WorldWideScience

Sample records for vaccine-induced selective pressure

  1. A study of vaccine-induced immune pressure on breakthrough infections in the Phambili phase 2b HIV-1 vaccine efficacy trial

    Science.gov (United States)

    Rolland, M.; Magaret, C.A.; Rademeyer, C.; Fiore-Gartland, A.; Edlefsen, P.T.; DeCamp, A.; Ahmed, H.; Ngandu, N.; Larsen, B.B.; Frahm, N.; Marais, J.; Thebus, R.; Geraghty, D.; Hural, J.; Corey, L.; Kublin, J.; Gray, G.; McElrath, M.J.; Mullins, J.I.; Gilbert, P.B.; Williamson, C.

    2016-01-01

    Introduction The Merck Adenovirus-5 Gag/Pol/Nef HIV-1 subtype-B vaccine evaluated in predominately subtype B epidemic regions (Step Study), while not preventing infection, exerted vaccine-induced immune pressure on HIV-1 breakthrough infections. Here we investigated if the same vaccine exerted immune pressure when tested in the Phambili Phase 2b study in a subtype C epidemic. Materials and methods A sieve analysis, which compares breakthrough viruses from placebo and vaccine arms, was performed on 277 near full-length genomes generated from 23 vaccine and 20 placebo recipients. Vaccine coverage was estimated by computing the percentage of 9-mers that were exact matches to the vaccine insert. Results There was significantly greater protein distances from the vaccine immunogen sequence in Gag (p = 0.045) and Nef (p = 0.021) in viruses infecting vaccine recipients compared to placebo recipients. Twenty-seven putative sites of vaccine-induced pressure were identified (p sieve effect in Step was driven by HLA A*02:01; an allele which was found in low frequency in Phambili participants compared to Step participants. Furthermore, the coverage of the vaccine against subtype C Phambili viruses was 31%, 46% and 14% for Gag, Pol and Nef, respectively, compared to subtype B Step virus coverage of 56%, 61% and 26%, respectively. Discussion This study presents evidence of sieve effects in Gag and Nef; however could not confirm effects on specific amino acid sites. We propose that this weaker signal of vaccine immune pressure detected in the Phambili study compared to the Step study may have been influenced by differences in host genetics (HLA allele frequency) and reduced impact of vaccine-induced immune responses due to mismatch between the viral subtype in the vaccine and infecting subtypes. PMID:27756485

  2. Peer pressure is a double-edged sword in vaccination dynamics

    Science.gov (United States)

    Wu, Zhi-Xi; Zhang, Hai-Feng

    2013-10-01

    Whether or not to change behavior depends not only on the personal success of each individual, but also on the success and/or behavior of others. Using this as motivation, we incorporate the impact of peer pressure into a susceptible-vaccinated-infected-recovered (SVIR) epidemiological model, where the propensity to adopt a particular vaccination strategy depends both on individual success as well as on the strategies of neighbors. We show that plugging into the peer pressure is a double-edged sword, which, on the one hand, strongly promotes vaccination when its cost is below a critical value, but, on the other hand, it can also strongly impede it if the critical value is exceeded. We explain this by revealing a facilitated cluster formation process that is induced by the peer pressure. Due to this, the vaccinated individuals are inclined to cluster together and therefore become unable to efficiently inhibit the spread of the infectious disease if the vaccination is costly. If vaccination is cheap, however, they reinforce each other in using it. Our results are robust to variations of the SVIR dynamics on different population structures.

  3. Evaluation of peptide selection approaches for epitope‐based vaccine design

    DEFF Research Database (Denmark)

    Schubert, B.; Lund, Ole; Nielsen, Morten

    2013-01-01

    A major challenge in epitope-based vaccine (EV) design stems from the vast genomic variation of pathogens and the diversity of the host cellular immune system. Several computational approaches have been published to assist the selection of potential T cell epitopes for EV design. So far, no thoro......A major challenge in epitope-based vaccine (EV) design stems from the vast genomic variation of pathogens and the diversity of the host cellular immune system. Several computational approaches have been published to assist the selection of potential T cell epitopes for EV design. So far...... in terms of in silico measurements simulating important vaccine properties like the ability of inducing protection against a multivariant pathogen in a population; the predicted immunogenicity; pathogen, allele, and population coverage; as well as the conservation of selected epitopes. Additionally, we...... evaluate the use of human leukocyte antigen (HLA) supertypes with regards to their applicability for population-spanning vaccine design. The results showed that in terms of induced protection methods that simultaneously aim to optimize pathogen and HLA coverage significantly outperform methods focusing...

  4. The selection pressures induced non-smooth infectious disease model and bifurcation analysis

    International Nuclear Information System (INIS)

    Qin, Wenjie; Tang, Sanyi

    2014-01-01

    Highlights: • A non-smooth infectious disease model to describe selection pressure is developed. • The effect of selection pressure on infectious disease transmission is addressed. • The key factors which are related to the threshold value are determined. • The stabilities and bifurcations of model have been revealed in more detail. • Strategies for the prevention of emerging infectious disease are proposed. - Abstract: Mathematical models can assist in the design strategies to control emerging infectious disease. This paper deduces a non-smooth infectious disease model induced by selection pressures. Analysis of this model reveals rich dynamics including local, global stability of equilibria and local sliding bifurcations. Model solutions ultimately stabilize at either one real equilibrium or the pseudo-equilibrium on the switching surface of the present model, depending on the threshold value determined by some related parameters. Our main results show that reducing the threshold value to a appropriate level could contribute to the efficacy on prevention and treatment of emerging infectious disease, which indicates that the selection pressures can be beneficial to prevent the emerging infectious disease under medical resource limitation

  5. Selected anti-tumor vaccines merit a place in multimodal tumor therapies

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Eva-Maria; Wunderlich, Roland [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Ebel, Nina [Department of Process Technology and Machinery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Rubner, Yvonne [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Schlücker, Eberhard [Department of Process Technology and Machinery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Meyer-Pittroff, Roland [Competence Pool Weihenstephan, Technische Universität München, Freising (Germany); Ott, Oliver J.; Fietkau, Rainer; Gaipl, Udo S.; Frey, Benjamin, E-mail: benjamin.frey@uk-erlangen.de [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany)

    2012-10-09

    Multimodal approaches are nowadays successfully applied in cancer therapy. Primary locally acting therapies such as radiotherapy (RT) and surgery are combined with systemic administration of chemotherapeutics. Nevertheless, the therapy of cancer is still a big challenge in medicine. The treatments often fail to induce long-lasting anti-tumor responses. Tumor recurrences and metastases result. Immunotherapies are therefore ideal adjuncts to standard tumor therapies since they aim to activate the patient's immune system against malignant cells even outside the primary treatment areas (abscopal effects). Especially cancer vaccines may have the potential both to train the immune system against cancer cells and to generate an immunological memory, resulting in long-lasting anti-tumor effects. However, despite promising results in phase I and II studies, most of the concepts finally failed. There are some critical aspects in development and application of cancer vaccines that may decide on their efficiency. The time point and frequency of medication, usage of an adequate immune adjuvant, the vaccine's immunogenic potential, and the tumor burden of the patient are crucial. Whole tumor cell vaccines have advantages compared to peptide-based ones since a variety of tumor antigens (TAs) are present. The master requirements of cell-based, therapeutic tumor vaccines are the complete inactivation of the tumor cells and the increase of their immunogenicity. Since the latter is highly connected with the cell death modality, the inactivation procedure of the tumor cell material may significantly influence the vaccine's efficiency. We therefore also introduce high hydrostatic pressure (HHP) as an innovative inactivation technology for tumor cell-based vaccines and outline that HHP efficiently inactivates tumor cells by enhancing their immunogenicity. Finally studies are presented proving that anti-tumor immune responses can be triggered by combining RT with selected

  6. Long-Term Reduction of High Blood Pressure by Angiotensin II DNA Vaccine in Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Koriyama, Hiroshi; Nakagami, Hironori; Nakagami, Futoshi; Osako, Mariana Kiomy; Kyutoku, Mariko; Shimamura, Munehisa; Kurinami, Hitomi; Katsuya, Tomohiro; Rakugi, Hiromi; Morishita, Ryuichi

    2015-07-01

    Recent research on vaccination has extended its scope from infectious diseases to chronic diseases, including Alzheimer disease, dyslipidemia, and hypertension. The aim of this study was to design DNA vaccines for high blood pressure and eventually develop human vaccine therapy to treat hypertension. Plasmid vector encoding hepatitis B core-angiotensin II (Ang II) fusion protein was injected into spontaneously hypertensive rats using needleless injection system. Anti-Ang II antibody was successfully produced in hepatitis B core-Ang II group, and antibody response against Ang II was sustained for at least 6 months. Systolic blood pressure was consistently lower in hepatitis B core-Ang II group after immunization, whereas blood pressure reduction was continued for at least 6 months. Perivascular fibrosis in heart tissue was also significantly decreased in hepatitis B core-Ang II group. Survival rate was significantly improved in hepatitis B core-Ang II group. This study demonstrated that Ang II DNA vaccine to spontaneously hypertensive rats significantly lowered high blood pressure for at least 6 months. In addition, Ang II DNA vaccines induced an adequate humoral immune response while avoiding the activation of self-reactive T cells, assessed by ELISPOT assay. Future development of DNA vaccine to treat hypertension may provide a new therapeutic option to treat hypertension. © 2015 American Heart Association, Inc.

  7. Green revolution vaccines, edible vaccines | Tripurani | African ...

    African Journals Online (AJOL)

    Edible vaccines are sub-unit vaccines where the selected genes are introduced into the plants and the transgenic plant is then induced to manufacture the encoded protein. Edible vaccines are mucosal-targeted vaccines where stimulation of both systematic and mucosal immune network takes place. Foods under study ...

  8. Vaccination of horses with Lyme vaccines for dogs induces short-lasting antibody responses.

    Science.gov (United States)

    Guarino, Cassandra; Asbie, Sanda; Rohde, Jennifer; Glaser, Amy; Wagner, Bettina

    2017-07-24

    Borrelia burgdorferi can induce Lyme disease. Approved Lyme vaccines for horses are currently not available. In an effort to protect horses, veterinarians are using Lyme vaccines licensed for dogs. However, data to assess the response of horses to, or determine the efficacy of this off-label vaccine use are missing. Here, antibodies against outer surface protein A (OspA), OspC, and OspF were quantified in diagnostic serum submissions from horses with a history of vaccination with canine Lyme vaccines. The results suggested that many horses respond with low and often short-lasting antibody responses. Subsequently, four experimental vaccination trials were performed. First, we investigated antibody responses to three canine vaccines in B. burgdorferi-naïve horses. One killed bacterin vaccine induced antibodies against OspC. OspA antibodies were low for all three vaccines and lasted less than 16weeks. The second trial tested the impact of the vaccine dose using the OspA/OspC inducing bacterin vaccine in horses. A 2mL dose produced higher OspA and OspC antibody values than a 1mL dose. However, the antibody response again quickly declined, independent of dose. Third, the horses were vaccinated with 2 doses of a recombinant OspA vaccine. Previous vaccination and/or environmental exposure enhanced the magnitude and longevity of the OspA antibody response to about 20weeks. Last, the influence of intramuscular versus subcutaneous vaccine administration was investigated for the recombinant OspA vaccine. OspA antibody responses were not influenced by injection route. The current work highlights that commercial Lyme vaccines for dogs induce only transient antibody responses in horses which can also be of low magnitude. Protection from infection with B. burgdorferi should not be automatically assumed after vaccinating horses with Lyme vaccines for dogs. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Examination of the selective pressures on a live PRRS vaccine virus

    DEFF Research Database (Denmark)

    Storgaard, Torben; Oleksiewicz, M.; Bøtner, Anette

    1999-01-01

    of the selective pressure this attenuated virus had experienced during reversion. An analysis of nucleotide mutations showed a similar rate of mutations in the two genes (ORF5 and 7). However, non-synonymous mutations in ORF7 were eliminated by purifying selection. In contrast, non-synonymous mutations in ORF5...

  10. Making evidence-based selections of influenza vaccines

    OpenAIRE

    Childress, Billy-Clyde; Montney, Joshua D; Albro, Elise A

    2014-01-01

    Years ago, intramuscular influenza vaccines were the only option for those who wanted to arm themselves against the flu. Today there are alternatives, including intradermal injections and intranasal sprays. In order to select the right influenza vaccine for their patients, pharmacists, and other healthcare professionals must have a basic understanding of the immune system. Influenza vaccines elicit different levels of immune response involving innate and adaptive immunity, which are critical ...

  11. Selection of a Suitable Wall Pressure Spectrum Model for Estimating Flow-Induced Noise in Sonar Applications

    Directory of Open Access Journals (Sweden)

    V. Bhujanga Rao

    1995-01-01

    Full Text Available Flow-induced structural noise of a sonar dome in which the sonar transducer is housed, constitutes a major source of self-noise above a certain speed of the vessel. Excitation of the sonar dome structure by random pressure fluctuations in turbulent boundary layer flow leads to acoustic radiation into the interior of the dome. This acoustic radiation is termed flow-induced structural noise. Such noise contributes significantly to sonar self-noise of submerged vessels cruising at high speed and plays an important role in surface ships, torpedos, and towed sonars as well. Various turbulent boundary layer wall pressure models published were analyzed and the most suitable analytical model for the sonar dome application selected while taking into account high frequency, fluid loading, low wave number contribution, and pressure gradient effects. These investigations included type of coupling that exists between turbulent boundary layer pressure fluctuations and dome wall structure of a typical sonar dome. Comparison of theoretical data with measured data onboard a ship are also reported.

  12. Making evidence-based selections of influenza vaccines.

    Science.gov (United States)

    Childress, Billy-Clyde; Montney, Joshua D; Albro, Elise A

    2014-01-01

    Years ago, intramuscular influenza vaccines were the only option for those who wanted to arm themselves against the flu. Today there are alternatives, including intradermal injections and intranasal sprays. In order to select the right influenza vaccine for their patients, pharmacists, and other healthcare professionals must have a basic understanding of the immune system. Influenza vaccines elicit different levels of immune response involving innate and adaptive immunity, which are critical to fighting infection. For the 2013-2014 flu season, there were 13 different formulations of influenza vaccines on the market with vast differences in indications, contraindications, and effectiveness. The CDC does not recommend one vaccine over another, but recommends that all patients be vaccinated against the flu. Preventing the spread of influenza is no simple task; however, the most recent evidence on influenza vaccines and sufficient knowledge of the immune system will allow pharmacists and other healthcare providers to better advocate for vaccines, determine which are most appropriate, and ensure their proper administration.

  13. Aluminium allergy and granulomas induced by vaccinations for children

    DEFF Research Database (Denmark)

    Andersen, Rosa Marie O; Zachariae, Claus; Johansen, Jeanne Duus

    2014-01-01

    Vaccination with aluminium-adsorbed vaccines can induce aluminium allergy with persistent itching subcutaneous nodules at the injection site - vaccination granulomas. In this article we give an overview of childhood aluminium-adsorbed vaccines available in Denmark. Through literature studies we...

  14. Genetic diversity of G1P[8] rotavirus VP7 and VP8* antigens in Finland over a 20-year period: No evidence for selection pressure by universal mass vaccination with RotaTeq® vaccine.

    Science.gov (United States)

    Hemming, Maria; Vesikari, Timo

    2013-10-01

    Two live-attenuated oral vaccines (Rotarix™ and Rotateq®) against rotavirus gastroenteritis were licensed in 2006 and have been introduced into National Immunization Programs (NIPs) of several countries. Large scale use of rotavirus vaccines might cause antigenic pressure on circulating rotavirus types or lead to selection of new rotaviruses thus decreasing vaccine efficacy. We examined the nucleotide and amino acid sequences of the surface proteins VP7 and VP4 (cleaved to VP8(*) and VP5(*)) of a total of 108 G1P[8] rotavirus strains collected over a 20-year period from 1992, including the years 2006-2009 when rotavirus vaccine (mainly Rotarix™) was available, and the years 2009-2012 after implementation of RotaTeq® vaccine into the NIP of Finland. In G1 VP7 no changes at amino acid level were observed. In VP8(*) periodical fluctuation of the sublineage over the study period was found with multiple changes both at nucleotide and amino acid levels. Most amino acid changes were in the dominant antigenic epitopes of VP8(*). A change in VP8(*) sublineage occurred between 2008 and 2009, with a temporal correlation to the use of Rotarix™ up to 30% coverage in the period. In contrast, no antigenic changes in the VP8(*) protein appeared to be correlated to the exclusive use of RotaTeq® vaccine after 2009. Nevertheless, long-term surveillance of antigenic changes in VP4 and also VP7 proteins in wild-type rotavirus strains is warranted in countries with large scale use of the currently licensed live oral rotavirus vaccines. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Persistence of the immune response induced by BCG vaccination

    Directory of Open Access Journals (Sweden)

    Blitz Rose

    2008-01-01

    Full Text Available Abstract Background Although BCG vaccination is recommended in most countries of the world, little is known of the persistence of BCG-induced immune responses. As novel TB vaccines may be given to boost the immunity induced by neonatal BCG vaccination, evidence concerning the persistence of the BCG vaccine-induced response would help inform decisions about when such boosting would be most effective. Methods A randomised control study of UK adolescents was carried out to investigate persistence of BCG immune responses. Adolescents were tested for interferon-gamma (IFN-γ response to Mycobacterium tuberculosis purified protein derivative (M.tb PPD in a whole blood assay before, 3 months, 12 months (n = 148 and 3 years (n = 19 after receiving teenage BCG vaccination or 14 years after receiving infant BCG vaccination (n = 16. Results A gradual reduction in magnitude of response was evident from 3 months to 1 year and from 1 year to 3 years following teenage vaccination, but responses 3 years after vaccination were still on average 6 times higher than before vaccination among vaccinees. Some individuals (11/86; 13% failed to make a detectable antigen-specific response three months after vaccination, or lost the response after 1 (11/86; 13% or 3 (3/19; 16% years. IFN-γ response to Ag85 was measured in a subgroup of adolescents and appeared to be better maintained with no decline from 3 to 12 months. A smaller group of adolescents were tested 14 years after receiving infant BCG vaccination and 13/16 (81% made a detectable IFN-γ response to M.tb PPD 14 years after infant vaccination as compared to 6/16 (38% matched unvaccinated controls (p = 0.012; teenagers vaccinated in infancy were 19 times more likely to make an IFN-γ response of > 500 pg/ml than unvaccinated teenagers. Conclusion BCG vaccination in infancy and adolescence induces immunological memory to mycobacterial antigens that is still present and measurable for at least 14 years in the

  16. Aluminium allergy and granulomas induced by vaccinations for children

    DEFF Research Database (Denmark)

    Andersen, Rosa Marie O; Zachariae, Claus; Johansen, Jeanne Duus

    2014-01-01

    Vaccination with aluminium-adsorbed vaccines can induce aluminium allergy with persistent itching subcutaneous nodules at the injection site - vaccination granulomas. In this article we give an overview of childhood aluminium-adsorbed vaccines available in Denmark. Through literature studies we...... examine the incidence, the symptoms and the prognosis for the vaccination granulomas and the allergy. Finally we discuss the status in Denmark....

  17. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches.

    Science.gov (United States)

    Saadi, Mahdiye; Karkhah, Ahmad; Nouri, Hamid Reza

    2017-07-01

    Current investigations have demonstrated that a multi-epitope peptide vaccine targeting multiple antigens could be considered as an ideal approach for prevention and treatment of brucellosis. According to the latest findings, the most effective immunogenic antigens of brucella to induce immune responses are included Omp31, BP26, BLS, DnaK and L7-L12. Therefore, in the present study, an in silico approach was used to design a novel multi-epitope vaccine to elicit a desirable immune response against brucellosis. First, five novel T-cell epitopes were selected from Omp31, BP26, BLS, DnaK and L7-L12 proteins using different servers. In addition, helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied to induce CD4+ helper T lymphocytes (HTLs) responses. Selected epitopes were fused together by GPGPG linkers to facilitate the immune processing and epitope presentation. Moreover, cholera toxin B (CTB) was linked to N terminal of vaccine construct as an adjuvant by using EAAAK linker. A multi-epitope vaccine was designed based on predicted epitopes which was 377 amino acid residues in length. Then, the physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility and allergenicity of this multi-epitope vaccine were assessed using immunoinformatics tools and servers. Based on obtained results, a soluble, and non-allergic protein with 40.59kDa molecular weight was constructed. Expasy ProtParam classified this chimeric protein as a stable protein and also 89.8% residues of constructed vaccine were located in favored regions of the Ramachandran plot. Furthermore, this multi-epitope peptide vaccine was able to strongly induce T cell and B-cell mediated immune responses. In conclusion, immunoinformatics analysis indicated that this multi-epitope peptide vaccine can be effectively expressed and potentially be used for prophylactic or therapeutic usages against brucellosis. Copyright © 2017 Elsevier B.V. All

  18. Can VHS Virus Bypass the Protective Immunity Induced by DNA Vaccination in Rainbow Trout?

    Directory of Open Access Journals (Sweden)

    Dagoberto Sepúlveda

    Full Text Available DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV, an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach, and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach. For the in vitro approach, the virus collected from the last passage (passaged virus was as sensitive as the parental virus to serum neutralization, suggesting that the passaging did not promote the selection of virus populations able to bypass the neutralization by serum antibodies. Also, in the in vivo approach, where virus was passaged several times in vaccinated fish, no increased virulence nor increased persistence in vaccinated fish was observed in comparison with the parental virus. However, some of the vaccinated fish did get infected and could transmit the infection to naïve cohabitant fish. The results demonstrated that the DNA vaccine induced a robust protection, but also that the immunity was non-sterile. It is consequently important not to consider vaccinated fish as virus free in veterinary terms.

  19. Improving the selection and development of influenza vaccine viruses - Report of a WHO informal consultation on improving influenza vaccine virus selection, Hong Kong SAR, China, 18-20 November 2015.

    Science.gov (United States)

    Hampson, Alan; Barr, Ian; Cox, Nancy; Donis, Ruben O; Siddhivinayak, Hirve; Jernigan, Daniel; Katz, Jacqueline; McCauley, John; Motta, Fernando; Odagiri, Takato; Tam, John S; Waddell, Anthony; Webby, Richard; Ziegler, Thedi; Zhang, Wenqing

    2017-02-22

    Since 2010 the WHO has held a series of informal consultations to explore ways of improving the currently highly complex and time-pressured influenza vaccine virus selection and development process. In November 2015 experts from around the world met to review the current status of efforts in this field. Discussion topics included strengthening influenza surveillance activities to increase the availability of candidate vaccine viruses and improve the extent, timeliness and quality of surveillance data. Consideration was also given to the development and potential application of newer laboratory assays to better characterize candidate vaccine viruses, the potential importance of antibodies directed against influenza virus neuraminidase, and the role of vaccine effectiveness studies. Advances in next generation sequencing and whole genome sequencing of influenza viruses were also discussed, along with associated developments in synthetic genomics technologies, evolutionary analysis and predictive mathematical modelling. Discussions were also held on the late emergence of an antigenic variant influenza A(H3N2) virus in mid-2014 that could not be incorporated in time into the 2014-15 northern hemisphere vaccine. There was broad recognition that given the current highly constrained influenza vaccine development and production timeline it would remain impossible to incorporate any variant virus which emerged significantly long after the relevant WHO biannual influenza vaccine composition meetings. Discussions were also held on the development of pandemic and broadly protective vaccines, and on associated regulatory and manufacturing requirements and constraints. With increasing awareness of the health and economic burdens caused by seasonal influenza, the ever-present threat posed by zoonotic influenza viruses, and the significant impact of the 2014-15 northern hemisphere seasonal influenza vaccine mismatch, this consultation provided a very timely opportunity to share

  20. Population dynamics and in vitro antibody pressure of porcine parvovirus indicate a decrease in variability.

    Science.gov (United States)

    Streck, André Felipe; Homeier, Timo; Foerster, Tessa; Truyen, Uwe

    2013-09-01

    To estimate the impact of porcine parvovirus (PPV) vaccines on the emergence of new phenotypes, the population dynamic history of the virus was calculated using the Bayesian Markov chain Monte Carlo method with a Bayesian skyline coalescent model. Additionally, an in vitro model was performed with consecutive passages of the 'Challenge' strain (a virulent field strain) and NADL2 strain (a vaccine strain) in a PK-15 cell line supplemented with polyclonal antibodies raised against the vaccine strain. A decrease in genetic diversity was observed in the presence of antibodies in vitro or after vaccination (as estimated by the in silico model). We hypothesized that the antibodies induced a selective pressure that may reduce the incidence of neutral selection, which should play a major role in the emergence of new mutations. In this scenario, vaccine failures and non-vaccinated populations (e.g. wild boars) may have an important impact in the emergence of new phenotypes.

  1. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Jong Seok [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); National Institute of Biological Resources, Incheon (Korea, Republic of); Kim, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Yu-Na; Kim, Min-Chul [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Animal and Plant Quarantine Agency, Gyeonggi-do, Gimcheon, Gyeongsangbukdo (Korea, Republic of); Cho, Minkyoung [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Kang, Sang-Moo, E-mail: skang24@gsu.edu [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States)

    2016-07-15

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.

  2. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    International Nuclear Information System (INIS)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Jong Seok; Kim, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Cho, Minkyoung; Kang, Sang-Moo

    2016-01-01

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.

  3. Reversion of a live porcine reproductive and respiratory virus vaccine investigated by parallel mutations

    DEFF Research Database (Denmark)

    Nielsen, Henriette S.; Oleksiewicz, Martin B; Forsberg, R

    2001-01-01

    A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates was sequen......A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates...... in the vaccine virus sequence during cell-culture adaptation. Evaluation of the remaining mutations in the ORF1 sequence revealed stronger selective pressure for amino acid conservation during spread in pigs than during vaccine production. Furthermore, it was found that the selective pressure did not change...

  4. Seropositivity to non-vaccine incorporated genotypes induced by the bivalent and quadrivalent HPV vaccines: A systematic review and meta-analysis.

    Science.gov (United States)

    Bissett, Sara L; Godi, Anna; Jit, Mark; Beddows, Simon

    2017-07-13

    Human papillomavirus vaccines have demonstrated remarkable efficacy against persistent infection and disease associated with vaccine-incorporated genotypes and a degree of efficacy against some genetically related, non-vaccine-incorporated genotypes. The vaccines differ in the extent of cross-protection against these non-vaccine genotypes. Data supporting the role for neutralizing antibodies as a correlate or surrogate of cross-protection are lacking, as is a robust assessment of the seroconversion rates against these non-vaccine genotypes. We performed a systematic review and meta-analysis of available data on vaccine-induced neutralizing antibody seropositivity to non-vaccine incorporated HPV genotypes. Of 304 articles screened, 9 were included in the analysis representing ca. 700 individuals. The pooled estimate for seropositivity against HPV31 for the bivalent vaccine (86%; 95%CI 78-91%) was higher than that for the quadrivalent vaccine (61%; 39-79%; p=0.011). The pooled estimate for seropositivity against HPV45 for the bivalent vaccine (50%; 37-64%) was also higher than that for the quadrivalent vaccine (16%; 6-36%; p=0.007). Seropositivity against HPV33, HPV52 and HPV58 were similar between the vaccines. Mean seropositivity rates across non-vaccine genotypes were positively associated with the corresponding vaccine efficacy data reported from vaccine trials. These data improve our understanding of vaccine-induced functional antibody specificity against non-vaccine incorporated genotypes and may help to parameterize vaccine-impact models and improve patient management in a post-vaccine setting. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Selective epidemic vaccination under the performant routing algorithms

    Science.gov (United States)

    Bamaarouf, O.; Alweimine, A. Ould Baba; Rachadi, A.; EZ-Zahraouy, H.

    2018-04-01

    Despite the extensive research on traffic dynamics and epidemic spreading, the effect of the routing algorithms strategies on the traffic-driven epidemic spreading has not received an adequate attention. It is well known that more performant routing algorithm strategies are used to overcome the congestion problem. However, our main result shows unexpectedly that these algorithms favor the virus spreading more than the case where the shortest path based algorithm is used. In this work, we studied the virus spreading in a complex network using the efficient path and the global dynamic routing algorithms as compared to shortest path strategy. Some previous studies have tried to modify the routing rules to limit the virus spreading, but at the expense of reducing the traffic transport efficiency. This work proposed a solution to overcome this drawback by using a selective vaccination procedure instead of a random vaccination used often in the literature. We found that the selective vaccination succeeded in eradicating the virus better than a pure random intervention for the performant routing algorithm strategies.

  6. Reversion of a live porcine reproductive and respiratory syndrome virus vaccine investigated by parallel mutations

    DEFF Research Database (Denmark)

    Nielsen, Henriette S.; Oleksiewicz, M.B.; Forsberg, R.

    2001-01-01

    A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates was sequen......A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates...... in the vaccine virus sequence during cell-culture adaptation. Evaluation of the remaining mutations in the ORF1 sequence revealed stronger selective pressure for amino acid conservation during spread in pigs than during vaccine production. Furthermore, it was found that the selective pressure did not change...

  7. Did Large-Scale Vaccination Drive Changes in the Circulating Rotavirus Population in Belgium?

    Science.gov (United States)

    Pitzer, Virginia E.; Bilcke, Joke; Heylen, Elisabeth; Crawford, Forrest W.; Callens, Michael; De Smet, Frank; Van Ranst, Marc; Zeller, Mark; Matthijnssens, Jelle

    2015-01-01

    Vaccination can place selective pressures on viral populations, leading to changes in the distribution of strains as viruses evolve to escape immunity from the vaccine. Vaccine-driven strain replacement is a major concern after nationwide rotavirus vaccine introductions. However, the distribution of the predominant rotavirus genotypes varies from year to year in the absence of vaccination, making it difficult to determine what changes can be attributed to the vaccines. To gain insight in the underlying dynamics driving changes in the rotavirus population, we fitted a hierarchy of mathematical models to national and local genotype-specific hospitalization data from Belgium, where large-scale vaccination was introduced in 2006. We estimated that natural- and vaccine-derived immunity was strongest against completely homotypic strains and weakest against fully heterotypic strains, with an intermediate immunity amongst partially heterotypic strains. The predominance of G2P[4] infections in Belgium after vaccine introduction can be explained by a combination of natural genotype fluctuations and weaker natural and vaccine-induced immunity against infection with strains heterotypic to the vaccine, in the absence of significant variation in strain-specific vaccine effectiveness against disease. However, the incidence of rotavirus gastroenteritis is predicted to remain low despite vaccine-driven changes in the distribution of genotypes. PMID:26687288

  8. HIV-1 vaccine-induced T-cell responses cluster in epitope hotspots that differ from those induced in natural infection with HIV-1.

    Science.gov (United States)

    Hertz, Tomer; Ahmed, Hasan; Friedrich, David P; Casimiro, Danilo R; Self, Steven G; Corey, Lawrence; McElrath, M Juliana; Buchbinder, Susan; Horton, Helen; Frahm, Nicole; Robertson, Michael N; Graham, Barney S; Gilbert, Peter

    2013-01-01

    Several recent large clinical trials evaluated HIV vaccine candidates that were based on recombinant adenovirus serotype 5 (rAd-5) vectors expressing HIV-derived antigens. These vaccines primarily elicited T-cell responses, which are known to be critical for controlling HIV infection. In the current study, we present a meta-analysis of epitope mapping data from 177 participants in three clinical trials that tested two different HIV vaccines: MRKAd-5 HIV and VRC-HIVAD014-00VP. We characterized the population-level epitope responses in these trials by generating population-based epitope maps, and also designed such maps using a large cohort of 372 naturally infected individuals. We used these maps to address several questions: (1) Are vaccine-induced responses randomly distributed across vaccine inserts, or do they cluster into immunodominant epitope hotspots? (2) Are the immunodominance patterns observed for these two vaccines in three vaccine trials different from one another? (3) Do vaccine-induced hotspots overlap with epitope hotspots induced by chronic natural infection with HIV-1? (4) Do immunodominant hotspots target evolutionarily conserved regions of the HIV genome? (5) Can epitope prediction methods be used to identify these hotspots? We found that vaccine responses clustered into epitope hotspots in all three vaccine trials and some of these hotspots were not observed in chronic natural infection. We also found significant differences between the immunodominance patterns generated in each trial, even comparing two trials that tested the same vaccine in different populations. Some of the vaccine-induced immunodominant hotspots were located in highly variable regions of the HIV genome, and this was more evident for the MRKAd-5 HIV vaccine. Finally, we found that epitope prediction methods can partially predict the location of vaccine-induced epitope hotspots. Our findings have implications for vaccine design and suggest a framework by which different

  9. Use of hydrostatic pressure for modulation of protein chemical modification and enzymatic selectivity.

    Science.gov (United States)

    Makarov, Alexey A; Helmy, Roy; Joyce, Leo; Reibarkh, Mikhail; Maust, Mathew; Ren, Sumei; Mergelsberg, Ingrid; Welch, Christopher J

    2016-05-11

    Using hydrostatic pressure to induce protein conformational changes can be a powerful tool for altering the availability of protein reactive sites and for changing the selectivity of enzymatic reactions. Using a pressure apparatus, it has been demonstrated that hydrostatic pressure can be used to modulate the reactivity of lysine residues of the protein ubiquitin with a water-soluble amine-specific homobifunctional coupling agent. Fewer reactive lysine residues were observed when the reaction was carried out under elevated pressure of 3 kbar, consistent with a pressure-induced conformational change of ubiquitin that results in fewer exposed lysine residues. Additionally, modulation of the stereoselectivity of an enzymatic transamination reaction was observed at elevated hydrostatic pressure. In one case, the minor diasteromeric product formed at atmospheric pressure became the major product at elevated pressure. Such pressure-induced alterations of protein reactivity may provide an important new tool for enzymatic reactions and the chemical modification of proteins.

  10. Inactivated rotavirus vaccine induces protective immunity in gnotobiotic piglets.

    Science.gov (United States)

    Wang, Yuhuan; Azevedo, Marli; Saif, Linda J; Gentsch, Jon R; Glass, Roger I; Jiang, Baoming

    2010-07-26

    Live oral rotavirus vaccines that are effective in middle and high income countries have been much less immunogenic and effective among infants in resource-limited settings. Several hypotheses might explain this difference, including neutralization of the vaccine by high levels of maternal antibody in serum and breast milk, severe malnutrition, and interference by other flora and viruses in the gut. We have pursued development of an alternative parenteral rotavirus vaccine with the goal of inducing comparable levels of immunogenicity and efficacy in populations throughout the world regardless of their income levels. In the present study, we assessed the immunogenicity and protection of a candidate inactivated rotavirus vaccine (IRV), the human strain CDC-9 (G1P[8]) formulated with aluminum phosphate, against rotavirus infection in gnotobiotic piglets. Three doses of IRV induced high titers of rotavirus-specific IgG and neutralizing activity in the sera of gnotobiotic piglets and protection against shedding of rotavirus antigen following oral challenge with a homologous virulent human strain Wa (G1P[8]). Our findings demonstrate the proof of concept for an IRV in a large animal model and provide evidence and justification for further clinical development as an alternative candidate vaccine. Published by Elsevier Ltd.

  11. Effectiveness of 23-valent pneumococcal polysaccharide vaccine and seasonal influenza vaccine for pneumonia among the elderly - Selection of controls in a case-control study.

    Science.gov (United States)

    Kondo, Kyoko; Suzuki, Kanzo; Washio, Masakazu; Ohfuji, Satoko; Fukushima, Wakaba; Maeda, Akiko; Hirota, Yoshio

    2017-08-24

    We conducted a case-control study to elucidate associations between pneumonia in elderly individuals and 23-valent pneumococcal polysaccharide vaccine (PPSV23) and seasonal influenza vaccine (influenza vaccine). Here, we examined selection of controls in our study using an analytic epidemiology approach. The study period was from October 1, 2009 through September 30, 2014. Cases comprised ≥65-year-old patients newly diagnosed with pneumonia. For every case with pneumonia, two patients with other diseases (one respiratory medicine, one non-respiratory medicine) who were sex-, age-, visit date- and visit hospital-matched were selected as controls. Odds ratios (ORs) and 95% confidence intervals (CIs) of vaccination for pneumonia were calculated using conditional logistic regression model. Similar analyses were also conducted based on the clinical department of controls. Analysis was conducted in 234 cases and 438 controls. Effectiveness of pneumococcal vaccination or influenza vaccination against pneumonia was not detected. Proportions of either vaccination in controls were greater among respiratory medicine (pneumococcal vaccine, 38%; influenza vaccine, 55%) than among non-respiratory medicine (23%; 48%). Analysis using controls restricted to respiratory medicine showed marginally significant effectiveness of pneumococcal vaccination (OR, 0.59; 95%CI, 0.34-1.03; P=0.064) and influenza vaccination (0.64; 0.40-1.04; 0.072). However, this effectiveness might have been overestimated by selection bias of controls, as pneumonia cases are not necessarily respiratory medicine patients. In the analysis using controls restricted to non-respiratory medicine, OR of pneumococcal vaccination for pneumonia was close to 1, presumably because the proportion of pneumococcal vaccination was higher in cases than in controls. Because pneumococcal vaccine was not routinely administered during the study period, differences in recommendations of vaccination by physician in different

  12. Evaluation of MAP-specific peptides following vaccination of goats

    DEFF Research Database (Denmark)

    Lybeck, Kari; Sjurseth, Siri K.; Melvang, Heidi Mikkelsen

    species or 2) selected based on “experience”. Peptides predicted to bind bovine MHC II by in silico analysis were included in further studies, resulting in two panels 1) genome-based and 2) selected. Initially, two groups of 15 healthy goats were vaccinated with one of the two panels (50 µg/peptide in CAF......01 adjuvant/CAF04 for boosting). Four MAP-infected goats were also vaccinated. In a second vaccination trail, groups of 8 healthy goat kids were vaccinated with genome-based peptides, selected peptides or selected peptides linked together in a recombinant protein (20 µg/peptide or 50 µg protein...... peptides. IFN-γ responses in healthy goats after the first vaccination were low, but testing of T cell lines from MAP-infected goats identified peptides inducing strong proliferative responses. Peptides for a second vaccination were selected by combining results from this study with a parallel cattle study...

  13. Vaccination has minimal impact on the intrahost diversity of H3N2 influenza viruses.

    Directory of Open Access Journals (Sweden)

    Kari Debbink

    2017-01-01

    Full Text Available While influenza virus diversity and antigenic drift have been well characterized on a global scale, the factors that influence the virus' rapid evolution within and between human hosts are less clear. Given the modest effectiveness of seasonal vaccination, vaccine-induced antibody responses could serve as a potent selective pressure for novel influenza variants at the individual or community level. We used next generation sequencing of patient-derived viruses from a randomized, placebo-controlled trial of vaccine efficacy to characterize the diversity of influenza A virus and to define the impact of vaccine-induced immunity on within-host populations. Importantly, this study design allowed us to isolate the impact of vaccination while still studying natural infection. We used pre-season hemagglutination inhibition and neuraminidase inhibition titers to quantify vaccine-induced immunity directly and to assess its impact on intrahost populations. We identified 166 cases of H3N2 influenza over 3 seasons and 5119 person-years. We obtained whole genome sequence data for 119 samples and used a stringent and empirically validated analysis pipeline to identify intrahost single nucleotide variants at ≥1% frequency. Phylogenetic analysis of consensus hemagglutinin and neuraminidase sequences showed no stratification by pre-season HAI and NAI titer, respectively. In our study population, we found that the vast majority of intrahost single nucleotide variants were rare and that very few were found in more than one individual. Most samples had fewer than 15 single nucleotide variants across the entire genome, and the level of diversity did not significantly vary with day of sampling, vaccination status, or pre-season antibody titer. Contrary to what has been suggested in experimental systems, our data indicate that seasonal influenza vaccination has little impact on intrahost diversity in natural infection and that vaccine-induced immunity may be only a

  14. Why climate change will invariably alter selection pressures on phenology

    NARCIS (Netherlands)

    Gienapp, Phillip; Reed, Thomas E.; Visser, Marcel E.

    2014-01-01

    The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in

  15. The candidate TB vaccine, MVA85A, induces highly durable Th1 responses.

    Directory of Open Access Journals (Sweden)

    Michele Tameris

    Full Text Available Vaccination against tuberculosis (TB should provide long-term protective immunity against Mycobacterium tuberculosis (M.tb. The current TB vaccine, Bacille Calmette-Guerin (BCG, protects against disseminated childhood TB, but protection against lung TB in adolescents and adults is variable and mostly poor. One potential reason for the limited durability of protection may be waning of immunity through gradual attrition of BCG-induced T cells. We determined if a MVA85A viral-vector boost could enhance the durability of mycobacteria-specific T cell responses above those induced by BCG alone.We describe a long-term follow-up study of persons previously vaccinated with MVA85A. We performed a medical history and clinical examination, a tuberculin skin test and measured vaccine-specific T cell responses in persons previously enrolled as adults, adolescents, children or infants into three different Phase II trials, between 2005 and 2011.Of 252 potential participants, 183 (72.6% consented and completed the study visit. Vaccine-induced Ag85A-specific CD4+ T cell responses were remarkably persistent in healthy, HIV-uninfected adults, adolescents, children and infants, up to 6 years after MVA85A vaccination. Specific CD4+ T cells expressed surface markers consistent with either CD45RA-CCR7+ central memory or CD45RA-CCR7- effector memory T cells. Similarly durable Ag85A-specific CD4+ T cell responses were detected in HIV-infected persons who were on successful antiretroviral therapy when MVA85A was administered. By contrast, Ag85A-specific CD4+ T cell frequencies in untreated MVA85A-vaccinated HIV-infected persons were mostly undetectable 3-5 years after vaccination.MVA85A induces remarkably durable T cell responses in immunocompetent persons. However, results from a recent phase IIb trial of MVA85A, conducted in infants from the same geographic area and study population, showed no vaccine efficacy, suggesting that these durable T cell responses do not

  16. Transgenic Parasites Stably Expressing Full-Length Plasmodium falciparum Circumsporozoite Protein as a Model for Vaccine Down-Selection in Mice Using Sterile Protection as an Endpoint

    Science.gov (United States)

    Porter, Michael D.; Nicki, Jennifer; Pool, Christopher D.; DeBot, Margot; Illam, Ratish M.; Brando, Clara; Bozick, Brooke; De La Vega, Patricia; Angra, Divya; Spaccapelo, Roberta; Crisanti, Andrea; Murphy, Jittawadee R.; Bennett, Jason W.; Schwenk, Robert J.; Ockenhouse, Christian F.

    2013-01-01

    Circumsporozoite protein (CSP) of Plasmodium falciparum is a protective human malaria vaccine candidate. There is an urgent need for models that can rapidly down-select novel CSP-based vaccine candidates. In the present study, the mouse-mosquito transmission cycle of a transgenic Plasmodium berghei malaria parasite stably expressing a functional full-length P. falciparum CSP was optimized to consistently produce infective sporozoites for protection studies. A minimal sporozoite challenge dose was established, and protection was defined as the absence of blood-stage parasites 14 days after intravenous challenge. The specificity of protection was confirmed by vaccinating mice with multiple CSP constructs of differing lengths and compositions. Constructs that induced high NANP repeat-specific antibody titers in enzyme-linked immunosorbent assays were protective, and the degree of protection was dependent on the antigen dose. There was a positive correlation between antibody avidity and protection. The antibodies in the protected mice recognized the native CSP on the parasites and showed sporozoite invasion inhibitory activity. Passive transfer of anti-CSP antibodies into naive mice also induced protection. Thus, we have demonstrated the utility of a mouse efficacy model to down-select human CSP-based vaccine formulations. PMID:23536694

  17. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  18. Temperature effects on vaccine induced immunity to viruses in fish

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Rasmussen, Jesper Skou

    a problem in terms of inducing a protective immune response by vaccination in aquaculture, since it is often desirable to vaccinate fish during autumn, winter, or spring. In experimental vaccination trials with rainbow trout (Oncorhynchus mykiss) using a DNA-vaccine encoding the viral glycoprotein of viral...... haemorrhagic septicaemia virus (VHSV), non-specific as well as specific immune mechanisms seemed to be delayed at low temperature. At five weeks post vaccination fish kept at 5C had no detectable response of neutralising antibodies while two thirds of the fish kept at 15C had sero-converted. While protective...... immunity was still established at both temperatures, specificity analysis suggested that protection at the lower temperature was mainly due to non-specific innate antiviral mechanisms, which appeared to last longer at low temperature. This was presumably related to a prolonged persistence of the vaccine...

  19. Full scale measurement of wind induced pressures : 1 configuration of wind induced pressures

    NARCIS (Netherlands)

    Geurts, C.P.W.; Wijen, H.L.M.

    1994-01-01

    A research project 10 the spectral characteristics of wind induced pressures is in progress in Eindhoven. This project includes both wind tunnel and full scale measurements. Wind induced pressures are measured in full scale at the main building of Eindhoven University of Technology. This paper

  20. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets.

    Science.gov (United States)

    Bandrick, Meggan; Theis, Kara; Molitor, Thomas W

    2014-06-05

    Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI.

  1. Vaccination with IL-6 analogues induces autoantibodies to IL-6 and influences experimentally induced inflammation

    DEFF Research Database (Denmark)

    Galle, Pia; Jensen, Lene; Andersson, Christina

    2007-01-01

    ; yet they appear healthy and do not exhibit overt clinical or laboratory abnormalities. We induced comparable levels of aAb-IL-6 in different mouse strains by vaccination with immunogenic IL-6 analogues. We observed that the induced aAb-IL-6 protected against collagen-induced arthritis and experimental...

  2. Highly efficient and selective pressure-assisted photon-induced polymerization of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jiwen [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Song, Yang, E-mail: yang.song@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7 (Canada)

    2016-06-07

    The polymerization process of condensed styrene to produce polystyrene as an industrially important polymeric material was investigated using a novel approach by combining external compression with ultraviolet radiation. The reaction evolution was monitored as a function of time and the reaction products were characterized by in situ Fourier transform infrared spectroscopy. By optimizing the loading pressures, we observed highly efficient and selective production of polystyrene of different tacticities. Specifically, at relatively low loading pressures, infrared spectra suggest that styrene monomers transform to amorphous atactic polystyrene (APS) with minor crystalline isotactic polystyrene. In contrast, APS was found to be the sole product when polymerization occurs at relatively higher loading pressures. The time-dependent reaction profiles allow the examination of the polymerization kinetics by analyzing the rate constant and activation volume as a function of pressure. As a result, an optimized pressure condition, which allows a barrierless reaction to proceed, was identified and attributed to the very desirable reaction yield and kinetics. Finally, the photoinitiated reaction mechanism and the growth geometry of the polymer chains were investigated from the energy diagram of styrene and by the topology analysis of the crystal styrene. This study shows strong promise to produce functional polymeric materials in a highly efficient and controlled manner.

  3. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Akira Yano

    2015-01-01

    Full Text Available The reduction of brain amyloid beta (Aβ peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer’s disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ40, and Aβ42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies.

  4. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Lee

    Full Text Available The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP-induced radicals on the epidermal growth factor receptor (EGFR, which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  5. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam

    2016-01-01

    The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  6. Hepatitis B vaccination coverage and the determinants of vaccination among health care workers in selected health facilities in Lusaka district, Zambia: an exploratory study.

    Science.gov (United States)

    Mungandi, Namwaka; Makasa, Mpundu; Musonda, Patrick

    2017-01-01

    Hepatitis B is a viral infection of the liver and causes both acute and chronic disease. It is transmitted through contact with an infected person's bodily fluids. It is an occupational hazard for healthcare workers and can be prevented by the administration of a vaccine. It is recommended that healthcare workers be vaccinated against vaccine preventable diseases including hepatitis B. The study objective was to determine the prevalence and determinants of hepatitis B vaccination among healthcare workers in selected health facilities in Lusaka. The study took place in seven health facilities across Lusaka district in Zambia. A total sample size of 331 healthcare workers was selected of which; 90 were nurses, 88 were doctors, 86 were laboratory personnel and 67 were general workers. A self-administered structured questionnaire was given to a total of 331 healthcare workers. Investigator led stepwise approach was used to select the best predictor variables in a multiple logistic regression model and all analyses were performed using STATA software, version 12.1 SE (Stata Corporation, College Station, TX, USA). Only 64(19.3%) of the healthcare workers were vaccinated against hepatitis B, with 35 (54.7%) of these being fully vaccinated and 29 (45.3%) partially vaccinated. Analysis showed that; age of the healthcare worker, sharp injuries per year and training in infection control were the variables that were statistically significant in predicting a healthcare worker's vaccination status. It is reassuring to learn that healthcare workers have knowledge regarding hepatitis B and the vaccine and are willing to be vaccinated against it. Health institutions should bear the cost for vaccinating staff and efforts should be made for appropriate health education regarding hepatitis B infection and its prevention. Establishment of policies on compulsory hepatitis B vaccination for healthcare workers in Zambia is recommended.

  7. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis.

    Science.gov (United States)

    Vordermeier, H Martin; Villarreal-Ramos, Bernardo; Cockle, Paul J; McAulay, Martin; Rhodes, Shelley G; Thacker, Tyler; Gilbert, Sarah C; McShane, Helen; Hill, Adrian V S; Xing, Zhou; Hewinson, R Glyn

    2009-08-01

    Previous work with small-animal laboratory models of tuberculosis has shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacillus Calmette-Guérin (BCG) to prime and modified vaccinia virus Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad85A) expressing the mycobacterial antigen Ag85A to boost may increase the protective efficacy of BCG. Here we report the first efficacy data on using these vaccines in cattle, a natural target species of tuberculous infection. Protection was determined by measuring development of disease as an end point after M. bovis challenge. Either Ad85A or MVA85A boosting resulted in protection superior to that given by BCG alone: boosting BCG with MVA85A or Ad85A induced significant reduction in pathology in four/eight parameters assessed, while BCG vaccination alone did so in only one parameter studied. Protection was particularly evident in the lungs of vaccinated animals (median lung scores for naïve and BCG-, BCG/MVA85A-, and BCG/Ad85A-vaccinated animals were 10.5, 5, 2.5, and 0, respectively). The bacterial loads in lymph node tissues were also reduced after viral boosting of BCG-vaccinated calves compared to those in BCG-only-vaccinated animals. Analysis of vaccine-induced immunity identified memory responses measured by cultured enzyme-linked immunospot assay as well as in vitro interleukin-17 production as predictors of vaccination success, as both responses, measured before challenge, correlated positively with the degree of protection. Therefore, this study provides evidence of improved protection against tuberculosis by viral booster vaccination in a natural target species and has prioritized potential correlates of vaccine efficacy for further evaluation. These findings also have implications for human tuberculosis vaccine development.

  8. Immunization with Clinical HIV-1 Env Proteins Induces Broad Antibody Dependent Cellular Cytotoxicity-Mediating Antibodies in a Rabbit Vaccination Model.

    Science.gov (United States)

    Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Stewart-Jones, Guillaume; Scarlatti, Gabriella; Fomsgaard, Anders

    2017-11-17

    The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKR CCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.

  9. Can mumps vaccine induce remission in recurrent respiratory papilloma?

    Science.gov (United States)

    Pashley, Nigel R T

    2002-07-01

    To describe our experience using laser excision and locally injected mumps vaccine to induce remission in patients with recurrent respiratory papilloma (RRP). Tertiary care regional medical center. Initially, 11 children with RRP treated in a pilot study with laser excision at regular intervals for at least a year without adjuvant therapy; later, a series of 18 children and 20 adults with RRP, some of whom had used various adjuvant therapy with interval laser excision. Both patient groups continued their same interval laser excision with the same or similar laser, same clinical setting, and same surgeon. Locally injected mumps vaccine was then administered into the excision site after each laser removal of papilloma. Larynx and trachea were microphotographed with each treatment. Two consecutive disease-free intervals and a follow-up of at least 1 year were required criteria for remission. In the pilot study, remission was induced in 9 (82%) of 11 patients by 1 to 10 injections, with follow-up of 5 to 19 years. In the subsequent series, remission was induced in 29 (76%) of 38 patients by 4 to 26 injections, and follow-up was 2 to 5 years. Combined with serial laser excision, mumps vaccine positively influences induction of remission in children with RRP. The mechanisms of this effect are unclear, but the treatment is readily available, inexpensive, and has a low risk of adverse effects.

  10. Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens.

    Directory of Open Access Journals (Sweden)

    Christian M Parobek

    2014-04-01

    Full Text Available Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1 and Plasmodium vivax circumsporozoite protein (pvcsp. Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44 and the complete gene of pvcsp (n = 47 from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines.

  11. A vaccine encoding conserved promiscuous HIV CD4 epitopes induces broad T cell responses in mice transgenic to multiple common HLA class II molecules.

    Directory of Open Access Journals (Sweden)

    Susan Pereira Ribeiro

    Full Text Available Current HIV vaccine approaches are focused on immunogens encoding whole HIV antigenic proteins that mainly elicit cytotoxic CD8+ responses. Mounting evidence points toward a critical role for CD4+ T cells in the control of immunodeficiency virus replication, probably due to cognate help. Vaccine-induced CD4+ T cell responses might, therefore, have a protective effect in HIV replication. In addition, successful vaccines may have to elicit responses to multiple epitopes in a high proportion of vaccinees, to match the highly variable circulating strains of HIV. Using rational vaccine design, we developed a DNA vaccine encoding 18 algorithm-selected conserved, "promiscuous" (multiple HLA-DR-binding B-subtype HIV CD4 epitopes - previously found to be frequently recognized by HIV-infected patients. We assessed the ability of the vaccine to induce broad T cell responses in the context of multiple HLA class II molecules using different strains of HLA class II- transgenic mice (-DR2, -DR4, -DQ6 and -DQ8. Mice displayed CD4+ and CD8+ T cell responses of significant breadth and magnitude, and 16 out of the 18 encoded epitopes were recognized. By virtue of inducing broad responses against conserved CD4+ T cell epitopes that can be recognized in the context of widely diverse, common HLA class II alleles, this vaccine concept may cope both with HIV genetic variability and increased population coverage. The vaccine may thus be a source of cognate help for HIV-specific CD8+ T cells elicited by conventional immunogens, in a wide proportion of vaccinees.

  12. Distinct susceptibility of HIV vaccine vector-induced CD4 T cells to HIV infection

    Science.gov (United States)

    Niu, Qingli; Hou, Wei; Churchyard, Gavin; Nitayaphan, Sorachai; Pitisuthithum, Punnee; Rerks-Ngarm, Supachai; Franchini, Genoveffa

    2018-01-01

    The concerns raised from adenovirus 5 (Ad5)-based HIV vaccine clinical trials, where excess HIV infections were observed in some vaccine recipients, have highlighted the importance of understanding host responses to vaccine vectors and the HIV susceptibility of vector-specific CD4 T cells in HIV vaccination. Our recent study reported that human Ad5-specific CD4 T cells induced by Ad5 vaccination (RV156A trial) are susceptible to HIV. Here we further investigated the HIV susceptibility of vector-specific CD4 T cells induced by ALVAC, a canarypox viral vector tested in the Thai trial RV144, as compared to Ad5 vector-specific CD4 T cells in the HVTN204 trial. We showed that while Ad5 vector-specific CD4 T cells were readily susceptible to HIV, ALVAC-specific CD4 T cells in RV144 PBMC were substantially less susceptible to both R5 and X4 HIV in vitro. The lower HIV susceptibility of ALVAC-specific CD4 T cells was associated with the reduced surface expression of HIV entry co-receptors CCR5 and CXCR4 on these cells. Phenotypic analyses identified that ALVAC-specific CD4 T cells displayed a strong Th1 phenotype, producing higher levels of IFN-γ and CCL4 (MIP-1β) but little IL-17. Of interest, ALVAC and Ad5 vectors induced distinct profiles of vector-specific CD8 vs. CD4 T-cell proliferative responses in PBMC, with ALVAC preferentially inducing CD8 T-cell proliferation, while Ad5 vector induced CD4 T-cell proliferation. Depletion of ALVAC-, but not Ad5-, induced CD8 T cells in PBMC led to a modest increase in HIV infection of vector-specific CD4 T cells, suggesting a role of ALVAC-specific CD8 T cells in protecting ALVAC-specific CD4 T cells from HIV. Taken together, our data provide strong evidence for distinct HIV susceptibility of CD4 T cells induced by different vaccine vectors and highlight the importance of better evaluating anti-vector responses in HIV vaccination. PMID:29474461

  13. Tetanus Toxoid carrier protein induced T-helper cell responses upon vaccination of middle-aged adults

    NARCIS (Netherlands)

    van der Heiden, Marieke; Duizendstra, Aafke; Berbers, Guy A M; Boots, Annemieke M H; Buisman, Anne-Marie

    2017-01-01

    INTRODUCTION: Vaccines frequently induce suboptimal immune responses in the elderly, due to immunological ageing. Timely vaccination may be a strategy to overcome this problem, which classifies middle-aged adults asan interesting target group for future vaccine interventions. However, the

  14. Origins of pressure-induced protein transitions.

    Science.gov (United States)

    Chalikian, Tigran V; Macgregor, Robert B

    2009-12-18

    The molecular mechanisms underlying pressure-induced protein denaturation can be analyzed based on the pressure-dependent differences in the apparent volume occupied by amino acids inside the protein and when they are exposed to water in an unfolded conformation. We present here an analysis for the peptide group and the 20 naturally occurring amino acid side chains based on volumetric parameters for the amino acids in the interior of the native state, the micelle-like interior of the pressure-induced denatured state, and the unfolded conformation modeled by N-acetyl amino acid amides. The transfer of peptide groups from the protein interior to water becomes increasingly favorable as pressure increases. Thus, solvation of peptide groups represents a major driving force in pressure-induced protein denaturation. Polar side chains do not appear to exhibit significant pressure-dependent changes in their preference for the protein interior or solvent. The transfer of nonpolar side chains from the protein interior to water becomes more unfavorable as pressure increases. We conclude that a sizeable population of nonpolar side chains remains buried inside a solvent-inaccessible core of the pressure-induced denatured state. At elevated pressures, this core may become packed almost as tightly as the interior of the native state. The presence and partial disappearance of large intraglobular voids is another driving force facilitating pressure-induced denaturation of individual proteins. Our data also have implications for the kinetics of protein folding and shed light on the nature of the folding transition state ensemble.

  15. Immunoglobulin GM and KM genes and measles vaccine-induced humoral immunity.

    Science.gov (United States)

    Ovsyannikova, Inna G; Larrabee, Beth R; Schaid, Daniel J; Poland, Gregory A

    2017-10-04

    Identifying genetic polymorphisms that explain variations in humoral immunity to live measles virus vaccine is of great interest. Immunoglobulin GM (heavy chain) and KM (light chain) allotypes are genetic markers known to be associated with susceptibility to several infectious diseases. We assessed associations between GM and KM genotypes and measles vaccine humoral immunity (neutralizing antibody titers) in a combined cohort (n=1796) of racially diverse healthy individuals (age 18-41years). We did not discover any significant associations between GM and/or KM genotypes and measles vaccine-induced neutralizing antibody titers. African-American subjects had higher neutralizing antibody titers than Caucasians (1260mIU/mL vs. 740mIU/mL, p=7.10×10 -13 ), and those titers remained statistically significant (p=1.68×10 -09 ) after adjusting for age at enrollment and time since last vaccination. There were no statistically significant sex-specific differences in measles-induced neutralizing antibody titers in our study (p=0.375). Our data indicate a surprising lack of evidence for an association between GM and KM genotypes and measles-specific neutralizing antibody titers, despite the importance of these immune response genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. How Can Vaccines Contribute to Solving the Antimicrobial Resistance Problem?

    Directory of Open Access Journals (Sweden)

    Marc Lipsitch

    2016-06-01

    Full Text Available There is a growing appreciation for the role of vaccines in confronting the problem of antimicrobial resistance (AMR. Vaccines can reduce the prevalence of resistance by reducing the need for antimicrobial use and can reduce its impact by reducing the total number of cases. By reducing the number of pathogens that may be responsible for a particular clinical syndrome, vaccines can permit the use of narrower-spectrum antibiotics for empirical therapy. These effects may be amplified by herd immunity, extending protection to unvaccinated persons in the population. Because much selection for resistance is due to selection on bystander members of the normal flora, vaccination can reduce pressure for resistance even in pathogens not included in the vaccine. Some vaccines have had disproportionate effects on drug-resistant lineages within the target species, a benefit that could be more deliberately exploited in vaccine design. We describe the effects of current vaccines in controlling AMR, survey some vaccines in development with the potential to do so further, and discuss strategies to amplify these benefits. We conclude with a discussion of research and policy priorities to more fully enlist vaccines in the battle against AMR.

  17. Hepatitis B virus infection and vaccine-induced immunity in Madrid (Spain).

    Science.gov (United States)

    Pedraza-Flechas, Ana María; García-Comas, Luis; Ordobás-Gavín, María; Sanz-Moreno, Juan Carlos; Ramos-Blázquez, Belén; Astray-Mochales, Jenaro; Moreno-Guillén, Santiago

    2014-01-01

    To estimate the prevalence of hepatitis B virus (HBV) infection and vaccine-induced immunity in the region of Madrid, and to analyze their evolution over time. An observational, analytical, cross-sectional study was carried out in the population aged 16-80 years between 2008 and 2009. This was the last of four seroprevalence surveys in the region of Madrid. The prevalence of HBV infection and vaccine-induced immunity was estimated using multivariate logistic models and were compared with the prevalences in the 1989, 1993 and 1999 surveys. In the population aged 16-80 years, the prevalence of HBV infection was 11.0% (95% CI: 9.8-12.3) and that of chronic infection was 0.7% (95% CI: 0.5-1.1). The prevalence of vaccine-induced immunity in the population aged 16-20 years was 73.0% (95% CI: 70.0-76.0). Compared with previous surveys, there was a decrease in the prevalence of HBV infection. Based on the prevalence of chronic infection (<1%), Madrid is a region with low HBV endemicity. Preventive strategies against HBV should especially target the immigrant population. Copyright © 2013. Published by Elsevier Espana.

  18. Fragmentation of SIV-gag vaccine induces broader T cell responses.

    Directory of Open Access Journals (Sweden)

    Adel Benlahrech

    Full Text Available High mutation rates of human immunodeficiency virus (HIV allows escape from T cell recognition preventing development of effective T cell vaccines. Vaccines that induce diverse T cell immune responses would help overcome this problem. Using SIV gag as a model vaccine, we investigated two approaches to increase the breadth of the CD8 T cell response. Namely, fusion of vaccine genes to ubiquitin to target the proteasome and increase levels of MHC class I peptide complexes and gene fragmentation to overcome competition between epitopes for presentation and recognition.three vaccines were compared: full-length unmodified SIV-mac239 gag, full-length gag fused at the N-terminus to ubiquitin and 7 gag fragments of equal size spanning the whole of gag with ubiquitin-fused to the N-terminus of each fragment. Genes were cloned into a replication defective adenovirus vector and immunogenicity assessed in an in vitro human priming system. The breadth of the CD8 T cell response, defined by the number of distinct epitopes, was assessed by IFN-γ-ELISPOT and memory phenotype and cytokine production evaluated by flow cytometry. We observed an increase of two- to six-fold in the number of epitopes recognised in the ubiquitin-fused fragments compared to the ubiquitin-fused full-length gag. In contrast, although proteasomal targeting was achieved, there was a marked reduction in the number of epitopes recognised in the ubiquitin-fused full-length gag compared to the full-length unmodified gene, but there were no differences in the number of epitope responses induced by non-ubiquitinated full-length gag and the ubiquitin-fused mini genes. Fragmentation and ubiquitination did not affect T cell memory differentiation and polyfunctionality, though most responses were directed against the Ad5 vector.Fragmentation but not fusion with ubiquitin increases the breadth of the CD8 T vaccine response against SIV-mac239 gag. Thus gene fragmentation of HIV vaccines may maximise

  19. The impact of assumptions regarding vaccine-induced immunity on the public health and cost-effectiveness of hepatitis A vaccination: Is one dose sufficient?

    Science.gov (United States)

    Curran, Desmond; de Ridder, Marc; Van Effelterre, Thierry

    2016-01-01

    ABSTRACT Hepatitis A vaccination stimulates memory cells to produce an anamnestic response. In this study, we used a mathematical model to examine how long-term immune memory might convey additional protection against clinical/icteric infections. Dynamic and decision models were used to estimate the expected number of cases, and the costs and quality-adjusted life-years (QALYs), respectively. Several scenarios were explored by assuming: (1) varying duration of vaccine-induced immune memory, (2) and/or varying levels of vaccine-induced immune memory protection (IMP), (3) and/or varying levels of infectiousness in vaccinated individuals with IMP. The base case analysis assumed a time horizon of 25 y (2012 – 2036), with additional analyses over 50 and 75 y. The analyses were conducted in the Mexican public health system perspective. In the base case that assumed no vaccine-induced IMP, the 2-dose hepatitis A vaccination strategy was cost-effective compared with the 1-dose strategy over the 3 time horizons. However, it was not cost-effective if we assumed additional IMP durations of at least 10 y in the 25-y horizon. In the 50- and 75-y horizons, the 2-dose strategy was always cost-effective, except when 100% reduction in the probability of icteric Infections, 75% reduction in infectiousness, and mean durations of IMP of at least 50 y were assumed. This analysis indicates that routine vaccination of toddlers against hepatitis A virus would be cost-effective in Mexico using a single-dose vaccination strategy. However, the cost-effectiveness of a second dose depends on the assumptions of additional protection by IMP and the time horizon over which the analysis is performed. PMID:27428611

  20. Persistence of yellow fever vaccine-induced antibodies after solid organ transplantation.

    Science.gov (United States)

    Wyplosz, B; Burdet, C; François, H; Durrbach, A; Duclos-Vallée, J C; Mamzer-Bruneel, M-F; Poujol, P; Launay, O; Samuel, D; Vittecoq, D; Consigny, P H

    2013-09-01

    Immunization using live attenuated vaccines represents a contra-indication after solid organ transplantation (SOT): consequently, transplant candidates planning to travel in countries where yellow fever is endemic should be vaccinated prior to transplantation. The persistence of yellow fever vaccine-induced antibodies after transplantation has not been studied yet. We measured yellow-fever neutralizing antibodies in 53 SOT recipients vaccinated prior to transplantation (including 29 kidney recipients and 18 liver recipients). All but one (98%) had protective titers of antibodies after a median duration of 3 years (min.: 0.8, max.: 21) after transplantation. The median antibody level was 40 U/L (interquartile range: 40-80). For the 46 patients with a known or estimated date of vaccination, yellow-fever antibodies were still detectable after a median time of 13 years (range: 2-32 years) post-immunization. Our data suggest there is long-term persistence of antibodies to yellow fever in SOT recipients who have been vaccinated prior to transplantation. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  1. Ad35 and ad26 vaccine vectors induce potent and cross-reactive antibody and T-cell responses to multiple filovirus species.

    Directory of Open Access Journals (Sweden)

    Roland Zahn

    Full Text Available Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35 was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,, two Marburg strains (Marburg Angola and Marburg Ravn and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26-Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years.

  2. Microneedle delivery of trivalent influenza vaccine to the skin induces long-term cross-protection.

    Science.gov (United States)

    Kim, Yeu-Chun; Lee, Su-Hwa; Choi, Won-Hyung; Choi, Hyo-Jick; Goo, Tae-Won; Lee, Ju-Hie; Quan, Fu-Shi

    2016-12-01

    A painless self-immunization method with effective and broad cross-protection is urgently needed to prevent infections against newly emerging influenza viruses. In this study, we investigated the cross-protection efficacy of trivalent influenza vaccine containing inactivated A/PR/8/34 (H1N1), A/Hong Kong/68 (H3N2) and B/Lee/40 after skin vaccination using microneedle patches coated with this vaccine. Microneedle vaccination of mice in the skin provided 100% protection against lethal challenges with heterologous pandemic strain influenza A/California/04/09, heterogeneous A/Philippines/2/82 and B/Victoria/287 viruses 8 months after boost immunization. Cross-reactive serum IgG antibody responses against heterologous influenza viruses A/California/04/09, A/Philippines/2/82 and B/Victoria/287 were induced at high levels. Hemagglutination inhibition titers were also maintained at high levels against these heterogeneous viruses. Microneedle vaccination induced substantial levels of cross-reactive IgG antibody responses in the lung and cellular immune responses, as well as cross-reactive antibody-secreting plasma cells in the spleen. Viral loads in the lung were significantly (p skin vaccination with trivalent vaccine using a microneedle array could provide protection against seasonal epidemic or new pandemic strain of influenza viruses.

  3. Multigenic DNA vaccine induces protective cross-reactive T cell responses against heterologous influenza virus in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Merika T Koday

    Full Text Available Recent avian and swine-origin influenza virus outbreaks illustrate the ongoing threat of influenza pandemics. We investigated immunogenicity and protective efficacy of a multi-antigen (MA universal influenza DNA vaccine consisting of HA, M2, and NP antigens in cynomolgus macaques. Following challenge with a heterologous pandemic H1N1 strain, vaccinated animals exhibited significantly lower viral loads and more rapid viral clearance when compared to unvaccinated controls. The MA DNA vaccine induced robust serum and mucosal antibody responses but these high antibody titers were not broadly neutralizing. In contrast, the vaccine induced broadly-reactive NP specific T cell responses that cross-reacted with the challenge virus and inversely correlated with lower viral loads and inflammation. These results demonstrate that a MA DNA vaccine that induces strong cross-reactive T cell responses can, independent of neutralizing antibody, mediate significant cross-protection in a nonhuman primate model and further supports development as an effective approach to induce broad protection against circulating and emerging influenza strains.

  4. Strengthening the influenza vaccine virus selection and development process: Report of the 3rd WHO Informal Consultation for Improving Influenza Vaccine Virus Selection held at WHO headquarters, Geneva, Switzerland, 1-3 April 2014.

