED such as electromagnetic waves delay in pulsars neighbourhood or wave polarization state changing (tested in PVLAS) to arbitrary magnetic field values. Such expansion is especially important in astrophysics because magnetic fields of some pulsars and magnetars greatly exceed quantum magnetic field limit, so the estimates of perturbative QED effects in this case require clarification.

  18. Production and concentration of monoacylglycerols rich in omega-3 polyunsaturated fatty acids by enzymatic glycerolysis and molecular distillation. (United States)

    Solaesa, Ángela García; Sanz, María Teresa; Falkeborg, Mia; Beltrán, Sagrario; Guo, Zheng


    Production of monoacylglycerols (MAGs) rich in ω-3 polyunsaturated fatty acids (n-3 PUFAs) was conducted through short path distillation (SPD) of an acylglycerol mixture (containing 67% MAGs) produced by enzymatic glycerolysis of sardine oil with glycerol. A stepwise SPD process in a UIC KDL 5 system (vacuum 10(-3)mbar, feeding flow 1.0 mL/min) was proceeded: the first distillation performed at evaporator temperature (TE) of 110 °C to remove glycerol completely and most of FFAs; and the second distillation at optimized TE 155 °C; resulting in a stream distillate with 91% purity and 94% overall recovery of MAGs. This work also demonstrated that SPD is able to concentrate n-3 PUFAs in MAG form by distilling at proper TE e.g. 125 °C, where n-3 PUFAs are concentrated in the residues. Moreover, this work mapped out a complete processing diagram for scalable production of n-3 PUFAs enriched MAGs as potential food emulsifier and ingredient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Non-equilibrium modelling of distillation

    NARCIS (Netherlands)

    Wesselingh, J.A

    This is a lecture on the way that we engineers model distillation. How we have done such modelling, how we would like to do it, and how far we have come at this moment. The ideas that I will be bringing forward are not my own. I owe them mostly to R. Krishna, R. Taylor, H. Kooijman and A. Gorak.

  20. Non-equilibrium modelling of distillation

    NARCIS (Netherlands)

    Wesselingh, JA; Darton, R


    There are nasty conceptual problems in the classical way of describing distillation columns via equilibrium stages, and efficiencies or HETP's. We can nowadays avoid these problems by simulating the behaviour of a complete column in one go using a non-equilibrium model. Such a model has phase

  1. Holoprosencephaly: A mythologic and teratologic distillate. (United States)

    Cohen, M Michael


    This review of holoprosencephaly provides a mythologic and teratologic distillate of the subject under the following headings: Babylonian tablets; Greek mythology; pictures from the 16th through the 20th Centuries; 19th Century teratology; history of more modern concepts and their terminologies; and ocean-going ships named "Cyclops." 2010 Wiley-Liss, Inc.

  2. Designing reactive distillation processes with improved efficiency

    NARCIS (Netherlands)

    Almeida-Rivera, C.P.


    In this dissertation a life-span inspired perspective is taken on the conceptual design of grassroots reactive distillation processes. Attention was paid to the economic performance of the process and to potential losses of valuable resources over the process life span. The research was cast in a

  3. Operation and Design of Diabatic Distillation Processes

    DEFF Research Database (Denmark)

    Bisgaard, Thomas

    design of the heat-integrated distillation column configurations is challenging as a result of the increased number of decision variables compared to the CDiC. Finally, themodel is implemented in Matlab and a database of the considered configurations, case studies, pure component properties, and binary...

  4. Nonequilibrium modeling of three-phase distillation

    NARCIS (Netherlands)

    Higler, A.P.; Chande, R.; Taylor, R.; Baur, R.; Krishna, R.


    A nonequilibrium (NEQ) model for a complete three-phase distillation in tray columns is described. The model consists of a set of mass and energy balances for each of the three possible phases present. Mass and heat transfer between these phases is modeled using the Maxwell–Stefan equations.

  5. Determination of crude protein in animal feeds, using block digestion followed by steam distillation: collaborative study. (United States)

    Noel, R J


    A method consisting of digesting animal feeds in a block digestor and determining ammonia by steam distillation followed by titration has been evaluated and compared with the official final action Kjeldahl method, 7.016. Fifteen laboratories analyzed 5 feed samples and lysine monohydrochloride. Statistical analysis showed that results from the 2 methods were comparable. The distillation technique has been adopted as official first action as an alternative technique for ammonia determination from the digest of the official final action block digestor method, 7.B11.

  6. The structural and group composition of sulfur organic compounds and 200-360 degree distillate hydrocarbons of Usinsk oil

    Energy Technology Data Exchange (ETDEWEB)

    Mel' nikova, L.A.; Karmanova, L.P.; Lyapina, N.K.


    Established is the structural group composition of sulfur organic compounds of the diesel distillate (DD) of heavy Usinsk oil from the Komi ASSR, which are basically represented by alkyl and cycloalkanobenzothiophenes. The distinguishing feature of the studied diesel distillates is the comparatively high content of thiaindanes. Determined through mass spectrometric analysis methods is the group composition of the diesel distillate hydrocarbons. The basic groups of the hydrocarbons are the naphthene (57%) of primarily mono and bicyclic structure, ArU (23%) basically represented by alkylbenzenes and tetralines, while a lesser volume (15%) of paraffin hydrocarbons with a predominant isostructure were discovered in the diesel distillate. The comparative structural and group characteristics of the thiophenes of the diesel distillate of the oils of varying type showed the differences in the quantitative content of the individual structures with a primary content of benzo and dibenzothiophene compounds (a total of 66.2-89.6% of the thiophenes).

  7. Modern design techniques in the development of vacuum interruptors

    Energy Technology Data Exchange (ETDEWEB)

    Schellekens, H.; Lenstra, K.; Hilderink, J.; Hopman, J.


    Numerical calculation methods are used in the development of vacuum interrupters for various aspects like, the electric field design of the interrupter, the electrode configuration, design of the joints in the envelope and the design of the bellow connection. This opens a way to design and to produce economically compact and reliable vacuum interrupters. 12 figs.


    NARCIS (Netherlands)


    A novel histoprocessing method for paraffin and plastic sections is presented in which dehydration of fixed tissue blocks is achieved within 5 minutes by microwaving under vacuum. Exploiting the decrease in boiling temperature under vacuum, we succeed in evaporating liquid molecules in the tissues

  9. Gases vacuum dedusting and cooling

    Directory of Open Access Journals (Sweden)

    Alexey А. Burov


    Full Text Available Represented are the results of operating the ladle degassing vacuum plant (productivity: 120 tons of liquid steel with various dust collectors. The process gases’ cooling and dedusting, obtained in the closed loop buran study, provides opportunity to install a bag filter after that closed loop and its efficient use. Proven is the effectiveness of the cylindrical cyclone replacement with a multichannel (buran dust collector, based on a system of closed-loop (return coupling serially connected curved ducts, where the dusty gas flow rotation axis is vertically positioned. The system of closed-loop serially connected curvilinear channels creates preconditions for the emergence of a negative feedback at the curvilinear gas flow containing transit and circulating flows. These conditions are embodied with circulating flows connecting the in- and outputs of the whole system each channel. The transit flow multiple continuous filtration through the circulating dust layers leads to the formation and accumulation of particles aggregates in the collection chamber. The validity of such a dusty flow control mechanism is confirmed by experimental data obtained in a vacuum chamber. Therefore, replacing one of the two buran’s forevacuum pumps assemblies with the necessary number of curved channels (closed loop is estimated in a promising method.

  10. Well-promising outcomes with vacuum-assisted closure in an infected wound following laparotomy: A case report. (United States)

    Daskalaki, A; Xenaki, S; Venianaki, M; Topalidou, A; Athanasakis, E; Chrysos, E; Chalkiadakis, G


    Negative pressure wound therapy (NPWT) represents an alternative method to optimize conditions for wound healing. Delayed wound closure is a significant health problem, which is directly associated with pain and suffering from patient's aspect, as well with social and financial burden. We report a case of vacuum-assisted wound therapy with hypertonic solution distillation and continuous negative pressure application, in an infected wound after laparotomy for incisional hernia reconstruction with mesh placement. Negative pressure was initiated at the wound margins after failure of conventional treatment with great outcomes, achieving a total closure of the incision within two weeks. Each wound has particular characteristics which must be managed. Vacuum assisted closure (VAC) with continuous negative pressure and simultaneous wound instillation and cleanse can provide optimum results, reducing the cavity volume, by newly produced granulated tissue. The simultaneous use of instillation and constant pressure seemed to be superior in comparison with NPWT alone. Compared to conventional methods, the use of VAC ends to better outcomes, in cases of infected wounds following laparotomy.

  11. Quantum interference spectroscopy in the vacuum ultraviolet

    NARCIS (Netherlands)

    Eikema, K. S E; Zinkstok, R. Th; Witte, S.; Hogervorst, W.; Ubachs, W.


    With two experiments on respectively krypton at 2 x 212 nm and xenon at 125 nm we have demonstrated the method of quantum interference spectroscopy in the deep- and vacuum-ultraviolet. Multiple pulses from a frequency comb laser are amplified and frequency converted and used in a Ramsey-like direct

  12. Particle emission characteristics of filter-equipped vacuum cleaners. (United States)

    Trakumas, S; Willeke, K; Grinshpun, S A; Reponen, T; Mainelis, G; Friedman, W


    Industrial vacuum cleaners with final high-efficiency particulate air (HEPA) filters traditionally have been used for cleanup operations in which all of the nozzle-entrained dust must be collected with high efficiency, for example, after lead-based paint abatement in homes. In this study household vacuum cleaners ranging from $70 to $650 and an industrial vacuum cleaner costing more than $1400 were evaluated relative to their collection efficiency immediately after installing new primary dust collectors in them. Using newly developed testing technology, some of the low-cost household vacuum cleaners equipped with a final HEPA filter were found to have initial overall filtration efficiencies comparable to those of industrial vacuum cleaners equipped with a final HEPA filter. The household vacuum cleaners equipped with a final HEPA filter efficiently collect about 100% of the dry dust entrained by the nozzle. For extensive cleaning efforts and for vacuum cleaning of wet surfaces, however, industrial vacuum cleaners may have an advantage, including ruggedness and greater loading capacity. The methods and findings of this study are applicable to field evaluations of vacuum cleaners.

  13. Results of vacuum assisted wound closure application. (United States)

    Atay, Tolga; Burc, Halil; Baykal, Yakup Barbaros; Kirdemir, Vecihi


    In recent past, various methods have been used for wound treatment purpose. In this study, we aimed to compare our results established from the vacuum-assisted wound closure method, which has gained popularity day by day, with the literature. A total of 48 patients, who received vacuum-assisted wound closure treatment in our clinic between 2007and 2010, were included in this study. Etiological distribution of the patients was as follows: 32 traumatic, 6 pressure sore, 9 diabetic, and 1 iliac disarticulation. All cases were evaluated in terms of age, gender, etiology, period of treatment, and size of the wound. In the patients studied, 42 were men (87.5 %) and 6 were women (12.5 %). Mean age of the patients was 39.6 years (11-61 years). All of our traumatic patients suffered from open fracture. After the vacuum-assisted wound closure application, wound size reduced by 28.8 %, while the mean area of the surface of the wound was 94.7 cm(2) (13.7-216.3 cm(2)) on average. After the wounds became ready for surgery, 15 of them were treated with split-thickness grafting, 9 of them were treated with secondary suture, 18 of them were treated with full-thickness grafting, and 6 of them were treated with flap. Average period of the application of vacuum-assisted wound closure was 11.6 days (7-15 days). Results of vacuum-assisted wound closure can be regarded as satisfactory when cases are selected properly. This system has three different effect mechanisms. Firstly, it increases local blood flow on the wound bed. Secondly, cell proliferation is triggered following the mechanic stress. Thirdly, vacuum removes the proteases from the environment which obstructs healing. Therefore, it is intended to prepare alive wound bed which is required for subsequent soft tissue reconstructions.

  14. Antibacterial and antioxidant activities and chemical compositions of volatile oils extracted from Schisandra chinensis Baill. seeds using simultaneous distillation extraction method, and comparison with Soxhlet and microwave-assisted extraction. (United States)

    Teng, Hui; Lee, Won Y


    The volatile oils were isolated from dried Schisandra chinensis Baill. seeds by Soxhlet extraction (SE), microwave-assisted extraction (MAE), and simultaneous distillation extraction (SDE), and fractions were identified by gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). The essential oils were assessed for their antioxidant and antibacterial activities. GC-MS results also revealed that the major ingredients in the oil extracted by SDE were terpenoids compounds such as ylangene (15.01%), α-phellandrene (8.23%), β-himachalene (6.95%), and cuparene (6.74), and the oil extracts of MAE and SE mainly contained aromatics such as schizandrins, wuweizisu C, and gomisin A. HPLC analysis results confirmed that more schizandrin was obtained through extraction by MAE (996.64 μg/g) and SE (722.13 μg/g). SDE oil extract showed more significant antioxidant activity than MAE or SE oil. Only volatile oil from SDE showed good antibacterial activity against all tested strains.

  15. Dimensional analysis of membrane distillation flux through fibrous membranes (United States)

    Mauter, Meagan

    We developed a dimensional-analysis-based empirical modeling method for membrane distillation (MD) flux that is adaptable for novel membrane structures. The method makes fewer simplifying assumptions about membrane pore geometry than existing theoretical (i.e. mechanistic) models, and allows selection of simple, easily-measureable membrane characteristics as structural parameters. Furthermore, the model does not require estimation of membrane surface temperatures; it accounts for convective heat transfer to the membrane surface without iterative fitting of mass and heat transfer equations. The Buckingham-Pi dimensional analysis method is tested for direct contact membrane distillation (DCMD) using non-woven/fibrous structures as the model membrane material. Twelve easily-measured variables to describe DCMD operating conditions, fluid properties, membrane structures, and flux were identified and combined into eight dimensionless parameters. These parameters were regressed using experimentally-collected data for multiple electrospun membrane types and DCMD system conditions, achieving R2 values >95%. We found that vapor flux through isotropic fibrous membranes can be estimated using only membrane thickness, solid fraction, and fiber diameter as structural parameters. Buckingham-Pi model DCMD flux predictions compare favorably with previously-developed empirical and theoretical models, and suggest this simple yet theoretically-grounded empirical modeling method can be used practically for predicting MD vapor flux from membrane structural parameters.

  16. Simulators of tray distillation columns as tools for interpreting ...

    African Journals Online (AJOL)

    Simulators of tray distillation columns were used to provide technical guidelines for interpreting signals from gamma ray scans used for analysing malfunctions in distillation columns. The transmitted radiation intensities at 0.05 m intervals were determined from top to the bottom of simulators of tray distillation columns ...

  17. Pilot-scale studies of process intensification by cyclic distillation

    NARCIS (Netherlands)

    Maleta, Bogdan V.; Shevchenko, Alexander; Bedryk, Olesja; Kiss, Anton A.


    Process intensification in distillation systems receives much attention with the aim of increasing both energy and separation efficiency. Several technologies have been investigated and developed, as for example: dividing-wall column, HiGee distillation, or internal heat-integrated distillation.

  18. Continuous and Batch Distillation in an Oldershaw Tray Column (United States)

    Silva, Carlos M.; Vaz, Raquel V.; Santiago, Ana S.; Lito, Patricia F.


    The importance of distillation in the separation field prompts the inclusion of distillation experiments in the chemical engineering curricula. This work describes the performance of an Oldershaw column in the rectification of a cyclohexane/n-heptane mixture. Total reflux distillation, continuous rectification under partial reflux, and batch…

  19. Improvement of solar ethanol distillation using ultrasonic waves

    Directory of Open Access Journals (Sweden)

    Jaruwat Jareanjit


    Full Text Available This report presents a study on the use of ultrasonic waves in solar ethanol distillation to investigate the performance of ultrasonic waves at a frequency of 30 kHz and at 100 Watts that were installed in the inlet area of a 10-litre distillation tank. Based on the non-continuous distillation process (batch distillation, the experiment demonstrated that using ultrasonic waves in solar ethanol distillation caused the average concentration of hourly distilled ethanol to be higher than that of a normal system (solar ethanol distillation without ultrasonic wave at the same or higher distillation rate and hourly distillation volume. The ultrasonic wave was able to enhance the separation of ethanol from the solution (water-ethanol mixture through solar distillation. The amount of pure ethanol product from each distilled batch was clearly larger than the amount of product obtained from a normal system when the initial concentration of ethanol was lower than 50%v/v (% by volume, where an average of approximately 40% and 20% are obtained for an initial ethanol concentration of 10%v/v and 30%v/v, respectively. Furthermore, the distillation rate varied based on the solar radiation value.

  20. 40 CFR 721.9635 - Terpene residue distillates. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Terpene residue distillates. 721.9635... Substances § 721.9635 Terpene residue distillates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as terpene residue distillates (PMN P-96-897...

  1. 40 CFR 1065.703 - Distillate diesel fuel. (United States)


    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Distillate diesel fuel. 1065.703... Standards § 1065.703 Distillate diesel fuel. (a) Distillate diesel fuels for testing must be clean and... diesel fuel specified for use as a test fuel. See the standard-setting part to determine which grade to...