    Science.gov (United States)

    Ampofo, William K; Azziz-Baumgartner, Eduardo; Bashir, Uzma; Cox, Nancy J; Fasce, Rodrigo; Giovanni, Maria; Grohmann, Gary; Huang, Sue; Katz, Jackie; Mironenko, Alla; Mokhtari-Azad, Talat; Sasono, Pretty Multihartina; Rahman, Mahmudur; Sawanpanyalert, Pathom; Siqueira, Marilda; Waddell, Anthony L; Waiboci, Lillian; Wood, John; Zhang, Wenqing; Ziegler, Thedi

    2015-08-26

    Despite long-recognized challenges and constraints associated with their updating and manufacture, influenza vaccines remain at the heart of public health preparedness and response efforts against both seasonal and potentially pandemic influenza viruses. Globally coordinated virological and epidemiological surveillance is the foundation of the influenza vaccine virus selection and development process. Although national influenza surveillance and reporting capabilities are being strengthened and expanded, sustaining and building upon recent gains has become a major challenge. Strengthening the vaccine virus selection process additionally requires the continuation of initiatives to improve the timeliness and representativeness of influenza viruses shared by countries for detailed analysis by the WHO Global Influenza Surveillance and Response System (GISRS). Efforts are also continuing at the national, regional, and global levels to better understand the dynamics of influenza transmission in both temperate and tropical regions. Improved understanding of the degree of influenza seasonality in tropical countries of the world should allow for the strengthening of national vaccination policies and use of the most appropriate available vaccines. There remain a number of limitations and difficulties associated with the use of HAI assays for the antigenic characterization and selection of influenza vaccine viruses by WHOCCs. Current approaches to improving the situation include the more-optimal use of HAI and other assays; improved understanding of the data produced by neutralization assays; and increased standardization of serological testing methods. A number of new technologies and associated tools have the potential to revolutionize influenza surveillance and response activities. These include the increasingly routine use of whole genome next-generation sequencing and other high-throughput approaches. Such approaches could not only become key elements in outbreak

  5. The Latest in Vaccine Policies: Selected Issues in School Vaccinations, Healthcare Worker Vaccinations, and Pharmacist Vaccination Authority Laws.

    Science.gov (United States)

    Barraza, Leila; Schmit, Cason; Hoss, Aila

    2017-03-01

    This paper discusses recent changes to state legal frameworks for mandatory vaccination in the context of school and healthcare worker vaccination. It then discusses state laws that allow pharmacists the authority to vaccinate.

  6. Immune escape mutants of Highly Pathogenic Avian Influenza H5N1 selected using polyclonal sera: identification of key amino acids in the HA protein.

    Directory of Open Access Journals (Sweden)

    Ioannis Sitaras

    Full Text Available Evolution of Avian Influenza (AI viruses--especially of the Highly Pathogenic Avian Influenza (HPAI H5N1 subtype--is a major issue for the poultry industry. HPAI H5N1 epidemics are associated with huge economic losses and are sometimes connected to human morbidity and mortality. Vaccination (either as a preventive measure or as a means to control outbreaks is an approach that splits the scientific community, due to the risk of it being a potential driving force in HPAI evolution through the selection of mutants able to escape vaccination-induced immunity. It is therefore essential to study how mutations are selected due to immune pressure. To this effect, we performed an in vitro selection of mutants from HPAI A/turkey/Turkey/1/05 (H5N1, using immune pressure from homologous polyclonal sera. After 42 rounds of selection, we identified 5 amino acid substitutions in the Haemagglutinin (HA protein, most of which were located in areas of antigenic importance and suspected to be prone to selection pressure. We report that most of the mutations took place early in the selection process. Finally, our antigenic cartography studies showed that the antigenic distance between the selected isolates and their parent strain increased with passage number.

  7. Duck enteritis virus glycoprotein D and B DNA vaccines induce immune responses and immunoprotection in Pekin ducks.

    Science.gov (United States)

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks.

  8. Dengue human infection models to advance dengue vaccine development.

    Science.gov (United States)

    Larsen, Christian P; Whitehead, Stephen S; Durbin, Anna P

    2015-12-10

    Dengue viruses (DENV) currently infect approximately 400 million people each year causing millions to seek care and overwhelming the health care infrastructure in endemic areas. Vaccines to prevent dengue and therapeutics to treat dengue are not currently available. The efficacy of the most advanced candidate vaccine against symptomatic dengue in general and DENV-2 in particular was much lower than expected, despite the ability of the vaccine to induce neutralizing antibody against all four DENV serotypes. Because seroconversion to the DENV serotypes following vaccination was thought to be indicative of induced protection, these results have made it more difficult to assess which candidate vaccines should or should not be evaluated in large studies in endemic areas. A dengue human infection model (DHIM) could be extremely valuable to down-select candidate vaccines or therapeutics prior to engaging in efficacy trials in endemic areas. Two DHIM have been developed to assess the efficacy of live attenuated tetravalent (LATV) dengue vaccines. The first model, developed by the Laboratory of Infectious Diseases at the U. S. National Institutes of Health, utilizes a modified DENV-2 strain DEN2Δ30. This virus was derived from the DENV-2 Tonga/74 that caused only very mild clinical infection during the outbreak from which it was recovered. DEN2Δ30 induced viremia in 100%, rash in 80%, and neutropenia in 27% of the 30 subjects to whom it was given. The Walter Reed Army Institute of Research (WRAIR) is developing a DHIM the goal of which is to identify DENV that cause symptomatic dengue fever. WRAIR has evaluated seven viruses and has identified two that meet dengue fever criteria. Both of these models may be very useful in the evaluation and down-selection of candidate dengue vaccines and therapeutics. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Attenuated Mycobacterium tuberculosis SO2 vaccine candidate is unable to induce cell death.

    Directory of Open Access Journals (Sweden)

    Adriana Aporta

    Full Text Available It has been proposed that Mycobacterium tuberculosis virulent strains inhibit apoptosis and trigger cell death by necrosis of host macrophages to evade innate immunity, while non-virulent strains induce typical apoptosis activating a protective host response. As part of the characterization of a novel tuberculosis vaccine candidate, the M. tuberculosis phoP mutant SO2, we sought to evaluate its potential to induce host cell death. The parental M. tuberculosis MT103 strain and the current vaccine against tuberculosis Bacillus Calmette-Guérin (BCG were used as comparators in mouse models in vitro and in vivo. Our data reveal that attenuated SO2 was unable to induce apoptotic events neither in mouse macrophages in vitro nor during lung infection in vivo. In contrast, virulent MT103 triggers typical apoptotic events with phosphatidylserine exposure, caspase-3 activation and nuclear condensation and fragmentation. BCG strain behaved like SO2 and did not induce apoptosis. A clonogenic survival assay confirmed that viability of BCG- or SO2-infected macrophages was unaffected. Our results discard apoptosis as the protective mechanism induced by SO2 vaccine and provide evidence for positive correlation between classical apoptosis induction and virulent strains, suggesting apoptosis as a possible virulence determinant during M. tuberculosis infection.

  10. The evolutionary consequences of blood-stage vaccination on the rodent malaria Plasmodium chabaudi.

    Directory of Open Access Journals (Sweden)

    Victoria C Barclay

    Full Text Available Malaria vaccine developers are concerned that antigenic escape will erode vaccine efficacy. Evolutionary theorists have raised the possibility that some types of vaccine could also create conditions favoring the evolution of more virulent pathogens. Such evolution would put unvaccinated people at greater risk of severe disease. Here we test the impact of vaccination with a single highly purified antigen on the malaria parasite Plasmodium chabaudi evolving in laboratory mice. The antigen we used, AMA-1, is a component of several candidate malaria vaccines currently in various stages of trials in humans. We first found that a more virulent clone was less readily controlled by AMA-1-induced immunity than its less virulent progenitor. Replicated parasites were then serially passaged through control or AMA-1 vaccinated mice and evaluated after 10 and 21 rounds of selection. We found no evidence of evolution at the ama-1 locus. Instead, virulence evolved; AMA-1-selected parasites induced greater anemia in naïve mice than both control and ancestral parasites. Our data suggest that recombinant blood stage malaria vaccines can drive the evolution of more virulent malaria parasites.

  11. Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies.

    Science.gov (United States)

    Kamal, Ram P; Blanchfield, Kristy; Belser, Jessica A; Music, Nedzad; Tzeng, Wen-Pin; Holiday, Crystal; Burroughs, Ashley; Sun, Xiangjie; Maines, Taronna R; Levine, Min Z; York, Ian A

    2017-10-15

    Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines. IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with antibody

  12. Inactivated Eyedrop Influenza Vaccine Adjuvanted with Poly(I:C Is Safe and Effective for Inducing Protective Systemic and Mucosal Immunity.

    Directory of Open Access Journals (Sweden)

    Eun-Do Kim

    Full Text Available The eye route has been evaluated as an efficient vaccine delivery routes. However, in order to induce sufficient antibody production with inactivated vaccine, testing of the safety and efficacy of the use of inactivated antigen plus adjuvant is needed. Here, we assessed various types of adjuvants in eyedrop as an anti-influenza serum and mucosal Ab production-enhancer in BALB/c mice. Among the adjuvants, poly (I:C showed as much enhancement in antigen-specific serum IgG and mucosal IgA antibody production as cholera toxin (CT after vaccinations with trivalent hemagglutinin-subunits or split H1N1 vaccine antigen in mice. Vaccination with split H1N1 eyedrop vaccine antigen plus poly(I:C showed a similar or slightly lower efficacy in inducing antibody production than intranasal vaccination; the eyedrop vaccine-induced immunity was enough to protect mice from lethal homologous influenza A/California/04/09 (H1N1 virus challenge. Additionally, ocular inoculation with poly(I:C plus vaccine antigen generated no signs of inflammation within 24 hours: no increases in the mRNA expression levels of inflammatory cytokines nor in the infiltration of mononuclear cells to administration sites. In contrast, CT administration induced increased expression of IL-6 cytokine mRNA and mononuclear cell infiltration in the conjunctiva within 24 hours of vaccination. Moreover, inoculated visualizing materials by eyedrop did not contaminate the surface of the olfactory bulb in mice; meanwhile, intranasally administered materials defiled the surface of the brain. On the basis of these findings, we propose that the use of eyedrop inactivated influenza vaccine plus poly(I:C is a safe and effective mucosal vaccine strategy for inducing protective anti-influenza immunity.

  13. Vaccine-induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    Paine, N.J.; Ring, C.; Bosch, J.A.; Drayson, M.T.; Aldred, S.; Veldhuijzen van Zanten, J.J.C.S.

    2014-01-01

    Inflammation is associated with poorer vascular function, with evidence to suggest that inflammation can also impair the vascular responses to mental stress. This study examined the effects of vaccine-induced inflammation on vascular responses to mental stress in healthy participants. Eighteen male

  14. Seismic induced earth pressures in buried vaults

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.

    1994-01-01

    The magnitude and distribution of earth pressures acting on buried structures and induced by a seismic event are considered in this paper. A soil-structure-interaction analysis is performed for typical Department of Energy high level waste storage tanks using a lumped parameter model. The resulting soil pressure distributions are determined and compared with the static soil pressure to assess the design significance of the seismic induced soil pressures. It is found that seismic pressures do not control design unless the peak ground acceleration exceeds about 0.3 G. The effect of soil non linearities (resulting from local soil failure) are also found to have little effect on the predictions of the seismic response of the buried structure. The seismic induced pressures are found to be very similar to those predicted using the elastic model in ASCE 4-86

  15. [Influence of distinct criteria for selecting patients for swabbing on estimation of the effectiveness of the influenza vaccine].

    Science.gov (United States)

    Martínez-Baz, Iván; Guevara, Marcela; Elía, Fernando; Ezpeleta, Carmen; Fernández Alonso, Mirian; Castilla, Jesús

    2014-01-01

    To estimate the effectiveness of the influenza vaccine under different criteria for selecting patients for swabbing. A case-control study was performed of laboratory-confirmed cases (n=909) and negative controls for influenza (n=732) in the 2010-2011 to 2012-2013 seasons in Navarre (Spain). The adjusted vaccine effectiveness was estimated by including all swabs from patients with influenza-like-illness and selecting only the first two cases per physician and week. The first two patients per physician and week were less frequently vaccinated against influenza (7.9% vs. 12.5%, p=0.021) and less often received confirmation of influenza (53.6% vs. 66.4%, p <0.001) than subsequent patients. These differences decreased after adjustment for covariates. The effectiveness of the influenza vaccine was 49% (95% CI: 23-66%) when all swabs were included and was 55% (95% CI: 27-72%) when we selected the first two swabs per week and physician. The selection of the first two patients per physician and week may bias assessment of the effectiveness of the influenza vaccine, although this bias was small in the seasons analyzed. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.

  16. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Zhang Quanfu

    2011-06-01

    Full Text Available Abstract Background The incidence of dengue, an infectious disease caused by dengue virus (DENV, has dramatically increased around the world in recent decades and is becoming a severe public health threat. However, there is currently no specific treatment for dengue fever, and licensed vaccine against dengue is not available. Vaccination with virus-like particles (VLPs has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has not been adequately investigated. Results By optimizing the expression plasmids, recombinant VLPs of four antigenically different DENV serotypes DENV1-4 were successfully produced in 293T cells. The vaccination effect of dengue VLPs in mice showed that monovalent VLPs of each serotype stimulated specific IgG responses and potent neutralizing antibodies against homotypic virus. Tetravalent VLPs efficiently enhanced specific IgG and neutralizing antibodies against all four serotypes of DENV. Moreover, vaccination with monovalent or tetravalent VLPs resulted in the induction of specific cytotoxic T cell responses. Conclusions Mammalian cell expressed dengue VLPs are capable to induce VLP-specific humoral and cellular immune responses in mice, and being a promising subunit vaccine candidate for prevention of dengue virus infection.

  17. Stability of live attenuated rotavirus vaccine with selected preservatives and primary containers.

    Science.gov (United States)

    Lal, Manjari; Jarrahian, Courtney; Zhu, Changcheng; Hosken, Nancy A; McClurkan, Chris L; Koelle, David M; Saxon, Eugene; Roehrig, Andrew; Zehrung, Darin; Chen, Dexiang

    2016-05-11

    that was similar to its profile in standard glass vials. This study demonstrates that there are multiple options for the primary container for rotavirus vaccines intended for oral delivery. Selection of an optimal primary container should take into consideration additional factors, including stability as well as cold chain volume, usability, cost, and manufacturing feasibility. Copyright © 2016. Published by Elsevier Ltd.

  18. Protection against bovine tuberculosis induced by oral vaccination of cattle with Mycobacterium bovis BCG is not enhanced by co-administration of mycobacterial protein vaccines.

    Science.gov (United States)

    Wedlock, D Neil; Aldwell, Frank E; Vordermeier, H Martin; Hewinson, R Glyn; Buddle, Bryce M

    2011-12-15

    Mycobacterium bovis bacille Calmette-Guérin (BCG) delivered to calves by the oral route in a formulated lipid matrix has been previously shown to induce protection against bovine tuberculosis. A study was conducted in cattle to determine if a combination of a low dose of oral BCG and a protein vaccine could induce protective immunity to tuberculosis while not sensitising animals to tuberculin. Groups of calves (10 per group) were vaccinated by administering 2 × 10(7)colony forming units (CFU) of BCG orally or a combination of 2 × 10(7)CFU oral BCG and a protein vaccine comprised of M. bovis culture filtrate proteins (CFP) formulated with the adjuvants Chitin and Gel 01 and delivered by the intranasal route, or CFP formulated with Emulsigen and the TLR2 agonist Pam(3)CSK(4) and administered by the subcutaneous (s.c.) route. Two further groups were vaccinated with the CFP/Chitin/Gel 01 or CFP/Emulsigen/Pam(3)CSK(4) vaccines alone. Positive control groups were given 10(8)CFU oral BCG or 10(6)CFU s.c. BCG while a negative control group was non-vaccinated. All animals were challenged with M. bovis 15 weeks after vaccination and euthanized and necropsied at 16 weeks following challenge. Groups of cattle vaccinated with s.c. BCG, 10(8)CFU or 2 × 10(7)CFU oral BCG showed significant reductions in seven, three and four pathological or microbiological disease parameters, respectively, compared to the results for the non-vaccinated group. There was no evidence of protection in calves vaccinated with the combination of oral BCG and CFP/Emulsigen/Pam(3)CSK(4) or oral BCG and CFP/Chitin/Gel 01 or vaccinated with the protein vaccines alone. Positive responses in the comparative cervical skin test at 12 weeks after vaccination were only observed in animals vaccinated with s.c. BCG, 10(8)CFU oral BCG or a combination of 2 × 10(7)CFU oral BCG and CFP/Chitin/Gel 01. In conclusion, co-administration of a protein vaccine, administered by either systemic or mucosal routes with oral

  19. Melting and Pressure-Induced Amorphization of Quartz

    OpenAIRE

    Badro, James; Gillet, Philippe; Barrat, Jean-Louis

    1997-01-01

    It has recently been shown that amorphization and melting of ice were intimately linked. In this letter, we infer from molecular dynamics simulations on the SiO2 system that the extension of the quartz melting line in the metastable pressure-temperature domain is the pressure-induced amorphization line. It seems therefore likely that melting is the physical phenomenon responsible for pressure induced amorphization. Moreover, we show that the structure of a "pressure glass" is similar to that ...

  20. In vivo evidence for CD4+ and CD8+ suppressor T cells in vaccination-induced suppression of murine experimental autoimmune thyroiditis

    International Nuclear Information System (INIS)

    Flynn, J.C.; Kong, Y.C.

    1991-01-01

    In several experimental autoimmune diseases, including experimental autoimmune thyroiditis (EAT), vaccination with attenuated autoantigen-specific T cells has provided protection against subsequent induction of disease. However, the mechanism(s) of vaccination-induced suppression remains to be clarified. Since the authors have previously shown that suppression generated by pretreatment with mouse thyroglobulin (MTg) or thyroid-stimulating hormone in EAT is mediated by CD4+, not CD8+, suppressor T cells, they examined the role of T cell subsets in vaccination-induced suppression of EAT. Mice were vaccinated with irradiated, MTg-primed, and MTg-activated spleen cells and then challenged. Pretreatment with these cells suppressed EAT induced by immunization with MTg and adjuvant, but not by adoptive transfer of thyroiditogenic cells, suggesting a mechanism of afferent suppression. The activation of suppressor mechanisms did not require CD8+ cells, since mice depleted of CD8+ cells before vaccination showed reduced EAT comparable to control vaccinated mice. Furthermore, depletion of either the CD4+ or the CD8+ subset after vaccination did not significantly abrogate suppression. However, suppression was eliminated by the depletion of both CD4+ and CD8+ cells in vaccinated mice. These results provide evidence for the cooperative effects of CD4+ and CD8+ T cells in vaccination-induced suppression of EAT

  1. Stability of different influenza subtypes: How can high hydrostatic pressure be a useful tool for vaccine development?

    Science.gov (United States)

    Dumard, Carlos Henrique; Barroso, Shana P C; Santos, Ana Clara V; Alves, Nathalia S; Couceiro, José Nelson S S; Gomes, Andre M O; Santos, Patricia S; Silva, Jerson L; Oliveira, Andréa C

    2017-12-01

    Avian influenza A viruses can cross naturally into mammals and cause severe diseases, as observed for H5N1. The high lethality of human infections causes major concerns about the real risk of a possible pandemic of severe diseases to which human susceptibility may be high and universal. High hydrostatic pressure (HHP) is a valuable tool for studies regarding the folding of proteins and the assembly of macromolecular structures such as viruses; furthermore, HHP has already been demonstrated to promote viral inactivation. Here, we investigated the structural stability of avian and human influenza viruses using spectroscopic and light-scattering techniques. We found that both particles have similar structural stabilities and that HHP promotes structural changes. HHP induced slight structural changes to both human and avian influenza viruses, and these changes were largely reversible when the pressure returned to its initial level. The spectroscopic data showed that H3N2 was more pressure-sensitive than H3N8. Structural changes did not predict changes in protein function, as H3N2 fusion activity was not affected, while H3N8 fusion activity drastically decreased. The fusion activity of H1N1 was also strongly affected by HHP. In all cases, HHP caused inactivation of the different influenza viruses. HHP may be a useful tool for vaccine development, as it induces minor and reversible structural changes that may be associated with partial preservation of viral biological activities and may potentiate their immunogenic response while abolishing their infectivity. We also confirmed that, although pressure does not promote drastic changes in viral particle structure, it can distinctly affect viral fusion activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Gene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Olszewska, Wieslawa; Stryhn, Anette

    2004-01-01

    elicited with recombinant vaccinia virus expressing the complete RSV M2 protein, but stronger than those induced by a similar DNA construct without the beta2m gene. DNA vaccination led to enhanced pulmonary disease after RSV challenge, with increased weight loss and cell recruitment to the lung. Depletion......A CD8+ T-cell memory response to respiratory syncytial virus (RSV) was generated by using a DNA vaccine construct encoding the dominant Kd-restricted epitope from the viral transcription anti-terminator protein M2 (M2(82-90)), linked covalently to human beta2-microglobulin (beta2m). Cutaneous gene...... of CD8+ T cells reduced, but did not abolish, enhancement of disease. Mice vaccinated with a construct encoding a class I-restricted lymphocytic choriomeningitis virus epitope and beta2m suffered more severe weight loss after RSV infection than unvaccinated RSV-infected mice, although RSV-specific CD8...

  3. Induced topological pressure for topological dynamical systems

    International Nuclear Information System (INIS)

    Xing, Zhitao; Chen, Ercai

    2015-01-01

    In this paper, inspired by the article [J. Jaerisch et al., Stochastics Dyn. 14, 1350016, pp. 1-30 (2014)], we introduce the induced topological pressure for a topological dynamical system. In particular, we prove a variational principle for the induced topological pressure

  4. Trivalent combination vaccine induces broad heterologous immune responses to norovirus and rotavirus in mice.

    Directory of Open Access Journals (Sweden)

    Kirsi Tamminen

    Full Text Available Rotavirus (RV and norovirus (NoV are the two major causes of viral gastroenteritis (GE in children worldwide. We have developed an injectable vaccine design to prevent infection or GE induced with these enteric viruses. The trivalent combination vaccine consists of NoV capsid (VP1 derived virus-like particles (VLPs of GI-3 and GII-4 representing the two major NoV genogroups and tubular RV recombinant VP6 (rVP6, the most conserved and abundant RV protein. Each component was produced in insect cells by a recombinant baculovirus expression system and combined in vitro. The vaccine components were administered intramuscularly to BALB/c mice either separately or in the trivalent combination. High levels of NoV and RV type specific serum IgGs with high avidity (>50% as well as intestinal IgGs were detected in the immunized mice. Cross-reactive IgG antibodies were also elicited against heterologous NoV VLPs not used for immunization (GII-4 NO, GII-12 and GI-1 VLPs and to different RVs from cell cultures. NoV-specific serum antibodies blocked binding of homologous and heterologous VLPs to the putative receptors, histo-blood group antigens, suggesting broad NoV neutralizing activity of the sera. Mucosal antibodies of mice immunized with the trivalent combination vaccine inhibited RV infection in vitro. In addition, cross-reactive T cell immune responses to NoV and RV-specific antigens were detected. All the responses were sustained for up to six months. No mutual inhibition of the components in the trivalent vaccine combination was observed. In conclusion, the NoV GI and GII VLPs combination induced broader cross-reactive and potentially neutralizing immune responses than either of the VLPs alone. Therefore, trivalent vaccine might induce protective immune responses to the vast majority of circulating NoV and RV genotypes.

  5. Design of therapeutic vaccines as a novel antibody therapy for cardiovascular diseases.

    Science.gov (United States)

    Nakagami, Hironori

    2017-09-01

    Vaccines are primarily used worldwide as a preventive medicine for infectious diseases and have recently been applied to cancer. We and others have developed therapeutic vaccines designed for cardiovascular diseases that are notably different from previous vaccines. In the case of cancer vaccines, a specific protein in cancer cells is a target antigen, and the activation of cytotoxic T cells (CTL) is required to kill and remove the antigen-presenting cancer cells. Our therapeutic vaccines work against hypertension by targeting angiotensin II (Ang II) as the antigen, which is an endogenous hormone. Therapeutic vaccines must avoid CTL activation and induce the blocking antibodies for Ang II. The goal of our therapeutic vaccine for cardiovascular diseases is to induce the specific antibody response toward the target protein without inducing T-cell or antibody-mediated inflammation through the careful selection of the target antigen, carrier protein and adjuvants. The goal of our therapeutic vaccine is similar to that of antibody therapy. Recently, multiple antibody-based drugs have been developed for cancer, immune-related diseases, and dyslipidemia, which are efficient but expensive. If the effect of a therapeutic vaccine is nearly equivalent to antibody therapy as an alternative approach, the lower medical cost and improvement in drug adherence can be advantages of therapeutic vaccines. In this review, we will describe our concept of therapeutic vaccines for cardiovascular diseases and the future directions of therapeutic vaccines as novel antibody therapies. Copyright © 2017. Published by Elsevier Ltd.

  6. Vaccine-induced myositis with intramuscular sterile abscess formation: MRI and ultrasound findings

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Ahmet Veysel; Bekci, Tumay; Selcuk, Mustafa Bekir [Ondokuz Mayis University, Department of Radiology, Faculty of Medicine, Samsun (Turkey); Dabak, Nevzat [Ondokuz Mayis University, Department of Orthopaedics and Traumatology, Faculty of Medicine, Samsun (Turkey); Ulu, Esra Meltem Kayahan [Samsun Medical Park Hospital, Department of Radiology, Samsun (Turkey)

    2015-12-15

    Although limb swelling is a well-known complication of vaccination, its rarity and wide band of differential diagnosis of limb swelling make it a diagnostic challenge. In this case report, we describe three cases of vaccine-induced myositis with intramuscular sterile abscess formation in patients with limb swelling and their magnetic resonance imaging and ultrasonography findings. Both radiologists and clinicians should be familiar with this rare entity, its clinical and imaging spectrum, and follow-up strategies. (orig.)

  7. Vaccine-induced myositis with intramuscular sterile abscess formation: MRI and ultrasound findings

    International Nuclear Information System (INIS)

    Polat, Ahmet Veysel; Bekci, Tumay; Selcuk, Mustafa Bekir; Dabak, Nevzat; Ulu, Esra Meltem Kayahan

    2015-01-01

    Although limb swelling is a well-known complication of vaccination, its rarity and wide band of differential diagnosis of limb swelling make it a diagnostic challenge. In this case report, we describe three cases of vaccine-induced myositis with intramuscular sterile abscess formation in patients with limb swelling and their magnetic resonance imaging and ultrasonography findings. Both radiologists and clinicians should be familiar with this rare entity, its clinical and imaging spectrum, and follow-up strategies. (orig.)

  8. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against......-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels...... of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination...

  9. Sieve analysis of breakthrough HIV-1 sequences in HVTN 505 identifies vaccine pressure targeting the CD4 binding site of Env-gp120.

    Science.gov (United States)

    deCamp, Allan C; Rolland, Morgane; Edlefsen, Paul T; Sanders-Buell, Eric; Hall, Breana; Magaret, Craig A; Fiore-Gartland, Andrew J; Juraska, Michal; Carpp, Lindsay N; Karuna, Shelly T; Bose, Meera; LePore, Steven; Miller, Shana; O'Sullivan, Annemarie; Poltavee, Kultida; Bai, Hongjun; Dommaraju, Kalpana; Zhao, Hong; Wong, Kim; Chen, Lennie; Ahmed, Hasan; Goodman, Derrick; Tay, Matthew Z; Gottardo, Raphael; Koup, Richard A; Bailer, Robert; Mascola, John R; Graham, Barney S; Roederer, Mario; O'Connell, Robert J; Michael, Nelson L; Robb, Merlin L; Adams, Elizabeth; D'Souza, Patricia; Kublin, James; Corey, Lawrence; Geraghty, Daniel E; Frahm, Nicole; Tomaras, Georgia D; McElrath, M Juliana; Frenkel, Lisa; Styrchak, Sheila; Tovanabutra, Sodsai; Sobieszczyk, Magdalena E; Hammer, Scott M; Kim, Jerome H; Mullins, James I; Gilbert, Peter B

    2017-01-01

    Although the HVTN 505 DNA/recombinant adenovirus type 5 vector HIV-1 vaccine trial showed no overall efficacy, analysis of breakthrough HIV-1 sequences in participants can help determine whether vaccine-induced immune responses impacted viruses that caused infection. We analyzed 480 HIV-1 genomes sampled from 27 vaccine and 20 placebo recipients and found that intra-host HIV-1 diversity was significantly lower in vaccine recipients (P ≤ 0.04, Q-values ≤ 0.09) in Gag, Pol, Vif and envelope glycoprotein gp120 (Env-gp120). Furthermore, Env-gp120 sequences from vaccine recipients were significantly more distant from the subtype B vaccine insert than sequences from placebo recipients (P = 0.01, Q-value = 0.12). These vaccine effects were associated with signatures mapping to CD4 binding site and CD4-induced monoclonal antibody footprints. These results suggest either (i) no vaccine efficacy to block acquisition of any viral genotype but vaccine-accelerated Env evolution post-acquisition; or (ii) vaccine efficacy against HIV-1s with Env sequences closest to the vaccine insert combined with increased acquisition due to other factors, potentially including the vaccine vector.

  10. Understanding vaccination resistance: vaccine search term selection bias and the valence of retrieved information.

    Science.gov (United States)

    Ruiz, Jeanette B; Bell, Robert A

    2014-10-07

    Dubious vaccination-related information on the Internet leads some parents to opt out of vaccinating their children. To determine if negative, neutral and positive search terms retrieve vaccination information that differs in valence and confirms searchers' assumptions about vaccination. A content analysis of first-page Google search results was conducted using three negative, three neutral, and three positive search terms for the concepts "vaccine," "vaccination," and "MMR"; 84 of the 90 websites retrieved met inclusion requirements. Two coders independently and reliably coded for the presence or absence of each of 15 myths about vaccination (e.g., "vaccines cause autism"), statements that countered these myths, and recommendations for or against vaccination. Data were analyzed using descriptive statistics. Across all websites, at least one myth was perpetuated on 16.7% of websites and at least one myth was countered on 64.3% of websites. The mean number of myths perpetuated on websites retrieved with negative, neutral, and positive search terms, respectively, was 1.93, 0.53, and 0.40. The mean number of myths countered on websites retrieved with negative, neutral, and positive search terms, respectively, was 3.0, 3.27, and 2.87. Explicit recommendations regarding vaccination were offered on 22.6% of websites. A recommendation against vaccination was more often made on websites retrieved with negative search terms (37.5% of recommendations) than on websites retrieved with neutral (12.5%) or positive (0%) search terms. The concerned parent who seeks information about the risks of childhood immunizations will find more websites that perpetuate vaccine myths and recommend against vaccination than the parent who seeks information about the benefits of vaccination. This suggests that search term valence can lead to online information that supports concerned parents' misconceptions about vaccines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Methods for Health Economic Evaluation of Vaccines and Immunization Decision Frameworks: A Consensus Framework from a European Vaccine Economics Community.

    Science.gov (United States)

    Ultsch, Bernhard; Damm, Oliver; Beutels, Philippe; Bilcke, Joke; Brüggenjürgen, Bernd; Gerber-Grote, Andreas; Greiner, Wolfgang; Hanquet, Germaine; Hutubessy, Raymond; Jit, Mark; Knol, Mirjam; von Kries, Rüdiger; Kuhlmann, Alexander; Levy-Bruhl, Daniel; Perleth, Matthias; Postma, Maarten; Salo, Heini; Siebert, Uwe; Wasem, Jürgen; Wichmann, Ole

    2016-03-01

    Incremental cost-effectiveness and cost-utility analyses [health economic evaluations (HEEs)] of vaccines are routinely considered in decision making on immunization in various industrialized countries. While guidelines advocating more standardization of such HEEs (mainly for curative drugs) exist, several immunization-specific aspects (e.g. indirect effects or discounting approach) are still a subject of debate within the scientific community. The objective of this study was to develop a consensus framework for HEEs of vaccines to support the development of national guidelines in Europe. A systematic literature review was conducted to identify prevailing issues related to HEEs of vaccines. Furthermore, European experts in the field of health economics and immunization decision making were nominated and asked to select relevant aspects for discussion. Based on this, a workshop was held with these experts. Aspects on 'mathematical modelling', 'health economics' and 'decision making' were debated in group-work sessions (GWS) to formulate recommendations and/or--if applicable--to state 'pros' and 'contras'. A total of 13 different aspects were identified for modelling and HEE: model selection, time horizon of models, natural disease history, measures of vaccine-induced protection, duration of vaccine-induced protection, indirect effects apart from herd protection, target population, model calibration and validation, handling uncertainty, discounting, health-related quality of life, cost components, and perspectives. For decision making, there were four aspects regarding the purpose and the integration of HEEs of vaccines in decision making as well as the variation of parameters within uncertainty analyses and the reporting of results from HEEs. For each aspect, background information and an expert consensus were formulated. There was consensus that when HEEs are used to prioritize healthcare funding, this should be done in a consistent way across all interventions

  12. PMA Induces Vaccine Adjuvant Activity by the Modulation of TLR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Dool-Ri Oh

    2014-01-01

    Full Text Available Toll-like receptor (TLR ligands are being developed for use as vaccine adjuvants and as immunomodulators because of their ability to stimulate innate and adaptive immune responses. Flagellin, a TLR5 ligand, was reported to show potent mucosal vaccine adjuvant activity. To identify ligands that potentiate the adjuvant activity of flagellin, we screened a plant library using HEK293T cells transiently cotransfected with phTLR5 and pNF-κB-SEAP plasmids. The 90% EtOH extract from Croton tiglium showed significant NF-κB transactivation in a TLR5-independent manner along with the increase of a flagellin activity. We have studied to characterize an active component from Croton tiglium and to elucidate the action mechanisms. Phorbol 12-myristate 13-acetate (PMA was isolated as an active component of Croton tiglium by activity-guided fractionation, column chromatography, HPLC, NMR, and MS. PMA at a range of nM induced PKC-dependent NF-κB activation and IL-8 production in both TLR5− and TLR5+ assay systems. In in vivo mouse vaccination model, PMA induced antigen-specific IgG and IgA antibody responses and increased IL-12 production corresponding to T cell responses in spleen lymphocytes. These results suggest that PMA would serve as an efficacious mucosal vaccine adjuvant.

  13. Virus-like particles vaccine containing Clonorchis sinensis tegumental protein induces partial protection against Clonorchis sinensis infection.

    Science.gov (United States)

    Lee, Dong-Hun; Kim, Ah-Ra; Lee, Su-Hwa; Quan, Fu-Shi

    2017-12-29

    Human clonorchiasis, caused by the infection of Clonorchis sinensis, is one of the major health problems in Southeast Asia. However, vaccine efficacy against C. sinensis infection remains largely unknown. In this study, for the first time, we generated virus-like particles (VLPs) vaccine containing the C. sinensis tegumental protein 22.3 kDa (CsTP 22.3) and the influenza matrix protein (M1) as a core protein, and investigated the vaccine efficacy in Sprague-Dawley rats. Intranasal immunization of VLPs vaccine induced C. sinensis-specific IgG, IgG2a and IgG2c in the sera and IgA responses in the feces and intestines. Notably, upon challenge infection with C. sinensis metacercariae, significantly lower adult worm loads (70.2%) were measured in the liver of rats immunized with VLPs, compared to those of naïve rats. Furthermore, VLPs immunization induced antibody secreting cells (ASC) responses and CD4+/CD8+ T cell responses in the spleen. Our results indicated that VLPs vaccine containing C. sinensis CsTP 22.3 kDa provided partial protection against C. sisnensis infection. Thus, VLPs could be a potential vaccine candidate against C. sinensis.

  14. Vaccination with map specific peptides reduces map burden in tissues of infected goats

    DEFF Research Database (Denmark)

    Melvang, Heidi Mikkelsen; Hassan, Sufia Butt; Thakur, Aneesh

    As an alternative to protein-based vaccines, we investigated the effect of post-exposure vaccination with Map specific peptides in a goat model aiming at developing a Map vaccine that will neither interfere with diagnosis of paratuberculosis nor bovine tuberculosis. Peptides were initially select...... in the unvaccinated control group seroconverted in ID Screen® ELISA at last sampling prior to euthanasia. These results indicate that a subunit vaccine against Map can induce a protective immune response against paratuberculosis in goats....

  15. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model.

    Directory of Open Access Journals (Sweden)

    Simon H Apte

    Full Text Available Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+ and/or CD8(+ T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+ T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+ T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.

  16. Cell-mediated and humoral immune responses induced by scarification vaccination of human volunteers with a new lot of the live vaccine strain of Francisella tularensis.

    Science.gov (United States)

    Waag, D M; Galloway, A; Sandstrom, G; Bolt, C R; England, M J; Nelson, G O; Williams, J C

    1992-01-01

    Tularemia is a disease caused by the facultative intracellular bacterium Francisella tularensis. We evaluated a new lot of live F. tularensis vaccine for its immunogenicity in human volunteers. Scarification vaccination induced humoral and cell-mediated immune responses. Indications of a positive immune response after vaccination included an increase in specific antibody levels, which were measured by enzyme-linked immunosorbent and immunoblot assays, and the ability of peripheral blood lymphocytes to respond to whole F. tularensis bacteria as recall antigens. Vaccination caused a significant rise (P less than 0.05) in immunoglobulin A (IgA), IgG, and IgM titers. Lymphocyte stimulation indices were significantly increased (P less than 0.01) in vaccinees 14 days after vaccination. These data verify that this new lot of live F. tularensis vaccine is immunogenic. Images PMID:1400988

  17. Influence of routes and administration parameters on antibody response of pigs following DNA vaccination

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Kirstensen, Birte; Dannemann-Jensen, Tove

    2004-01-01

    Using the nucleoprotein of porcine reproductive and respiratory syndrome virus as model antigen, we optimised parameters for gene gun vaccination of pigs, including firing pressure and vaccination site. As criteria for optimisation, we characterised particle penetration and local tissue damage...... by histology. For selected combinations, vaccination efficiency in terms of antibody response was studied. Gene gun vaccination on ear alone was as efficient as a multi-site (ear, thorax, inguinal area, tongue mucosa) gene gun approach, and more efficient than combined intramuscular (i.m.)/intradermal (i.......d.) injection of plasmid DNA. This indicates, that the ear is an attractive site for gene gun vaccination of pigs....

  18. Protective antitumor activity induced by a fusion vaccine with murine ...

    African Journals Online (AJOL)

    Targeting angiogenesis is an effective strategy for anticancer therapy. The vascular endothelialcadherin (VE-cad) regulated angiogenesis is a potential target for anti-angiogenesis. Here, we develop a fusion vaccine plasmid DNA pSec-MBD2-VE-cad from VE-cad and murine beta defensin2 (MBD2) to induce immunity for ...

  19. Assessment of pulmonary antibodies with induced sputum and bronchoalveolar lavage induced by nasal vaccination against Pseudomonas aeruginosa: a clinical phase I/II study

    Directory of Open Access Journals (Sweden)

    Freihorst Joachim

    2007-08-01

    Full Text Available Abstract Background Vaccination against Pseudomonas aeruginosa is a desirable albeit challenging strategy for prevention of airway infection in patients with cystic fibrosis. We assessed the immunogenicity of a nasal vaccine based on the outer membrane proteins F and I from Pseudomonas aeruginosa in the lower airways in a phase I/II clinical trial. Methods N = 12 healthy volunteers received 2 nasal vaccinations with an OprF-OprI gel as a primary and a systemic (n = 6 or a nasal booster vaccination (n = 6. Antibodies were assessed in induced sputum (IS, bronchoalveolar lavage (BAL, and in serum. Results OprF-OprI-specific IgG and IgA antibodies were found in both BAL and IS at comparable rates, but differed in the predominant isotype. IgA antibodies in IS did not correlate to the respective serum levels. Pulmonary antibodies were detectable in all vaccinees even 1 year after the vaccination. The systemic booster group had higher IgG levels in serum. However, the nasal booster group had the better long-term response with bronchial antibodies of both isotypes. Conclusion The nasal OprF-OprI-vaccine induces a lasting antibody response at both, systemic and airway mucosal site. IS is a feasible method to non-invasively assess bronchial antibodies. A further optimization of the vaccination schedule is warranted.

  20. Using magnetic resonance imaging to evaluate dendritic cell-based vaccination.

    Directory of Open Access Journals (Sweden)

    Peter M Ferguson

    Full Text Available Cancer immunotherapy with antigen-loaded dendritic cell-based vaccines can induce clinical responses in some patients, but further optimization is required to unlock the full potential of this strategy in the clinic. Optimization is dependent on being able to monitor the cellular events that take place once the dendritic cells have been injected in vivo, and to establish whether antigen-specific immune responses to the tumour have been induced. Here we describe the use of magnetic resonance imaging (MRI as a simple, non-invasive approach to evaluate vaccine success. By loading the dendritic cells with highly magnetic iron nanoparticles it is possible to assess whether the injected cells drain to the lymph nodes. It is also possible to establish whether an antigen-specific response is initiated by assessing migration of successive rounds of antigen-loaded dendritic cells; in the face of a successfully primed cytotoxic response, the bulk of antigen-loaded cells are eradicated on-route to the node, whereas cells without antigen can reach the node unchecked. It is also possible to verify the induction of a vaccine-induced response by simply monitoring increases in draining lymph node size as a consequence of vaccine-induced lymphocyte trapping, which is an antigen-specific response that becomes more pronounced with repeated vaccination. Overall, these MRI techniques can provide useful early feedback on vaccination strategies, and could also be used in decision making to select responders from non-responders early in therapy.

  1. Fishery-induced selection for slow somatic growth in European eel.

    Directory of Open Access Journals (Sweden)

    Daniele Bevacqua

    Full Text Available Both theoretical and experimental studies have shown that fishing mortality can induce adaptive responses in body growth rates of fishes in the opposite direction of natural selection. We compared body growth rates in European eel (Anguilla anguilla from three Mediterranean stocks subject to different fishing pressure. Results are consistent with the hypotheses that i fast-growing individuals are more likely to survive until sexual maturity than slow-growing ones under natural conditions (no fishing and ii fishing can select for slow-growing individuals by removing fast-growing ones. Although the possibility of human-induced evolution seems remote for a panmictic species like such as the European eel, further research is desirable to assess the implications of the intensive exploitation on this critically endangered fish.

  2. T–CELL VACCINE PREPARATION FOR MULTIPLE SCLEROSIS TREATMENT

    Directory of Open Access Journals (Sweden)

    I. P. Ivanova

    2005-01-01

    Full Text Available Abstract. A two–stage technology of preparation of T–cell vaccine designated for multiple sclerosis treatment is described. At the first stage myelin–specific lymphocytes undergoe antigen–dependent cultural selection, whereas at the second stage they are grown by means of non–specific stimulation. The vaccine prepared in this way was found to induce specific anti–idiotypic immune response, directed against myelin–reactive T–lymphocytes. The results of 1–year follow–up of 18 vaccinated patients with a cerebral–spinal type of multiple sclerosis indicated the absence of side effects of T–cell vaccination, and suggest the possibility of effective application of this treatment within early stages of disease. (Med. Immunol., 2005, vol.7, № 1, pp 27532

  3. DNA vaccination protects mice against Zika virus-induced damage to the testes

    Science.gov (United States)

    Griffin, Bryan D.; Muthumani, Kar; Warner, Bryce M.; Majer, Anna; Hagan, Mable; Audet, Jonathan; Stein, Derek R.; Ranadheera, Charlene; Racine, Trina; De La Vega, Marc-Antoine; Piret, Jocelyne; Kucas, Stephanie; Tran, Kaylie N.; Frost, Kathy L.; De Graff, Christine; Soule, Geoff; Scharikow, Leanne; Scott, Jennifer; McTavish, Gordon; Smid, Valerie; Park, Young K.; Maslow, Joel N.; Sardesai, Niranjan Y.; Kim, J. Joseph; Yao, Xiao-jian; Bello, Alexander; Lindsay, Robbin; Boivin, Guy; Booth, Stephanie A.; Kobasa, Darwyn; Embury-Hyatt, Carissa; Safronetz, David; Weiner, David B.; Kobinger, Gary P.

    2017-01-01

    Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract. PMID:28589934

  4. Microneedle array design determines the induction of protective memory CD8+ T cell responses induced by a recombinant live malaria vaccine in mice.

    Directory of Open Access Journals (Sweden)

    John B Carey

    Full Text Available Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC, must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8(+ T cell responses to a malaria antigen induced by a live vaccine.Recombinant modified vaccinia virus Ankara (MVA expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes.This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8(+ T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction of T cell responses by live vaccines aids

  5. RTS,S/AS01E Malaria Vaccine Induces Memory and Polyfunctional T Cell Responses in a Pediatric African Phase III Trial

    Directory of Open Access Journals (Sweden)

    Gemma Moncunill

    2017-08-01

    Full Text Available Comprehensive assessment of cellular responses to the RTS,S/AS01E vaccine is needed to understand potential correlates and ultimately mechanisms of protection against malaria disease. Cellular responses recognizing the RTS,S/AS01E-containing circumsporozoite protein (CSP and Hepatitis B surface antigen (HBsAg were assessed before and 1 month after primary vaccination by intracellular cytokine staining and 16-color flow cytometry in 105 RTS,S/AS01-vaccinated and 74 rabies-vaccinated participants (controls in a pediatric phase III trial in Africa. RTS,S/AS01E-vaccinated children had significantly higher frequencies of CSP- and HBsAg-specific CD4+ T cells producing IL-2, TNF-α, and CD40L and HBsAg-specific CD4+ T producing IFN-γ and IL-17 than baseline and the control group. Vaccine-induced responses were identified in both central and effector memory (EM compartments. EM CD4+ T cells expressing IL-4 and IL-21 were detected recognizing both vaccine antigens. Consistently higher response rates to both antigens in RTS,S/AS01E-vaccinated than comparator-vaccinated children were observed. RTS,S/AS01E induced polyfunctional CSP- and HBsAg-specific CD4+ T cells, with a greater degree of polyfunctionality in HBsAg responses. In conclusion, RTS,S/AS01E vaccine induces T cells of higher functional heterogeneity and polyfunctionality than previously characterized. Responses detected in memory CD4+ T cell compartments may provide correlates of RTS,S/AS01-induced immunity and duration of protection in future correlates of immunity studies.

  6. A goat poxvirus-vectored peste-des-petits-ruminants vaccine induces long-lasting neutralization antibody to high levels in goats and sheep.

    Science.gov (United States)

    Chen, Weiye; Hu, Sen; Qu, Linmao; Hu, Qianqian; Zhang, Qian; Zhi, Haibing; Huang, Kehe; Bu, Zhigao

    2010-07-05

    Recombinant capripoxvirus (CPV) is a promising candidate differentiating infected from vaccinated animals (DIVA) vaccine against peste-des-petits-ruminants (PPR). In order for recombinant CPV to be successfully used in the field, there should exist dependable indicators for quality control of vaccine products, surveillance and vaccination evaluation. Viral neutralization antibody (VNA) is correlated to protection against PPR and is a technically feasible indicator for this purpose. The immunogenicity of this vectored vaccine in goats and sheep, however, has not been fully evaluated. In this study, we generated two recombinant CPV viruses, rCPV-PPRVH and rCPV-PPRVF, that express PPR virus (PPRV) glycoproteins H and F, respectively. Vaccination studies with different dosages of recombinant viruses showed that rCPV-PPRVH was a more potent inducer of PPRV VNA than rCPV-PPRVF. One dose of rCPV-PPRVH was enough to seroconvert 80% of immunized sheep. A second dose induced significantly higher PPRV VNA titers. There was no significant difference in PPRV VNA responses between goats and sheep. Subcutaneous inoculation also induced a significant PPRV VNA response. PPRV VNA could be detected for over 6 months in more than 80% of vaccinated goats and sheep. Boost vaccination at 6-month intervals induced significant re-boost efficacy of PPRV VNA in goats and sheep. More over, two doses of rCPV-PPRVH could completely overcome the interference caused by pre-existing immunity to the CPV vaccine backbone in animals. Vaccination with rCPV-PPRVH also protected goats from virulent CPV challenge. Our results demonstrate that VNA can serve as a dependent indicator for effective vaccination and immune protection of animals in the field. The recombinant CPV vaccine used in our studies could be a practical and useful candidate DIVA vaccine in countries where PPR newly emerges or where stamp-out plans are yet to be implemented. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Safety of licensed vaccines in HIV-infected persons: a systematic review protocol

    Science.gov (United States)

    2014-01-01

    Background Safety of vaccines remains a cornerstone of building public trust on the use of these cost-effective and life-saving public health interventions. In some settings, particularly Sub-Saharan Africa, there is a high prevalence of HIV infection and a high burden of vaccine-preventable diseases. There is evidence suggesting that the immunity induced by some commonly used vaccines is not durable in HIV-infected persons, and therefore, repeated vaccination may be considered to ensure optimal vaccine-induced immunity in this population. However, some vaccines, particularly the live vaccines, may be unsafe in HIV-infected persons. There is lack of evidence on the safety profile of commonly used vaccines among HIV-infected persons. We are therefore conducting a systematic review to assess the safety profile of routine vaccines administered to HIV-infected persons. Methods/Design We will select studies conducted in any setting where licensed and effective vaccines were administered to HIV-infected persons. We will search for eligible studies in PubMed, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, Africa-Wide, PDQ-Evidence and CINAHL as well as reference lists of relevant publications. We will screen search outputs, select studies and extract data in duplicate, resolving discrepancies by discussion and consensus. Discussion Globally, immunisation is a major public health strategy to mitigate morbidity and mortality caused by various infectious disease-causing agents. In general, there are efforts to increase vaccination coverage worldwide, and for these efforts to be successful, safety of the vaccines is paramount, even among people living with HIV, who in some situations may require repeated vaccination. Results from this systematic review will be discussed in the context of the safety of routine vaccines among HIV-infected persons. From the safety perspective, we will also discuss whether repeat vaccination strategies may be

  8. Dissection of antibody specificities induced by yellow fever vaccination.

    Directory of Open Access Journals (Sweden)

    Oksana Vratskikh

    Full Text Available The live attenuated yellow fever (YF vaccine has an excellent record of efficacy and one dose provides long-lasting immunity, which in many cases may last a lifetime. Vaccination stimulates strong innate and adaptive immune responses, and neutralizing antibodies are considered to be the major effectors that correlate with protection from disease. Similar to other flaviviruses, such antibodies are primarily induced by the viral envelope protein E, which consists of three distinct domains (DI, II, and III and is presented at the surface of mature flavivirions in an icosahedral arrangement. In general, the dominance and individual variation of antibodies to different domains of viral surface proteins and their impact on neutralizing activity are aspects of humoral immunity that are not well understood. To gain insight into these phenomena, we established a platform of immunoassays using recombinant proteins and protein domains that allowed us to dissect and quantify fine specificities of the polyclonal antibody response after YF vaccination in a panel of 51 vaccinees as well as determine their contribution to virus neutralization by serum depletion analyses. Our data revealed a high degree of individual variation in antibody specificities present in post-vaccination sera and differences in the contribution of different antibody subsets to virus neutralization. Irrespective of individual variation, a substantial proportion of neutralizing activity appeared to be due to antibodies directed to complex quaternary epitopes displayed on the virion surface only but not on monomeric E. On the other hand, DIII-specific antibodies (presumed to have the highest neutralizing activity as well as broadly flavivirus cross-reactive antibodies were absent or present at very low titers. These data provide new information on the fine specificity as well as variability of antibody responses after YF vaccination that are consistent with a strong influence of individual

  9. Two complex, adenovirus-based vaccines that together induce immune responses to all four dengue virus serotypes.

    Science.gov (United States)

    Holman, David H; Wang, Danher; Raviprakash, Kanakatte; Raja, Nicholas U; Luo, Min; Zhang, Jianghui; Porter, Kevin R; Dong, John Y

    2007-02-01

    Dengue virus infections can cause hemorrhagic fever, shock, encephalitis, and even death. Worldwide, approximately 2.5 billion people live in dengue-infested regions with about 100 million new cases each year, although many of these infections are believed to be silent. There are four antigenically distinct serotypes of dengue virus; thus, immunity from one serotype will not cross-protect from infection with the other three. The difficulties that hamper vaccine development include requirements of the natural conformation of the envelope glycoprotein to induce neutralizing immune responses and the necessity of presenting antigens of all four serotypes. Currently, the only way to meet these requirements is to use a mixture of four serotypes of live attenuated dengue viruses, but safety remains a major problem. In this study, we have developed the basis for a tetravalent dengue vaccine using a novel complex adenovirus platform that is capable of expressing multiple antigens de novo. This dengue vaccine is constructed as a pair of vectors that each expresses the premembrane and envelope genes of two different dengue virus serotypes. Upon vaccination, the vaccine expressed high levels of the dengue virus antigens in cells to mimic a natural infection and induced both humoral and cellular immune responses against multiple serotypes of dengue virus in an animal model. Further analyses show the humoral responses were indeed neutralizing against all four serotypes. Our studies demonstrate the concept of mimicking infections to induce immune responses by synthesizing dengue virus membrane antigens de novo and the feasibility of developing an effective tetravalent dengue vaccine by vector-mediated expression of glycoproteins of the four serotypes.

  10. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2002-01-01

    whereas no increased survival was found upon challenge with bacterial pathogens. Within two months after vaccination, the cross-protection disappeared while the specific immunity to homologous virus remained high. The early immunity induced by the DNA vaccines thus appeared to involve short-lived non......It was recently reported that DNA vaccination of rainbow trout fingerlings against viral hemorrhagic septicaemia virus (VHSV) induced protection within 8 days after intramuscular injection of plasmid DNA. In order to analyse the specificity of this early immunity, fish were vaccinated with plasmid...... DNA encoding the VHSV or the infectious haematopoietic necrosis virus (IHNV) glycoprotein genes and later challenged with homologous or heterologous pathogens. Challenge experiments revealed that immunity established shortly after vaccination was cross-protective between the two viral pathogens...

  11. Testing experimental subunit furunculosis vaccines for rainbow trout

    DEFF Research Database (Denmark)

    Marana, Moonika H.; Chettri, Jiwan Kumar; Skov, Jakob

    2016-01-01

    Aeromonas salmonicida subsp. salmonicida (AS) is the etiological agent of typical furunculosis in salmonid fish. The disease causes bacterial septicemia and is a major fish health problem in salmonid aquaculture worldwide, inducing high morbidity and mortality. In this study we vaccinated rainbow...... trout with subunit vaccines containing protein antigens that were selected based on an in silico antigen discovery approach. Thus, the proteome of AS strain A449 was analyzed by an antigen discovery platform and its proteins consequently ranked by their predicted ability to evoke protective immune...... response against AS. Fourteen proteins were prepared in 3 different experimental subunit vaccine combinations and used to vaccinate rainbow trout by intraperitoneal (i.p.) injection. We tested the proteins for their ability to elicit antibody production and protection. Thus, fish were exposed to virulent...

  12. Vaccine-Induced Anti-HBs Level in 5-6 Year-Old Malnourished Children.

    Science.gov (United States)

    Karimi, Mehran; Raee, Ali; Baghianimoghadam, Behnam; Fallahzadeh, Mohammad Hossein

    2013-02-01

    Malnutrition is the most common cause of immune deficiency. It results in reduced secretion of T-cells and B-cell-stimulating factors leading to declining of special immunoglobulins. On the other hand, hepatitis B, as a major world health problem, can be prevented effectively by vaccination. Three doses of hepatitis B virus (HBV) vaccine induce protective levels of anti-hepatitis B surface (anti-HBs) in 95% of healthy children. This level decreases gradually over time. The goal of this study was to assess anti-HBs in malnourished children, who confronted to some degrees of immune deficiency. This is a cross-sectional study conducted during May to August 2010 in therapeutic clinics of Yazd, Iran. Samples were selected simply and consecutively among 5-6 year-old children with a history of three doses of HBV vaccine in infancy. On the basis of World Health Organization's definition on malnutrition, which considers anthropometric measurements, malnourished children entered the study. Totally 83 cases (37 boys and 46 girls) were gathered and classified into three groups of mild, moderate, and severe malnutrition. One milliliter of venous blood was taken and anti-HBs were tested by enzyme linked immunosorbant assay (ELISA). Overall, seroprotection rate and geometric mean titer (GMT) of anti-HBs were 60.2% and 15.47 ± 10.92 mIU/mL, respectively. Seroprotection rate was 71.4%, 55.2%, and 72.7% in mild, moderate, and severe malnourished children, respectively. GMT was 30.78 mIU/mL, 12.15 mIU/mL, and 22.95 mIU/mL in these groups, respectively. None of these two indices were significant in these groups (P = 0.471, P = 0.364). Seroprotection rate and GMT were 54.1% and 13.26 ± 11.59 mIU/mL in boys, and 65.2% and 17.5 ± 10.59 mIU/mL in girls, respectively, showing no significant relationship with gender (P = 0.302, P = 0.602). Lowest seroprotection rate was in stunted cases (47.1%) and highest in wasted children (77.8%). This difference also was not significant (P = 0

  13. Skin immunization by microneedle patch overcomes statin-induced suppression of immune responses to influenza vaccine.

    Science.gov (United States)

    Vassilieva, Elena V; Wang, Shelly; Li, Song; Prausnitz, Mark R; Compans, Richard W

    2017-12-19

    Recent studies indicated that in elderly individuals, statin therapy is associated with a reduced response to influenza vaccination. The present study was designed to determine effects on the immune response to influenza vaccination induced by statin administration in a mouse model, and investigate potential approaches to improve the outcome of vaccination on the background of statin therapy. We fed middle aged BALB/c mice a high fat "western" diet (WD) alone or supplemented with atorvastatin (AT) for 14 weeks, and control mice were fed with the regular rodent diet. Mice were immunized with a single dose of subunit A/Brisbane/59/07 (H1N1) vaccine, either systemically or with dissolving microneedle patches (MNPs). We observed that a greater age-dependent decline in the hemagglutinin inhibition titers occurred in systemically-immunized mice than in MNP- immunized mice. AT dampened the antibody response in the animals vaccinated by either route of vaccine delivery. However, the MNP-vaccinated AT-treated animals had ~20 times higher total antibody levels to the influenza vaccine than the systemically vaccinated group one month postvaccination. We propose that microneedle vaccination against influenza provides an approach to ameliorate the immunosuppressive effect of statin therapy observed with systemic immunization.

  14. Candesartan restores pressure-induced vasodilation and prevents skin pressure ulcer formation in diabetic mice.

    Science.gov (United States)

    Danigo, Aurore; Nasser, Mohamad; Bessaguet, Flavien; Javellaud, James; Oudart, Nicole; Achard, Jean-Michel; Demiot, Claire

    2015-02-18

    Angiotensin II type 1 receptor (AT1R) blockers have beneficial effects on neurovascular complications in diabetes and in organ's protection against ischemic episodes. The present study examines whether the AT1R blocker candesartan (1) has a beneficial effect on diabetes-induced alteration of pressure-induced vasodilation (PIV, a cutaneous physiological neurovascular mechanism which could delay the occurrence of tissue ischemia), and (2) could be protective against skin pressure ulcer formation. Male Swiss mice aged 5-6 weeks were randomly assigned to four experimental groups. In two groups, diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ, 200 mg.kg(-1)). After 6 weeks, control and STZ mice received either no treatment or candesartan (1 mg/kg-daily in drinking water) during 2 weeks. At the end of treatment (8 weeks of diabetes duration), C-fiber mediated nociception threshold, endothelium-dependent vasodilation and PIV were assessed. Pressure ulcers (PUs) were then induced by pinching the dorsal skin between two magnetic plates for three hours. Skin ulcer area development was assessed during three days, and histological examination of the depth of the skin lesion was performed at day three. After 8 weeks of diabetes, the skin neurovascular functions (C-fiber nociception, endothelium-dependent vasodilation and PIV) were markedly altered in STZ-treated mice, but were fully restored by treatment with candesartan. Whereas in diabetes mice exposure of the skin to pressure induced wide and deep necrotic lesions, treatment with candersartan restored their ability to resist to pressure-induced ulceration as efficiently as the control mice. Candesartan decreases the vulnerability to pressure-induced ulceration and restores skin neurovascular functions in mice with STZ-induced established diabetes.

  15. [From new vaccine to new target: revisiting influenza vaccination].

    Science.gov (United States)

    Gérard, M

    2011-09-01

    Annual vaccination is since many years the corner stone of Influenza control strategy. Because conventional vaccine are needle-based, are less immunogenic in old people and induce only systemic IgG production, intranasal and intradermal vaccines that are recently or will be soon available in Belgium will offer distinct advantages. Intradermal vaccination is on the Belgian market since 2010. A stronger immune response that allows an antigen sparing strategy is elicited because antigens are delivered near the dermal dendritic cells. Local side effects are more pronounced than after intramuscular injection. The needle-free intranasal vaccine that has been approved for use in people less than 18 years old by the EMEA in October 2010 induces also a mucosal IgA response. Improved clinical results than with intramuscular vaccine has been documented in several studies in children. Several conditions are contraindication to nasal vaccination because of patterns of side effects and because the vaccine is an live-attenuated vaccine. Pregnant women has become a top priority for Influenza vaccination in the recommendations of the High Council of Health in Belgium since the 2009 H1N1 pandemic. Several studies has since then documented the increased risk for Influenza-related morbidity in pregnant women especially during the third trimester and independently of the presence of other comorbidities. Reduced incidence of documented Influenza and of Influenza-related hospitalizations are observed in the new born of vaccinated women until 6 months of age. Availability of new vaccines for Influenza and better knowledge of the benefit of vaccination in target populations are important tools to optimize vaccine coverage of the population.

  16. Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades

    DEFF Research Database (Denmark)

    Bragstad, Karoline; Martel, Cyril; Thomsen, Joakim S.

    2011-01-01

    Please cite this paper as: Bragstad et al. (2010) Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades. Influenza and Other Respiratory Viruses 5(1), 13-23. Background Alternative influenza vaccines...... and vaccine production forms are needed as the conventional protein vaccines do not induce broad cross-reactivity against drifted strains. Furthermore, fast vaccine production is especially important in a pandemic situation, and broader vaccine reactivity would diminish the need for frequent change...... in the vaccine formulations. Objective In this study, we compared the ability of pandemic influenza DNA vaccines to induce immunity against distantly related strains within a subtype with the immunity induced by conventional trivalent protein vaccines against homologous virus challenge. Methods Ferrets were...

  17. Early life DNA vaccination with the H gene of Canine distemper virus induces robust protection against distemper

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent

    2009-01-01

    Young mink kits (n = 8)were vaccinated withDNA plasmids encoding the viral haemagglutinin protein (H) of a vaccine strain of Canine distemper virus (CDV). Virus neutralising (VN) antibodieswere induced after 2 immunisations and after the third immunisation all kits had high VN antibody titres...

  18. Effect of simultaneous vaccination with H1N1 and GAD-alum on GAD65-induced immune response.

    Science.gov (United States)

    Tavira, Beatriz; Cheramy, Mikael; Axelsson, Stina; Åkerman, Linda; Ludvigsson, Johnny; Casas, Rosaura

    2017-07-01

    A European Phase III trial of GAD formulated with aluminium hydroxide (GAD-alum) failed to reach its primary endpoint (preservation of stimulated C-peptide secretion from baseline to 15 months in type 1 diabetes patients), but subgroup analysis showed a clinical effect when participants from Nordic countries were excluded, raising concern as to whether the mass vaccination of the Swedish and Finnish populations with the Pandemrix influenza vaccine could have influenced the study outcomes. In the current study, we aimed to assess whether Pandemrix vaccination affects the specific immune responses induced by GAD-alum and the C-peptide response. In this secondary analysis, we analysed data acquired from the Swedish participants in the Phase III GAD-alum trial who received subcutaneous GAD-alum vaccination (two doses, n = 43; four doses, n = 46) or placebo (n = 48). GAD autoantibodies (GADA) and H1N1 autoantibodies, GAD 65 -induced cytokine secretion and change in fasting and stimulated C-peptide levels from baseline to 15 months were analysed with respect to the relative time between H1N1 vaccination and the first injection of GAD-alum. GADA levels at 15 months were associated with the relative time between GAD-alum and Pandemrix administration in participants who received two doses of the GAD-alum vaccine (p = 0.015, r = 0.4). Both in participants treated with two doses and four doses of GAD-alum, GADA levels were higher when the relative time between vaccines was ≥210 days (p < 0.05). In the group that received two doses of GAD-alum, levels of several GAD 65 -induced cytokines were higher in participants who received the H1N1 vaccination and the first GAD-alum injection at least 150 days apart, and the change in fasting and stimulated C-peptide at 15 months was associated with the relative time between vaccines. Neither of these effects were observed in individuals who received four doses of GAD-alum. In individuals who received two doses of GAD

  19. Two doses of bovine viral diarrhea virus DNA vaccine delivered by electroporation induce long-term protective immune responses.

    Science.gov (United States)

    van Drunen Littel-van den Hurk, Sylvia; Lawman, Zoe; Snider, Marlene; Wilson, Don; van den Hurk, Jan V; Ellefsen, Barry; Hannaman, Drew

    2013-02-01

    Bovine viral diarrhea virus (BVDV) is a pathogen of major importance in cattle, so there is a need for new effective vaccines. DNA vaccines induce balanced immune responses and are relatively inexpensive and thus promising for both human and veterinary applications. In this study, newborn calves with maternal antibodies were vaccinated intramuscularly (i.m.) with a BVDV E2 DNA vaccine with the TriGrid Delivery System for i.m. delivery (TDS-IM). Two doses of this vaccine spaced 6 or 12 weeks apart were sufficient to induce significant virus-neutralizing antibody titers, numbers of activated T cells, and reduction in viral shedding and clinical presentations after BVDV-2 challenge. In contrast to the placebo-treated animals, the vaccinated calves did not lose any weight, which is an excellent indicator of the well-being of an animal and has a significant economic impact. Furthermore, the interval between the two vaccinations did not influence the magnitude of the immune responses or degree of clinical protection, and a third immunization was not necessary or beneficial. Since electroporation may enhance not only the magnitude but also the duration of immunity after DNA immunization, the interval between vaccination and challenge was extended in a second trial, which showed that two doses of this E2 DNA vaccine again significantly reduced clinical disease against BVDV for several months. These results are promising and support this technology for use against infectious diseases in cattle and large species, including humans, in general.

  20. Microneedle Array Design Determines the Induction of Protective Memory CD8+ T Cell Responses Induced by a Recombinant Live Malaria Vaccine in Mice

    Science.gov (United States)

    Carey, John B.; Pearson, Frances E.; Vrdoljak, Anto; McGrath, Marie G.; Crean, Abina M.; Walsh, Patrick T.; Doody, Timothy; O'Mahony, Conor; Hill, Adrian V. S.; Moore, Anne C.

    2011-01-01

    Background Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8+ T cell responses to a malaria antigen induced by a live vaccine. Methodology and Findings Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. Conclusions/Significance This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8+ T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction

  1. Emerging clinical experience with vaccines against group B meningococcal disease.

    Science.gov (United States)

    Wilkins, A L; Snape, M D

    2017-08-01

    The prevention of paediatric bacterial meningitis and septicaemia has recently entered a new era with the availability of two vaccines against capsular group B meningococcus (MenB). Both of these vaccines are based on sub-capsular proteins of the meningococcus, an approach that overcomes the challenges set by the poorly immunogenic MenB polysaccharide capsule but adds complexity to predicting and measuring the impact of their use. This review describes the development and use of MenB vaccines to date, from the use of outer membrane vesicle (OMV) vaccines in MenB outbreaks around the world, to emerging evidence on the effectiveness of the newly available vaccines. While recent data from the United Kingdom supports the potential for protein-based vaccines to provide direct protection against MenB disease in immunised children, further research is required to understand the breadth and duration of this protection. A more detailed understanding of the impact of immunisation with these vaccines on nasopharyngeal carriage of the meningococcus is also required, to inform both their potential to induce herd immunity and to preferentially select for carriage of strains not susceptible to vaccine-induced antibodies. Although a full understanding of the potential impact of these vaccines will only be possible with this additional information, the availability of new tools to prevent the devastating effect of invasive MenB disease is a significant breakthrough in the fight against childhood sepsis and meningitis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Pressure induced deep tissue injury explained

    NARCIS (Netherlands)

    Oomens, C.W.J.; Bader, D.L.; Loerakker, S.; Baaijens, F.P.T.

    The paper describes the current views on the cause of a sub-class of pressure ulcers known as pressure induced deep tissue injury (DTI). A multi-scale approach was adopted using model systems ranging from single cells in culture, tissue engineered muscle to animal studies with small animals. This

  3. Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine.

    Directory of Open Access Journals (Sweden)

    Stephen A Kaba

    Full Text Available The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8(+ and CD4(+ T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects.To establish the basis for a SAPN-based vaccine, B- and CD8(+ T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP. We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year protective antibody and poly-functional (IFNγ(+, IL-2(+ long-lived central memory CD8(+ T-cells. Furthermore, we demonstrated that these Ab or CD8(+ T-cells can independently provide sterile protection against a lethal challenge of the transgenic parasites.The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP.

  4. A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice.

    Science.gov (United States)

    Gummow, Jason; Li, Yanrui; Yu, Wenbo; Garrod, Tamsin; Wijesundara, Danushka; Brennan, Amelia J; Mullick, Ranajoy; Voskoboinik, Ilia; Grubor-Bauk, Branka; Gowans, Eric J

    2015-08-01

    There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is

  5. Can VHS virus bypass the protective immunity induced by DNA vaccination in rainbow trout?

    DEFF Research Database (Denmark)

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability...... and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV), an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly...... pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus...

  6. Therapeutic Vaccination for HPV Induced Cervical Cancers

    Directory of Open Access Journals (Sweden)

    Joeli A. Brinkman

    2007-01-01

    Full Text Available Cervical Cancer is the second leading cause of cancer–related deaths in women worldwide and is associated with Human Papillomavirus (HPV infection, creating a unique opportunity to treat cervical cancer through anti-viral vaccination. Although a prophylactic vaccine may be available within a year, millions of women, already infected, will continue to suffer from HPV-related disease, emphasizing the need to develop therapeutic vaccination strategies. A majority of clinical trials examining therapeutic vaccination have shown limited efficacy due to examining patients with more advanced-stage cancer who tend to have decreased immune function. Current trends in clinical trials with therapeutic agents examine patients with pre-invasive lesions in order to prevent invasive cervical cancer. However, longer follow-up is necessary to correlate immune responses to lesion regression. Meanwhile, preclinical studies in this field include further exploration of peptide or protein vaccination, and the delivery of HPV antigens in DNA-based vaccines or in viral vectors. As long as pre-clinical studies continue to advance, the prospect of therapeutic vaccination to treat existing lesions seem good in the near future. Positive consequences of therapeutic vaccination would include less disfiguring treatment options and fewer instances of recurrent or progressive lesions leading to a reduction in cervical cancer incidence.

  7. Alphavirus-based Vaccines Encoding Nonstructural Proteins of Hepatitis C Virus Induce Robust and Protective T-cell Responses

    NARCIS (Netherlands)

    Ip, Peng; Boerma, Annemarie; Regts, Joke; Meijerhof, Tjarko; Wilschut, Jan; Nijman, Hans W.; Daemen, Toos

    An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all-or a part of

  8. Reproductive toxicity testing of vaccines

    International Nuclear Information System (INIS)

    Verdier, Francois; Barrow, Paul C.; Burge, Joeelle

    2003-01-01

    Vaccines play a major role in the prevention of human birth defects by protecting the pregnant woman from teratogenic or otherwise harmful infections. Until now, it has not been common practice to perform preclinical developmental toxicity tests for new vaccines. Despite the excellent safety record of vaccines, increased attention is now being given to the feasibility of screening new vaccines for developmental hazards in animals before their use in humans. Contrary to previous assumptions, many vaccines are now given to potentially pregnant women. Any new components of the vaccine formulation (adjuvants, excipients, stabilisers, preservatives, etc...) could also be tested for influences on development, although based on past experience the risks are limited by the very low dosages used. The conferred immunity following vaccination lasts for several years. Therefore, the developing conceptus may theoretically be exposed to the induced antibodies and/or sensitised T-cells, even if the pregnant woman was last vaccinated during childhood (particularly if she encounters the antigen during pregnancy through exposure to infection). However, it should be kept in mind that viral or bacterial infections represent a higher risk for a pregnant woman than the potential adverse effects related to vaccination or the associated immune response. Non-clinical safety studies may be employed as an aid for hazard identification. In these studies interactions of the vaccine with the maternal immune system or with the developmental systems of the offspring are considered. Post-natal examinations are necessary to detect all possible manifestations of developmental toxicity, such as effects on the immune system. Species selection for the preclinical studies is based on immunogenicity to the vaccine and the relative timing and rate of transfer of maternal antibodies to the offspring. A single study design is proposed for the pre- and post-natal developmental assessments of vaccines in

  9. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ(+) CMI responses protects against a genital infection in minipigs

    DEFF Research Database (Denmark)

    Bøje, Sarah; Olsen, Anja Weinreich; Erneholm, Karin

    2016-01-01

    Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig...... trachomatis SvD bacteria (UV-SvD/CAF01) or CAF01. The Hirep1+CTH93/CAF01 vaccine induced a strong CMI response against the vaccine antigens and high titers of antibodies, particularly against the VD4 region of MOMP. Sera from Hirep1+CTH93/CAF01 immunized pigs neutralized C. trachomatis SvD and SvF infectivity...

  10. Vaccine Associated Myocarditis

    Directory of Open Access Journals (Sweden)

    Johnson Francis

    2017-04-01

    Full Text Available Most of the cases of vaccine associated myocarditis have been following small pox vaccination. Reports have also been there after streptococcal pneumonia vaccine and influenza vaccine. In some cases, autoimmune/inflammatory syndrome induced by adjuvants (ASIA used in the vaccine have been implicated. Exclusion of other causes is very important in the diagnostic process, especially that of acute coronary syndrome. Management is similar to that of other etiologies of myocarditis. These rare instances of myocarditis should not preclude one from taking necessary immunization for vaccine preventable diseases.

  11. Títulos de anticorpos aglutinantes induzidos por vacinas comerciais contra leptospirose bovina Agglutinating antibody titers induced by commercial vaccines against bovine leptospirosis

    Directory of Open Access Journals (Sweden)

    Gabriela de Godoy Cravo Arduino

    2009-07-01

    Full Text Available No presente estudo, 100 fêmeas bovinas foram divididas em cinco grupos de 20 animais cada. Os grupos experimentais receberam quatro diferentes vacinas comerciais (B, C, D e E, e um grupo permaneceu como controle. Amostras foram colhidas no dia da aplicação da primeira dose e nos dias 3, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 120, 150 e 180 pós-vacinação (PV. A triagem dos animais foi feita pela análise sorológica com 6 antígenos de leptospiras, escolhendo-se os animais não reagentes. Os títulos de anticorpos foram monitorados pela soroaglutinação microscópica (SAM com os sorovares Canicola, Grippotyphosa, Hardjo, Icterohaemorrhagiae, Pomona e Wolffi. Todas as vacinas induziram, aos 3 dias PV, títulos de anticorpos aglutinantes para os sorovares Hardjo e Wolffi, que persistiram até o 150º dia PV. Os sorovares Hardjo e Wolffi induziram os maiores títulos de anticorpos aglutinantes. A vacina D, apesar de não possuir o sorovar Wolffi em sua composição foi capaz de induzir anticorpos aglutinantes contra este sorovar. Somente foram detectados anticorpos contra o sorovar Canicola nos animais vacinados com a bacterina D. A vacina que induziu os maiores títulos médios de anticorpos, considerando todos os sorovares testados foi a D.In the investigation 100 heifers were used, divided into 5 groups of 20 animals each. The four experimental groups were vaccinated using distinct commercial polyvalent bacterines: B, C, D and E, and A group was the control. Samples were collected at days 0, 3, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 120, 150 and 180 from the first injection of the vaccine. The selection of the animals for the experimental groups was done based on a serological screening with 6 antigens of Leptospira sp. constituted by non-reagent animals. The vaccine titers were monitored using the microscopic agglutination test (MAT for Canicola, Grippotyphosa, Hardjo, Icterohaemorrhagiae, Pomona and Wolffi

  12. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates

    Science.gov (United States)

    2013-01-01

    Background Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. Results Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability, and

  13. Entirely Carbohydrate-Based Vaccines: An Emerging Field for Specific and Selective Immune Responses

    Directory of Open Access Journals (Sweden)

    Sharmeen Nishat

    2016-05-01

    Full Text Available Carbohydrates are regarded as promising targets for vaccine development against infectious disease because cell surface glycans on many infectious agents are attributed to playing an important role in pathogenesis. In addition, oncogenic transformation of normal cells, in many cases, is associated with aberrant glycosylation of the cell surface glycan generating tumor associated carbohydrate antigens (TACAs. Technological advances in glycobiology have added a new dimension to immunotherapy when considering carbohydrates as key targets in developing safe and effective vaccines to combat cancer, bacterial infections, viral infections, etc. Many consider effective vaccines induce T-cell dependent immunity with satisfactory levels of immunological memory that preclude recurrence. Unfortunately, carbohydrates alone are poorly immunogenic as they do not bind strongly to the MHCII complex and thus fail to elicit T-cell immunity. To increase immunogenicity, carbohydrates have been conjugated to carrier proteins, which sometimes can impede carbohydrate specific immunity as peptide-based immune responses can negate antibodies directed at the targeted carbohydrate antigens. To overcome many challenges in using carbohydrate-based vaccine design and development approaches targeting cancer and other diseases, zwitterionic polysaccharides (ZPSs, isolated from the capsule of commensal anaerobic bacteria, will be discussed as promising carriers of carbohydrate antigens to achieve desired immunological responses.

  14. H5N1 whole-virus vaccine induces neutralizing antibodies in humans which are protective in a mouse passive transfer model.

    Directory of Open Access Journals (Sweden)

    M Keith Howard

    Full Text Available BACKGROUND: Vero cell culture-derived whole-virus H5N1 vaccines have been extensively tested in clinical trials and consistently demonstrated to be safe and immunogenic; however, clinical efficacy is difficult to evaluate in the absence of wide-spread human disease. A lethal mouse model has been utilized which allows investigation of the protective efficacy of active vaccination or passive transfer of vaccine induced sera following lethal H5N1 challenge. METHODS: We used passive transfer of immune sera to investigate antibody-mediated protection elicited by a Vero cell-derived, non-adjuvanted inactivated whole-virus H5N1 vaccine. Mice were injected intravenously with H5N1 vaccine-induced rodent or human immune sera and subsequently challenged with a lethal dose of wild-type H5N1 virus. RESULTS: Passive transfer of H5N1 vaccine-induced mouse, guinea pig and human immune sera provided dose-dependent protection of recipient mice against lethal challenge with wild-type H5N1 virus. Protective dose fifty values for serum H5N1 neutralizing antibody titers were calculated to be ≤1∶11 for all immune sera, independently of source species. CONCLUSIONS: These data underpin the confidence that the Vero cell culture-derived, whole-virus H5N1 vaccine will be effective in a pandemic situation and support the use of neutralizing serum antibody titers as a correlate of protection for H5N1 vaccines.

  15. Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF-β1.

    Directory of Open Access Journals (Sweden)

    Xiaobao Fan

    Full Text Available Transforming growth factor β1 (TGF-β1 is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF-β1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF-β1 with TGF-β1 kinoids. Two TGF-β1 kinoid vaccines were prepared by cross-linking TGF-β1-derived polypeptides (TGF-β1(25-[41-65] and TGF-β1(30-[83-112] to keyhole limpet hemocyanin (KLH. Immunization with the two TGF-β1 kinoids efficiently elicited the production of high-levels of TGF-β1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA and Western blotting. The antisera neutralized TGF-β1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu and attenuated TGF-β1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2, plasminogen activator inhibitor-1 (PAI-1 and tissue inhibitor of metalloproteinase-1 (TIMP-1 expression in the rat hepatic stellate cell (HSC line, HSC-T6. Vaccination against TGF-β1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF-β1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF-β1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases.

  16. The effect of vaccination on the evolution and population dynamics of avian paramyxovirus-1.

    Directory of Open Access Journals (Sweden)

    Yee Ling Chong

    2010-04-01

    Full Text Available Newcastle Disease Virus (NDV is a pathogenic strain of avian paramyxovirus (aPMV-1 that is among the most serious of disease threats to the poultry industry worldwide. Viral diversity is high in aPMV-1; eight genotypes are recognized based on phylogenetic reconstruction of gene sequences. Modified live vaccines have been developed to decrease the economic losses caused by this virus. Vaccines derived from avirulent genotype II strains were developed in the 1950s and are in use globally, whereas Australian strains belonging to genotype I were developed as vaccines in the 1970s and are used mainly in Asia. In this study, we evaluated the consequences of attenuated live virus vaccination on the evolution of aPMV-1 genotypes. There was phylogenetic incongruence among trees based on individual genes and complete coding region of 54 full length aPMV-1 genomes, suggesting that recombinant sequences were present in the data set. Subsequently, five recombinant genomes were identified, four of which contained sequences from either genotype I or II. The population history of vaccine-related genotype II strains was distinct from other aPMV-1 genotypes; genotype II emerged in the late 19(th century and is evolving more slowly than other genotypes, which emerged in the 1960s. Despite vaccination efforts, genotype II viruses have experienced constant population growth to the present. In contrast, other contemporary genotypes showed population declines in the late 1990s. Additionally, genotype I and II viruses, which are circulating in the presence of homotypic vaccine pressure, have unique selection profiles compared to nonvaccine-related strains. Collectively, these data show that vaccination with live attenuated viruses has changed the evolution of aPMV-1 by maintaining a large effective population size of a vaccine-related genotype, allowing for coinfection and recombination of vaccine and wild type strains, and by applying unique selective pressures on

  17. Edible vaccines: Current status and future

    Directory of Open Access Journals (Sweden)

    Lal P

    2007-01-01

    Full Text Available Edible vaccines hold great promise as a cost-effective, easy-to-administer, easy-to-store, fail-safe and socioculturally readily acceptable vaccine delivery system, especially for the poor developing countries. It involves introduction of selected desired genes into plants and then inducing these altered plants to manufacture the encoded proteins. Introduced as a concept about a decade ago, it has become a reality today. A variety of delivery systems have been developed. Initially thought to be useful only for preventing infectious diseases, it has also found application in prevention of autoimmune diseases, birth control, cancer therapy, etc. Edible vaccines are currently being developed for a number of human and animal diseases. There is growing acceptance of transgenic crops in both industrial and developing countries. Resistance to genetically modified foods may affect the future of edible vaccines. They have passed the major hurdles in the path of an emerging vaccine technology. Various technical obstacles, regulatory and non-scientific challenges, though all seem surmountable, need to be overcome. This review attempts to discuss the current status and future of this new preventive modality.

  18. Effective Respiratory CD8 T-Cell Immunity to Influenza Virus Induced by Intranasal Carbomer-Lecithin-Adjuvanted Non-replicating Vaccines

    Science.gov (United States)

    Gasper, David J.; Neldner, Brandon; Plisch, Erin H.; Rustom, Hani; Imai, Hirotaka; Kawaoka, Yoshihiro; Suresh, M.

    2016-01-01

    CD8+ cytotoxic T lymphocytes (CTLs) are critical for clearing many viral infections, and protective CTL memory can be induced by vaccination with attenuated viruses and vectors. Non-replicating vaccines are typically potentiated by the addition of adjuvants that enhance humoral responses, however few are capable of generating CTL responses. Adjuplex is a carbomer-lecithin-based adjuvant demonstrated to elicit robust humoral immunity to non-replicating antigens. We report that mice immunized with non-replicating Adjuplex-adjuvanted vaccines generated robust antigen-specific CTL responses. Vaccination by the subcutaneous or the intranasal route stimulated systemic and mucosal CTL memory respectively. However, only CTL memory induced by intranasal vaccination was protective against influenza viral challenge, and correlated with an enhancement of memory CTLs in the airways and CD103+ CD69+ CXCR3+ resident memory-like CTLs in the lungs. Mechanistically, Myd88-deficient mice mounted primary CTL responses to Adjuplex vaccines that were similar in magnitude to wild-type mice, but exhibited altered differentiation of effector cell subsets. Immune potentiating effects of Adjuplex entailed alterations in the frequency of antigen-presenting-cell subsets in vaccine draining lymph nodes, and in the lungs and airways following intranasal vaccination. Further, Adjuplex enhanced the ability of dendritic cells to promote antigen-induced proliferation of naïve CD8 T cells by modulating antigen uptake, its intracellular localization, and rate of processing. Taken together, we have identified an adjuvant that elicits both systemic and mucosal CTL memory to non-replicating antigens, and engenders protective CTL-based heterosubtypic immunity to influenza A virus in the respiratory tract. Further, findings presented in this manuscript have provided key insights into the mechanisms and factors that govern the induction and programming of systemic and protective memory CTLs in the

  19. Quantitative PCR evaluation of cellular immune responses in Kenyan children vaccinated with a candidate malaria vaccine.

    Directory of Open Access Journals (Sweden)

    Jedidah Mwacharo

    2009-12-01

    Full Text Available The T-cell mediated immune response plays a central role in the control of malaria after natural infection or vaccination. There is increasing evidence that T-cell responses are heterogeneous and that both the quality of the immune response and the balance between pro-inflammatory and regulatory T-cells determines the outcome of an infection. As Malaria parasites have been shown to induce immunosuppressive responses to the parasite and non-related antigens this study examined T-cell mediated pro-inflammatory and regulatory immune responses induced by malaria vaccination in children in an endemic area to determine if these responses were associated with vaccine immunogenicity.Using real-time RT- PCR we profiled the expression of a panel of key markers of immunogenecity at different time points after vaccination with two viral vector vaccines expressing the malaria TRAP antigen (FP9-TRAP and MVA-TRAP or following rabies vaccination as a control.The vaccine induced modest levels of IFN-gamma mRNA one week after vaccination. There was also an increase in FoxP3 mRNA expression in both TRAP stimulated and media stimulated cells in the FFM ME-TRAP vaccine group; however, this may have been driven by natural exposure to parasite rather than by vaccination.Quantitative PCR is a useful method for evaluating vaccine induced cell mediated immune responses in frozen PBMC from children in a malaria endemic country. Future studies should seek to use vaccine vectors that increase the magnitude and quality of the IFN-gamma immune response in naturally exposed populations and should monitor the induction of a regulatory T cell response.

  20. High selection pressure promotes increase in cumulative adaptive culture.

    Directory of Open Access Journals (Sweden)

    Carolin Vegvari

    Full Text Available The evolution of cumulative adaptive culture has received widespread interest in recent years, especially the factors promoting its occurrence. Current evolutionary models suggest that an increase in population size may lead to an increase in cultural complexity via a higher rate of cultural transmission and innovation. However, relatively little attention has been paid to the role of natural selection in the evolution of cultural complexity. Here we use an agent-based simulation model to demonstrate that high selection pressure in the form of resource pressure promotes the accumulation of adaptive culture in spite of small population sizes and high innovation costs. We argue that the interaction of demography and selection is important, and that neither can be considered in isolation. We predict that an increase in cultural complexity is most likely to occur under conditions of population pressure relative to resource availability. Our model may help to explain why culture change can occur without major environmental change. We suggest that understanding the interaction between shifting selective pressures and demography is essential for explaining the evolution of cultural complexity.

  1. Influenza vaccination of cancer patients during PD-1 blockade induces serological protection but may raise the risk for immune-related adverse events.

    Science.gov (United States)

    Läubli, Heinz; Balmelli, Catharina; Kaufmann, Lukas; Stanczak, Michal; Syedbasha, Mohammedyaseen; Vogt, Dominik; Hertig, Astrid; Müller, Beat; Gautschi, Oliver; Stenner, Frank; Zippelius, Alfred; Egli, Adrian; Rothschild, Sacha I

    2018-05-22

    Immune checkpoint inhibiting antibodies were introduced into routine clinical practice for cancer patients. Checkpoint blockade has led to durable remissions in some patients, but may also induce immune-related adverse events (irAEs). Lung cancer patients show an increased risk for complications, when infected with influenza viruses. Therefore, vaccination is recommended. However, the efficacy and safety of influenza vaccination during checkpoint blockade and its influence on irAEs is unclear. Similarly, the influence of vaccinations on T cell-mediated immune reactions in patients during PD-1 blockade remains poorly defined. We vaccinated 23 lung cancer patients and 11 age-matched healthy controls using a trivalent inactivated influenza vaccine to investigate vaccine-induced immunity and safety during checkpoint blockade. We did not observe significant differences between patients and healthy controls in vaccine-induced antibody titers against all three viral antigens. Influenza vaccination resulted in protective titers in more than 60% of patients/participants. In cancer patients, the post-vaccine frequency of irAEs was 52.2% with a median time to occurrence of 3.2 months after vaccination. Six of 23 patients (26.1%) showed severe grade 3/4 irAEs. This frequency of irAEs might be higher than the rate previously published in the literature and the rate observed in a non-study population at our institution (all grades 25.5%, grade 3/4 9.8%). Although this is a non-randomized trial with a limited number of patients, the increased rate of immunological toxicity is concerning. This finding should be studied in a larger patient population.

  2. Elasto-optics in double-coated optical fibers induced by axial strain and hydrostatic pressure.

    Science.gov (United States)

    Yang, Yu-Ching; Lee, Haw-Long; Chou, Huann-Ming

    2002-04-01

    Stresses, microbending loss, and refractive-index changes induced simultaneously by axial strain and hydrostatic pressure in double-coated optical fibers are analyzed. The lateral pressure and normal stresses in the optical fiber, primary coating, and secondary coating are derived. Also presented are the microbending loss and refractive-index changes in the glass fiber. The normal stresses are affected by axial strain, hydrostatic pressure, material properties, and thickness of the primary and secondary coatings. It is found that microbending loss decreases with increasing thickness, the Young's modulus, and the Poisson's ratio of the secondary coating but increases with the increasing Young's modulus and Poisson's ratio of the primary coating. Similarly, changes in refractive index in the glass fiber decrease with the increasing Young's modulus and Poisson's ratio of the secondary coating but increase with the increasing Young's modulus and Poisson's ratio of the primary coating. Therefore, to minimize microbending loss induced simultaneously by axial strain and hydrostatic pressure in the glass fiber, the polymeric coatings should be suitably selected. An optimal design procedure is also indicated.

  3. Prime-booster vaccination of cattle with an influenza viral vector Brucella abortus vaccine induces a long-term protective immune response against Brucella abortus infection.

    Science.gov (United States)

    Tabynov, Kaissar; Yespembetov, Bolat; Ryskeldinova, Sholpan; Zinina, Nadezhda; Kydyrbayev, Zhailaubay; Kozhamkulov, Yerken; Inkarbekov, Dulat; Sansyzbay, Abylai

    2016-01-20

    This study analyzed the duration of the antigen-specific humoral and T-cell immune responses and protectiveness of a recently-developed influenza viral vector Brucella abortus (Flu-BA) vaccine expressing Brucella proteins Omp16 and L7/L12 and containing the adjuvant Montadine Gel01 in cattle. At 1 month post-booster vaccination (BV), both humoral (up to 3 months post-BV; GMT IgG ELISA titer 214±55 to 857±136, with a prevalence of IgG2a over IgG1 isotype antibodies) and T-cell immune responses were observed in vaccinated heifers (n=35) compared to control animals (n=35, injected with adjuvant/PBS only). A pronounced T-cell immune response was induced and maintained for 12 months post-BV, as indicated by the lymphocyte stimulation index (2.7±0.4 to 10.1±0.9 cpm) and production of IFN-γ (13.7±1.7 to 40.0±3.0 ng/ml) at 3, 6, 9, and 12 months post-BV. Prime-boost vaccination provided significant protection against B. abortus infection at 3, 6, 9 and 12 months (study duration) post-BV (7 heifers per time point; alpha=0.03-0.01 vs. control group). Between 57.1 and 71.4% of vaccinated animals showed no signs of B. abortus infection (or Brucella isolation) at 3, 6, 9 and 12 months post-BV; the severity of infection, as indicated by the index of infection (P=0.0003 to Brucella colonization (P=0.03 to abortus infection was also observed among pregnant vaccinated heifers (alpha=0.03), as well as their fetuses and calves (alpha=0.01), for 12 months post-BV. Additionally, 71.4% of vaccinated heifers calved successfully whereas all pregnant control animals aborted (alpha=0.01). Prime-boost vaccination of cattle with Flu-BA induces an antigen-specific humoral and pronounced T cell immune response and most importantly provides good protectiveness, even in pregnant heifers, for at least 12 months post-BV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Pressure-induced amorphization of La1/3TaO3

    International Nuclear Information System (INIS)

    Noked, O.; Melchior, A.; Shuker, R.; Livneh, T.; Steininger, R.; Kennedy, B.J.; Sterer, E.

    2013-01-01

    La 1/3 TaO 3 , an A-site cation deficient perovskite, has been studied under pressure by synchrotron X-ray powder diffraction and Raman spectroscopy. It undergoes irreversible pressure induced amorphization at P=18.5 GPa. An almost linear unit cell volume decrease vs. pressure is observed from ambient pressure up to the phase transition. The Raman spectroscopy also shows amorphization at the same pressure, with positive shifts of all modes as a function of pressure. The pressure dependence of the E g and A 1g Raman modes arising from the octahedral oxygen network is discussed. - Graphical abstract: La 1/3 Tao 3 exhibits linear pressure–volume relation until irreversible pressure induced amorphization at 18.5 Gpa. - Highlights: • La 1/3 TaO 3 has been studied under pressure by synchrotron XRD and Raman spectroscopy. • La 1/3 TaO 3 undergoes irreversible pressure induced amorphization around 18.5 GPa. • The transition is manifested in both XRD and Raman measurements. • A linear P–V relation is observed from ambient pressure up to the phase transition

  5. Tumor vaccine composed of C-class CpG oligodeoxynucleotides and irradiated tumor cells induces long-term antitumor immunity

    Directory of Open Access Journals (Sweden)

    Cerkovnik Petra

    2010-09-01

    Full Text Available Abstract Background An ideal tumor vaccine should activate both effector and memory immune response against tumor-specific antigens. Beside the CD8+ T cells that play a central role in the generation of a protective immune response and of long-term memory, dendritic cells (DCs are important for the induction, coordination and regulation of the adaptive immune response. The DCs can conduct all of the elements of the immune orchestra and are therefore a fundamental target and tool for vaccination. The present study was aimed at assessing the ability of tumor vaccine composed of C-class CpG ODNs and irradiated melanoma tumor cells B16F1 followed by two additional injections of CpG ODNs to induce the generation of a functional long-term memory response in experimental tumor model in mice (i.p. B16F1. Results It has been shown that the functional memory response in vaccinated mice persists for at least 60 days after the last vaccination. Repeated vaccination also improves the survival of experimental animals compared to single vaccination, whereas the proportion of animals totally protected from the development of aggressive i.p. B16F1 tumors after vaccination repeated three times varies between 88.9%-100.0%. Additionally, the long-term immune memory and tumor protection is maintained over a prolonged period of time of at least 8 months. Finally, it has been demonstrated that following the vaccination the tumor-specific memory cells predominantly reside in bone marrow and peritoneal tissue and are in a more active state than their splenic counterparts. Conclusions In this study we demonstrated that tumor vaccine composed of C-class CpG ODNs and irradiated tumor cells followed by two additional injections of CpG ODNs induces a long-term immunity against aggressive B16F1 tumors.

  6. Genetic and antigenic characterization of serotype O FMD viruses from East Africa for the selection of suitable vaccine strain.

    Science.gov (United States)

    Lloyd-Jones, Katie; Mahapatra, Mana; Upadhyaya, Sasmita; Paton, David J; Babu, Aravindh; Hutchings, Geoff; Parida, Satya

    2017-12-14

    Foot-and-mouth disease (FMD) is endemic in Eastern Africa with circulation of multiple serotypes of the virus in the region. Most of the outbreaks are caused by serotype O followed by serotype A. The lack of concerted FMD control programmes in Africa has provided little incentive for vaccine producers to select vaccines that are tailored to circulating regional isolates creating further negative feedback to deter the introduction of vaccine-based control schemes. In this study a total of 80 serotype O FMD viruses (FMDV) isolated from 1993 to 2012 from East and North Africa were characterized by virus neutralisation tests using bovine antisera to three existing (O/KEN/77/78, O/Manisa and O/PanAsia-2) and three putative (O/EA/2002, O/EA/2009 and O/EA/2010) vaccine strains and by capsid sequencing. Genetically, these viruses were grouped as either of East African origin with subdivision into four topotypes (EA-1, 2, 3 and 4) or of Middle-East South Asian (ME-SA) topotype. The ME-SA topotype viruses were mainly detected in Egypt and Libya reflecting the trade links with the Middle East countries. There was good serological cross-reactivity between the vaccine strains and most of the field isolates analysed, indicating that vaccine selection should not be a major constraint for control of serotype O FMD by vaccination, and that both local and internationally available commercial vaccines could be used. The O/KEN/77/78 vaccine, commonly used in the region, exhibited comparatively lower percent in vitro match against the predominant topotypes (EA-2 and EA-3) circulating in the region whereas O/PanAsia-2 and O/Manisa vaccines revealed broader protection against East African serotype O viruses, even though they genetically belong to the ME-SA topotype. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Co-immunization with virus-like particle and DNA vaccines induces protection against respiratory syncytial virus infection and bronchiolitis

    Science.gov (United States)

    Hwang, Hye Suk; Kwon, Young-Man; Lee, Jong Seok; Yoo, Si-Eun; Lee, Yu-Na; Ko, Eun-Ju; Kim, Min-Chul; Cho, Min-Kyoung; Lee, Young-Tae; Jung, Yu-Jin; Lee, Ji-Yun; Li, Jian Dong; Kang, Sang-Moo

    2014-01-01

    This study demonstrates that immunization with non-replicating virus-like particle (FFG VLP) containing RSV F and G glycoproteins together with RSV F DNA induced T helper type 1 antibody responses to RSV F similar to live RSV infection. Upon RSV challenge 21 weeks after immunization, FFG VLP vaccination induced protection against RSV infection as shown by clearance of lung viral loads, and the absence of eosinophil infiltrates, and did not cause lung pathology. In contrast, formalin-inactivated RSV (FI-RSV) vaccination showed significant pulmonary eosinophilia, severe mucus production, and extensive histopathology resulting in a hallmark of pulmonary pathology. Substantial lung pathology was also observed in mice with RSV re-infections. High levels of systemic and local inflammatory cytokine-secreting cells were induced in mice with FI-RSV but not with FFG VLP immunization after RSV challenge. Therefore, the results provide evidence that recombinant RSV FFG VLP vaccine can confer long-term protection against RSV without causing lung pathology. PMID:25110201

  8. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ(+) CMI responses protects against a genital infection in minipigs

    DEFF Research Database (Denmark)

    Bøje, Sarah; Olsen, Anja Weinreich; Erneholm, Karin

    2016-01-01

    Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig...... animal model, we evaluated the immunogenicity and efficacy of a multi-subunit vaccine formulated in the strong Th1-inducing adjuvant CAF01. We evaluated a mixture of two fusion proteins (Hirep1 and CTH93) designed to promote either neutralizing antibodies or cell-mediated immunity, respectively. Hirep1...

  9. Stimulation of alveolar macrophages by BCG vaccine enhances the process of lung fibrosis induced by bleomycin.

    Science.gov (United States)

    Chyczewska, E; Chyczewski, L; Bańkowski, E; Sułkowski, S; Nikliński, J

    1993-01-01

    It was found that the BCG vaccine injected subcutaneously to the rats enhances the process of lung fibrosis induced by bleomycin. Pretreatment of rats with this vaccine results in accumulation of activated macrophages in lung interstitium and in the bronchoalveolar spaces. It may be suggested that the activated macrophages release various cytokines which may stimulate the proliferation of fibroblasts and biosynthesis of extracellular matrix components.

  10. Intranasal Immunization with Pressure Inactivated Avian Influenza Elicits Cellular and Humoral Responses in Mice.

    Directory of Open Access Journals (Sweden)

    Shana P C Barroso

    Full Text Available Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus have some important drawbacks, including changes in the immunogenic properties of the virus. To induce a greater mucosal immune response, intranasally administered vaccines are highly desired as they not only prevent disease but can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pressure has been used as a potential method for viral inactivation and vaccine production. In this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus, while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vaccinated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling. Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We found that the whole inactivated particles were capable of generating a neutralizing antibody response in serum, and IgA was also found in nasal mucosa and feces. After the vaccination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-γ. Our data indicate that the animals present a satisfactory immune response after vaccination and are protected against infection. Our results may pave the way for the development of a novel pressure-based vaccine against influenza virus.

  11. Self-Assembly DNA Polyplex Vaccine inside Dissolving Microneedles for High-Potency Intradermal Vaccination

    Science.gov (United States)

    Liao, Jing-Fong; Lee, Jin-Ching; Lin, Chun-Kuang; Wei, Kuo-Chen; Chen, Pin-Yuan; Yang, Hung-Wei

    2017-01-01

    The strong immunogenicity induction is the powerful weapon to prevent the virus infections. This study demonstrated that one-step synthesis of DNA polyplex vaccine in microneedle (MN) patches can induce high immunogenicity through intradermal vaccination and increase the vaccine stability for storage outside the cold chain. More negative charged DNA vaccine was entrapped into the needle region of MNs followed by DNA polyplex formation with branched polyethylenimine (bPEI) pre-coated in the cavities of polydimethylsiloxane (PDMS) molds that can deliver more DNA vaccine to immune-cell rich epidermis with high transfection efficiency. Our data in this study support the safety and immunogenicity of the MN-based vaccine; the MN patch delivery system induced an immune response 3.5-fold as strong as seen with conventional intramuscular administration; the DNA polyplex formulation provided excellent vaccine stability at high temperature (could be stored at 45ºC for at least 4 months); the DNA vaccine is expected to be manufactured at low cost and not generate sharps waste. We think this study is significant to public health because there is a pressing need for an effective vaccination in developing countries. PMID:28819449

  12. Pressure-Induced Polyamorphic Transition in Nanoscale TiO2

    International Nuclear Information System (INIS)

    Swamy, Varghese; Muddle, Barry C.

    2009-01-01

    The detection and characterization of pressure-induced amorphization in 20 GPa and ambient temperature is documented. The characterization employed in situ high-pressure angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy in diamond-anvil cells. Comparative Raman spectroscopy allows the local structures of the high-density amorphous (HDA) form obtained at high pressures and its low-pressure (<10-15 GPa) low-density amorphous (LDA) analogue to be related to the baddeleyite-TiO2 and TiO2-II structures, respectively. The pressure-induced amorphization and the HDA-LDA transition in nanoscale TiO2 bear broad similarities to transitions in the Si and H2O systems.

  13. Malaria vaccines: the case for a whole-organism approach.

    Science.gov (United States)

    Pinzon-Charry, Alberto; Good, Michael F

    2008-04-01

    Malaria is a significant health problem causing morbidity and mortality worldwide. Vaccine development has been an imperative for decades. However, the intricacy of the parasite's lifecycle coupled with the lack of evidence for robust infection-induced immunity has made vaccine development exceptionally difficult. To review some of the key advances in the field and discuss potential ways forward for a whole-organism vaccine. The authors searched PubMed using the words 'malaria and vaccine'. We searched for manuscripts detailing antigen characterisation and vaccine strategies with emphasis on subunit versus whole-parasite approaches. Abstracts were selected and relevant articles are discussed. The searches were not restricted by language or date. The early cloning of malaria antigens has fuelled rapid development of subunit vaccines. However, the disappointing results of clinical trials have resulted in reappraisal of current strategies. Whole-parasite approaches have re-emerged as an alternative strategy. Immunization using radiation or genetically attenuated sporozoites has been shown to result in sterile immunity and immunization with blood-stage parasites curtailed by antimalarials has demonstrated delayed parasitemia in rodent models as well as in human malaria.

  14. Parents' experiences discussing pediatric vaccination with healthcare providers: a survey of Canadian naturopathic patients.

    Science.gov (United States)

    Busse, Jason W; Walji, Rishma; Wilson, Kumanan

    2011-01-01

    Parents who choose to selectively vaccinate or avoid vaccination for their children may do so at risk of compromising relations with their family physician or pediatrician. Groups that are associated with reduced rates of pedicatic vaccination, such as parents who access naturopathic care, may be particularly vulnerable to this issue. In March through September 2010, we administered a 26-item cross-sectional survey to 129 adult patients, all of whom were parents with children ≤ 16 years of age, presenting for naturopathic care in Ontario, Canada. Ninety-five parents completed the survey (response rate 74%), and only 50.5% (48 of 95) reported that their children had received all recommended vaccines. Most parents (50.5%; 48 of 95) reported feeling pressure to vaccinate from their allopathic physician and, of those who discussed vaccination with their physician, 25.9% (21 of 81) were less comfortable continuing care as a result. Five percent (4 of 81) of respondents were advised by their physician that their children would be refused care if they decided against vaccination. In our adjusted generalized linear model, feeling pressure to vaccinate (odds ratio [OR] = 3.07; 95% confidence interval [CI] = 1.14 to 8.26) or endorsing a naturopathic physician as their most trusted source of information regarding vaccination (OR = 3.57; 95% CI = 1.22 to 10.44) were associated with greater odds of having a partially vaccinated or unvaccinated child. The majority (69.6%; 32 of 46) of parent's with partially vaccinated or unvaccinated children reported a willingness to re-consider this decision. Use of naturopathic care should be explored among parents in order to identify this high-risk group and engage them in discussion regarding pediatric vaccination to encourage evidence-based, shared decision making. Physicians should ensure that discussions regarding vaccination are respectful, even if parents are determined not to vaccinate their children.

  15. Parents' experiences discussing pediatric vaccination with healthcare providers: a survey of Canadian naturopathic patients.

    Directory of Open Access Journals (Sweden)

    Jason W Busse

    Full Text Available Parents who choose to selectively vaccinate or avoid vaccination for their children may do so at risk of compromising relations with their family physician or pediatrician. Groups that are associated with reduced rates of pedicatic vaccination, such as parents who access naturopathic care, may be particularly vulnerable to this issue.In March through September 2010, we administered a 26-item cross-sectional survey to 129 adult patients, all of whom were parents with children ≤ 16 years of age, presenting for naturopathic care in Ontario, Canada. Ninety-five parents completed the survey (response rate 74%, and only 50.5% (48 of 95 reported that their children had received all recommended vaccines. Most parents (50.5%; 48 of 95 reported feeling pressure to vaccinate from their allopathic physician and, of those who discussed vaccination with their physician, 25.9% (21 of 81 were less comfortable continuing care as a result. Five percent (4 of 81 of respondents were advised by their physician that their children would be refused care if they decided against vaccination. In our adjusted generalized linear model, feeling pressure to vaccinate (odds ratio [OR] = 3.07; 95% confidence interval [CI] = 1.14 to 8.26 or endorsing a naturopathic physician as their most trusted source of information regarding vaccination (OR = 3.57; 95% CI = 1.22 to 10.44 were associated with greater odds of having a partially vaccinated or unvaccinated child. The majority (69.6%; 32 of 46 of parent's with partially vaccinated or unvaccinated children reported a willingness to re-consider this decision.Use of naturopathic care should be explored among parents in order to identify this high-risk group and engage them in discussion regarding pediatric vaccination to encourage evidence-based, shared decision making. Physicians should ensure that discussions regarding vaccination are respectful, even if parents are determined not to vaccinate their children.

  16. CpG islands undermethylation in human genomic regions under selective pressure.

    Directory of Open Access Journals (Sweden)

    Sergio Cocozza

    Full Text Available DNA methylation at CpG islands (CGIs is one of the most intensively studied epigenetic mechanisms. It is fundamental for cellular differentiation and control of transcriptional potential. DNA methylation is involved also in several processes that are central to evolutionary biology, including phenotypic plasticity and evolvability. In this study, we explored the relationship between CpG islands methylation and signatures of selective pressure in Homo Sapiens, using a computational biology approach. By analyzing methylation data of 25 cell lines from the Encyclopedia of DNA Elements (ENCODE Consortium, we compared the DNA methylation of CpG islands in genomic regions under selective pressure with the methylation of CpG islands in the remaining part of the genome. To define genomic regions under selective pressure, we used three different methods, each oriented to provide distinct information about selective events. Independently of the method and of the cell type used, we found evidences of undermethylation of CGIs in human genomic regions under selective pressure. Additionally, by analyzing SNP frequency in CpG islands, we demonstrated that CpG islands in regions under selective pressure show lower genetic variation. Our findings suggest that the CpG islands in regions under selective pressure seem to be somehow more "protected" from methylation when compared with other regions of the genome.

  17. Cavitation-induced reactions in high-pressure carbon dioxide

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; van Eck, D.; Kemmere, M.F.; Keurentjes, J.T.F.

    2002-01-01

    The feasibility of ultrasound-induced in situ radical formation in liquid carbon dioxide was demonstrated. The required threshold pressure for cavitation could be exceeded at a relatively low acoustic intensity, as the high vapor pressure of CO2 counteracts the hydrostatic pressure. With the use of

  18. Pressure induced Amorphization of Ln1/3(Nb,Ta)O3

    International Nuclear Information System (INIS)

    Melchior, A.; Noked, O.; Sterer, E.; Shuker, R.

    2014-01-01

    The research focuses on the phenomenon of pressure induced amorphization (PIA) in Ln1/3MO3, Ln - La,Pr,Nd and M-Nb,Ta. In most pressure induced phase transitions the material changes from a crystalline phase to another crystalline phase. However, if this transition is kinetically hindered, the increased free energy due to the applied pressure will result in a structural collapse to an amorphous intermediate phase. This phenomenon is known as pressure induced amorphization

  19. Quantifying Selective Pressures Driving Bacterial Evolution Using Lineage Analysis

    Science.gov (United States)

    Lambert, Guillaume; Kussell, Edo

    2015-01-01

    Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population's rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages—i.e., the life histories of individuals and their ancestors—to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to Escherichia coli bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a single surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems.

  20. Field avian metapneumovirus evolution avoiding vaccine induced immunity.

    Science.gov (United States)

    Catelli, Elena; Lupini, Caterina; Cecchinato, Mattia; Ricchizzi, Enrico; Brown, Paul; Naylor, Clive J

    2010-01-22

    Live avian metapneumovirus (AMPV) vaccines have largely brought turkey rhinotracheitis (TRT) under control in Europe but unexplained outbreaks still occur. Italian AMPV longitudinal farm studies showed that subtype B AMPVs were frequently detected in turkeys some considerable period after subtype B vaccination. Sequencing showed these to be unrelated to the previously applied vaccine. Sequencing of the entire genome of a typical later isolate showed numerous SH and G protein gene differences when compared to both a 1987 Italian field isolate and the vaccine in common use. Experimental challenge of vaccinated birds with recent virus showed that protection was inferior to that seen after challenge with the earlier 1987 isolate. Field virus had changed in key antigenic regions allowing replication and leading to disease in well vaccinated birds.

  1. Vaccination with Brucella abortus recombinant in vivo-induced antigens reduces bacterial load and promotes clearance in a mouse model for infection.

    Directory of Open Access Journals (Sweden)

    Jake E Lowry

    Full Text Available Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA were selected for further characterization and compared with three additional antigens with virulence potential (Hia, PrpA, MltA. All eight genes were PCR-amplified from B. abortus and cloned into E. coli. The recombinant products were then expressed, purified, adjuvanted, and delivered subcutaneously to BALB/c mice. After primary immunization and two boosts, mice were challenged i.p. with 5 x 10⁴ CFU of B. abortus strain 19. Spleens from challenged animals were harvested and bacterial loads determined by colony count at various time points. While vaccination with four of the eight individual proteins appeared to have some effect on clearance kinetics, mice vaccinated with recombinant Mdh displayed the most significant reduction in bacterial colonization. Furthermore, mice immunized with Mdh maintained higher levels of IFN-γ in spleens compared to other treatment groups. Collectively, our in vivo data gathered from the S19 murine colonization model suggest that vaccination with at least three of the IVIAT antigens conferred an enhanced ability of the host to respond to infection, reinforcing the utility of this methodology for the identification of potential vaccine candidates against brucellosis. Mechanisms for immunity to one protein, Mdh, require further in vitro exploration and evaluation against wild-type B. abortus challenge in mice, as well as other hosts. Additional studies are being undertaken to clarify the role of Mdh and other IVI antigens in B. abortus virulence

  2. Immune protection induced on day 10 following administration of the 2009 A/H1N1 pandemic influenza vaccine.

    Directory of Open Access Journals (Sweden)

    Yizhuo Sun

    Full Text Available BACKGROUND: The 2009 swine-origin influenza virus (S-OIV H1N1 pandemic has caused more than 18,000 deaths worldwide. Vaccines against the 2009 A/H1N1 influenza virus are useful for preventing infection and controlling the pandemic. The kinetics of the immune response following vaccination with the 2009 A/H1N1 influenza vaccine need further investigation. METHODOLOGY/PRINCIPAL FINDINGS: 58 volunteers were vaccinated with a 2009 A/H1N1 pandemic influenza monovalent split-virus vaccine (15 µg, single-dose. The sera were collected before Day 0 (pre-vaccination and on Days 3, 5, 10, 14, 21, 30, 45 and 60 post vaccination. Specific antibody responses induced by the vaccination were analyzed using hemagglutination inhibition (HI assay and enzyme-linked immunosorbent assay (ELISA. After administration of the 2009 A/H1N1 influenza vaccine, specific and protective antibody response with a major subtype of IgG was sufficiently developed as early as Day 10 (seroprotection rate: 93%. This specific antibody response could maintain for at least 60 days without significant reduction. Antibody response induced by the 2009 A/H1N1 influenza vaccine could not render protection against seasonal H1N1 influenza (seroconversion rate: 3% on Day 21. However, volunteers with higher pre-existing seasonal influenza antibody levels (pre-vaccination HI titer ≥1∶40, Group 1 more easily developed a strong antibody protection effect against the 2009 A/H1N1 influenza vaccine as compared with those showing lower pre-existing seasonal influenza antibody levels (pre-vaccination HI titer <1∶40, Group 2. The titer of the specific antibody against the 2009 A/H1N1 influenza was much higher in Group 1 (geometric mean titer: 146 on Day 21 than that in Group 2 (geometric mean titer: 70 on Day 21. CONCLUSIONS/SIGNIFICANCE: Recipients could gain sufficient protection as early as 10 days after vaccine administration. The protection could last at least 60 days. Individuals with a

  3. Natural and cross-inducible anti-SIV antibodies in Mauritian cynomolgus macaques.

    Directory of Open Access Journals (Sweden)

    Hongzhao Li

    Full Text Available Cynomolgus macaques are an increasingly important nonhuman primate model for HIV vaccine research. SIV-free animals without pre-existing anti-SIV immune responses are generally needed to evaluate the effect of vaccine-induced immune responses against the vaccine epitopes. Here, in order to select such animals for vaccine studies, we screened 108 naïve female Mauritian cynomolgus macaques for natural (baseline antibodies to SIV antigens using a Bio-Plex multiplex system. The antigens included twelve 20mer peptides overlapping the twelve SIV protease cleavage sites (-10/+10, respectively (PCS peptides, and three non-PCS Gag or Env peptides. Natural antibodies to SIV antigens were detected in subsets of monkeys. The antibody reactivity to SIV was further confirmed by Western blot using purified recombinant SIV Gag and Env proteins. As expected, the immunization of monkeys with PCS antigens elicited anti-PCS antibodies. However, unexpectedly, antibodies to non-PCS peptides were also induced, as shown by both Bio-Plex and Western blot analyses, while the non-PCS peptides do not share sequence homology with PCS peptides. The presence of natural and vaccine cross-inducible SIV antibodies in Mauritian cynomolgus macaques should be considered in animal selection, experimental design and result interpretation, for their best use in HIV vaccine research.

  4. A novel alphavirus replicon-vectored vaccine delivered by adenovirus induces sterile immunity against classical swine fever.

    Science.gov (United States)

    Sun, Yuan; Li, Hong-Yu; Tian, Da-Yong; Han, Qiu-Ying; Zhang, Xin; Li, Na; Qiu, Hua-Ji

    2011-10-26

    Low efficacy of gene-based vaccines due to inefficient gene delivery and expression has been major bottleneck of their applications. Efforts have been made to improve the efficacy, such as gene gun and electroporation, but the strategies are difficult to put into practical use. In this study, we developed and evaluated an adenovirus-delivered, alphavirus replicon-vectored vaccine (chimeric vector-based vaccine) expressing the E2 gene of classical swine fever virus (CSFV) (rAdV-SFV-E2). Rabbits immunized with rAdV-SFV-E2 developed CSFV-specific antibodies as early as 9 days and as long as 189 days and completely protected from challenge with C-strain. Pigs immunized with rAdV-SFV-E2 (n=5) developed robust humoral and cell-mediated responses to CSFV and were completely protected from subsequent lethal CSFV infection clinically and virologically. The level of immunity and protection induced by rAdV-SFV-E2 was comparable to that provided by the currently used live attenuated vaccine, C-strain. In contrast, both the conventional alphavirus replicon-vectored vaccine pSFV1CS-E2 and conventional adenovirus-vectored vaccine rAdV-E2 provided incomplete protection. The chimeric vector-based vaccine represents the first gene-based vaccine that is able to confer sterile immunity and complete protection against CSFV. The new-concept vaccination strategy may also be valuable in vaccine development against other pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. MHC class II-associated invariant chain linkage of antigen dramatically improves cell-mediated immunity induced by adenovirus vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Mandrup Jensen, Camilla Maria; Orskov, Cathrine

    2008-01-01

    The ideal vaccine induces a potent protective immune response, which should be rapidly induced, long-standing, and of broad specificity. Recombinant adenoviral vectors induce potent Ab and CD8+ T cell responses against transgenic Ags within weeks of administration, and they are among the most...

  6. Enhancement of collective immunity in Tokyo metropolitan area by selective vaccination against an emerging influenza pandemic.

    Directory of Open Access Journals (Sweden)

    Masaya M Saito

    Full Text Available Vaccination is a preventive measure against influenza that does not require placing restrictions on social activities. However, since the stockpile of vaccine that can be prepared before the arrival of an emerging pandemic strain is generally quite limited, one has to select priority target groups to which the first stockpile is distributed. In this paper, we study a simulation-based priority target selection method with the goal of enhancing the collective immunity of the whole population. To model the region in which the disease spreads, we consider an urban area composed of suburbs and central areas connected by a single commuter train line. Human activity is modelled following an agent-based approach. The degree to which collective immunity is enhanced is judged by the attack rate in unvaccinated people. The simulation results show that if students and office workers are given exclusive priority in the first three months, the attack rate can be reduced from [Formula: see text] in the baseline case down to 1-2%. In contrast, random vaccination only slightly reduces the attack rate. It should be noted that giving preference to active social groups does not mean sacrificing those at high risk, which corresponds to the elderly in our simulation model. Compared with the random administration of vaccine to all social groups, this design successfully reduces the attack rate across all age groups.

  7. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species.

    Science.gov (United States)

    Malerczyk, Claudius; Freuling, Conrad; Gniel, Dieter; Giesen, Alexandra; Selhorst, Thomas; Müller, Thomas

    2014-01-01

    Rabies is a neglected zoonotic disease caused by viruses belonging to the genus lyssavirus. In endemic countries of Asia and Africa, where the majority of the estimated 60,000 human rabies deaths occur, it is mainly caused by the classical rabies virus (RABV) transmitted by dogs. Over the last decade new species within the genus lyssavirus have been identified. Meanwhile 15 (proposed or classified) species exist, including Australian bat lyssavirus (ABLV), European bat lyssavirus (EBLV-1 and -2), Duvenhage virus (DUVV), as well as Lagos bat virus (LBV) and Mokola virus (MOKV) and recently identified novel species like Bokeloh bat lyssavirus (BBLV), Ikoma bat lyssavirus (IKOV) or Lleida bat lyssavirus (LLBV). The majority of these lyssavirus species are found in bat reservoirs and some have caused human infection and deaths. Previous work has demonstrated that Purified Chick Embryo Cell Rabies Vaccine (PCECV) not only induces immune responses against classical RABV, but also elicits cross-neutralizing antibodies against ABLV, EBLV-1 and EBLV-2. Using the same serum samples as in our previous study, this study extension investigated cross-neutralizing activities of serum antibodies measured by rapid fluorescent focus inhibition test (RFFIT) against selected other non-classical lyssavirus species of interest, namely DUVV and BBLV, as well as MOKV and LBV. Antibodies developed after vaccination with PCECV have neutralizing capability against BBLV and DUVV in the same range as against ABLV and EBLV-1 and -2. As expected, for the phylogenetically more distant species LBV no cross-neutralizing activity was found. Interestingly, 15 of 94 serum samples (16%) with a positive neutralizing antibody titer against RABV displayed specific cross-neutralizing activity (65-fold lower than against RABV) against one specific MOKV strain (Ethiopia isolate), which was not seen against a different strain (Nigeria isolate). Cross-neutralizing activities partly correlate with the

  8. Effect of vaccination with N-glycolyl GM3/VSSP vaccine by subcutaneous injection in patients with advanced cutaneous melanoma

    International Nuclear Information System (INIS)

    Osorio, Marta; Gracia, Elias; Reigosa, Edmundo; Hernandez, Julio; Torre, Ana de la; Saurez, Giselle; Perez, Kirenia; Viada, Carmen; Cepeda, Meylán; Carr, Adriana; Ávila, Yisel; Rodríguez, Migdalia; Fernandez, Luis E

    2012-01-01

    NeuGc-containing gangliosides have been described in melanoma cells and are an attractive target for cancer immunotherapy because they are minimally or not expressed in normal human tissues. Melanoma patients treated with a vaccine based on N-glycolyl gangliosides have shown benefit in progression free survival and overall survival. We conducted a multicenter Phase I/II clinical trial in patients with metastatic cutaneous melanoma treated with the N-gycolyl GM3/very-small-size proteoliposomes vaccine by the subcutaneous route. Selecting the optimal biological dose of the vaccine was the principal objective based on immunogenicity, efficacy, and safety results. Six dose levels were studied and the treatment schedule consisted of five doses administered every 2 weeks and then monthly until 15 doses had been given. Dose levels evaluated were 150, 300, 600, 900, 1200, and 1500 μg with five patients included in each dose level except the 900 μg dose (n = 10). Immunogenicity was determined by antibody titers generated in patients after vaccination. Antitumor effect was measured by response criteria of evaluation in solid tumors and safety was evaluated by common toxicity criteria of adverse events. The vaccine was safe and immunogenic at all doses levels. The most frequent adverse events related to vaccination were mild to moderate injection site reactions and flu-like symptoms. Vaccination induced specific anti-NeuGcGM3 immunoglobulin M and immunoglobulin G antibody responses in all patients. Disease control (objective response or stable disease) was obtained in 38.46% of patients. Global median overall survival was 20.20 months. Two patients achieved overall survival duration of about 4 and 5 years, respectively. The 900 μg dose resulted in overall survival duration of 19.40 months and was selected as the biological optimal dose

  9. Rotavirus vaccines in Israel: Uptake and impact.

    Science.gov (United States)

    Muhsen, Khitam; Cohen, Daniel

    2017-07-03

    We present an overview of the impact of universal rotavirus immunization with the pentavalent vaccine, RotaTeq, which was introduced in Israel in 2010. The vaccine is given free of charge at age 2, 4 and 6 months, with an 80% coverage that was shortly achieved during the universal immunization period. Compared to pre-universal immunization years (2008-2010), a reduction of 66-68% in the incidence of rotavirus gastroenteritis (RVGE) hospitalizations was observed in 2011-2015 among children aged 0-23 months in central and northern Israel. In southern Israel a reduction of 80-88% in RVGE hospital visit rate was found among Jewish children aged 0-23 months in 2011-2013. Among Bedouins, the respective decline was 62-75%. A significant reduction of 59% was also observed in RVGE clinic visits, presumably representing less severe illness. Indirect benefit was evident in children aged 24-59 months who were ineligible for universal immunization. Vaccine effectiveness against RVGE hospitalization was estimated at 86% in children aged 6-23 months. Changes in the circulating rotavirus genotypes occurred but the contribution of vaccine induced immune pressure is unclear. Universal rotavirus immunization was followed by an impressive decrease in the burden of RVGE in young children in Israel, likely attributed to good vaccine coverage and effectiveness.

  10. The Capricious Nature of Bacterial Pathogens: Phasevarions and Vaccine Development

    Directory of Open Access Journals (Sweden)

    Aimee Tan

    2016-12-01

    Full Text Available Infectious diseases are a leading cause of morbidity and mortality worldwide, and vaccines are one of the most successful and cost-effective tools for disease prevention. One of the key considerations for rational vaccine development is the selection of appropriate antigens. Antigens must induce a protective immune response, and this response should be directed to stably expressed antigens so the target microbe can always be recognized by the immune system. Antigens with variable expression, due to environmental signals or phase variation (i.e., high frequency, random switching of expression, are not ideal vaccine candidates because variable expression could lead to immune evasion. Phase variation is often mediated by the presence of highly mutagenic simple tandem DNA repeats, and genes containing such sequences can be easily identified, and their use discounted as vaccine antigens reconsidered. Recent research has identified phase variably expressed DNA methyltransferases that act as global epigenetic regulators. These phase variable regulons, known as phasevarions, are associated with altered virulence phenotypes and/or expression of vaccine candidates. As such, genes encoding candidate vaccine antigens that have no obvious mechanism of phase variation may be subject to indirect, epigenetic control as part of a phasevarion. Bioinformatic and experimental studies are required to elucidate the distribution and mechanism of action of these DNA methyltransferases, and most importantly, whether they mediate epigenetic regulation of potential and current vaccine candidates. This process is essential to define the stably expressed antigen target profile of bacterial pathogens and thereby facilitate efficient, rational selection of vaccine antigens.

  11. A polyvalent influenza DNA vaccine applied by needle-free intradermal delivery induces cross-reactive humoral and cellular immune responses in pigs

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Karlsson, Ingrid

    2016-01-01

    of the optimized DNA vaccine were evaluated in groups of five to six pigs. The DNA vaccine consisted of six selected influenza genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase. RESULTS: Needle-free vaccination of growing pigs...

  12. Improving influenza vaccine virus selection: report of a WHO informal consultation held at WHO headquarters, Geneva, Switzerland, 14-16 June 2010.

    Science.gov (United States)

    Ampofo, William K; Baylor, Norman; Cobey, Sarah; Cox, Nancy J; Daves, Sharon; Edwards, Steven; Ferguson, Neil; Grohmann, Gary; Hay, Alan; Katz, Jacqueline; Kullabutr, Kornnika; Lambert, Linda; Levandowski, Roland; Mishra, A C; Monto, Arnold; Siqueira, Marilda; Tashiro, Masato; Waddell, Anthony L; Wairagkar, Niteen; Wood, John; Zambon, Maria; Zhang, Wenqing

    2012-03-01

    • For almost 60 years, the WHO Global Influenza Surveillance and Response System (GISRS) has been the key player in monitoring the evolution and spread of influenza viruses and recommending the strains to be used in human influenza vaccines. The GISRS has also worked to continually monitor and assess the risk posed by potential pandemic viruses and to guide appropriate public health responses. • The expanded and enhanced role of the GISRS following the adoption of the International Health Regulations (2005), recognition of the continuing threat posed by avian H5N1 and the aftermath of the 2009 H1N1 pandemic provide an opportune time to critically review the process by which influenza vaccine viruses are selected. In addition to identifying potential areas for improvement, such a review will also help to promote greater appreciation by the wider influenza and policy-making community of the complexity of influenza vaccine virus selection. • The selection process is highly coordinated and involves continual year-round integration of virological data and epidemiological information by National Influenza Centres (NICs), thorough antigenic and genetic characterization of viruses by WHO Collaborating Centres (WHOCCs) as part of selecting suitable candidate vaccine viruses, and the preparation of suitable reassortants and corresponding reagents for vaccine standardization by WHO Essential Regulatory Laboratories (ERLs). • Ensuring the optimal effectiveness of vaccines has been assisted in recent years by advances in molecular diagnosis and the availability of more extensive genetic sequence data. However, there remain a number of challenging constraints including variations in the assays used, the possibility of complications resulting from non-antigenic changes, the limited availability of suitable vaccine viruses and the requirement for recommendations to be made up to a year in advance of the peak of influenza season because of production constraints.

  13. Vaccine development: From concept to early clinical testing.

    Science.gov (United States)

    Cunningham, Anthony L; Garçon, Nathalie; Leo, Oberdan; Friedland, Leonard R; Strugnell, Richard; Laupèze, Béatrice; Doherty, Mark; Stern, Peter

    2016-12-20

    In the 21st century, an array of microbiological and molecular allow antigens for new vaccines to be specifically identified, designed, produced and delivered with the aim of optimising the induction of a protective immune response against a well-defined immunogen. New knowledge about the functioning of the immune system and host pathogen interactions has stimulated the rational design of vaccines. The design toolbox includes vaccines made from whole pathogens, protein subunits, polysaccharides, pathogen-like particles, use of viral/bacterial vectors, plus adjuvants and conjugation technology to increase and broaden the immune response. Processes such as recombinant DNA technology can simplify the complexity of manufacturing and facilitate consistent production of large quantities of antigen. Any new vaccine development is greatly enhanced by, and requires integration of information concerning: 1. Pathogen life-cycle & epidemiology. Knowledge of pathogen structure, route of entry, interaction with cellular receptors, subsequent replication sites and disease-causing mechanisms are all important to identify antigens suitable for disease prevention. The demographics of infection, specific risk groups and age-specific infection rates determine which population to immunise, and at what age. 2. Immune control & escape. Interactions between the host and pathogen are explored, with determination of the relative importance of antibodies, T-cells of different types and innate immunity, immune escape strategies during infection, and possible immune correlates of protection. This information guides identification and selection of antigen and the specific immune response required for protection. 3. Antigen selection & vaccine formulation. The selected antigen is formulated to remain suitably immunogenic and stable over time, induce an immune response that is likely to be protective, plus be amenable to eventual scale-up to commercial production. 4. Vaccine preclinical

  14. FEATURES OF THE IMMUNE RESPONSE DURING INFECTION AND PROSPECTS FOR THE VACCINES CREATION

    Directory of Open Access Journals (Sweden)

    Davidova T.V.

    2015-12-01

    -mediated opsonophagocytosis of influenza virus particles. They are also involved in regulating the adaptive immune response. The second line of defense against influenza is the adaptive immune response. This highly specific response is relatively slow upon first encounter with a pathogen. The adaptive immune response consists of humoral (virus-specific antibodies and cellular (virus-specific CD4+ and CD8+ T cells immunity. Influenza virus infection induces the production of influenza virus-specific antibodies by B cells. Antibodies directed to the viral HA and NA correlate with protective immunity.Immune pressure on influenza viruses forces them to adopt strategies to evade immunity.Various mechanisms contribute to immune evasion of influenza viruses from the humoral immune response. Due to the lack of proofreading activity, the transcription of viral RNA by the viral RNA polymerase is error prone and results in mis-incorporation of nucleotides. Under the selective pressure of antibodies that are present in the human population, induced after influenza virus infections and/or vaccination, variants are positively selected from the quasi species that have accumulated amino acid substitutions in the antigenic sites of HA that are recognized by virus-neutralizing antibodies. This phenomenon is known as antigenic drift. Introduction of influenza viruses of a novel antigenically distinct subtype into the human population is known as antigenic shift and may cause a pandemic outbreak, since neutralizing antibodies against the new virus strain are absent in the population at large.Introduction of antigenically distinct viruses can occur after zoonotic transmission. However, in most cases, pandemics were caused by viruses that had exchanged gene segments between human and avian or swine influenza viruses. Currently used seasonal influenza vaccines are predominantly inactivated vaccine preparations. Development of vaccines that induce broad range of antibodies and preferably long heterosubtypic CTL

  15. Pressure induced anomalies in an As-Al-Te glass

    International Nuclear Information System (INIS)

    Mohan, Murali; Giridhar, A.; Mahadevan, Sudha

    1995-01-01

    The pressure and temperature dependences of the electrical resistance of As 34.4 Al 4 Te 61.6 and As 16.67 Al 16.67 Te 66.66 glasses have been investigated using an opposed anvil setup. The resistance of the glasses exhibit ∼ 10 6 fold decrease with increasing pressure up to 7 GPa at 300 K. This behaviour can be traced to the corresponding changes with pressure of the activation energy for electrical conduction, ΔE(p). The As 34.4 Al 4 Te 61.6 glass exhibits pressure induced anomalies at 2 GPa in the pressure variation of ΔE(p) and the pressure coefficient of electrical resistance. Such an anomaly is not seen for the As 16.67 Al 16.67 Te 66.66 glass. The anomalies point to a pressure induced morphological structural transformation in the As 34.4 Al 4 Te 61.6 glass. (author)

  16. Chemical and Hydrostatic Pressure in Natrolites: Pressure Induced Hydration of an Aluminogermanate Natrolite

    International Nuclear Information System (INIS)

    Lee, Y.; Kao, C.; Seoung, D.H.; Bai, J.; Kao, C.C.; Parise, J.B.; Vogt, T.

    2010-01-01

    The ambient structure and pressure-induced structural changes of a synthetic sodium aluminogermanate with a natrolite (NAT) framework topology (Na-AlGe-NAT) were characterized by using Rietveld refinements of high-resolution synchrotron X-ray powder diffraction data at ambient and high pressures. Unlike a previously established model for Na 8 Al 8 Ge 12 O 40 · 8H 2 O based on a single-crystal study, the ambient structure of the Na-AlGe-NAT is found to adopt a monoclinic space group Cc (or Fd) with a ca. 6% expanded unit cell. The refined ambient structure of Na 8 Al 8 Ge 12 O 40 · 12H 2 O indicates an increased water content of 50%, compared to the single-crystal structure. The unit-cell volume and water-content relationships observed between the two Na-AlGe-NAT structures at ambient conditions with 8 and 12 H 2 O respectively seem to mirror the ones found under hydrostatic pressure between the Na 8 Al 8 Ge 12 O 40 · 8H 2 O and the parantrolite phase Na 8 Al 8 Ge 12 O 40 · 12H 2 O. Under hydrostatic pressures mediated by a pore-penetrating alcohol and water mixture, the monoclinic Na-AlGe-NAT exhibits a gradual decrease of the unit-cell volume up to ca. 2.0 GPa, where the unit-cell volume then contracts abruptly by ca. 4.6%. This is in marked contrast to what is observed in the Na-AlSi-NAT and Na-GaSi-NAT systems, where one observes a pressure-induced hydration and volume expansion due to the auxetic nature of the frameworks. Above 2 GPa, the monoclinic phase of Na-AlGe-NAT transforms into a tetragonal structure with the unit-cell composition of Na 8 Al 8 Ge 12 O 40 · 16H 2 O, revealing pressure-induced hydration and a unit cell volume contraction. Unlike in the Na-Al,Si-paranatrolite phase, however, the sodium cations in the Na-AlGe-NAT maintain a 6-fold coordination in the monoclinic structure and only become 7-fold coordinated at higher pressures in the tetragonal structure. When comparing the pressure-induced hydration in the observed natrolite

  17. The role of recombinant IL-12 in enhancing immune responses induced by hepatitis B vaccine in mice

    International Nuclear Information System (INIS)

    Lu Qun; Zhou Lixia; Zhao Yanrong; Miao Xiaoguang; Jin Jie; Ke Jinshan; Qin Xuliang; He Zheng

    2007-01-01

    Objective: To study the role played by recombinant IL-12 in enhancing the intensity and quality of the immune response to hepatitis B vaccine in mice, and investigate the possibility of adding recombinant IL-12 as adjuvants to hepatitis B therapeutic vaccine. Methods: Recombinant IL-12 was injected together with hepatitis B vaccine into mice and special anti-HBsAb in the mice and the cellular immune responses were examined. Results: Recombinant IL-12 can obviously enhance T lymphocyte multiplication activity, accelerate excretion of cytokines IFN-γ and IL-2, and increase the IgG2a antibody in mice. Conclusion: Recombinant IL-12 can remarkably strengthen the cellular immune responses induced by the hepatitis B vaccine, and modulate the immune responses toward Thl. (authors)

  18. Introduction of human papillomavirus vaccination in Nordic countries.

    Science.gov (United States)

    Sander, Bente Braad; Rebolj, Matejka; Valentiner-Branth, Palle; Lynge, Elsebeth

    2012-02-14

    Cervical screening has helped decrease the incidence of cervical cancer, but the disease remains a burden for women. Human Papillomavirus (HPV) vaccination is now a promising tool for control of cervical cancer. Nordic countries (Denmark, Finland, Greenland, Iceland, Norway and Sweden) are relatively wealthy with predominantly publicly paid health care systems. The aim of this paper was to provide an update of the current status of introduction of HPV vaccine into the childhood vaccination programs in this region. Data on cervical cancer, cervical screening programs, childhood immunization and HPV vaccination programs for Nordic countries were searched via PubMed and various organizations. We furthermore contacted selected experts for information. The incidence of cervical cancer is highest in Greenland (25 per 100,000, age standardized, World Standard Population, ASW) and lowest in Finland (4 per 100,000 ASW) and rates in the other Nordic countries vary between 7 and 11 per 100,000 ASW. Greenland and Denmark were first to introduce HPV vaccination, followed by Norway. Vaccination programs are underway in Sweden and Iceland, while Finland has just recently recommended introduction of vaccination. HPV vaccination has been intensively debated, in particular in Denmark and Norway. In Nordic countries with a moderate risk of cervical cancer and a publicly paid health care system, the introduction of HPV vaccination was a priority issue. Many players became active, from the general public to health professionals, special interest groups, and the vaccine manufacturers. These seemed to prioritize different health care needs and weighed differently the uncertainty about the long-term effects of the vaccine. HPV vaccination posed a pressure on public health authorities to consider the evidence for and against it, and on politicians to weigh the wish for cervical cancer protection against other pertinent health issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates

    NARCIS (Netherlands)

    Jones, S; Grignard, L.; Nebie, I.; Chilongola, J.; Dodoo, D.; Sauerwein, R.W.; Theisen, M.; Roeffen, W.F.; Singh, S.K; Singh, R.K.; Kyei-Baafour, E.; Tetteh, K.; Drakeley, C.; Bousema, T.

    2015-01-01

    OBJECTIVES: Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences for the

  20. Pressure induced phase transition behaviour in -electron based ...

    Indian Academy of Sciences (India)

    The present review on the high pressure phase transition behaviour of ... For instance, closing of energy gaps lead to metal–insulator transitions [4], shift in energy ... systematic study of the pressure induced structural sequences has become ...

  1. Peptide-based anti-PCSK9 vaccines - an approach for long-term LDLc management.

    Directory of Open Access Journals (Sweden)

    Gergana Galabova

    Full Text Available Low Density Lipoprotein (LDL hypercholesterolemia, and its associated cardiovascular diseases, are some of the leading causes of death worldwide. The ability of proprotein convertase subtilisin/kexin 9 (PCSK9 to modulate circulating LDL cholesterol (LDLc concentrations made it a very attractive target for LDLc management. To date, the most advanced approaches for PCSK9 inhibition are monoclonal antibody (mAb therapies. Although shown to lower LDLc significantly, mAbs face functional limitations because of their relatively short in vivo half-lives necessitating frequent administration. Here, we evaluated the long-term efficacy and safety of PCSK9-specific active vaccines in different preclinical models.PCSK9 peptide-based vaccines were successfully selected by our proprietary technology. To test their efficacy, wild-type (wt mice, Ldlr+/- mice, and rats were immunized with highly immunogenic vaccine candidates. Vaccines induced generation of high-affine PCSK9-specific antibodies in all species. Group mean total cholesterol (TC concentration was reduced by up to 30%, and LDLc up to 50% in treated animals. Moreover, the PCSK9 vaccine-induced humoral immune response persisted for up to one year in mice, and reduced cholesterol levels significantly throughout the study. Finally, the vaccines were well tolerated in all species tested.Peptide-based anti-PCSK9 vaccines induce the generation of antibodies that are persistent, high-affine, and functional for up to one year. They are powerful and safe tools for long-term LDLc management, and thus may represent a novel therapeutic approach for the prevention and/or treatment of LDL hypercholesterolemia-related cardiovascular diseases in humans.