  2. 27 CFR 24.183 - Use of distillates containing aldehydes. (United States)


    ... the fermentation of wine and then returned to the distilled spirits plant from which distillates were... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received... AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Wine § 24.183 Use of...

  3. Effect of Cryogenic Distillation and Chemical Absorption on the Argon Concentration in Krypton Purification (United States)

    Wang, Zhiliang; Feng, Gaoping; Wang, Mingdong; Hong, Yanji


    Cryogenic distillation and chemical absorption are two important means of inert gas purification. Experiments show that the order of the two methods has an effect on the final purification result. In order to verify the relationship between the retention of argon and the order of the two methods, experimental verification was designed. At the same time, the numerical simulation was carried out by using the principle of low temperature distillation, and the influence results of the two methods on the argon content after gas purification was obtained.

  4. The vacuum platform (United States)

    McNab, A.


    This paper describes GridPP’s Vacuum Platform for managing virtual machines (VMs), which has been used to run production workloads for WLCG and other HEP experiments. The platform provides a uniform interface between VMs and the sites they run at, whether the site is organised as an Infrastructure-as-a-Service cloud system such as OpenStack, or an Infrastructure-as-a-Client system such as Vac. The paper describes our experience in using this platform, in developing and operating VM lifecycle managers Vac and Vcycle, and in interacting with VMs provided by LHCb, ATLAS, ALICE, CMS, and the GridPP DIRAC service to run production workloads.

  5. Vacuum ultraviolet spectroscopy I

    CERN Document Server

    Samson, James A; Lucatorto, Thomas


    This volume is for practitioners, experimentalists, and graduate students in applied physics, particularly in the fields of atomic and molecular physics, who work with vacuum ultraviolet applications and are in need of choosing the best type of modern instrumentation. It provides first-hand knowledge of the state-of-the-art equipment sources and gives technical information on how to use it, along with a broad reference bibliography.Key Features* Aimed at experimentalists who are in need of choosing the best type of modern instrumentation in this applied field* Contains a detailed chapter on la

  6. R&D ERL: Vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.


    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  7. Practical method for choosing diluent that ensures the best temperature uniformity in the case of pharmaceutical microwave vacuum drying of a heat sensitive product. (United States)

    Kelen, Akos; Pallai-Varsanyi, Erzsebet; Ress, Sandor; Nagy, Tibor; Pintye-Hodi, Klara


    Microwave vacuum drying is getting more and more popular thanks to its known advantageous and unique features, but its non-uniform electric field can cause nonhomogeneous temperature distribution in the workload. The origin and effect of a generated hot-spot is influenced by the electromagnetic and thermodynamic features of the microwave system and the workload. In the case of single/one pot technology, the geometry and the construction of the microwave cavity is primarily designed for high-shear granulation. As for the workload, its composition has first-order effect on the electric field pattern. The aim of our study is to present a rational decision procedure based on basic practical experiments and the elaborated '3D layered thermography' technique to make it possible to choose the most suitable diluent to formulate a heat sensitive active pharmaceutical ingredient given its stability due to temperature distribution within the workload. Comparing two commonly used diluents, namely microcrystalline cellulose and corn starch, it was found that in the case of different actives with different acceptable temperature limits different diluents are recommended. Drying of a composition consists of an active ingredient characterized by a temperature limit of 70 degrees C. Using corn starch is safer when the workload is less endangered than when using microcrystalline cellulose. Above this temperature limit microcrystalline cellulose becomes beneficial.

  8. Distillation irrigation: a low-energy process for coupling water purification and drip irrigation (United States)

    Constantz, J.


    A method is proposed for combining solar distillation and drip irrigation to simultaneously desalinize water and apply this water to row crops. In this paper, the basic method is illustrated by a simple device constructed primarily of sheets of plastic, which uses solar energy to distill impaired water and apply the distillate to a widely spaced row crop. To predict the performance of the proposed device, an empirical equation for distillate production, dp, is developed from reported solar still production rates, and a modified Jensen-Haise equation is used to calculate the potential evapotranspiration, et, for a row crop. Monthly values for et and dp are calculated by using a generalized row crop at five locations in the Western United States. Calculated et values range from 1 to 22 cm month-1 and calculated dp values range from 2 to 11 cm month-1, depending on the location, the month, and the crop average. When the sum of dp plus precipitation, dp + P, is compared to et for the case of 50% distillation irrigation system coverage, the results indicate that the crop's et is matched by dp + P, at the cooler locations only. However, when the system coverage is increased to 66%, the crop's et is matched by dp + P even at the hottest location. Potential advantages of distillation irrigation include the ability: (a) to convert impaired water resources to water containing no salts or sediments; and (b) to efficiently and automatically irrigate crops at a rate that is controlled primarily by radiation intensities. The anticipated disadvantages of distillation irrigation include: (a) the high costs of a system, due to the large amounts of sheeting required, the short lifetime of the sheeting, and the physically cumbersome nature of a system; (b) the need for a widely spaced crop to reduce shading of the system by the crop; and (c) the production of a concentrated brine or precipitate, requiring proper off-site disposal. ?? 1989.

  9. Toxicology of petroleum naphtha distillate vapors. (United States)

    Wilson, F W


    A unique opportunity was presented to observe the potentially toxic effects of an acute exposure to the vapors of petroleum naphtha distillate on a relatively large number of individuals. The immediate manifestation in all was dyspnea. The action on motor vehicle combustion suggested that some of this could have been due to oxygen deprivation; however, all individuals were dyspneic for several minutes after exposure. A few were cyanotic for several minutes after exposure. All were excited. Tremulousness and mild nausea followed the initial symptoms but were of brief duration. One individual manifested numerous premature ventricular contractions. Since his exposure was brief and since none of the others showed similar findings, it is unlikely that the exposure was causal. The central nervous system depression described in acute exposure cases of the intact (not distillate) petroleum naphtha fumes was not observed in any of this series. There were no delayed manifestations or complications.

  10. Manufacture and cost of vacuum glazing

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, J.D. [San Diego State Univ., CA (United States); Collins, R.E. [Univ. of Sydney (Australia)


    The vacuum glazing project at the University of Sydney has progressed to the point where the main features of the vacuum glazing design are determined well. Over 500 glazings with areas up to one square meter have been formed. The stresses to which these glazings are or may be exposed have been studied extensively. The durability of the glazing structure and the internal vacuum has been demonstrated. Vacuum glazing of the type designed and formed at the University of Sydney has a center-of-glazing thermal conductance as low as 0.85 and 1.2 Wm{sup -2}/K{sup -1}, for glazings with two and one internal low emittance coatings, respectively. A method for the manufacture of the vacuum glazing is outlined from which the cost to manufacture the glazing can be estimated. A cost at the factory of about $40{+-}7 m{sup -2} for vacuum glazing using two sheets of low-e glass and about $32{+-}6 m{sup -2} for glazing using one sheet of low-e glass is obtained, when production volume is approx. 10{sup 5} m{sup 2}yr{sup -1} and is partially automated. This is about 25% higher than the estimated manufacturing cost of the high thermal resistance, argon filled, double glazing utilizing low-e glass, which are currently in production and being sold in the United States, Europe and Japan. These glazings typically have center-of-glazing thermal conductances of about 1.1 Wm{sup -2}K{sup -1} or more. 11 refs., 2 figs., 7 tabs.

  11. LHC vacuum system

    CERN Document Server

    Gröbner, Oswald


    The Large Hadron Collider (LHC) project, now in the advanced construction phase at CERN, comprises two proton storage rings with colliding beams of 7-TeV energy. The machine is housed in the existing LEP tunnel with a circumference of 26.7 km and requires a bending magnetic field of 8.4 T with 14-m long superconducting magnets. The beam vacuum chambers comprise the inner 'cold bore' walls of the magnets. These magnets operate at 1.9 K, and thus serve as very good cryo-pumps. In order to reduce the cryogenic power consumption, both the heat load from synchrotron radiation emitted by the proton beams and the resistive power dissipation by the beam image currents have to be absorbed on a 'beam screen', which operates between 5 and 20 K and is inserted inside the vacuum chamber. The design of this beam screen represents a technological challenge in view of the numerous and often conflicting requirements and the very tight mechanical tolerances imposed. The synchrotron radiation produces strong outgassing from the...

  12. Computing the hadronic vacuum polarization function by analytic continuation

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu [KEK National High Energy Physics, Tsukuba (Japan); Hashimoto, Shoji [KEK National High Energy Physics, Tsukuba (Japan); The Graduate Univ. for Advanced Studies, Tsukuba (Japan). School of High Energy Accelerator Science; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)


    We propose a method to compute the hadronic vacuum polarization function on the lattice at continuous values of photon momenta bridging between the space-like and time-like regions. We provide two independent derivations of this method showing that it leads to the desired hadronic vacuum polarization function in Minkowski space-time. We show with the example of the leading- order QCD correction to the muon anomalous magnetic moment that this approach can provide a valuable alternative method for calculations of physical quantities where the hadronic vacuum polarization function enters.

  13. Preliminary Design of Reactive Distillation Columns


    Thery, Raphaële; Meyer, Xuân-Mi; Joulia, Xavier; Meyer, Michel


    A procedure that combines feasibility analysis, synthesis and design of reactive distillation columns is introduced. The main interest of this methodology lies on a progressive introduction of the process complexity. From minimal information concerning the physicochemical properties of the system, three steps lead to the design of the unit and the specification of its operating conditions. Most of the methodology exploits and enriches approaches found in the literature. Each step is des...

  14. Vacuum science, technology, and applications

    CERN Document Server

    Naik, Pramod K


    Vacuum plays an important role in science and technology. The study of interaction of charged particles, neutrals and radiation with each other and with solid surfaces requires a vacuum environment for reliable investigations. Vacuum has contributed immensely to advancements made in nuclear science, space, metallurgy, electrical/electronic technology, chemical engineering, transportation, robotics and many other fields. This book is intended to assist students, scientists, technicians and engineers to understand the basics of vacuum science and technology for application in their projects. The fundamental theories, concepts, devices, applications, and key inventions are discussed.

  15. 136 Xe enrichment through cryogenic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Back, Henning O.; Bottenus, Daniel R.; Clayton, Christopher K.; Stephenson, David E.; TeGrotenhuis, Ward E.


    The next generation of 136Xe neutrinoless double beta decay experiments will require on the order of 5 tons of enriched 136Xe. By estimating the relative volatilities of the xenon isotopes and using standard chemical engineering techniques we explore the feasibility of using cryogenic distillation to produce 5 tons of 80% enriched 136Xe in 5-6 years. With current state-of-the-art distillation column packing materials we can estimate the total height of a traditional cryogenic distillation column. We also, report on how Micro Channel Distillation may reduce the overall size of a distillation system for 136Xe production.

  16. A More Efficient Contextuality Distillation Protocol (United States)

    Meng, Hui-xian; Cao, Huai-xin; Wang, Wen-hua; Fan, Ya-jing; Chen, Liang


    Based on the fact that both nonlocality and contextuality are resource theories, it is natural to ask how to amplify them more efficiently. In this paper, we present a contextuality distillation protocol which produces an n-cycle box B ∗ B ' from two given n-cycle boxes B and B '. It works efficiently for a class of contextual n-cycle (n ≥ 4) boxes which we termed as "the generalized correlated contextual n-cycle boxes". For any two generalized correlated contextual n-cycle boxes B and B ', B ∗ B ' is more contextual than both B and B '. Moreover, they can be distilled toward to the maximally contextual box C H n as the times of iteration goes to infinity. Among the known protocols, our protocol has the strongest approximate ability and is optimal in terms of its distillation rate. What is worth noting is that our protocol can witness a larger set of nonlocal boxes that make communication complexity trivial than the protocol in Brunner and Skrzypczyk (Phys. Rev. Lett. 102, 160403 2009), this might be helpful for exploring the problem that why quantum nonlocality is limited.

  17. Attractor mechanism as a distillation procedure (United States)

    Lévay, Péter; Szalay, Szilárd


    In a recent paper it was shown that for double extremal static spherical symmetric BPS black hole solutions in the STU model the well-known process of moduli stabilization at the horizon can be recast in a form of a distillation procedure of a three-qubit entangled state of a Greenberger-Horne-Zeilinger type. By studying the full flow in moduli space in this paper we investigate this distillation procedure in more detail. We introduce a three-qubit state with amplitudes depending on the conserved charges, the warp factor, and the moduli. We show that for the recently discovered non-BPS solutions it is possible to see how the distillation procedure unfolds itself as we approach the horizon. For the non-BPS seed solutions at the asymptotically Minkowski region we are starting with a three-qubit state having seven nonequal nonvanishing amplitudes and finally at the horizon we get a Greenberger-Horne-Zeilinger state with merely four nonvanishing ones with equal magnitudes. The magnitude of the surviving nonvanishing amplitudes is proportional to the macroscopic black hole entropy. A systematic study of such attractor states shows that their properties reflect the structure of the fake superpotential. We also demonstrate that when starting with the very special values for the moduli corresponding to flat directions the uniform structure at the horizon deteriorates due to errors generalizing the usual bit flips acting on the qubits of the attractor states.

  18. The distillation and volatility of ionic liquids (United States)

    Earle, Martyn J.; Esperança, José M. S. S.; Gilea, Manuela A.; Canongia Lopes, José N.; Rebelo, Luís P. N.; Magee, Joseph W.; Seddon, Kenneth R.; Widegren, Jason A.


    It is widely believed that a defining characteristic of ionic liquids (or low-temperature molten salts) is that they exert no measurable vapour pressure, and hence cannot be distilled. Here we demonstrate that this is unfounded, and that many ionic liquids can be distilled at low pressure without decomposition. Ionic liquids represent matter solely composed of ions, and so are perceived as non-volatile substances. During the last decade, interest in the field of ionic liquids has burgeoned, producing a wealth of intellectual and technological challenges and opportunities for the production of new chemical and extractive processes, fuel cells and batteries, and new composite materials. Much of this potential is underpinned by their presumed involatility. This characteristic, however, can severely restrict the attainability of high purity levels for ionic liquids (when they contain poorly volatile components) in recycling schemes, as well as excluding their use in gas-phase processes. We anticipate that our demonstration that some selected families of commonly used aprotic ionic liquids can be distilled at 200-300°C and low pressure, with concomitant recovery of significant amounts of pure substance, will permit these currently excluded applications to be realized.

  19. Development of a Modified Vacuum Cleaner for Lunar Surface Systems (United States)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.


    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has

  20. Production of Bioethanol from Agricultural Wastes Using Residual Thermal Energy of a Cogeneration Plant in the Distillation Phase

    Directory of Open Access Journals (Sweden)

    Raffaela Cutzu


    Full Text Available Alcoholic fermentations were performed, adapting the technology to exploit the residual thermal energy (hot water at 83–85 °C of a cogeneration plant and to valorize agricultural wastes. Substrates were apple, kiwifruit, and peaches wastes; and corn threshing residue (CTR. Saccharomyces bayanus was chosen as starter yeast. The fruits, fresh or blanched, were mashed; CTR was gelatinized and liquefied by adding Liquozyme® SC DS (Novozymes, Dittingen, Switzerland; saccharification simultaneous to fermentation was carried out using the enzyme Spirizyme® Ultra (Novozymes, Dittingen, Switzerland. Lab-scale static fermentations were carried out at 28 °C and 35 °C, using raw fruits, blanched fruits and CTR, monitoring the ethanol production. The highest ethanol production was reached with CTR (10.22% (v/v and among fruits with apple (8.71% (v/v. Distillations at low temperatures and under vacuum, to exploit warm water from a cogeneration plant, were tested. Vacuum simple batch distillation by rotary evaporation at lab scale at 80 °C (heating bath and 200 mbar or 400 mbar allowed to recover 93.35% (v/v and 89.59% (v/v of ethanol, respectively. These results support a fermentation process coupled to a cogeneration plant, fed with apple wastes and with CTR when apple wastes are not available, where hot water from cogeneration plant is used in blanching and distillation phases. The scale up in a pilot plant was also carried out.

  1. Qutrit Magic State Distillation Tight in Some Directions (United States)

    Dawkins, Hillary; Howard, Mark


    Magic state distillation is a crucial component in the leading approaches to implementing universal fault-tolerant quantum computation, with existing protocols for both qubit and higher dimensional systems. Early work focused on determining the region of distillable states for qubit protocols; yet comparatively little is known about which states can be distilled and with what distillable region for d >2 . Here we focus on d =3 and present new four-qutrit distillation schemes that improve upon the known distillable region, and achieve distillation tight to the boundary of undistillable states for some classes of state. As a consequence of recent results, this implies that there is a family of quantum states that enable universality if and only if they exhibit contextuality with respect to stabilizer measurements. We also identify a new routine whose fixed point is a magic state with maximal sum negativity; i.e., it is maximally nonstablizer in a specific sense.