  2. Affinity selection of Nipah and Hendra virus-related vaccine candidates from a complex random peptide library displayed on bacteriophage virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Peabody, David S.; Chackerian, Bryce; Ashley, Carlee; Carnes, Eric; Negrete, Oscar

    2017-01-24

    The invention relates to virus-like particles of bacteriophage MS2 (MS2 VLPs) displaying peptide epitopes or peptide mimics of epitopes of Nipah Virus envelope glycoprotein that elicit an immune response against Nipah Virus upon vaccination of humans or animals. Affinity selection on Nipah Virus-neutralizing monoclonal antibodies using random sequence peptide libraries on MS2 VLPs selected peptides with sequence similarity to peptide sequences found within the envelope glycoprotein of Nipah itself, thus identifying the epitopes the antibodies recognize. The selected peptide sequences themselves are not necessarily identical in all respects to a sequence within Nipah Virus glycoprotein, and therefore may be referred to as epitope mimics VLPs displaying these epitope mimics can serve as vaccine. On the other hand, display of the corresponding wild-type sequence derived from Nipah Virus and corresponding to the epitope mapped by affinity selection, may also be used as a vaccine.

  3. Protective Immunity Induced by DNA Vaccination against Ranavirus Infection in Chinese Giant Salamander Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Chen

    2018-01-01

    Full Text Available Andrias davidianus ranavirus (ADRV is an emerging viral pathogen that causes severe systemic hemorrhagic disease in Chinese giant salamanders. There is an urgent need for developing an effective vaccine against this fatal disease. In this study, DNA vaccines containing the ADRV 2L gene (pcDNA-2L and the 58L gene (pcDNA-58L were respectively constructed, and their immune protective effects were evaluated in Chinese giant salamanders. In vitro and in vivo expression of the vaccine plasmids were confirmed in transfected cells and muscle tissues of vaccinated Chinese giant salamanders by using immunoblot analysis or RT-PCR. Following ADRV challenge, the Chinese giant salamanders vaccinated with pcDNA-2L showed a relative percent survival (RPS of 66.7%, which was significant higher than that in Chinese giant salamanders immunized with pcDNA-58L (RPS of 3.3%. Moreover, the specific antibody against ADRV was detected in Chinese giant salamanders vaccinated with pcDNA-2L at 14 and 21 days post-vaccination by indirect enzyme-linked immunosorbent assay (ELISA. Transcriptional analysis revealed that the expression levels of immune-related genes including type I interferon (IFN, myxovirus resistance (Mx, major histocompatibility complex class IA (MHC IA, and immunoglobulin M (IgM were strongly up-regulated after vaccination with pcDNA-2L. Furthermore, vaccination with pcDNA-2L significantly suppressed the virus replication, which was seen by a low viral load in the spleen of Chinese giant salamander survivals after ADRV challenge. These results indicated that pcDNA-2L could induce a significant innate immune response and an adaptive immune response involving both humoral and cell-mediated immunity that conferred effective protection against ADRV infection, and might be a potential vaccine candidate for controlling ADRV disease in Chinese giant salamanders.

  4. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.

    Science.gov (United States)

    Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun

    2018-02-01

    Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be

  5. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Jensen, Benjamin Anderschou Holbech; Ragonnaud, Emeline

    2015-01-01

    In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilita......In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes...... was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted...

  6. Loss of long term protection with the inclusion of HIV pol to a DNA vaccine encoding gag.

    Science.gov (United States)

    Garrod, Tamsin J; Gargett, Tessa; Yu, Wenbo; Major, Lee; Burrell, Christopher J; Wesselingh, Steven; Suhrbier, Andreas; Grubor-Bauk, Branka; Gowans, Eric J

    2014-11-04

    Traditional vaccine strategies that induce antibody responses have failed to protect against HIV infection in clinical trials, and thus cell-mediated immunity is now an additional criterion. Recent clinical trials that aimed to induce strong T cell responses failed to do so. Therefore, to enhance induction of protective T cell responses, it is crucial that the optimum antigen combination is chosen. Limited research has been performed into the number of antigens selected for an HIV vaccine. This study aimed to compare DNA vaccines encoding either a single HIV antigen or a combination of two antigens, using intradermal vaccination of C57BL/6 mice. Immune assays were performed on splenocytes, and in vivo protection was examined by challenge with a chimeric virus, EcoHIV, able to infect mouse but not human leukocytes, at 10 days (short term) and 60 days (long term) post final vaccination. At 60 days there was significantly lower frequency of induced antigen-specific CD8(+) T cells in the spleens of pCMVgag-pol-vaccinated mice compared with mice which received pCMVgag only. Most importantly, short term viral control of EcoHIV was similar for pCMVgag and pCMVgag-pol-vaccinated mice at day 10, but only the pCMVgag-vaccinated significantly controlled EcoHIV at day 60 compared with pCMV-vaccinated mice, showing that control was reduced with the inclusion of the HIV pol gene. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Trivalent Human Papillomavirus (HPV) VLP vaccine covering HPV type 58 can elicit high level of humoral immunity but also induce immune interference among component types.

    Science.gov (United States)

    Zhang, Ting; Xu, Yufei; Qiao, Liang; Wang, Youchun; Wu, Xueling; Fan, Dongsheng; Peng, Qinglin; Xu, Xuemei

    2010-04-26

    Both Human Papillomavirus (HPV) type 16/18 bivalent vaccine and type 16/18/6/11 quadrivalent vaccine have been proved to be safe and effective, and licensed for public use. However, these two vaccines do not quite match the distribution of HPV types in China, Southeast Asia and Latin America, where HPV 58 is highly prevalent. Here we produced three types of virus-like particles (VLPs) in baculovirus expression system, formulated a trivalent vaccine containing HPV 16, 18, and 58 L1 VLPs and examined its in vitro neutralizing titers. This vaccine could induce high level and long-term humoral immunity against the component types. But immune interference was observed when comparing type specific neutralizing antibody levels induced by trivalent vaccine to those by corresponding monovalent vaccines. This kind of interference would become more obvious when formulating more types of VLPs into multivalent vaccines, but could be greatly overcome by decreasing the antigen dosage and adding a proper adjuvant. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. High-throughput sequencing of natively paired antibody chains provides evidence for original antigenic sin shaping the antibody response to influenza vaccination.

    Science.gov (United States)

    Tan, Yann-Chong; Blum, Lisa K; Kongpachith, Sarah; Ju, Chia-Hsin; Cai, Xiaoyong; Lindstrom, Tamsin M; Sokolove, Jeremy; Robinson, William H

    2014-03-01

    We developed a DNA barcoding method to enable high-throughput sequencing of the cognate heavy- and light-chain pairs of the antibodies expressed by individual B cells. We used this approach to elucidate the plasmablast antibody response to influenza vaccination. We show that >75% of the rationally selected plasmablast antibodies bind and neutralize influenza, and that antibodies from clonal families, defined by sharing both heavy-chain VJ and light-chain VJ sequence usage, do so most effectively. Vaccine-induced heavy-chain VJ regions contained on average >20 nucleotide mutations as compared to their predicted germline gene sequences, and some vaccine-induced antibodies exhibited higher binding affinities for hemagglutinins derived from prior years' seasonal influenza as compared to their affinities for the immunization strains. Our results show that influenza vaccination induces the recall of memory B cells that express antibodies that previously underwent affinity maturation against prior years' seasonal influenza, suggesting that 'original antigenic sin' shapes the antibody response to influenza vaccination. Published by Elsevier Inc.

  9. Genetic drift evolution under vaccination pressure among H5N1 Egyptian isolates

    Directory of Open Access Journals (Sweden)

    Afifi Manal A

    2011-06-01

    Full Text Available Background The highly pathogenic H5N1 is a major avian pathogen that intensively affects the poultry industry in Egypt even in spite of the adoption of vaccination strategy. Antigenic drift is among the strategies the influenza virus uses to escape the immune system that might develop due to the pressure of extensive vaccination. H5N1 mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences such an eventuality will entail. Methods H5N1 was isolated from the pooled organ samples of four different affected flocks in specific pathogen free embryonated chicken eggs (SPF-ECE. A reverse transcriptase polymerase chain reaction (RT-PCR was performed to the haemagglutingin and neuraminidase. Sequencing of the full length haemagglutingin was performed. Sequence analyses of the isolated strains were performed and compared to all available H5N1 from Egyptian human and avian strains in the flu database. Changes in the different amino acid that may be related to virus virulence, receptor affinity and epitope configuration were assigned and matched with all available Egyptian strains in the flu database. Results One out of the four strains was found to be related to the B2 Egyptian lineage, 2 were related to A1 lineage and the 4th was related to A2 lineage. Comparing data obtained from the current study by other available Egyptian H5N1 sequences remarkably demonstrates that amino acid changes in the immune escape variants are remarkably restricted to a limited number of locations on the HA molecule during antigenic drift. Molecular diversity in the HA gene, in relevance to different epitopes, were not found to follow a regular trend, suggesting abrupt cumulative sequence mutations. However a number of amino acids were found to be subjected to high mutation pressure. Conclusion The current data provides a comprehensive view of HA gene evolution among H5N1 subtype viruses in

  10. Pressure Induced Phase Transformations in Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Reimanis, Ivar [Colorado School of Mines, Golden, CO (United States); Cioabanu, Cristian [Colorado School of Mines, Golden, CO (United States)

    2017-10-15

    The study of materials with unusual properties offers new insight into structure-property relations as well as promise for the design of novel composites. In this spirit, the PIs seek to (1) understand fundamental mechanical phenomena in ceramics that exhibit pressure-induced phase transitions, negative coefficient of thermal expansion (CTE), and negative compressibility, and (2) explore the effect of these phenomena on the mechanical behavior of composites designed with such ceramics. The broad and long-term goal is to learn how to utilize these unusual behaviors to obtain desired mechanical responses. While the results are expected to be widely applicable to many ceramics, most of the present focus is on silicates, as they exhibit remarkable diversity in structure and properties. Eucryptite, a lithium aluminum silicate (LiAlSiO4), is specifically targeted because it exhibits a pressure-induced phase transition at a sufficiently low pressure to be accessible during conventional materials processing. Thus, composites with eucryptite may be designed to exhibit a novel type of transformation toughening. The PIs have performed a combination of activities that encompass synthesis and processing to control structures, atomistic modeling to predict and understand structures, and characterization to study mechanical behavior. Several materials behavior discoveries were made. It was discovered that small amounts of Zn (as small as 0.1 percent by mol) reverse the sign of the coefficient of thermal expansion of beta-eucryptite from negative to slightly positive. The presence of Zn also significantly mitigates microcracking that occurs during thermal cycling of eucryptite. It is hypothesized that Zn disrupts the Li ordering in beta-eucryptite, thereby altering the thermal expansion behavior. A nanoindentation technique developed to characterize incipient plasticity was applied to examine the initial stages of the pressure induced phase transformation from beta to

  11. Controversy and debate on dengue vaccine series-paper 1: review of a licensed dengue vaccine: inappropriate subgroup analyses and selective reporting may cause harm in mass vaccination programs.

    Science.gov (United States)

    Dans, Antonio L; Dans, Leonila F; Lansang, Mary Ann D; Silvestre, Maria Asuncion A; Guyatt, Gordon H

    2018-03-01

    Severe life-threatening dengue fever usually occurs when a child is infected by dengue virus a second time. This is caused by a phenomenon called antibody-dependent enhancement (ADE). Since dengue vaccines can mimic a first infection in seronegative children (those with no previous infection), a natural infection later in life could lead to severe disease. The possibility that dengue vaccines can cause severe dengue through ADE has led to serious concern regarding the safety of mass vaccination programs. A published meta-analysis addressed this safety issue for a new vaccine against dengue fever-Dengvaxia. The trials in this meta-analysis have been used to campaign for mass vaccination programs in developing countries. We discuss the results of this paper and point out problems in the analyses. Reporting the findings in an Asian trial (CYD14), the authors show a sevenfold rise in one outcome-hospitalization for dengue fever in children <5 years old. However, they fail to point out two signals of harm for another outcome-hospitalization for severe dengue fever (as confirmed by an independent data monitoring committee): 1. In children younger than 9 years, the relative risk was 8.5 (95% confidence interval [CI]: 0.5, 146.8), and 2. In the overall study group, the relative risk was 5.5 (95% CI: 0.9, 33). The authors conduct a subgroup analysis to support claims that the vaccine is probably safe among children aged 9 years or more. This subgroup analysis has limited credibility because: (1) it was a post hoc analysis; (2) it was one of a large number of subgroup analyses; (3) the test of interaction was not reported, but was insignificant (P = 0.14); and (4) there is no biological basis for a threshold age of 9 years. The more likely explanation for the higher risk in younger children is ADE, that is, more frequent seronegativity, rather than age itself. The selective reporting and inappropriate subgroup claims mask the potential harm of dengue mass vaccination

  12. Recombinant proteins as vaccines for protection against disease induced by infection with mink astrovirus

    DEFF Research Database (Denmark)

    2012-01-01

    and polypeptides of the capsid protein of a novel mink astrovirus strain denoted DK7627. Such polynucleotides and polypeptides may be used for the production of vaccines against mink astrovirus which may induce pre-weaning diarrhoea in minks. The invention furthermore relates to vectors, host cells, compositions...

  13. A single intranasal immunization with a subunit vaccine formulation induces higher mucosal IgA production than live respiratory syncytial virus

    International Nuclear Information System (INIS)

    Garg, Ravendra; Theaker, Michael; Martinez, Elisa C.; Drunen Littel-van den Hurk, Sylvia van

    2016-01-01

    Respiratory syncytial virus (RSV) causes serious respiratory illness in infants and elderly. RSV infection induces short-lived immunity, which leaves people prone to re-infection. In contrast, the RSV fusion (F) protein formulated with a novel adjuvant (∆F/TriAdj) elicits long term protective immunity. A comparison of RSV-immunized mice to mice vaccinated with a single dose of ∆F/TriAdj showed no difference in IgG1 and IgG2a production; however, local IgA secreting memory B cell development and B cell IgA production were significantly lower in RSV vaccinated mice than in ∆F/TriAdj-immunized mice. This indicates a potential reason as to why long-term immunity is not induced by RSV infection. The comparison also revealed that germinal center lymphocyte populations were higher in ∆F/TriAdj-vaccinated mice. Furthermore, ∆F/TriAdj induced higher gene expression of activation-induced cytidine deaminase (AID), as well as IL-6, IL-21, TGF-β cytokines, which are key players in IgA class switch recombination, ultimately leading to a sustained long-term memory response. - Highlights: •Immune responses to adjuvanted RSV F protein, ∆F/TriAdj, and RSV were compared. •∆F/TriAdj stimulates more local IgA production than RSV. •∆F/TriAdj induces more local IgA secreting memory B cells than RSV. •Germinal center lymphocyte populations are higher in ∆F/TriAdj-vaccinated mice. •∆F/TriAdj induces higher gene expression of AID, IL-6, IL-21, and TGF-β than RSV.

  14. A single intranasal immunization with a subunit vaccine formulation induces higher mucosal IgA production than live respiratory syncytial virus

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Ravendra [VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Theaker, Michael [Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Martinez, Elisa C. [VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Microbiology & Immunology, University of Saskatchewan, Saskatoon, Canada SK S7N 5E3 (Canada); Drunen Littel-van den Hurk, Sylvia van, E-mail: sylvia.vandenhurk@usask.ca [VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada)

    2016-12-15

    Respiratory syncytial virus (RSV) causes serious respiratory illness in infants and elderly. RSV infection induces short-lived immunity, which leaves people prone to re-infection. In contrast, the RSV fusion (F) protein formulated with a novel adjuvant (∆F/TriAdj) elicits long term protective immunity. A comparison of RSV-immunized mice to mice vaccinated with a single dose of ∆F/TriAdj showed no difference in IgG1 and IgG2a production; however, local IgA secreting memory B cell development and B cell IgA production were significantly lower in RSV vaccinated mice than in ∆F/TriAdj-immunized mice. This indicates a potential reason as to why long-term immunity is not induced by RSV infection. The comparison also revealed that germinal center lymphocyte populations were higher in ∆F/TriAdj-vaccinated mice. Furthermore, ∆F/TriAdj induced higher gene expression of activation-induced cytidine deaminase (AID), as well as IL-6, IL-21, TGF-β cytokines, which are key players in IgA class switch recombination, ultimately leading to a sustained long-term memory response. - Highlights: •Immune responses to adjuvanted RSV F protein, ∆F/TriAdj, and RSV were compared. •∆F/TriAdj stimulates more local IgA production than RSV. •∆F/TriAdj induces more local IgA secreting memory B cells than RSV. •Germinal center lymphocyte populations are higher in ∆F/TriAdj-vaccinated mice. •∆F/TriAdj induces higher gene expression of AID, IL-6, IL-21, and TGF-β than RSV.

  15. Rotavirus vaccines: an overview.

    OpenAIRE

    Midthun, K; Kapikian, A Z

    1996-01-01

    Rotavirus vaccine development has focused on the delivery of live attenuated rotavirus strains by the oral route. The initial "Jennerian" approach involving bovine (RIT4237, WC3) or rhesus (RRV) rotavirus vaccine candidates showed that these vaccines were safe, well tolerated, and immunogenic but induced highly variable rates of protection against rotavirus diarrhea. The goal of a rotavirus vaccine is to prevent severe illness that can lead to dehydration in infants and young children in both...

  16. Effect of vaccination on parvovirus antigen testing in kittens.

    Science.gov (United States)

    Patterson, Erin V; Reese, Michael J; Tucker, Sylvia J; Dubovi, Edward J; Crawford, P Cynda; Levy, Julie K

    2007-02-01

    To determine the frequency and duration of feline panleukopenia virus (FPV) vaccine-induced interference with fecal parvovirus diagnostic testing in cats. Prospective controlled study. Sixty-four 8- to 10-week-old specific-pathogen-free kittens. Kittens were inoculated once with 1 of 8 commercial multivalent vaccines containing modified-live virus (MLV) or inactivated FPV by the SC or intranasal routes. Feces were tested for parvovirus antigen immediately prior to vaccination, then daily for 14 days with 3 tests designed for detection of canine parvovirus. Serum anti-FPV antibody titers were determined by use of hemagglutination inhibition prior to vaccination and 14 days later. All fecal parvovirus test results were negative prior to vaccination. After vaccination, 1 kitten had positive test results with test 1, 4 kittens had positive results with test 2, and 13 kittens had positive results with test 3. Only 1 kitten had positive results with all 3 tests, and only 2 of those tests were subjectively considered to have strongly positive results. At 14 days after vaccination, 31% of kittens receiving inactivated vaccines had protective FPV titers, whereas 85% of kittens receiving MLV vaccines had protective titers. Animal shelter veterinarians should select fecal tests for parvovirus detection that have high sensitivity for FPV and low frequency of vaccine-related test interference. Positive parvovirus test results should be interpreted in light of clinical signs, vaccination history, and results of confirmatory testing. Despite the possibility of test interference, the benefit provided by universal MLV FPV vaccination of cats in high-risk environments such as shelters outweighs the impact on diagnostic test accuracy.

  17. DNA vaccine encoding myristoylated membrane protein (MMP) of rock bream iridovirus (RBIV) induces protective immunity in rock bream (Oplegnathus fasciatus).

    Science.gov (United States)

    Jung, Myung-Hwa; Nikapitiya, Chamilani; Jung, Sung-Ju

    2018-02-01

    Rock bream iridovirus (RBIV) causes severe mass mortalities in rock bream (Oplegnathus fasciatus) in Korea. In this study, we investigated the potential of viral membrane protein to induce antiviral status protecting rock bream against RBIV infection. We found that fish administered with ORF008L (myristoylated membrane protein, MMP) vaccine exhibited significantly higher levels of survival compared to ORF007L (major capsid protein, MCP). Moreover, ORF008L-based DNA vaccinated fish showed significant protection at 4 and 8 weeks post vaccination (wpv) than non-vaccinated fish after infected with RBIV (6.7 × 10 5 ) at 23 °C, with relative percent survival (RPS) of 73.36% and 46.72%, respectively. All of the survivors from the first RBIV infection were strongly protected (100% RPS) from re-infected with RBIV (1.1 × 10 7 ) at 100 dpi. In addition, the MMP (ORF008L)-based DNA vaccine significantly induced the gene expression of TLR3 (14.2-fold), MyD88 (11.6-fold), Mx (84.7-fold), ISG15 (8.7-fold), PKR (25.6-fold), MHC class I (13.3-fold), Fas (6.7-fold), Fas ligand (6.7-fold), caspase9 (17.0-fold) and caspase3 (15.3-fold) at 7 days post vaccination in the muscle (vaccine injection site). Our results showed the induction of immune responses and suggest the possibility of developing preventive measures against RBIV using myristoylated membrane protein-based DNA vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The Meningitis Vaccine Project.

    Science.gov (United States)

    LaForce, F Marc; Konde, Kader; Viviani, Simonetta; Préziosi, Marie-Pierre

    2007-09-03

    Epidemic meningococcal meningitis is an important public health problem in sub-Saharan Africa. Current control measures rely on reactive immunizations with polysaccharide (PS) vaccines that do not induce herd immunity and are of limited effectiveness in those under 2 years of age. Conversely, polysaccharide conjugate vaccines are effective in infants and have consistently shown an important effect on decreasing carriage, two characteristics that facilitate disease control. In 2001 the Meningitis Vaccine Project (MVP) was created as a partnership between PATH and the World Health Organization (WHO) with the goal of eliminating meningococcal epidemics in Africa through the development, licensure, introduction, and widespread use of conjugate meningococcal vaccines. Since group A Neisseria meningitidis (N. meningitidis) is the dominant pathogen causing epidemic meningitis in Africa MVP is developing an affordable (US$ 0.40 per dose) meningococcal A (Men A) conjugate vaccine through an innovative international partnership that saw transfer of a conjugation and fermentation technology to a developing country vaccine manufacturer. A Phase 1 study of the vaccine in India has shown that the product is safe and immunogenic. Phase 2 studies have begun in Africa, and a large demonstration study of the conjugate vaccine is envisioned for 2008-2009. After extensive consultations with African public health officials a vaccine introduction plan has been developed that includes introduction of the Men A conjugate vaccine into standard Expanded Programme on Immunization (EPI) schedules but also emphasizes mass vaccination of 1-29 years old to induce herd immunity, a strategy that has been shown to be highly effective when the meningococcal C (Men C) conjugate vaccine was introduced in several European countries. The MVP model is a clear example of the usefulness of a "push mechanism" to finance the development of a needed vaccine for the developing world.

  19. Protection against Streptococcus suis Serotype 2 Infection Using a Capsular Polysaccharide Glycoconjugate Vaccine

    Science.gov (United States)

    Calzas, Cynthia; Shiao, Tze Chieh; Neubauer, Axel; Kempker, Jennifer; Roy, René; Gottschalk, Marcelo

    2016-01-01

    Streptococcus suis serotype 2 is an encapsulated bacterium and one of the most important bacterial pathogens in the porcine industry. Despite decades of research for an efficient vaccine, none is currently available. Based on the success achieved with other encapsulated pathogens, a glycoconjugate vaccine strategy was selected to elicit opsonizing anti-capsular polysaccharide (anti-CPS) IgG antibodies. In this work, glycoconjugate prototypes were prepared by coupling S. suis type 2 CPS to tetanus toxoid, and the immunological features of the postconjugation preparations were evaluated in vivo. In mice, experiments evaluating three different adjuvants showed that CpG oligodeoxyribonucleotide (ODN) induces very low levels of anti-CPS IgM antibodies, while the emulsifying adjuvants Stimune and TiterMax Gold both induced high levels of IgGs and IgM. Dose-response trials comparing free CPS with the conjugate vaccine showed that free CPS is nonimmunogenic independently of the dose used, while 25 μg of the conjugate preparation was optimal in inducing high levels of anti-CPS IgGs postboost. With an opsonophagocytosis assay using murine whole blood, sera from immunized mice showed functional activity. Finally, the conjugate vaccine showed immunogenicity and induced protection in a swine challenge model. When conjugated and administered with emulsifying adjuvants, S. suis type 2 CPS is able to induce potent IgM and isotype-switched IgGs in mice and pigs, yielding functional activity in vitro and protection against a lethal challenge in vivo, all features of a T cell-dependent response. This study represents a proof of concept for the potential of glycoconjugate vaccines in veterinary medicine applications against invasive bacterial infections. PMID:27113360

  20. Coxsackievirus A 16 infection does not interfere with the specific immune response induced by an enterovirus 71 inactivated vaccine in rhesus monkeys.

    Science.gov (United States)

    Wang, Jingjing; Qi, Sudong; Zhang, Xiaolong; Zhang, Ying; Liu, Longding; Che, Yanchun; He, Zhanlong; Zhao, Yuan; Lu, Shuaiyao; Yu, Wenhai; Li, Qihan

    2014-07-31

    Hand, foot and mouth disease is usually caused by enterovirus 71 (EV71) and coxsackievirus A 16 (CA16), which are members of the Picornaviridae family. In the present study, the characteristics of the immune response induced by an EV71 inactivated vaccine (made from human diploid cells) were explored in the presence of CA16 infection, based on the previously established neonatal rhesus monkey model. The typical clinical manifestations, including body temperature, viral viremia and virus shedding in the mouth, pharynx and feces, were characterized. A specific neutralizing antibody assay showed that the specific immune response induced by the EV71 inactivated vaccine was active against EV71 but not against CA16. No remarkable fluctuation in proinflammatory cytokine release was identified in the serum of immunized monkeys with EV71 vaccine and CA16 infections subsequently. The results showed that the specific immune response induced by the EV71 inactivated vaccine is effective against EV71 infection but is not affected by CA16 infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Pressure-induced weak ferromagnetism in uranium dioxide, UO2

    International Nuclear Information System (INIS)

    Sakai, H; Kato, H; Tokunaga, Y; Kambe, S; Walstedt, R E; Nakamura, A; Tateiwa, N; Kobayashi, T C

    2003-01-01

    The dc magnetization of insulating UO 2 under high pressure up to ∼1 GPa has been measured using a piston-cylinder cell. Pressure-induced weak ferromagnetism appeared at low pressure (∼0.2 GPa). Both the remanent magnetization and the coercive force increase as pressure increases. This weak ferromagnetism may come from spin canting or from uncompensated moments around grain boundaries

  2. Vaccination: problems and perspectives.

    Directory of Open Access Journals (Sweden)

    S. M. Kharit

    2009-01-01

    Full Text Available Massive vaccination had proved its effective morbidity reduction. Today it is necessary to extend vaccination schedule, creation of selective, regional schedules based on epidemiological, clinical, economical substantiation. Development of vaccination needs the profound scientific research, modernization of adverse reaction observing system, betterment training system and awareness of population.

  3. Analysis on working pressure selection of ACME integral test facility

    International Nuclear Information System (INIS)

    Chen Lian; Chang Huajian; Li Yuquan; Ye Zishen; Qin Benke

    2011-01-01

    An integral effects test facility, advanced core cooling mechanism experiment facility (ACME) was designed to verify the performance of the passive safety system and validate its safety analysis codes of a pressurized water reactor power plant. Three test facilities for AP1000 design were introduced and review was given. The problems resulted from the different working pressures of its test facilities were analyzed. Then a detailed description was presented on the working pressure selection of ACME facility as well as its characteristics. And the approach of establishing desired testing initial condition was discussed. The selected 9.3 MPa working pressure covered almost all important passive safety system enables the ACME to simulate the LOCAs with the same pressure and property similitude as the prototype. It's expected that the ACME design would be an advanced core cooling integral test facility design. (authors)

  4. Pressure-induced phase transitions in organic molecular crystals: a combination of x-ray single-crystal and powder diffraction, raman and IR-spectroscopy

    International Nuclear Information System (INIS)

    Boldyreva, E V; Goryainov, S V; Seryotkin, Y V; Kolesnik, E N; Shakhtshneider, T P; Ivashevskaya, S N; Drebushchak, T N; Sowa, H; Ahsbahs, H; Chernyshev, V V; Dmitriev, V P

    2008-01-01

    The contribution summarizes the results of recent studies of phase transitions induced by high pressure in a number of molecular organic crystals, such as polymorphs of paracetamol, chlorpropamide, polymorphs of glycine, L- and DL-serine, β-alanine. The main attention is paid to the following topics: (1) Reversible / irreversible transformations; (2) Different behavior of single crystals / powders; (3) The role of pressure-transmitting liquid; (4) The role of the kinetic factors: phase transitions on decompression, or after a long storage at a selected pressure; (5) Isosymmetric phase transitions; (6) The role of the changes in the hydrogen bond networks / intramolecular conformational changes in the phase transitions; (7) Superstructures / nanostructures formed as a result of pressure-induced phase transitions

  5. Pressure-induced phase transitions in organic molecular crystals: a combination of x-ray single-crystal and powder diffraction, raman and IR-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Boldyreva, E V; Goryainov, S V; Seryotkin, Y V; Kolesnik, E N; Shakhtshneider, T P; Ivashevskaya, S N; Drebushchak, T N [Research and Education Center ' Molecular Design and Ecologically Safe Technologies' , REC-008, Novosibirsk State University (Russian Federation); Sowa, H [Goettingen University (Germany); Ahsbahs, H; Chernyshev, V V [Marburg University (Germany); Dmitriev, V P [Swiss-Norwegian Beamline ESRF, Grenoble (France)], E-mail: boldyrev@nsu.ru

    2008-07-15

    The contribution summarizes the results of recent studies of phase transitions induced by high pressure in a number of molecular organic crystals, such as polymorphs of paracetamol, chlorpropamide, polymorphs of glycine, L- and DL-serine, {beta}-alanine. The main attention is paid to the following topics: (1) Reversible / irreversible transformations; (2) Different behavior of single crystals / powders; (3) The role of pressure-transmitting liquid; (4) The role of the kinetic factors: phase transitions on decompression, or after a long storage at a selected pressure; (5) Isosymmetric phase transitions; (6) The role of the changes in the hydrogen bond networks / intramolecular conformational changes in the phase transitions; (7) Superstructures / nanostructures formed as a result of pressure-induced phase transitions.

  6. Vaccines, adjuvants and autoimmunity.

    Science.gov (United States)

    Guimarães, Luísa Eça; Baker, Britain; Perricone, Carlo; Shoenfeld, Yehuda

    2015-10-01

    Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Technical Transformation of Biodefense Vaccines

    Science.gov (United States)

    Lu, Shan; Wang, Shixia

    2013-01-01

    Biodefense vaccines are developed against a diverse group of pathogens. Vaccines were developed for some of these pathogens a long time ago but they are facing new challenges to move beyond the old manufacturing technologies. New vaccines to be developed against other pathogens have to determine whether to follow traditional vaccination strategies or to seek new approaches. Advances in basic immunology and recombinant DNA technology have fundamentally transformed the process of formulating a vaccine concept, optimizing protective antigens, and selecting the most effective vaccine delivery approach for candidate biodefense vaccines. PMID:19837293

  8. Vaccines: an ongoing promise?

    Science.gov (United States)

    Alsahli, M; Farrell, R J; Michetti, P

    2001-01-01

    Over the past decade, intensive research has focused on developing a vaccine therapy for Helicobacter pylori. Substantial unresolved questions cloud the current approach, and the development of a vaccine against this unique organism has proved very challenging. Many candidate vaccines have been tested in animal models. The immunogenicity and the safety of some vaccine formulations have been recently evaluated through clinical trials, and the efficacy of these vaccine therapies in humans will be determined in the near future. This article will provide an overview of the current knowledge of natural and vaccine-induced immune responses to H. pylori infection. It will also review past vaccine successes and failures in animal models and the limited experience to date in using vaccine therapy in humans. Several obstacles to H. pylori vaccine development efforts along with the future direction of these efforts will be discussed. Copyright 2001 S. Karger AG, Basel

  9. Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory.

    Science.gov (United States)

    Becker, Pablo D; Hervouet, Catherine; Mason, Gavin M; Kwon, Sung-Yun; Klavinskis, Linda S

    2015-09-08

    A simple dissolvable microneedle array (MA) platform has emerged as a promising technology for vaccine delivery, due to needle-free injection with a formulation that preserves the immunogenicity of live viral vectored vaccines dried in the MA matrix. While recent studies have focused largely on design parameters optimized to induce primary CD8(+) T cell responses, the hallmark of a vaccine is synonymous with engendering long-lasting memory. Here, we address the capacity of dried MA vaccination to programme phenotypic markers indicative of effector/memory CD8(+) T cell subsets and also responsiveness to recall antigen benchmarked against conventional intradermal (ID) injection. We show that despite a slightly lower frequency of dividing T cell receptor transgenic CD8(+) T cells in secondary lymphoid tissue at an early time point, the absolute number of CD8(+) T cells expressing an effector memory (CD62L(-)CD127(+)) and central memory (CD62L(+)CD127(+)) phenotype during peak expansion were comparable after MA and ID vaccination with a recombinant human adenovirus type 5 vector (AdHu5) encoding HIV-1 gag. Similarly, both vaccination routes generated CD8(+) memory T cell subsets detected in draining LNs for at least two years post-vaccination capable of responding to secondary antigen. These data suggest that CD8(+) T cell effector/memory generation and long-term memory is largely unaffected by physical differences in vaccine delivery to the skin via dried MA or ID suspension. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Biohazard Analysis of Select Biodefense Vaccine Candidates - Venezuelan Equine Encephalitis Virus Strain 3526 and Francisella Tularensis LVS

    International Nuclear Information System (INIS)

    Rao, V.

    2007-01-01

    Biohazard assessment of biodefense vaccine candidates forms the basis for a facility- and activity-specific risk assessment performed to determine the biosafety levels and general safety standards required for biological product development. As a part of our support to the US biodefense vaccine development program, we perform a systematic biohazard assessment of potential vaccine candidates with the primary objective to, (a) Identify and characterize hazard elements associated with the wild type and vaccine strains, (b) Provide biohazard information on the etiologic agent (vaccine candidate) to assess Phase 1 clinical trial facility sites, (c) Provide a baseline to conduct an agent and facility-specific risk assessment at clinical trial facilities interested in performing phase 1 clinical trial, (d) Provide comparative hazard profiles of the vaccine candidates wit MSDS for wild-type to identify and establish appropriate protective biosafety levels, and (e) Support determination of a hazard level to select personal protective equipment as required under the OSHA guidelines. This paper will describe the biohazard analysis of two vaccine candidates, Venezuelan Equine Encephalitis Virus Strain 3526 and Francisella tularensis LVS, a viral and bacterial agent, respectively. As part of the biohazard assessment we preformed a thorough review of published literature on medical pathology, epidemiology, pre-clinical investigational studies, and environmental data on the etiologic agent subtypes and the vaccine candidates. Using standard analytical procedures, the data were then analyzed relative to two intrinsic hazard parameters-health hazard and environmental hazard. Using a weight-of-evidence (WOE) approach, the potential hazards of etiologic agent wild subtypes and vaccine candidates were ranked under three main categories: Public Health Hazard, Environmental Hazard, and Overall Hazard. A WOE scoring system allows for both a determination of the intrinsic hazard of each

  11. Biohazard Analysis of Select Biodefense Vaccine Candidates - Venezuelan Equine Encephalitis Virus Strain 3526 and Francisella Tularensis LVS

    Energy Technology Data Exchange (ETDEWEB)

    Rao, V [National Security Programs, Computer Science Corporation, Alexandria (United States)

    2007-07-01

    Biohazard assessment of biodefense vaccine candidates forms the basis for a facility- and activity-specific risk assessment performed to determine the biosafety levels and general safety standards required for biological product development. As a part of our support to the US biodefense vaccine development program, we perform a systematic biohazard assessment of potential vaccine candidates with the primary objective to, (a) Identify and characterize hazard elements associated with the wild type and vaccine strains, (b) Provide biohazard information on the etiologic agent (vaccine candidate) to assess Phase 1 clinical trial facility sites, (c) Provide a baseline to conduct an agent and facility-specific risk assessment at clinical trial facilities interested in performing phase 1 clinical trial, (d) Provide comparative hazard profiles of the vaccine candidates wit MSDS for wild-type to identify and establish appropriate protective biosafety levels, and (e) Support determination of a hazard level to select personal protective equipment as required under the OSHA guidelines. This paper will describe the biohazard analysis of two vaccine candidates, Venezuelan Equine Encephalitis Virus Strain 3526 and Francisella tularensis LVS, a viral and bacterial agent, respectively. As part of the biohazard assessment we preformed a thorough review of published literature on medical pathology, epidemiology, pre-clinical investigational studies, and environmental data on the etiologic agent subtypes and the vaccine candidates. Using standard analytical procedures, the data were then analyzed relative to two intrinsic hazard parameters-health hazard and environmental hazard. Using a weight-of-evidence (WOE) approach, the potential hazards of etiologic agent wild subtypes and vaccine candidates were ranked under three main categories: Public Health Hazard, Environmental Hazard, and Overall Hazard. A WOE scoring system allows for both a determination of the intrinsic hazard of each

  12. Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease.

    Science.gov (United States)

    Khurana, Surender; Loving, Crystal L; Manischewitz, Jody; King, Lisa R; Gauger, Phillip C; Henningson, Jamie; Vincent, Amy L; Golding, Hana

    2013-08-28

    Vaccine-induced disease enhancement has been described in connection with several viral vaccines in animal models and in humans. We investigated a swine model to evaluate mismatched influenza vaccine-associated enhanced respiratory disease (VAERD) after pH1N1 infection. Vaccinating pigs with whole inactivated H1N2 (human-like) virus vaccine (WIV-H1N2) resulted in enhanced pneumonia and disease after pH1N1 infection. WIV-H1N2 immune sera contained high titers of cross-reactive anti-pH1N1 hemagglutinin (HA) antibodies that bound exclusively to the HA2 domain but not to the HA1 globular head. No hemagglutination inhibition titers against pH1N1 (challenge virus) were measured. Epitope mapping using phage display library identified the immunodominant epitope recognized by WIV-H1N2 immune sera as amino acids 32 to 77 of pH1N1-HA2 domain, close to the fusion peptide. These cross-reactive anti-HA2 antibodies enhanced pH1N1 infection of Madin-Darby canine kidney cells by promoting virus membrane fusion activity. The enhanced fusion activity correlated with lung pathology in pigs. This study suggests a role for fusion-enhancing anti-HA2 antibodies in VAERD, in the absence of receptor-blocking virus-neutralizing antibodies. These findings should be considered during the evaluation of universal influenza vaccines designed to elicit HA2 stem-targeting antibodies.

  13. Vaccine Induced Antibody Response to Foot and Mouth Disease in Infectious Bovine Rhinotracheitis Seropositive Cattle

    Directory of Open Access Journals (Sweden)

    Murat Şevik

    2014-01-01

    Full Text Available Foot and mouth disease (FMD and infectious bovine rhinotracheitis (IBR are two important infectious diseases of cattle. Inactivated FMD vaccines are the most powerful tools to protect animals against FMD. Previous studies showed that recombinant IBR-FMD viruses protected cattle from virulent BHV-1 challenge and induced protective levels of anti-FMDV antibodies. FMD is considered to be endemic in Turkey and inactivated oil adjuvanted vaccines are used for the immunization of cattle. Previous studies showed that seroprevalence of IBR in the Turkey’s dairy herd more than 50%. In this study, antibody response in IBR seropositive cattle following vaccination against FMD was investigated. IBR seropositive (n=208 and IBR seronegative (n=212 cattle were vaccinated with oil-adjuvanted bivalent vaccine (containing O1 Manisa, A22 Iraq FMDV strains. Solid-phase competitive ELISA (SPCE was used to measure antibodies produced in cattle. Protective level of antibody against serotype O was detected in 77.4% and serotypes A in 83.6% of IBR seropositive cattle. Protective level of antibody against serotype O antibody was detected in 49% and serotypes A in 66.9% of IBR seronegative cattle. The differences between the protection rates against both serotype O (P=0.0001 and serotype A (P=0.0001 in IBR seropositive and seronegative animals were statistically important (Fisher’s exact test, P<0.01. Results showed that after FMD vaccination, IBR seropositive animals produced high titres of antibodies than seronegative animals.

  14. Identification of physicochemical selective pressure on protein encoding nucleotide sequences

    Directory of Open Access Journals (Sweden)

    Sainudiin Raazesh

    2006-03-01

    Full Text Available Abstract Background Statistical methods for identifying positively selected sites in protein coding regions are one of the most commonly used tools in evolutionary bioinformatics. However, they have been limited by not taking the physiochemical properties of amino acids into account. Results We develop a new codon-based likelihood model for detecting site-specific selection pressures acting on specific physicochemical properties. Nonsynonymous substitutions are divided into substitutions that differ with respect to the physicochemical properties of interest, and those that do not. The substitution rates of these two types of changes, relative to the synonymous substitution rate, are then described by two parameters, γ and ω respectively. The new model allows us to perform likelihood ratio tests for positive selection acting on specific physicochemical properties of interest. The new method is first used to analyze simulated data and is shown to have good power and accuracy in detecting physicochemical selective pressure. We then re-analyze data from the class-I alleles of the human Major Histocompatibility Complex (MHC and from the abalone sperm lysine. Conclusion Our new method allows a more flexible framework to identify selection pressure on particular physicochemical properties.

  15. Selective-catalyst formation for carbon nanotube growth by local indentation pressure

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, T. [Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)], E-mail: yst@mech.nagaokaut.ac.jp; Nakai, Y.; Onozuka, Y. [Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2008-01-15

    We studied the selective formation of Co catalyst particles as a function of indentation pressure. We subjected a Co (8 nm thickness)/Si substrate pre-annealed at 600 deg. C to indentation processing. The catalytic function was confirmed in the indentations by the selective growth of carbon nanotubes (CNTs) at 800 deg. C. The number density of CNTs against the indentation pressure was investigated against indentation loads for two types of indenter: a Berkovich indenter with a ridge angle of 115{sup o} and a Berkovich indenter with a ridge angle of 90{sup o}. The pressures above 7 GPa applied by the former indenter enhanced Co atomization acting as a catalyst function for CNT growth (35 CNTs in one indentation). In contrast to this, the number of CNTs was markedly reduced when the latter indenter was used with pressures less than 3 GPa. The pop-out phenomenon was observed in unloading curves at pressures above 7 GPa. These results indicate that metastable Si promotes the self-aggregation of catalyst particles (Co) leading to the selective growth of CNTs within indentations at pressures above 7 GPa.

  16. Investigation of the spatial variability and possible origins of wind-induced air pressure fluctuations responsible for pressure pumping

    Science.gov (United States)

    Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk

    2017-04-01

    The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that wind-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong wind-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy wind speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy wind speed. However, the origin of these wind-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial variability of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with wind observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing wind speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor

  17. Transdermal deferoxamine prevents pressure-induced diabetic ulcers.

    Science.gov (United States)

    Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W; Maan, Zeshaan N; Rennert, Robert C; Inayathullah, Mohammed; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V; Whitmore, Arnetha J; Walmsley, Graham G; Galvez, Michael G; Whittam, Alexander J; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C

    2015-01-06

    There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation.

  18. Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Marcel A Schijf

    Full Text Available Prophylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4(+CD25(+Foxp3(+ regulatory T-cells (Tregs in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet(+ (Th1 activated CD69(+CD4(+ T cells (p<0.001 and reduced percentage of Gata-3(+ (Th2 activated CD69(+CD4(+T cells (p<0.001 was detected in the mesenteric lymph nodes (MLN of mice receiving scGOS/lcFOS/pAOS compared to control mice. Although no difference in the number or percentage of Tregs (CD4(+Foxp3(+ could be determined after scGOS/lcFOS/pAOS intervention, the percentage of CXCR3 (+ /T-bet(+ (Th1-Tregs was significantly reduced (p<0.05 in mice receiving scGOS/lcFOS/pAOS as compared to mice receiving placebo diets. Moreover, although no absolute difference in suppressive capacity could be detected, an alteration in cytokine profile suggests a regulatory T cell shift towards a reducing Th1 suppression profile, supporting an improved vaccination response.These data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines.

  19. Human vaccination against Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies

    OpenAIRE

    Payne, Ruth O.; Silk, Sarah E.; Elias, Sean C.; Milne, Kathryn H.; Rawlinson, Thomas A.; Llewellyn, David; Shakri, A. Rushdi; Jin, Jing; Labb?, Genevi?ve M.; Edwards, Nick J.; Poulton, Ian D.; Roberts, Rachel; Farid, Ryan; J?rgensen, Thomas; Alanine, Daniel G.W.

    2017-01-01

    BACKGROUND: Plasmodium vivax is the most widespread human malaria geographically; however, no effective vaccine exists. Red blood cell invasion by the P. vivax merozoite depends on an interaction between the Duffy antigen receptor for chemokines (DARC) and region II of the parasite's Duffy-binding protein (PvDBP_RII). Naturally acquired binding-inhibitory antibodies against this interaction associate with clinical immunity, but it is unknown whether these responses can be induced by human vac...

  20. Status of vaccine research and development of vaccines for leishmaniasis.

    Science.gov (United States)

    Gillespie, Portia M; Beaumier, Coreen M; Strych, Ulrich; Hayward, Tara; Hotez, Peter J; Bottazzi, Maria Elena

    2016-06-03

    A number of leishmaniasis vaccine candidates are at various stages of pre-clinical and clinical development. Leishmaniasis is a vector-borne neglected tropical disease (NTD) caused by a protozoan parasite of the genus Leishmania and transmitted to humans by the bite of a sand fly. Visceral leishmaniasis (VL, kala-azar) is a high mortality NTD found mostly in South Asia and East Africa, while cutaneous leishmaniasis (CL) is a disfiguring NTD highly endemic in the Middle East, Central Asia, North Africa, and the Americas. Estimates attribute 50,000 annual deaths and 3.3 million disability-adjusted life years to leishmaniasis. There are only a few approved drug treatments, no prophylactic drug and no vaccine. Ideally, an effective vaccine against leishmaniasis will elicit long-lasting immunity and protect broadly against VL and CL. Vaccines such as Leish-F1, F2 and F3, developed at IDRI and designed based on selected Leishmania antigen epitopes, have been in clinical trials. Other groups, including the Sabin Vaccine Institute in collaboration with the National Institutes of Health are investigating recombinant Leishmania antigens in combination with selected sand fly salivary gland antigens in order to augment host immunity. To date, both VL and CL vaccines have been shown to be cost-effective in economic modeling studies. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  1. Radiation as an inducer of in-situ autologous vaccine in the treatment of solid tumors

    International Nuclear Information System (INIS)

    Ahmed, Mansoor M.

    2013-01-01

    Radiation therapy (RT) is conventionally used for local tumor control. Although local control of the primary tumor can prevent the development of subsequent systemic metastases, tumor irradiation is not effective in controlling pre-existing systemic disease. The concept of radiation-enhanced antigen presentation and immunomodulation allows the harnessing of tumor cell death induced by radiation as a potential source of tumor antigens for immunotherapy. Immunomodulation using RT is a novel strategy of in situ tumor vaccination where primary tumor irradiation can contribute to the control of pre-existing systemic metastatic disease. The absence of systemic immunosuppression (often associated with chemotherapy) and the generally lower toxicity makes radiation a desirable adjuvant regimen for immunotherapy and tumor vaccination strategies. Increased understanding of tumor immunology and the biology of radiation-mediated immune modulation should enhance the efficacy of combining these therapeutic modalities. Here we aim to provide an overview of the biology of radiation-induced immune modulation. (author)

  2. Proof of principle for epitope-focused vaccine design

    Science.gov (United States)

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-03-01

    Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.

  3. Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease.

    Science.gov (United States)

    Richner, Justin M; Jagger, Brett W; Shan, Chao; Fontes, Camila R; Dowd, Kimberly A; Cao, Bin; Himansu, Sunny; Caine, Elizabeth A; Nunes, Bruno T D; Medeiros, Daniele B A; Muruato, Antonio E; Foreman, Bryant M; Luo, Huanle; Wang, Tian; Barrett, Alan D; Weaver, Scott C; Vasconcelos, Pedro F C; Rossi, Shannan L; Ciaramella, Giuseppe; Mysorekar, Indira U; Pierson, Theodore C; Shi, Pei-Yong; Diamond, Michael S

    2017-07-13

    The emergence of Zika virus (ZIKV) and its association with congenital malformations has prompted the rapid development of vaccines. Although efficacy with multiple viral vaccine platforms has been established in animals, no study has addressed protection during pregnancy. We tested in mice two vaccine platforms, a lipid nanoparticle-encapsulated modified mRNA vaccine encoding ZIKV prM and E genes and a live-attenuated ZIKV strain encoding an NS1 protein without glycosylation, for their ability to protect against transmission to the fetus. Vaccinated dams challenged with a heterologous ZIKV strain at embryo day 6 (E6) and evaluated at E13 showed markedly diminished levels of viral RNA in maternal, placental, and fetal tissues, which resulted in protection against placental damage and fetal demise. As modified mRNA and live-attenuated vaccine platforms can restrict in utero transmission of ZIKV in mice, their further development in humans to prevent congenital ZIKV syndrome is warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Influenza vaccine-mediated protection in older adults: Impact of influenza infection, cytomegalovirus serostatus and vaccine dosage.

    Science.gov (United States)

    Merani, Shahzma; Kuchel, George A; Kleppinger, Alison; McElhaney, Janet E

    2018-07-01

    Age-related changes in T-cell function are associated with a loss of influenza vaccine efficacy in older adults. Both antibody and cell-mediated immunity plays a prominent role in protecting older adults, particularly against the serious complications of influenza. High dose (HD) influenza vaccines induce higher antibody titers in older adults compared to standard dose (SD) vaccines, yet its impact on T-cell memory is not clear. The aim of this study was to compare the antibody and T-cell responses in older adults randomized to receive HD or SD influenza vaccine as well as determine whether cytomegalovirus (CMV) serostatus affects the response to vaccination, and identify differences in the response to vaccination in those older adults who subsequently have an influenza infection. Older adults (≥65years) were enrolled (n=106) and randomized to receive SD or HD influenza vaccine. Blood was collected pre-vaccination, followed by 4, 10 and 20weeks post-vaccination. Serum antibody titers, as well as levels of inducible granzyme B (iGrB) and cytokines were measured in PBMCs challenged ex vivo with live influenza virus. Surveillance conducted during the influenza season identified those with laboratory confirmed influenza illness or infection. HD influenza vaccination induced a high antibody titer and IL-10 response, and a short-lived increase in Th1 responses (IFN-γ and iGrB) compared to SD vaccination in PBMCs challenged ex vivo with live influenza virus. Of the older adults who became infected with influenza, a high IL-10 and iGrB response in virus-challenged cells was observed post-infection (week 10 to 20), as well as IFN-γ and TNF-α at week 20. Additionally, CMV seropositive older adults had an impaired iGrB response to influenza virus-challenge, regardless of vaccine dose. This study illustrates that HD influenza vaccines have little impact on the development of functional T-cell memory in older adults. Furthermore, poor outcomes of influenza infection in

  5. Leptospirosis vaccines: Past, present, and future

    Directory of Open Access Journals (Sweden)

    Koizumi N

    2005-01-01

    Full Text Available It is well known that Leptospira vaccine prevents the disease. However specificity for serovars limits the efficacy of killed whole cell vaccines. Leptospiral antigens that induce cross-protective immunity to the various serovars are sought as new vaccine candidates. In this paper, we have summarized both past and current findings about leptospiral antigens that are conserved among pathogenic leptospires and that induce protective immunity in animal models. The full-length genome sequences of two Leptospira strains have been published and reverse vaccinology has been used to identify leptospiral vaccine candidates. Although humoral immunity is thought to be dominant in protection from leptospiral infection, a role for cell-mediated immunity is now being explored.

  6. Pressure-induced changes in the electronic structure of solids

    International Nuclear Information System (INIS)

    McMahan, A.K.

    1985-07-01

    A variety of high-pressure metalization and metal-semimetal transitions, crystallographic phase transitions, and equation of state and lattice vibrational anomalies are reviewed in terms of the concepts of electronic transition and pressure-induced loss of covalency. 46 refs., 10 figs

  7. Excess pore water pressure induced in the foundation of a tailings dyke at Muskeg River Mine, Fort McMurray

    Energy Technology Data Exchange (ETDEWEB)

    Eshraghian, A.; Martens, S. [Klohn Crippen Berger Ltd., Calgary, AB (Canada)

    2010-07-01

    This paper discussed the effect of staged construction on the generation and dissipation of excess pore water pressure within the foundation clayey units of the External Tailings Facility dyke. Data were compiled from piezometers installed within the dyke foundation and used to estimate the dissipation parameters for the clayey units for a selected area of the foundation. Spatial and temporal variations in the pore water pressure generation parameters were explained. Understanding the process by which excess pore water pressure is generated and dissipates is critical to optimizing dyke design and performance. Piezometric data was shown to be useful in improving estimates of the construction-induced pore water pressure and dissipation rates within the clay layers in the foundation during dyke construction. In staged construction, a controlled rate of load application is used to increase foundation stability. Excess pore water pressure dissipates after each application, so the most critical stability condition happens after each load. Slow loading allows dissipation, whereas previous load pressure remains during fast loading. The dyke design must account for the rate of loading and the rate of pore pressure dissipation. Controlling the rate of loading and the rate of stress-induced excess pore water pressure generation is important to dyke stability during construction. Effective stress-strength parameters for the foundation require predictions of the pore water pressure induced during staged construction. It was found that both direct and indirect loading generates excess pore water pressure in the foundation clays. 2 refs., 2 tabs., 11 figs.

  8. Colorectal perforation by self-induced hydrostatic pressure: a report of two cases.

    Science.gov (United States)

    Choi, Pyong Wha

    2013-02-01

    Most iatrogenic colorectal perforations occur as a result of endoscopic or fluoroscopic studies. Accidents associated with hydrostatic pressure-induced perforation are rarely reported, and self-induced hydrostatic pressure is an extremely rare cause of perforation because the anal sphincter complex may provide a protective barrier against perianal hydrostatic pressure. We present two cases of rectosigmoid colon perforation secondary to self-induced hydrostatic pressure. A 61-year-old man and a 45-year-old man presented with abdominal pain after forceful entry of tap water into the rectum, during rinsing of the anus after defecation in the first case, and during self-administered enema in the second case. Emergency operations were performed with the suspicion of hydrostatic pressure-induced rectal injury, and showed rectosigmoid mesenteric perforation in both cases. Resection of the diseased segment and end colostomy (Hartmann's procedure) was performed in the first case, and primary resection and anastomosis in the second case. The pathologic results showed abrupt loss of the colonic wall in the mesenteric border, without evidence of other inflammatory disease; these findings were consistent with acute mechanical colon injury. The postoperative course in both cases was uneventful. These cases put forth an unusual type of colorectal injury, caused specifically by hydrostatic pressure, thus adding to the available literature on hydrostatic pressure-induced injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Vaccination-challenge studies with a Port Chalmers/73 (H3N2)-based swine influenza virus vaccine: Reflections on vaccine strain updates and on the vaccine potency test.

    Science.gov (United States)

    De Vleeschauwer, Annebel; Qiu, Yu; Van Reeth, Kristien

    2015-05-11

    The human A/Port Chalmers/1/73 (H3N2) influenza virus strain, the supposed ancestor of European H3N2 swine influenza viruses (SIVs), was used in most commercial SIV vaccines in Europe until recently. If manufacturers want to update vaccine strains, they have to perform laborious intratracheal (IT) challenge experiments and demonstrate reduced virus titres in the lungs of vaccinated pigs. We aimed to examine (a) the ability of a Port Chalmers/73-based commercial vaccine to induce cross-protection against a contemporary European H3N2 SIV and serologic cross-reaction against H3N2 SIVs from Europe and North America and (b) the validity of intranasal (IN) challenge and virus titrations of nasal swabs as alternatives for IT challenge and titrations of lung tissue in vaccine potency tests. Pigs were vaccinated with Suvaxyn Flu(®) and challenged by the IT or IN route with sw/Gent/172/08. Post-vaccination sera were examined in haemagglutination-inhibition assays against vaccine and challenge strains and additional H3N2 SIVs from Europe and North America, including an H3N2 variant virus. Tissues of the respiratory tract and nasal swabs were collected 3 days post challenge (DPCh) and from 0-7 DPCh, respectively, and examined by virus titration. Two vaccinations consistently induced cross-reactive antibodies against European H3N2 SIVs from 1998-2012, but minimal or undetectable antibody titres against North American viruses. Challenge virus titres in the lungs, trachea and nasal mucosa of the vaccinated pigs were significantly reduced after both IT and IN challenge. Yet the reduction of virus titres and nasal shedding was greater after IT challenge. The Port Chalmers/73-based vaccine still offered protection against a European H3N2 SIV isolated 35 years later and with only 86.9% amino acid homology in its HA1, but it is unlikely to protect against H3N2 SIVs that are endemic in North America. We use our data to reflect on vaccine strain updates and on the vaccine potency test

  10. Enhanced vaccine-induced CD8+ T cell responses to malaria antigen ME-TRAP by fusion to MHC class ii invariant chain.

    Directory of Open Access Journals (Sweden)

    Alexandra J Spencer

    Full Text Available The orthodox role of the invariant chain (CD74; Ii is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA, higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required.

  11. Subunit Rotavirus Vaccine Administered Parenterally to Rabbits Induces Active Protective Immunity

    Science.gov (United States)

    Ciarlet, Max; Crawford, Sue E.; Barone, Christopher; Bertolotti-Ciarlet, Andrea; Ramig, Robert F.; Estes, Mary K.; Conner, Margaret E.

    1998-01-01

    Virus-like particles (VLPs) are being evaluated as a candidate rotavirus vaccine. The immunogenicity and protective efficacy of different formulations of VLPs administered parenterally to rabbits were tested. Two doses of VLPs (2/6-, G3 2/6/7-, or P[2], G3 2/4/6/7-VLPs) or SA11 simian rotavirus in Freund’s adjuvants, QS-21 (saponin adjuvant), or aluminum phosphate (AlP) were administered. Serological and mucosal immune responses were evaluated in all vaccinated and control rabbits before and after oral challenge with 103 50% infective doses of live P[14], G3 ALA lapine rotavirus. All VLP- and SA11-vaccinated rabbits developed high levels of rotavirus-specific serum and intestinal immunoglobulin G (IgG) antibodies but not intestinal IgA antibodies. SA11 and 2/4/6/7-VLPs afforded similar but much higher mean levels of protection than 2/6/7- or 2/6-VLPs in QS-21. The presence of neutralizing antibodies to VP4 correlated (P < 0.001, r = 0.55; Pearson’s correlation coefficient) with enhanced protection rates, suggesting that these antibodies are important for protection. Although the inclusion of VP4 resulted in higher mean protection levels, high levels of protection (87 to 100%) from infection were observed in individual rabbits immunized with 2/6/7- or 2/6-VLPs in Freund’s adjuvants. Therefore, neither VP7 nor VP4 was absolutely required to achieve protection from infection in the rabbit model when Freund’s adjuvant was used. Our results show that VLPs are immunogenic when administered parenterally to rabbits and that Freund’s adjuvant is a better adjuvant than QS-21. The use of the rabbit model may help further our understanding of the critical rotavirus proteins needed to induce active protection. VLPs are a promising candidate for a parenterally administered subunit rotavirus vaccine. PMID:9765471

  12. Dynamics of epidemic spreading with vaccination: Impact of social pressure and engagement

    Science.gov (United States)

    Pires, Marcelo A.; Crokidakis, Nuno

    2017-02-01

    In this work we consider a model of epidemic spreading coupled with an opinion dynamics in a fully-connected population. Regarding the opinion dynamics, the individuals may be in two distinct states, namely in favor or against a vaccination campaign. Individuals against the vaccination follow a standard SIS model, whereas the pro-vaccine individuals can also be in a third compartment, namely Vaccinated. In addition, the opinions change according to the majority-rule dynamics in groups with three individuals. We also consider that the vaccine can give permanent or temporary immunization to the individuals. By means of analytical calculations and computer simulations, we show that the opinion dynamics can drastically affect the disease propagation, and that the engagement of the pro-vaccine individuals can be crucial for stopping the epidemic spreading. The full numerical code for simulating the model is available from the authors' webpage.

  13. Selected HIV-1 Env trimeric formulations act as potent immunogens in a rabbit vaccination model.

    Directory of Open Access Journals (Sweden)

    Leo Heyndrickx

    Full Text Available BACKGROUND: Ten to 30% of HIV-1 infected subjects develop broadly neutralizing antibodies (bNAbs during chronic infection. We hypothesized that immunizing rabbits with viral envelope glycoproteins (Envs from these patients may induce bNAbs, when formulated as a trimeric protein and in the presence of an adjuvant. METHODS: Based on in vitro neutralizing activity in serum, patients with bNAbs were selected for cloning of their HIV-1 Env. Seven stable soluble trimeric gp140 proteins were generated from sequences derived from four adults and two children infected with either clade A or B HIV-1. From one of the clade A Envs both the monomeric and trimeric Env were produced for comparison. Rabbits were immunized with soluble gp120 or trimeric gp140 proteins in combination with the adjuvant dimethyl dioctadecyl ammonium/trehalose dibehenate (CAF01. Env binding in rabbit immune serum was determined using ELISAs based on gp120-IIIB protein. Neutralizing activity of IgG purified from rabbit immune sera was measured with the pseudovirus-TZMbl assay and a PBMC-based neutralization assay for selected experiments. RESULTS: It was initially established that gp140 trimers induce better antibody responses over gp120 monomers and that the adjuvant CAF01 was necessary for such strong responses. Gp140 trimers, based on HIV-1 variants from patients with bNAbs, were able to elicit both gp120IIIB specific IgG and NAbs to Tier 1 viruses of different subtypes. Potency of NAbs closely correlated with titers, and an gp120-binding IgG titer above a threshold of 100,000 was predictive of neutralization capability. Finally, peptide inhibition experiments showed that a large fraction of the neutralizing IgG was directed against the gp120 V3 region. CONCLUSIONS: Our results indicate that the strategy of reverse immunology based on selected Env sequences is promising when immunogens are delivered as stabilized trimers in CAF01 adjuvant and that the rabbit is a valuable model

  14. Selected HIV-1 Env trimeric formulations act as potent immunogens in a rabbit vaccination model.

    Science.gov (United States)

    Heyndrickx, Leo; Stewart-Jones, Guillaume; Jansson, Marianne; Schuitemaker, Hanneke; Bowles, Emma; Buonaguro, Luigi; Grevstad, Berit; Vinner, Lasse; Vereecken, Katleen; Parker, Joe; Ramaswamy, Meghna; Biswas, Priscilla; Vanham, Guido; Scarlatti, Gabriella; Fomsgaard, Anders

    2013-01-01

    Ten to 30% of HIV-1 infected subjects develop broadly neutralizing antibodies (bNAbs) during chronic infection. We hypothesized that immunizing rabbits with viral envelope glycoproteins (Envs) from these patients may induce bNAbs, when formulated as a trimeric protein and in the presence of an adjuvant. Based on in vitro neutralizing activity in serum, patients with bNAbs were selected for cloning of their HIV-1 Env. Seven stable soluble trimeric gp140 proteins were generated from sequences derived from four adults and two children infected with either clade A or B HIV-1. From one of the clade A Envs both the monomeric and trimeric Env were produced for comparison. Rabbits were immunized with soluble gp120 or trimeric gp140 proteins in combination with the adjuvant dimethyl dioctadecyl ammonium/trehalose dibehenate (CAF01). Env binding in rabbit immune serum was determined using ELISAs based on gp120-IIIB protein. Neutralizing activity of IgG purified from rabbit immune sera was measured with the pseudovirus-TZMbl assay and a PBMC-based neutralization assay for selected experiments. It was initially established that gp140 trimers induce better antibody responses over gp120 monomers and that the adjuvant CAF01 was necessary for such strong responses. Gp140 trimers, based on HIV-1 variants from patients with bNAbs, were able to elicit both gp120IIIB specific IgG and NAbs to Tier 1 viruses of different subtypes. Potency of NAbs closely correlated with titers, and an gp120-binding IgG titer above a threshold of 100,000 was predictive of neutralization capability. Finally, peptide inhibition experiments showed that a large fraction of the neutralizing IgG was directed against the gp120 V3 region. Our results indicate that the strategy of reverse immunology based on selected Env sequences is promising when immunogens are delivered as stabilized trimers in CAF01 adjuvant and that the rabbit is a valuable model for HIV vaccine studies.

  15. Introduction of new vaccines: decision-making process in Bangladesh.

    Science.gov (United States)

    Uddin, Jasim; Sarma, Haribondhu; Bari, Tajul I; Koehlmoos, Tracey P

    2013-06-01

    The understanding of the decision-making process in the introduction of new vaccines helps establish why vaccines are adopted or not. It also contributes to building a sustainable demand for vaccines in a country. The purpose of the study was to map and analyze the formal decision-making process in relation to the introduction of new vaccines within the context of health policy and health systems and identify the ways of making decisions to introduce new vaccines in Bangladesh. During February-April 2011, a qualitative assessment was made at the national level to evaluate the decision-making process around the adoption of new vaccines in Bangladesh. The study population included: policy-level people, programme heads or associates, and key decision-makers of the Government, private sector, non-governmental organizations, and international agencies at the national level. In total, 13 key informants were purposively selected. Data were collected by interviewing key informants and reviewing documents. Data were analyzed thematically. The findings revealed that the actors from different sectors at the policy level were involved in the decision-making process in the introduction of new vaccines. They included policy-makers from the ministries of health and family welfare, finance, and local government and rural development; academicians; researchers; representatives from professional associations; development partners; and members of different committees on EPI. They contributed to the introduction of new vaccines in their own capacity. The burden of disease, research findings on vaccine-preventable diseases, political issues relating to outbreaks of certain diseases, initiatives of international and local stakeholders, pressure of development partners, the Global Alliance for Vaccines and Immunization (GAVI) support, and financial matters were the key factors in the introduction of new vaccines in Bangladesh. The slow introduction and uptake of new vaccines is a concern

  16. Estimation of adsorption-induced pore pressure and confinement in a nanoscopic slit pore by a density functional theory

    Science.gov (United States)

    Grégoire, David; Malheiro, Carine; Miqueu, Christelle

    2018-03-01

    This study aims at characterising the adsorption-induced pore pressure and confinement in nanoscopic pores by molecular non-local density functional theory (DFT). Considering its important potential industrial applications, the adsorption of methane in graphitic slit pores has been selected as the test case. While retaining the accuracy of molecular simulations at pore scale, DFT has a very low computational cost that allows obtaining highly resolved pore pressure maps as a function of both pore width and thermodynamic conditions. The dependency of pore pressure on these parameters (pore width, pressure and temperature) is carefully analysed in order to highlight the effect of each parameter on the confined fluid properties that impact the solid matrix.

  17. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zheng

    2017-05-01

    Full Text Available Dengue virus (DV is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  18. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV) Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice.

    Science.gov (United States)

    Zheng, Xiaoyan; Chen, Hui; Wang, Ran; Fan, Dongying; Feng, Kaihao; Gao, Na; An, Jing

    2017-01-01

    Dengue virus (DV) is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  19. Novel Vaccine Against Mycoplasma Hyosynoviae: The Immunogenic Effect of Iscom-Based Vaccines in Swine

    DEFF Research Database (Denmark)

    Lauritsen, Klara Tølbøll; Vinther Heydenreich, Annette; Riber, Ulla

    Arthritis in swine is frequently caused by Mycoplasma hyosynoviae (Mhs). For the development of an effective vaccine we investigated the immunogenic effect of three vaccine preparations with the ISCOM adjuvant Posintro™ from Nordic Vaccine. A: formalin fixed whole-cells Mhs (300 µg/dose) mixed...... with Posintro, B: Deoxycholate extracted lipoproteins from Mhs organisms (DOC-antigen, 300 μg/dose) in Posintro and C: DOC-antigen (50 μg/dose) in Posintro. Each vaccine-group contained three pigs. Vaccinations (i.m.) were performed at 12 and 15 weeks of age. The development of specific IgG and secretion...... of IFNγ were measured. Three weeks after the second vaccination, pigs were euthanised and autopsied. Vaccine B induced a high level of specific serum IgG in all pigs a week after boost. Vaccine C gave a variable response after boost, with two pigs seroconverting, while no response was seen by vaccine A...

  20. Analytics for vaccine economics and pricing: insights and observations.

    Science.gov (United States)

    Robbins, Matthew J; Jacobson, Sheldon H

    2015-04-01

    Pediatric immunization programs in the USA are a successful and cost-effective public health endeavor, profoundly reducing mortalities caused by infectious diseases. Two important issues relate to the success of the immunization programs, the selection of cost-effective vaccines and the appropriate pricing of vaccines. The recommended childhood immunization schedule, published annually by the CDC, continues to expand with respect to the number of injections required and the number of vaccines available for selection. The advent of new vaccines to meet the growing requirements of the schedule results: in a large, combinatorial number of possible vaccine formularies. The expansion of the schedule and the increase in the number of available vaccines constitutes a challenge for state health departments, large city immunization programs, private practices and other vaccine purchasers, as a cost-effective vaccine formulary must be selected from an increasingly large set of possible vaccine combinations to satisfy the schedule. The pediatric vaccine industry consists of a relatively small number of pharmaceutical firms engaged in the research, development, manufacture and distribution of pediatric vaccines. The number of vaccine manufacturers has dramatically decreased in the past few decades for a myriad of reasons, most notably due to low profitability. The contraction of the industry negatively impacts the reliable provision of pediatric vaccines. The determination of appropriate vaccine prices is an important issue and influences a vaccine manufacturer's decision to remain in the market. Operations research is a discipline that applies advanced analytical methods to improve decision making; analytics is the application of operations research to a particular problem using pertinent data to provide a practical result. Analytics provides a mechanism to resolve the challenges facing stakeholders in the vaccine development and delivery system, in particular, the selection

  1. Evaluation of recombinant Mycoplasma hyopneumoniae P97/P102 paralogs formulated with selected adjuvants as vaccines against mycoplasmal pneumonia in pigs.

    Science.gov (United States)

    Woolley, Lauren K; Fell, Shayne A; Gonsalves, Jocelyn R; Raymond, Benjamin B A; Collins, Damian; Kuit, Tracey A; Walker, Mark J; Djordjevic, Steven P; Eamens, Graeme J; Jenkins, Cheryl

    2014-07-23

    Pig responses to recombinant subunit vaccines containing fragments of eight multifunctional adhesins of the Mycoplasma hyopneumoniae (Mhp) P97/P102 paralog family formulated with Alhydrogel(®) or Montanide™ Gel01 were compared with a commercial bacterin following experimental challenge. Pigs, vaccinated intramuscularly at 9, 12 and 15 weeks of age with either of the recombinant formulations (n=10 per group) or Suvaxyn(®) M. hyo (n=12), were challenged with Mhp strain Hillcrest at 17 weeks of age. Unvaccinated, challenged pigs (n=12) served as a control group. Coughing was assessed daily. Antigen-specific antibody responses were monitored by ELISA in serum and tracheobronchial lavage fluid (TBLF), while TBLF was also assayed for cytokine responses (ELISA) and bacterial load (qPCR). At slaughter, gross and histopathology of lungs were quantified and damage to epithelial cilia in the porcine trachea was evaluated by scanning electron microscopy. Suvaxyn(®) M. hyo administration induced significant serological responses against Mhp strain 232 whole cell lysates (wcl) and recombinant antigen F3P216, but not against the remaining vaccine subunit antigens. Alhydrogel(®) and Montanide™ Gel01-adjuvanted antigen induced significant antigen-specific IgG responses, with the latter adjuvant eliciting comparable Mhp strain 232 wcl specific IgG responses to Suvaxyn(®) M. hyo. No significant post-vaccination antigen-specific mucosal responses were detected with the recombinant vaccinates. Suvaxyn(®) M. hyo was superior in reducing clinical signs, lung lesion severity and bacterial load but the recombinant formulations offered comparable protection against cilial damage. Lower IL-1β, TNF-α and IL-6 responses after challenge were associated with reduced lung lesion severity in Suvaxyn(®) M. hyo vaccinates, while elevated pathology scores in recombinant vaccinates corresponded to cytokine levels that were similarly elevated as in unvaccinated pigs. This study highlights

  2. Use of serologic tests to predict resistance to Canine distemper virus-induced disease in vaccinated dogs.

    Science.gov (United States)

    Jensen, Wayne A; Totten, Janet S; Lappin, Michael R; Schultz, Ronald D

    2015-09-01

    The objective of the current study was to determine whether detection of Canine distemper virus (CDV)-specific serum antibodies correlates with resistance to challenge with virulent virus. Virus neutralization (VN) assay results were compared with resistance to viral challenge in 2 unvaccinated Beagle puppies, 9 unvaccinated Beagle dogs (4.4-7.2 years of age), and 9 vaccinated Beagle dogs (3.7-4.7 years of age). Eight of 9 (89%) unvaccinated adult dogs exhibited clinical signs after virus challenge, and 1 (13%) dog died. As compared to adult dogs, the 2 unvaccinated puppies developed more severe clinical signs and either died or were euthanized after challenge. In contrast, no clinical signs were detected after challenge of the 9 adult vaccinated dogs with post-vaccination intervals of up to 4.4 years. In vaccinated dogs, the positive and negative predictive values of VN assay results for resistance to challenge were 100% and 0%, respectively. Results indicate that dogs vaccinated with modified live CDV can be protected from challenge for ≤4.4 years postvaccination and that detection of virus-specific antibodies is predictive of whether dogs are resistant to challenge with virulent virus. Results also indicate that CDV infection in unvaccinated dogs results in age-dependent morbidity and mortality. Knowledge of age-dependent morbidity and mortality, duration of vaccine-induced immunity, and the positive and negative predictive values of detection of virus-specific serum antibodies are useful in development of rational booster vaccination intervals for the prevention of CDV-mediated disease in adult dogs. © 2015 The Author(s).

  3. Enhancement of immune response induced by DNA vaccine cocktail expressing complete LACK and TSA genes against Leishmania major.

    Science.gov (United States)

    Ghaffarifar, Fatemeh; Jorjani, Ogholniaz; Sharifi, Zohreh; Dalimi, Abdolhossein; Hassan, Zuhair M; Tabatabaie, Fatemeh; Khoshzaban, Fariba; Hezarjaribi, Hajar Ziaei

    2013-04-01

    Leishmaniasis is an important disease in humans. Leishmania homologue of receptor for Activated C Kinase (LACK) and thiol specific antioxidant (TSA) as immuno-dominant antigens of Leishmania major are considered the most promising molecules for a DNA vaccine. We constructed a DNA cocktail, containing plasmids encoding LACK and TSA genes of Leishmania major and evaluated the immune response and survival rate in BALB/c mice. IgG and Interferon gamma values were noticeably increased in the immunized group with DNA cocktail vaccine, which were significantly higher than those in the single-gene vaccinated and control groups (p 0.05). The immunized mice with the cocktail DNA vaccine presented a considerable reduction in diameter of lesion compared to other groups and a significant difference was observed (p < 0.05) in this regard. The survival time of the immunized mice with the cocktail DNA vaccine was significantly higher than that in the other groups (p < 0.05) after their being challenged with Leishmania major. The findings of this study indicated that the cocktail DNA vaccine increased the cellular response and survival rate and induced protection against infection with Leishmania in the mice. © 2012 The Authors © 2012 APMIS.

  4. Use of adenoviral vectors as veterinary vaccines.

    Science.gov (United States)

    Ferreira, T B; Alves, P M; Aunins, J G; Carrondo, M J T

    2005-10-01

    Vaccines are the most effective and inexpensive prophylactic tool in veterinary medicine. Ideally, vaccines should induce a lifelong protective immunity against the target pathogen while not causing clinical or pathological signs of diseases in the vaccinated animals. However, such ideal vaccines are rare in the veterinary field. Many vaccines are either of limited effectiveness or have harmful side effects. In addition, there are still severe diseases with no effective vaccines. A very important criterion for an ideal vaccine in veterinary medicine is low cost; this is especially important in developing countries and even more so for poultry vaccination, where vaccines must sell for a few cents a dose. Traditional approaches include inactivated vaccines, attenuated live vaccines and subunit vaccines. Recently, genetic engineering has been applied to design new, improved vaccines. Adenovirus vectors are highly efficient for gene transfer in a broad spectrum of cell types and species. Moreover, adenoviruses often induce humoral, mucosal and cellular immune responses to antigens encoded by the inserted foreign genes. Thus, adenoviruses have become a vector of choice for delivery and expression of foreign proteins for vaccination. Consequently, the market requirements for adenovirus vaccines are increasing, creating a need for production methodologies of concentrated vectors with warranted purity and efficacy. This review summarizes recent developments and approaches of adenovirus production and purification as the application of these vectors, including successes and failures in clinical applications to date.

  5. A Salmonella typhimurium ghost vaccine induces cytokine expression in vitro and immune responses in vivo and protects rats against homologous and heterologous challenges.

    Directory of Open Access Journals (Sweden)

    Nagarajan Vinod

    Full Text Available Salmonella enteritidis and Salmonella typhimurium are important food-borne bacterial pathogens, which are responsible for diarrhea and gastroenteritis in humans and animals. In this study, S. typhimurium bacterial ghost (STG was generated based on minimum inhibitory concentration (MIC of sodium hydroxide (NaOH. Experimental studies performed using in vitro and in vivo experimental model systems to characterize effects of STG as a vaccine candidate. When compared with murine macrophages (RAW 264.7 exposed to PBS buffer (98.1%, the macrophages exposed to formalin-killed inactivated cells (FKC, live wild-type bacterial cells and NaOH-induced STG at 1 × 108 CFU/mL showed 85.6%, 66.5% and 84.6% cell viability, respectively. It suggests that STG significantly reduces the cytotoxic effect of wild-type bacterial cells. Furthermore, STG is an excellent inducer for mRNAs of pro-inflammatory cytokine (TNF-α, IL-1β and factor (iNOS, anti-inflammatory cytokine (IL-10 and dual activities (IL-6 in the stimulated macrophage cells. In vivo, STG vaccine induced humoral and cellular immune responses and protection against homologous and heterologous challenges in rats. Furthermore, the immunogenicity and protective efficacy of STG vaccine were compared with those of FKC and non-vaccinated PBS control groups. The vaccinated rats from STG group exhibited higher levels of serum IgG antibody responses, serum bactericidal antibodies, and CD4+ and CD8+ T-cell populations than those of the FKC and PBS control groups. Most importantly, after challenge with homologous and heterologous strains, the bacterial loads in the STG group were markedly lower than the FKC and PBS control groups. In conclusion, these findings suggest that the STG vaccine induces protective immunity against homologous and heterologous challenges.

  6. Is an HIV vaccine possible?

    Directory of Open Access Journals (Sweden)

    Nancy A. Wilson

    Full Text Available The road to the discovery of a vaccine for HIV has been arduous and will continue to be difficult over the ensuing twenty years. Most vaccines are developed by inducing neutralizing antibodies against the target pathogen or by using attenuated strains of the particular pathogen to engender a variety of protective immune responses. Unfortunately, simple methods of generating anti-HIV antibodies have already failed in a phase III clinical trial. While attenuated SIV variants work well against homologous challenges in non-human primates, the potential for reversion to a more pathogenic virus and recombination with challenge viruses will preclude the use of attenuated HIV in the field. It has been exceedingly frustrating to vaccinate for HIV-specific neutralizing antibodies given the enormous diversity of the Envelope (Env glycoprotein and its well-developed glycan shield. However, there are several antibodies that will neutralize many different strains of HIV and inducing these types of antibodies in vaccinees remains the goal of a vigorous effort to develop a vaccine for HIV based on neutralizing antibodies. Given the difficulty in generating broadly reactive neutralizing antibodies, the HIV vaccine field has turned its attention to inducing T cell responses against the virus using a variety of vectors. Unfortunately, the results from Merck's phase IIb STEP trial proved to be disappointing. Vaccinees received Adenovirus type 5 (Ad5 expressing Gag, Pol, and Nef of HIV. This vaccine regimen failed to either prevent infection or reduce the level of HIV replication after challenge. These results mirrored those in non-human primate testing of Ad5 using rigorous SIV challenge models. This review will focus on recent developments in HIV vaccine development. We will deal largely with attempts to develop a T cell-based vaccine using the non-human primate SIV challenge model.

  7. Hydrostatic pressure enhances mitomycin C induced apoptosis in urothelial carcinoma cells.

    Science.gov (United States)

    Chen, Shao-Kuan; Chung, Chih-Ang; Cheng, Yu-Che; Huang, Chi-Jung; Ruaan, Ruoh-Chyu; Chen, Wen-Yih; Li, Chuan; Tsao, Chia-Wen; Hu, Wei-Wen; Chien, Chih-Cheng

    2014-01-01

    Urothelial carcinoma (UC) of the bladder is the second most common cancer of the genitourinary system. Clinical UC treatment usually involves transurethral resection of the bladder tumor followed by adjuvant intravesical immunotherapy or chemotherapy to prevent recurrence. Intravesical chemotherapy induces fewer side effects than immunotherapy but is less effective at preventing tumor recurrence. Improvement to intravesical chemotherapy is, therefore, needed. Cellular effects of mitomycin C (MMC) and hydrostatic pressure on UC BFTC905 cells were assessed. The viability of the UC cells was determined using cellular proliferation assay. Changes in apoptotic function were evaluated by caspase 3/7 activities, expression of FasL, and loss of mitochondrial membrane potential. Reduced cell viability was associated with increasing hydrostatic pressure. Caspase 3/7 activities were increased following treatment of the UC cells with MMC or hydrostatic pressure. In combination with 10 kPa hydrostatic pressure, MMC treatment induced increasing FasL expression. The mitochondria of UC cells displayed increasingly impaired membrane potentials following a combined treatment with 10 μg/ml MMC and 10 kPa hydrostatic pressure. Both MMC and hydrostatic pressure can induce apoptosis in UC cells through an extrinsic pathway. Hydrostatic pressure specifically increases MMC-induced apoptosis and might minimize the side effects of the chemotherapy by reducing the concentration of the chemical agent. This study provides a new and alternative approach for treatment of patients with UC following transurethral resection of the bladder tumor. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A single intranasal administration of virus-like particle vaccine induces an efficient protection for mice against human respiratory syncytial virus.

    Science.gov (United States)

    Jiao, Yue-Ying; Fu, Yuan-Hui; Yan, Yi-Fei; Hua, Ying; Ma, Yao; Zhang, Xiu-Juan; Song, Jing-Dong; Peng, Xiang-Lei; Huang, Jiaqiang; Hong, Tao; He, Jin-Sheng

    2017-08-01

    Human respiratory syncytial virus (RSV) is an important pediatric pathogen causing acute viral respiratory disease in infants and young children. However, no licensed vaccines are currently available. Virus-like particles (VLPs) may bring new hope to producing RSV VLP vaccine with high immunogenicity and safety. Here, we constructed the recombinants of matrix protein (M) and fusion glycoprotein (F) of RSV, respectively into a replication-deficient first-generation adenoviral vector (FGAd), which were used to co-infect Vero cells to assemble RSV VLPs successfully. The resulting VLPs showed similar immunoreactivity and function to RSV virion in vitro. Moreover, Th1 polarized response, and effective mucosal virus-neutralizing antibody and CD8 + T-cell responses were induced by a single intranasal (i.n.) administration of RSV VLPs rather than intramuscular (i.m.) inoculation, although the comparable RSV F-specific serum IgG and long-lasting RSV-specific neutralizing antibody were detected in the mice immunized by both routes. Upon RSV challenge, VLP-immunized mice showed increased viral clearance but decreased signs of enhanced lung pathology and fewer eosinophils compared to mice immunized with formalin-inactivated RSV (FI-RSV). In addition, a single i.n. RSV VLP vaccine has the capability to induce RSV-specific long-lasting neutralizing antibody responses observable up to 15 months. Our results demonstrate that the long-term and memory immune responses in mice against RSV were induced by a single i.n. administration of RSV VLP vaccine, suggesting a successful approach of RSV VLPs as an effective and safe mucosal vaccine against RSV infection, and an applicable and qualified platform of FGAd-infected Vero cells for VLP production. Copyright © 2017. Published by Elsevier B.V.

  9. HI responses induced by seasonal influenza vaccination are associated with clinical protection and with seroprotection against non-homologous strains.

    Science.gov (United States)

    Luytjes, Willem; Enouf, Vincent; Schipper, Maarten; Gijzen, Karlijn; Liu, Wai Ming; van der Lubben, Mariken; Meijer, Adam; van der Werf, Sylvie; Soethout, Ernst C

    2012-07-27

    Vaccination against influenza induces homologous as well as cross-specific hemagglutination inhibiting (HI) responses. Induction of cross-specific HI responses may be essential when the influenza strain does not match the vaccine strain, or even to confer a basic immune response against a pandemic influenza virus. We carried out a clinical study to evaluate the immunological responses after seasonal vaccination in healthy adults 18-60 years of age, receiving the yearly voluntary vaccination during the influenza season 2006/2007. Vaccinees of different age groups were followed for laboratory confirmed influenza (LCI) and homologous HI responses as well as cross-specific HI responses against the seasonal H1N1 strain of 2008 and pandemic H1N1 virus of 2009 (H1N1pdm09) were determined. Homologous HI titers that are generally associated with protection (i.e. seroprotective HI titers ≥40) were found in more than 70% of vaccinees. In contrast, low HI titers before and after vaccination were significantly associated with seasonal LCI. Cross-specific HI titers ≥40 against drifted seasonal H1N1 were found in 69% of vaccinees. Cross-specific HI titers ≥40 against H1N1pdm09 were also significantly induced, especially in the youngest age group. More specifically, cross-specific HI titers ≥40 against H1N1pdm09 were inversely correlated with age. We did not find a correlation between the subtype of influenza which was circulating at the age of birth of the vaccinees and cross-specific HI response against H1N1pdm09. These data indicate that the HI titers before and after vaccination determine the vaccination efficacy. In addition, in healthy adults between 18 and 60 years of age, young adults appear to be best able to mount a cross-protective HI response against H1N1pdm09 or drifted seasonal influenza after seasonal vaccination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Duration of immunity induced by an equine influenza and tetanus combination vaccine formulation adjuvanted with ISCOM-Matrix.

    Science.gov (United States)

    Heldens, J G M; Pouwels, H G W; Derks, C G G; Van de Zande, S M A; Hoeijmakers, M J H

    2010-10-08

    Equine influenza is a contagious disease caused by equine influenza virus which belongs to the orthomyxovirus family. Outbreaks of equine influenza cause severe economic loses to the horse industry and consequently horses in competition are required to be regularly vaccinated against equine influenza. Unlike the existing inactivated vaccines, Equilis Prequenza Te is the only one able to induce protection against clinical disease and virus excretion after a primary vaccination course consisting of two vaccine applications 4-6 weeks apart until the recommended time of the third vaccination. In this paper we describe the duration of immunity profile, tested in an experimental setting according to European legislation, of this inactivated equine influenza and tetanus combination vaccine. In addition to influenza antigen, the formulation contains a second generation ISCOM (the so called ISCOMatrix) as an adjuvant. The vaccine aims at the induction of protection from the primary vaccination course until the time of annual revaccination 12 months later, against challenge with a virulent equine influenza strain. The protection against A/equine/Kentucky/95 (H3N8) at the time of annual revaccination was evidenced by a significant reduction of clinical signs of influenza, a significant reduction of virus excretion and a significant reduction of fever. The effect of the annual revaccination on the duration of immunity against influenza and tetanus was also studied by serology. For tetanus, as a consequence of the 24 months duration of immunity, an alternating annual vaccination schedule consisting of Prequenza and Prequenza Te is proposed after the first three doses of Prequenza Te. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    Directory of Open Access Journals (Sweden)

    Fang Rao

    Full Text Available Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ. We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg or increased (120, 180, 240 mmHg hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg. The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs. These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  12. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    Science.gov (United States)

    Rao, Fang; Yang, Ren-Qiang; Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling

    2014-01-01

    Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  13. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects.

    Science.gov (United States)

    Radosević, Katarina; Rodriguez, Ariane; Lemckert, Angelique; Goudsmit, Jaap

    2009-05-01

    Classical vaccination approaches, based on a single vaccine administered in a homologous prime-boost schedule and optimized to induce primarily neutralizing antibodies, are unlikely to be sufficiently efficacious to prevent TB, malaria or HIV infections. Novel vaccines, capable of inducing a more powerful immune response, in particular T-cell immunity, are desperately needed. Combining different vaccine modalities that are able to complement each other and induce broad and sustainable immunity is a promising approach. This review provides an overview of heterologous prime-boost vaccination modalities currently in development for the 'big three' poverty-related diseases and emphasizes the need for innovative vaccination approaches.

  14. Transdermal deferoxamine prevents pressure-induced diabetic ulcers

    Science.gov (United States)

    Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W.; Maan, Zeshaan N.; Rennert, Robert C.; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V.; Whitmore, Arnetha J.; Galvez, Michael G.; Whittam, Alexander J.; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C.

    2015-01-01

    There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation. PMID:25535360

  15. A DNA vaccine against chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Karthik Mallilankaraman

    2011-01-01

    Full Text Available Chikungunya virus (CHIKV is an emerging mosquito-borne alphavirus indigenous to tropical Africa and Asia. Acute illness is characterized by fever, arthralgias, conjunctivitis, rash, and sometimes arthritis. Relatively little is known about the antigenic targets for immunity, and no licensed vaccines or therapeutics are currently available for the pathogen. While the Aedes aegypti mosquito is its primary vector, recent evidence suggests that other carriers can transmit CHIKV thus raising concerns about its spread outside of natural endemic areas to new countries including the U.S. and Europe. Considering the potential for pandemic spread, understanding the development of immunity is paramount to the development of effective counter measures against CHIKV. In this study, we isolated a new CHIKV virus from an acutely infected human patient and developed a defined viral challenge stock in mice that allowed us to study viral pathogenesis and develop a viral neutralization assay. We then constructed a synthetic DNA vaccine delivered by in vivo electroporation (EP that expresses a component of the CHIKV envelope glycoprotein and used this model to evaluate its efficacy. Vaccination induced robust antigen-specific cellular and humoral immune responses, which individually were capable of providing protection against CHIKV challenge in mice. Furthermore, vaccine studies in rhesus macaques demonstrated induction of nAb responses, which mimicked those induced in convalescent human patient sera. These data suggest a protective role for nAb against CHIKV disease and support further study of envelope-based CHIKV DNA vaccines.

  16. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    Science.gov (United States)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, P<0.01; 156.32±10.42 μg/mL vs 66.52±7.35 μg/mL, 5.73±2.89 μg/mL, P<0.01). The tumor volume in mAFP/HSP70 group was significantly smaller than that in mAFP and HSP70 groups (42.44±7.14 mm3 vs 392.23±12.46 mm3, 838.63±13.84 mm3, P<0.01). Conclusions: The study further confirmed the function of heat shock protein 70's immune adjuvant. Sequential immunization with recombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  17. Intranasal vaccination promotes detrimental Th17-mediated immunity against influenza infection.

    Directory of Open Access Journals (Sweden)

    Asher Maroof

    2014-01-01

    Full Text Available Influenza disease is a global health issue that causes significant morbidity and mortality through seasonal epidemics. Currently, inactivated influenza virus vaccines given intramuscularly or live attenuated influenza virus vaccines administered intranasally are the only approved options for vaccination against influenza virus in humans. We evaluated the efficacy of a synthetic toll-like receptor 4 agonist CRX-601 as an adjuvant for enhancing vaccine-induced protection against influenza infection. Intranasal administration of CRX-601 adjuvant combined with detergent split-influenza antigen (A/Uruguay/716/2007 (H3N2 generated strong local and systemic immunity against co-administered influenza antigens while exhibiting high efficacy against two heterotypic influenza challenges. Intranasal vaccination with CRX-601 adjuvanted vaccines promoted antigen-specific IgG and IgA antibody responses and the generation of polyfunctional antigen-specific Th17 cells (CD4(+IL-17A(+TNFα(+. Following challenge with influenza virus, vaccinated mice transiently exhibited increased weight loss and morbidity during early stages of disease but eventually controlled infection. This disease exacerbation following influenza infection in vaccinated mice was dependent on both the route of vaccination and the addition of the adjuvant. Neutralization of IL-17A confirmed a detrimental role for this cytokine during influenza infection. The expansion of vaccine-primed Th17 cells during influenza infection was also accompanied by an augmented lung neutrophilic response, which was partially responsible for mediating the increased morbidity. This discovery is of significance in the field of vaccinology, as it highlights the importance of both route of vaccination and adjuvant selection in vaccine development.

  18. Combined immunotherapy of breast cancer with EGF and VEGF vaccines from DNA shuffling in a mouse model.

    Science.gov (United States)

    Jin, Dong; Yu, Xin; Chen, Bing; Li, Zhitao; Ding, Jia; Zhao, Xiuyun; Qi, Gaofu

    2017-06-01

    Development of EGF and VEGF vaccines with high antigenicity for combined immunotherapy of EGF-EGFR signaling-dependent epithelial tumors such as breast cancer. EGF genes from mouse, human and chicken were randomly assembled to chimeric genes by DNA shuffling, then a chimeric EGF was selected out by PCR, SDS-PAGE and immunization for combined immunotherapy of breast cancer with a previously constructed chimeric VEGF vaccine from shuffling. Combined vaccination with chimeric EGF and VEGF from shuffling could induce high titer of antibodies against EGF and VEGF to inhibit tumor growth and angiogenesis, and improve the survival rate of mice with breast cancer. Combined vaccination with EGF and VEGF from shuffling showed better immunotherapy on EGF-EGFR signaling-dependent epithelial tumors such as breast cancer than the single-agent EGF vaccination.

  19. Thermally induced pressure locking of gate valves: A survey of valve bonnet pressurization rates

    International Nuclear Information System (INIS)

    Ezekoye, L.I.; Moore, W.E.

    1996-01-01

    Closed, water filled gate valves run the risk of becoming pressurized due to heat input from the environment or from adjacent connected piping. Thermal pressurization of gate valve bonnets may lead to the valves failing to open on demand and can even induce structural failure of valves. This paper presents an analytical prediction of the pressurization rate of a closed pressure vessel subject to uniform heating which may be considered as an upper bound to the pressurization rate that may occur in the field. Then actual valve experiences described in the literature are reviewed to determine the expected pressurization rate in existing hardware designs. A statistical approach is applied to reconcile the differing pressurization rates reported in the literature and determine a rate that can be applied in valve evaluations. The limitations of the reconciled rate are discussed

  20. Positive regulation of humoral and innate immune responses induced by inactivated Avian Influenza Virus vaccine in broiler chickens.

    Science.gov (United States)

    Abdallah, Fatma; Hassanin, Ola

    2015-12-01

    Avian Influenza (AI) vaccines are widely used for mammals and birds in a trial to eliminate the Avian Influenza virus (AIV) infection from the world. However and up till now the virus is still existed via modulation of its antigenic structure to evade the pressure of host immune responses. For a complete understanding of the immune responses following AI vaccination in chickens, the modulations of the chickens humoral immune responses and interferon-alpha signaling pathway, as a fundamental part of the innate immune responses, were investigated. In our study, we measured the humoral immune response using hemagglutination-inhibition (HI) and enzyme-linked immunosorbent assay (ELISA) tests. In addition, chicken interferon-alpha pathway components was measured at RNA levels using Quantitative Real-time PCR (qRT-PCR) following one dose of inactivated H5N1 influenza vaccine at 14 days of age. In this study, the protective levels of humoral antibody responses were observed at 14, 21 and 28 days following immunization with inactivated (Re-1/H5N1) AI vaccine. In the chicken spleen cells, up regulation in the chicken interferon-alpha pathway components (MX1 & IRF7) was existed as early as 48 h post vaccination and remained until 28 days post vaccination at the endogenous state. However, after the recall with ex-vivo stimulation, the up regulation was more pronounced in the transcriptional factor (IRF7) compared to the antiviral gene (MX1) at 28 days post vaccination. So far, from our results it appears that the inactivated H5N1 vaccine can trigger the chicken interferon-alpha signaling pathway as well as it can elicit protective humoral antibody responses.

  1. A novel therapeutic hepatitis B vaccine induces cellular and humoral immune responses and breaks tolerance in hepatitis B virus (HBV) transgenic mice.

    Science.gov (United States)

    Buchmann, Pascale; Dembek, Claudia; Kuklick, Larissa; Jäger, Clemens; Tedjokusumo, Raindy; von Freyend, Miriam John; Drebber, Uta; Janowicz, Zbigniew; Melber, Karl; Protzer, Ulrike

    2013-02-06

    Therapeutic vaccines are currently being developed for chronic hepatitis B and C. As an alternative to long-term antiviral treatment or to support only partially effective therapy, they should activate the patient's immune system effectively to fight and finally control the virus. A paradigm of therapeutic vaccination is the potent induction of T-cell responses against key viral antigens - besides activation of a humoral immune response. We have evaluated the potential of a novel vaccine formulation comprising particulate hepatitis B surface (HBsAg) and core antigen (HBcAg), and the saponin-based ISCOMATRIX™ adjuvant for its ability to stimulate T and B cell responses in C57BL/6 mice and its ability to break tolerance in syngeneic HBV transgenic (HBVtg) mice. In C57BL/6 mice, the vaccine induced multifunctional HBsAg- and HBcAg-specific CD8+ T cells detected by staining for IFNγ, TNFα and IL-2, as well as high antibody titers against both antigens. Vaccination of HBVtg animals induced potent HBsAg- and HBcAg-specific CD8+ T-cell responses in spleens and HBcAg-specific CD8+ T-cell responses in livers as well as anti-HBs seroconversion two weeks post injection. Vaccination further reduced HBcAg expression in livers of HBVtg mice without causing liver damage. In summary, this study demonstrates therapeutic efficacy of a novel vaccine formulation in a mouse model of immunotolerant, chronic HBV infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Endoplasmic reticulum targeting sequence enhances HBV-specific cytotoxic T lymphocytes induced by a CTL epitope-based DNA vaccine

    International Nuclear Information System (INIS)

    Xu Wei; Chu Yiwei; Zhang Ruihua; Xu Huanbin; Wang Ying; Xiong Sidong

    2005-01-01

    CD8 + T cells play a critical role in protective immunity against Hepatitis B Virus (HBV). Epitope-based DNA vaccines expressing HBV-dominant CTL epitopes can be used as candidate vaccines capable of inducing cytotoxic T Lymphocytes (CTL) responses. A plasmid DNA encoding a CTL epitope of HBV core antigen, HBc 18-27 , was constructed. Intramuscular immunization of C57BL/6 mice with this DNA vaccine resulted in successful induction of HBV-specific CTL responses. In order to promote transportation of the peptide into endoplasmic reticulum (ER) to bind to MHC class I molecules for optimal class I antigen presentation, an ER targeting sequence (ERTS) was fused with the C 18-27 encoding gene. ERTS fusion significantly enhanced specific CD8 + T cell responses in terms of CTL cytolysis as well as IFN-γ secretion. This enhancement was correlated with promoted epitope presentation on target cell surface. We report here an enhanced immunogenicity of an epitope-based DNA vaccine using an ER targeting signal sequence, which has significant implications for future design of therapeutic HBV vaccine

  3. Development and biological properties of a new live attenuated mumps vaccine.

    Science.gov (United States)

    Saika, Shizuko; Kidokoro, Minoru; Kubonoya, Hiroko; Ito, Kozo; Ohkawa, Tokitada; Aoki, Athuko; Nagata, Noriyo; Suzuki, Kazuyoshi

    2006-01-01

    To develop a new live attenuated mumps vaccine, a wild mumps Y7 strain isolated from a patient who developed mild parotitis was treated with nitrosoguanidine and ultraviolet, followed by selection of a temperature-sensitive clone. The selected clone, Y125, showed stable temperature-sensitivity in Vero cells. Intraspinal inoculation of marmosets with the Y125 produced only minimal histopathological changes, while intracerebral inoculation of neonatal rats revealed that the Y125 did not cause hydrocephalus. Both these effects of the Y125 were similar to those of the non-neurovirulent Jeryl Lynn strain. Furthermore, subcutaneous inoculation of the Y125 induced high levels of neutralizing antibodies in all Cercopithecus monkeys examined. Although the safety and immunogenicity should be confirmed in further field trials in humans, the present results indicate that the Y125 could be a promising vaccine candidate.

  4. Pressure-induced polymerization of phenoxyethyl acrylate

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Wrzalik, R; Paluch, M; Ziolo, J [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland); Roland, C M [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States)

    2008-06-18

    Polymerization of phenoxyethyl acrylate was induced without catalyst or initiators by the application of hydrostatic pressure at elevated temperature. Broadband dielectric and infrared spectroscopy were employed to follow the course of the reaction, which reached a degree of conversion of 60%. The structure of the obtained polymer was determined from density functional theory calculations.

  5. Capillarity Induced Negative Pressure of Water Plugs in Nanochannels

    NARCIS (Netherlands)

    Tas, Niels Roelof; Mela, P.; Kramer, Tobias; Berenschot, Johan W.; van den Berg, Albert

    2003-01-01

    We have found evidence that water plugs in hydrophilic nanochannels can be at significant negative pressure due to tensile capillary forces. The negative pressure of water plugs in nanochannels induces bending of the thin channel capping layer, which results in a visible curvature of the liquid

  6. [Effects of pressure induced retinal ischemia on ERG in rabbit].

    Science.gov (United States)

    Song, G; Yang, X; Zhang, Z; Zhang, D

    2001-12-01

    To observe the effects of pressure induced retinal ischemia on electroretinogram(ERG) in rabbit. Retinal ischemia was induced in rabbits by increasing intraocular pressure at 30 mmHg, 60 mmHg, 90 mmHg, 120 mmHg for 45 minutes, and retinal function was monitored by eletroretinography. There was no difference on ERG before or after the experiment both in 30 mmHg group and control one. In 60 mmHg pressure induced ischemia eyes, the amplitudes of the b-wave and OPs wave reduced significantly. Four hours after reperfusion, they were totally recovered. After an ischemic insult of 90 mmHg or 120 mmHg for 45 minutes, there was no response of ERG. Four hours later, the amplitudes of the b-wave and OPs wave were 66.912 +/- 20.157 and 16.423 +/- 3.965 the former, 38.852 +/- 23.438 and 8.610 +/- 12.090 the latter, respectively. These results suggest that higher intraocular pressure causes more severe retina ischemic damage, and less recovery ability.

  7. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  8. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  9. A potent Brucella abortus 2308 Δery live vaccine allows for the differentiation between natural and vaccinated infection.

    Science.gov (United States)

    Zhang, Junbo; Yin, Shuanghong; Guo, Fei; Meng, Ren; Chen, Chuangfu; Zhang, Hui; Li, Zhiqiang; Fu, Qiang; Shi, Huijun; Hu, Shengwei; Ni, Wei; Li, Tiansen; Zhang, Ke

    2014-08-01

    Brucellosis is a globally distributed zoonotic disease that causes animal and human diseases. However, the current Brucella abortus vaccines (S19 and RB51) are deficient; they can cause abortion in pregnant animals. Moreover, when the vaccine S19 is used, tests cannot differentiate natural from vaccinated infection. Therefore, a safer and more potent vaccine is needed. A Brucella abortus 2308 ery promoter mutant (Δery) was constructed to overcome these drawbacks. The growth of the Δery mutant was significantly attenuated in macrophages and mice and induced high protective immunity in mice. Moreover, Δery induced an anti-Brucella-specific IgG (immunoglobulin G) response and stimulated the expression of interferon-gamma (INF-γ) and interleukin-4 (IL-4). Furthermore, the expression of EryA antigen allowed for the serological differentiation between natural and vaccinated infection in mice. These results indicate that the Δery mutant is a potential attenuated live vaccine candidate against virulent Brucella abortus 2308 (S2308) infection.

  10. Vaccinating in disease-free regions: a vaccine model with application to yellow fever

    OpenAIRE

    Codec¸o, Claudia T; Luz, Paula M; Coelho, Flavio; Galvani, Alison P; Struchiner, Claudio

    2007-01-01

    Concerns regarding natural or induced emergence of infectious diseases have raised a debate on the pros and cons of pre-emptive vaccination of populations under uncertain risk. In the absence of immediate risk, ethical issues arise because even smaller risks associated with the vaccine are greater than the immediate disease risk (which is zero). The model proposed here seeks to formalize the vaccination decision process looking from the perspective of the susceptible individual, and results a...

  11. BVDV vaccination in North America: risks versus benefits.

    Science.gov (United States)

    Griebel, Philip J

    2015-06-01

    The control and prevention of bovine viral diarrhea virus (BVDV) infections has provided substantial challenges. Viral genetic variation, persistent infections, and viral tropism for immune cells have complicated disease control strategies. Vaccination has, however, provided an effective tool to prevent acute systemic infections and increase reproductive efficiency through fetal protection. There has been substantial controversy about the safety and efficacy of BVDV vaccines, especially when comparing killed versus modified-live viral (MLV) vaccines. Furthermore, numerous vaccination protocols have been proposed to protect the fetus and ensure maternal antibody transfer to the calf. These issues have been further complicated by reports of immune suppression during natural infections and following vaccination. While killed BVDV vaccines provide the greatest safety, their limited immunogenicity makes multiple vaccinations necessary. In contrast, MLV BVDV vaccines induce a broader range of immune responses with a longer duration of immunity, but require strategic vaccination to minimize potential risks. Vaccination strategies for breeding females and young calves, in the face of maternal antibody, are discussed. With intranasal vaccination of young calves it is possible to avoid maternal antibody interference and induce immune memory that persists for 6-8 months. Thus, with an integrated vaccination protocol for both breeding cows and calves it is possible to maximize disease protection while minimizing vaccine risks.

  12. Antitumour responses induced by a cell-based Reovirus vaccine in murine lung and melanoma models

    International Nuclear Information System (INIS)

    Campion, Ciorsdan A.; Soden, Declan; Forde, Patrick F.

    2016-01-01

    The ever increasing knowledge in the areas of cell biology, the immune system and the mechanisms of cancer are allowing a new phase of immunotherapy to develop. The aim of cancer vaccination is to activate the host immune system and some success has been observed particularly in the use of the BCG vaccine for bladder cancer as an immunostimulant. Reovirus, an orphan virus, has proven itself as an oncolytic virus in vitro and in vivo. Over 80 % of tumour cell lines have been found to be susceptible to Reovirus infection and it is currently in phase III clinical trials. It has been shown to induce immune responses to tumours with very low toxicities. In this study, Reovirus was examined in two main approaches in vivo, in mice, using the melanoma B16F10 and Lewis Lung Carcinoma (LLC) models. Initially, mice were treated intratumourally (IT) with Reovirus and the immune responses determined by cytokine analysis. Mice were also vaccinated using a cell-based Reovirus vaccine and subsequently exposed to a tumourigenic dose of cells (B16F10 or LLC). Using the same cell-based Reovirus vaccine, established tumours were treated and subsequent immune responses and virus retrieval investigated. Upregulation of several cytokines was observed following treatment and replication-competent virus was also retrieved from treated tumours. Varying levels of cytokine upregulation were observed and no replication-competent virus was retrieved in vaccine-treated mice. Prolongation of survival and delayed tumour growth were observed in all models and an immune response to Reovirus, either using Reovirus alone or a cell-based vaccine was also observed in all mice. This study provides evidence of immune response to tumours using a cell-based Reovirus vaccine in both tumour models investigated, B16F10 and LLC, cytokine induction was observed with prolongation of survival in almost all cases which may suggest a new method for using Reovirus in the clinic

  13. Non-invasive assessment of the reproductive cycle in free-ranging female African elephants (Loxodonta africana treated with a gonadotropin-releasing hormone (GnRH vaccine for inducing anoestrus

    Directory of Open Access Journals (Sweden)

    Benavides Valades Gabriela

    2012-08-01

    Full Text Available Abstract Background In southern Africa, various options to manage elephant populations are being considered. Immunocontraception is considered to be the most ethically acceptable and logistically feasible method for control of smaller and confined populations. In this regard, the use of gonadotropin-releasing hormone (GnRH vaccine has not been investigated in female elephants, although it has been reported to be safe and effective in several domestic and wildlife species. The aims of this study were to monitor the oestrous cycles of free-ranging African elephant cows using faecal progestagen metabolites and to evaluate the efficacy of a GnRH vaccine to induce anoestrus in treated cows. Methods Between May 2009 - June 2010, luteal activity of 12 elephant cows was monitored non-invasively using an enzyme immunoassay detecting faecal 5alpha-reduced pregnanes (faecal progestagen metabolites, FPM on a private game reserve in South Africa. No bulls of breeding age were present on the reserve prior to and for the duration of the study. After a 3-month control period, 8 randomly-selected females were treated twice with 600 micrograms of GnRH vaccine (Improvac®, Pfizer Animal Health, Sandton, South Africa 5-7 weeks apart. Four of these females had been treated previously with the porcine zona pellucida (pZP vaccine for four years (2004-2007. Results All 12 monitored females (8 treated and 4 controls showed signs of luteal activity as evidenced by FPM concentrations exceeding individual baseline values more than once. A total of 16 oestrous cycles could be identified in 8 cows with four of these within the 13 to 17 weeks range previously reported for captive African elephants. According to the FPM concentrations the GnRH vaccine was unable to induce anoestrus in the treated cows. Overall FPM levels in samples collected during the wet season (mean 4.03 micrograms/gram dry faeces were significantly higher (P Conclusions The GnRH vaccination protocol failed

  14. Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal

    Directory of Open Access Journals (Sweden)

    Cheng Guo

    2018-02-01

    Full Text Available The sulfur induced embrittlement of polycrystalline nickel (Ni metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC X-ray diffraction (XRD techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.

  15. Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal

    Science.gov (United States)

    Guo, Cheng; Yang, Yan; Tan, Liuxi; Lei, Jialin; Guo, Shengmin; Chen, Bin; Yan, Jinyuan; Yang, Shizhong

    2018-02-01

    The sulfur induced embrittlement of polycrystalline nickel (Ni) metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC) X-ray diffraction (XRD) techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD) simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.

  16. Whither vaccines?

    Science.gov (United States)

    Rodrigues, Charlene M C; Pinto, Marta V; Sadarangani, Manish; Plotkin, Stanley A

    2017-06-01

    Currently used vaccines have had major effects on eliminating common infections, largely by duplicating the immune responses induced by natural infections. Now vaccinology faces more complex problems, such as waning antibody, immunosenescence, evasion of immunity by the pathogen, deviation of immunity by the microbiome, induction of inhibitory responses, and complexity of the antigens required for protection. Fortunately, vaccine development is now incorporating knowledge from immunology, structural biology, systems biology and synthetic chemistry to meet these challenges. In addition, international organisations are developing new funding and licensing pathways for vaccines aimed at pathogens with epidemic potential that emerge from tropical areas. © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  17. A Respiratory Syncytial Virus Vaccine Vectored by a Stable Chimeric and Replication-Deficient Sendai Virus Protects Mice without Inducing Enhanced Disease.

    Science.gov (United States)

    Wiegand, Marian Alexander; Gori-Savellini, Gianni; Gandolfo, Claudia; Papa, Guido; Kaufmann, Christine; Felder, Eva; Ginori, Alessandro; Disanto, Maria Giulia; Spina, Donatella; Cusi, Maria Grazia

    2017-05-15

    Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in children and elderly people, and no marketed vaccine exists. In this study, we generated and analyzed a subunit vaccine against RSV based on a novel genome replication-deficient Sendai virus (SeV) vector. We inserted the RSV F protein, known to be a genetically stable antigen, into our vector in a specific way to optimize the vaccine features. By exchanging the ectodomain of the SeV F protein for its counterpart from RSV, we created a chimeric vectored vaccine that contains the RSV F protein as an essential structural component. In this way, the antigen is actively expressed on the surfaces of vaccine particles in its prefusion conformation, and as recently reported for other vectored vaccines, the occurrence of silencing mutations of the transgene in the vaccine genome can be prevented. In addition, its active gene expression contributes to further stimulation of the immune response. In order to understand the best route of immunization, we compared vaccine efficacies after intranasal (i.n.) or intramuscular (i.m.) immunization of BALB/c mice. Via both routes, substantial RSV-specific immune responses were induced, consisting of serum IgG and neutralizing antibodies, as well as cytotoxic T cells. Moreover, i.n. immunization was also able to stimulate specific mucosal IgA in the upper and lower respiratory tract. In virus challenge experiments, animals were protected against RSV infection after both i.n. and i.m. immunization without inducing vaccine-enhanced disease. Above all, the replication-deficient SeV appeared to be safe and well tolerated. IMPORTANCE Respiratory syncytial virus (RSV) is a major cause of respiratory diseases in young children and elderly people worldwide. There is a great demand for a licensed vaccine. Promising existing vaccine approaches based on live-attenuated vaccines or viral vectors have suffered from unforeseen drawbacks related to immunogenicity

  18. Antibody Persistence in Adults Two Years after Vaccination with an H1N1 2009 Pandemic Influenza Virus-Like Particle Vaccine.

    Directory of Open Access Journals (Sweden)

    Nuriban Valero-Pacheco

    Full Text Available The influenza virus is a human pathogen that causes epidemics every year, as well as potential pandemic outbreaks, as occurred in 2009. Vaccination has proven to be sufficient in the prevention and containment of viral spreading. In addition to the current egg-based vaccines, new and promising vaccine platforms, such as cell culture-derived vaccines that include virus-like particles (VLPs, have been developed. VLPs have been shown to be both safe and immunogenic against influenza infections. Although antibody persistence has been studied in traditional egg-based influenza vaccines, studies on antibody response durations induced by VLP influenza vaccines in humans are scarce. Here, we show that subjects vaccinated with an insect cell-derived VLP vaccine, in the midst of the 2009 H1N1 influenza pandemic outbreak in Mexico City, showed antibody persistence up to 24 months post-vaccination. Additionally, we found that subjects that reported being revaccinated with a subsequent inactivated influenza virus vaccine showed higher antibody titres to the pandemic influenza virus than those who were not revaccinated. These findings provide insights into the duration of the antibody responses elicited by an insect cell-derived pandemic influenza VLP vaccine and the possible effects of subsequent influenza vaccination on antibody persistence induced by this VLP vaccine in humans.

  19. Cytokine vaccination: neutralising IL-1alpha autoantibodies induced by immunisation with homologous IL-1alpha

    DEFF Research Database (Denmark)

    Svenson, M; Hansen, M B; Thomsen, Allan Randrup

    2000-01-01

    with IL-1alpha coupled to purified protein derivative of tuberculin (PPD). Both unprimed and primed animals developed IgG aAb to IL-1alpha. These aAb persisted at high levels more than 100 days after vaccination and did not cross-react with murine IL-1beta. The induced anti-IL-1alpha aAb inhibited binding...... in mice by vaccination with recombinant murine IL-1alpha conjugated to PPD. Studies of the effects of IL-1alpha aAb in such animals may help clarify the importance of naturally occurring IL-1alpha aAb in humans and permit the evaluation of future therapies with cytokine aAb in patients...

  20. Further insights into blood pressure induced premature beats: Transient depolarizations are associated with fast myocardial deformation upon pressure decline.

    Science.gov (United States)

    Haemers, Peter; Sutherland, George; Cikes, Maja; Jakus, Nina; Holemans, Patricia; Sipido, Karin R; Willems, Rik; Claus, Piet

    2015-11-01

    An acute increase in blood pressure is associated with the occurrence of premature ventricular complexes (PVCs). We aimed to study the timing of these PVCs with respect to afterload-induced changes in myocardial deformation in a controlled, preclinically relevant, novel closed-chest pig model. An acute left ventricular (LV) afterload challenge was induced by partial balloon inflation in the descending aorta, lasting 5-10 heartbeats (8 pigs; 396 inflations). Balloon inflation enhanced the reflected wave (augmentation index 30% ± 8% vs 59% ± 6%; P blood pressure by 35% ± 4%. This challenge resulted in a more abrupt LV pressure decline, which was delayed beyond ventricular repolarization (rate of pressure decline 0.16 ± 0.01 mm Hg/s vs 0.27 ± 0.04 mm Hg/ms; P pressure 1 ± 12 ms vs 36 ± 9 ms; P = .008), during which the velocity of myocardial shortening at the basal septum increased abruptly (ie, postsystolic shortening) (peak strain rate -0.6 ± 0.5 s(-1) vs -2.5 ± 0.8 s(-1); P pressure decline, with increased postsystolic shortening, and not at peak pressure, that PVCs occur (22% of inflations). These PVCs preferentially occurred at the basal and apical segments. In the same regions, monophasic action potentials demonstrated the appearance of delayed afterdepolarization-like transient depolarizations as origin of PVCs. An acute blood pressure increase results in a more abrupt LV pressure decline, which is delayed after ventricular repolarization. This has a profound effect on myocardial mechanics with enhanced postsystolic shortening. Coincidence with induced transient depolarizations and PVCs provides support for the mechanoelectrical origin of pressure-induced premature beats. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  1. Vaccines for preventing Japanese encephalitis

    DEFF Research Database (Denmark)

    Schiøler, Karin Linda; Samuel, Miny; Wai, Kim Lay

    2007-01-01

    BACKGROUND: Vaccination is recognized as the only practical measure for preventing Japanese encephalitis. Production shortage, costs, and issues of licensure impair vaccination programmes in many affected countries. Concerns over vaccine effectiveness and safety also have a negative impact...... on acceptance and uptake. OBJECTIVES: To evaluate vaccines for preventing Japanese encephalitis in terms of effectiveness, adverse events, and immunogenicity. SEARCH STRATEGY: In March 2007, we searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (The Cochrane Library 2007, Issue 1......), MEDLINE, EMBASE, LILACS, BIOSIS, and reference lists. We also attempted to contact corresponding authors and vaccine companies. SELECTION CRITERIA: Randomized controlled trials (RCTs), including cluster-RCTs, comparing Japanese encephalitis vaccines with placebo (inert agent or unrelated vaccine...

  2. Rational design of diagnostic and vaccination strategies for tuberculosis

    Directory of Open Access Journals (Sweden)

    Sibele Borsuk

    Full Text Available The development of diagnostic tests which can readily differentiate between vaccinated and tuberculosis-infected individuals is crucial for the wider utilization of bacillus Calmette-Guérin (BCG as vaccine in humans and animals. BCG_0092 is an antigen that elicits specific delayed type hypersensitivity reactions similar in size and morphological aspects to that elicited by purified protein derivative, in both animals and humans infected with the tubercle bacilli. We carried out bioinformatics analyses of the BCG_0092 and designed a diagnostic test by using the predicted MHC class I epitopes. In addition, we performed a knockout of this gene by homologous recombination in the BCG vaccine strain to allow differentiation of vaccinated from infected individuals. For that, the flanking sequences of the target gene (BCG_0092were cloned into a suicide vector. Spontaneous double crossovers, which result in wild type revertants or knockouts were selected using SacB. BCG_0092 is present only in members of the Mycobacterium tuberculosis complex. Eight predicted MHC class I epitopes with potential for immunological diagnosis were defined, allowing the design of a specific diagnostic test. The strategy used to delete the (BCG_0092 gene from BCG was successful. The knockout genotype was confirmed by PCR and by Southern blot. The mutant BCG strain has the potential of inducing protection against tuberculosis without interfering with the diagnostic test based on the use of selected epitopes from BCG_0092.

  3. STUDY ON FEASIBILITY AND LOGISTICS OF VACCINATION WITH TYPHOID VI-VACCINE ON SCHOOL CHILDREN IN NORTH JAKARTA INDONESIA: ANALYSIS OF THE VACCINATION COST

    Directory of Open Access Journals (Sweden)

    Roy G.A. Massie

    2012-11-01

    Full Text Available Background: In recent years, Indonesia government has become increasingly concerned with the issues of financing childhood vaccines and immunization programs including vaccine for typhoid  fever. The objective of the analysis is to provide alternative resources and to provide understandable data generated from the Study on Feasibility and Logistics of Vaccination School Age Children With Typhoid Vi-Vaccine in North Jakarta Indonesia. Methods: The analysis was focus on measurement of the cost for vaccinating school children with Typhoid Vi-vaccine from 18 selected primary schools in North Jakarta. The primary source of data was generated from the actual expenditures that were used in the vaccine delivery program in Indonesia. Results: The Vaccination Cost from the Study on Feasibility and Logistics of Vaccination School Age Children with Typhoid Vi-Vaccine conducted by DOMI project is not applicable for public vaccination program. The program might be feasible to be delivered only in private health sector settings.   Key words: Immunization expenditure, vaccine for typhoid fever, North Jakarta Indonesia

  4. A cross-reacting material CRM197 conjugate vaccine induces diphtheria toxin neutralizing antibody response in children and adolescents infected or not with HIV.

    Science.gov (United States)

    Silva, Giselle P; Santos, Rafaela S; Pereira-Manfro, Wânia F; Ferreira, Bianca; Barreto, Daniella M; Frota, Ana Cristina C; Hofer, Cristina B; Milagres, Lucimar G

    2017-07-05

    Anti-diphtheria antibody levels decrease with aging, and frequent booster vaccinations are required to maintain herd immunity. We analyzed the diphtheria toxin neutralizing antibody (DT-Nab) response induced by a conjugate vaccine (meningococcal C polysaccharide-CRM 197 ) in HIV-vertically infected (HI) children and adolescents and healthy controls (HC) with matched age. We report the association of DT-Nab with the bactericidal antibodies to serogroup C meningococcus (MenC). Before vaccination, 21 HI patients (50%) had no protection against diphtheria (≤0.01IU/ml of antibody) and only 8 (19%) showed complete protection (≥0.1IU/ml). About half of the HC (56%) had complete protection before immunization and 6 subjects (12%) had no protection against diphtheria. After one and two vaccine injections, 96% of HC and 64% of HI vaccinees, respectively, showed full protection against diphtheria. These data indicate that CRM 197 was able to induce primary and/or booster response in both groups of individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. VESPA: Very large-scale Evolutionary and Selective Pressure Analyses

    Directory of Open Access Journals (Sweden)

    Andrew E. Webb

    2017-06-01

    Full Text Available Background Large-scale molecular evolutionary analyses of protein coding sequences requires a number of preparatory inter-related steps from finding gene families, to generating alignments and phylogenetic trees and assessing selective pressure variation. Each phase of these analyses can represent significant challenges, particularly when working with entire proteomes (all protein coding sequences in a genome from a large number of species. Methods We present VESPA, software capable of automating a selective pressure analysis using codeML in addition to the preparatory analyses and summary statistics. VESPA is written in python and Perl and is designed to run within a UNIX environment. Results We have benchmarked VESPA and our results show that the method is consistent, performs well on both large scale and smaller scale datasets, and produces results in line with previously published datasets. Discussion Large-scale gene family identification, sequence alignment, and phylogeny reconstruction are all important aspects of large-scale molecular evolutionary analyses. VESPA provides flexible software for simplifying these processes along with downstream selective pressure variation analyses. The software automatically interprets results from codeML and produces simplified summary files to assist the user in better understanding the results. VESPA may be found at the following website: http://www.mol-evol.org/VESPA.

  6. The effect of sire selection on the response of lambs to vaccination with irradiated Trichostrongylus colubriformis larvae

    International Nuclear Information System (INIS)

    Dineen, J.K.; Windon, R.G.

    1980-01-01

    Rams selected for responsiveness and unresponsiveness to vaccination with irradiated T. colubriformis larvae at an early age were mated to unselected random bred ewes. Progeny were vaccinated with 20,000 irradiated larvae at 8 and 12 weeks of age, given anthelmintic treatment at 16 weeks and challenged with 20,000 normal larvae at 17 weeks. The results, based on wether worm counts and ewe faecal egg counts, showed significant differences between responder and non-responder progeny. There was a significant correlation between worm counts and faecal egg counts of half-sibs from the same sire group. The occurrence of globule leucocytes was inversely related to worm burdens of wether progeny, however, no clear relationship was found with eosinophils. In vitro lymphocyte stimulation using T. colubriformis L 3 antigen, concanavalin A and lipopolysaccharide showed that statistically defined responder progeny, pooled from both responder and non-responder sire groups, gave higher responses than non-responder lambs after vaccination. The results confirm that genetically-determined factors are involved in the response of lambs to vaccination at an early age, and indicate that rapid genetic progress may be achieved in the type of mating usually carried out under field conditions. (author)

  7. Control selection and confounding factors: A lesson from a Japanese case-control study to examine acellular pertussis vaccine effectiveness.

    Science.gov (United States)

    Ohfuji, Satoko; Okada, Kenji; Nakano, Takashi; Ito, Hiroaki; Hara, Megumi; Kuroki, Haruo; Hirota, Yoshio

    2017-08-24

    When using a case-control study design to examine vaccine effectiveness, both the selection of control subjects and the consideration of potential confounders must be the important issues to ensure accurate results. In this report, we described our experience from a case-control study conducted to evaluate the effectiveness of acellular pertussis vaccine combined with diphtheria-tetanus toxoids (DTaP vaccine). Newly diagnosed pertussis cases and age- and sex-matched friend-controls were enrolled, and the history of DTaP vaccination was compared between groups. Logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) of vaccination for development of pertussis. After adjustment for potential confounders, four doses of DTaP vaccination showed a lower OR for pediatrician-diagnosed pertussis (OR=0.11, 95% CI, 0.01-0.99). In addition, the decreasing OR of four doses vaccination was more pronounced for laboratory-confirmed pertussis (OR=0.07, 95%CI, 0.01-0.82). Besides, positive association with pertussis was observed in subjects with a history of steroid treatment (OR=5.67) and those with a recent contact with a lasting cough (OR=4.12). When using a case-control study to evaluate the effectiveness of vaccines, particularly those for uncommon infectious diseases such as pertussis, the use of friend-controls may be optimal due to the fact that they shared a similar experience for exposure to the pathogen as the cases. In addition, to assess vaccine effectiveness as accurately as possible, the effects of confounding should be adequately controlled with a matching or analysis technique. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Beam Induced Pressure Rise at RHIC

    CERN Document Server

    Zhang, S Y; Bai, Mei; Blaskiewicz, Michael; Cameron, Peter; Drees, Angelika; Fischer, Wolfram; Gullotta, Justin; He, Ping; Hseuh Hsiao Chaun; Huang, Haixin; Iriso, Ubaldo; Lee, Roger C; Litvinenko, Vladimir N; MacKay, William W; Nicoletti, Tony; Oerter, Brian; Peggs, Steve; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smart, Loralie; Snydstrup, Louis; Thieberger, Peter; Trbojevic, Dejan; Wang, Lanfa; Wei, Jie; Zeno, Keith

    2005-01-01

    Beam induced pressure rise in RHIC warm sections is currently one of the machine intensity and luminosity limits. This pressure rise is mainly due to electron cloud effects. The RHIC warm section electron cloud is associated with longer bunch spacings compared with other machines, and is distributed non-uniformly around the ring. In addition to the countermeasures for normal electron cloud, such as the NEG coated pipe, solenoids, beam scrubbing, bunch gaps, and larger bunch spacing, other studies and beam tests toward the understanding and counteracting RHIC warm electron cloud are of interest. These include the ion desorption studies and the test of anti-grazing ridges. For high bunch intensities and the shortest bunch spacings, pressure rises at certain locations in the cryogenic region have been observed during the past two runs. Beam studies are planned for the current 2005 run and the results will be reported.

  9. Vaccine-induced rabies case in a cow (Bos taurus): Molecular characterisation of vaccine strain in brain tissue.

    Science.gov (United States)

    Vuta, Vlad; Picard-Meyer, Evelyne; Robardet, Emmanuelle; Barboi, Gheorghe; Motiu, Razvan; Barbuceanu, Florica; Vlagioiu, Constantin; Cliquet, Florence

    2016-09-22

    Rabies is a fatal neuropathogenic zoonosis caused by the rabies virus of the Lyssavirus genus, Rhabdoviridae family. The oral vaccination of foxes - the main reservoir of rabies in Europe - using a live attenuated rabies virus vaccine was successfully conducted in many Western European countries. In July 2015, a rabies vaccine strain was isolated from the brain tissues of a clinically suspect cow (Bos taurus) in Romania. The nucleotide analysis of both N and G gene sequences showed 100% identity between the rabid animal, the GenBank reference SAD B19 strain and five rabies vaccine batches used for the national oral vaccination campaign targeting foxes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Recombinant vaccines: experimental and applied aspects

    DEFF Research Database (Denmark)

    Lorenzen, Niels

    1999-01-01

    Development of vaccines for aquaculture fish represent an important applied functional aspect of fish immunology research. Particularly in the case of recombinant vaccines, where a single antigen is usually expected to induce immunity to a specific pathogen, knowledge of mechanisms involved...... in induction of a protective immune response may become vital. The few recombinant vaccines licensd so far, despite much research during the last decade, illustrate that this is not a straightforward matter. However, as vaccine technology as well as our knowledge of the fish immune system is steadily improved......, these fields will open up a number of interesting research objectives of mutual benefit. Recent aspects of recombinant protein vaccines, live recombinant vaccines and DNA vaccines are discussed....

  11. Informing vaccine decision-making: A strategic multi-attribute ranking tool for vaccines-SMART Vaccines 2.0.

    Science.gov (United States)

    Knobler, Stacey; Bok, Karin; Gellin, Bruce

    2017-01-20

    SMART Vaccines 2.0 software is being developed to support decision-making among multiple stakeholders in the process of prioritizing investments to optimize the outcomes of vaccine development and deployment. Vaccines and associated vaccination programs are one of the most successful and effective public health interventions to prevent communicable diseases and vaccine researchers are continually working towards expanding targets for communicable and non-communicable diseases through preventive and therapeutic modes. A growing body of evidence on emerging vaccine technologies, trends in disease burden, costs associated with vaccine development and deployment, and benefits derived from disease prevention through vaccination and a range of other factors can inform decision-making and investment in new and improved vaccines and targeted utilization of already existing vaccines. Recognizing that an array of inputs influences these decisions, the strategic multi-attribute ranking method for vaccines (SMART Vaccines 2.0) is in development as a web-based tool-modified from a U.S. Institute of Medicine Committee effort (IOM, 2015)-to highlight data needs and create transparency to facilitate dialogue and information-sharing among decision-makers and to optimize the investment of resources leading to improved health outcomes. Current development efforts of the SMART Vaccines 2.0 framework seek to generate a weighted recommendation on vaccine development or vaccination priorities based on population, disease, economic, and vaccine-specific data in combination with individual preference and weights of user-selected attributes incorporating valuations of health, economics, demographics, public concern, scientific and business, programmatic, and political considerations. Further development of the design and utility of the tool is being carried out by the National Vaccine Program Office of the Department of Health and Human Services and the Fogarty International Center of the

  12. What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? Breaking through Immunity's Glass Ceiling.

    Science.gov (United States)

    Kelsoe, Garnett; Haynes, Barton F

    2018-05-01

    A key goal of HIV-1 vaccine development is the induction of broadly neutralizing antibodies (bnAbs) targeted to the vulnerable regions of the HIV envelope. BnAbs develop over time in ∼50% of HIV-1-infected individuals. However, to date, no vaccines have induced bnAbs and few or none of these vaccine-elicited HIV-1 antibodies carry the high frequencies of V(D)J mutations characteristic of bnAbs. Do the high frequencies of mutations characteristic of naturally induced bnAbs represent a fundamental barrier to the induction of bnAbs by vaccines? Recent studies suggest that high frequencies of V(D)J mutations can be achieved by serial vaccination strategies. Rather, it appears that, in the absence of HIV-1 infection, physiologic immune tolerance controls, including a germinal center process termed affinity reversion, may limit vaccine-driven bnAb development by clonal elimination or selecting for mutations incompatible with bnAb activity. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Pellet feed adsorbed with the recombinant Lactococcus lactis BFE920 expressing SiMA antigen induced strong recall vaccine effects against Streptococcus iniae infection in olive flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Kim, Daniel; Beck, Bo Ram; Lee, Sun Min; Jeon, Jongsu; Lee, Dong Wook; Lee, Jae Il; Song, Seong Kyu

    2016-08-01

    The aim of this study was to develop a fish feed vaccine that provides effective disease prevention and convenient application. A lactic acid bacterium (LAB), Lactococcus lactis BFE920, was modified to express the SiMA antigen, a membrane protein of Streptococcus iniae. The antigen was engineered to be expressed under the nisin promoter, which is induced by nisin produced naturally by the host LAB. Various sizes (40 ± 3.5 g, 80 ± 2.1 g, and 221 ± 2.4 g) of olive flounder (Paralichthys olivaceus) were vaccinated by feeding the extruded pellet feed, onto which the SiMA-expressing L. lactis BFE920 (1.0 × 10(7) CFU/g) was adsorbed. Vaccine-treated feed was administered twice a day for 1 week, and priming and boosting were performed with a 1-week interval in between. The vaccinated fish had significantly elevated levels of antigen-specific serum antibodies and T cell marker mRNAs: CD4-1, CD4-2, and CD8a. In addition, the feed vaccine significantly induced T cell effector functions, such as the production of IFN-γ and activation of the transcription factor that induces its expression, T-bet. When the flounder were challenged by intraperitoneal infection and bath immersion with S. iniae, the vaccinated fish showed 84% and 82% relative percent survival (RPS), respectively. Furthermore, similar protective effects were confirmed even 3 months after vaccination in a field study (n = 4800), indicating that this feed vaccine elicited prolonged duration of immunopotency. In addition, the vaccinated flounder gained 21% more weight and required 16% less feed to gain a unit of body weight compared to the control group. The data clearly demonstrate that the L. lactis BFE920-SiMA feed vaccine has strong protective effects, induces prolonged vaccine efficacy, and has probiotic effects. In addition, this LAB-based fish feed vaccine can be easily used to target many different pathogens of diverse fish species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Competitive Pressure, Selection and Investments in Development and Fundamental Research

    OpenAIRE

    Boone, J.

    1998-01-01

    This paper analyses the effects of competitive pressure on a firm's incentives to undertake both fundamental research and development. It presents a new framework incorporating the selection effect of product market competition, the Schumpeterian argument for monopoly power, the Nickell/Porter argument for competitive pressure and the infant industry argument for protection. The key insight is that the effects of competitive pressure on a firm's incentives to innovate depend on the firm's eff...

  15. Systematic review of mucosal immunity induced by oral and inactivated poliovirus vaccines against virus shedding following oral poliovirus challenge.

    Directory of Open Access Journals (Sweden)

    Thomas R Hird

    Full Text Available Inactivated poliovirus vaccine (IPV may be used in mass vaccination campaigns during the final stages of polio eradication. It is also likely to be adopted by many countries following the coordinated global cessation of vaccination with oral poliovirus vaccine (OPV after eradication. The success of IPV in the control of poliomyelitis outbreaks will depend on the degree of nasopharyngeal and intestinal mucosal immunity induced against poliovirus infection. We performed a systematic review of studies published through May 2011 that recorded the prevalence of poliovirus shedding in stool samples or nasopharyngeal secretions collected 5-30 days after a "challenge" dose of OPV. Studies were combined in a meta-analysis of the odds of shedding among children vaccinated according to IPV, OPV, and combination schedules. We identified 31 studies of shedding in stool and four in nasopharyngeal samples that met the inclusion criteria. Individuals vaccinated with OPV were protected against infection and shedding of poliovirus in stool samples collected after challenge compared with unvaccinated individuals (summary odds ratio [OR] for shedding 0.13 (95% confidence interval [CI] 0.08-0.24. In contrast, IPV provided no protection against shedding compared with unvaccinated individuals (summary OR 0.81 [95% CI 0.59-1.11] or when given in addition to OPV, compared with individuals given OPV alone (summary OR 1.14 [95% CI 0.82-1.58]. There were insufficient studies of nasopharyngeal shedding to draw a conclusion. IPV does not induce sufficient intestinal mucosal immunity to reduce the prevalence of fecal poliovirus shedding after challenge, although there was some evidence that it can reduce the quantity of virus shed. The impact of IPV on poliovirus transmission in countries where fecal-oral spread is common is unknown but is likely to be limited compared with OPV.

  16. Tomorrow's vector vaccines for small ruminants.

    Science.gov (United States)

    Kyriakis, C S

    2015-12-14

    Inactivated and attenuated vaccines have contributed to the control or even the eradication of significant animal pathogens. However, these traditional vaccine technologies have limitations and disadvantages. Inactivated vaccines lack efficacy against certain pathogens, while attenuated vaccines are not always as safe. New technology vaccines, namely DNA and recombinant viral vector vaccines, are being developed and tested against pathogens of small ruminants. These vaccines induce both humoral and cellular immune responses, are safe to manufacture and use and can be utilized in strategies for differentiation of infected from vaccinated animals. Although there are more strict regulatory requirements for the safety standards of these vaccines, once a vaccine platform is evaluated and established, effective vaccines can be rapidly produced and deployed in the field to prevent spread of emerging pathogens. The present article offers an introduction to these next generation technologies and examples of vaccines that have been tested against important diseases of sheep and goats. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Prediction of propeller-induced hull-pressure fluctuations

    NARCIS (Netherlands)

    Van Wijngaarden, H.C.J.

    2011-01-01

    The cavitating propeller often forms the primary source of noise and vibration on board ships. The propeller induces hydroacoustic pressure fluctuations due to the passing blades and, more importantly, the dynamic activity of cavities in the propeller’s immediate vicinity. The accurate prediction of

  18. Comprehensive sieve analysis of breakthrough HIV-1 sequences in the RV144 vaccine efficacy trial.

    Directory of Open Access Journals (Sweden)

    Paul T Edlefsen

    2015-02-01

    Full Text Available The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated vaccine efficacy (VE of 31% for protecting low-risk Thai volunteers against acquisition of HIV-1. The impact of vaccine-induced immune responses can be investigated through sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients. A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two V2 amino acid sites that differed between the vaccine and placebo groups. Here we extended the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on individual sites, k-mers and genes/proteins. We identified 56 amino acid sites or "signatures" and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag, and Pro. The nine signature sites in Env-gp120 were significantly enriched for known antibody-associated sites (p = 0.0021. In particular, site 317 in the third variable loop (V3 overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to CD4 binding site neutralization. The identified signature sites significantly covaried with other sites across the genome (mean = 32.1 more than did non-signature sites (mean = 0.9 (p < 0.0001, suggesting functional and/or structural relevance of the signature sites. Since signature sites were not preferentially restricted to the vaccine immunogens and because most of the associations were insignificant following correction for multiple testing, we predict that few of the genetic differences are strongly linked to the RV144 vaccine-induced immune pressure. In addition to presenting results of the first complete-genome analysis of the breakthrough infections in the RV144 trial, this work describes a set of statistical methods and tools applicable to analysis of breakthrough infection genomes in general vaccine

  19. Virus-Like-Vaccines against HIV.

    Science.gov (United States)

    Andersson, Anne-Marie C; Schwerdtfeger, Melanie; Holst, Peter J

    2018-02-11

    Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (VLP) vaccines have emerged as potent inducers of antibody and helper T cell responses, while replication-deficient viral vectors have yielded potent cytotoxic T cell responses. Here, we review the emerging concept of merging these two technologies into virus-like-vaccines (VLVs) for the targeting of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production, is a distinct advantage over live-attenuated vaccines that must balance safety and immunogenicity. Previous studies have delivered VLVs encoded in modified Vaccinia Ankara vectors and we have developed the concept into a single-reading adenovirus-based technology capable of eliciting robust CD8⁺ and CD4⁺ T cells responses and trimer binding antibody responses. Such vaccines offer the potential to display the naturally produced immunogen directly and induce an integrated humoral and cellular immune response.