  2. Functionalization of a Hydrophilic Commercial Membrane Using Inorganic-Organic Polymers Coatings for Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Lies Eykens


    Full Text Available Membrane distillation is a thermal separation technique using a microporous hydrophobic membrane. One of the concerns with respect to the industrialization of the technique is the development of novel membranes. In this paper, a commercially available hydrophilic polyethersulfone membrane with a suitable structure for membrane distillation was modified using available hydrophobic coatings using ORMOCER® technology to obtain a hydrophobic membrane that can be applied in membrane distillation. The surface modification was performed using a selection of different components, concentrations, and application methods. The resulting membranes can have two hydrophobic surfaces or a hydrophobic and hydrophilic surface depending on the application method. An extensive characterization procedure confirmed the suitability of the coating technique and the obtained membranes for membrane distillation. The surface contact angle of water could be increased from 27° up to 110°, and fluxes comparable to membranes commonly used for membrane distillation were achieved under similar process conditions. A 100 h test demonstrated the stability of the coating and the importance of using sufficiently stable base membranes.

  3. HETP evaluation of structured packing distillation column

    Directory of Open Access Journals (Sweden)

    A. E. Orlando Jr.


    Full Text Available Several tests with a hydrocarbon mixture of known composition (C8-C14, obtained from DETEN Chemistry S.A., have been performed in a laboratory distillation column, having 40mm of nominal diameter and 2.2m high, with internals of Sulzer DX gauze stainless steel structured packing. The main purpose of this work was to evaluate HETP of a structured packing laboratory scale distillation column, operating continuously. Six HETP correlations available in the literature were compared in order to find out which is the most appropriate for structured packing columns working with medium distillates. Prior to the experimental tests, simulation studies using commercial software PRO/II® were performed in order to establish the optimum operational conditions for the distillation, especially concerning operating pressure, top and bottom temperatures, feed location and reflux ratio. The results of PRO/II® were very similar to the analysis of the products obtained during continuous operation, therefore permitting the use of the properties calculated by that software on the theoretical models investigated. The theoretical models chosen for HETP evaluation were: Bravo, Rocha and Fair (1985; Rocha, Bravo and Fair (1993, 1996; Brunazzi and Pagliant (1997; Carlo, Olujić and Pagliant (2006; Olujić et al., (2004. Modifications concerning calculation of specific areas were performed on the correlations in order to fit them for gauze packing HETP evaluation. As the laboratory distillation column was operated continuously, different HETP values were found by the models investigated for each section of the column. The low liquid flow rates in the top section of the column are a source of error for HETP evaluation by the models; therefore, more reliable HETP values were found in the bottom section, in which liquid flow rates were much greater. Among the theoretical models, Olujić et al. (2004 has shown good results relative to the experimental tests. In addition, the

  4. Methodology for predicting oily mixture properties in the mathematical modeling of molecular distillation

    Directory of Open Access Journals (Sweden)

    M. F. Gayol


    Full Text Available A methodology for predicting the thermodynamic and transport properties of a multi-component oily mixture, in which the different mixture components are grouped into a small number of pseudo components is shown. This prediction of properties is used in the mathematical modeling of molecular distillation, which consists of a system of differential equations in partial derivatives, according to the principles of the Transport Phenomena and is solved by an implicit finite difference method using a computer code. The mathematical model was validated with experimental data, specifically the molecular distillation of a deodorizer distillate (DD of sunflower oil. The results obtained were satisfactory, with errors less than 10% with respect to the experimental data in a temperature range in which it is possible to apply the proposed method.

  5. Emulsification of waste cooking oils and fatty acid distillates as diesel engine fuels: An attractive alternative

    Directory of Open Access Journals (Sweden)

    Eliezer Ahmed Melo Espinosa


    Full Text Available The scope of this paper is to analyze the possibility and feasibility of the use of emulsification method applied to waste cooking oils and fatty acid distillates as diesel engine fuels, compared with other commonly used methods. These waste products are obtained from the refining oil industry, food industry and service sector, mainly. They are rarely used as feedstock to produce biofuels and other things, in spite of constitute a potential source of environmental contamination. From the review of the state of arts, significant decreases in exhaust emissions of nitrogen oxides, cylinder pressure as well as increases of the ignition delay, brake specific fuel consumption, hydrocarbon, smoke opacity, carbon monoxide, particulate matters to emulsified waste cooking oils and fatty acid distillates compared with diesel fuel are reported. In some experiments the emulsified waste cooking oils achieved better performance than neat fatty acid distillates, neat waste cooking oils and their derivatives methyl esters.

  6. Vacuum energy sequestering and graviton loops


    Kaloper, Nemanja; Padilla, Antonio


    We recently formulated a local mechanism of vacuum energy sequester. This mechanism automatically removes all matter loop contributions to vacuum energy from the stress energy tensor which sources the curvature. Here we adapt the local vacuum energy sequestering mechanism to also cancel all the vacuum energy loops involving virtual gravitons, in addition to the vacuum energy generated by matter fields alone.


    Price, G.W.


    A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.

  8. Renewable Water: Direct Contact Membrane Distillation Coupled With Solar Ponds (United States)

    Suarez, F. I.; Tyler, S. W.; Childress, A. E.


    The exponential population growth and the accelerated increase in the standard of living have increased significantly the global consumption of two precious resources: water and energy. These resources are intrinsically linked and are required to allow a high quality of human life. With sufficient energy, water may be harvested from aquifers, treated for potable reuse, or desalinated from brackish and seawater supplies. Even though the costs of desalination have declined significantly, traditional desalination systems still require large quantities of energy, typically from fossil fuels that will not allow these systems to produce water in a sustainable way. Recent advances in direct contact membrane distillation can take advantage of low-quality or renewable heat to desalinate brackish water, seawater or wastewater. Direct contact membrane distillation operates at low pressures and can use small temperature differences between the feed and permeate water to achieve a significant freshwater production. Therefore, a much broader selection of energy sources can be considered to drive thermal desalination. A promising method for providing renewable source of heat for direct contact membrane distillation is a solar pond, which is an artificially stratified water body that captures solar radiation and stores it as thermal energy at the bottom of the pond. In this work, a direct contact membrane distillation/solar pond coupled system is modeled and tested using a laboratory-scale system. Freshwater production rates on the order of 2 L day-1 per m2 of solar pond (1 L hr-1 per m2 of membrane area) can easily be achieved with minimal operating costs and under low pressures. While these rates are modest, they are six times larger than those produced by other solar pond-powered desalination systems - and they are likely to be increased if heat losses in the laboratory-scale system are reduced. Even more, this system operates at much lower costs than traditional desalination

  9. An overview of the technology of vacuum glazing

    Energy Technology Data Exchange (ETDEWEB)

    Simko, T. M.; Collins, R. E.; Turner, G. M.; Tang, J-Z. [Sydney Univ., NSW (Australia). School of Physics; Fischer-Cripps, A. C. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Garrison, J. D. [San Diego State Univ., CA (United States). Dept. of Physics


    The technology of vacuum glazing was discussed as an alternative to the argon and krypton gas fills in double paned windows. A vacuum between the two panes insulates in the same way that a Dewar flask insulates. Aside from patent literature, few reports have been published in the scientific literature on the use of vacuum glazing. Over 500 samples of vacuum glazing have been produced in the laboratory. Manufacturing methods have been similar to those used in the production of picture tubes. It was shown that high internal vacuums may be maintained over several years. Design of vacuum glazing required a trade-off between heat flow through pillars and internal stresses. Modelling showed that internal stresses were tolerable for temperature differentials of up to 40 degrees. Relationships between mechanical stress, fracture probability and thermal performance were in the process of being quantified. Physical mechanisms of vacuum degradation were also being studied. Practical applicability of vacuum glazing will depend on the extent to which field trials confirm results of lab experiments and numerical modelling. High thermal insulation, with a very thin glazing and moderate cost were expected in the future. 4 figs., 14 refs.

  10. Vacuum Technology for Superconducting Devices

    CERN Document Server

    Chiggiato, P


    The basic notions of vacuum technology for superconducting applications are presented, with an emphasis on mass and heat transport in free molecular regimes. The working principles and practical details of turbomolecular pumps and cryopumps are introduced. The specific case of the Large Hadron Collider’s cryogenic vacuum system is briefly reviewed.

  11. Progress of ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K., E-mail: [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Bayon, A. [F4E, c/ Josep Pla, No. 2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C.; Jun, C.; Levesy, B. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Kuzmin, E. [NTC “Sintez”, Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Le Barbier, R.; Martinez, J.-M. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Pathak, H. [ITER-India, A-29, GIDC Electronic Estate, Sector 25, Gandhinagar 382025 (India); Preble, J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Sa, J.W. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Terasawa, A.; Utin, Yu. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); and others


    Highlights: ► This covers the overall status and progress of the ITER vacuum vessel activities. ► It includes design, R and D, manufacturing and approval process of the regulators. ► The baseline design was completed and now manufacturing designs are on-going. ► R and D includes ISI, dynamic test of keys and lip-seal welding/cutting technology. ► The VV suppliers produced full-scale mock-ups and started VV manufacturing. -- Abstract: Design modifications were implemented in the vacuum vessel (VV) baseline design in 2011–2012 for finalization. The modifications are mostly due to interface components, such as support rails and feedthroughs for the in-vessel coils (IVC). Manufacturing designs are being developed at the domestic agencies (DAs) based on the baseline design. The VV support design was also finalized and tests on scale mock-ups are under preparation. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. Further modifications are required to be consistent with the DAs’ manufacturing designs. Dynamic tests on the inter-modular and stub keys to support the blanket modules are being performed to measure the dynamic amplification factor (DAF). An in-service inspection (ISI) plan has been developed and R and D was launched for ISI. Conceptual design of the VV instrumentation has been developed. The VV baseline design was approved by the agreed notified body (ANB) in accordance with the French Nuclear Pressure Equipment Order procedure.

  12. Characterisation of chamomile volatiles by simultaneous distillation solid-phase extraction in comparison to hydrodistillation and simultaneous distillation extraction. (United States)

    Krüger, Hans


    A new method for complete separation of steam-volatile organic compounds is described using the example of chamomile flowers. This method is based on the direct combination of hydrodistillation and solid-phase extraction in a circulation apparatus. In contrast to hydrodistillation and simultaneous distillation extraction (SDE), an RP-18 solid phase as adsorptive material is used rather than a water-insoluble solvent. Therefore, a prompt and complete fixation of all volatiles takes place, and the circulation of water-soluble bisabololoxides as well as water-soluble and thermolabile en-yne-spiroethers is inhibited. This so-called simultaneous distillation solid-phase extraction (SD-SPE) provides extracts that better characterise the real composition of the vapour phase, as well as the composition of inhalation vapours, than do SDE extracts or essential oils obtained by hydrodistillation. The data indicate that during inhalation therapy with chamomile, the bisabololoxides and spiroethers are more strongly involved in the inhaling activity than so far assumed. Georg Thieme Verlag KG Stuttgart New York.

  13. Minimum Energy Requirements in Complex Distillation Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Ivar J.


    Distillation is the most widely used industrial separation technology and distillation units are responsible for a significant part of the total heat consumption in the world's process industry. In this work we focus on directly (fully thermally) coupled column arrangements for separation of multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a particular implementation is the dividing wall column. Energy savings in the range of 20-40% have been reported with ternary feed mixtures. In addition to energy savings, such integrated units have also a potential for reduced capital cost, making them extra attractive. However, the industrial use has been limited, and difficulties in design and control have been reported as the main reasons. Minimum energy results have only been available for ternary feed mixtures and sharp product splits. This motivates further research in this area, and this thesis will hopefully give some contributions to better understanding of complex column systems. In the first part we derive the general analytic solution for minimum energy consumption in directly coupled columns for a multicomponent feed and any number of products. To our knowledge, this is a new contribution in the field. The basic assumptions are constant relative volatility, constant pressure and constant molar flows and the derivation is based on Underwood's classical methods. An important conclusion is that the minimum energy consumption in a complex directly integrated multi-product arrangement is the same as for the most difficult split between any pair of the specified products when we consider the performance of a conventional two-product column. We also present the Vmin-diagram, which is a simple graphical tool for visualisation of minimum energy related to feed distribution. The Vmin-diagram provides a simple mean to assess the detailed flow requirements for all parts of a complex directly coupled arrangement. The main purpose in

  14. Design of Unconstrained DMC to Improve the Distillate Product Purity of the Distillation Column

    Directory of Open Access Journals (Sweden)

    Bhat Vinayambika S.


    Full Text Available This paper demonstrates the use of unconstrained Dynamic Matrix Control (DMC to control the process transfer function with time delay. The selection of tuning parameter is challenging task in predictive control algorithm. The DMC scheme is designed and it is used here to control the process transfer function, First Order Plant with Dead Time (FOPDT model. Here, one manipulated variable (reflux and one controlled variable (distillate is considered for the implementation. The algorithm significantly controls the reflux to improve the distillate product purity. The simulation is done using MATLAB m-file. Both servo and regulatory responses were obtained. The simulation result validates the effectiveness of the proposed algorithm.

  15. Dynamic monitoring of the dust pickup efficiency of vacuum cleaners. (United States)

    Reponen, Tiina; Trakumas, Saulius; Willeke, Klaus; Grinshpun, Sergey A; Choe, Kyoo T; Friedman, Warren


    This study evaluated a new method that uses an optical aerosol photometer for dynamically monitoring dust pickup efficiency during vacuuming. In the first stage of this study the new method was compared with built-in dirt sensors installed by vacuum cleaner manufacturers. Through parallel testing it has been shown that the widely available built-in dirt sensors are not sensitive enough to register small (vacuum cleaner was operated with different nozzles on clean and soiled carpet and vinyl sheet flooring. This method also was used to monitor dust pickup efficiency when vacuuming carpets originating from lead-contaminated homes. The dust pickup efficiencies obtained with the optical aerosol photometer have been compared with the surface lead concentrations found during different stages of cleaning. Results indicate that the dust mass concentration registered with the optical aerosol photometer at the nozzle outlet correlates well with the dust mass collected in the vacuum cleaner filter bag and with the surface lead level. Therefore, dynamic dust pickup monitoring can provide valuable information about the efficiency of cleaning when a vacuum cleaner is used. This suggests that a small aerosol photometer similar to a light-scattering smoke detector would be beneficial in vacuum cleaners used for cleaning surfaces contaminated with leaded dust and biological particles (including allergens).

  16. Using vacuum in the treatment of surgical wounds complications

    Directory of Open Access Journals (Sweden)

    Drašković Miroljub


    Full Text Available Background/Aim. Using vacuum in medicine has been known from long ago, however, it has not been used for the treatment of wounds. The first experiments in this field were performed by Wagner Fleischmann, University of Ulm, Ulm, West Germany, in 1993. The aim of this study was to present our clinical experience with the treatment of surgical wounds complications in vascular patients by the use of controled vacuum. Method. In a period October 2006 - December 2009 a total of 18 patients with infection and surgical wound dehiscence were treated by the use of vacuum. Vacuum was applied to wounds by placing a polyurethane sponge on them and by fixing a polyurethane foil and a sponge to the surrounding healthy skin so to completely airtight wounds. Over a foil vacuum of - 150 mmHg was applied for a 5-day period, and on the day 6 a foil and a sponge were removed. Results. In all the 18 wounds treated by the use of vacuum secondary wound closing was achieved with no complications and with a significantly shortened time period treatment. Wound infections were healed using this method and only in 2 patients antibiotics were used at the same time. Conclusion. The use of vacuum in the treatment of operative wounds complications is an easy and reliable method contributing significantly to wounds better healing.

  17. Vacuum fiber-fiber coupler (United States)

    Heinrici, Axel; Bjelajac, Goran; Jonkers, Jeroen; Jakobs, Stefan; Olschok, Simon; Reisgen, Uwe


    Research and development carried out by the ISF Welding and Joining Institute of RWTH Aachen University has proven that combining high power laser and low vacuum atmosphere provides a welding performance and quality, which is comparable to electron beam welding. The developed welding machines are still using a beam forming which takes place outside the vacuum and the focusing laser beam has to be introduced to the vacuum via a suitable window. This inflexible design spoils much of the flexibility of modern laser welding. With the target to bring a compact, lightweight flying optics with flexible laser transport fibers into vacuum chambers, a high power fiber-fiber coupler has been adapted by II-VI HIGHYAG that includes a reliable vacuum interface. The vacuum-fiber-fiber coupler (V-FFC) is tested with up to 16 kW sustained laser power and the design is flexible in terms of a wide variety of laser fiber plug systems and vacuum flanges. All that is needed to implement the V-FFC towards an existing or planned vacuum chamber is an aperture of at least 100 mm (4 inch) diameter with any type of vacuum or pressure flange. The V-FFC has a state-of-the-art safety interface which allows for fast fiber breakage detection for both fibers (as supported by fibers) by electric wire breakage and short circuit detection. Moreover, the System also provides connectors for cooling and electric signals for the laser beam optics inside the vacuum. The V-FFC has all necessary adjustment options for coupling the laser radiation to the receiving fiber.

  18. Vegetable Oil Deodorizer Distillate: A Rich Source of the Natural Bioactive Components. (United States)

    Hussain Sherazi, Syed Tufail; Mahesar, Sarfaraz Ahmed; Sirajuddin


    Deodorizer distillates are waste products of edible oil processing industries obtained during deodorization process of vegetable oils. It is very cheap source of several health beneficial components such as tocopherols, sterols, squalene as well as free fatty acids which have numerous industrial applications. These valuable components are being used in different foods, pharmaceutical formulations and cosmetics. Traditional sources of these useful components are vegetable oils, fruits, vegetables and nuts. Global need of these important components has been exceeded than their availability. The deodorizer distillates of various vegetable oils are considered to be a rich source of several valuable components. Present review will cover brief introduction of common processing stages involved in all vegetable oil processing, analytical methods for characterization of deodorizer distillates by instrumental techniques, importance and commercial value of deodorizer distillates. Future prospective of current field may leads to cost efficient processes and increased attention on the nutritional quality of deodorized oil and commercial applications of deodorizer distillates as well as their valuable components.

  19. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system. (United States)


    ... 49 Transportation 6 2010-10-01 2010-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake systems...

  20. Irresolvable complex mixture of hydrocarbons in soybean oil deodorizer distillate. (United States)

    Ju, Yi-Hsu; Huynh, Lien-Huong; Gunawan, Setiyo; Chern, Yaw-Terng; Kasim, Novy S


    Aliphatic hydrocarbons (HCs) can be used as a fingerprint of a given seed oil. Only by characterization of aliphatic HCs could contamination by mineral oil in that seed oil be confirmed. During the isolation of squalene from soybean oil deodorizer distillate, a significant amount of unknown HCs, ca. 44 wt%, was obtained. These seemingly-easy-to-identify HCs turned out to be much more difficult to elucidate due to the presence of an irresolvable complex mixture (ICM). The objective of this study was to purify and identify the unknown ICM of aliphatic HCs from soybean oil deodorizer distillate. Purification of the ICM was successfully achieved by using modified Soxhlet extraction, followed by modified preparative column chromatography, and finally by classical preparative column chromatography. FT-IR, TLC, elemental analysis, GC/FID, NMR and GC-MS analyses were then performed on the purified HCs. The GC chromatogram detected the presence of ICM peaks comprising two major peaks and a number of minor peaks. Validation methods such as IR and NMR justified that the unknowns are saturated HCs. This work succeeded in tentatively identifying the two major peaks in the ICM as cycloalkane derivatives. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Economic Analysis in Series-Distillation Desalination

    Directory of Open Access Journals (Sweden)

    Mirna Rahmah Lubis


    Full Text Available The ability to produce potable water economically is the primary purpose of seawater desalination research. Reverse osmosis (RO and multi-stage flash (MSF cost more than potable water produced from fresh water resources. Therefore, this research investigates a high-efficiency mechanical vapor-compression distillation system that employs an improved water flow arrangement. The incoming salt concentration was 0.15% salt for brackish water and 3.5% salt for seawater, whereas the outgoing salt concentration was 1.5% and 7%, respectively. Distillation was performed at 439 K and 722 kPa for both brackish water feed and seawater feed. Water costs of the various conditions were calculated for brackish water and seawater feeds using optimum conditions considered as 25 and 20 stages, respectively. For brackish water at a temperature difference of 0.96 K, the energy requirement is 2.0 kWh/m3. At this condition, the estimated water cost is $0.39/m3 achieved with 10,000,000 gal/day distillate, 30-year bond, 5% interest rate, and $0.05/kWh electricity. For seawater at a temperature difference of 0.44 K, the energy requirement is 3.97 kWh/m3 and the estimated water cost is $0.61/m3. Greater efficiency of the vapor compression system is achieved by connecting multiple evaporators in series, rather than the traditional parallel arrangement. The efficiency results from the gradual increase of salinity in each stage of the series arrangement in comparison to parallel. Calculations using various temperature differences between boiling brine and condensing steam show the series arrangement has the greatest improvement at lower temperature differences. Keywords: desalination, dropwise condensation, mechanical-vapor compression

  2. Human tyrosinase inhibitor in rum distillate wastewater. (United States)

    Takara, Kensaku; Iwasaki, Hironori; Ujihara, Kunihiro; Wada, Koji


    An inhibitor of human tyrosinase activity in rum distillate wastewater was isolated and identified as (S)-(+)-imperanene (1). (S)-(+)-Imperanene significantly inhibited tyrosinase isolated from HMV-II cells (IC(50) 1.85 mM). Inhibition kinetics studies revealed that imperanene is a competitive inhibitor of tyrosinase when L-3,4-dihydroxyphenylalanine is used as the substrate. The inhibitory activities of 1, O-beta-D-glucopyranosyl imperanene (2) and O-beta-D-glucopyranosyl-3-methoxyl imperanene (3) were 1>2>3.

  3. Optimal synthesis and design of extractive distillation systems for bioethanol separation: From simple to complex columns

    DEFF Research Database (Denmark)

    Errico, M.; Rong, B. G.; Tola, G.


    separation techniques are today available, distillation is up to now the frontrunner technology in most of the plants. In particular extractive distillation is considered as an energy efficient method to produce pure ethanol overcoming the purity limitations imposed by the water-ethanol azeotrope...... considering the total condenser and reboiler duty as energy index. The capital costs and the solvent consumption are also taken into account in the final selection. Among all the complex configurations considered the two-column sequence can reduce the capital cost above 10% compared to the best simple column......Bioethanol has been considered as a green fuel and a valid alternative to reduce the dependence on fossil distillates. The development of an optimal separation process is considered as a key element in the design of an efficient process able to be cost effective and competitive. Despite many...

  4. Integrated Design and Control of Reactive and Non-Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted

    , an alternative approach is to tackle process design and controllability issues simultaneously, in the early stages of process design. This simultaneous synthesis approach provides optimal/near optimal operation and more efficient control of conventional (non-reactive binary distillation columns) (Hamid et al......., 2010) as well as complex chemical processes; for example, intensified processes such as reactive distillation (Mansouri et al., 2015). Most importantly, it identifies and eliminates potentially promising design alternatives that may have controllability problems later. To date, a number...... of methodologies have been proposed and applied on various problems to address the interactions between process design and control, and they range from optimization-based approaches to model-based methods (Sharifzadeh, 2013). In this work, integrated design and control of non-reactive distillation, ternary...

  5. Continuous-variable entanglement distillation of non-Gaussian mixed states

    DEFF Research Database (Denmark)

    Dong, Ruifang; Lassen, Mikael Østergaard; Heersink, Joel


    is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous...... variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which...... the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some...

  6. Deterministic entanglement distillation for secure double-server blind quantum computation (United States)

    Sheng, Yu-Bo; Zhou, Lan


    Blind quantum computation (BQC) provides an efficient method for the client who does not have enough sophisticated technology and knowledge to perform universal quantum computation. The single-server BQC protocol requires the client to have some minimum quantum ability, while the double-server BQC protocol makes the client's device completely classical, resorting to the pure and clean Bell state shared by two servers. Here, we provide a deterministic entanglement distillation protocol in a practical noisy environment for the double-server BQC protocol. This protocol can get the pure maximally entangled Bell state. The success probability can reach 100% in principle. The distilled maximally entangled states can be remaind to perform the BQC protocol subsequently. The parties who perform the distillation protocol do not need to exchange the classical information and they learn nothing from the client. It makes this protocol unconditionally secure and suitable for the future BQC protocol. PMID:25588565

  7. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S.A.


    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  8. Chronic consumption of distilled sugarcane spirit induces anxiolytic-like effects in mice


    Sena, Maria Clécia P; Nunes, Fabíola C; Stiebbe Salvadori, Mirian G S; Carvalho, Cleyton Charles D; Morais, Liana Clébia S L; Braga, Valdir A


    OBJECTIVE: Chronic ethanol consumption is a major public health problem throughout the world. We investigated the anxiolytic-like effects and the possible ever injury induced by the chronic consumption of ethanol or sugarcane spirit in mice. METHOD: Adult mice were exposed to a two-bottle free-choice paradigm for 6 weeks. The mice in Group A (n  =  16) had access to sugarcane spirit + distilled water, the mice in Group B (n  =  15) had access to ethanol + distilled water, and the mice in Grou...

  9. Process modeling and control applied to real-time monitoring of distillation processes by near-infrared spectroscopy. (United States)

    de Oliveira, Rodrigo R; Pedroza, Ricardo H P; Sousa, A O; Lima, Kássio M G; de Juan, Anna


    A distillation device that acquires continuous and synchronized measurements of temperature, percentage of distilled fraction and NIR spectra has been designed for real-time monitoring of distillation processes. As a process model, synthetic commercial gasoline batches produced in Brazil, which contain mixtures of pure gasoline blended with ethanol have been analyzed. The information provided by this device, i.e., distillation curves and NIR spectra, has served as initial information for the proposal of new strategies of process modeling and multivariate statistical process control (MSPC). Process modeling based on PCA batch analysis provided global distillation trajectories, whereas multiset MCR-ALS analysis is proposed to obtain a component-wise characterization of the distillation evolution and distilled fractions. Distillation curves, NIR spectra or compressed NIR information under the form of PCA scores and MCR-ALS concentration profiles were tested as the seed information to build MSPC models. New on-line PCA-based MSPC approaches, some inspired on local rank exploratory methods for process analysis, are proposed and work as follows: a) MSPC based on individual process observation models, where multiple local PCA models are built considering the sole information in each observation point; b) Fixed Size Moving Window - MSPC, in which local PCA models are built considering a moving window of the current and few past observation points; and c) Evolving MSPC, where local PCA models are built with an increasing window of observations covering all points since the beginning of the process until the current observation. Performance of different approaches has been assessed in terms of sensitivity to fault detection and number of false alarms. The outcome of this work will be of general use to define strategies for on-line process monitoring and control and, in a more specific way, to improve quality control of petroleum derived fuels and other substances submitted

  10. Black Hole Quantum Vacuum Polarization in Higher Dimensions

    CERN Document Server

    Flachi, Antonino; Lemos, José P S


    The goal of this paper is to extend to higher dimensionality the methods and computations of vacuum polarization effects in black hole spacetimes. We focus our attention on the case of five dimensional Schwarzschild-Tangherlini black holes, for which we adapt the general method initially developed by Candelas and later refined by Anderson and others. We make use of point splitting regularization and of the WKB approximation to extract the divergences occuring in the coincidence limit of the Green function and, after calculating the counter-terms using the Schwinger - De Witt expansion, we explicitly prove the cancellation of the divergences and the regularity of the vacuum polarization once counter-terms are added up. We finally handle numerically the renormalized expression of the vacuum polarization. As a check on the method we also prove the regularity of the vacuum polarization in the six dimensional case in the large mass limit.

  11. Renormalized vacuum polarization of rotating black holes

    CERN Document Server

    Ferreira, Hugo R C


    Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2+1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization (and, more importantly, the renormalized stress-energy tensor), for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.

  12. Experimental magic state distillation for fault-tolerant quantum computing. (United States)

    Souza, Alexandre M; Zhang, Jingfu; Ryan, Colm A; Laflamme, Raymond


    Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0〉 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.

  13. Soft sensing of system parameters in membrane distillation

    KAUST Repository

    Laleg-Kirati, Taous-Meriem


    Various examples of methods and systems are provided for soft sensing of system parameters in membrane distillation (MD). In one example, a system includes a MD module comprising a feed side and a permeate side separated by a membrane boundary layer; and processing circuitry configured to estimate feed solution temperatures and permeate solution temperatures of the MD module using monitored outlet temperatures of the feed side and the permeate side. In another example, a method includes monitoring outlet temperatures of a feed side and a permeate side of a MD module to determine a current feed outlet temperature and a current permeate outlet temperature; and determining a plurality of estimated temperature states of a membrane boundary layer separating the feed side and the permeate side of the MD module using the current feed outlet temperature and the current permeate outlet temperature.

  14. Cascade Distillation Subsystem Development: Early Results from the Exploration Life Support Distillation Technology Comparison Test (United States)

    Callahan, Michael R.; Patel, Vipul; Pickering, Karen D.


    In 2009, the Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell International, Torrance, California) was assessed in the National Aeronautics and Space Administration (NASA) Exploration Life Support (ELS) distillation comparison test. The purpose of the test was to collect data to support down-selection and development of a primary distillation technology for application in a lunar outpost water recovery system. The CDS portion of the comparison test was conducted between May 6 and August 19, 2009. The system was challenged with two pretreated test solutions, each intended to represent a feasible wastewater generated in a surface habitat. The 30-day equivalent wastewater loading volume for a crew of four was intended to be processed for each wastewater solution. Test Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. Test Solution 2 contained the addition of human-generated hygiene wastewater to the solution 1 waste stream components. Approximately 1500 kg of total wastewater was processed through the CDS during testing. Respective recoveries per solution were 93.4 +/- 0.7 and 90.3 +/- 0.5 percent. The average specific energy of the system during testing was calculated to be less than 120 W-hr/kg. The following paper provides detailed information and data on the performance of the CDS as challenged per the ELS distillation comparison test.

  15. Energy conservation in distillation: a technology applications manual

    Energy Technology Data Exchange (ETDEWEB)


    Distillation is the most widely practiced technique for separating mixtures of chemical species, but it is an energy intensive process. A 10% reduction in distillation energy consumption would effect a significant savings. On a national basis this would be an annual savings of 200 trillion Btu, or the equivalent of 36.5 million barrels of oil per year. Technology to achieve these savings in distillation energy is available and measures are presented to assist process engineers in technical and economic analysis of the energy conservation measures most suitable for particular distillation applications. The manual catalogs all of the energy conservation options applicable to distillation and the options by the investment required; describes in detail the options having a significant potential to reduce distillation energy requirements economically; provides guidelines that will allow the plant engineer to quickly screen each option for his application; and provides short-cut calculation procedures for use in a preliminary economic analysis of promising options.

  16. A comparative evaluation of nitrogen compounds in petroleum distillates

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dheer; Chopra, Anju; Patel, Mitra Bhanu; Sarpal, Amarjit Singh [Indian Oil Corporation Limited, Faridabad (India). Research and Development Centre


    Although the concentration of nitrogen compounds in crude oil is relatively low, they can become more concentrated in petroleum distillates and poison the catalysts used in refining processes. They cause undesirable deposits, color formation and odor in products; they also contribute to air pollution and some are highly carcinogenic. The poisoned catalyst becomes deactivated for hydrodesulfurization and unable to remove sulfur from middle distillates. In order to understand the effect on catalytic processes, it is desirable to identify the nitrogen compounds in various petroleum distillates. This paper compares the nitrogen species profiles in different petroleum distillates using a nitrogen chemiluminescence detector. In addition, four different petroleum distillate samples from different refineries were analyzed to find the variation in their nitrogen profiles. The nitrogen compounds in petroleum distillate samples were identified as anilines, quinolines, indoles, and carbazoles and their alkyl derivatives. Quantitation was carried out against known reference standards. The quantitative data were compared to the total nitrogen content determined by elemental analysis. (orig.)


    Directory of Open Access Journals (Sweden)

    E. D. Chertov


    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  18. Experimental tests of vacuum energy

    CERN Multimedia

    CERN. Geneva


    While the current vacuum energy of the Universe is very small, in our standard cosmological picture it has been much larger at earlier epochs. We try to address the question of what are possible ways to try to experimentally verify this. One direction is to look for systems where vacuum energy constitutes a non-negligible fraction of the total energy, and study the properties of those. Another possibility is to focus on the epochs around cosmic phase transitions, when the vacuum energy is of the same order as the total energy. Along these lines we investigate properties of neutron stars and the imprint of phase transitions on primordial gravitational waves.

  19. Hadronic Vacuum Polarization in True Muonium

    CERN Document Server

    Lamm, Henry


    The leading-order hadronic vacuum polarization contribution to the hyperfine splitting of true muonium is reevaluated in two ways. The first considers a more complex pionic form factor and better estimates of the perturbative QCD contributions. The second, more accurate method directly integrates the Drell ratio $R(s)$ to obtain $C_{1,\\rm hvp}=-0.0489(3)$. This corresponds to an energy shift in the hyperfine splitting of $\\Delta E^\\mu_{hfs,\\rm hvp}=276196(51)$ MHz.

  20. Chemistry of deposit formation in distillate fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hazlett, R.N.; Power, A.J.; Kelso, A.G.; Solly, R.K.


    The chemistry of deposit formation in distillate fuels was investigated at 65 and 80 C for time peroids equivalent to up to four years ambient storage. The chemical environment was varied by using different fuels, fuel blends, deposit promoters, and stabilzers. Blends of light cycle oil (LCO) in straight-run automotive distillate oil (ADO) were studied in most detail. A variety of carboxylic acids, a sulfonic acid, thiophenol, and caustic extract from LCO (primarily phenols) increased deposit formation, some very dramatically. For the carboxylic acids, a linear relationship was found between the hydrogen ion concentration calculated from pK/sub a/ values for water solutions and the amount of deposit formed. These acids enhanced deposit formation by catalytic action and are not incorporated into the deposit. Dodecylbenzenesulfonic acid and thiophenol were both strong deposit promoters, the latter deriving its major activity through partial conversion to benzenesulfonic acid during fuel stress. The phenols in the LCO caustic extract react via oxidative coupling to increase molecular size and develop low solubility in the fuel. A tertiary aliphatic amine stabilzer was effective for reducing the amounts of deposits from most stressed fuels and from all blends tested.