  20. In silico prediction of monovalent and chimeric tetravalent vaccines for prevention and treatment of dengue fever.

    Science.gov (United States)

    Vijayakumar, Subramaniyan; Ramesh, Venkatachalam; Prabhu, Srinivasan; Manogar, Palani

    2017-11-01

    Reverse vaccinology method was used to predict the monovalent peptide vaccine candidate to produce antibodies for therapeutic purpose and to predict tetravalent vaccine candidate to act as a common vaccine to cover all the fever dengue virus serotypes. Envelope (E)-proteins of DENV-1-4 serotypes were used for vaccine prediction using NCBI, Uniprot/Swissprot, Swiss-prot viewer, VaxiJen V2.0, TMHMM, BCPREDS, Propred-1, Propred and MHC Pred,. E-proteins of DENV-1-4 serotypes were identified as antigen from which T cell epitopes, through B cell epitopes, were predicted to act as peptide vaccine candidates. Each selected T cell epitope of E-protein was confirmed to act as vaccine and to induce complementary antibody against particular serotype of dengue virus. Chimeric tetravalent vaccine was formed by the conjugation of four vaccines, each from four dengue serotypes to act as a common vaccine candidate for all the four dengue serotypes. It can be justifiably concluded that the monovalent 9-mer T cell epitope for each DENV serotypes can be used to produce specific antibody agaomst dengue virus and a chimeric common tetravalent vaccine candidate to yield a comparative vaccine to cover any of the four dengue virus serotype. This vaccine is expected to act as highly immunogenic against preventing dengue fever.

  1. Addition of αGal HyperAcute™ technology to recombinant avian influenza vaccines induces strong low-dose antibody responses.

    Directory of Open Access Journals (Sweden)

    Wenlan Alex Chen

    Full Text Available Highly pathogenic avian influenza represents a severe public health threat. Over the last decade, the demand for highly efficacious vaccines against avian influenza viruses has grown, especially after the 2013 H7N9 outbreak in China that resulted in over 600 human cases with over 200 deaths. Currently, there are several H5N1 and H7N9 influenza vaccines in clinical trials, all of which employ traditional oil-in-water adjuvants due to the poor immunogenicity of avian influenza virus antigens. In this study, we developed potent recombinant avian influenza vaccine candidates using HyperAcute™ Technology, which takes advantage of naturally-acquired anti-αGal immunity in humans. We successfully generated αGal-positive recombinant protein and virus-like particle vaccine candidates of H5N1 and H7N9 influenza strains using either biological or our novel CarboLink chemical αGal modification techniques. Strikingly, two doses of 100 ng αGal-modified vaccine, with no traditional adjuvant, was able to induce a much stronger humoral response in αGT BALB/c knockout mice (the only experimental system readily available for testing αGal in vivo than unmodified vaccines even at 10-fold higher dose (1000 ng/dose. Our data strongly suggest that αGal modification significantly enhances the humoral immunogenicity of the recombinant influenza vaccine candidates. Use of αGal HyperAcute™ technology allows significant dose-sparing while retaining desired immunogenicity. Our success in the development of highly potent H5N1 and H7N9 vaccine candidates demonstrated the potential of αGal HyperAcute™ technology for the development of vaccines against other infectious diseases.

  2. Pressure-induced magnetic transition in CeP

    International Nuclear Information System (INIS)

    Naka, T.; Matsumoto, T.; Mori, N.; Okayama, Y.; Haga, Y.; Suzuki, T.

    1997-01-01

    Pressure dependence of magnetization in CeP is investigated up to 2 GPa. Multi-step transitions are induced by pressure. An antiferromagnetic transition at T N =11 K below 0.1 GPa develops into two (magnetic) transitions at T L and T H in the region of 0.1 L , T H and T d above 1.3 GPa. For decreasing temperature an abrupt increase of magnetization, M(T), has been observed below T H and a round maximum of magnetization appears at T L for P≥0.4 GPa. Above 1.3 GPa, an anomalous decrease of M(T) begins at T d =10 K. Using previously reported 31 P-NMR shift data it is shown that the pressure dependence of a characteristic temperature, which is proportional to the crystal field splitting in the paramagnetic temperature region, decreases rapidly with increasing pressure. (orig.)

  3. Vaccines and Kawasaki disease.

    Science.gov (United States)

    Esposito, Susanna; Bianchini, Sonia; Dellepiane, Rosa Maria; Principi, Nicola

    2016-01-01

    The distinctive immune system characteristics of children with Kawasaki disease (KD) could suggest that they respond in a particular way to all antigenic stimulations, including those due to vaccines. Moreover, treatment of KD is mainly based on immunomodulatory therapy. These factors suggest that vaccines and KD may interact in several ways. These interactions could be of clinical relevance because KD is a disease of younger children who receive most of the vaccines recommended for infectious disease prevention. This paper shows that available evidence does not support an association between KD development and vaccine administration. Moreover, it highlights that administration of routine vaccines is mandatory even in children with KD and all efforts must be made to ensure the highest degree of protection against vaccine-preventable diseases for these patients. However, studies are needed to clarify currently unsolved issues, especially issues related to immunologic interference induced by intravenous immunoglobulin and biological drugs.

  4. Human papillomavirus (HPV vaccination for the prevention of HPV 16/18 induced cervical cancer and its precursors

    Directory of Open Access Journals (Sweden)

    Greiner, Wolfgang

    2009-03-01

    Full Text Available Introduction: Essential precondition for the development of cervical cancer is a persistent human papillomavirus (HPV infection. The majority - approximately 70% - of cervical carcinomas is caused by two high-risk HPV types (16 and 18. Recently, two vaccines have been approved to the German market with the potential to induce protection against HPV 16 and HPV 18 among additional low-risk virus types. Objectives: To analyse whether HPV vaccination is effective with regard to the reduction of cervical cancer and precursors of cervical carcinoma (CIN, respectively? Does HPV vaccination represent a cost-effective alternative or supplement to present screening practice? Are there any differences concerning cost-effectiveness between the two available vaccines? Should HPV vaccination be recommended from a health economic point of view? If so, which recommendations can be conveyed with respect to a (reorganization of the German vaccination strategy? Which ethical, social and legal implications have to be considered? Methods: Based on a systematic literature review, randomized controlled trials (RCT looking at the effectiveness of HPV vaccination for the prevention of cervical carcinoma and its precursors - cervical intraepithelial neoplasia - have been identified. In addition, health economic models were identified to address the health economic research questions. Quality assessment of medical and economic literature was assured by application of general assessment standards for the systematic and critical appraisal of scientific studies. Results: Vaccine efficacy in prevention of CIN 2 or higher lesions in HPV 16 or HPV 18 negative women, who received all vaccination doses, ranges between 98% and 100%. Side effects of the vaccination are mainly associated with injection site reactions (redness, turgor, pain. No significant differences concerning serious complications between the vaccination- and the placebo-groups were reported. Results of base case

  5. The post-vaccine microevolution of invasive Streptococcus pneumoniae

    NARCIS (Netherlands)

    Cremers, Amelieke J H; Mobegi, Fredrick M; de Jonge, Marien I; van Hijum, Sacha A F T; Meis, Jacques F; Hermans, Peter W M; Ferwerda, Gerben; Bentley, Stephen D; Zomer, Aldert L

    2015-01-01

    The 7-valent pneumococcal conjugated vaccine (PCV7) has affected the genetic population of Streptococcus pneumoniae in pediatric carriage. Little is known however about pneumococcal population genomics in adult invasive pneumococcal disease (IPD) under vaccine pressure. We sequenced and serotyped

  6. Vaccination recommended for pregnant women

    Directory of Open Access Journals (Sweden)

    Justyna Magdalena Skolarczyk

    2017-04-01

    Full Text Available A vaccine is a formulation of biological origin that contains substances capable of inducing immune processes without the ability to cause a disease. Vaccination is considered the best mean to prevent infectious diseases and their serious complications. Vaccination of a pregnant women can provide protection against severe infectious diseases of both pregnant women and their children. The aim of the study is to present currently available types of vaccines recommended for pregnant women and indications for their use by analyzing the data available in the PubMed, and Medline electronic databases. In the United States, vaccination recommendations for pregnant women include inactivated influenza vaccine and tetanus and diphtheria toxoid vaccine (Tdap. In some countries, pregnant women also receive a vaccine against hepatitis B as well as anti hepatitis A and E. There are also studies on vaccines against the RSV virus and pneumococci. Vaccination is the most effective form of prevention of infectious diseases and their use during pregnancy does not entail any additional risk to the mother or her baby. The benefits of vaccination are huge, so pregnant women should take  recommended vaccination and shouldn’t  be afraid of using them.

  7. Vaccine-induced canine distemper in a lesser panda.

    Science.gov (United States)

    Bush, M; Montali, R J; Brownstein, D; James, A E; Appel, M J

    1976-11-01

    A fatal disease occurred in a lesser panda (Ailurus fulgens) 2 weeks after vaccination with modified live distemper vaccine. The disease clinically resembled canine distemper. Pathologically there was giant cell pneumonia, with canine distemper viral inclusion bodies in pulmonary and digestive tract epithelium. Viral isolates were indicative of an attenuated strain rather than virulent types.

  8. PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia.

    Science.gov (United States)

    Padua, Rose Ann; Larghero, Jerome; Robin, Marie; le Pogam, Carol; Schlageter, Marie-Helene; Muszlak, Sacha; Fric, Jan; West, Robert; Rousselot, Philippe; Phan, Thi Hai; Mudde, Liesbeth; Teisserenc, Helene; Carpentier, Antoine F; Kogan, Scott; Degos, Laurent; Pla, Marika; Bishop, J Michael; Stevenson, Freda; Charron, Dominique; Chomienne, Christine

    2003-11-01

    Despite improved molecular characterization of malignancies and development of targeted therapies, acute leukemia is not curable and few patients survive more than 10 years after diagnosis. Recently, combinations of different therapeutic strategies (based on mechanisms of apoptosis, differentiation and cytotoxicity) have significantly increased survival. To further improve outcome, we studied the potential efficacy of boosting the patient's immune response using specific immunotherapy. In an animal model of acute promyelocytic leukemia, we developed a DNA-based vaccine by fusing the human promyelocytic leukemia-retinoic acid receptor-alpha (PML-RARA) oncogene to tetanus fragment C (FrC) sequences. We show for the first time that a DNA vaccine specifically targeted to an oncoprotein can have a pronounced effect on survival, both alone and when combined with all-trans retinoic acid (ATRA). The survival advantage is concomitant with time-dependent antibody production and an increase in interferon-gamma (IFN-gamma). We also show that ATRA therapy on its own triggers an immune response in this model. When DNA vaccination and conventional ATRA therapy are combined, they induce protective immune responses against leukemia progression in mice and may provide a new approach to improve clinical outcome in human leukemia.

  9. Prediction of fluctuating pressure environments associated with plume-induced separated flow fields

    Science.gov (United States)

    Plotkin, K. J.

    1973-01-01

    The separated flow environment induced by underexpanded rocket plumes during boost phase of rocket vehicles has been investigated. A simple semi-empirical model for predicting the extent of separation was developed. This model offers considerable computational economy as compared to other schemes reported in the literature, and has been shown to be in good agreement with limited flight data. The unsteady pressure field in plume-induced separated regions was investigated. It was found that fluctuations differed from those for a rigid flare only at low frequencies. The major difference between plume-induced separation and flare-induced separation was shown to be an increase in shock oscillation distance for the plume case. The prediction schemes were applied to PRR shuttle launch configuration. It was found that fluctuating pressures from plume-induced separation are not as severe as for other fluctuating environments at the critical flight condition of maximum dynamic pressure.

  10. A novel, disruptive vaccination technology: self-adjuvanted RNActive(®) vaccines.

    Science.gov (United States)

    Kallen, Karl-Josef; Heidenreich, Regina; Schnee, Margit; Petsch, Benjamin; Schlake, Thomas; Thess, Andreas; Baumhof, Patrick; Scheel, Birgit; Koch, Sven D; Fotin-Mleczek, Mariola

    2013-10-01

    Nucleotide based vaccines represent an enticing, novel approach to vaccination. We have developed a novel immunization technology, RNActive(®) vaccines, that have two important characteristics: mRNA molecules are used whose protein expression capacity has been enhanced by 4 to 5 orders of magnitude by modifications of the nucleotide sequence with the naturally occurring nucleotides A (adenosine), G (guanosine), C (cytosine), U (uridine) that do not affect the primary amino acid sequence. Second, they are complexed with protamine and thus activate the immune system by involvement of toll-like receptor (TLR) 7. Essentially, this bestows self-adjuvant activity on RNActive(®) vaccines. RNActive(®) vaccines induce strong, balanced immune responses comprising humoral and cellular responses, effector and memory responses as well as activation of important subpopulations of immune cells, such as Th1 and Th2 cells. Pre-germinal center and germinal center B cells were detected in human patients upon vaccination. RNActive(®) vaccines successfully protect against lethal challenges with a variety of different influenza strains in preclinical models. Anti-tumor activity was observed preclinically under therapeutic as well as prophylactic conditions. Initial clinical experiences suggest that the preclinical immunogenicity of RNActive(®) could be successfully translated to humans.

  11. Vaccination of dogs with canine parvovirus type 2b (CPV-2b) induces neutralising antibody responses to CPV-2a and CPV-2c.

    Science.gov (United States)

    Wilson, Stephen; Illambas, Joanna; Siedek, Elisabeth; Stirling, Catrina; Thomas, Anne; Plevová, Edita; Sture, Gordon; Salt, Jeremy

    2014-09-22

    Since the identification of canine parvovirus type 2, three variants have subsequently been observed differing from the historical CPV-2 and each other by 1-2 amino acids only. As a result there has been considerable research into differential diagnostics, with some researchers indicating there is a need for new vaccines containing different strains of CPV-2. In this study we investigated whether vaccination with a CPV-2b containing vaccine would induce cross-reactive antibody responses to the other CPV-2 variants. Two studies where dogs were vaccinated with a multivalent vaccine, subsequently challenged with CPV-2b and sera samples analysed are presented. Six week old pups with defined serological status were vaccinated twice, three weeks apart and challenged either 5 weeks (MDA override study) or one year after vaccination (duration of immunity study). Sera samples were collected before each vaccination and at periods throughout each study. In each study the antibody profiles were very similar; serological responses against CPV-2a, CPV-2b and CPV-2c were higher than those for CPV-2. Nevertheless, responses against CPV-2 were well above levels considered clinically protective. In each study dogs also showed a rapid increase in antibody titres following vaccination, reached a plateau following second vaccination with a slight decline to challenge after which rapid anamnestic responses were seen. Evaluation of the serological responses suggests vaccination with CPV-2b would cross-protect against CPV-2a and CPV-2c, as well as against CPV-2 which is now extinct in the field. In conclusion we have demonstrated that vaccination of minimum aged dogs with a multivalent vaccine containing the CPV-2b variant strain will induce serological responses which are cross-reactive against all currently circulating field strains, CPV-2a and CPV-2c, and the now extinct field strain CPV-2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    Science.gov (United States)

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  13. Epilepsy and vaccinations: Italian guidelines.

    Science.gov (United States)

    Pruna, Dario; Balestri, Paolo; Zamponi, Nelia; Grosso, Salvatore; Gobbi, Giuseppe; Romeo, Antonino; Franzoni, Emilio; Osti, Maria; Capovilla, Giuseppe; Longhi, Riccardo; Verrotti, Alberto

    2013-10-01

    Reports of childhood epilepsies in temporal association with vaccination have had a great impact on the acceptance of vaccination programs by health care providers, but little is known about this possible temporal association and about the types of seizures following vaccinations. For these reasons the Italian League Against Epilepsy (LICE), in collaboration with other Italian scientific societies, has decided to generate Guidelines on Vaccinations and Epilepsy. The aim of Guidelines on Vaccinations and Epilepsy is to present recent unequivocal evidence from published reports on the possible relationship between vaccines and epilepsy in order to provide information about contraindications and risks of vaccinations in patients with epilepsy. The following main issues have been addressed: (1) whether contraindications to vaccinations exist in patients with febrile convulsions, epilepsy, and/or epileptic encephalopathies; and (2) whether any vaccinations can cause febrile seizures, epilepsy, and/or epileptic encephalopathies. Diphtheria-tetanus-pertussis (DTP) vaccination and measles, mumps, and rubella vaccination (MMR) increase significantly the risk of febrile seizures. Recent observations and data about the relationships between vaccination and epileptic encephalopathy show that some cases of apparent vaccine-induced encephalopathy could in fact be caused by an inherent genetic defect with no causal relationship with vaccination. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  14. Vaccines for Prevention of Cervical Cancer

    International Nuclear Information System (INIS)

    Mahomed, M.F.

    2017-01-01

    The characteristics of two prophylactic Human Papilloma Virus HPV vaccines and ethical issues related to HPV vaccination are reviewed in this paper. These vaccines have the potential of substantially reducing HPV-related morbidity and mortality, and in particular cervical cancer. The vaccines cannot treat women with current HPV infection or HPV related disease. They should be administered before the commencement of sexual activity. The ideal age group is adolescent girls between the ages 9-13. Both vaccines are highly efficacious and immunogenic and induce high levels of serum antibodies after three doses for all vaccine-related HPV types. School-based vaccination is considered as a costeffective method for its delivery. Adequate education of both clinicians and patients is an essential to ensure effective implementation when considering a national vaccination program. (author)

  15. Characterization of Inherent Particles and Mechanism of Thermal Stress Induced Particle Formation in HSV-2 Viral Vaccine Candidate.

    Science.gov (United States)

    Li, Lillian; Kirkitadze, Marina; Bhandal, Kamaljit; Roque, Cristopher; Yang, Eric; Carpick, Bruce; Rahman, Nausheen

    2017-11-10

    Vaccine formulations may contain visible and/or subvisible particles, which can vary in both size and morphology. Extrinsic particles, which are particles not part of the product such as foreign contaminants, are generally considered undesirable and should be eliminated or controlled in injectable products. However, biological products, in particular vaccines, may also contain particles that are inherent to the product. Here we focus on the characterization of visible and subvisible particles in a live, replication-deficient viral vaccine candidate against HSV genital herpes in an early developmental stage. HSV-2 viral vaccine was characterized using a panel of analytical methods, including Fourier transform infrared spectroscopy (FTIR), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blot, liquid chromatography-mass spectrometry (LC-MS), light microscopy, transmission electron microscopy (TEM), micro-flow imaging (MFI), dynamic light scattering (DLS), right angle light scattering (RALS), and intrinsic fluorescence. Particles in HSV-2 vaccine typically ranged from hundreds of nanometers to hundreds of micrometers in size and were determined to be inherent to the product. The infectious titer did not correlate with any trend in subvisible particle concentration and size distribution as shown by DLS, MFI, and TEM under stressed conditions. This suggested that particle changes in the submicron range were related to HSV-2 virion structure and had direct impact on biological activity. It was also observed that subvisible and visible particles could induce aggregation in the viral product. The temperature induced aggregation was observed by RALS, intrinsic fluorescence, and DLS. The increase of subvisible particle size with temperature could be fitted to a two-step thermokinetic model. Visible and subvisible particles were found to be inherent to the HSV-2 viral vaccine product. The mechanism of protein aggregation was discussed and a two

  16. Clinical and immunological assessment of therapeutic immunization with a subunit vaccine for recurrent ocular canine herpesvirus-1 infection in dogs.

    Science.gov (United States)

    Ledbetter, Eric C; Kim, Kay; Dubovi, Edward J; Mohammed, Hussni O; Felippe, M Julia B

    2016-12-25

    Latent canine herpesvirus-1 (CHV-1) infections are common in domestic dogs and reactivation of latent virus may be associated with recurrent ocular disease. The objectives of the present study were to evaluate the ability of a subunit CHV-1 vaccine to stimulate peripheral CHV-1 specific immunity and prevent recurrent CHV-1 ocular disease and viral shedding. Mature dogs with experimentally-induced latent CHV-1 infection received a 2-dose CHV-1 vaccine series. Recurrent ocular CHV-1 infection was induced by corticosteroid administration in the prevaccinal, short-term postvaccinal (2 weeks post-vaccination), and long-term postvacccinal (34 weeks post-vaccination) periods. Immunological, virological, and clinical parameters were evaluated during each study period. Quantitative assessment of peripheral immunity included lymphocyte immunophenotyping, proliferation response, and interferon-γ production; and CHV-1 virus neutralizing antibody production. In the present study, vaccination did not prevent development of ocular disease and viral shedding; however, there was a significant decrease in clinical ocular disease scores in the short-term postvaccinal period. Significant alterations in peripheral immunity detected in the dogs during the short-term and long-term postvaccinal periods included increased T and B lymphocyte subpopulation percentage distributions, increased lymphocyte expression of major histocompatibility complex class I and II, increased CHV-1 virus neutralizing antibody titers, decreased lymphocyte proliferation, and decreased interferon-γ production. Vaccination of latently infected mature dogs with the selected subunit CHV-1 vaccine was not effective in preventing recurrent ocular CHV-1 infection and viral shedding induced by corticosteroid administration. The vaccine did induce long-term CHV-1 specific immunity and may decrease the severity of clinical ocular disease in the immediate postvaccinal period. Copyright © 2016 Elsevier B.V. All rights

  17. Pressure-induced polymerization in substituted acetylenes

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa, Raja S.; Dattelbaum, Dana M.; Sheffield, Stephen; Robbins, David (LANL)

    2012-04-10

    A fundamental understanding of shock-induced chemical reactions in organics is still lacking and there are limited studies devoted to determining reaction mechanisms, evolution of bonding, and effect of functional group substitutions. The fast timescale of reactions occurring during shock compression create significant experimental challenges (diagnostics) to fully quantify the mechanisms involved. Static compression combined with temperature provides a complementary route to investigate the equilibrium phase space and metastable intermediates under extreme P-T conditions. In this study, we present our results from our ongoing high pressure in situ synchrotron x-ray diffraction experiments on substituted acetylenes: tert-butyl acetylene [TBA: (CH{sub 3}){sub 3}-C=CH] and ethynyl trimethylsilane [ETMS: (CH{sub 3}){sub 3}-SiC=CH]. We observed that the onset pressure of chemical reactions (at room temperature) in these compounds is higher under static compression (TBA: 12 GPa and ETMS: 17.6 GPa) when compared to shock input pressures (TBA: 6.1 GPa and ETMS: 6.6 GPa). At elevated temperatures, reactivity was observed to occur at pressures comparable to shock conditions. The products were polymeric in nature, recovered to ambient conditions with little degradation.

  18. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects

    NARCIS (Netherlands)

    Radosević, Katarina; Rodriguez, Ariane; Lemckert, Angelique; Goudsmit, Jaap

    2009-01-01

    Classical vaccination approaches, based on a single vaccine administered in a homologous prime-boost schedule and optimized to induce primarily neutralizing antibodies, are unlikely to be sufficiently efficacious to prevent TB, malaria or HIV infections. Novel vaccines, capable of inducing a more

  19. Design and performance prediction of solar adsorption cooling for mobile vaccine refrigerator

    Science.gov (United States)

    Djubaedah, Euis; Taufan, Andi; Ratnasari, Nadhira; Fahrizal, Adjie; Hamidi, Qayyum; Nasruddin

    2017-03-01

    Adsorption cooling is a process that uses a drop-in pressure caused by the adsorption of adsorbate by adsorbent. Adsorption process creates a pressure drop which can bring down the temperature to the intended condition. This approach can be used in vaccine transportation as the vaccines need to be stored at low temperatures (2°C to 8°C for preserving vaccines). The pressure decrease can be obtained by adsorption water in zeolites and can also produce the temperature drop in the main chamber. The adsorption process of water will decrease until reaching saturation condition. Heat is needed to keep the system continuous as it starts a desorption process. From the simulation using MATLAB, it is found that the mobile vaccine refrigerator can reach the temperature of 2°C in 180 seconds with the amount of cooling power generated is up to 1530 W. The insulation can hold the allowable temperature range inside the vaccine cabin for 15.6795 hours.

  20. DNA vaccines for aquacultured fish

    DEFF Research Database (Denmark)

    Lorenzen, Niels; LaPatra, S.E.

    2005-01-01

    of licensing and public acceptance of the technology. The potential benefits of DNA vaccines for farmed fish include improved animal welfare, reduced environmental impacts of aquaculture activities, increased food quality and quantity, and more sustainable production. Testing under commercial production......Deoxyribonucleic acid (DNA) vaccination is based on the administration of the gene encoding the vaccine antigen, rather than the antigen itself. Subsequent expression of the antigen by cells in the vaccinated hosts triggers the host immune system. Among the many experimental DNA vaccines tested...... in various animal species as well as in humans, the vaccines against rhabdovirus diseases in fish have given some of the most promising results. A single intramuscular (IM) injection of microgram amounts of DNA induces rapid and long-lasting protection in farmed salmonids against economically important...

  1. ALA-PDT mediated DC vaccine for skin squamous cell carcinoma

    Science.gov (United States)

    Ji, Jie; Fan, Zhixia; Zhou, Feifan; Wang, Xiaojie; Shi, Lei; Zhang, Haiyan; Wang, Peiru; Yang, Degang; Zhang, Linglin; Wang, Xiuli; Chen, Wei R.

    2015-03-01

    Dendritic cell (DC) based vaccine has emerged as a promising immunotherapy for cancers. However, most DC vaccines so far have only achieved limited success in cancer treatment. Photodynamic therapy (PDT), an established cancer treatment strategy, can cause immunogenic apoptosis to induce an effective antitumor immune response. In this study, we developed a DC-based cancer vaccine using immunogenic apoptotic tumor cells induced by 5-aminolevulinic acid (ALA) mediated PDT. The maturation of DCs induced by PDT-treated apoptotic cells was evaluated. The anti-tumor immunity of ALA-PDT-DC vaccine was tested with mouse model. We observed the maturations of DCs potentiated by ALA-PDT treated tumor cells, including phenotypic maturation (upregulation of surface expression of MHC-II, DC80, and CD86), and functional maturation (enhanced capability to secret INF-Υ and IL-12). ALA-PDT-DC vaccine mediated by apoptotic cells provided protection against tumor in mice, far stronger than that of DC vaccine obtained from freeze/thaw treated tumor cells. Our results indicate that immunogenic apoptotic tumor cells can be more effective in enhancing DC-based cancer vaccine, which could improve the clinical application of PDT- DC vaccines.

  2. A vaccine of L2 epitope repeats fused with a modified IgG1 Fc induced cross-neutralizing antibodies and protective immunity against divergent human papillomavirus types.

    Science.gov (United States)

    Chen, Xue; Liu, Hongyang; Zhang, Ting; Liu, Yanchun; Xie, Xixiu; Wang, Zhirong; Xu, Xuemei

    2014-01-01

    Current human papillomavirus (HPV) major capsid protein L1 virus-like particles (VLPs)-based vaccines in clinic induce strong HPV type-specific neutralizing antibody responses. To develop pan-HPV vaccines, here, we show that the fusion protein E3R4 consisting of three repeats of HPV16 L2 aa 17-36 epitope (E3) and a modified human IgG1 Fc scaffold (R4) induces cross-neutralizing antibodies and protective immunity against divergent HPV types. E3R4 was expressed as a secreted protein in baculovirus expression system and could be simply purified by one step Protein A affinity chromatography with the purity above 90%. Vaccination of E3R4 formulated with Freunds adjuvant not only induced cross-neutralizing antibodies against HPV pseudovirus types 16, 18, 45, 52, 58, 6, 11 and 5 in mice, but also protected mice against vaginal challenges with HPV pseudovirus types 16, 45, 52, 58, 11 and 5 for at least eleven months after the first immunization. Moreover, vaccination of E3R4 formulated with FDA approved adjuvant alum plus monophosphoryl lipid A also induced cross-neutralizing antibodies against HPV types 16, 18 and 6 in rabbits. Thus, our results demonstrate that delivery of L2 antigen as a modified Fc-fusion protein may facilitate pan-HPV vaccine development.

  3. Prospects of HA-Based Universal Influenza Vaccine

    Directory of Open Access Journals (Sweden)

    Anwar M. Hashem

    2015-01-01

    Full Text Available Current influenza vaccines afford substantial protection in humans by inducing strain-specific neutralizing antibodies (Abs. Most of these Abs target highly variable immunodominant epitopes in the globular domain of the viral hemagglutinin (HA. Therefore, current vaccines may not be able to induce heterosubtypic immunity against the divergent influenza subtypes. The identification of broadly neutralizing Abs (BnAbs against influenza HA using recent technological advancements in antibody libraries, hybridoma, and isolation of single Ab-secreting plasma cells has increased the interest in developing a universal influenza vaccine as it could provide life-long protection. While these BnAbs can serve as a source for passive immunotherapy, their identification represents an important step towards the design of such a universal vaccine. This review describes the recent advances and approaches used in the development of universal influenza vaccine based on highly conserved HA regions identified by BnAbs.

  4. Vaccination coverage and reasons for non-vaccination in a district of Istanbul

    Directory of Open Access Journals (Sweden)

    Bakırcı Nadi

    2006-05-01

    Full Text Available Abstract Background In order to control and eliminate the vaccine preventable diseases it is important to know the vaccination coverage and reasons for non-vaccination. The primary objective of this study was to determine the complete vaccination rate; the reasons for non-vaccination and the predictors that influence vaccination of children. The other objective was to determine coverage of measles vaccination of the Measles Immunization Days (MID 2005 for children aged 9 month to 6 years in a region of Umraniye, Istanbul, Turkey. Methods A '30 × 7' cluster sampling design was used as the sampling method. Thirty streets were selected at random from study area. Survey data were collected by a questionnaire which was applied face to face to parents of 221 children. A Chi-square test and logistic regression was used for the statistical analyses. Content analysis method was used to evaluate the open-ended questions. Results The complete vaccination rate for study population was 84.5% and 3.2% of all children were totally non-vaccinated. The siblings of non-vaccinated children were also non-vaccinated. Reasons for non-vaccination were as follows: being in the village and couldn't reach to health care services; having no knowledge about vaccination; the father of child didn't allow vaccination; intercurrent illness of child during vaccination time; missed opportunities like not to shave off a vial for only one child. In logistic regression analysis, paternal and maternal levels of education and immigration time of both parents to Istanbul were found to influence whether children were completely vaccinated or non-vaccinated. Measles vaccination coverage during MID was 79.3%. Conclusion Efforts to increase vaccination coverage should take reasons for non-vaccination into account.

  5. Antigen-specific immature dendritic cell vaccine ameliorates anti-dsDNA antibody-induced renal damage in a mouse model.

    Science.gov (United States)

    Xia, Yumin; Jiang, Shan; Weng, Shenhong; Lv, Xiaochun; Cheng, Hong; Fang, Chunhong

    2011-12-01

    Dendritic cells (DCs) can inhibit immune response by clonal anergy when immature. Recent studies have shown that immature DCs (iDCs) may serve as a live cell vaccine after specific antigen pulse based on its potential of blocking antibody production. In this study, we aimed to investigate the effects of nuclear antigen-pulsed iDCs in the treatment of lupus-like renal damages induced by anti-dsDNA antibodies. iDCs were generated from haemopoietic stem cells in bone marrow and then pulsed in vitro with nuclear antigen. The iDC vaccine and corresponding controls were injected into mice with lupus-like renal damages. The evaluation of disease was monitored by biochemical parameters and histological scores. Anti-dsDNA antibody isotypes and T-lymphocyte-produced cytokines were analysed for elucidating therapeutic mechanisms. RESULTS; The mice treated with antigen-pulsed iDCs had a sustained remission of renal damage compared with those injected with non-pulsed iDCs or other controls, including decreased anti-dsDNA antibody level, less proteinuria, lower blood urea nitrogen and serum creatinine values, and improved histological evaluation. Analysis on isotypes of anti-dsDNA antibody showed that iDC vaccine preferentially inhibited the production of IgG3, IgG2b and IgG2a. Furthermore, administration of antigen-treated iDCs to mice resulted in significantly reduced IL-2, IL-4 and IL-12 and IFN-γ produced by T-memory cells. Conversely, the vaccination of antigen-pulsed mature DCs led to increased anti-dsDNA antibody production and an aggravation of lupus-like disease in the model. CONCLUSIONS; These results suggested the high potency of iDC vaccine in preventing lupus-like renal injuries induced by pathogenic autoantibodies.

  6. Sustainable coccidiosis control in poultry production: the role of live vaccines.

    Science.gov (United States)

    Chapman, H D; Cherry, T E; Danforth, H D; Richards, G; Shirley, M W; Williams, R B

    2002-05-01

    The development of new methods of administering coccidiosis vaccines has facilitated their use in the hatchery and thereby improved prospects for the economic vaccination of broilers. The acquisition of protective immunity to Eimeria species is boosted by further exposure to infection after vaccination. Factors that affect the reproductive efficiency of non-attenuated and attenuated vaccines are considered and the key role that oocyst production plays in establishing and maintaining uniform immunity in a flock of chickens is discussed. In addition to immunisation, a possible advantage to the application of certain vaccines is that their use could repopulate poultry houses with drug-sensitive organisms. Theoretical rotation programmes in which the use of drugs is alternated with that of vaccines are described. Variability of the cross-protective immune response between strains of the same species should be considered during vaccine development and subsequent use. The significance of less common species of Eimeria, not included in all vaccines, also needs to be assessed. An important consideration is the occurrence of pathogens other than Eimeria (such as the bacterium Clostridium) in flocks given coccidiosis vaccines and the methods by which they might be controlled. More research is required into the relationship between bacterial and viral infections of poultry and coccidiosis vaccination. Vaccines need to be developed that are simple to apply and cost effective for use in areas of the world where small-scale poultry production is commonplace. In the near future it is likely that more live vaccines based upon oocysts derived from attenuated strains of Eimeria will be developed but in the longer term vaccines will be based on the selective presentation to the host of specific molecules that can induce protective immunity. This achievement will require significant investment from the private and public sectors, and, if successful, will facilitate the sustainable

  7. Selective inhibition of iNOS attenuates trauma-hemorrhage/resuscitation-induced hepatic injury.

    Science.gov (United States)

    Kan, Wen-Hong; Hsu, Jun-Te; Schwacha, Martin G; Choudhry, Mashkoor A; Raju, Raghavan; Bland, Kirby I; Chaudry, Irshad H

    2008-10-01

    Although trauma-hemorrhage produces tissue hypoxia, systemic inflammatory response and organ dysfunction, the mechanisms responsible for these alterations are not clear. Using a potent selective inducible nitric oxide (NO) synthase inhibitor, N-[3-(aminomethyl) benzyl]acetamidine (1400W), and a nonselective NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), we investigated whether inducible NO synthase plays any role in producing hepatic injury, inflammation, and changes of protein expression following trauma-hemorrhage. To investigate this, male Sprague-Dawley rats were subjected to midline laparotomy and hemorrhagic shock (mean blood pressure 35-40 mmHg for approximately 90 min) followed by fluid resuscitation. Animals were treated with either vehicle (DMSO) or 1400W (10 mg/kg body wt ip), or L-NAME (30 mg/kg iv), 30 min before resuscitation and killed 2 h after resuscitation. Trauma-hemorrhage/resuscitation induced a marked hypotension and increase in markers of hepatic injury (i.e., plasma alpha-glutathione S-transferase, tissue myeloperoxidase activity, and nitrotyrosine formation). Hepatic expression of iNOS, hypoxia-inducible factor-1alpha, ICAM-1, IL-6, TNF-alpha, and neutrophil chemoattractant (cytokine-induced neutrophil chemoattractant-1 and macrophage inflammatory protein-2) protein levels were also markedly increased following trauma-hemorrhage/resuscitation. Administration of the iNOS inhibitor 1400W significantly attenuated hypotension and expression of these mediators of hepatic injury induced by trauma-hemorrhage/resuscitation. However, administration of L-NAME could not attenuate hepatic dysfunction and tissue injury mediated by trauma-hemorrhage, although it improved mean blood pressure as did 1400W. These results indicate that increased expression of iNOS following trauma-hemorrhage plays an important role in the induction of hepatic damage under such conditions.

  8. Immunogenicity and Safety of the HZ/su Adjuvanted Herpes Zoster Subunit Vaccine in Adults Previously Vaccinated With a Live Attenuated Herpes Zoster Vaccine.

    Science.gov (United States)

    Grupping, Katrijn; Campora, Laura; Douha, Martine; Heineman, Thomas C; Klein, Nicola P; Lal, Himal; Peterson, James; Vastiau, Ilse; Oostvogels, Lidia

    2017-12-12

    Protection against herpes zoster (HZ) induced by the live attenuated zoster vaccine Zostavax (ZVL) wanes within 3-7 years. Revaccination may renew protection. We assessed whether (re)vaccination with the adjuvanted HZ subunit vaccine candidate (HZ/su) induced comparable immune responses in previous ZVL recipients and ZVL-naive individuals (HZ-NonVac). In an open-label, multicenter study, adults ≥65 years of age, vaccinated with ZVL ≥5 years previously (HZ-PreVac), were matched to ZVL-naive adults (HZ-NonVac). Participants received 2 doses of HZ/su 2 months apart. The primary objective of noninferiority of the humoral immune response 1 month post-dose 2 was considered demonstrated if the upper limit of the 95% confidence interval (CI) of the adjusted anti-glycoprotein E geometric mean concentration (GMC) ratio of HZ-NonVac over HZ-PreVac was <1.5. HZ/su cellular immunogenicity, reactogenicity, and safety were also assessed. In 430 participants, humoral immune response to HZ/su was noninferior in HZ-PreVac compared with HZ-NonVac (adjusted GMC ratio, 1.04 [95% CI, .92-1.17]). Cellular immunogenicity, reactogenicity, and safety appeared to be comparable between groups. HZ/su was well-tolerated, with no safety concerns raised within 1 month post-dose 2. HZ/su induces a strong immune response irrespective of prior vaccination with ZVL, and may be an attractive option to revaccinate prior ZVL recipients. NCT02581410. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  9. The impact of search engine selection and sorting criteria on vaccination beliefs and attitudes: two experiments manipulating Google output.

    Science.gov (United States)

    Allam, Ahmed; Schulz, Peter Johannes; Nakamoto, Kent

    2014-04-02

    During the past 2 decades, the Internet has evolved to become a necessity in our daily lives. The selection and sorting algorithms of search engines exert tremendous influence over the global spread of information and other communication processes. This study is concerned with demonstrating the influence of selection and sorting/ranking criteria operating in search engines on users' knowledge, beliefs, and attitudes of websites about vaccination. In particular, it is to compare the effects of search engines that deliver websites emphasizing on the pro side of vaccination with those focusing on the con side and with normal Google as a control group. We conducted 2 online experiments using manipulated search engines. A pilot study was to verify the existence of dangerous health literacy in connection with searching and using health information on the Internet by exploring the effect of 2 manipulated search engines that yielded either pro or con vaccination sites only, with a group receiving normal Google as control. A pre-post test design was used; participants were American marketing students enrolled in a study-abroad program in Lugano, Switzerland. The second experiment manipulated the search engine by applying different ratios of con versus pro vaccination webpages displayed in the search results. Participants were recruited from Amazon's Mechanical Turk platform where it was published as a human intelligence task (HIT). Both experiments showed knowledge highest in the group offered only pro vaccination sites (Z=-2.088, P=.03; Kruskal-Wallis H test [H₅]=11.30, P=.04). They acknowledged the importance/benefits (Z=-2.326, P=.02; H5=11.34, P=.04) and effectiveness (Z=-2.230, P=.03) of vaccination more, whereas groups offered antivaccination sites only showed increased concern about effects (Z=-2.582, P=.01; H₅=16.88, P=.005) and harmful health outcomes (Z=-2.200, P=.02) of vaccination. Normal Google users perceived information quality to be positive despite a

  10. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Bragstad, Karoline

    2015-01-01

    such as the induction of cellular and humoral immunity, inherent safety and rapid production time. We have previously developed a DNA vaccine encoding selected influenza proteins of pandemic origin and demonstrated broad protective immune responses in ferrets and pigs. In this study, we evaluated our DNA vaccine......The threat posed by the 2009 pandemic H1N1 virus emphasized the need for new influenza A virus vaccines inducing a broad cross-protective immune response for use in both humans and pigs. An effective and broad influenza vaccine for pigs would greatly benefit the pork industry and contribute...... to public health by diminishing the risk of emerging highly pathogenic reassortants. Current inactivated protein vaccines against swine influenza produce only short-lived immunity and have no efficacy against heterologous strains. DNA vaccines are a potential alternative with advantages...

  11. Oral vaccination of wildlife against rabies: Differences among host species in vaccine uptake efficiency.

    Science.gov (United States)

    Vos, Ad; Freuling, Conrad M; Hundt, Boris; Kaiser, Christiane; Nemitz, Sabine; Neubert, Andreas; Nolden, Tobias; Teifke, Jens P; Te Kamp, Verena; Ulrich, Reiner; Finke, Stefan; Müller, Thomas

    2017-07-13

    Oral vaccination using attenuated and recombinant rabies vaccines has been proven a powerful tool to combat rabies in wildlife. However, clear differences have been observed in vaccine titers needed to induce a protective immune response against rabies after oral vaccination in different reservoir species. The mechanisms contributing to the observed resistance against oral rabies vaccination in some species are not completely understood. Hence, the immunogenicity of the vaccine virus strain, SPBN GASGAS, was investigated in a species considered to be susceptible to oral rabies vaccination (red fox) and a species refractory to this route of administration (striped skunk). Additionally, the dissemination of the vaccine virus in the oral cavity was analyzed for these two species. It was shown that the palatine tonsils play a critical role in vaccine virus uptake. Main differences could be observed in palatine tonsil infection between both species, revealing a locally restricted dissemination of infected cells in foxes. The absence of virus infected cells in palatine tonsils of skunks suggests a less efficient uptake of or infection by vaccine virus which may lead to a reduced response to oral vaccination. Understanding the mechanisms of oral resistance to rabies virus vaccine absorption and primary replication may lead to the development of novel strategies to enhance vaccine efficacy in problematic species like the striped skunk. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Humoral Immune Response Induced by PLGA Micro Particle Coupled Newcastle Disease Virus Vaccine in Chickens

    Directory of Open Access Journals (Sweden)

    Sanganagouda K

    2014-02-01

    Full Text Available This experiment was conducted for evaluating the humoral immune responses induced by Poly Lactide-co-Glycolide Acid (PLGA microspheres coupled inactivated Newcastle Disease Virus (NDV vaccine in comparison to an ‘in-house’ prepared inactivated and a live commercial vaccine. PLG microparticles containing inactivated NDV were prepared by a double emulsion technique based on solvent evaporation method. The size of the NDV coupled PLG microparticles was determined by Electron Microscopy. NDV coupled PLG microparticles were spherical having smooth surface, hollow core inside with no pores on the surface. The experiment was conducted in four groups of chickens (n=15. The encapsulation efficiency of NDV coupled PLG microparticles was determined by protein estimation and HA activity in elute. The mean (± SE size of PLG microspheres was found to be 2.409 ± 0.65 µm. The mean percent of encapsulation efficiency of PLG microspheres coupled to NDV was assessed based on the total protein content and HA activity in elute was found to be 8.03 ± 0.50 and 12.5 ± 0.00, respectively. In conclusion, the results of the experiment showed that PLGA coupled NDV vaccine elicited stronger and prolonged humoral immune response in chickens, in comparison to the other tested vaccines, as assessed by haemagglutination inhibition and enzyme linked immuno sorbent asaay titers.

  13. Next generation vaccines.

    Science.gov (United States)

    Riedmann, Eva M

    2011-07-01

    In February this year, about 100 delegates gathered for three days in Vienna (Austria) for the Next Generation Vaccines conference. The meeting held in the Vienna Hilton Hotel from 23rd-25th February 2011 had a strong focus on biotech and industry. The conference organizer Jacob Fleming managed to put together a versatile program ranging from the future generation of vaccines to manufacturing, vaccine distribution and delivery, to regulatory and public health issues. Carefully selected top industry experts presented first-hand experience and shared solutions for overcoming the latest challenges in the field of vaccinology. The program also included several case study presentations on novel vaccine candidates in different stages of development. An interactive pre-conference workshop as well as interactive panel discussions during the meeting allowed all delegates to gain new knowledge and become involved in lively discussions on timely, interesting and sometimes controversial topics related to vaccines.

  14. AIDS vaccine: Present status and future challenges

    Directory of Open Access Journals (Sweden)

    Nigam P

    2006-01-01

    Full Text Available Development of a preventive vaccine for HIV is the best hope of controlling the AIDS pandemic. HIV has, however, proved a difficult pathogen to vaccinate against because of its very high mutation rate and capability to escape immune responses. Neutralizing antibodies that can neutralize diverse field strains have so far proved difficult to induce. Adjuvanting these vaccines with cytokine plasmids and a "prime-boost," approach is being evaluated in an effort to induce both CTL and antibody responses and thereby have immune responses active against both infected cells and free viral particles, thereby necessitating fewer doses of recombinant protein to reach maximum antibodies titers. Although obstacles exist in evaluation of candidate HIV vaccines, evidence from natural history studies, new molecular tools in virology and immunology, new adjuvants, new gene expression systems, new antigen delivery systems, recent discoveries in HIV entry and pathogenesis, and promising studies of candidate vaccines in animal models have provided reasons to hope that developing a safe and effective AIDS vaccine is possible and within reach.

  15. Synthetic Long Peptide Influenza Vaccine Containing Conserved T and B Cell Epitopes Reduces Viral Load in Lungs of Mice and Ferrets.

    Directory of Open Access Journals (Sweden)

    S K Rosendahl Huber

    Full Text Available Currently licensed influenza vaccines mainly induce antibodies against highly variable epitopes. Due to antigenic drift, protection is subtype or strain-specific and regular vaccine updates are required. In case of antigenic shifts, which have caused several pandemics in the past, completely new vaccines need to be developed. We set out to develop a vaccine that provides protection against a broad range of influenza viruses. Therefore, highly conserved parts of the influenza A virus (IAV were selected of which we constructed antibody and T cell inducing peptide-based vaccines. The B epitope vaccine consists of the highly conserved HA2 fusion peptide and M2e peptide coupled to a CD4 helper epitope. The T epitope vaccine comprises 25 overlapping synthetic long peptides of 26-34 amino acids, thereby avoiding restriction for a certain MHC haplotype. These peptides are derived from nucleoprotein (NP, polymerase basic protein 1 (PB1 and matrix protein 1 (M1. C57BL/6 mice, BALB/c mice, and ferrets were vaccinated with the B epitopes, 25 SLP or a combination of both. Vaccine-specific antibodies were detected in sera of mice and ferrets and vaccine-specific cellular responses were measured in mice. Following challenge, both mice and ferrets showed a reduction of virus titers in the lungs in response to vaccination. Summarizing, a peptide-based vaccine directed against conserved parts of influenza virus containing B and T cell epitopes shows promising results for further development. Such a vaccine may reduce disease burden and virus transmission during pandemic outbreaks.

  16. Antibody Secreting Cell Responses following Vaccination with Bivalent Oral Cholera Vaccine among Haitian Adults.

    Directory of Open Access Journals (Sweden)

    Wilfredo R Matias

    2016-06-01

    Full Text Available The bivalent whole-cell (BivWC oral cholera vaccine (Shanchol is effective in preventing cholera. However, evaluations of immune responses following vaccination with BivWC have been limited. To determine whether BivWC induces significant mucosal immune responses, we measured V. cholerae O1 antigen-specific antibody secreting cell (ASC responses following vaccination.We enrolled 24 Haitian adults in this study, and administered doses of oral BivWC vaccine 14 days apart (day 0 and day 14. We drew blood at baseline, and 7 days following each vaccine dose (day 7 and 21. Peripheral blood mononuclear cells (PBMCs were isolated, and ASCs were enumerated using an ELISPOT assay. Significant increases in Ogawa (6.9 cells per million PBMCs and Inaba (9.5 cells per million PBMCs OSP-specific IgA ASCs were detected 7 days following the first dose (P < 0.001, but not the second dose. The magnitude of V. cholerae-specific ASC responses did not appear to be associated with recent exposure to cholera. ASC responses measured against the whole lipolysaccharide (LPS antigen and the OSP moiety of LPS were equivalent, suggesting that all or nearly all of the LPS response targets the OSP moiety.Immunization with the BivWC oral cholera vaccine induced ASC responses among a cohort of healthy adults in Haiti after a single dose. The second dose of vaccine resulted in minimal ASC responses over baseline, suggesting that the current dosing schedule may not be optimal for boosting mucosal immune responses to V. cholerae antigens for adults in a cholera-endemic area.

  17. Live Attenuated Yellow Fever 17D Vaccine: A Legacy Vaccine Still Controlling Outbreaks In Modern Day.

    Science.gov (United States)

    Collins, Natalie D; Barrett, Alan D T

    2017-03-01

    Live attenuated 17D vaccine is considered one of the safest and efficacious vaccines developed to date. This review highlights what is known and the gaps in knowledge of vaccine-induced protective immunity. Recently, the World Health Organization modifying its guidance from 10-year booster doses to one dose gives lifelong protection in most populations. Nonetheless, there are some data suggesting immunity, though protective, may wane over time in certain populations and more research is needed to address this question. Despite having an effective vaccine to control yellow fever, vaccine shortages were identified during outbreaks in 2016, eventuating the use of a fractional-dosing campaign in the Democratic Republic of the Congo. Limited studies hinder identification of the underlying mechanism(s) of vaccine longevity; however, concurrent outbreaks during 2016 provide an opportunity to evaluate vaccine immunity following fractional dosing and insights into vaccine longevity in populations where there is limited information.

  18. Model of Structural Fragmentation Induced by High Pressure Torsion

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, J.; Kružík, Martin; Sedláček, R.

    2010-01-01

    Roč. 25, č. 1 (2010), s. 88-98 ISSN 1606-5131 Institutional research plan: CEZ:AV0Z10750506 Keywords : High-pressure torsion * intergranular glide * homogeneous deformation mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.649, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/kruzik-model of structural fragmentation induced by high pressure torsion.pdf

  19. Pricing of new vaccines

    Science.gov (United States)

    McGlone, Sarah M

    2010-01-01

    New vaccine pricing is a complicated process that could have substantial long-standing scientific, medical and public health ramifications. Pricing can have a considerable impact on new vaccine adoption and, thereby, either culminate or thwart years of research and development and public health efforts. Typically, pricing strategy consists of the following eleven components: (1) Conduct a target population analysis; (2) Map potential competitors and alternatives; (3) Construct a vaccine target product profile (TPP) and compare it to projected or actual TPPs of competing vaccines; (4) Quantify the incremental value of the new vaccine's characteristics; (5) Determine vaccine positioning in the marketplace; (6) Estimate the vaccine price-demand curve; (7) Calculate vaccine costs (including those of manufacturing, distribution, and research and development); (8) Account for various legal, regulatory, third party payer and competitor factors; (9) Consider the overall product portfolio; (10) Set pricing objectives; (11) Select pricing and pricing structure. While the biomedical literature contains some studies that have addressed these components, there is still considerable room for more extensive evaluation of this important area. PMID:20861678

  20. Pricing of new vaccines.

    Science.gov (United States)

    Lee, Bruce Y; McGlone, Sarah M

    2010-08-01

    New vaccine pricing is a complicated process that could have substantial long-standing scientific, medical, and public health ramifications. Pricing can have a considerable impact on new vaccine adoption and, thereby, either culminate or thwart years of research and development and public health efforts. Typically, pricing strategy consists of the following ten components: 1. Conduct a target population analysis; 2. Map potential competitors and alternatives; 3. Construct a vaccine target product profile (TPP) and compare it to projected or actual TPPs of competing vaccines; 4. Quantify the incremental value of the new vaccine's characteristics; 5. Determine vaccine positioning in the marketplace; 6. Estimate the vaccine price-demand curve; 7. Calculate vaccine costs (including those of manufacturing, distribution, and research and development); 8. Account for various legal, regulatory, third party payer, and competitor factors; 9. Consider the overall product portfolio; 10. Set pricing objectives; 11. Select pricing and pricing structure. While the biomedical literature contains some studies that have addressed these components, there is still considerable room for more extensive evaluation of this important area.

  1. A simulation of earthquake induced undrained pore pressure ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Plains, Kandla River and Gulf of Kachch, between .... We consider the role of induced pore pressure ... location of the Bhuj earthquake epicentre as estimated by US Geological Survey. .... war R 2001 Changes in Ocean; GIS @ development 5.

  2. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    Science.gov (United States)

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  3. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  4. Genetic background impacts vaccine-induced reduction of pneumococcal colonization

    NARCIS (Netherlands)

    Kuipers, Kirsten; Van Selm, Saskia; van Opzeeland, Fred; Langereis, Jeroen D.; Verhagen, Lilly M.; Diavatopoulos, Dimitri A.; De Jonge, Marien I.

    2017-01-01

    Vaccination has been one of the most successful strategies to reduce morbidity and mortality caused by respiratory infections. Recent evidence suggests that differences in the host genetic background and environmental factors may contribute to heterogeneity in the immune response to vaccination.

  5. Evaluation of smallpox vaccines using variola neutralization.

    Science.gov (United States)

    Damon, Inger K; Davidson, Whitni B; Hughes, Christine M; Olson, Victoria A; Smith, Scott K; Holman, Robert C; Frey, Sharon E; Newman, Frances; Belshe, Robert B; Yan, Lihan; Karem, Kevin

    2009-08-01

    The search for a 'third'-generation smallpox vaccine has resulted in the development and characterization of several vaccine candidates. A significant barrier to acceptance is the absence of challenge models showing induction of correlates of protective immunity against variola virus. In this light, virus neutralization provides one of few experimental methods to show specific 'in vitro' activity of vaccines against variola virus. Here, we provide characterization of the ability of a modified vaccinia virus Ankara vaccine to induce variola virus-neutralizing antibodies, and we provide comparison with the neutralization elicited by standard Dryvax vaccination.

  6. Heavy-chain isotype patterns of human antibody-secreting cells induced by Haemophilus influenzae type b conjugate vaccines in relation to age and preimmunity

    DEFF Research Database (Denmark)

    Barington, T; Juul, Lars; Gyhrs, A

    1994-01-01

    The influence of preexisting immunity on the heavy-chain isotypes of circulating antibody-secreting cells (AbSC) induced by vaccination with Haemophilus influenzae type b (Hib) capsular polysaccharide (HibCP) coupled to tetanus toxoid (TT) or diphtheria toxoid (DT) and by vaccination with TT or D...... of natural HibCP antibodies (r = 0.59; P = 0.00002). A possible role of natural exposure for Hib or cross-reactive bacteria on the mucosal surfaces in the shaping of the isotype response to HibCP conjugate vaccines is discussed....

  7. Antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralizes a heterologous wild-type mumps virus associated with a large outbreak.

    Science.gov (United States)

    Rubin, Steven A; Qi, Li; Audet, Susette A; Sullivan, Bradley; Carbone, Kathryn M; Bellini, William J; Rota, Paul A; Sirota, Lev; Beeler, Judy

    2008-08-15

    Recent mumps outbreaks in older vaccinated populations were caused primarily by genotype G viruses, which are phylogenetically distinct from the genotype A vaccine strains used in the countries affected by the outbreaks. This finding suggests that genotype A vaccine strains could have reduced efficacy against heterologous mumps viruses. The remote history of vaccination also suggests that waning immunity could have contributed to susceptibility. To examine these issues, we obtained consecutive serum samples from children at different intervals after vaccination and assayed the ability of these samples to neutralize the genotype A Jeryl Lynn mumps virus vaccine strain and a genotype G wild-type virus obtained during the mumps outbreak that occurred in the United States in 2006. Although the geometric mean neutralizing antibody titers against the genotype G virus were approximately one-half the titers measured against the vaccine strain, and although titers to both viruses decreased with time after vaccination, antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralized the outbreak-associated virus at all time points tested.

  8. Immune Consequences of Decreasing Tumor Vasculature with Antiangiogenic Tyrosine Kinase Inhibitors in Combination with Therapeutic Vaccines

    Science.gov (United States)

    Farsaci, Benedetto; Donahue, Renee N.; Coplin, Michael A.; Grenga, Italia; Lepone, Lauren M.; Molinolo, Alfredo A.; Hodge, James W.

    2014-01-01

    This study investigated the effects on the tumor microenvironment of combining antiangiogenic tyrosine kinase inhibitors (TKI) with therapeutic vaccines, and in particular, how vascular changes affect tumor-infiltrating immune cells. We conducted studies using a TKI (sunitinib or sorafenib) in combination with recombinant vaccines in 2 murine tumor models: colon carcinoma (MC38-CEA) and breast cancer (4T1). Tumor vasculature was measured by immunohistochemistry using 3 endothelial cell markers: CD31 (mature), CD105 (immature/proliferating), and CD11b (monocytic). We assessed oxygenation, tight junctions, compactness, and pressure within tumors, along with the frequency and phenotype of tumor-infiltrating T lymphocytes (TIL), myeloid-derived suppressor cells (MDSC), and tumor-associated macrophages (TAM) following treatment with antiangiogenic TKIs alone, vaccine alone, or the combination of a TKI with vaccine. The combined regimen decreased tumor vasculature, compactness, tight junctions, and pressure, leading to vascular normalization and increased tumor oxygenation. This combination therapy also increased TILs, including tumor antigen-specific CD8 T cells, and elevated the expression of activation markers FAS-L, CXCL-9, CD31, and CD105 in MDSCs and TAMs, leading to reduced tumor volumes and an increase in the number of tumor-free animals. The improved antitumor activity induced by combining antiangiogenic TKIs with vaccine may be the result of activated lymphoid and myeloid cells in the tumor microenvironment, resulting from vascular normalization, decreased tumor-cell density, and the consequent improvement in vascular perfusion and oxygenation. Therapies that alter tumor architecture can thus have a dramatic impact on the effectiveness of cancer immunotherapy. PMID:25092771

  9. Selection pressure transforms the nature of social dilemmas in adaptive networks

    Energy Technology Data Exchange (ETDEWEB)

    Van Segbroeck, Sven; Lenaerts, Tom [MLG, Universite Libre de Bruxelles, Boulevard du Triomphe-CP 212, 1050 Brussels (Belgium); Santos, Francisco C [CENTRIA, Departamento de Informatica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Pacheco, Jorge M, E-mail: svsegbro@ulb.ac.be, E-mail: fcsantos@fct.unl.pt, E-mail: tlenaert@ulb.ac.be, E-mail: jmpacheco@math.uminho.pt [ATP-Group, CMAF, Complexo Interdisciplinar, P-1649-003 Lisboa Codex (Portugal)

    2011-01-15

    We have studied the evolution of cooperation in structured populations whose topology coevolves with the game strategies of the individuals. Strategy evolution proceeds according to an update rule with a free parameter, which measures the selection pressure. We explore how this parameter affects the interplay between network dynamics and strategy dynamics. A dynamical network topology can influence the strategy dynamics in two ways: (i) by modifying the expected payoff associated with each strategy and (ii) by reshaping the imitation network that underlies the evolutionary process. We show here that the selection pressure tunes the relative contribution of each of these two forces to the final outcome of strategy evolution. The dynamics of the imitation network plays only a minor role under strong selection, but becomes the dominant force under weak selection. We demonstrate how these findings constitute a mechanism supporting cooperative behavior.

  10. Selection pressure transforms the nature of social dilemmas in adaptive networks

    International Nuclear Information System (INIS)

    Van Segbroeck, Sven; Lenaerts, Tom; Santos, Francisco C; Pacheco, Jorge M

    2011-01-01

    We have studied the evolution of cooperation in structured populations whose topology coevolves with the game strategies of the individuals. Strategy evolution proceeds according to an update rule with a free parameter, which measures the selection pressure. We explore how this parameter affects the interplay between network dynamics and strategy dynamics. A dynamical network topology can influence the strategy dynamics in two ways: (i) by modifying the expected payoff associated with each strategy and (ii) by reshaping the imitation network that underlies the evolutionary process. We show here that the selection pressure tunes the relative contribution of each of these two forces to the final outcome of strategy evolution. The dynamics of the imitation network plays only a minor role under strong selection, but becomes the dominant force under weak selection. We demonstrate how these findings constitute a mechanism supporting cooperative behavior.

  11. Engineering Foot-and-Mouth Disease Viruses with Improved Growth Properties for Vaccine Development

    Science.gov (United States)

    Zheng, Haixue; Guo, Jianhong; Jin, Ye; Yang, Fan; He, Jijun; Lv, Lv; Zhang, Kesan; Wu, Qiong; Liu, Xiangtao; Cai, Xuepeng

    2013-01-01

    Background No licensed vaccine is currently available against serotype A foot-and-mouth disease (FMD) in China, despite the isolation of A/WH/CHA/09 in 2009, partly because this strain does not replicate well in baby hamster kidney (BHK) cells. Methodology/Principal Findings A novel plasmid-based reverse genetics system was used to construct a chimeric strain by replacing the P1 gene in the vaccine strain O/CHA/99 with that from the epidemic stain A/WH/CHA/09. The chimeric virus displayed growth kinetics similar to those of O/CHA/99 and was selected for use as a candidate vaccine strain after 12 passages in BHK cells. Cattle were vaccinated with the inactivated vaccine and humoral immune responses were induced in most of the animals on day 7. A challenge infection with A/WH/CHA/09 on day 28 indicated that the group given a 4-µg dose was fully protected and neither developed viremia nor seroconverted to a 3ABC antigen. Conclusions/Significance Our data demonstrate that the chimeric virus not only propagates well in BHK cells and has excellent antigenic matching against serotype A FMD, but is also a potential marker vaccine to distinguish infection from vaccination. These results suggest that reverse genetics technology is a useful tool for engineering vaccines for the prevention and control of FMD. PMID:23372840

  12. Predicting post-vaccination autoimmunity: who might be at risk?

    Science.gov (United States)

    Soriano, Alessandra; Nesher, Gideon; Shoenfeld, Yehuda

    2015-02-01

    Vaccinations have been used as an essential tool in the fight against infectious diseases, and succeeded in improving public health. However, adverse effects, including autoimmune conditions may occur following vaccinations (autoimmune/inflammatory syndrome induced by adjuvants--ASIA syndrome). It has been postulated that autoimmunity could be triggered or enhanced by the vaccine immunogen contents, as well as by adjuvants, which are used to increase the immune reaction to the immunogen. Fortunately, vaccination-related ASIA is uncommon. Yet, by defining individuals at risk we may further limit the number of individuals developing post-vaccination ASIA. In this perspective we defined four groups of individuals who might be susceptible to develop vaccination-induced ASIA: patients with prior post-vaccination autoimmune phenomena, patients with a medical history of autoimmunity, patients with a history of allergic reactions, and individuals who are prone to develop autoimmunity (having a family history of autoimmune diseases; asymptomatic carriers of autoantibodies; carrying certain genetic profiles, etc.). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. High level of Bcl-2 counteracts apoptosis mediated by a live rabies virus vaccine strain and induces long-term infection

    International Nuclear Information System (INIS)

    Thoulouze, Maria-Isabel; Lafage, Mireille; Yuste, Victor J.; Baloul, Leiela; Edelman, Lena; Kroemer, Guido; Israel, Nicole; Susin, Santos A.; Lafon, Monique

    2003-01-01

    We report here that rabies virus strains, currently used to immunize wildlife against rabies, induce not only caspase-dependent apoptosis in the human lymphoblastoid Jurkat T cell line (Jurkat-vect), but also a caspase-independent pathway involving the apoptosis-inducing factor (AIF). In contrast, a strain of neurotropic RV that does not induce apoptosis did not activate caspases or induce AIF translocation. Bcl-2 overproduction in Jurkat T cells (Jurkat-Bcl-2) abolished both pathways. ERA infection and production were similar in Jurkat-vect and Jurkat-Bcl-2 cells, indicating Bcl-2 has no direct antiviral effects. Bcl-2 production is naturally upregulated by day 3 in ERA-infected Jurkat-vect cultures. The increase in Bcl-2 levels seems to be controlled by the virus infection itself and results in the establishment of long-term, persistently infected cultures that continue to produce virus. Thus, in infections with live RV vaccine strains, infected cells may be productive reservoirs of virus in the long term. This may account for the high efficacy of live rabies vaccines

  14. Acoustic Pressure Oscillations Induced in I-Burner

    Science.gov (United States)

    Matsui, Kiyoshi

    Iwama et al. invented the I-burner to investigate acoustic combustion instability in solid-propellant rockets (Proceedings of ICT Conference, 1994, pp. 26-1 26-14). Longitudinal pressure oscillations were induced in the combustion chamber of a thick-walled rocket by combustion of a stepped-perforation grain (I-burner). These oscillations were studied here experimentally. Two I-burners with an internal diameter of 80 mm and a length of 1208 mm or 2240 mm were made. The grain had stepped perforations (20 and 42 mm in diameter and 657 and 160 mm in length, respectively). Longitudinal pressure oscillations always occur in two stages when an HTPB (hydroxyl-terminated polybutadiene)/AP (ammonium perchlorate)/aluminum-powder propellant burns (54 tests; the highest average pressure in the combustion chamber was 9.5 29 MPa), but no oscillations occur when an HTPB/AP propellant burns (29 tests). The pressure oscillations are essentially linear, but dissipation adds a nonlinear nature to them. In the first stage, the amplitudes are small and the first wave group predominates. In the next stage, the amplitudes are large and many wave groups are present. The change in the grain form accompanying the combustion affects the pressure oscillations.

  15. Hypertension Vaccine may be a boon to millions in developing world.

    Science.gov (United States)

    Bairwa, Mohan; Pilania, Manju; Gupta, Vivek; Yadav, Kapil

    2014-01-01

    Hypertension affects around 40% adults aged 25 years and more worldwide, and accounts for 7% of total disability-adjusted life-years. A simple algorithmic program is required to manage hypertension consisting of screening, life style measures, treatment and follow-up, a reliable drug supply and distribution system, and a credible health information system. Despite availability of effective antihypertensive drugs, long term treatment is still costly, tedious, and at the population level rather unsuccessful. Hypertension leaves patients and families with an avoidable heavy economic burden due to failure to control blood pressure. Health policy needs to address gross imbalance between prevention and management by increasing contribution to the preventive programs. During 21st century, the risk factors for morbidity and mortality have been changed, and researchers have started to work upon vaccines against lifestyle diseases like hypertension, diabetes etc. Researchers began experimenting with vaccines against the renin-angiotensin system to control hypertension around six decades ago. The vaccine candidates against hypertension namely ATR12181, pHAV-4Ang IIs, CYT006-AngQb, AngI-R, ATRQβ-001 have shown promising results. A candidate vaccine, CYT006-AngQb, has crossed initial phase and moved into phase 2 trials. However, more human studies in subsequent phases of trials are required to establish the safety and efficacy of anti-hypertensive vaccine. If proved safe and cost effective, a vaccine even with 50% efficacy against hypertension may protect about 90 million people from hypertension and its heavy economic burden. It can be an appropriate solution for low compliance to antihypertensive drug therapy as well as an avalanche to induce efforts on various chronic disease vaccine development programs.

  16. Isolation of an attenuated myxoma virus field strain that can confer protection against myxomatosis on contacts of vaccinates.

    Science.gov (United States)

    Bárcena, J; Pagès-Manté, A; March, R; Morales, M; Ramírez, M A; Sánchez-Vizcaíno, J M; Torres, J M

    2000-01-01

    Twenty MV strains obtained from a survey of field strains currently circulating throughout Spain were analyzed for their virulence and horizontal spreading among rabbits by contact transmission. A virus strain with suitable characteristics to be used as a potential vaccine against myxomatosis in wild rabbit populations was selected. Following inoculation, the selected MV strain elicited high levels of MV specific antibodies and induced protection of rabbits against a virulent MV challenge. Furthermore, the attenuated MV was transmitted to 9 out of 16 uninoculated rabbits by contact, inducing protection against myxomatosis.

  17. Vaccine supply, demand, and policy: a primer.

    Science.gov (United States)

    Muzumdar, Jagannath M; Cline, Richard R

    2009-01-01

    To provide an overview of supply and demand issues in the vaccine industry and the policy options that have been implemented to resolve these issues. Medline, Policy File, and International Pharmaceutical Abstracts were searched to locate academic journal articles. Other sources reviewed included texts on the topics of vaccine history and policy, government agency reports, and reports from independent think tanks. Keywords included vaccines, immunizations, supply, demand, and policy. Search criteria were limited to English language and human studies. Articles pertaining to vaccine demand, supply, and public policy were selected and reviewed for inclusion. By the authors. Vaccines are biologic medications, therefore making their development and production more difficult and costly compared with "small-molecule" drugs. Research and development costs for vaccines can exceed $800 million, and development may require 10 years or more. Strict manufacturing regulations and facility upgrades add to these costs. Policy options to increase and stabilize the supply of vaccines include those aimed at increasing supply, such as government subsidies for basic vaccine research, liability protection for manufacturers, and fast-track approval for new vaccines. Options to increase vaccine demand include advance purchase commitments, government stockpiles, and government financing for select populations. High development costs and multiple barriers to entry have led to a decline in the number of vaccine manufacturers. Although a number of vaccine policies have met with mixed success in increasing the supply of and demand for vaccines, a variety of concerns remain, including developing vaccines for complex pathogens and increasing immunization rates with available vaccines. New policy innovations such as advance market commitments and Medicare Part D vaccine coverage have been implemented and may aid in resolving some of the problems in the vaccine industry.

  18. Persistent Skin Reactions and Aluminium Hypersensitivity Induced by Childhood Vaccines

    DEFF Research Database (Denmark)

    Salik, Elaha; Løvik, Ida; Andersen, Klaus E

    2016-01-01

    There is increasing awareness of reactions to vaccination that include persistent skin reactions. We present here a retrospective investigation of long-lasting skin reactions and aluminium hypersensitivity in children, based on medical records and questionnaires sent to the parents. In the 10-year...... period 2003 to 2013 we identified 47 children with persistent skin reactions caused by childhood vaccinations. Most patients had a typical presentation of persisting pruritic subcutaneous nodules. Five children had a complex diagnostic process involving paediatricians, orthopaedics and plastic surgeons...... treated with potent topical corticosteroids and disappeared slowly. Although we advised families to continue vaccination of their children, one-third of parents omitted or postponed further vaccinations....

  19. Cold-adapted influenza and recombinant adenovirus vaccines induce cross-protective immunity against pH1N1 challenge in mice.