  1. Asymptotic speedups, bisimulation and distillation (Work in progress)

    DEFF Research Database (Denmark)

    Jones, Neil; Hamilton, G. W.


    Distillation is a fully automatic program transformation that can yield superlinear program speedups. Bisimulation is a key to the proof that distillation is correct, i.e., preserves semantics. However the proof, based on observational equivalence, is insensitive to program running times. This pa....... This paper shows how distillation can give superlinear speedups on some “old chestnut” programs well-known from the early program transformation literature: naive reverse, factorial sum, and Fibonacci....



    Scanavini, HFA; Ceriani, R.; Meirelles, AJA


    This work reports experimental tests using commercial spirits that were diluted and had their initial composition modified in order to better measure the distillation behavior of selected minor compounds of importance for the quality of alcoholic beverages. Such compounds were added to the commercial cachaca and the corresponding model wine, obtained after the spirits' dilution, was distilled. In this way a more precise distillation profile could be determined for those minor compounds. The a...

  3. Comparison of vacuum metal deposition and 1,2-indandione/ninhydrin reagent method for the development of fingerprints on renminbi

    National Research Council Canada - National Science Library

    Cong Wang; Zunlei Qian; Wei Li; Yaping Luo


    ...) method can be used to detect fingerprints on certain types of currency notes. Both VMD and 1,2-indandione/ninhydrin techniques are employed to visualize latent fingermarks on porous surfaces, such as paper...

  4. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant

    Directory of Open Access Journals (Sweden)

    Misri Gozan


    Full Text Available High purity of Bioethanol is required in biofuel mixing with gasoline (EXX. In bioethanol production line, the azeotropic property of ethanol-water becomes the barrier for purification process. This study examined two bioethanol separation processes by support of simulation tools, Superpro Designer 9.0 software. Ethanol purity and a low costeconomical process were the major considerations. Purification method of vapor permeation membrane technology was compared with distillation-adsorption method. Data from previous lab experiments and some literatures were used. The results showed that distillation-adsorption method is more economical compared to vapor permeation technology. Payback period of the simulation is 3.9 years and 4.3 years to distillation adsorption and vapor permeation respectively with each IRR value is 20.23% and 17.89%. Initial investment value of vapor permeation is 9.6% higher than distillation method. Significant difference observed in operating costs, since more units involved in vapor permeation require more labors to operate.

  5. Evolution of Volatile Compounds during the Distillation of Cognac Spirit. (United States)

    Awad, Pierre; Athès, Violaine; Decloux, Martine Esteban; Ferrari, Gérald; Snakkers, Guillaume; Raguenaud, Patrick; Giampaoli, Pierre


    Cognac wine spirit has a complex composition in volatile compounds which contributes to its organoleptic profile. This work focused on the batch distillation process and, in particular, on volatile compounds specifically produced by chemical reactions during the distillation of Cognac wine spirit, traditionally conducted in two steps with charentais pot stills. The aim of this study was to characterize these volatile compounds formed during distillation. Sampling has been performed on the distillates and inside the boiler during a typical Cognac distillation. The analysis of these samples allowed us to perform a mass balance and to point out several types of volatile compounds whose quantities strongly increased during the distillation process. These compounds were distinguished by their chemical family. It has been found that the first distillation step was decisive for the formation of volatile compounds. Moreover, 2 esters, 3 aldehydes, 12 norisoprenoids, and 3 terpenes were shown to be generated during the process. These results suggest that some volatile compounds found in Cognac spirit are formed during distillation due to chemical reactions induced by high temperature. These findings give important indications to professional distillers in order to enhance the product's quality.

  6. The dangers of distilled water in contact lens maintenance. (United States)

    Josephson, J E; Caffery, B E


    The reports of serious corneal infection associated with hydrogel lens wear prompted us to explore the level of sterility of the distilled water used by lens wearers in our practice. Fifty patients supplied samples of their partially-used distilled water for testing. Of the samples, 12% were found to be contaminated. Five samples of previously unopened distilled water were tested and no growth was found. We recommend that patients do not use distilled water for the care of hydrogel contact lenses. Rather, sterile unit dose or multi-dose (aerosol) nonpreserved, or preserved salines can be used.

  7. A Modelling Framework for Conventional and Heat Integrated Distillation Columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens


    Diabatic operation of distillation columns can lead to signicant reductions in energy utilization and operation cost compared to conventional (adiabatic) distillation columns, at an expense of an increased complexity of design and operation. The earliest diabatic distillation conguration dates back...... constitutes a problem in relations to achieving industrial acceptance. There is clearly a need for research and comparative studies which can help to provide analysis of the pros and cons of novel and intensied distillation processes compared to conventional columns for a range of separations. These studies...

  8. Tomographic quantum cryptography: equivalence of quantum and classical key distillation. (United States)

    Bruss, Dagmar; Christandl, Matthias; Ekert, Artur; Englert, Berthold-Georg; Kaszlikowski, Dagomir; Macchiavello, Chiara


    The security of a cryptographic key that is generated by communication through a noisy quantum channel relies on the ability to distill a shorter secure key sequence from a longer insecure one. For an important class of protocols, which exploit tomographically complete measurements on entangled pairs of any dimension, we show that the noise threshold for classical advantage distillation is identical with the threshold for quantum entanglement distillation. As a consequence, the two distillation procedures are equivalent: neither offers a security advantage over the other.

  9. Advances in Membrane Distillation for Water Desalination and Purification Applications

    Directory of Open Access Journals (Sweden)

    Juan Gomez


    Full Text Available Membrane distillation is a process that utilizes differences in vapor pressure to permeate water through a macro-porous membrane and reject other non-volatile constituents present in the influent water. This review considers the fundamental heat and mass transfer processes in membrane distillation, recent advances in membrane technology, module configurations, and the applications and economics of membrane distillation, and identifies areas that may lead to technological improvements in membrane distillation as well as the application characteristics required for commercial deployment.

  10. Butanol production from lignocellulose by simultaneous fermentation, saccharification, and pervaporation or vacuum evaporation. (United States)

    Díaz, Víctor Hugo Grisales; Tost, Gerard Olivar


    Techno-economic study of acetone, butanol and ethanol (ABE) fermentation from lignocellulose was performed. Simultaneous saccharification, fermentation and vacuum evaporation (SFS-V) or pervaporation (SFS-P) were proposed. A kinetic model of metabolic pathways for ABE fermentation with the effect of phenolics and furans in the growth was proposed based on published laboratory results. The processes were optimized in Matlab®. The end ABE purification was carried out by heat-integrated distillation. The objective function of the minimization was the total annualized cost (TAC). Fuel consumption of SFS-P using poly[1-(trimethylsilyl)-1-propyne] membrane was between 13.8 and 19.6% lower than SFS-V. Recovery of furans and phenolics for the hybrid reactors was difficult for its high boiling point. TAC of SFS-P was increased 1.9 times with supplementation of phenolics and furans to 3g/l each one for its high toxicity. Therefore, an additional detoxification method or an efficient pretreatment process will be necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Alumina barrier for vacuum brazing (United States)

    Beuyukian, C. S.


    Heating platens of vacuum-brazing press will not stick to workpiece if aluminum oxide "paper" is interposed. Paper does not disintegrate in press, will not contaminate braze alloy, and helps form smoothly contoured, regular fillet at brazed edges.


    Directory of Open Access Journals (Sweden)

    André Alexandrino Lotto


    Full Text Available This work aims to investigate the phosphorus removal by vacuum from metallurgical grade silicon (MGSi (98.5% to 99% Si. Melting experiments were carried out in a vacuum induction furnace, varying parameters such as temperature, time and relation area exposed to the vacuum / volume of molten silicon. The results of chemical analysis were obtained by inductively coupled plasma (ICP, and evaluated based on thermodynamic and kinetic aspects of the reaction of vaporization of the phosphorus in the silicon. The phosphorus was decreased from 33 to approximately 1.5 ppm after three hours of vacuum treatment, concluding that the evaporation step is the controlling step of the process for parameters of temperature, pressure and agitation used and refining by this process is technically feasible.

  13. e of the Surgical Glove in Modified Vacuum-Assisted Wound Healing

    Directory of Open Access Journals (Sweden)

    Shankar Ram Hemmanur


    Full Text Available Vacuum-assisted wound healing has been proven to be more efficacious than conventionaldressings. Vacuum dressing has been frequently modified given the restrictions in resourcesavailable. Here we present a modified method of vacuum dressing by using surgical orgynaecological gloves for lower and upper limb wounds. Vacuum dressing was applied withparts of a surgical or gynaecological glove and Opsite with T-tailing of the suction outlet.Vacuum-assisted wound healing using the surgical gloves showed relatively good woundhealing in the amputation stump, finger, arm, and leg in the cases studied.

  14. Effect of increased vacuum and aspiration rates on phacoemulsification efficiency. (United States)

    Gupta, Isha; Cahoon, Judd M; Gardiner, Gareth; Garff, Kevin; Henriksen, Bradley S; Pettey, Jeff H; Barlow, William R; Olson, Randall J


    To evaluate the effect of vacuum and aspiration rates on phacoemulsification efficiency. John A. Moran Eye Center Laboratories, University of Utah, Salt Lake City, Utah, USA. Experimental study. Formalin-soaked porcine lenses were divided into 2.0 mm cubes, and 0.9 mm 30-degree beveled 20-degree bent tips were used with micropulse ultrasound (US) (6 milliseconds on and 6 milliseconds off) and a peristaltic flow system. Vacuum levels were tested at 200, 300, 400, and 500 mm Hg, and aspiration rates were tested at 20, 35, and 50 mL/min. Efficiency (time to lens removal) and chatter (number of lens fragment repulsions from the tip) were determined. Increasing vacuum increased efficiency only when going from 200 mm Hg to higher vacuum levels. Increasing aspiration increased efficiency at all points measured (25 mL/min versus 35 mL/min, P vacuum was increased from 200 mm Hg to 300 mm Hg and up. Chatter decreased with increasing flow. Vacuum improved efficiency only up to 300 mm Hg and was more dependent on increasing flow. Similarly, chatter correlated with 200 mm Hg vacuum only and was more correlated with flow. Limitations of this study include use of only 1 US power modulation and hard nuclear material. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Vacuum production; Produccion de vacio

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, J. L. de


    Since the advent of ultra high vacuum in 1958 has been a great demand for new as means of production and to meet the process needs to be done: industry heavy, high technology and space research areas, large accelerator systems particles or nuclear fusion. In this paper we explore the modern media production: dry vacuum pumps, turbo pumps, pump status diffusion ion pumps and cryopumps. (Author)

  16. Edge conduction in vacuum glazing

    Energy Technology Data Exchange (ETDEWEB)

    Simko, T.M.; Collins, R.E. [Sydney Univ., NSW (Australia). Dept. of Applied Physics; Beck, F.A.; Arasteh, D. [Lawrence Berkeley Lab., CA (United States)


    Vacuum glazing is a form of low-conductance double glazing using in internal vacuum between the two glass sheets to eliminate heat transport by gas conduction and convection. An array of small support pillars separates the sheets; fused solder glass forms the edge seal. Heat transfer through the glazing occurs by radiation across the vacuum gap, conduction through the support pillars, and conduction through the bonded edge seal. Edge conduction is problematic because it affects stresses in the edge region, leading to possible failure of the glazing; in addition, excessive heat transfer because of thermal bridging in the edge region can lower overall window thermal performance and decrease resistance to condensation. Infrared thermography was used to analyze the thermal performance of prototype vacuum glazings, and, for comparison, atmospheric pressure superwindows. Research focused on mitigating the edge effects of vacuum glazings through the use of insulating trim, recessed edges, and framing materials. Experimentally validated finite-element and finite-difference modeling tools were used for thermal analysis of prototype vacuum glazing units and complete windows. Experimental measurements of edge conduction using infrared imaging were found to be in good agreement with finite-element modeling results for a given set of conditions. Finite-element modeling validates an analytic model developed for edge conduction.

  17. Vacuum-assisted cesarean section

    Directory of Open Access Journals (Sweden)

    McQuivey RW


    Full Text Available Ross W McQuivey,1 Jon E Block2 1Clinical Innovations, Salt Lake City, UT, 2Independent consultant, San Francisco, CA, USA Abstract: There has been a dramatic rise in the frequency of cesarean sections, surpassing 30% of all deliveries in the US. This upsurge, coupled with a decreasing willingness to allow vaginal birth after cesarean section, has resulted in an expansion of the use of vacuum assistance to safely extract the fetal head. By avoiding the use of a delivering hand or forceps blade, the volume being delivered through the uterine incision can be decreased when the vacuum is used properly. Reducing uterine extensions with their associated complications (eg, excessive blood loss in difficult cases is also a theoretical advantage of vacuum delivery. Maternal discomfort related to excessive fundal pressure may also be lessened. To minimize the risk of neonatal morbidity, proper cup placement over the “flexion point” remains essential to maintain vacuum integrity and reduce the chance of inadvertent detachment and uterine extensions. Based on the published literature and pragmatic clinical experience, utilization of the vacuum device is a safe and effective technique to assist delivery during cesarean section. Keywords: cesarean section, vacuum, forceps, birth, delivery

  18. Technical specification for vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Khaw, J. (ed.)


    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)

  19. Effectiveness of Water Desalination by Membrane Distillation Process (United States)

    Gryta, Marek


    The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered. PMID:24958289

  20. Effectiveness of Water Desalination by Membrane Distillation Process

    Directory of Open Access Journals (Sweden)

    Marek Gryta


    Full Text Available The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered.

  1. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul


    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  2. Effects of Two Application Methods of Plantaricin BM-1 on Control of Listeria monocytogenes and Background Spoilage Bacteria in Sliced Vacuum-Packaged Cooked Ham Stored at 4°C. (United States)

    Zhou, Huimin; Xie, Yuanhong; Liu, Hui; Jin, Junhua; Duan, Huixia; Zhang, Hongxing


    Two application methods were used to investigate the effect of plantaricin BM-1 on the control of Listeria monocytogenes and background spoilage bacteria in sliced vacuum-packaged cooked ham without the addition of any chemical preservatives, including sodium nitrite, during 35 days of storage at 4°C. Regardless of the application method, plantaricin BM-1 treatment (320, 640, or 1,280 arbitrary units [AU]/g of sliced cooked ham) significantly (P microbiological spoilage limitation level on the 21st day of storage. However, plantaricin BM-1 treatment significantly (P < 0.05) reduced the survival of background spoilage bacteria in ham compared with their survival in the control from day 21 to 35 of storage at 4°C. A level of 1,280 AU/g plantaricin incorporated into cooked ham was the most effective, reducing the count of background spoilage bacteria count from an initial 2.0 log CFU/g to 1.5 log CFU/g on day 7. This was then maintained for another 14 days and finally increased to 2.76 log CFU/g at the end of the storage at 4°C (2.85 log CFU/g lower than in the control). In conclusion, plantaricin BM-1 application inhibited the growth of L. monocytogenes and background spoilage bacteria in cooked ham during storage at 4°C and could be used as an antimicrobial additive for meat preservation.

  3. NMR and Chemometric Characterization of Vacuum Residues and Vacuum Gas Oils from Crude Oils of Different Origin

    Directory of Open Access Journals (Sweden)

    Jelena Parlov Vuković


    Full Text Available NMR spectroscopy in combination with statistical methods was used to study vacuum residues and vacuum gas oils from 32 crude oils of different origin. Two chemometric metodes were applied. Firstly, principal component analysis on complete spectra was used to perform classification of samples and clear distinction between vacuum residues and vacuum light and heavy gas oils were obtained. To quantitatively predict the composition of asphaltenes, principal component regression models using areas of resonance signals spaned by 11 frequency bins of the 1H NMR spectra were build. The first 5 principal components accounted for more than 94 % of variations in the input data set and coefficient of determination for correlation between measured and predicted values was R2 = 0.7421. Although this value is not significant, it shows the underlying linear dependence in the data. Pseudo two-dimensional DOSY NMR experiments were used to assess the composition and structural properties of asphaltenes in a selected crude oil and its vacuum residue on the basis of their different hydrodynamic behavior and translational diffusion coefficients. DOSY spectra showed the presence of several asphaltene aggregates differing in size and interactions they formed. The obtained results have shown that NMR techniques in combination with chemometrics are very useful to analyze vacuum residues and vacuum gas oils. Furthermore, we expect that our ongoing investigation of asphaltenes from crude oils of different origin will elucidate in more details composition, structure and properties of these complex molecular systems.

  4. Hydrotreating of distillates from Spanish coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.M.; Martinez, M.T.; Cebolla, V.; Fernandez, I.; Miranda, J.L. (Inst. de Carboquimica, CSIC, Zaragoza (Spain))


    Distillates obtained from a first-stage Spanish coal liquefaction process have been catalytically hydrotreated in microreactor in two steps. A commercially available Harshaw HT-400 E (Co-Mo/Al[sub 2]O[sub 3]) catalyst, 10 MPa hydrogen pressure and two temperatures (400 and 425deg C) have been used. The results have been evaluated for heteroatoms removal, oils yield, boiling point distribution and aromaticity by several techniques (GC, FT-i.r., [sup 1]H n.m.r., ultrasonic extraction and liquid chromatography). At the first step of hydrotreating, preasphaltenes rather than asphaltenes have been hydrocracked to produce smaller-size polar compounds in the oil fraction but aromaticity has not varied significatively. In the second step, heteroatoms content have been considerably reduced and the product meets refinery specifications for nitrogen but does not meet sulphur refinery specifications for feedstocks. (orig.).

  5. Proposal for Testing and Validation of Vacuum Ultra-Violet Atomic Laser-Induced Fluorescence as a Method to Analyze Carbon Grid Erosion in Ion Thrusters (United States)

    Stevens, Richard


    Previous investigation under award NAG3-25 10 sought to determine the best method of LIF to determine the carbon density in a thruster plume. Initial reports from other groups were ambiguous as to the number of carbon clusters that might be present in the plume of a thruster. Carbon clusters would certainly affect the ability to LIF; if they were the dominant species, then perhaps the LIF method should target clusters. The results of quadrupole mass spectroscopy on sputtered carbon determined that minimal numbers of clusters were sputtered from graphite under impact from keV Krypton. There were some investigations in the keV range by other groups that hinted at clusters, but at the time the proposal was presented to NASA, there was no data from low-energy sputtering available. Thus, the proposal sought to develop a method to characterize the population only of atoms sputtered from a graphite target in a test cell. Most of the ground work had been established by the previous two years of investigation. The proposal covering 2003 sought to develop an anti-Stokes Raman shifting cell to generate VUW light and test this cell on two different laser systems, ArF and YAG- pumped dye. The second goal was to measure the lowest detectable amounts of carbon atoms by 156.1 nm and 165.7 nm LIF. If equipment was functioning properly, it was expected that these goals would be met easily during the timeframe of the proposal, and that is the reason only modest funding was requested. The PI was only funded at half- time by Glenn during the summer months. All other work time was paid for by Whitworth College. The college also funded a student, Charles Shawley, who worked on the project during the spring.

  6. Submerged membrane distillation for seawater desalination

    KAUST Repository

    Francis, Lijo


    A submerged membrane distillation (SMD) process for fresh water production from Red Sea water using commercially available hollow fiber membranes has been successfully employed and compared with the conventional direct contact membrane distillation (DCMD) process. The hollow fiber membranes have been characterized for its morphology using field effect scanning electron microscope. In SMD process, a bunch of hollow fiber membranes are glued together at both ends to get a simplified open membrane module assembly submerged into the coolant tank equipped with a mechanical stirrer. Hot feed stream is allowed to pass through the lumen side of the membrane using a feed pump. Continuous stirring at the coolant side will reduce the temperature and concentration polarization. During the conventional DCMD process, using feed-coolant streams with co-current and counter-current flows has been tested and the results are compared in this study. In SMD process, a water vapor flux of 10.2 kg m-2 h-1 is achieved when using a feed inlet temperature of 80°C and coolant temperature of 20°C. Under the same conditions, during conventional DCMD process, a water vapor flux of 11.6 and 10.1 kg m-2 h-1 were observed during counter-current and co-current flow streams, respectively. Results show that the water production in the SMD process is comparable with the conventional DCMD process, while the feed-coolant flow streams are in the co-current direction. During conventional DCMD operation, a 15% increase in the water production is observed when feed-coolant streams are in the counter-current direction compared to the co-current direction. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  7. Modeling Of A Reactive Distillation Column: Methyl Tertiary Butyl Ether (Mtbe Simulation Studies

    Directory of Open Access Journals (Sweden)

    Ismail Mohd Saaid Abdul Rahman Mohamed and Subhash Bhatia


    Full Text Available A process simulation stage-wise reactive distillation column model formulated from equilibrium stage theory was developed. The algorithm for solving mathematical model represented by sets of differential-algebraic equations was based on relaxation method. Numerical integration scheme based on backward differentiation formula was selected for solving the stiffness of differential-algebraic equations. Simulations were performed on a personal computer (PC Pentium processor through a developed computer program using FORTRAN90 programming language. The proposed model was validated by comparing the simulated results with the published simulation results and with the pilot plant data from the literature. The model was capable of predicting high isobutene conversion for heterogeneous system, as desirable in industrial MTBE production process. The comparisons on temperature profiles, liquid composition profile and operating conditions of reactive distillation column also showed promising results. Therefore the proposed model can be used as a tool for the development and simulation of reactive distillation column.Keywords: Modeling, simulation, reactive distillation, relaxation method, equilibrium stage, heterogeneous, MTBE

  8. Active Disturbance Rejection Control of a Heat Integrated Distillation Column

    DEFF Research Database (Denmark)

    Al-Kalbani, Fahad; Zhang, Jie; Bisgaard, Thomas


    Heat integrated distillation column (HiDC) is the most energy efficient distillation approach making efficient utilization of internal heat integration through heat pump. The rectifying section acts as a heat source with high pressure, while the stripping section operates as a heat sink with low...

  9. A review on recent developments in solar distillation units

    Indian Academy of Sciences (India)

    A review on recent developments in solar distillation units ... Solar still; absorber; fluoride; solar radiation; energy; exergy; heat transfer. Abstract. The solar still is gaining popularity among the scientific community for the production of distillate and fluoride free water due to its low cost and simple working principle. Continuous ...

  10. 27 CFR 19.65 - Experimental distilled spirits plants. (United States)


    ... spirits plants. 19.65 Section 19.65 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Administrative and Miscellaneous Provisions Activities Not Subject to This Part § 19.65 Experimental distilled spirits plants. The...

  11. Barley distillers grains as a protein supplement for dairy cows. (United States)

    Weiss, W P; Erickson, D O; Erickson, G M; Fisher, G R


    Dried distillers grains produced from a mix of 65% barley and 35% corn were evaluated in digestion and lactation experiments. Dried barley distillers grains had 56% NDF, 29% CP, 3% amino acid N, 2.5% NDIN (55% of total N), and 1.8% ADIN (39% of total N). Wet barley distillers grains had 38% NDF, 27% CP, 2.7% amino acid N, .5% NDIN (12% of total N), and .8% ADIN (19% of total N). Digestibility of DM and N was similar among lactating dairy cows fed diets containing approximately 25% corn silage DM, 15% alfalfa silage DM, 15% alfalfa hay DM, plus varying amounts of a corn-barley concentrate mix and supplemental CP from soybean meal, barley distillers grains, or from 1:1 mixture of soybean meal and barley distillers grains. Digestibility of ADIN, NDF, and ADF increased with increasing amounts of barley distillers grains in the diet. Similar diets were fed to 60 Holstein cows for 84 d in a lactation experiment. Source of supplemental protein did not affect milk production (22.5 kg/d), FCM (20.4 kg/d), milk fat percent (3.6%), or DM intake (19.0 kg/d). Milk protein percent was decreased by feeding barley distillers grains. It was concluded that barley distillers grains were an acceptable protein source for dairy cows and that ADIN and NDF might not be appropriate measures of the nutritional value of this product.

  12. 27 CFR 19.830 - Application of distilled spirits tax. (United States)


    ... Vaporizing Process Administrative and Miscellaneous § 19.830 Application of distilled spirits tax. The internal revenue tax must be paid on any distilled spirits produced in or removed from the premises of a... spirits tax. 19.830 Section 19.830 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND...

  13. 27 CFR 17.184 - Distilled spirits container marks. (United States)


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Distilled spirits container marks. 17.184 Section 17.184 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... MANUFACTURING NONBEVERAGE PRODUCTS Miscellaneous Provisions § 17.184 Distilled spirits container marks. All...

  14. An Automated Distillation Column for the Unit Operations Laboratory (United States)

    Perkins, Douglas M.; Bruce, David A.; Gooding, Charles H.; Butler, Justin T.


    A batch distillation apparatus has been designed and built for use in the undergraduate unit operations laboratory course. The column is fully automated and is accompanied by data acquisition and control software. A mixture of 1­-propanol and 2-­propanol is separated in the column, using either a constant distillate rate or constant composition…

  15. Desalination and Water Recycling by Air Gap Membrane Distillation

    NARCIS (Netherlands)

    Meindersma, G.W.; Guijt, C.M.; de Haan, A.B.


    Membrane distillation (MD) is an emerging technology for desalination. Membrane distillation differs from other membrane technologies in that the driving force for desalination is the difference in vapour pressure of water across the membrane, rather than total pressure. The membranes for MD are

  16. The Design and Manufacturing of Essential oil Distillation Plant for ...

    African Journals Online (AJOL)

    The adaptation of oil distillation technology for essential oil production is proposed for small scale industrial entrepreneur. ... small scale manufacturing industry in the country do not have the capacity to manufacture the complete distillation plant system with the required precision for standard quality of oil at affordable cost.

  17. Distillation with Vapour Compression. An Undergraduate Experimental Facility. (United States)

    Pritchard, Colin


    Discusses the need to design distillation columns that are more energy efficient. Describes a "design and build" project completed by two college students aimed at demonstrating the principles of vapour compression distillation in a more energy efficient way. General design specifications are given, along with suggestions for teaching…

  18. Study of thermally coupled distillation systems for energy-efficient ...

    Indian Academy of Sciences (India)

    Study of thermally coupled distillation systems for energy-efficient distillation. NEHA SAXENA1, NILESH MALI2,* and SATCHIDANAND SATPUTE3. 1 Department of Chemical Engineering, Bharati Vidyapeeth Deemed University College of Engineering,. Pune 411046, India. 2 Chemical Engineering and Process ...

  19. Energy Performance Assessment of a 2nd-Generation Vacuum Double Glazing Depending on Vacuum Layer Position and Building Type in South Korea


    Seung-Chul Kim; Jong-Ho Yoon; Ru-Da Lee


    (1) Background: The application of high insulation to a building envelope helps reduce the heating load, but increases the cooling load. Evaluating the installation of high insulation glazing to buildings in climate zones with four distinct seasons, as in the case of South Korea, is very important; (2) Methods: This study compared the heating energy performance of four types of glazing, inside vacuum double glazing, outside vacuum double glazing, single vacuum glazing, and low-e double glazin...

  20. Design of Unconstrained DMC to Improve the Distillate Product Purity of the Distillation Column


    Bhat Vinayambika S.; Thirunavukkarasu I.; Shanmuga Priya S.


    This paper demonstrates the use of unconstrained Dynamic Matrix Control (DMC) to control the process transfer function with time delay. The selection of tuning parameter is challenging task in predictive control algorithm. The DMC scheme is designed and it is used here to control the process transfer function, First Order Plant with Dead Time (FOPDT) model. Here, one manipulated variable (reflux) and one controlled variable (distillate) is considered for the implementation. The algorithm sign...

  1. Assessment of penetration through vacuum cleaners and recommendation of wet cyclone technology. (United States)

    Seo, Youngjin; Han, Taewon


    In many commercial vacuum cleaners, the captured aerosol particles contained in the dust collector may accidentally release from the exhaust filtration owing to leakage or penetration. Vacuum cleaners may cause dust to become airborne by exhausting air that is not completely filtered. This may cause the operator to inhale dust, in turn causing health problems. This study aimed to investigate the dust penetration rates from three commercial vacuum cleaners and suggest the best technique for completely filtering exhaust air using a combination of cyclonic separation and water filtration. The commercial vacuum cleaners were tested inside a custom-built hood, and the exhausted particles were monitored using a sampling probe in conjunction with an aerosol particle sizer Quartzose mineral dusts were added to each vacuum cleaner through the dust transport line. A 2400 L/min wet cyclone was employed as the proposed vacuum cleaner It was designed using Stokes scaling, and its collection characteristics were evaluated using polystyrene latex beads. Surprisingly, the conventional vacuum cleaners failed to capture an overall average of approximately 14% of the particles in the given size range. However, only approximately 3.8% of the collected particles escaped from the vacuum cleaner that used the wet cyclone technology. Thus, the proposed vacuum cleaner should potentially be an effective method for vacuuming household dust. The successful investigation of conventional vacuum cleaners is useful for both manufacturers and users. As an effective vacuum cleaning mechanism, household dust is able to migrate along the thin water, film that forms on the inner walls of the cyclone vacuum cleaner. It collects dust in a small water inflow (3 mL/min), which allows it to capture a higher percentage of contaminants than most of the currently available vacuum cleaners. The significantly low accidental exposure rates achieved by this new vacuum cleaner enable healthy conditions in various

  2. Recovery of elemental sulfur from zinc concentrate direct leaching residue using atmospheric distillation: a pilot-scale experimental study. (United States)

    Li, Hailong; Yao, Xiaolong; Wang, Mingxia; Wu, Shaokang; Ma, Weiwu; Wei, Wenwu; Li, Liqing


    Recovery of elemental sulfur from zinc concentrate direct leaching residue (DLR) using atmospheric distillation was systematically investigated on a pilot-scale system for the first time. Batch operating mode was suggested for recovery of elemental sulfur from water-rich DLR using atmospheric distillation. Elemental sulfur with purity higher than 99% was obtained under certain conditions in batch operating mode. With an appropriate feed amount of 1,200 kg, batch experiment conducted at 460 degrees C resulted in sulfur purity of 96.22% and a recovery rate higher than 85%. Only 0.59 and 1.24 kWh power was needed to handle 1.0 kg DLR and produce 1.0 kg elemental sulfur, respectively. The results suggest that recovery of elemental sulfur from zinc concentrate DLR using atmospheric distillation is technologically and economically feasible. Moreover, other metal elements such as zinc were enriched in the distillation concentrate, which could be used for metal refining. Technologies could effectively lower the moisture content of DLR, and lowering the distillation temperature would be of great value for recovery of elemental sulfur from DLR using a distillation method. Distillation is a promising solution for recovery of elemental sulfur from DLRs. This work revealed the possibility of separation of elemental sulfur from zinc concentrate DLR using atmospheric distillation. Such knowledge is of fundamental importance in developing field-scale separation and purification technologies and devices in which simultaneous sulfur recovery and precious metal enrichment are possible. Important tasks for follow-up research are also suggested.

  3. Students' construction of a simple steam distillation apparatus and development of creative thinking skills: A project-based learning (United States)

    Diawati, Chansyanah; Liliasari, Setiabudi, Agus; Buchari


    This project-based learning combined the chemistry of separation process using steam distillation with engineering design process in an undergraduate chemistry course. Students built upon their knowledge of phase changes, immiscible mixture, and the relationship between vapor pressure and boiling point to complete a project of modifications steam distillation apparatus. The research method is a qualitative case study, which aims to describe how (1) the creative thinking skills of students emerged during six weeks of theproject, (2) students built steam distillation apparatus characteristics as the project product and (3) students response to the project-based learning model. The results showed that the students had successfully constructed a steam distillation apparatus using plastic kettle as steam generator and distillation flask. A Plastic tubewas used to drain water vapor from steam generator to distillation flask and to drain steam containing essential oil to the condenser. A biscuit tin filled with ice was used as a condenser. The time required until resulting distillate was fifteen minutes. The production of essential was conductive qualitatively by a very strong smell typical of essential oil and two phases of distillate. Throughout the project, students formulated the relevant and varied problem, formulated the goals, proposed the ideas of the apparatus and materials, draw apparatus design, constructed apparatus, tested apparatus, evaluated, and reported the project. Student response was generally positive. They were pleased, interested, more understanding the concepts and work apparatus principles, also implemented new ideas. These results indicate that project-based learning can develop students' creative thinking skills. Based on these results, it is necessary to conduct research and implemented project-based learning to other concepts.

  4. A modified pump-out technique used for fabrication of low temperature metal sealed vacuum glazing

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun Fu; Hyde, Trevor J.; Fang, Yueping [Center for Sustainable Technologies, School of the Built Environment, University of Ulster, Newtownabbey, Co. Antrim BT37 0QB, Northern Ireland (United Kingdom); Eames, Philip C.; Wang, Jinlei [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom)


    A modified pump-out technique, incorporating a novel pump-out hole sealing process, has been developed that enables a high level of vacuum to be achieved between the panes of a vacuum glazing. The modified pump-out method provides several potential opportunities for the fabrication of a vacuum glazing with improved thermal performance. In particular, improved flexibility for production of a wide range of glazing sizes may allow a lower cost of manufacture to be achieved by avoiding the expense of a high vacuum oven which would otherwise be required for commercial production of high performance, large-scale vacuum glazings. The thermal performance of the vacuum glazing fabricated using the pump-out technique was characterized using a guarded hotbox calorimeter and theoretically analyzed using a finite volume model. The excellent experimentally determined thermal performance of the fabricated vacuum glazing was in good agreement with that predicted theoretically. (author)

  5. Impact of Grape Varieties on Wine Distillates Flavour

    Directory of Open Access Journals (Sweden)

    Mara Banović


    Full Text Available Aroma is a phenomenon that occurrs when food and live organism mutually react during the process of consumption. Many factors influence the making of aroma of wine distillates (e.g. cognac during the technological process of distillation. It is extremely difficult to bring an objective judgement on the influence of individual factors since aroma is very subjective in its nature. The possibility of objective assessment of the influence of grape varieties on wine distillate was performed in this work using a computer in processing the results of cromatographic analyses of aroma substances. The given results were verified by sensor analyses. The achieved results have shown that mathematical model for calculating aroma chromatogram similarity can be successfully used for objective assessment of the influence of individual factors on aroma of wine distillates and that grape varieties have significant impact on aroma and the quality of wine distillates.