    Directory of Open Access Journals (Sweden)

    Mark R Soboleski

    Full Text Available The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1 highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus.BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca influenza viruses from 1977 or recombinant adenoviruses (rAd expressing 1934 nucleoprotein (NP and consensus matrix 2 (M2 (NP+M2-rAd. Antibodies against the M2 ectodomain (M2e were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus.Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic.

  20. Induction of cell-mediated immunity against B16-BL6 melanoma in mice vaccinated with cells modified by hydrostatic pressure and chemical crosslinking.

    Science.gov (United States)

    Eisenthal, A; Ramakrishna, V; Skornick, Y; Shinitzky, M

    1993-05-01

    In the preceding paper we have demonstrated an increase in presentation of both major histocompatibility complex antigens (MHC) and a tumor-associated antigen of the weakly immunogenic B16 melanoma by a straight-forward technique. The method consists in modulating the tumor cell membrane by hydrostatic pressure and simultaneous chemical crosslinking of the cell-surface proteins. In B16-BL6 melanoma, the induced antigenic modulation was found to persist for over 48 h, which permitted the evaluation of the ability of modified B16-BL6 cells to induce immunity against unmodified B16-BL6 cells. In the present study, we have shown that a significant systemic immunity was induced only in mice that were immunized with modified B16-BL6 melanoma cells, whereas immunization with unmodified B16-BL6 cells had only a marginal effect when compared to the results in control sham-immunized mice. The induced immunity was specific since a single immunization affected the growth of B16-BL6 tumors but had no effect on MCA 106, an antigenically unrelated tumor. The addition of interleukin-2 to the immunization regimen had no effect on the antitumor responses induced by the modified B16-BL6 cells. The cell-mediated immunity conferred by immunization with treated B16-BL6 cells was confirmed in experiments in vitro where splenocytes from immunized mice could be sensitized to proliferate by the presence of B16-BL6 cells. In addition, the altered antigenicity of these melanoma cells appeared to correlate with their increased susceptibility to specific effectors. Thus, 51Cr-labeled B16-BL6 target cells, modified by pressure and crosslinking, in comparison to control labeled target cells, were lysed in much greater numbers by effectors such as lymphokine-activated killer cells and allogeneic cytotoxic lymphocytes (anti-H-2b), while such cells remained resistant to lysis by natural killer cells. Our findings indicate that the physical and chemical modifications of the tumor cells that are

  1. Avian metapneumovirus excretion in vaccinated and non-vaccinated specified pathogen free laying chickens.

    Science.gov (United States)

    Hess, M; Huggins, M B; Mudzamiri, R; Heincz, U

    2004-02-01

    Vaccinated and non-vaccinated specified pathogen-free White Leghorn laying chickens were challenged at peak of lay by the intravenous or oculonasal route with a virulent avian metapneumovirus (aMPV) subtype B chicken strain. Severe clinical signs and a drop in egg production were induced in the non-vaccinated intravenously challenged birds whereas the vaccinates were not affected. Live virus excretion was demonstrated in the faeces and respiratory tract of non-vaccinated hens for up to 7 days post intravenous challenge. After oculonasal challenge, virus excretion could only be demonstrated in the respiratory tract for up to 5 days. No live virus excretion was found in either the faeces or the respiratory tract of vaccinated birds. Concurrent with live virus isolation, the presence of viral RNA was demonstrated by single reverse transcription-polymerase chain reaction (RT-PCR). Nested RT-PCR was more sensitive and viral RNA could be detected in non-vaccinated birds up to 28 days post either intravenous or oculonasal challenge, at which time the experiment was terminated. Viral RNA was detected for up to 12 days in vaccinated birds. This is the first study investigating excretion of aMPV and viral RNA in vaccinated and non-vaccinated laying hens challenged under experimental conditions. The results are of importance with regard to the persistence of aMPV and the appropriate diagnostic detection method in laying birds.

  2. Approaches towards DNA vaccination against a skin ciliate parasite in fish.

    Directory of Open Access Journals (Sweden)

    Louise von Gersdorff Jørgensen

    Full Text Available Rainbow trout (Oncorhynchus mykiss were immunized with plasmid DNA vaccine constructs encoding selected antigens from the parasite Ichthyophthirius multifiliis. Two immobilization antigens (I-ags and one cysteine protease were tested as genetic vaccine antigen candidates. Antigenicity was evaluated by immunostaining of transfected fish cells using I-ag specific mono- and polyclonal antibodies. I. multifiliis specific antibody production, regulation of immune-relevant genes and/or protection in terms of parasite burden or mortality was measured to evaluate the induced immune response in vaccinated fish. Apart from intramuscular injection, needle free injection and gene gun delivery were tested as alternative administration techniques. For the I-ags the complement protein fragment C3d and the termini of the viral haemorrhagic septicaemia virus glyco(Gprotein (VHSV G were tested as opsonisation and cellular localisation mediators, respectively, while the full length viral G protein was tested as molecular adjuvant. Expression of I-ags in transfected fish cells was demonstrated for several constructs and by immunohistochemistry it was possible to detect expression of a secreted form of the Iag52B in the muscle cells of injected fish. Up-regulations of mRNA coding for IgM, MHC I, MHC II and TCR β, respectively, were observed in muscle tissue at the injection site in selected trials. In the spleen up-regulations were found for IFN-γ and IL-10. The highest up-regulations were seen following co-administration of I-ag and cysteine protease plasmid constructs. This correlated with a slight elevation of an I. multifiliis specific antibody response. However, in spite of detectable antigen expression and immune reactions, none of the tested vaccination strategies provided significant protection. This might suggest an insufficiency of DNA vaccination alone to trigger protective mechanisms against I. multifiliis or that other or additional parasite antigens

  3. Impact of BRICS’ investment in vaccine development on the global vaccine market

    Science.gov (United States)

    Milstien, Julie; Schmitt, Sarah

    2014-01-01

    Abstract Brazil, the Russian Federation, India, China and South Africa – the countries known as BRICS – have made considerable progress in vaccine production, regulation and development over the past 20 years. In 1993, all five countries were producing vaccines but the processes used were outdated and non-standardized, there was little relevant research and there was negligible international recognition of the products. By 2014, all five countries had strong initiatives for the development of vaccine technology and had greatly improved their national regulatory capacity. South Africa was then the only BRICS country that was not completely producing vaccines. South Africa is now in the process of re-establishing its own vaccine production and passing beyond the stage of simply importing, formulating and filling vaccine bulks. Changes in the public sector’s price per dose of selected vaccines, the global market share represented by products from specific manufacturers, and the attractiveness, for multinational companies, of partnership and investment opportunities in BRICS companies have all been analysed. The results indicate that the BRICS countries have had a major impact on vaccine price and availability, with much of that impact attributable to the output of Indian vaccine manufacturers. China is expected to have a greater impact soon, given the anticipated development of Chinese vaccine manufacturers in the near future. BRICS’ accomplishments in the field of vaccine development are expected to reshape the global vaccine market and accelerate access to vaccines in the developing world. The challenge is to turn these expectations into strategic actions and practical outcomes. PMID:24940018

  4. Impact of BRICS' investment in vaccine development on the global vaccine market.

    Science.gov (United States)

    Kaddar, Miloud; Milstien, Julie; Schmitt, Sarah

    2014-06-01

    Brazil, the Russian Federation, India, China and South Africa--the countries known as BRICS--have made considerable progress in vaccine production, regulation and development over the past 20 years. In 1993, all five countries were producing vaccines but the processes used were outdated and non-standardized, there was little relevant research and there was negligible international recognition of the products. By 2014, all five countries had strong initiatives for the development of vaccine technology and had greatly improved their national regulatory capacity. South Africa was then the only BRICS country that was not completely producing vaccines. South Africa is now in the process of re-establishing its own vaccine production and passing beyond the stage of simply importing, formulating and filling vaccine bulks. Changes in the public sector's price per dose of selected vaccines, the global market share represented by products from specific manufacturers, and the attractiveness, for multinational companies, of partnership and investment opportunities in BRICS companies have all been analysed. The results indicate that the BRICS countries have had a major impact on vaccine price and availability, with much of that impact attributable to the output of Indian vaccine manufacturers. China is expected to have a greater impact soon, given the anticipated development of Chinese vaccine manufacturers in the near future. BRICS' accomplishments in the field of vaccine development are expected to reshape the global vaccine market and accelerate access to vaccines in the developing world. The challenge is to turn these expectations into strategic actions and practical outcomes.

  5. Now and future influenza vaccines.

    Science.gov (United States)

    Ruben, F L

    1990-03-01

    Influenza is a modern day plague. In the young, the clinical picture is classical, but in the elderly, the disease may go unsuspected until complications such as pneumonia develop. Influenza A and B viruses are responsible, and these viruses mutate with great regularity. Antibodies to the HA and NA surface antigens of influenza viruses, both naturally and vaccine induced, are protective. The earliest influenza vaccines were crude, toxic, and ineffective. With modern purification techniques, the egg-grown viruses have been turned into safe, immunogenic, and effective killed-virus vaccines--whole virus and split virus. Surveillance permits the correct virus strains to be incorporated into each new vaccine. Those who have been experiencing the worst effects of influenza have been identified. These individuals need to be immunized each year. In the future, live influenza virus vaccines may offer the benefits of ease of administration and longer-lasting protection. Synthetic peptides, genetically engineered antigens, and even nonantigen (anti-idiotype) vaccines are possible, but such vaccines will require adjuvant enhancement. For the present, greater efforts must be made to use existing influenza vaccines.

  6. Vaccination against tuberculosis.

    Science.gov (United States)

    Martin, Carlos; Aguilo, Nacho; Gonzalo-Asensio, Jesús

    2018-04-04

    BCG (Bacille Calmette-Guérin) vaccination is included in the immunization schedule for tuberculosis endemic countries with a global coverage at birth close to 90% worldwide. BCG was attenuated from Mycobacterium bovis almost a century ago, and provides a strong protection against disseminated forms of the disease, though very limited against pulmonary forms of tuberculosis, responsible for transmission. Novel prophylactic tuberculosis vaccines are in clinical development either to replace BCG or to improve its protection against respiratory forms of the disease. There are limitations understanding the immunological responses involved and the precise type of long-lived immunity that new vaccines need to induce. MTBVAC is the first and only tuberculosis vaccine candidate based on live-attenuated Mycobacterium tuberculosis in clinical evaluation. MTBVAC clinical development plans to target tuberculosis prevention in newborns, as a BCG replacement strategy, and as secondary objective to be tested in adolescents and adults previous vaccinated with BCG. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  7. The Role of Praziquantel- chemoprophylaxis and UV-attenuated Vaccine in Protecting Mice Against S. Mansoni Infection

    International Nuclear Information System (INIS)

    Gad, H.S.M.

    1999-01-01

    Potential control of schistosomiasis rely on multiple and integrated strategies, including vaccine production, chemotherapy and combination between chemotherapy and vaccination. The present work was conducted to evaluate the efficacy of combined PZQ- treatment with PZQ-chemoprophylaxis (PZQ-pretreatment) and UV-attenuated cercarial vaccination for the control of schistosomiasis. In the present work the induced levels of protection induced in vaccinated and vaccinated-PZQ-treated as well as, PZQ-pretreated and PZQ-pretreated followed by PZQ-treatment will be discussed. Results revealed that UV-Irradiated Vaccinated and vaccinated-PZQ-treated and PZQ-pretreated followed by PZQ-treated post challenged groups induced high levels of worm burdens reduction and mild pathological changes in both liver and intestine. Meanwhile, PZQ-pretreated alone failed to induce significant protection

  8. Vaccination with experimental feline immunodeficiency virus vaccines, based on autologous infected cells, elicits enhancement of homologous challenge infection

    NARCIS (Netherlands)

    J.A. Karlas (Jos); C.H.J. Siebelink (Kees); M.A. Peer; W. Huisman (Willem); A.M. Cuisinier; G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    1999-01-01

    textabstractCats were vaccinated with fixed autologous feline immunodeficiency virus (FIV)-infected cells in order to present viral proteins to the immune system of individual cats in an MHC-matched fashion. Upon vaccination, a humoral response against Gag was induced. Furthermore,

  9. [Genetic recombination in vaccine poliovirus: comparative study in strains excreted in course of vaccination by oral poliovirus vaccine and circulating strains].

    Science.gov (United States)

    Haddad-Boubaker, S; Ould-Mohamed-Abdallah, M V; Ben-Yahia, A; Triki, H

    2010-12-01

    Recombination is one of the major mechanisms of evolution in poliovirus. In this work, recombination was assessed in children during vaccination with OPV and among circulating vaccine strains isolated in Tunisia during the last 15 years in order to identify a possible role of recombination in the response to the vaccine or the acquisition of an increased transmissibility. This study included 250 poliovirus isolates: 137 vaccine isolates, excreted by children during primary vaccination with OPV and 113 isolates obtained from acute flaccid paralytic (AFP) cases and healthy contacts. Recombination was first assessed using a double PCR-RFLP, and sequencing. Nineteen per cent of recombinant strains were identified: 20% of strains excreted by vaccinees among 18% of circulating strains. The proportion of recombinant in isolates of serotype1 was very low in the two groups while the proportions of recombinants in serotypes 2 and 3 were different. In vaccinees, the frequency of recombinants in serotype3 decreased during the course of vaccination: 54% after the first dose, 32% after the second and 14% after the third dose. These results suggest that recombination enhances the ability of serotype3 vaccine strains to induce an immune response. Apart from recent vaccination, it may contribute to a more effective transmissibility of vaccine strains among human population. Copyright © 2009 Elsevier Masson SAS. All rights reserved.

  10. Vaccine Hesitancy Among Caregivers and Association with Childhood Vaccination Timeliness in Addis Ababa, Ethiopia.

    Science.gov (United States)

    Masters, Nina B; Tefera, Yemesrach A; Wagner, Abram L; Boulton, Matthew L

    2018-05-24

    Vaccines are vital to reducing childhood mortality, and prevent an estimated 2 to 3 million deaths annually which disproportionately occur in the developing world. Overall vaccine coverage is typically used as a metric to evaluate the adequacy of vaccine program performance, though it does not account for untimely administration, which may unnecessarily prolong children's susceptibility to disease. This study explored a hypothesized positive association between increasing vaccine hesitancy and untimeliness of immunizations administered under the Expanded Program on Immunization (EPI) in Addis Ababa, Ethiopia. This cross-sectional survey employed a multistage sampling design, randomly selecting one health center within five sub-cities of Addis Ababa. Caregivers of 3 to 12-month-old infants completed a questionnaire on vaccine hesitancy, and their infants' vaccination cards were examined to assess timeliness of received vaccinations. The sample comprised 350 caregivers. Overall, 82.3% of the surveyed children received all recommended vaccines, although only 55.9% of these vaccinations were timely. Few caregivers (3.4%) reported ever hesitating and 3.7% reported ever refusing a vaccine for their child. Vaccine hesitancy significantly increased the odds of untimely vaccination (AOR 1.94, 95% CI: 1.02, 3.71) in the adjusted analysis. This study found high vaccine coverage among a sample of 350 young children in Addis Ababa, though only half received all recommended vaccines on time. High vaccine hesitancy was strongly associated with infants' untimely vaccination, indicating that increased efforts to educate community members and providers about vaccines may have a beneficial impact on vaccine timeliness in Addis Ababa.

  11. Intranasal administration of a proteosome-influenza vaccine is well-tolerated and induces serum and nasal secretion influenza antibodies in healthy human subjects.

    Science.gov (United States)

    Treanor, John; Nolan, Carrie; O'Brien, Diane; Burt, David; Lowell, George; Linden, Janine; Fries, Louis

    2006-01-16

    Two randomized, blinded, active comparator-controlled trials of a prototype monovalent A/Beijing/262/95 (H1N1) - proteosome vaccine delivered by intranasal spray were performed in healthy adults. Overall, the intranasal proteosome-adjuvanted vaccine was well-tolerated with only mild stuffy nose and rhinorrhea seen more frequently in recipients of vaccine than in recipients of intranasal saline, and there were no serious adverse events. The intranasal proteosome-adjuvanted vaccine induced serum hemagglutination inhibiting (HAI) and nasal secretory IgA (sIgA) responses specific for the influenza antigen. Serum HAI responses were most influenced by the dosage level, whereas mucosal sIgA responses, although demonstrable with both single-dose and two-dose vaccine regimens, appeared to be greater in response to two-dose regimens (regardless of dose level). Further evaluation of mucosal influenza immunization using the proteosome adjuvant/delivery system is clearly warranted.

  12. Vaccines targeting drugs of abuse: is the glass half-empty or half-full?

    Science.gov (United States)

    Janda, Kim D; Treweek, Jennifer B

    2011-12-16

    The advent of vaccines targeting drugs of abuse heralded a fundamentally different approach to treating substance-related disorders. In contrast to traditional pharmacotherapies for drug abuse, vaccines act by sequestering circulating drugs and terminating the drug-induced 'high' without inducing unwanted neuromodulatory effects. Drug-targeting vaccines have entered clinical evaluation, and although these vaccines show promise from a biomedical viewpoint, the ethical and socioeconomic implications of vaccinating patients against drugs of abuse merit discussion within the scientific community.

  13. [Effects of cell-mediated immunity induced by intramuscular chitosan-pJME/ GM-CSF nano-DNA vaccine in BAlb/c mice].

    Science.gov (United States)

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2014-07-01

    This study aimed to investigate the immune adjuvant effect and mechanism induced by chitosan nanoparticles carrying pJME/GM-CSF. In this study, plasmid DNA (pJME/GM-CSF) was encapsulated in chitosan to prepare chitosan-pJME/GM-CSF nanoparticles using a complex coacervation process. Immunohistochemistry was used to detect the type of infiltrating cells at the site of intramuscular injection. The phenotype and functional changes of splenic DCs were measured by flow cytometry after different immunogens were injected intramuscularly. The killing activity of CTLs was assessed using the lactate dehydrogenase (LDH) release assay. The preparation of chitosan-pJME/GM-CSF nanoparticles matched the expected theoretical results. Our results also found that, after pJME/GM-CSF injection, the incoming cells were a mixture of macrophages, neutrophils, and immature DCs. Meanwhile, pJME/GM-CSF increased the expression of MHC class II molecules on splenic DCs, and enhanced their Ag capture and presentation functions. Cell-mediated immunity was induced by the vaccine. Furthermore, chitosan-pJME/GM-CSF nanoparticles outperformed the administration of standard pJME/GM-CSF in terms of DC recruitment, antigen processing and presentation, and vaccine enhancement. These findings reveal that chitosan could be used as delivery vector for DNA vaccine intramuscular immunizations, and enhance pJME/GM-CSF-induced cellular immune responses.

  14. Human Papillomavirus neutralizing and cross-reactive antibodies induced in HIV-positive subjects after vaccination with quadrivalent and bivalent HPV vaccines

    DEFF Research Database (Denmark)

    Faust, Helena; Nielsen, Lars Toft; Sehr, Peter

    2016-01-01

    Ninety-one HIV-infected individuals (61 men and 30 women) were randomized to vaccination either with quadrivalent (Gardasil™) or bivalent (Cervarix™) HPV vaccine. Neutralizing and specific HPV-binding serum antibodies were measured at baseline and 12 months after the first vaccine dose. Presence...... of neutralizing and binding antibodies had good agreement (average Kappa for HPV types 6, 11, 16, 18, 31, 33 and 45 was 0.65). At baseline, 88% of subjects had antibodies against at least one genital HPV. Following vaccination with Cervarix™, all subjects became seropositive for HPV16 and 18. After Gardasil......™ vaccination, 96% of subjects seroconverted for HPV16 and 73% for HPV18. Levels of HPV16-specific antibodies were 10IU in 85% of study subjects after vaccination. Antibodies against non-vaccine HPV types appeared after Gardasil...

  15. Adaptive evolution in locomotor performance: How selective pressures and functional relationships produce diversity.

    Science.gov (United States)

    Scales, Jeffrey A; Butler, Marguerite A

    2016-01-01

    Despite the complexity of nature, most comparative studies of phenotypic evolution consider selective pressures in isolation. When competing pressures operate on the same system, it is commonly expected that trade-offs will occur that will limit the evolution of phenotypic diversity, however, it is possible that interactions among selective pressures may promote diversity instead. We explored the evolution of locomotor performance in lizards in relation to possible selective pressures using the Ornstein-Uhlenbeck process. Here, we show that a combination of selection based on foraging mode and predator escape is required to explain variation in performance phenotypes. Surprisingly, habitat use contributed little explanatory power. We find that it is possible to evolve very different abilities in performance which were previously thought to be tightly correlated, supporting a growing literature that explores the many-to-one mapping of morphological design. Although we generally find the expected trade-off between maximal exertion and speed, this relationship surprisingly disappears when species experience selection for both performance types. We conclude that functional integration need not limit adaptive potential, and that an integrative approach considering multiple major influences on a phenotype allows a more complete understanding of adaptation and the evolution of diversity. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  16. Pressure-induced structural change in liquid GaIn eutectic alloy

    DEFF Research Database (Denmark)

    Yu, Q.; Ahmad, A. S.; Ståhl, Kenny

    2017-01-01

    Synchrotron x-ray diffraction reveals a pressure induced crystallization at about 3.4 GPa and a polymorphic transition near 10.3 GPa when compressed a liquid GaIn eutectic alloy up to ~13 GPa at room temperature in a diamond anvil cell. Upon decompression, the high pressure crystalline phase...

  17. Pressure-induced transition in Tl2MoO4

    International Nuclear Information System (INIS)

    Machon, Denis; Friese, Karen; Breczewski, Tomasz; Grzechnik, Andrzej

    2010-01-01

    Tl 2 MoO 4 has been studied under high-pressure by X-ray diffraction, Raman spectroscopy, and optical absorption measurements. A first-order phase transition is observed at 3.5±0.5 GPa. The nature (ordered vs. disordered) of the high-pressure phase strongly depends on the local hydrostatic conditions. Optical absorption measurements tend to show that this transition is concomitant with an electronic structure transformation. Prior to the transition, single crystal X-ray diffraction shows that pressure induces interactions between MoO 4 fragments and the Mo coordination number tends to increase. In addition, the stereoactivity of the lone-pair electrons on the three symmetrically independent Tl-sites is not uniform; while for two sites the stereoactivity decreases with increasing pressures for the third site the stereoactivity increases. - Graphical Abstract: (up) Structural evolutions of Tl 2 MoO 4 in the low-pressure phase. (Down) Optical properties of the high-pressure phase as a function of pressure. Display Omitted

  18. A mammalian cell based FACS-panning platform for the selection of HIV-1 envelopes for vaccine development.

    Directory of Open Access Journals (Sweden)

    Tim-Henrik Bruun

    Full Text Available An increasing number of broadly neutralizing monoclonal antibodies (bnMAb against the HIV-1 envelope (Env protein has been discovered recently. Despite this progress, vaccination efforts with the aim to re-elicit bnMAbs that provide protective immunity have failed so far. Herein, we describe the development of a mammalian cell based FACS-panning method in which bnMAbs are used as tools to select surface-exposed envelope variants according to their binding affinity. For that purpose, an HIV-1 derived lentiviral vector was developed to infect HEK293T cells at low multiplicity of infection (MOI in order to link Env phenotype and genotype. For proof of principle, a gp145 Env model-library was established in which the complete V3 domain was substituted by five strain specific V3 loop sequences with known binding affinities to nMAb 447-52D, respectively. Env genes were recovered from selected cells by PCR, subcloned into a lentiviral vector (i to determine and quantify the enrichment nMAb binders and (ii to generate a new batch of transduction competent particles. After 2 selection cycles the Env variant with highest affinity was enriched 20-fold and represented 80% of the remaining Env population. Exploiting the recently described bnMAbs, this procedure might prove useful in selecting Env proteins from large Env libraries with the potential to elicit bnMAbs when used as vaccine candidates.

  19. Pressure-induced drastic structural change in liquid CdTe

    International Nuclear Information System (INIS)

    Kinoshita, T.; Hattori, T.; Narushima, T.; Tsuji, K.

    2005-01-01

    We investigate the structure of liquid CdTe at pressures up to 6 GPa by synchrotron x-ray diffraction. The structure factor, S(Q), and the pair distribution function, g(r), change drastically within a small pressure interval of about 1 GPa (between 1.8 and 3 GPa). The S(Q),g(r), and other structural parameters, such as the average coordination number, CN, and the ratios of peak positions in S(Q) or g(r), reveal that the change originates from the pressure-induced modification in the local structure from the zinc-blende-like form into the rocksaltlike one. The liquid CdTe shows a high-pressure behavior similar to that in the crystalline counterpart in terms of the sharpness of the structural change and the high-pressure sequence in the local structure

  20. Genetic polymorphism and natural selection of Duffy binding protein of Plasmodium vivax Myanmar isolates

    Science.gov (United States)

    2012-01-01

    Background Plasmodium vivax Duffy binding protein (PvDBP) plays an essential role in erythrocyte invasion and a potential asexual blood stage vaccine candidate antigen against P. vivax. The polymorphic nature of PvDBP, particularly amino terminal cysteine-rich region (PvDBPII), represents a major impediment to the successful design of a protective vaccine against vivax malaria. In this study, the genetic polymorphism and natural selection at PvDBPII among Myanmar P. vivax isolates were analysed. Methods Fifty-four P. vivax infected blood samples collected from patients in Myanmar were used. The region flanking PvDBPII was amplified by PCR, cloned into Escherichia coli, and sequenced. The polymorphic characters and natural selection of the region were analysed using the DnaSP and MEGA4 programs. Results Thirty-two point mutations (28 non-synonymous and four synonymous mutations) were identified in PvDBPII among the Myanmar P. vivax isolates. Sequence analyses revealed that 12 different PvDBPII haplotypes were identified in Myanmar P. vivax isolates and that the region has evolved under positive natural selection. High selective pressure preferentially acted on regions identified as B- and T-cell epitopes of PvDBPII. Recombination may also be played a role in the resulting genetic diversity of PvDBPII. Conclusions PvDBPII of Myanmar P. vivax isolates displays a high level of genetic polymorphism and is under selective pressure. Myanmar P. vivax isolates share distinct types of PvDBPII alleles that are different from those of other geographical areas. These results will be useful for understanding the nature of the P. vivax population in Myanmar and for development of PvDBPII-based vaccine. PMID:22380592

  1. Systematic documentation of new vaccine introduction in selected countries of the Latin American Region.

    Science.gov (United States)

    de Oliveira, Lúcia H; Toscano, Cristiana M; Sanwogou, N Jennifer; Ruiz-Matus, Cuauhtémoc; Tambini, Gina; Roses-Periago, Mirta; Andrus, Jon K

    2013-07-02

    Countries in Latin America were among the first developing countries to introduce new vaccines, particularly rotavirus (RV) and pneumococcal conjugate vaccines (PCVs), into their national immunization schedules. Experiences and lessons learned from these countries are valuable to donors, immunization partners, and policy makers in other countries wishing to make informed decisions on vaccine introduction. In order to enhance knowledge and promote understanding of the process of new vaccine introduction in the Latin American Region, with particular focus on RV and PCV, we conducted a systematic qualitative assessment. We evaluated the decision-making process, documented the structure in place, and reviewed key factors pertaining to new vaccine introduction. These include country morbidity and mortality data available prior to vaccine introduction, funding sources and mechanisms for vaccine introduction, challenges of implementation, and assessment of vaccine impact. From March 2010 to April 2011, we evaluated a subset of countries that had introduced RV and/or PCV in the past five years through interviews with key informants at the country level and through a systematic review of published data, gray literature, official technical documents, and country-specific health indicators. Countries evaluated were Bolivia, Brazil, Nicaragua, Peru, and Venezuela. In all countries, the potential of new vaccines to reduce mortality, as established by Millennium Development Goal 4, was an important consideration leading to vaccine introduction. Several factors-the availability of funds, the existence of sufficient evidence for vaccine introduction, and the feasibility of sustainable financing-were identified as crucial components of the decision-making process in the countries evaluated. The decision making process regarding new vaccine introduction in the countries evaluated does not follow a systematic approach. Nonetheless, existing evidence on efficacy, potential impact, and

  2. Intratracheal infection as an efficient route for testing vaccines against Chlamydia abortus in sheep.

    Science.gov (United States)

    Álvarez, D; Salinas, J; Buendía, A J; Ortega, N; del Río, L; Sánchez, J; Navarro, J A; Gallego, M C; Murcia-Belmonte, A; Cuello, F; Caro, M R

    2015-09-01

    Pregnant ewes have been widely used to test vaccines against Chlamydia abortus. However, this model entails many disadvantages such as high economic costs and long periods of pregnancy. The murine model is very useful for specific studies but cannot replace the natural host for the later stages of vaccine evaluation. Therefore, a non-pregnant model of the natural host might be useful for a vaccine trial to select the best vaccine candidates prior to use of the pregnant model. With this aim, two routes of infection were assessed in young non-pregnant sheep, namely, intranasal (IN) and intratracheal (IT). In addition, groups of non-vaccinated sheep and sheep immunised with an inactivated vaccine were established to investigate the suitability of the model for testing vaccines. After the experimental infection, isolation of the microorganism in several organs, with pathological and immunohistochemical analyses, antibody production assessment and investigation by PCR of the presence of chlamydia in the vagina or rectum were carried out. Experimental IT inoculation of C. abortus induced pneumonia in sheep during the first few days post-infection, confirming the suitability of the IT route for testing vaccines in the natural host. The course of infection and the resulting pathological signs were less severe in vaccinated sheep compared with non-vaccinated animals, demonstrating the success of vaccination. IN infection did not produce evident lesions or demonstrate the presence of chlamydial antigen in the lungs and cannot be considered an appropriate model for testing vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Applying Unique Molecular Identifiers in Next Generation Sequencing Reveals a Constrained Viral Quasispecies Evolution under Cross-Reactive Antibody Pressure Targeting Long Alpha Helix of Hemagglutinin

    Science.gov (United States)

    Hauck, Nastasja C.; Kirpach, Josiane; Kiefer, Christina; Farinelle, Sophie; Morris, Stephen A.; Muller, Claude P.; Lu, I-Na

    2018-01-01

    To overcome yearly efforts and costs for the production of seasonal influenza vaccines, new approaches for the induction of broadly protective and long-lasting immune responses have been developed in the past decade. To warrant safety and efficacy of the emerging crossreactive vaccine candidates, it is critical to understand the evolution of influenza viruses in response to these new immune pressures. Here we applied unique molecular identifiers in next generation sequencing to analyze the evolution of influenza quasispecies under in vivo antibody pressure targeting the hemagglutinin (HA) long alpha helix (LAH). Our vaccine targeting LAH of hemagglutinin elicited significant seroconversion and protection against homologous and heterologous influenza virus strains in mice. The vaccine not only significantly reduced lung viral titers, but also induced a well-known bottleneck effect by decreasing virus diversity. In contrast to the classical bottleneck effect, here we showed a significant increase in the frequency of viruses with amino acid sequences identical to that of vaccine targeting LAH domain. No escape mutant emerged after vaccination. These results not only support the potential of a universal influenza vaccine targeting the conserved LAH domains, but also clearly demonstrate that the well-established bottleneck effect on viral quasispecies evolution does not necessarily generate escape mutants. PMID:29587397

  4. Applying Unique Molecular Identifiers in Next Generation Sequencing Reveals a Constrained Viral Quasispecies Evolution under Cross-Reactive Antibody Pressure Targeting Long Alpha Helix of Hemagglutinin

    Directory of Open Access Journals (Sweden)

    Nastasja C. Hauck

    2018-03-01

    Full Text Available To overcome yearly efforts and costs for the production of seasonal influenza vaccines, new approaches for the induction of broadly protective and long-lasting immune responses have been developed in the past decade. To warrant safety and efficacy of the emerging crossreactive vaccine candidates, it is critical to understand the evolution of influenza viruses in response to these new immune pressures. Here we applied unique molecular identifiers in next generation sequencing to analyze the evolution of influenza quasispecies under in vivo antibody pressure targeting the hemagglutinin (HA long alpha helix (LAH. Our vaccine targeting LAH of hemagglutinin elicited significant seroconversion and protection against homologous and heterologous influenza virus strains in mice. The vaccine not only significantly reduced lung viral titers, but also induced a well-known bottleneck effect by decreasing virus diversity. In contrast to the classical bottleneck effect, here we showed a significant increase in the frequency of viruses with amino acid sequences identical to that of vaccine targeting LAH domain. No escape mutant emerged after vaccination. These results not only support the potential of a universal influenza vaccine targeting the conserved LAH domains, but also clearly demonstrate that the well-established bottleneck effect on viral quasispecies evolution does not necessarily generate escape mutants.

  5. Whole-cell pertussis vaccine induces low antibody levels in human immunodeficiency virus-infected children living in sub-Saharan Africa.

    Science.gov (United States)

    Tejiokem, Mathurin C; Njamkepo, Elisabeth; Gouandjika, Ionela; Rousset, Dominique; Béniguel, Lydie; Bilong, Catherine; Tene, Gilbert; Penda, Ida; Ngongueu, Carine; Gody, Jean C; Guiso, Nicole; Baril, Laurence

    2009-04-01

    The WHO recommendations for the immunization of children infected with human immunodeficiency virus (HIV) differ slightly from the guidelines for uninfected children. The introduction of antiretroviral therapy for HIV-infected infants should considerably prolong their life expectancy. The question of the response to the whole-cell pertussis (wP) vaccine should now be addressed, particularly in countries in which pertussis remains endemic. To evaluate the persistence of antibodies to the wP vaccine in HIV-infected and uninfected children who had previously received this vaccine in routine clinical practice, we conducted a cross-sectional study of children aged 18 to 36 months, born to HIV-infected mothers and living in Cameroon or the Central African Republic. We tested blood samples for antibodies to the wP vaccine and for antibodies to diphtheria and tetanus toxoids (D and T, respectively) in the context of the use of a combined DTwP vaccine. We enrolled 50 HIV-infected children and 78 uninfected, HIV-exposed children in the study. A lower proportion of HIV-infected children than uninfected children had antibodies against the antigens tested for all valences of the DTwP vaccine. Agglutinin levels were substantially lower in HIV-infected than in HIV-exposed but uninfected children (30.0% versus 55.1%, respectively; P = 0.005). We also observed a high risk of low antibody levels in response to the DTwP vaccine in HIV-infected children with severe immunodeficiency (CD4 T-cell level, <25%). The concentrations of antibodies induced by the DTwP vaccine were lower in HIV-infected children than in uninfected children. This study supports the need for a booster dose of the DTwP vaccine in order to maintain high antibody levels in HIV-infected children.

  6. Influence of maternal vaccination against diphtheria, tetanus, and pertussis on the avidity of infant antibody responses to a pertussis containing vaccine in Belgium.

    Science.gov (United States)

    Caboré, Raïssa Nadège; Maertens, Kirsten; Dobly, Alexandre; Leuridan, Elke; Van Damme, Pierre; Huygen, Kris

    2017-10-03

    Maternal antibodies induced by vaccination during pregnancy cross the placental barrier and can close the susceptibility gap to pertussis in young infants up to the start of primary immunization. As not only the quantity but also the quality of circulating antibodies is important for protection, we assessed whether maternal immunization affects the avidity of infant vaccine-induced IgG antibodies, in the frame of a prospective clinical trial on pregnancy vaccination in Belgium. Infants born from Tdap (Boostrix®) vaccinated (N = 55) and unvaccinated (N = 26) mothers were immunized with a hexavalent pertussis containing vaccine (Infanrix Hexa®) at 8, 12 and 16 weeks, followed by a fourth dose at 15 months of age. Right before and one month after this fourth vaccine dose, the avidity of IgG antibodies against diphtheria toxin (DT), tetanus toxin (TT), pertussis toxin (PT), filamentous hemagglutinin (FHA) and pertactin (Prn) was determined using 1.5 M ammonium thiocyanate as dissociating agent. In both groups, antibody avidity was moderate for TT, PT, FHA and Prn and low for DT after priming. After a fourth dose, antibody avidity increased significantly to high avidity for TT and PT, whereas it remained moderate for FHA and Prn and low for DT. The avidity correlated positively with antibody level in both study groups, yet not significantly for PT. When comparing both study groups, only PT-specific antibodies showed significantly lower avidity in infants born from vaccinated than from unvaccinated mothers after the fourth vaccine dose. The clinical significance of lower avidity of vaccine induced infant antibodies after maternal vaccination, if any, needs further investigation.

  7. Buccal and sublingual vaccine delivery.

    Science.gov (United States)

    Kraan, Heleen; Vrieling, Hilde; Czerkinsky, Cecil; Jiskoot, Wim; Kersten, Gideon; Amorij, Jean-Pierre

    2014-09-28

    Because of their large surface area and immunological competence, mucosal tissues are attractive administration and target sites for vaccination. An important characteristic of mucosal vaccination is its ability to elicit local immune responses, which act against infection at the site of pathogen entry. However, mucosal surfaces are endowed with potent and sophisticated tolerance mechanisms to prevent the immune system from overreacting to the many environmental antigens. Hence, mucosal vaccination may suppress the immune system instead of induce a protective immune response. Therefore, mucosal adjuvants and/or special antigen delivery systems as well as appropriate dosage forms are required in order to develop potent mucosal vaccines. Whereas oral, nasal and pulmonary vaccine delivery strategies have been described extensively, the sublingual and buccal routes have received considerably less attention. In this review, the characteristics of and approaches for sublingual and buccal vaccine delivery are described and compared with other mucosal vaccine delivery sites. We discuss recent progress and highlight promising developments in the search for vaccine formulations, including adjuvants and suitable dosage forms, which are likely critical for designing a successful sublingual or buccal vaccine. Finally, we outline the challenges, hurdles to overcome and formulation issues relevant for sublingual or buccal vaccine delivery. Copyright © 2014. Published by Elsevier B.V.

  8. Persistence of antibodies 20 y after vaccination with a combined hepatitis A and B vaccine.

    Science.gov (United States)

    Van Damme, Pierre; Leroux-Roels, Geert; Suryakiran, P; Folschweiller, Nicolas; Van Der Meeren, Olivier

    2017-05-04

    Vaccination is the most effective and well-tolerated method of conferring long-term protection against hepatitis A and B viruses (HAV; HBV). Long-term studies are required to characterize the duration of protection and need for boosters. Following primary immunization of 150 and 157 healthy adults with 3-doses of combined hepatitis A/hepatitis B vaccine (HAB; Twinrix™, GSK Vaccines, Belgium) at 0-1-6 months in 2 separate studies, we measured vaccine-induced antibody persistence against HAV and HBV annually for 20 y (Study A: NCT01000324; Study B: NCT01037114). Subjects with circulating anti-HAV antibodies B surface antigen B vaccine dose (Havrix™/Engerix™-B, GSK Vaccines, Belgium). Applying the immunogenicity results from these studies, mathematical modeling predicted long-term persistence. After 20 y, 18 and 25 subjects in studies A and B, respectively, comprised the long-term according-to-protocol cohort for immunogenicity; 100% and 96.0% retained anti-HAV antibodies ≥ 15 mIU/mL, respectively; 94.4% and 92.0% had anti-HBs antibodies ≥ 10 mIU/mL, respectively. Between Years 16-20, 4 subjects who received a challenge dose of monovalent hepatitis A vaccine (N = 2) or hepatitis B vaccine (N = 2), all mounted a strong anamnestic response suggestive of immune memory despite low antibody levels. Mathematical modeling predicts that 40 y after vaccination ≥ 97% vaccinees will maintain anti-HAV ≥ 15 mIU/mL and ≥ 50% vaccinees will retain anti-HBs ≥ 10 mIU/mL. Immunogenicity data confirm that primary immunization with 3-doses of HAB induces persisting anti-HAV and anti-HBs specific antibodies in most adults for up to 20 y; mathematical modeling predicts even longer-term protection.

  9. Persistence of antibodies 20 y after vaccination with a combined hepatitis A and B vaccine

    Science.gov (United States)

    Van Damme, Pierre; Leroux-Roels, Geert; Suryakiran, P.; Folschweiller, Nicolas; Van Der Meeren, Olivier

    2017-01-01

    ABSTRACT Vaccination is the most effective and well-tolerated method of conferring long-term protection against hepatitis A and B viruses (HAV; HBV). Long-term studies are required to characterize the duration of protection and need for boosters. Following primary immunization of 150 and 157 healthy adults with 3-doses of combined hepatitis A/hepatitis B vaccine (HAB; Twinrix™, GSK Vaccines, Belgium) at 0-1-6 months in 2 separate studies, we measured vaccine-induced antibody persistence against HAV and HBV annually for 20 y (Study A: NCT01000324; Study B: NCT01037114). Subjects with circulating anti-HAV antibodies hepatitis B surface antigen hepatitis A and/or B vaccine dose (Havrix™/Engerix™-B, GSK Vaccines, Belgium). Applying the immunogenicity results from these studies, mathematical modeling predicted long-term persistence. After 20 y, 18 and 25 subjects in studies A and B, respectively, comprised the long-term according-to-protocol cohort for immunogenicity; 100% and 96.0% retained anti-HAV antibodies ≥ 15 mIU/mL, respectively; 94.4% and 92.0% had anti-HBs antibodies ≥ 10 mIU/mL, respectively. Between Years 16–20, 4 subjects who received a challenge dose of monovalent hepatitis A vaccine (N = 2) or hepatitis B vaccine (N = 2), all mounted a strong anamnestic response suggestive of immune memory despite low antibody levels. Mathematical modeling predicts that 40 y after vaccination ≥ 97% vaccinees will maintain anti-HAV ≥ 15 mIU/mL and ≥ 50% vaccinees will retain anti-HBs ≥ 10 mIU/mL. Immunogenicity data confirm that primary immunization with 3-doses of HAB induces persisting anti-HAV and anti-HBs specific antibodies in most adults for up to 20 y; mathematical modeling predicts even longer-term protection. PMID:28281907

  10. Universal influenza vaccines, science fiction or soon reality?

    Science.gov (United States)

    de Vries, Rory D; Altenburg, Arwen F; Rimmelzwaan, Guus F

    2015-01-01

    Currently used influenza vaccines are only effective when the vaccine strains match the epidemic strains antigenically. To this end, seasonal influenza vaccines must be updated almost annually. Furthermore, seasonal influenza vaccines fail to afford protection against antigenically distinct pandemic influenza viruses. Because of an ever-present threat of the next influenza pandemic and the continuous emergence of drift variants of seasonal influenza A viruses, there is a need for an universal influenza vaccine that induces protective immunity against all influenza A viruses. Here, we summarize some of the efforts that are ongoing to develop universal influenza vaccines.

  11. Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Lourena Emanuele Costa

    Full Text Available BACKGROUND: The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL. Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. METHODOLOGY/MAIN FINDINGS: Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin, showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. CONCLUSIONS/SIGNIFICANCE: This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the

  12. A reassortment vaccine candidate as the improved formulation to induce protection against very virulent infectious bursal disease virus.

    Science.gov (United States)

    Qi, Xiaole; Chen, Yuming; Ren, Xiangang; Zhang, Lizhou; Gao, Li; Wang, Nian; Qin, Liting; Wang, Yongqiang; Gao, Yulong; Wang, Xiaomei

    2014-03-14

    Infectious bursal disease (IBD) is a highly contagious immunosuppressive disease affecting all major poultry producing areas of the world. Infectious bursal disease virus (IBDV) is genetically prone to mutation so that vaccines have to be changed accordingly. However, the traditional method of vaccine development with blind passage could not fit the style of the emergency prevention of IBDV. In this study, for the first time, a segment-reassortment attenuated IBDV rXATB, consisting of modified segment A of a prevalent strain and segment B of an attenuated strain, was designed and rescued; rXATB was stable and could induce good humoral and cellular immune responses which resulted in excellent protection against the lethal challenge of vvIBDV without obvious immunosuppression in chicken. This study revolutionarily provides a new formulation based on reverse genetics to develop new vaccine against prevalent IBDV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Active Vaccines for Alzheimer Disease Treatment.

    Science.gov (United States)

    Sterner, Rosalie M; Takahashi, Paul Y; Yu Ballard, Aimee C

    2016-09-01

    Vaccination against peptides specific to Alzheimer disease may generate an immune response that could help inhibit disease and symptom progression. PubMed and Scopus were searched for clinical trial articles, review articles, and preclinical studies relevant to the field of active Alzheimer disease vaccines and raw searches yielded articles ranging from 2016 to 1973. ClinicalTrials.gov was searched for active Alzheimer disease vaccine trials. Manual research and cross-referencing from reviews and original articles was performed. First generation Aβ42 phase 2a trial in patients with mild to moderate Alzheimer disease resulted in cases of meningoencephalitis in 6% of patients, so next generation vaccines are working to target more specific epitopes to induce a more controlled immune response. Difficulty in developing these vaccines resides in striking a balance between providing a vaccine that induces enough of an immune response to actually clear protein sustainably but not so much of a response that results in excess immune activation and possibly adverse effects such as meningoencephalitis. Although much work still needs to be done in the field to make this a practical possibility, the enticing allure of being able to treat or even prevent the extraordinarily impactful disease that is Alzheimer disease makes the idea of active vaccination for Alzheimer disease very appealing and something worth striving toward. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  14. Tat protein vaccination of cynomolgus macaques influences SHIV-89.6P cy243 epitope variability.

    Science.gov (United States)

    Ridolfi, Barbara; Genovese, Domenico; Argentini, Claudio; Maggiorella, Maria Teresa; Sernicola, Leonardo; Buttò, Stefano; Titti, Fausto; Borsetti, Alessandra; Ensoli, Barbara

    2008-02-01

    In a previous study we showed that vaccination with the native Tat protein controlled virus replication in five out of seven monkeys against challenge with the simian human immunodeficiency virus (SHIV)-89.6P cy243 and that this protection correlated with T helper (Th)-1 response and cytotoxic T lymphocyte (CTL) activity. To address the evolution of the SHIV-89.6P cy243 both in control and vaccinated infected monkeys, the sequence of the human immunodeficiency virus (HIV)-1 Tat protein and the C2-V3 Env region of the proviral-DNA-derived clones were analyzed in both control and vaccinated but unprotected animals. We also performed analysis of the T cell epitope using a predictive epitope model taking into consideration the phylogeny of the variants. Our results suggest that even though the viral evolution observed in both groups of monkeys was directed toward variations in the major histocompatibility complex (MHC)-I epitopes, in the control animals it was associated with mutational escape of such epitopes. On the contrary, it is possible that viral evolution in the vaccinated monkeys was linked to mutations that arose to keep high the viral fitness. In the vaccinated animals the reduction of epitope variability, obtained prompting the immune system by vaccination and inducing a specific immunological response against virus, was able to reduce the emergence of escape mutants. Thus the intervention of host's selective forces in driving CTL escape mutants and in modulating viral fitness appeared to be different in the two groups of monkeys. We concluded that in the vaccinated unprotected animals, vaccination with the Tat protein induced a broad antiviral response, as demonstrated by the reduced ability to develop escape mutants, which is known to help in the control of viral replication.

  15. Effects of a chronic stress treatment on vaccinal response in lambs.

    Science.gov (United States)

    Destrez, A; Boissy, A; Guilloteau, L; Andanson, S; Souriau, A; Laroucau, K; Chaillou, E; Deiss, V

    2017-05-01

    Farming systems can expose animals to chronic mild stress which is known to induce negative affective state. Affective state in animals, as in humans, can be assessed through behavioral cues. This study aimed to describe the effect of a chronic mild stress, known to induce a negative affective state, on sheep health through their response to vaccination. The study used 15 lambs subjected to a model of chronic mild stress for 15 weeks and 15 lambs reared under conventional farming as a control group. After 7 weeks of stressful treatment, the lambs were individually exposed to a judgment bias test to assess a putative stress-induced 'pessimism.' After 15 weeks of stressful treatment, antibody immune response was measured after an injection of a live vaccine challenge (Chlamydia abortus attenuated vaccine strain 1B). Stressed lambs displayed a pessimistic-like perception in the judgment bias test, revealing a negative affective state. Stressed and control animals showed different immunological reactions to vaccine challenge: stressed sheep had lower hemoglobin concentrations and higher platelet, granulocyte and acute-phase protein concentrations. Antibody response induced by the vaccine strain was not different between stressed and control sheep. Our results suggest that negative affective state induced by chronic stress treatment may induce a stronger inflammatory response to vaccine challenge in sheep. Improvement of animal health may be achieved through consideration of stressors that may affect the emotional and immunological state of sheep.

  16. Antibody responses induced by Japanese whole inactivated vaccines against equine influenza virus (H3N8) belonging to Florida sublineage clade2.

    Science.gov (United States)

    Yamanaka, Takashi; Bannai, Hiroshi; Nemoto, Manabu; Tsujimura, Koji; Kondo, Takashi; Matsumura, Tomio

    2011-04-01

    In 2010, the World Organisation for Animal Health recommended the inclusion of a Florida sublineage clade2 strain of equine influenza virus (H3N8), which is represented by A/equine/Richmond/1/07 (Richmond07), in equine influenza vaccines. Here, we evaluate the antigenic differences between Japanese vaccine strains and Richmond07 by performing hemagglutination inhibition (HI) assays. Ferret antiserum raised to A/equine/La Plata/93 (La Plata93), which is a Japanese vaccine strain, reacted with Richmond07 at a similar titer to La Plata93. Moreover, two hundred racehorses exhibited similar geometric mean HI antibody titers against La Plata93 and Richmond07 (73.1 and 80.8, respectively). Therefore, we can expect the antibody induced by the current Japanese vaccines to provide some protection against Richmond07-like viruses.

  17. Cross-reactivity of antibodies against PorA after vaccination with a meningococcal B outer membrane vesicle vaccine

    NARCIS (Netherlands)

    Vermont, C. L.; van Dijken, H. H.; Kuipers, A. J.; van Limpt, C. J. P.; Keijzers, W. C. M.; van der Ende, A.; de Groot, R.; van Alphen, L.; van den Dobbelsteen, G. P. J. M.

    2003-01-01

    The cross-reactivity of PorA-specific antibodies induced by a monovalent P1.7-2,4 (MonoMen) and/or a hexavalent (HexaMen) meningococcal B outer membrane vesicle vaccine (OMV) in toddlers and school children was studied by serum bactericidal assays (SBA). First, isogenic vaccine strains and

  18. Development and evaluation of chitosan microspheres for tetanus, diphtheria and divalent vaccines: a comparative study of subcutaneous and intranasal administration in mice.

    Science.gov (United States)

    Hashem, Fahima M; Fahmy, Sahar A; El-Sayed, Aly M; Al-Sawahli, Majid M

    2013-01-01

    There is a need to use the new technologies to induce immunity with minimum number of vaccination sessions to ensure compliance with reducing cost. To develop single shot vaccines of tetanus, diphtheria and divalent toxoids microsphere's formulations and to induce their immune response after intranasal and subcutaneous administration in mice. The microspheres were prepared using different concentrations of chitosan. Microsphere's morphology, particle size analysis, encapsulation efficiency and antigen integrity were performed and the best formulations were selected for in vitro and in vivo testing in mice. The developed microspheres have a yield percent of 70.3-91.5%. In vitro release of antigens indicated that tetanus release was increased up to 75 and 81% post T5 and TD5 formulations respectively, whereas diphtheria cumulative release increased up to 74 and 69% post D3 and TD5, respectively. Antibody levels produced were lower than that obtained from alum adsorbed vaccine but higher than the minimum level required to induce immunogenicity (>0.01 IU/mL). The subcutaneous route of administration was superior over the intranasal route in producing higher antibody levels. Chitosan microspheres were developed successfully and prove that chitosan represents a good candidate for vaccines delivery.

  19. Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves.

    Science.gov (United States)

    Mansoor, Fawad; Earley, Bernadette; Cassidy, Joseph P; Markey, Bryan; Doherty, Simon; Welsh, Michael D

    2015-08-21

    There is a need to improve vaccination against respiratory pathogens in calves by stimulation of local immunity at the site of pathogen entry at an early stage in life. Ideally such a vaccine preparation would not be inhibited by the maternally derived antibodies. Additionally, localized immune response at the site of infection is also crucial to control infection at the site of entry of virus. The present study investigated the response to an intranasal bovine parainfluenza 3 virus (BPI3V) antigen preparation encapsulated in PLGA (poly dl-lactic-co-glycolide) nanoparticles in the presence of pre-existing anti-BPI3V antibodies in young calves and comparing it to a commercially available BPI3V respiratory vaccine. There was a significant (P administration of the nanoparticle vaccine an early immune response was induced that continued to grow until the end of study and was not observed in the other treatment groups. Virus specific serum IgG response to both the nanoparticle vaccine and commercial live attenuated vaccine showed a significant (P local mucosal immunity induced by nanoparticle vaccine has obvious potential if it translates into enhanced protective immunity in the face of virus outbreak.

  20. Enhanced pulmonary immunization with aerosolized inactivated influenza vaccine containing delta inulin adjuvant.

    Science.gov (United States)

    Murugappan, Senthil; Frijlink, Henderik W; Petrovsky, Nikolai; Hinrichs, Wouter L J

    2015-01-23

    Vaccination is the primary intervention to contain influenza virus spread during seasonal and pandemic outbreaks. Pulmonary vaccination is gaining increasing attention for its ability to induce both local mucosal and systemic immune responses without the need for invasive injections. However, pulmonary administration of whole inactivated influenza virus (WIV) vaccine induces a Th2 dominant systemic immune response while a more balanced Th1/Th2 vaccine response may be preferred and only induces modest nasal immunity. This study evaluated immunity elicited by pulmonary versus intramuscular (i.m.) delivery of WIV, and tested whether the immune response could be improved by co-administration of delta (δ)-inulin, a novel carbohydrate-based particulate adjuvant. After pulmonary administration both unadjuvanted and δ-inulin adjuvanted WIV induced a potent systemic immune response, inducing higher serum anti-influenza IgG titers and nasal IgA titers than i.m. administration. Moreover, the addition of δ-inulin induced a more balanced Th1/Th2 response and induced higher nasal IgA titers versus pulmonary WIV alone. Pulmonary WIV alone or with δ-inulin induced hemagglutination inhibition (HI) titers>40, titers which are considered protective against influenza virus. In conclusion, in this study we have shown that δ-inulin adjuvanted WIV induces a better immune response after pulmonary administration than vaccine alone. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Avian metapneumovirus (AMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction.

    Science.gov (United States)

    Cecchinato, Mattia; Catelli, Elena; Lupini, Caterina; Ricchizzi, Enrico; Clubbe, Jayne; Battilani, Mara; Naylor, Clive J

    2010-11-20

    Avian metapneumoviruses detected in Northern Italy between 1987 and 2007 were sequenced in their fusion (F) and attachment (G) genes together with the same genes from isolates collected throughout western European prior to 1994. Fusion protein genes sequences were highly conserved while G protein sequences showed much greater heterogeneity. Phylogenetic studies based on both genes clearly showed that later Italian viruses were significantly different to all earlier virus detections, including early detections from Italy. Furthermore a serine residue in the G proteins and lysine residue in the fusion protein were exclusive to Italian viruses, indicating that later viruses probably arose within the country and the notion that these later viruses evolved from earlier Italian progenitors cannot be discounted. Biocomputing analysis applied to F and G proteins of later Italian viruses predicted that only G contained altered T cell epitopes. It appears likely that Italian field viruses evolved in response to selection pressure from vaccine induced immunity. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. High Seroprotection Rate Induced by Intradermal Administration of a Recombinant Hepatitis B Vaccine in Young Healthy Adults: Comparison with Standard Intramuscular Vaccination

    International Nuclear Information System (INIS)

    Ghabouli, Mohammad J.; Sabouri, Amir Hossein; Shoeibi, Naser; Naghibzadeh Bajestan, Sepideh; Baradaran, H.

    2004-01-01

    Intradermal (ID) vaccination has been proposed as a cost-saving alternative for administration of Hepatitis B (HB) vaccine to implement of mass vaccination of high-risk groups, particularly in developing countries. Therefore, the effectiveness of ID vaccination needs to be evaluated and verified in different ethnic backgrounds. The present study is a randomized trail using a recombinant vaccine (Heberbiovac) to compare immunogenecity and safety of an intradermal low-dose (4 μg) with standard dose (20 μg) of intramuscular (IM) vaccination in healthy Iranian population. Participants were 143 healthy Iranian medical and nursing students randomly allocated to ID or IM vaccination group. The vaccine was inoculated at 0, 1 and 6 months intervals. Serum samples were collected 1 month after the last vaccination and the anti-HBs response was determined using ELISA. The overall seroprotection rate (anti-HBs level ≥ 10IU/L) was 97.3% for ID vaccination group, which was not different from that of IM vaccination group (98.55%)(p= 0.99). Similarly, geometric mean titers (GMT) of anti-HBs were not significantly different between ID (1164.1IU/L) and IM (1071.8IU/L) vaccination groups (p= 0.4). There was no significant difference in seroprotection rate and GMT of anti-HBs between sexes. Although induration and hyperpigmentation at the site of injection were more frequently observed in ID vaccination group, no other clinically adverse effects were observed in both vaccination groups. We conclude that the ID route, which would require one-fifth of the standard dose, would be suitable for use in certain groups such as high-risk adults when the cost of vaccine is the inhibiting factor for mass vaccination

  3. Seasonal influenza vaccination coverage rate of target groups in selected cities and provinces in China by season (2009/10 to 2011/12.

    Directory of Open Access Journals (Sweden)

    Lei Zhou

    Full Text Available BACKGROUND: The objectives of the survey were to identify the level of influenza vaccination coverage in China in three influenza seasons 2009/10 to 2011/12, and to find out potential predictors for seasonal influenza vaccination. METHODS: In September and October 2011, representative urban household telephone surveys were conducted in five provinces in China with a response rate of 6%. Four target groups were defined for analysis: 1 children ≤ 5 years old; 2 elderly persons aged ≥ 60 years old; 3 health care workers (persons working in the medical field and 4 chronically ill persons. RESULTS: The overall mean vaccination rate was 9.0%. Among the four target groups, the rate of vaccination of children aged ≤ 5 years old (mean = 26% was highest and the rate of elderly people aged ≥ 60 years old (mean = 7.4% was the lowest, while the rates of persons who suffer from a chronic illness (mean = 9.4% and health care workers (9.5% were similar. A subsidy for influenza vaccination, age group, health care workers, suffering from a chronic illness and living in Eastern China were independent significant predictors for influenza vaccination. CONCLUSIONS: The seasonal influenza vaccination coverage rates among urban populations in selected cities and provinces in China were far below previously reported rates in developed countries. Influenza vaccination coverage rates differed widely between different target groups and provinces in China. Subsidy policy might have a positive effect on influenza vaccination rate, but further cost-effectiveness studies, as well as the vaccination rate associated factors studies are still needed to inform strategies to increase coverage.

  4. Advancing Toward HIV-1 Vaccine Efficacy through the Intersections of Immune Correlates

    Directory of Open Access Journals (Sweden)

    Georgia D. Tomaras

    2013-12-01

    Full Text Available Interrogating immune correlates of infection risk for efficacious and non-efficacious HIV-1 vaccine clinical trials have provided hypotheses regarding the mechanisms of induction of protective immunity to HIV-1. To date, there have been six HIV-1 vaccine efficacy trials (VAX003, Vaxgen, Inc., San Francisco, CA, USA, VAX004 (Vaxgen, Inc., HIV-1 Vaccine Trials Network (HVTN 502 (Step, HVTN 503 (Phambili, RV144 (sponsored by the U.S. Military HIV Research Program, MHRP and HVTN 505. Cellular, humoral, host genetic and virus sieve analyses of these human clinical trials each can provide information that may point to potentially protective mechanisms for vaccine-induced immunity. Critical to staying on the path toward development of an efficacious vaccine is utilizing information from previous human and non-human primate studies in concert with new discoveries of basic HIV-1 host-virus interactions. One way that past discoveries from correlate analyses can lead to novel inventions or new pathways toward vaccine efficacy is to examine the intersections where different components of the correlate analyses overlap (e.g., virus sieve analysis combined with humoral correlates that can point to mechanistic hypotheses. Additionally, differences in durability among vaccine-induced T- and B-cell responses indicate that time post-vaccination is an important variable. Thus, understanding the nature of protective responses, the degree to which such responses have, or have not, as yet, been induced by previous vaccine trials and the design of strategies to induce durable T- and B-cell responses are critical to the development of a protective HIV-1 vaccine.

  5. Immunogenicity and safety of a CRM-conjugated meningococcal ACWY vaccine administered concomitantly with routine vaccines starting at 2 months of age.

    Science.gov (United States)

    Nolan, Terry M; Nissen, Michael D; Naz, Aftab; Shepard, Julie; Bedell, Lisa; Hohenboken, Matthew; Odrljin, Tatjana; Dull, Peter M

    2014-01-01

    Infants are at the highest risk for meningococcal disease and a broadly protective and safe vaccine is an unmet need in this youngest population. We evaluated the immunogenicity and safety of a 4-dose infant/toddler regimen of MenACWY-CRM given at 2, 4, 6, and 12 months of age concomitantly with pentavalent diphtheria-tetanus-acellular pertussis-Hemophilus influenzae type b-inactivated poliovirus-combination vaccine (DTaP-IPV/Hib), hepatitis B vaccine (HBV), 7- or 13-valent conjugate pneumococcal vaccine (PCV), and measles, mumps, and rubella vaccine (MMR). Four doses of MenACWY-CRM induced hSBA titers ≥8 in 89%, 95%, 97%, and 96% of participants against serogroups A, C, W-135, and Y, respectively. hSBA titers ≥8 were present in 76-98% of participants after the first 3 doses. A categorical linear analysis incorporating vaccine group and study center showed responses to routine vaccines administered with MenACWY-CRM were non-inferior to routine vaccines alone, except for seroresponse to the pertussis antigen fimbriae. The reactogenicity profile was not affected when MenACWY-CRM was administered concomitantly with routine vaccines. MenACWY-CRM administered with routine concomitant vaccinations in young infants was well tolerated and induced highly immunogenic responses against each of the serogroups without significant interference with the immune responses to routine infant vaccinations. Healthy 2 month old infants were randomized to receive MenACWY-CRM with routine vaccines (n = 258) or routine vaccines alone (n = 271). Immunogenicity was assessed by serum bactericidal assay using human complement (hSBA). Medically attended adverse events (AEs), serious AEs (SAEs) and AEs leading to study withdrawal were collected throughout the study period.

  6. Preclinical development of a vaccine 'against smoking'.

    Science.gov (United States)

    Cerny, E H; Lévy, R; Mauel, J; Mpandi, M; Mutter, M; Henzelin-Nkubana, C; Patiny, L; Tuchscherer, G; Cerny, T

    2002-10-01

    Nicotine is the main culprit for dependence on tobacco-containing products, which in turn are a major etiologic factor for cardiovascular diseases and cancer. This publication describes a vaccine, which elicits antibodies against nicotine. The antibodies in the blood stream intercept the nicotine molecule on its way to its receptors and greatly diminish the nicotine influx to the brain shortly after smoking. The nicotine molecule is chemically linked to cholera toxin B as a carrier protein in order to induce antibodies. The potential to elicit antibodies after subcutaneous as well as intranasal immunization is evaluated. In order to simulate realistic conditions, nicotine pumps delivering the nicotine equivalent of 5 packages of cigarettes for 4 weeks are implanted into the mice 1 week prior to vaccination. The protective effect of the vaccine is measured 5 weeks after vaccination by comparing the influx of radiolabeled nicotine in the brains of vaccinated and non-vaccinated animals 5 min after challenge with the nicotine equivalent of 2 cigarettes. The polyclonal antibodies induced by the vaccine show a mean avidity of 1.8 x 10(7) l/Mol. Subcutaneous immunization elicits high antibody levels of the IgG class, and significant IgA antibody levels in the saliva of vaccinated mice can be found after intranasal vaccination. The protective effect also in the animals with implanted nicotine pumps is significant: less than 10% of radiolabeled nicotine found in the brains of non-vaccinated animals can be found in the brains of vaccinated animals. These data provide credible evidence that a vaccine can break the vicious circle between smoking and instant gratification by intercepting the nicotine molecule. Astonishingly, there is no sign of exhaustion of specific antibodies even under extreme conditions, which makes it highly unlikely that a smoker can overcome the protective effect of the vaccine by smoking more. Finally, the high titers of specific antibodies after 1 year

  7. Forced wave induced by an atmospheric pressure disturbance moving towards shore

    Science.gov (United States)

    Chen, Yixiang; Niu, Xiaojing

    2018-05-01

    Atmospheric pressure disturbances moving over a vast expanse of water can induce different wave patterns, which can be determined by the Froude number Fr. Generally, Fr = 1 is a critical value for the transformation of the wave pattern and the well-known Proudman resonance happens when Fr = 1. In this study, the forced wave induced by an atmospheric pressure disturbance moving over a constant slope from deep sea to shore is numerically investigated. The wave pattern evolves from a concentric-circle type into a triangular type with the increase of the Froude number, as the local water depth decreases, which is in accord with the analysis in the unbounded flat-bottom cases. However, a hysteresis effect has been observed, which implies the obvious amplification of the forced wave induced by a pressure disturbance can not be simply predicted by Fr = 1. The effects of the characteristic parameters of pressure disturbances and slope gradient have been discussed. The results show that it is not always possible to observe significant peak of the maximum water elevation before the landing of pressure disturbances, and a significant peak can be generated by a pressure disturbance with small spatial scale and fast moving velocity over a milder slope. Besides, an extremely high run-up occurs when the forced wave hits the shore, which is an essential threat to coastal security. The results also show that the maximum run-up is not monotonously varying with the increase of disturbance moving speed and spatial scale. There exists a most dangerous speed and scale which may cause disastrous nearshore surge.

  8. Peptide Vaccine: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Weidang Li

    2014-07-01

    Full Text Available Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.

  9. Use of DNA vaccination for determination of onset of adaptive immunity in rainbow trout fry

    DEFF Research Database (Denmark)

    Rasmussen, Jesper Skou; Lorenzen, Ellen; Kjær, Torben Egil

    2013-01-01

    ). The fish were challenged by immersion at different times post vaccination. Protective immunity was induced in both sizes of fish, but whereas clear-cut specific protection was evident in the fish vaccinated at 0.5g, the results suggested that the protection in the fish vaccinated at 0.25 g was mainly due......Vaccine producers often recommend a minimum size of 5g for vaccination of rainbow trout, but implementation of prophylactic vaccination in smaller sized fish would be an advantage for several infectious diseases. To implement a cost efficient vaccination strategy, it is important to know...... the duration and nature of the protective immunity induced by the vaccines in the fish. The present work aimed at determination of the smallest size at which specific immunity could be induced in rainbow trout fry by DNA vaccination against viral haemorrhagic septicaemia (VHS). Earlier experiments revealed...

  10. Sensitivity of Spores of Eight Bacillus Cereus Strains to Pressure-Induced Germination by Moderate Hydrostatic Pressure, Time and Temperature

    National Research Council Canada - National Science Library

    Kalchayanand, Norasak; Ray, Bibek; Dunne, C. P; Sikes, Anthony

    2005-01-01

    The spores of eight Bacillus cereus strains were pressurized at 138 to 483 MPa for 5 to 20 min at 25 to 70 C in order to determine the sensitive and the resistant strains to pressure-induced germination...

  11. Detection of Avian Antigen-Specific T Cells Induced by Viral Vaccines

    DEFF Research Database (Denmark)

    Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann; Juul-Madsen, Helle Risdahl

    2016-01-01

    Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen. There is ......Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen...

  12. Cell-mediated immune responses in the head-associated lymphoid tissues induced to a live attenuated avian coronavirus vaccine.

    Science.gov (United States)

    Gurjar, Rucha S; Gulley, Stephen L; van Ginkel, Frederik W

    2013-12-01

    Humoral immunity is important for controlling viral diseases of poultry, but recent studies have indicated that cytotoxic T cells also play an important role in the immune response to infectious bronchitis virus (IBV). To better understand the cell mediated immune responses to IBV in the mucosal and systemic immune compartments chickens were ocularly vaccinated with IBV. This induced a lymphocyte expansion in head-associated lymphoid tissues (HALT) and to a lesser extent in the spleen, followed by a rapid decline, probably due to homing of lymphocytes out of these organs and contraction of the lymphocyte population. This interpretation was supported by observations that changes in mononuclear cells were mirrored by that in CD3(+)CD44(+) T cell abundance, which presumably represent T effector cells. Increased interferon gamma (IFN-γ) expression was observed in the mucosal immune compartment, i.e., HALT, after primary vaccination, but shifted to the systemic immune compartment after boosting. In contrast, the expression of cytotoxicity-associated genes, i.e., granzyme A (GZMA) and perforin mRNA, remained associated with the HALT after boosting. Thus, an Ark-type IBV ocular vaccine induces a central memory IFN-γ response in the spleen while the cytotoxic effector memory response, as measured by GZMA and perforin mRNA expression, remains associated with CALT after boosting. Copyright © 2013. Published by Elsevier Ltd.

  13. Next-Generation Dengue Vaccines: Novel Strategies Currently Under Development

    OpenAIRE

    Anna P. Durbin; Stephen S. Whitehead

    2011-01-01

    Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Past...

  14. Pressure induced reactions amongst calcium aluminate hydrate phases

    KAUST Repository

    Moon, Ju-hyuk

    2011-06-01

    The compressibilities of two AFm phases (strätlingite and calcium hemicarboaluminate hydrate) and hydrogarnet were obtained up to 5 GPa by using synchrotron high-pressure X-ray powder diffraction with a diamond anvil cell. The AFm phases show abrupt volume contraction regardless of the molecular size of the pressure-transmitting media. This volume discontinuity could be associated to a structural transition or to the movement of the weakly bound interlayer water molecules in the AFm structure. The experimental results seem to indicate that the pressure-induced dehydration is the dominant mechanism especially with hygroscopic pressure medium. The Birch-Murnaghan equation of state was used to compute the bulk modulus of the minerals. Due to the discontinuity in the pressure-volume diagram, a two stage bulk modulus of each AFm phase was calculated. The abnormal volume compressibility for the AFm phases caused a significant change to their bulk modulus. The reliability of this experiment is verified by comparing the bulk modulus of hydrogarnet with previous studies. © 2011 Elsevier Ltd. All rights reserved.