  6. Vacuum grasping as a manipulation technique for minimally invasive surgery (United States)

    Goossens, R. H. M.; van Eijk, D. J.; de Hingh, I. H. J. T.; Jakimowicz, J. J.


    Background Laparoscopic surgery requires specially designed instruments. Bowel tissue damage is considered one of the most serious forms of lesion, specifically perforation of the bowel. Methods An experimental setting was used to manipulate healthy pig bowel tissue via two vacuum instruments. During the experiments, two simple manipulations were performed for both prototypes by two experienced surgeons. Each manipulation was repeated 20 times for each prototype at a vacuum level of 60 kPa and 20 times for each prototype at a vacuum level of 20 kPa. All the manipulations were macroscopically assessed by two experienced surgeons in terms of damage to the bowel. Results In 160 observations, 63 ecchymoses were observed. All 63 ecchymoses were classified as not relevant and negligible. No serosa or seromuscular damages and no perforations were observed. Conclusion Vacuum instruments such as the tested prototypes have the potential to be used as grasper instruments in minimally invasive surgery. PMID:20195640

  7. Alcoholic beverages produced by alcoholic fermentation but not by distillation are powerful stimulants of gastric acid secretion in humans. (United States)

    Teyssen, S; Lenzing, T; González-Calero, G; Korn, A; Riepl, R L; Singer, M V


    The effect of commonly ingested alcoholic beverages on gastric acid output and release of gastrin in humans is unknown. In 16 healthy humans the effect of some commonly ingested alcoholic beverages produced by fermentation plus distillation (for example, whisky, cognac, calvados, armagnac, and rum) or by alcoholic fermentation (beer, wine, champagne, martini, and sherry) on gastric acid output and release of gastrin was studied. Gastric acid output was determined by the method of intragastric titration. Plasma gastrin was measured using a specific radioimmunoassay. None of the alcoholic beverages produced by fermentation plus distillation had any significant effect on gastric acid output and release of gastrin compared with control (isotonic glucose and distilled water). Alcoholic beverages produced only by fermentation significantly (p wine, and sherry were distilled, only their remaining parts increased gastric acid output by 53% to 76% of MAO and increased release of gastrin up to 4.3-fold compared with control. (1) Alcoholic beverages produced by fermentation but not by distillation are powerful stimulants of gastric acid output and release of gastrin; (2) the alcoholic beverage constituents that stimulate gastric acid output and release of gastrin are most probably produced during the process of fermentation and removed during the following process of distillation.

  8. Numerical study of a water distillation system using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Zarzoum, K.; Zhani, K. [Sfax University, (Turkey); Bacha, H. Ben [Prince Sattam Bin Abdulaziz University, Alkharj (Saudi Arabia)


    This paper tackles an optimization approach in order to boost the fresh water production of a new design of a solar still which is located at Sfax engineering national school in Tunisia. This optimization approach is based upon the above mentioned design's improvement by coupling the conventional solar still into at a condenser, solar air and water collector and humidifier. This new concept of a distiller solar still using humidification- dehumidification processes (HD) is exploited for the desalination purpose. As a result of this work, the humidification- dehumidification processes have an essential effect in improving the solar still performance. Performance has been predicted theoretically in terms of water and inner glass cover temperatures, the inlet temperature of air and water of the new concept of distiller on water condensation rate and fresh water production. A general model based on heat and mass transfers in each component of the unit has been developed in steady dynamic regime. The developed model is used, simulating the HD system, to investigate the influence of the meteorological and operating parameters on the system productivity. The obtained set of ordinary differential equations has been converted to a set of algebraic system of equations by the functional approximation method of orthogonal collocation. The developed model is used to simulate the HD system in order to investigate the steady state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The obtained results were compared with those of other studies and the comparison gives a good validity of the present results.

  9. RFQ Vacuum brazing at CERN

    CERN Document Server

    Mathot, S


    The aim of this paper is to describe the vacuum brazing procedure used at CERN for the brazing of Radio Frequency Quadrupole (RFQ). The RFQ is made of high precision machined OFE copper pieces assembled together. Vacuum brazing is one of the most promising techniques used to join the individual components leading to vacuum tightness and high precision alignment. The RFQ modules brazed at CERN are made of four 100 or 120 cm long vanes (two major and two minor vanes). Our brazing procedure consists of two steps. The first step involves the brazing of the four vanes in a horizontal position. The second step consists of brazing the vacuum stainless steel flanges to the copper structure in a vertical position. The paper describes the problems encountered with the alignment and the vacuum tightness. The difficulties related to the stress relaxation of the machined copper pieces during the brazing heat treatment are discussed. In addition, the solutions developed to improve the alignment of the brazed RFQ’s are...

  10. Measurement of partial pressures in vacuum technology and vacuum physics (United States)

    Huber, W. K.


    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  11. Current status of the science and technology of vacuum glazing

    Energy Technology Data Exchange (ETDEWEB)

    Collins, R.E.; Simko, T.M. [University of Sydney (Australia). School of Physics


    This paper reviews the current state-of-the-art of the science and technology of vacuum glazing. The construction of vacuum glazing, and its method of manufacture in the laboratory, is described. Experimental data are presented on the magnitude of heat flows through vacuum glazing. Gaseous heat transfer is negligible, and the internal vacuum is shown to be stable over many years, in well-manufactured glazing. Values of air-to-air, centre-of-glazing thermal conductance have been achieved ranging from 3 W m {sup -2} K{sup -1} (for vacuum glazing with no internal low emittance coating) to 0.8 W m {sup -2} K {sup -1} (for samples with two internal low emittance coatings). The overall heat transport rate through 1 m x 1 m samples of vacuum glazing has been measured in accurately calibrated guarded hot box instruments. The results obtained agree to within experimental error ({+-} 6%) with those estimated on the basis of local measurements of heat transfer due to radiation, pillar conduction and lateral heat flow through the edge seal. Sources of mechanical tensile stress in vacuum glazing are identified. Stresses due to atmospheric pressure occur in the vicinity of the pillars, and (in poorly designed glazing) near the edge seal. Stresses due to temperature differences are influenced by many factors including the external heat transfer coefficients, level of insulation of the glazing, edge insulation, and edge constraints. Methods of estimating these stresses are discussed. It is shown that vacuum glazing can be designed with adequately low stresses, and low thermal conductance. (author)

  12. Ignition delay times of Gasoline Distillation Cuts measured with Ignition Quality Tester

    KAUST Repository

    Naser, Nimal


    Tailoring fuel properties to maximize the efficiency of internal combustion engines is a way towards achieving cleaner combustion systems. In this work, the ignition properties of various gasoline fuel distillation cuts are analyzed to better understand fuel properties of the full boiling range fuel. An advanced distillation column (ADC) provides a more realistic representation of volatility characteristics, which can be modeled using equilibrium thermodynamic methods. The temperature reported is that of the liquid, as opposed to the vapor temperature in conventional ASTM D86 distillation standard. Various FACE (fuels for advanced combustion engines) gasolines were distilled and various cuts were obtained. The separated fractions were then tested in an ignition quality tester (IQT) to see the effect of chemical composition of different fractions on their ignition delay time. Fuels with lower aromatic content showed decreasing ignition delay time with increasing boiling point (i.e., molecular weight). However, fuels with higher aromatic content showed an initial decrease in ignition delay time with increasing boiling point, followed by drastic increase in ignition delay time due to fractions containing aromatics. This study also provides an understanding on contribution of different fractions to the ignition delay time of the fuel, which provides insights into fuel stratification utilized in gasoline compression ignition (GCI) engines to tailor heat release rates.

  13. The hydrogen-storing microporous silica 'Microcluster' reduces acetaldehyde contained in a distilled spirit. (United States)

    Kato, Shinya; Miwa, Nobuhiko


    Acetaldehyde is a detrimental substance produced in alcoholic liquor aging. We assessed an ability of hydrogen-storing microporous silica 'Microcluster' (MC+) to reduce acetaldehyde, as compared with autoclave-dehydrogenated MC+ (MC-). Acetaldehyde was quantified spectrophotometrically by an enzymatic method. Authentic acetaldehyde was treated by MC+ for 20min, and decreased from 43.4ppm to 10.9ppm, but maintained at 49.3ppm by MC-. On the other hand, acetaldehyde contained in a distilled spirit was decreased from 29.5ppm to 3.1ppm at 20min by MC+, but not decreased by MC-. Addition of MC+ or MC- to distilled water without acetaldehyde showed no seeming effect on the quantification used. Accordingly acetaldehyde in a distilled spirit is reduced to ethanol by hydrogen contained in MC+, but not by the silica moiety of MC+. Hydrogen gas of 1.2mL was released for 20min from MC+ of 0.59g in water, resulting in dissolved hydrogen of 1.09ppm and an oxidation- reduction potential of -687.0mV indicative of a marked reducing ability. Thus, MC+ has an ability to reduce acetaldehyde in a distilled spirit due to dissolved hydrogen released from MC+. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Conceptual design of heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer

    Directory of Open Access Journals (Sweden)

    Paritta Prayoonyong


    Full Text Available The synthesis of a heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer is presented. The residue curve map of the ethanol/water/1-butanol mixture is computationally generated using non-random twoliquid thermodynamic model. It is found that 1-butanol leads to a residue curve map topological structure different from that generated by typical entrainers used in ethanol dehydration. Synthesised by residue curve map analysis, the distillation flowsheet for ethanol dehydration by 1-butanol comprises a double-feed column integrated with an overhead decanter and a simple column. The double-feed column is used to recover water as the top product, whereas the simple column is used for recovering ethanol and 1-butanol. The separation feasibility and the economically near-optimal designs of distillation columns in the flowsheet are evaluated and identified by using the boundary value design method. The distillation flowsheet using 1-butanol is compared with the conventional process using benzene as entrainer. Based on their total annualised costs, the ethanol dehydration process using 1-butanol is less economically attractive than the process using benzene. However, 1-butanol is less toxic than benzene.

  15. Enhanced Freshwater Production Using Finned-Plate Air Gap Membrane Distillation (AGMD

    Directory of Open Access Journals (Sweden)

    Perves Bappy Mohammad Jabed


    Full Text Available Air Gap membrane distillation (AGMD, a special type of energy efficient membrane distillation process, is a technology for producing freshwater from waste water. Having some benefits over other traditional processes, this method has been able to draw attention of researchers working in the field of freshwater production technologies. In this study, a basic AGMD system with flat coolant plate has been modified using a specially designed channelled coolant plate of portable size to observe its effect over the production rate and performance of the system. Attempt has been made to increase the amount of distillate flux by using the “fin effect” of the channelled coolant plate. A finned plate have been used instead of a flat coolant plate and experiments were conducted to compare the effect. Coolant temperature and feed temperature of the system have been varied from 10°C to 25°C and 40°C to 70°C respectively. Comparing the data, around 50% to 58% distillate enhancement has been observed for channelled coolant plate. Also, it was seen that the enhancement was higher for higher feed temperatures and coolant temperatures. With these findings, a better performing AGMD module has been introduced to mitigate the scarcity of freshwater.

  16. Integrated design of a conventional crude oil distillation tower using pinch analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liebmann, K.; Dhole, V.R.; Jobson, M. [UMIST, Manchester (United Kingdom). Dept. of Process Integration


    The substantial energy requirement of crude oil distillation columns is met partly by costly utilities, such as steam and fuel for fired heaters, and partly by heat recovered from the process, using process-to-process heat exchange. Energy savings, therefore, demand not only a distillation column that is energy-efficient, but also a heat exchanger network (HEN) which minimizes utility costs by maximizing heat recovery. A new crude oil distillation design procedure is presented which considers the column, the HEN and their interactions simultaneously, to minimize utility costs. Pinch analysis is used to determine minimum utility costs prior to the design of the HEN. In this method, the column is decomposed into a sequence of simple columns, which enables appropriate distribution of stages and simplifies analysis. Modifications, which further increase the efficiency of the process, are proposed: these are the installation of reboilers, rather than stripping steam, and the thermal coupling of column sections. The detrimental effects of these modifications on the heat recovery opportunities of the process are analysed for a distillation tower with side-strippers. A new step-by-step design procedure is derived from this analysis, and is applied to a case study. (author)

  17. Carbon nanotubes based vacuum gauge (United States)

    Rudyk, N. N.; Il’in, O. I.; Il’ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.


    We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.

  18. Sensory characteristics of antioxidant extracts from Uruguayan native plants: influence of deodorization by steam distillation. (United States)

    Miraballes, Marcelo; Gámbaro, Adriana; Ares, Gastón


    Polyphenolic-rich antioxidant extracts from native plants have potential applications as ingredients in functional foods; however, their intense characteristic flavour is a major limitation to their application. In this context, the aim of the present work was to evaluate the influence of steam distillation on the sensory and physicochemical characteristics of extracts of five native Uruguayan plants (Acca sellowiana, Achyrocline satureioides, Aloysia gratisima, Baccharis trimera and Mikania guaco). Aqueous extracts from the five native plants were obtained. Steam distillation was used to produce two types of deodorized extracts: extracts from deodorized leaves and extracts deodorized after the extraction. The extracts were characterized in terms of their total polyphenolic content and antioxidant activity (using 2,2-diphenyl-1-picryl-hydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid methods). A trained assessor panel evaluated characteristic odour, characteristic flavour, bitterness and astringency of the extracts. The total polyphenolic content of the extracts ranged from 112.4 to 974.4 mg/100 mL, whereas their antioxidant capacity ranged from 9.6 to 1008.7 mg vitamin C equivalents/100 mL, depending on the type of extract and the method being considered. Steam distillation was effective in reducing the characteristic odour and flavour of the extracts, without causing large changes in their polyphenolic content and antioxidant activity. In general, in terms of sensory characteristics, steam distillation performed on the extracts gave better results than when performed on the leaves; whereas the opposite trend was found for polyphenolic content and antioxidant activity. Results suggested that steam distillation could be a promising low-cost procedure for the production of antioxidant extracts for food products.

  19. The Effect of Non-condensable Gases Removal on Air Gap Membrane Distillation: Experimental and Simulation Studies

    KAUST Repository

    Alsaadi, Ahmad S.


    In the kingdom of Saudi Arabia (KSA), the current seawater desalination technologies are completely relying on burning unsustainable crude oil as their main energy driver. Saudi authorities have realized that the KSA is not going to be protected from the future global energy crisis and have started to set up a plan to diversify its energy resources. Membrane Distillation (MD) has emerged as an attractive alternative desalination process. It combines advantages from both thermal and membrane-based technologies and holds the potential of being a cost-effective separation process that can utilize low-grade waste heat or renewable energy. MD has four different configurations; among them is Air Gap Membrane Distillation (AGMD) which is the second most commonly tested and the most commercially available pilot-plant design. AGMD has a stagnant thin layer of air between the membrane and the condensation surface. This layer introduces a mass transfer resistance that makes the process require a large membrane surface area if a large quantity of fresh water is desired. This dissertation reports on experimental and theoretical work conducted to enhance the AGMD flux by removing non-condensable gases from the module and replacing it with either vacuum, liquid water or porous materials. At first, a mathematical model for AGMD was developed and validated experimentally to create a baseline for improvements that could be achieved after the removal of non-condensable gases. The mathematical model was then modified to simulate the process under vacuum where it showed a flux enhancement that reached 286%. The Water Gap Membrane Distillation (WGMD) configuration improved the flux by almost the same percentage. Since enhancing the flux is expected to increase temperature polarization effects, a theoretical study was conducted on the effect of temperature polarization in a Vacuum Membrane Distillation (VMD) configuration. The study showed that the effect of temperature polarization at

  20. Vacuum Cleaner Fan Being Improved (United States)

    Tweedt, Daniel L.


    As part of the technology utilization program at the NASA Lewis Research Center, efforts are underway to transfer aerospace technologies to new areas of practical application. One such effort involves using advanced computational fluid dynamics (CFD) codes for turbomachinery to analyze the internal fluid dynamics of low-speed fans and blowers. This year, the Kirby Company in Cleveland, Ohio, approached NASA with a request for technologies that could help them improve their vacuum cleaners. Of particular interest to Kirby is the high-frequency blade-passing noise generation of their vacuum cleaner fan at low airflow rates.

  1. Effect of catalyst deactivation on vacuum residue hydrocracking

    Directory of Open Access Journals (Sweden)

    Hoda S. Ahmed


    Full Text Available Accelerated deactivation tests of the pre-sulfided Mo–W/SiO2–Al2O3 commercial catalyst were performed using heavy vacuum petroleum feedstock. High reaction temperature employed in the accelerated catalyst aging resulted in large amounts of carbonaceous deposition with high aromaticity, which was found to be the principal deactivation cause. The effect of catalyst deactivation on hydrocracking of vacuum residue was studied. Experiments were carried out in a batch reactor at 60 bar, feed to catalyst ratio 10:1 and temperature 425 °C. The duration time for a cycle-run was 4 h. On increasing the interval duration times from 4 to 20 h (i.e. five cycles, the quality of the hydrocracked products was decreased. In each cycle-run, a fresh feedstock was used with the same sulfide catalyst. The quality of distillate products, such as hydrodesulfurization (HDS was decreased from 61.50% to 39.52%, while asphaltene contents of the total liquid product were increased from 2.7% to 5.2% and their boiling ranges were increased during these duration times due to the successive catalyst deactivation during the 5 cycle-runs, caused by successive adsorption of coke formation.

  2. Vacuum electrolysis of quartz (United States)

    King, James Claude


    The disclosure is directed to a method for processing quartz used in fabricating crystal resonators such that transient frequency change of resonators exposed to pulse irradiation is virtually eliminated. The method involves heating the crystal quartz in a hydrogen-free atmosphere while simultaneously applying an electric field in the Z-axis direction of the crystal. The electric field is maintained during the cool-down phase of the process.

  3. Using commercial simulators for determining flash distillation curves for petroleum fractions

    Directory of Open Access Journals (Sweden)

    Eleonora Erdmann


    Full Text Available This work describes a new method for estimating the equilibrium flash vaporisation (EFV distillation curve for petro-leum fractions by using commercial simulators. A commercial simulator was used for implementing a stationary mo-del for flash distillation; this model was adjusted by using a distillation curve obtained from standard laboratory ana-lytical assays. Such curve can be one of many types (eg ASTM D86, D1160 or D2887 and involves an experimental procedure simpler than that required for obtaining an EFV curve. Any commercial simulator able to model petroleum can be used for the simulation (HYSYS and CHEMCAD simulators were used here. Several types of petroleum and fractions were experimentally analysed for evaluating the proposed method; this data was then put into a process si-mulator (according to the proposed method to estimate the corresponding EFV curves. HYSYS- and CHEMCAD-estimated curves were compared to those produced by two traditional estimation methods (Edmister’s and Maswell’s methods. Simulation-estimated curves were close to average Edmister and Maxwell curves in all cases. The propo-sed method has several advantages; it avoids the need for experimentally obtaining an EFV curve, it does not de-pend on the type of experimental curve used to fit the model and it enables estimating several pressures by using just one experimental curve as data.

  4. Using commercial simulators for determining flash distillation curves for petroleum fractions

    Directory of Open Access Journals (Sweden)

    Eleonora Erdmann


    Full Text Available This work describes a new method for estimating the equilibrium flash vaporisation (EFV distillation curve for petro-leum fractions by using commercial simulators. A commercial simulator was used for implementing a stationary mo-del for flash distillation; this model was adjusted by using a distillation curve obtained from standard laboratory ana-lytical assays. Such curve can be one of many types (eg ASTM D86, D1160 or D2887 and involves an experimental procedure simpler than that required for obtaining an EFV curve. Any commercial simulator able to model petroleum can be used for the simulation (HYSYS and CHEMCAD simulators were used here. Several types of petroleum and fractions were experimentally analysed for evaluating the proposed method; this data was then put into a process si-mulator (according to the proposed method to estimate the corresponding EFV curves. HYSYS- and CHEMCAD-estimated curves were compared to those produced by two traditional estimation methods (Edmister’s and Maswell’s methods. Simulation-estimated curves were close to average Edmister and Maxwell curves in all cases. The propo-sed method has several advantages; it avoids the need for experimentally obtaining an EFV curve, it does not de-pend on the type of experimental curve used to fit the model and it enables estimating several pressures by using just one experimental curve as data.

  5. Vacuum-assisted closure for defects of the abdominal wall. (United States)

    DeFranzo, Anthony J; Pitzer, Keith; Molnar, Joseph A; Marks, Malcolm W; Chang, Michael C; Miller, Preston R; Letton, Robert W; Argenta, Louis C


    Reconstruction of the abdominal wall poses a problem common to many surgical specialties. Abdominal wall defects may be caused by trauma and/or prior surgery, with dehiscence or infection. Several options to repair the structural integrity of the abdominal wall exist, including primary closure, flaps, mesh, and skin grafts. Complications of these procedures include recurrent infection of the abdominal wall, infection of mesh, dehiscence, flap death, and poor skin graft take. Risk factors predisposing to these complications include tissue edema, preoperative tissue infection, and patient debilitation, with poor wound healing potential. Ideally, reconstruction should be performed on a nonedematous, clean tissue bed with bacterial levels less than 10 bacteria/cm in a well-nourished patient. Vacuum-assisted closure was used in a series of patients in an attempt to prepare the abdominal wall for reconstruction and reduce the risk of complications. Charts were reviewed for 100 patients who underwent abdominal wall reconstruction after vacuum-assisted closure therapy. Their wound cause, reconstruction technique, complications, and number of days on the vacuum-assisted closure device are reported. The ability of vacuum-assisted closure to reduce edema, increase blood flow, potentially decrease bacterial colonization, and reduce wound size greatly facilitated abdominal wall reconstruction. The vacuum-assisted closure device served as a temporary dressing with which to control dehiscence and to maintain abdominal wall integrity when bowel wall edema prevented abdominal closure. Vacuum-assisted closure therapy frequently shortened time to abdominal wall reconstruction and simplified the method of reconstruction.

  6. Overview of High Power Vacuum Dry RF Load Designs

    Energy Technology Data Exchange (ETDEWEB)

    Krasnykh, Anatoly [SLAC National Accelerator Lab., Menlo Park, CA (United States)


    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  7. Input-Output Decoupling of a Distillation Column LV-Configuration

    DEFF Research Database (Denmark)

    Yazdi, H.; Jørgensen, Sten Bay; Bahar (fratrådt), Mehrdad


    Introduction, digraph approach, distillation column, digraph analysis, solution analysis, discussion and conclusion, references.......Introduction, digraph approach, distillation column, digraph analysis, solution analysis, discussion and conclusion, references....

  8. Exergy analysis of a MSF distillation plant

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, Nafiz [Department of Mechanical Engineering, Erciyes University, Kayseri (Turkey)]. E-mail:; Cengel, Yunus A. [Department of Mechanical Engineering/312, University of Nevada, Reno, NV 89557 (United States)


    In this paper, a large MSF distillation plant in the gulf area is analyzed thermodynamically using actual plant operation data. Exergy flow rates are evaluated throughout the plant, and the exergy flow diagram is prepared. The rates of exergy destruction and their percentages are indicated on the diagram so that the locations of highest exergy destruction can easily be identified. The highest exergy destruction (77.7%) occurs within the MSF unit, as expected, and this can be reduced by increasing the number of flashing stages. The exergy destruction in the pumps and motors account for 5.3% of the total, and this also can be reduced by using high efficiency motors and pumps. The plant is determined to have a second law efficiency of just 4.2%, which is very low. This indicates that there are major opportunities in the plant to reduce exergy destruction and, thus, the amount of electric and thermal energy supplied, making the operation of the plant more cost effective.

  9. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H


    Handbook of Vacuum Physics, Volume 1: Gases and Vacua provides information on the many aspects of vacuum technology, from material on the quantum theoretical aspects of the complex semi-conductors used for thermionic and photo-electric emission to data on the performance of commercially available pumps, gauges, and high-vacuum materials. The handbook satisfies the need of workers using vacuum apparatuses or works on the diverse applications of high-vacuum technology in research and industry. The book is a compilation of long articles prepared by experts in vacuum technology. Sufficient theoret

  10. Micro distillation of crude oil to obtain TBP (True Boiling Points) curve; Micro destilacao de petroleo para obtencao da curva PEV (Ponto de Ebulicao Verdadeiro)

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Maria de Lourdes S.P.; Mendes, Luana de Jesus [Fundacao Gorceix, Ouro Preto, MG (Brazil); Medina, Lilian Carmen [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)


    PETROBRAS and others petroleum companies adopt the ASTM norms as reference method for oil distillation, ASTM D2892 (2005) that uses columns with 14 to 18 theoretical plates and the ASTM D 5236 (2003) , that distills mixture of heavy hydrocarbons with boiling point over 150 deg C. The result of these two distillations is the TBP (True Boiling Point) curve that is the main tool to define the yield of oil derivatives, the 'royalties' payment, the oil price for commercialization and the logistic support of oil location or in new plants projects of distillation and optimization studies. This procedure has some limitations as the volume sample, at least 1L, and the time of distillation, 2 to 4 days. The objective of this work is to propose a new alternative to attain de PEV curve, developing a new methodology using micro scale distillation that uses a more efficient column than the conventional method. Graphics of both methods were created and the results between the conventional and the micro distillation received statistical treatment to prove the equivalence between them. (author)

  11. An Experimental Study on Apoptosis of cultivated Wild Ginseng Distilled Herbal Acupuncture by Concentration Level

    Directory of Open Access Journals (Sweden)

    Hee-Chul Cho


    Full Text Available Objectives : In order to measure the efficacy of cultivated wild ginseng distilled herbal acupuncture by concentration level, we've treated A549 human lung cancer lines with different concentrations of cultivated wild ginseng distilled herbal acupuncture and examined mRNA and proteins which take parts in apoptosis. Methods : A549 human lung cancer lines were treated with various concentration levels of cultivated wild ginseng distilled herbal acupuncture and cell toxicity was carefully examined. From the analysis of DNA fragmentation, RT-PCR, and Western blot, manifestation of mRNA and proteins which are associated with apoptosis were inspected. Results : The following results were obtained on apoptosis of A549 human lung cancer lines after administering various concentration levels of cultivated wild ginseng distilled herbal acupuncture. 1. Measuring cell toxicity of lung cancer cells, strong cell toxicity was detected at high concentration level (1000㎕, 1200㎕, but no consistent concentration dependent reliance was detected. 2. Through DNA fragmentation, we were able to confirm cell destruction in all groups. 3. Experiment groups treated with cultivated wild ginseng distilled herbal acupuncture showed inhibition of Bcl-2 and COX-2 at mRNA and Protein level, whileas increase of Bax was shown. 4. Manifestation of p21, p53, Cyclin E, and Cyclin D1 were confirmed in all groups. 5. Extrication of Cytochrome C was detected at all groups, as well as increased activity of the enzyme caspase-3 and caspase-9, and PARP fragmentation were confirmed. Conclusion : According to the results, we can carefully deduce cell destruction of A549 human lung cancer lines were induced by Apoptosis. At the fixed level, cultivated wild ginseng distilled herbal acupuncture showed decrease of Bcl-2 and COX-2, as well as increase of Bax. Since cultivated wild ginseng distilled herbal acupuncture increases manifestation of p21, p53, Cyclin E, and Cyclin D1, it affects

  12. Vacuum arc on the polycrystalline silica cathode

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov


    Full Text Available Thin films of silica and its compounds are used in modern technology to produce Li-ion batteries, wear-resistant and protective coatings, thin-films insulators, etc. This coating is produced with CVD methods, with magnetron sputtering systems or with electron-beam evaporation. The vacuum arc evaporation method, presently, is not used.The paper demonstrates a possibility for a long-term operation of vacuum arc evaporator with polycrystalline silica-aluminum alloy (90% of silica cathode and with magnetic system to create a variable form of arch-like magnetic field on the cathode surface. It was shown that archlike configuration of magnetic field provides a stable discharge and uniform cathode spots moving with the velocities up to 5 m/s with magnetic fields induction about 10 mT. Thus, there is no local melting of the cathode, and this provides its long-term work without chips, cracks and destruction. Cathodes spots move over the cathode surface leaving t big craters with melted edges on its surface. The craters size was 150-450μm. The cathode spot movement character and the craters on the cathode surface were like the spots movement, when working on the copper or aluminum cathodes. With the magnetic field induction less than 1 mT, the cathode spots movement was the same as that of on the silica mono-crystal without magnetic field. Thus, the discharge volt-ampere characteristics for different values of magnetic fields were obtained. Voltampere characteristics were increasing and were shifted to the higher voltage with increasing magnetic field. The voltage was 18.7-26.5 V for the arc current 30-140 A.So, it was confirmed that vacuum arc evaporation method could be used for effective evaporation of silica and silica-based alloys and for thin films deposition of this materials.

  13. Cleaner Vacuum-Bag Curing (United States)

    Clemons, J. M.; Penn, B. G.; Ledbetter, Frank E., III; Daniels, J. G.


    Improvement upon recommended procedures saves time and expense. Autoclave molding in vacuum bag cleaner if adhesive-backed covering placed around caul plate as well as on mold plate. Covering easy to remove after curing and leaves caul plate free of resin deposits.

  14. Quantum Vacuum Structure and Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann; Labun, Lance; Hadad, Yaron; /Arizona U. /Munich U.; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC


    Contemporary physics faces three great riddles that lie at the intersection of quantum theory, particle physics and cosmology. They are: (1) The expansion of the universe is accelerating - an extra factor of two appears in the size; (2) Zero-point fluctuations do not gravitate - a matter of 120 orders of magnitude; and (3) The 'True' quantum vacuum state does not gravitate. The latter two are explicitly problems related to the interpretation and the physical role and relation of the quantum vacuum with and in general relativity. Their resolution may require a major advance in our formulation and understanding of a common unified approach to quantum physics and gravity. To achieve this goal we must develop an experimental basis and much of the discussion we present is devoted to this task. In the following, we examine the observations and the theory contributing to the current framework comprising these riddles. We consider an interpretation of the first riddle within the context of the universe's quantum vacuum state, and propose an experimental concept to probe the vacuum state of the universe.

  15. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab


    The same vacuum chamber as in 7810256, read the detailed description there. Here, the 4 strip-shaped ion-getter pumps are poised at the entrance to their slots. Ion-getter pumps were not retained, thermal getter pumps were chosen instead (see 8301153 and 8305170).

  16. Filling the vacuum at LHCb

    CERN Multimedia

    Katarina Anthony


    Last month, the Vacuum, Surfaces and Coatings (VSC) group was tasked with an unusually delicate operation in the LHCb experiment cavern: removing the LHC beam pipe while keeping the sensitive Vertex Locator vacuum vessel (VELO) completely isolated from the action.   The VSC group seal off the VELO beam pipe with a flange. Image: Gloria Corti. LHCb’s VELO detector is one of the crown jewels of the experiment. With detector elements surrounded by a vacuum, it gets as close as 5 cm from the beam. Fantastic for physics, but difficult for all-important access. “Because of the sensitivity of the VELO detector and its proximity to the beam, the collaboration decided not to bake (see box) its portion of the beam pipe,” says Giulia Lanza (TE-VSC-LBV), the expert in charge of the beam vacuum operation. “Our group was therefore asked to remove the rest of the LHC beam pipe while keeping the VELO portion of the pipe completely isolated. This work...

  17. Vacuum Stability of Standard Model^{++}

    CERN Document Server

    Anchordoqui, Luis A.; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R.; Vlcek, Brian


    The latest results of the ATLAS and CMS experiments point to a preferred narrow Higgs mass range (m_h \\simeq 124 - 126 GeV) in which the effective potential of the Standard Model (SM) develops a vacuum instability at a scale 10^{9} -10^{11} GeV, with the precise scale depending on the precise value of the top quark mass and the strong coupling constant. Motivated by this experimental situation, we present here a detailed investigation about the stability of the SM^{++} vacuum, which is characterized by a simple extension of the SM obtained by adding to the scalar sector a complex SU(2) singlet that has the quantum numbers of the right-handed neutrino, H", and to the gauge sector an U(1) that is broken by the vacuum expectation value of H". We derive the complete set of renormalization group equations at one loop. We then pursue a numerical study of the system to determine the triviality and vacuum stability bounds, using a scan of 10^4 random set of points to fix the initial conditions. We show that, if there...

  18. Vacuum assisted closure in coloproctology

    NARCIS (Netherlands)

    Bemelman, W.A.


    Vacuum-assisted closure has earned its indications in coloproctology. It has been described with variable results in the treatment of large perineal defects after abdominoperineal excision, in the treatment of stoma dehiscence and perirectal abscesses. The most promising indication for

  19. Cryogenic Vacuum Insulation for Vessels and Piping (United States)

    Kogan, A.; Fesmire, J.; Johnson, W.; Minnick, J.


    Cryogenic vacuum insulation systems, with proper materials selection and execution, can offer the highest levels of thermal performance. Three areas of consideration are vital to achieve the optimum result: materials, representative test conditions, and engineering approach for the particular application. Deficiency in one of these three areas can prevent optimum performance and lead to severe inefficiency. Materials of interest include micro-fiberglass, multilayer insulation, and composite arrangements. Cylindrical liquid nitrogen boil-off calorimetry methods were used. The need for standard thermal conductivity data is addressed through baseline testing. Engineering analysis and design factors such as layer thickness, density, and practicality are also considered.


    Energy Technology Data Exchange (ETDEWEB)

    William S. McPhee


    The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and