  15. Developing Universal Influenza Vaccines: Hitting the Nail, Not Just on the Head

    Directory of Open Access Journals (Sweden)

    Lidewij C. M. Wiersma

    2015-03-01

    Full Text Available Influenza viruses have a huge impact on public health. Current influenza vaccines need to be updated annually and protect poorly against antigenic drift variants or novel emerging subtypes. Vaccination against influenza can be improved in two important ways, either by inducing more broadly protective immune responses or by decreasing the time of vaccine production, which is relevant especially during a pandemic outbreak. In this review, we outline the current efforts to develop so-called “universal influenza vaccines”, describing antigens that may induce broadly protective immunity and novel vaccine production platforms that facilitate timely availability of vaccines.

  16. Cold-Adapted Influenza and Recombinant Adenovirus Vaccines Induce Cross-Protective Immunity against pH1N1 Challenge in Mice

    Science.gov (United States)

    Soboleski, Mark R.; Gabbard, Jon D.; Price, Graeme E.; Misplon, Julia A.; Lo, Chia-Yun; Perez, Daniel R.; Ye, Jianqiang; Tompkins, S. Mark; Epstein, Suzanne L.

    2011-01-01

    Background The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1) highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus. Methodology/Principal Findings BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca) influenza viruses from 1977 or recombinant adenoviruses (rAd) expressing 1934 nucleoprotein (NP) and consensus matrix 2 (M2) (NP+M2-rAd). Antibodies against the M2 ectodomain (M2e) were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus. Conclusion/Significance Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic. PMID:21789196

  17. Accounting for adjuvant-induced artifacts in the characterization of vaccine formulations by polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Jakob, Virginie; Brunner, Livia; Barnier-Quer, Christophe; Blust, Molly; Collin, Nicolas; Carter, Lauren; Carter, Darrick; Rausch, Kelly M; Fox, Christopher B

    2017-04-01

    Several vaccine adjuvants comprise complex nano- or micro-particle formulations, such as oil-in-water emulsions. In order to characterize interactions and compatibility of oil-in-water emulsion adjuvants with protein antigens in vaccines, effective protein characterization methods that can accommodate potential interference from high concentrations of lipid-based particles are needed. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is a standard protein characterization technique which is affected by the presence of adjuvants such as oil-in-water emulsions. In this article, we investigate variations in SDS-PAGE methods that result in a reduction of adjuvant-induced staining artifacts. We have investigated whether the SDS method or the adjuvant composition were the reason for these artifacts and succeeded in reducing the artifacts with a modified sample preparation and different staining procedures. The best results were obtained by using gold staining or silver staining instead of a Coomassie Blue staining procedure. Moreover, the replacement of the dilution buffer (20% SDS to disrupt emulsion) by alternative detergents such as Tween® 80 and Triton® X-100 removed adjuvant-induced streaking artifacts at the top of the gel. These methods may be useful for improving characterization approaches of antigen-adjuvant mixtures by SDS-PAGE.

  18. Vaccination with Eimeria tenella elongation factor-1α recombinant protein induces protective immunity against E. tenella and E. maxima infections.

    Science.gov (United States)

    Lin, Rui-Qing; Lillehoj, Hyun S; Lee, Seung Kyoo; Oh, Sungtaek; Panebra, Alfredo; Lillehoj, Erik P

    2017-08-30

    Avian coccidiosis is caused by multiple species of the apicomplexan protozoan, Eimeria, and is one of the most economically devastating enteric diseases for the poultry industry worldwide. Host immunity to Eimeria infection, however, is relatively species-specific. The ability to immunize chickens against different species of Eimeria using a single vaccine will have a major beneficial impact on commercial poultry production. In this paper, we describe the molecular cloning, purification, and vaccination efficacy of a novel Eimeria vaccine candidate, elongation factor-1α (EF-1α). One day-old broiler chickens were given two subcutaneous immunizations one week apart with E. coli-expressed E. tenella recombinant (r)EF-1α protein and evaluated for protection against challenge infection with E. tenella or E. maxima. rEF-1α-vaccinated chickens exhibited increased body weight gains, decreased fecal oocyst output, and greater serum anti-EF-1α antibody levels following challenge infection with either E. tenella or E. maxima compared with unimmunized controls. Vaccination with EF-1α may represent a new approach to inducing cross-protective immunity against avian coccidiosis in the field. Published by Elsevier B.V.

  19. Cost Effectiveness of Influenza Vaccine for U.S. Children: Live Attenuated and Inactivated Influenza Vaccine.

    Science.gov (United States)

    Shim, Eunha; Brown, Shawn T; DePasse, Jay; Nowalk, Mary Patricia; Raviotta, Jonathan M; Smith, Kenneth J; Zimmerman, Richard K

    2016-09-01

    Prior studies showed that live attenuated influenza vaccine (LAIV) is more effective than inactivated influenza vaccine (IIV) in children aged 2-8 years, supporting the Centers for Disease Control and Prevention (CDC) recommendations in 2014 for preferential LAIV use in this age group. However, 2014-2015 U.S. effectiveness data indicated relatively poor effectiveness of both vaccines, leading CDC in 2015 to no longer prefer LAIV. An age-structured model of influenza transmission and vaccination was developed, which incorporated both direct and indirect protection induced by vaccination. Based on this model, the cost effectiveness of influenza vaccination strategies in children aged 2-8 years in the U.S. was estimated. The base case assumed a mixed vaccination strategy where 33.3% and 66.7% of vaccinated children aged 2-8 years receive LAIV and IIV, respectively. Analyses were performed in 2014-2015. Using published meta-analysis vaccine effectiveness data (83% LAIV and 64% IIV), exclusive LAIV use would be a cost-effective strategy when vaccinating children aged 2-8 years, whereas IIV would not be preferred. However, when 2014-2015 U.S. effectiveness data (0% LAIV and 15% IIV) were used, IIV was likely to be preferred. The cost effectiveness of influenza vaccination in children aged 2-8 years is highly dependent on vaccine effectiveness; the vaccine type with higher effectiveness is preferred. In general, exclusive IIV use is preferred over LAIV use, as long as vaccine effectiveness is higher for IIV than for LAIV. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  20. The Human Hookworm Vaccine.

    Science.gov (United States)

    Hotez, Peter J; Diemert, David; Bacon, Kristina M; Beaumier, Coreen; Bethony, Jeffrey M; Bottazzi, Maria Elena; Brooker, Simon; Couto, Artur Roberto; Freire, Marcos da Silva; Homma, Akira; Lee, Bruce Y; Loukas, Alex; Loblack, Marva; Morel, Carlos Medicis; Oliveira, Rodrigo Correa; Russell, Philip K

    2013-04-18

    Hookworm infection is one of the world's most common neglected tropical diseases and a leading cause of iron deficiency anemia in low- and middle-income countries. A Human Hookworm Vaccine is currently being developed by the Sabin Vaccine Institute and is in phase 1 clinical testing. The candidate vaccine is comprised of two recombinant antigens known as Na-GST-1 and Na-APR-1, each of which is an important parasite enzyme required for hookworms to successfully utilize host blood as a source of energy. The recombinant proteins are formulated on Alhydrogel(®) and are being tested in combination with a synthetic Toll-like receptor 4 agonist. The aim of the vaccine is to induce anti-enzyme antibodies that will reduce both host blood loss and the number of hookworms attached to the gut. Transfer of the manufacturing technology to the Oswaldo Cruz Foundation (FIOCRUZ)/Bio-Manguinhos (a Brazilian public sector developing country vaccine manufacturer) is planned, with a clinical development plan that could lead to registration of the vaccine in Brazil. The vaccine would also need to be introduced in the poorest regions of Africa and Asia, where hookworm infection is highly endemic. Ultimately, the vaccine could become an essential tool for achieving hookworm control and elimination, a key target in the 2012 London Declaration on Neglected Tropical Diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Physicochemical properties of natural actomyosin from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure.

    Science.gov (United States)

    Zhou, Aimei; Lin, Liying; Liang, Yan; Benjakul, Soottawat; Shi, Xiaoling; Liu, Xin

    2014-08-01

    Changes of physicochemical properties in natural actomyosin (NAM) from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure (200, 400, 600MPa for 10, 30, 50min) were studied. The increase in turbidity of NAM was coincidental with the decrease in protein solubility with increasing pressure and time, suggesting the formation of protein aggregates. SDS-PAGE showed that polymerisation and degradation of myosin heavy chain were induced by high pressure. Ca(2+)-ATPase activity of NAM treated by high pressure was lost, suggesting the denaturation of myosin and the dissociation of actomyosin complex. Surface hydrophobicity of NAM increased when the pressure and pressurization time increased, indicating that the exposed hydrophobic residues increased upon application of high pressure. Decrease in total sulfhydryl content and increase in surface-reactive sulfhydryl content of NAM samples were observed with the extension of pressurizing time, indicating the formation of disulphide bonds through oxidation of SH groups or disulphide interchanges. The above changes of physicochemical properties suggested conformational changes of NAM from muscle of threadfin bream induced by high hydrostatic pressure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Vaccines for preventing infection with Pseudomonas aeruginosa in cystic fibrosis

    DEFF Research Database (Denmark)

    Johansen, H.K.; Gøtzsche, Peter C.; Johansen, Helle Krogh

    2008-01-01

    BACKGROUND: Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed. OBJECTIVES......: To assess the effectiveness of vaccination against Pseudomonas aeruginosa in cystic fibrosis. SEARCH STRATEGY: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register using the terms vaccines AND pseudomonas (last search May 2008) and PubMed using the terms vaccin* AND cystic...... fibrosis (last search May 2008). SELECTION CRITERIA: Randomised trials (published or unpublished) comparing Pseudomonas aeruginosa vaccines (oral, parenteral or intranasal) with control vaccines or no intervention in cystic fibrosis. DATA COLLECTION AND ANALYSIS: The authors independently selected trials...

  3. Non-invasive assessment of the reproductive cycle in free-ranging female African elephants (Loxodonta africana) treated with a gonadotropin-releasing hormone (GnRH) vaccine for inducing anoestrus.

    Science.gov (United States)

    Benavides Valades, Gabriela; Ganswindt, Andre; Annandale, Henry; Schulman, Martin L; Bertschinger, Henk J

    2012-08-25

    In southern Africa, various options to manage elephant populations are being considered. Immunocontraception is considered to be the most ethically acceptable and logistically feasible method for control of smaller and confined populations. In this regard, the use of gonadotropin-releasing hormone (GnRH) vaccine has not been investigated in female elephants, although it has been reported to be safe and effective in several domestic and wildlife species. The aims of this study were to monitor the oestrous cycles of free-ranging African elephant cows using faecal progestagen metabolites and to evaluate the efficacy of a GnRH vaccine to induce anoestrus in treated cows. Between May 2009-June 2010, luteal activity of 12 elephant cows was monitored non-invasively using an enzyme immunoassay detecting faecal 5alpha-reduced pregnanes (faecal progestagen metabolites, FPM) on a private game reserve in South Africa. No bulls of breeding age were present on the reserve prior to and for the duration of the study. After a 3-month control period, 8 randomly-selected females were treated twice with 600 micrograms of GnRH vaccine (Improvac®, Pfizer Animal Health, Sandton, South Africa) 5-7 weeks apart. Four of these females had been treated previously with the porcine zona pellucida (pZP) vaccine for four years (2004-2007). All 12 monitored females (8 treated and 4 controls) showed signs of luteal activity as evidenced by FPM concentrations exceeding individual baseline values more than once. A total of 16 oestrous cycles could be identified in 8 cows with four of these within the 13 to 17 weeks range previously reported for captive African elephants. According to the FPM concentrations the GnRH vaccine was unable to induce anoestrus in the treated cows. Overall FPM levels in samples collected during the wet season (mean 4.03 micrograms/gram dry faeces) were significantly higher (Pelephants. These results indicate that irregular oestrous cycles occur amongst free

  4. Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures.

    Science.gov (United States)

    Chen, Zefeng; Wang, Zhao; Li, Xinming; Lin, Yuxuan; Luo, Ningqi; Long, Mingzhu; Zhao, Ni; Xu, Jian-Bin

    2017-05-23

    The piezoelectric effect is widely applied in pressure sensors for the detection of dynamic signals. However, these piezoelectric-induced pressure sensors have challenges in measuring static signals that are based on the transient flow of electrons in an external load as driven by the piezopotential arisen from dynamic stress. Here, we present a pressure sensor with nanowires/graphene heterostructures for static measurements based on the synergistic mechanisms between strain-induced polarization charges in piezoelectric nanowires and the caused change of carrier scattering in graphene. Compared to the conventional piezoelectric nanowire or graphene pressure sensors, this sensor is capable of measuring static pressures with a sensitivity of up to 9.4 × 10 -3 kPa -1 and a fast response time down to 5-7 ms. This demonstration of pressure sensors shows great potential in the applications of electronic skin and wearable devices.

  5. Estimating the costs of the vaccine supply chain and service delivery for selected districts in Kenya and Tanzania.

    Science.gov (United States)

    Mvundura, Mercy; Lorenson, Kristina; Chweya, Amos; Kigadye, Rosemary; Bartholomew, Kathryn; Makame, Mohammed; Lennon, T Patrick; Mwangi, Steven; Kirika, Lydia; Kamau, Peter; Otieno, Abner; Murunga, Peninah; Omurwa, Tom; Dafrossa, Lyimo; Kristensen, Debra

    2015-05-28

    Having data on the costs of the immunization system can provide decision-makers with information to benchmark the costs when evaluating the impact of new technologies or programmatic innovations. This paper estimated the supply chain and immunization service delivery costs and cost per dose in selected districts in Kenya and Tanzania. We also present operational data describing the supply chain and service delivery points (SDPs). To estimate the supply chain costs, we collected resource-use data for the cold chain, distribution system, and health worker time and per diems paid. We also estimated the service delivery costs, which included the time cost of health workers to provide immunization services, and per diems and transport costs for outreach sessions. Data on the annual quantities of vaccines distributed to each facility, and the occurrence and duration of stockouts were collected from stock registers. These data were collected from the national store, 2 regional and 4 district stores, and 12 SDPs in each country for 2012. Cost per dose for the supply chain and immunization service delivery were estimated. The average annual costs per dose at the SDPs were $0.34 (standard deviation (s.d.) $0.18) for Kenya when including only the vaccine supply chain costs, and $1.33 (s.d. $0.82) when including immunization service delivery costs. In Tanzania, these costs were $0.67 (s.d. $0.35) and $2.82 (s.d. $1.64), respectively. Both countries experienced vaccine stockouts in 2012, bacillus Calmette-Guérin vaccine being more likely to be stocked out in Kenya, and oral poliovirus vaccine in Tanzania. When stockouts happened, they usually lasted for at least one month. Tanzania made investments in 2011 in preparation for planned vaccine introductions, and their supply chain cost per dose is expected to decline with the new vaccine introductions. Immunization service delivery costs are a significant portion of the total costs at the SDPs. Copyright © 2015 Elsevier Ltd. All

  6. Formulation and delivery of dermal DNA vaccines

    NARCIS (Netherlands)

    van den Berg, J.H.

    2009-01-01

    DNA vaccination is an appealing strategy of active vaccination, leading to the intracellular production of the encoding antigen which results in an efficient activation of an antigen specific immune response. Intradermal DNA tattooing was recently developed as a simple and robust method to induce

  7. Therapeutic vaccines against human and rat renin in spontaneously hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Zhihua Qiu

    Full Text Available Vaccination provides a promising approach for treatment of hypertension and improvement in compliance. As the initiation factor of renin-angiotensin system, renin plays a critical role in hypertension. In this study, we selected six peptides (rR32, rR72, rR215, hR32, hR72, and hR215 belonging to potential epitopes of rat and human renin. The main criteria were as follows: (1 include one of renin catalytic sites or the flap sequence; (2 low/no-similarity when matched with the host proteome; (3 ideal antigenicity and hydrophilicity. The peptides were coupled to keyhole limpet hemocyanin and injected into SpragueDawley (SD rats, spontaneously hypertensive rats (SHRs and Wistar-Kyoto rats. The antisera titers and the binding capacity with renin were detected. The effects of the anti-peptides antibodies on plasma renin activity (PRA and blood pressure were also determined. All peptides elicited strong antibody responses. The antisera titers ranged from 1:32,000 to 1:80,000 in SD rats on day 63. All antisera could bind to renin in vitro. Compared with the control antibody, the antibodies against the rR32, hR32, rR72 and hR72 peptides inhibited PRA level by up to about 50%. Complete cross-reactivity of the anti-rR32 antibody and the anti-hR32 antibody was confirmed. The epitopes rR32 and hR32 vaccines significantly decreased systolic blood pressure (SBP of SHRs up to 15mmHg (175±2 vesus 190±3 mmHg, P = 0.035; 180±2 vesus 195±3 mmHg, P = 0.039, while no obvious effect on SD rats. Additionally, no significant immune-mediated damage was detected in the vaccinated animals. In conclusion, the antigenic peptide hR32 vaccine mimicking the (32Asp catalytic site of human renin may constitute a novel tool for the development of a renin vaccine.

  8. Non-Newtonian Flow-Induced Deformation From Pressurized Cavities in Absorbing Porous Tissues

    Science.gov (United States)

    Ahmed, Aftab; Siddique, Javed

    2017-11-01

    We investigate the behavior of a spherical cavity in a soft biological tissue modeled as a deformable porous material during an injection of non-Newtonian fluid that follows a power law model. Fluid flows into the neighboring tissue due to high cavity pressure where it is absorbed by capillaries and lymphatics at a rate proportional to the local pressure. Power law fluid pressure and displacement of solid in the tissue are computed as function of radial distance and time. Numerical solutions indicate that shear thickening fluids exhibit less fluid pressure and induce small solid deformation as compared to shear thinning fluids. The absorption in the biological tissue increases as a consequence of flow induced deformation for power law fluids. In most cases non-Newtonian results are compared with viscous fluid case to magnify the differences.

  9. Virus-based immunotherapy of cancer: what do we know and where are we going?

    DEFF Research Database (Denmark)

    Sørensen, Maria Rathmann; Thomsen, Allan Randrup

    2007-01-01

    mechanisms. This review aims to evaluate selected cancer vaccination approaches using virus-based cancer vaccines. These seem promising based on their capacity to mimic natural infection and hence to efficiently trigger the innate immune system and in turn a potent cellular immune response towards...... the tumours. However, even when a potent immune response has been induced, this is often not sufficient to eliminate the tumour completely before the cancer cells have had time to evolve new escape mechanisms as a result of the selection pressure from the initial immune response directed towards them...

  10. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    Science.gov (United States)

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Development of novel vaccines using DNA shuffling and screening strategies.

    Science.gov (United States)

    Locher, Christopher P; Soong, Nay Wei; Whalen, Robert G; Punnonen, Juha

    2004-02-01

    DNA shuffling and screening technologies recombine and evolve genes in vitro to rapidly obtain molecules with improved biological activity and fitness. In this way, genes from related strains are bred like plants or livestock and their successive progeny are selected. These technologies have also been called molecular breeding-directed molecular evolution. Recent developments in bioinformatics-assisted computer programs have facilitated the design, synthesis and analysis of DNA shuffled libraries of chimeric molecules. New applications in vaccine development are among the key features of DNA shuffling and screening technologies because genes from several strains or antigenic variants of pathogens can be recombined to create novel molecules capable of inducing immune responses that protect against infections by multiple strains of pathogens. In addition, molecules such as co-stimulatory molecules and cytokines have been evolved to have improved T-cell proliferation and cytokine production compared with the wild-type human molecules. These molecules can be used to immunomodulate vaccine responsiveness and have multiple applications in infectious diseases, cancer, allergy and autoimmunity. Moreover, DNA shuffling and screening technologies can facilitate process development of vaccine manufacturing through increased expression of recombinant polypeptides and viruses. Therefore, DNA shuffling and screening technologies can overcome some of the challenges that vaccine development currently faces.

  12.   A rationally designed tyrosine hydroxylase DNA vaccine induces specific antineuroblastoma immunity

    DEFF Research Database (Denmark)

    Huebener, Nicole; Fest, Stefan; Strandsby, Anne Bystrup

    2008-01-01

    Therapeutic vaccination against tumor antigens without induction of autoimmunity remains a major challenge in cancer immunotherapy. Here, we show for the first time effective therapeutic vaccination followed by suppression of established spontaneous neuroblastoma metastases using a tyrosine...... show effective therapeutic vaccination against neuroblastoma with a novel rationally designed TH minigene vaccine without induction of autoimmunity providing an important baseline for future clinical application of this strategy....

  13. Hydrostatic-pressure induced phase transition of phonons in single-walled nanotubes

    International Nuclear Information System (INIS)

    Feng Peng; Meng Qingchao

    2009-01-01

    We study the effect of the hydrostatic pressure on the phonons in single-walled carbon nanotubes (SWNTs) in a magnetic field. We calculate the magnetic moments of the phonons using a functional integral technique, and find that the phonons in SWNTs undergo a pressure-induced phase transition from the paramagnetic phase to the diamagnetic phase under hydrostatic pressure 2 GPa. We explain the mechanism of generating this phase transition.

  14. Quadrivalent human papillomavirus recombinant vaccine: The first vaccine for cervical cancers

    Directory of Open Access Journals (Sweden)

    Sharma Rashmi

    2007-01-01

    Full Text Available Gardasil ® is the first quadrivalent human papillomavirus (HPV- types 6, 11, 16, 18 recombinant vaccine approved by the FDA on June 8, 2006. It induces genotype-specific virus-neutralizing antibodies and prevents infection with HPV. Various clinical trials demonstrated a reduction in the incidence of vaccine-type-specific persistent infections and of associated moderate- and high-grade cervical dysplasias and carcinomas in situ after its use. Gardasil is currently approved by FDA for prevention of genital warts, cancers and precancerous conditions of cervix and vulva in 9-26 years old females. Three doses of 0.5 ml of gardasil each at 0, 2 and 6 months are given intramuscularly. It is contraindicated in individuals who are hypersensitive to the active substances or to any of the excipients of the vaccine, patients with bleeding abnormalities or patients on anticoagulant therapy and during pregnancy. However, the vaccine, at an estimated $300-500 per course, is too expensive for many women in developing countries. Moreover, question regarding the longevity of the protection by vaccine is still unsolved. Hence, longer studies are required to establish its real status in cancer prevention.

  15. Heterologous prime-boost vaccination with DNA and MVA vaccines, expressing HIV-1 subtype C mosaic Gag virus-like particles, is highly immunogenic in mice.

    Directory of Open Access Journals (Sweden)

    Ros Chapman

    Full Text Available In an effort to make affordable vaccines suitable for the regions most affected by HIV-1, we have constructed stable vaccines that express an HIV-1 subtype C mosaic Gag immunogen (BCG-GagM, MVA-GagM and DNA-GagM. Mosaic immunogens have been designed to address the tremendous diversity of this virus. Here we have shown that GagM buds from cells infected and transfected with MVA-GagM and DNA-GagM respectively and forms virus-like particles. Previously we showed that a BCG-GagM prime MVA-GagM boost generated strong cellular immune responses in mice. In this study immune responses to the DNA-GagM and MVA-GagM vaccines were evaluated in homologous and heterologous prime-boost vaccinations. The DNA homologous prime boost vaccination elicited predominantly CD8+ T cells while the homologous MVA vaccination induced predominantly CD4+ T cells. A heterologous DNA-GagM prime MVA-GagM boost induced strong, more balanced Gag CD8+ and CD4+ T cell responses and that were predominantly of an effector memory phenotype. The immunogenicity of the mosaic Gag (GagM was compared to a naturally occurring subtype C Gag (GagN using a DNA homologous vaccination regimen. DNA-GagN expresses a natural Gag with a sequence that was closest to the consensus sequence of subtype C viruses sampled in South Africa. DNA-GagM homologous vaccination induced cumulative HIV-1 Gag-specific IFN-γ ELISPOT responses that were 6.5-fold higher than those induced by the DNA-GagN vaccination. Similarly, DNA-GagM vaccination generated 7-fold higher levels of cytokine-positive CD8+ T cells than DNA-GagN, indicating that this subtype C mosaic Gag elicits far more potent immune responses than a consensus-type Gag. Cells transfected and infected with DNA-GagM and MVA-GagM respectively, expressed high levels of GagM and produced budding virus-like particles. Our data indicates that a heterologous prime boost regimen using DNA and MVA vaccines expressing HIV-1 subtype C mosaic Gag is highly

  16. Pressure induced superconductivity in the antiferromagnetic Dirac material BaMnBi2

    OpenAIRE

    Huimin Chen; Lin Li; Qinqing Zhu; Jinhu Yang; Bin Chen; Qianhui Mao; Jianhua Du; Hangdong Wang; Minghu Fang

    2017-01-01

    The so-called Dirac materials such as graphene and topological insulators are a new class of matter different from conventional metals and (doped) semiconductors. Superconductivity induced by doing or applying pressure in these systems may be unconventional, or host mysterious Majorana fermions. Here, we report a successfully observation of pressure-induced superconductivity in an antiferromagnetic Dirac material BaMnBi2 with T c of ~4?K at 2.6?GPa. Both the higher upper critical field, ? 0 H...

  17. Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine.

    Directory of Open Access Journals (Sweden)

    William C Weldon

    Full Text Available Recent studies have demonstrated the effectiveness of vaccine delivery to the skin by vaccine-coated microneedles; however there is little information on the effects of adjuvants using this approach for vaccination. Here we investigate the use of TLR ligands as adjuvants with skin-based delivery of influenza subunit vaccine. BALB/c mice received 1 µg of monovalent H1N1 subunit vaccine alone or with 1 µg of imiquimod or poly(I:C individually or in combination via coated microneedle patches inserted into the skin. Poly(I:C adjuvanted subunit influenza vaccine induced similar antigen-specific immune responses compared to vaccine alone when delivered to the skin by microneedles. However, imiquimod-adjuvanted vaccine elicited higher levels of serum IgG2a antibodies and increased hemagglutination inhibition titers compared to vaccine alone, suggesting enhanced induction of functional antibodies. In addition, imiquimod-adjuvanted vaccine induced a robust IFN-γ cellular response. These responses correlated with improved protection compared to influenza subunit vaccine alone, as well as reduced viral replication and production of pro-inflammatory cytokines in the lungs. The finding that microneedle delivery of imiquimod with influenza subunit vaccine induces improved immune responses compared to vaccine alone supports the use of TLR7 ligands as adjuvants for skin-based influenza vaccines.

  18. Influenza vaccines: from whole virus preparations to recombinant protein technology.

    Science.gov (United States)

    Huber, Victor C

    2014-01-01

    Vaccination against influenza represents our most effective form of prevention. Historical approaches toward vaccine creation and production have yielded highly effective vaccines that are safe and immunogenic. Despite their effectiveness, these historical approaches do not allow for the incorporation of changes into the vaccine in a timely manner. In 2013, a recombinant protein-based vaccine that induces immunity toward the influenza virus hemagglutinin was approved for use in the USA. This vaccine represents the first approved vaccine formulation that does not require an influenza virus intermediate for production. This review presents a brief history of influenza vaccines, with insight into the potential future application of vaccines generated using recombinant technology.

  19. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    Science.gov (United States)

    Mendes, Érica Araújo; Fonseca, Flavio G; Casério, Bárbara M; Colina, Janaína P; Gazzinelli, Ricardo Tostes; Caetano, Braulia C

    2013-01-01

    The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1) of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector) is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination). Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1), to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  20. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    Directory of Open Access Journals (Sweden)

    Érica Araújo Mendes

    Full Text Available The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1 of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination. Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1, to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  1. Reduction of porcine circovirus type 2 (PCV2 viremia by a reformulated inactivated chimeric PCV1-2 vaccine-induced humoral and cellular immunity after experimental PCV2 challenge

    Directory of Open Access Journals (Sweden)

    Seo Hwi

    2012-10-01

    Full Text Available Abstract Background The objective of the present study was to elucidate the humoral and cellular immune response mechanisms by which a reformulated inactivated chimeric PCV1-2 vaccine reduces the PCV2 viremia. Forty PCV2 seronegative 3-week-old pigs were randomly divided into the following four groups: vaccinated challenged (T01, vaccinated non-challenged (T02, non-vaccinated challenged (T03, and non-vaccinated non-challenged (T04 animals. The pigs in groups T01 and T02 were immunized with a reformulated inactivated chimeric PCV1-2 vaccine (Fostera™ PCV; Pfizer Animal Health administered as a 2.0 ml dose at 21 days of age. At 35 days of age (0 days post-challenge, the pigs in groups T01 and T03 were inoculated intranasally with 2 ml each of PCV2b. Results A reduction of PCV2 viremia coincided with the appearance of both PCV2-specific neutralizing antibodies (NA and interferon-γ-secreting cells (IFN-γ-SCs in the vaccinated animals. However, the presence of anti-PCV2 IgG antibodies did not correlate with the reduction of PCV2 viremia. Lymphocyte subset analysis indicated that the numbers of CD3+ and CD4+ cells increased in vaccinated animals but the numbers of CD4+ cells decreased transiently in non-vaccinated animals. The observation of a delayed type hypersensitivity response in only the vaccinated animals also supports a CD4+ cell-associated protective cellular immune response induced by the reformulated inactivated chimeric PCV1-2 vaccine. Conclusions The induction of PCV2-specific NA and IFN-γ-SCs, and CD4+ cells by the reformulated inactivated chimeric PCV1-2 vaccine is the important protective immune response leading to reduction of the PCV2 viremia and control of the PCV2 infection. To our knowledge this is the first demonstration of protective humoral and cellular immunity induced by the reformulated inactivated chimeric PCV1-2 vaccine and its effect on reduction of PCV2 viremia by vaccination.

  2. Hydrostatic pressure mimics gravitational pressure in characean cells

    Science.gov (United States)

    Staves, M. P.; Wayne, R.; Leopold, A. C.

    1992-01-01

    Hydrostatic pressure applied to one end of a horizontal Chara cell induces a polarity of cytoplasmic streaming, thus mimicking the effect of gravity. A positive hydrostatic pressure induces a more rapid streaming away from the applied pressure and a slower streaming toward the applied pressure. In contrast, a negative pressure induces a more rapid streaming toward and a slower streaming away from the applied pressure. Both the hydrostatic pressure-induced and gravity-induced polarity of cytoplasmic streaming respond identically to cell ligation, UV microbeam irradiation, external Ca2+ concentrations, osmotic pressure, neutral red, TEA Cl-, and the Ca2+ channel blockers nifedipine and LaCl3. In addition, hydrostatic pressure applied to the bottom of a vertically-oriented cell can abolish and even reverse the gravity-induced polarity of cytoplasmic streaming. These data indicate that both gravity and hydrostatic pressure act at the same point of the signal transduction chain leading to the induction of a polarity of cytoplasmic streaming and support the hypothesis that characean cells respond to gravity by sensing a gravity-induced pressure differential between the cell ends.

  3. Development of improved pertussis vaccine.

    Science.gov (United States)

    Rumbo, Martin; Hozbor, Daniela

    2014-01-01

    Rates of infection with Bordetella pertussis, the gram-negative bacterium that causes the respiratory disease called whooping cough or pertussis, have not abated and 16 million cases with almost 200,000 deaths are estimated by the WHO to have occurred worldwide in 2008. Despite relatively high vaccination rates, the disease has come back in recent years to afflict people in numbers not seen since the pre-vaccine days. Indeed, pertussis is now recognized as a frequent infection not only in newborn and infants but also in adults. The disease symptoms also can be induced by the non-vaccine-preventable infection with the close species B. parapertussis for which an increasing number of cases have been reported. The epidemiologic situation and current knowledge of the limitations of pertussis vaccine point out the need to design improved vaccines. Several alternative approaches and their challenges are summarized.

  4. Leaky Vaccines Protect Highly Exposed Recipients at a Lower Rate: Implications for Vaccine Efficacy Estimation and Sieve Analysis

    Directory of Open Access Journals (Sweden)

    Paul T. Edlefsen

    2014-01-01

    Full Text Available “Leaky” vaccines are those for which vaccine-induced protection reduces infection rates on a per-exposure basis, as opposed to “all-or-none” vaccines, which reduce infection rates to zero for some fraction of subjects, independent of the number of exposures. Leaky vaccines therefore protect subjects with fewer exposures at a higher effective rate than subjects with more exposures. This simple observation has serious implications for analysis methodologies that rely on the assumption that the vaccine effect is homogeneous across subjects. We argue and show through examples that this heterogeneous vaccine effect leads to a violation of the proportional hazards assumption, to incomparability of infected cases across treatment groups, and to nonindependence of the distributions of the competing failure processes in a competing risks setting. We discuss implications for vaccine efficacy estimation, correlates of protection analysis, and mark-specific efficacy analysis (also known as sieve analysis.

  5. Leaky vaccines protect highly exposed recipients at a lower rate: implications for vaccine efficacy estimation and sieve analysis.

    Science.gov (United States)

    Edlefsen, Paul T

    2014-01-01

    "Leaky" vaccines are those for which vaccine-induced protection reduces infection rates on a per-exposure basis, as opposed to "all-or-none" vaccines, which reduce infection rates to zero for some fraction of subjects, independent of the number of exposures. Leaky vaccines therefore protect subjects with fewer exposures at a higher effective rate than subjects with more exposures. This simple observation has serious implications for analysis methodologies that rely on the assumption that the vaccine effect is homogeneous across subjects. We argue and show through examples that this heterogeneous vaccine effect leads to a violation of the proportional hazards assumption, to incomparability of infected cases across treatment groups, and to nonindependence of the distributions of the competing failure processes in a competing risks setting. We discuss implications for vaccine efficacy estimation, correlates of protection analysis, and mark-specific efficacy analysis (also known as sieve analysis).

  6. Recombinant vaccines and the development of new vaccine strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, I.P.; Leite, L.C.C. [Centro de Biotecnologia, Instituto Butantan, São Paulo, SP (Brazil)

    2012-09-07

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  7. Recombinant vaccines and the development of new vaccine strategies

    Directory of Open Access Journals (Sweden)

    I.P. Nascimento

    2012-12-01

    Full Text Available Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  8. Recombinant vaccines and the development of new vaccine strategies

    International Nuclear Information System (INIS)

    Nascimento, I.P.; Leite, L.C.C.

    2012-01-01

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks

  9. Unknown Risks: Parental Hesitation about Vaccination.

    Science.gov (United States)

    Blaisdell, Laura L; Gutheil, Caitlin; Hootsmans, Norbert A M; Han, Paul K J

    2016-05-01

    This qualitative study of a select sample of vaccine-hesitant parents (VHPs) explores perceived and constructed personal judgments about the risks and uncertainties associated with vaccines and vaccine-preventable diseases (VPDs) and how these subjective risk judgments influence parents' decisions about childhood vaccination. The study employed semistructured focus group interviews with 42 VHPs to elicit parents' perceptions and thought processes regarding the risks associated with vaccination and nonvaccination, the sources of these perceptions, and their approach to decision making about vaccination for their children. VHPs engage in various reasoning processes and tend to perceive risks of vaccination as greater than the risks of VPDs. At the same time, VHPs engage in other reasoning processes that lead them to perceive ambiguity in information about the harms of vaccination-citing concerns about the missing, conflicting, changing, or otherwise unreliable nature of information. VHPs' refusal of vaccination may reflect their aversion to both the risk and ambiguity they perceive to be associated with vaccination. Mitigating this vaccine hesitancy likely requires reconstructing the risks and ambiguities associated with vaccination-a challenging task that requires providing parents with meaningful evidence-based information on the known risks of vaccination versus VPDs and explicitly acknowledging the risks that remain truly unknown. © The Author(s) 2015.

  10. Oral and Anal Vaccination Confers Full Protection against Enteric Redmouth Disease (ERM) in Rainbow Trout

    Science.gov (United States)

    Ohtani, Maki; Strøm, Helene Kragelund; Raida, Martin Kristian

    2014-01-01

    The effect of oral vaccines against bacterial fish diseases has been a topic for debate for decades. Recently both M-like cells and dendritic cells have been discovered in the intestine of rainbow trout. It is therefore likely that antigens reaching the intestine can be taken up and thereby induce immunity in orally vaccinated fish. The objective of this project was to investigate whether oral and anal vaccination of rainbow trout induces protection against an experimental waterborne infection with the pathogenic enterobacteria Yersinia ruckeri O1 biotype 1 the causative agent of enteric redmouth disease (ERM). Rainbow trout were orally vaccinated with AquaVac ERM Oral (MERCK Animal Health) or an experimental vaccine bacterin of Y. ruckeri O1. Both vaccines were tested with and without a booster vaccination four months post the primary vaccination. Furthermore, two groups of positive controls were included, one group receiving the experimental oral vaccine in a 50 times higher dose, and the other group receiving a single dose administered anally in order to bypass the stomach. Each group was bath challenged with 6.3×108 CFU/ml Y. ruckeri, six months post the primary vaccination. The challenge induced significant mortality in all the infected groups except for the groups vaccinated anally with a single dose or orally with the high dose of bacterin. Both of these groups had 100% survival. These results show that a low dose of Y. ruckeri bacterin induces full protection when the bacterin is administered anally. Oral vaccination also induces full protection, however, at a dose 50 times higher than if the fish were to be vaccinated anally. This indicates that much of the orally fed antigen is digested in the stomach before it reaches the second segment of the intestine where it can be taken up as immunogenic antigens and presented to lymphocytes. PMID:24705460

  11. Killed Whole-Cell Oral Cholera Vaccine Induces CCL20 Secretion by Human Intestinal Epithelial Cells in the Presence of the Short-Chain Fatty Acid, Butyrate

    Directory of Open Access Journals (Sweden)

    Ju-Ri Sim

    2018-01-01

    Full Text Available Short-chain fatty acids (SCFAs, such as acetate, butyrate, and propionate, modulate immune responses in the gut. However, the effect of SCFAs on mucosal vaccine-induced immune cell migration is poorly understood. Here, we investigated whether SCFAs modulate chemokine expression induced by the killed whole-cell oral cholera vaccine, Shanchol™, in human intestinal epithelial cells. Shanchol™ induced expression of CCL2, CCL5, CCL20, and CXCL10 at the mRNA level, but not at the protein level. Interestingly, CCL20 secretion was substantially increased by co-stimulation with Shanchol™ and butyrate, while neither acetate nor propionate showed such effect. Enhanced CCL20 secretion was associated with GPR109A activation, and histone deacetylase (HDAC inhibition. In addition, co-treatment with Shanchol™ and butyrate synergistically increased the secretion of adenosine triphosphate (ATP. Moreover, CCL20 secretion was decreased by inhibiting the extracellular ATP receptor P2X7. However, neither inflammasomes nor caspases were involved in CCL20 production. The culture supernatant of cells treated with Shanchol™ and butyrate augmented human immature dendritic cell migration. Collectively, these results suggest that butyrate enhances Shanchol™-induced CCL20 production in human intestinal epithelial cells via HDAC inhibition and ATP-P2X7 signaling by activating GPR109A. These effects potentially enhance the mucosal immune responses in the gut induced by this oral cholera vaccine.

  12. Vaccines and bioterrorism: smallpox and anthrax.

    Science.gov (United States)

    Kimmel, Sanford R; Mahoney, Martin C; Zimmerman, Richard K

    2003-01-01

    Because of the success of vaccination and the ring strategy in eradicating smallpox from the world, smallpox vaccine has not been recommended for the United States civilian populations for decades. Given the low but possible threat of bioterrorism, smallpox vaccination is now recommended for those teams investigating potential smallpox cases and for selected personnel of acute-care hospitals who would be needed to care for victims in the event of a terrorist attack. Treatment and post-exposure prophylaxis for anthrax are ciprofloxacin or doxycycline. Anthrax vaccine alone is not effective for post-exposure prevention of anthrax; vaccination is accompanied by 60 days of antibiotic therapy. In addition to military use, anthrax vaccine is recommended for pre-exposure use in those persons whose work involves repeated exposure to Bacillus anthracis spores.

  13. Vitamin D attenuates pressure overload-induced cardiac remodeling and dysfunction in mice.

    Science.gov (United States)

    Zhang, Liang; Yan, Xiao; Zhang, Yun-Long; Bai, Jie; Hidru, Tesfaldet Habtemariam; Wang, Qing-Shan; Li, Hui-Hua

    2018-04-01

    Vitamin D (VD) and its analogues play critical roles in metabolic and cardiovascular diseases. Recent studies have demonstrated that VD exerts a protective role in cardiovascular diseases. However, the beneficial effect of VD on pressure overload-induced cardiac remodeling and dysfunction and its underlying mechanisms are not fully elucidated. In this study, cardiac dysfunction and hypertrophic remodeling in mice were induced by pressure overload. Cardiac function was evaluated by echocardiography, and myocardial histology was detected by H&E and Masson's trichrome staining. Cardiomyocyte size was detected by wheat germ agglutinin staining. The protein levels of signaling mediators were examined by western blotting while mRNA expression of hypertrophic and fibrotic markers was examined by qPCR analysis. Oxidative stress was detected by dihydroethidine staining. Our results showed that administration of VD3 significantly ameliorates pressure overload-induced contractile dysfunction, cardiac hypertrophy, fibrosis and inflammation in mice. In addition, VD3 treatment also markedly inhibited cardiac oxidative stress and apoptosis. Moreover, protein levels of calcineurin A, ERK1/2, AKT, TGF-β, GRP78, cATF6, and CHOP were significantly reduced whereas SERCA2 level was upregulated in the VD3-treated hearts compared with control. These results suggest that VD3 attenuates cardiac remodeling and dysfunction induced by pressure overload, and this protective effect is associated with inhibition of multiple signaling pathways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Future of human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles.

    Science.gov (United States)

    Sahu, Rajnish; Verma, Richa; Dixit, Saurabh; Igietseme, Joseph U; Black, Carolyn M; Duncan, Skyla; Singh, Shree R; Dennis, Vida A

    2018-03-01

    There is a persisting global burden and considerable public health challenge by the plethora of ocular, genital and respiratory diseases caused by members of the Gram-negative bacteria of the genus Chlamydia. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility, and interstitial pneumonia. The failures in screening and other prevention programs led to the current medical opinion that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, there is no human Chlamydia vaccine despite successful veterinary vaccines. A major challenge has been the effective delivery of vaccine antigens to induce safe and effective immune effectors to confer long-term protective immunity. The dawn of the era of biodegradable polymeric nanoparticles and the adjuvanted derivatives may accelerate the realization of the dream of human vaccine in the foreseeable future. Areas covered: This review focuses on the current status of human chlamydial vaccine research, specifically the potential of biodegradable polymeric nanovaccines to provide efficacious Chlamydia vaccines in the near future. Expert commentary: The safety of biodegradable polymeric nanoparticles-based experimental vaccines with or without adjuvants and the array of available chlamydial vaccine candidates would suggest that clinical trials in humans may be imminent. Also, the promising results from vaccine testing in animal models could lead to human vaccines against trachoma and reproductive diseases simultaneously.

  15. New approaches to design HIV-1 T-cell vaccines.

    Science.gov (United States)

    Perrin, Hélène; Canderan, Glenda; Sékaly, Rafick-Pierre; Trautmann, Lydie

    2010-09-01

    Following the evidence that T-cell responses are crucial in the control of HIV-1 infection, vaccines targeting T-cell responses were tested in recent clinical trials. However, these vaccines showed a lack of efficacy. This review attempts to define the qualitative and quantitative features that are desirable for T-cell-induced responses by vaccines. We also describe strategies that could lead to achievement of this goal. Using the yellow fever vaccine as a benchmark of an efficient vaccine, recent studies identified factors of immune protection and more importantly innate immune pathways needed for the establishment of long-term protective adaptive immunity. To prevent or control HIV-1 infection, a vaccine must induce efficient and persistent antigen-specific T cells endowed with mucosal homing capacity. Such cells should have the capability to counteract HIV-1 diversity and its rapid spread from the initial site of infection. To achieve this goal, the activation of a diversified innate immune response is critical. New systems biology approaches will provide more precise correlates of immune protection that will pave the way for new approaches in T-cell-based vaccines.

  16. Lessons from pandemic influenza A(H1N1): the research-based vaccine industry's perspective.

    Science.gov (United States)

    Abelin, Atika; Colegate, Tony; Gardner, Stephen; Hehme, Norbert; Palache, Abraham

    2011-02-01

    As A(H1N1) influenza enters the post-pandemic phase, health authorities around the world are reviewing the response to the pandemic. To ensure this process enhances future preparations, it is essential that perspectives are included from all relevant stakeholders, including vaccine manufacturers. This paper outlines the contribution of R&D-based influenza vaccine producers to the pandemic response, and explores lessons that can be learned to improve future preparedness. The emergence of 2009 A(H1N1) influenza led to unprecedented collaboration between global health authorities, scientists and manufacturers, resulting in the most comprehensive pandemic response ever undertaken, with a number of vaccines approved for use three months after the pandemic declaration. This response was only possible because of the extensive preparations undertaken during the last decade. During this period, manufacturers greatly increased influenza vaccine production capacity, and estimates suggest a further doubling of capacity by 2014. Producers also introduced cell-culture technology, while adjuvant and whole virion technologies significantly reduced pandemic vaccine antigen content. This substantially increased pandemic vaccine production capacity, which in July 2009 WHO estimated reached 4.9 billion doses per annum. Manufacturers also worked with health authorities to establish risk management plans for robust vaccine surveillance during the pandemic. Individual producers pledged significant donations of vaccine doses and tiered-pricing approaches for developing country supply. Based on the pandemic experience, a number of improvements would strengthen future preparedness. Technical improvements to rapidly select optimal vaccine viruses, and processes to speed up vaccine standardization, could accelerate and extend vaccine availability. Establishing vaccine supply agreements beforehand would avoid the need for complex discussions during a period of intense time pressure. Enhancing

  17. A computational study of pressure-induced structural transition in ThSb

    International Nuclear Information System (INIS)

    Trinadh, Ch.U.M.; Rajagopalan, M.; Natarajan, S.

    1997-01-01

    The pressure induced phase transition from NaCl-type to CsCl-type structure in ThSb was studied using total energy calculations by tight-binding linear muffin tin orbital (TBLMTO) method within atomic sphere approximation (ASA). The density of states (DOS) at ambient pressure was compared with resonant photoemission studies (PES). The variation in interatomic distances during the transition was found to be in agreement with high pressure x-ray diffraction (HPXRD) studies. (author)

  18. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity

    Directory of Open Access Journals (Sweden)

    Tania Løve Aaes

    2016-04-01

    Full Text Available Successful immunogenic apoptosis in experimental cancer therapy depends on the induction of strong host anti-tumor responses. Given that tumors are often resistant to apoptosis, it is important to identify alternative molecular mechanisms that elicit immunogenic cell death. We have developed a genetic model in which direct dimerization of FADD combined with inducible expression of RIPK3 promotes necroptosis. We report that necroptotic cancer cells release damage-associated molecular patterns and promote maturation of dendritic cells, the cross-priming of cytotoxic T cells, and the production of IFN-γ in response to tumor antigen stimulation. Using both FADD-dependent and FADD-independent RIPK3 induction systems, we demonstrate the efficient vaccination potential of immunogenic necroptotic cells. Our study broadens the current concept of immunogenic cell death and opens doors for the development of new strategies in cancer therapy.

  19. Vaccines: from valuation to resource allocation.

    Science.gov (United States)

    Bloom, David E; Madhavan, Guruprasad

    2015-06-08

    This review focuses on selected challenges and opportunities concerning broader valuation of vaccines and immunization. The challenges involve conceptualizing and measuring the value of vaccines, while the opportunities relate to the strategic and systematic use of that information in health policy decisions that range from the adoption of particular vaccines in national immunization plans to the allocation of resources to vaccine research, development, and delivery. Clarifying the demonstrable individual, family, and community-level benefits of vaccines will allow the public health community to make better-informed and more meaningful comparisons of the costs of vaccines in relation to their full benefits. Taking advantage of this opportunity will require enhanced data collection and the development of strategic planning tools for transparently assessing trade-offs among the myriad attributes of different vaccines in various social and economic contexts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Microneedle and mucosal delivery of influenza vaccines

    Science.gov (United States)

    Kang, Sang-Moo; Song, Jae-Min; Kim, Yeu-Chun

    2017-01-01

    In recent years with the threat of pandemic influenza and other public health needs, alternative vaccination methods other than intramuscular immunization have received great attention. The skin and mucosal surfaces are attractive sites probably because of both non-invasive access to the vaccine delivery and unique immunological responses. Intradermal vaccines using a microinjection system (BD Soluvia) and intranasal vaccines (FluMist) are licensed. As a new vaccination method, solid microneedles have been developed using a simple device that may be suitable for self-administration. Because coated micorneedle influenza vaccines are administered in the solid state, developing formulations maintaining the stability of influenza vaccines is an important issue to be considered. Marketable microneedle devices and clinical trials remain to be developed. Other alternative mucosal routes such as oral and intranasal delivery systems are also attractive for inducing cross protective mucosal immunity but effective non-live mucosal vaccines remain to be developed. PMID:22697052

  1. [New vaccines against group B meningococcal diseases].

    Science.gov (United States)

    Hietalahti, Jukka; Meri, Seppo

    2015-01-01

    There has been no efficient general vaccine against serogroup B meningococcus (MenB), since its polysialic acid capsule is of low immunogenicity and could potentially induce autoimmunity. Reverse vaccinology has revealed new promising protein candidates for vaccine development. One of them is factor H-binding protein (fHbp), which has the potential to curb the alternative pathway of human complement. As fHbp can elicit antibodies that promote complement-mediated lysis, a vaccine partly based on it has been introduced against MenB infections. FHbp has been the milestone protein for structural vaccinology to create optimal chimeric antigens for vaccine use.

  2. Pan-Influenza A Protection by Prime-Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model.

    Science.gov (United States)

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime-boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro , CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo . Heterologous combination of prime (H1)-boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a "truly" universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising results

  3. Pan-Influenza A Protection by Prime–Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model

    Science.gov (United States)

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime–boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro, CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo. Heterologous combination of prime (H1)–boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a “truly” universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising

  4. Current barriers, challenges and opportunities for the development of effective STI vaccines: point of view of vaccine producers, biotech companies and funding agencies.

    Science.gov (United States)

    Dodet, Betty

    2014-03-20

    Several barriers limit the development of vaccines against sexually transmitted diseases (STIs). Critical scientific information is missing that makes the feasibility and the likelihood of success of vaccines against genital herpes, chlamydia, gonorrhea and trichomonas uncertain: the immunity induced by natural infection is absent or imperfect which seriously limits the capacity to define the types of immune responses that an effective vaccine must induce. Reliable animal models are lacking and a number of crucial clinical questions are still unanswered about the goal of these vaccines and definition of endpoints for clinical trials. In the absence of a clear recognition of the need for vaccines against these diseases, there is no motivation for public or private research and industry to invest in the development of vaccines against STIs. The STI burden should be evaluated not only in terms of mortality and morbidity, but also in terms of economic and psycho-social impact. A global public-private consortium could mobilize the joint efforts of all stakeholders involved in the research, development and implementation of STI vaccines of the public and private sectors; ensure that sufficient resources are applied to R&D of vaccines against these STIs; and provide the pull-push forces that are necessary to overcome the barriers to develop safe and effective vaccines against these diseases. Copyright © 2014. Published by Elsevier Ltd.

  5. Pre-vaccination care-seeking in females reporting severe adverse reactions to HPV vaccine. A registry based case-control study

    DEFF Research Database (Denmark)

    Mølbak, Kåre; Hansen, Niels Dalum; Valentiner-Branth, Palle

    2016-01-01

    to the DMA of suspected severe adverse reactions.We selected controls without reports of adverse reactions from the Danish vaccination registry and matched by year of vaccination, age of vaccination, and municipality, and obtained from the Danish National Patient Registry and The National Health Insurance...... vaccination programme has declined. The aim of the present study was to determine health care-seeking prior to the first HPV vaccination among females who suspected adverse reactions to HPV vaccine. Methods In this registry-based case-control study, we included as cases vaccinated females with reports...... Service Register the history of health care usage two years prior to the first vaccine. We analysed the data by logistic regression while adjusting for the matching variables. Results The study included 316 cases who received first HPV vaccine between 2006 and 2014. Age range of cases was 11 to 52 years...

  6. Antibody response to an anti-rabies vaccine in a dog population under field conditions in Bolivia.

    Science.gov (United States)

    Suzuki, K; González, E T; Ascarrunz, G; Loza, A; Pérez, M; Ruiz, G; Rojas, L; Mancilla, K; Pereira, J A C; Guzman, J A; Pecoraro, M R

    2008-10-01

    Rabies remains an important public health issue in Bolivia, South America. Public concern and fears are most focussed on dogs as the source of rabies. The objective of the present study was to assess immunity of an inactivated suckling mouse brain vaccine against canine rabies used for the official vaccination campaigns under field conditions in an endemic area of rabies in Bolivia. A total of 236 vaccinated and 44 unvaccinated dogs in Santa Cruz de la Sierra, selected using stratified random sampling, were investigated in order to obtain owned dog characteristics and antibody titres against rabies in April 2007. The proportion of vaccinated dogs with an antibody titre exceeded the protection threshold value of 0.5 EU/ml was 58% [95% confidence intervals (CI): 52-65], indicating that vaccination is likely to elicit an antibody response (odds ratio 6.3, 95% CI: 1.2-11.5). The range of geometric mean of antibody titre for vaccinated dogs (0.89 EU/ml; 95% CI: 0.75-1.04) was considered to meet the minimal acceptable level indicating an adequate immune response to the vaccine. However, the titre level was not satisfactory in comparison with the results from other field investigations with inactivated tissue culture vaccines. It is recommended for public health authorities to (1) consider modernizing their vaccine manufacturing method because the level of immunity induced by the current vaccine is comparably low, (2) conduct frequent vaccination campaigns to maintain high levels of vaccination coverage, and (3) actively manage the domestic dog population in the study area, which is largely responsible for rabies maintenance.

  7. Bacille Calmette-Guérin (BCG) vaccination at birth and antibody responses to childhood vaccines. A randomised clinical trial

    DEFF Research Database (Denmark)

    Nissen, Thomas Nørrelykke; Birk, Nina Marie; Smits, Gaby

    2017-01-01

    ) vaccination at birth, The Danish Calmette Study, we investigated the effect of BCG at birth on the antibody response to the three routine vaccines against DiTeKiPol/Act-Hib and Prevenar 13 in a subgroup of participants. METHODS: Within 7days after birth, children were randomised 1:1 to BCG vaccination...... children (178 BCG; 122 controls), almost all children (>96%) had antibody responses above the protective levels. Overall BCG vaccination at birth did not affect the antibody level. When stratifying by 'age at randomisation' we found a possible inducing effect of BCG on antibodies against B. pertussis......-protective levels in almost all children. No overall effect of neonatal BCG vaccination was observed....

  8. Canine distemper virus DNA vaccination of mink can overcome interference by maternal antibodies.

    Science.gov (United States)

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent; Pertoldi, Cino; Blixenkrone-Møller, Merete

    2015-03-10

    Canine distemper virus (CDV) is highly contagious and can cause severe disease against which conventional live vaccines are ineffective in the presence of maternal antibodies. Vaccination in the presences of maternal antibodies was challenged by vaccination of 5 days old and 3 weeks old mink kits with CDV DNA vaccines. Virus neutralising (VN) antibody responses were induced in mink kits vaccinated with a plasmid encoding the haemaglutinin protein (H) of CDV (n=5, pCDV-H) or a combination of the H, fusion (F) and nucleoprotein (N) of CDV (n=5, pCDV-HFN). These DNA vaccinated kits were protected against virulent experimental infection with field strains of CDV. The pCDV-H was more efficient in inducing protective immunity in the presence of maternal antibodies compared to the pCDV-HFN. The results show that DNA vaccination with the pCDV-H or pCDV-HFN (n=4) only given once at 5 days of age induces virus specific immune response in neonatal mink and protection against virulent CDV exposure later in life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Vaccine-induced cross-genotype reactive neutralizing antibodies against hepatitis C virus

    DEFF Research Database (Denmark)

    Meunier, Jean-Christophe; Gottwein, Judith M; Houghton, Michael

    2011-01-01

    We detected cross-reactive neutralizing antibodies (NtAb) against hepatitis C virus (HCV) in chimpanzees vaccinated with HCV-1 (genotype 1a) recombinant E1/E2 envelope glycoproteins. Five vaccinated chimpanzees, protected following HCV-1 challenge, were initially studied using the heterologous H77......a, with limited reactivity against 2a and 3a. Our study provides encouragement for the development of a recombinant envelope-based vaccine against hepatitis C....

  10. Acute hepatitis B caused by a vaccine-escape HBV strain in vaccinated subject: sequence analysis and therapeutic strategy.

    Science.gov (United States)

    Luongo, Monica; Critelli, Rosina; Grottola, Antonella; Gitto, Stefano; Bernabucci, Veronica; Bevini, Mirco; Vecchi, Chiara; Montagnani, Giuliano; Villa, Erica

    2015-01-01

    HBV vaccine contains the 'a' determinant region, the major immune-target of antibodies (anti-HBs). Failure of immunization may be caused by vaccine-induced or spontaneous 'a' determinant surface gene mutants. Here, we evaluate the possible lack of protection by HBV vaccine, describing the case of an acute hepatitis B diagnosed in a 55-year-old Caucasian male unpaid blood donor, vaccinated against HBV. Sequencing data for preS-S region revealed multiple point mutations. Of all the substitutions found, Q129H, located in the "a" determinant region of HBsAg, can alter antigenicity, leading to mutants. This mutant may cause vaccine failure especially when associated with high viremia of infecting source. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Bacterium-like Particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications

    Directory of Open Access Journals (Sweden)

    Natalija eVan Braeckel-Budimir

    2013-09-01

    Full Text Available The successful development of a mucosal vaccine critically depends on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle derived from bacteria in mucosal subunit vaccines. The non-living particles, designated Bacterium-like Particles (BLPs are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine.

  12. Multiple pathways in pressure-induced phase transition of coesite

    Science.gov (United States)

    Liu, Wei; Wu, Xuebang; Liu, Changsong; Miranda, Caetano R.; Scandolo, Sandro

    2017-01-01

    High-pressure single-crystal X-ray diffraction method with precise control of hydrostatic conditions, typically with helium or neon as the pressure-transmitting medium, has significantly changed our view on what happens with low-density silica phases under pressure. Coesite is a prototype material for pressure-induced amorphization. However, it was found to transform into a high-pressure octahedral (HPO) phase, or coesite-II and coesite-III. Given that the pressure is believed to be hydrostatic in two recent experiments, the different transformation pathways are striking. Based on molecular dynamic simulations with an ab initio parameterized potential, we reproduced all of the above experiments in three transformation pathways, including the one leading to an HPO phase. This octahedral phase has an oxygen hcp sublattice featuring 2 × 2 zigzag octahedral edge-sharing chains, however with some broken points (i.e., point defects). It transforms into α-PbO2 phase when it is relaxed under further compression. We show that the HPO phase forms through a continuous rearrangement of the oxygen sublattice toward hcp arrangement. The high-pressure amorphous phases can be described by an fcc and hcp sublattice mixture. PMID:29162690

  13. Differential B-cell memory around the 11-month booster in children vaccinated with a 10- or 13-valent pneumococcal conjugate vaccine

    NARCIS (Netherlands)

    van Westen, Els; Wijmenga-Monsuur, Alienke J; van Dijken, Harry H; van Gaans-van den Brink, Jacqueline A M; Kuipers, Betsy; Knol, Mirjam J; Berbers, Guy A M; Sanders, Elisabeth A M; Rots, Nynke Y; van Els, Cécile A C M

    2015-01-01

    BACKGROUND: Both the 10- and 13-valent pneumococcal conjugate vaccines (PCV10 and PCV13) induce immunological memory against Streptococcus pneumoniae infections caused by vaccine serotypes. In addition to comparing serum antibody levels, we investigated frequencies of serotype-specific plasma cells

  14. Sieve analysis in HIV-1 vaccine efficacy trials.

    Science.gov (United States)

    Edlefsen, Paul T; Gilbert, Peter B; Rolland, Morgane

    2013-09-01

    The genetic characterization of HIV-1 breakthrough infections in vaccine and placebo recipients offers new ways to assess vaccine efficacy trials. Statistical and sequence analysis methods provide opportunities to mine the mechanisms behind the effect of an HIV vaccine. The release of results from two HIV-1 vaccine efficacy trials, Step/HVTN-502 (HIV Vaccine Trials Network-502) and RV144, led to numerous studies in the last 5 years, including efforts to sequence HIV-1 breakthrough infections and compare viral characteristics between the vaccine and placebo groups. Novel genetic and statistical analysis methods uncovered features that distinguished founder viruses isolated from vaccinees from those isolated from placebo recipients, and identified HIV-1 genetic targets of vaccine-induced immune responses. Studies of HIV-1 breakthrough infections in vaccine efficacy trials can provide an independent confirmation to correlates of risk studies, as they take advantage of vaccine/placebo comparisons, whereas correlates of risk analyses are limited to vaccine recipients. Through the identification of viral determinants impacted by vaccine-mediated host immune responses, sieve analyses can shed light on potential mechanisms of vaccine protection.

  15. Immunization with Clinical HIV-1 Env Proteins Induces Broad Antibody Dependent Cellular Cytotoxicity-Mediating Antibodies in a Rabbit Vaccination Model

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov

    2018-01-01

    The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient a...

  16. Aluminiumallergi og granulomer som følge af vaccination hos børn

    DEFF Research Database (Denmark)

    Andersen, Rosa Marie O; Zachariae, Claus; Johansen, Jeanne Duus

    2014-01-01

    Vaccination with aluminium-adsorbed vaccines can induce aluminium allergy with persistent itching subcutaneous nodules at the injection site - vaccination granulomas. In this article we give an overview of childhood aluminium-adsorbed vaccines available in Denmark. Through literature studies we...

  17. Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats.

    Science.gov (United States)

    Mori, Takefumi; Cowley, Allen W

    2004-04-01

    Renal perfusion pressure was servo-controlled chronically in rats to quantify the relative contribution of elevated arterial pressure versus angiotensin II (Ang II) on the induction of renal injury in Ang II-induced hypertension. Sprague-Dawley rats fed a 4% salt diet were administered Ang II for 14 days (25 ng/kg per minute IV; saline only for sham rats), and the renal perfusion pressure to the left kidney was continuously servo-controlled to maintain a normal pressure in that kidney throughout the period of hypertension. An aortic occluder was implanted around the aorta between the two renal arteries and carotid and femoral arterial pressure were measured continuously throughout the experiment to determine uncontrolled and controlled renal perfusion pressure, respectively. Renal perfusion pressure of uncontrolled, controlled, and sham kidneys over the period of Ang II or saline infusion averaged 152.6+/-7.0, 117.4+/-3.5, and 110.7+/-2.2 mm Hg, respectively. The high-pressure uncontrolled kidneys exhibited tubular necrosis and interstitial fibrosis, especially prominent in the outer medullary region. Regional glomerular sclerosis and interlobular artery injury were also pronounced. Controlled kidneys were significantly protected from interlobular artery injury, juxtamedullary glomeruli injury, tubular necrosis, and interstitial fibrosis as determined by comparing the level of injury. Glomerular injury was not prevented in the outer cortex. Transforming growth factor (TGF)-beta and active NF-kappaB proteins determined by immunohistochemistry were colocalized in the uncontrolled kidney in regions of interstitial fibrosis. We conclude that the preferential juxtamedullary injury found in Ang II hypertension is largely induced by pressure and is probably mediated through the TGF-beta and NF-kappaB pathway.

  18. Pressure-induced phase transition of 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6

    Science.gov (United States)

    Takekiyo, Takahiro; Hatano, Naohiro; Imai, Yusuke; Abe, Hiroshi; Yoshimura, Yukihiro

    2011-03-01

    We have investigated the pressure-induced Raman spectral change of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) using Raman spectroscopy. The relative Raman intensity at 590 cm-1 of the CH2 rocking band assigned to the gauche conformer of the NCCC dihedral angle of the butyl group in the [bmim]+ cation increases when the pressure-induced liquid-crystalline phase transition occurs, while that at 610 cm-1 assigned to the trans conformer decreases. Our results show that the high-pressure phase transition of [bmim][PF6] causes the increase of the gauche conformer of the [bmim]+ cation.

  19. Persistent Skin Reactions and Aluminium Hypersensitivity Induced by Childhood Vaccines.

    Science.gov (United States)

    Salik, Elaha; Løvik, Ida; Andersen, Klaus E; Bygum, Anette

    2016-11-02

    There is increasing awareness of reactions to vaccination that include persistent skin reactions. We present here a retrospective investigation of long-lasting skin reactions and aluminium hypersensitivity in children, based on medical records and questionnaires sent to the parents. In the 10-year period 2003 to 2013 we identified 47 children with persistent skin reactions caused by childhood vaccinations. Most patients had a typical presentation of persisting pruritic subcutaneous nodules. Five children had a complex diagnostic process involving paediatricians, orthopaedics and plastic surgeons. Two patients had skin biopsies performed from their skin lesions, and 2 patients had the nodules surgically removed. Forty-two children had a patch-test performed with 2% aluminium chloride hexahydrate in petrolatum and 39 of them (92%) had a positive reaction. The persistent skin reactions were treated with potent topical corticosteroids and disappeared slowly. Although we advised families to continue vaccination of their children, one-third of parents omitted or postponed further vaccinations.

  20. ERM immersion vaccination and adjuvants

    DEFF Research Database (Denmark)

    Skov, J.; Chettri, J. K.; Jaafar, R. M.

    2015-01-01

    Two candidate adjuvants were tested with a commercial ERM dip vaccine (AquaVac™ Relera, MSD Animal Health) for rainbow trout in an experimental design compatible with common vaccination practices at farm level, i.e. immersion of fish in vaccine (±adjuvant) for 30 s. The adjuvants were...... the commercial product Montanide™ IMS 1312 VG PR (SEPPIC), and a soluble and ≥98% pure β-glucan from yeast (Saccharomyces cerevisiae) (Sigma-Aldrich). Hence, five experimental groups in duplicate were established and exposed to vaccine and adjuvants in the following combinations: AquaVac™ Relera (alone); Aqua......Vac™ Relera + Montanide™; AquaVac™ Relera + β-glucan; Montanide™ (alone); and β-glucan (alone). Approximately 450 degree days post-vaccination, the fish were bath-challenged with live Yersinia ruckeri to produce survival curves. Blood, skin and gills were sampled at selected time points during the course...

  1. The osmotic stress response of split influenza vaccine particles in an acidic environment.

    Science.gov (United States)

    Choi, Hyo-Jick; Kim, Min-Chul; Kang, Sang-Moo; Montemagno, Carlo D

    2014-12-01

    Oral influenza vaccine provides an efficient means of preventing seasonal and pandemic disease. In this work, the stability of envelope-type split influenza vaccine particles in acidic environments has been investigated. Owing to the fact that hyper-osmotic stress can significantly affect lipid assembly of vaccine, osmotic stress-induced morphological change of split vaccine particles, in conjunction with structural change of antigenic proteins, was investigated by the use of stopped-flow light scattering (SFLS), intrinsic fluorescence, transmission electron microscopy (TEM), and hemagglutination assay. Split vaccine particles were found to exhibit a step-wise morphological change in response to osmotic stress due to double-layered wall structure. The presence of hyper-osmotic stress in acidic medium (0.3 osmolarity, pH 2.0) induced a significant level of membrane perturbation as measured by SFLS and TEM, imposing more damage to antigenic proteins on vaccine envelope than can be caused by pH-induced conformational change at acidic iso-osmotic condition. Further supports were provided by the intrinsic fluorescence and hemagglutinin activity measurements. Thus, hyper-osmotic stress becomes an important factor for determining stability of split vaccine particles in acidic medium. These results are useful in better understanding the destabilizing mechanism of split influenza vaccine particles in gastric environment and in designing oral influenza vaccine formulations.

  2. Pressure drop effects on selectivity and resolution in packed-column supercritical fluid chromatography

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Snijders, H.M.J.; Cramers, C.A.M.G.

    1996-01-01

    The influence of pressure drop on retention, selectivity, plate height and resolution was investigated systematically in packed supercritical fluid chromatography (SFC) using pure carbon dioxide as the mobile phase. Numerical methods developed previously which enabled the prediction of pressure

  3. Competitive Pressure, Selection and Investments in Development and Fundamental Research

    NARCIS (Netherlands)

    Boone, J.

    1998-01-01

    This paper analyses the effects of competitive pressure on a firm's incentives to undertake both fundamental research and development. It presents a new framework incorporating the selection effect of product market competition, the Schumpeterian argument for monopoly power, the Nickell/Porter

  4. Positron annihilation and pressure-induced electronic s-d transition

    International Nuclear Information System (INIS)

    McMahan, A.K.; Skriver, H.L.

    1985-06-01

    The polycrystalline, partial annihilation rates for positrons in compressed cesium have been calculated using the linear muffin-tin orbitals method. These results suggest that the pressure-induced electronic s-d transition in Cs should be directly observable by momentum sensitive positron annihilation experiments

  5. Vaccinating in disease-free regions: a vaccine model with application to yellow fever.

    Science.gov (United States)

    Codeço, Claudia T; Luz, Paula M; Coelho, Flavio; Galvani, Alison P; Struchiner, Claudio

    2007-12-22

    Concerns regarding natural or induced emergence of infectious diseases have raised a debate on the pros and cons of pre-emptive vaccination of populations under uncertain risk. In the absence of immediate risk, ethical issues arise because even smaller risks associated with the vaccine are greater than the immediate disease risk (which is zero). The model proposed here seeks to formalize the vaccination decision process looking from the perspective of the susceptible individual, and results are shown in the context of the emergence of urban yellow fever in Brazil. The model decomposes the individual's choice about vaccinating or not into uncertain components. The choice is modelled as a function of (i) the risk of a vaccine adverse event, (ii) the risk of an outbreak and (iii) the probability of receiving the vaccine or escaping serious disease given an outbreak. Additionally, we explore how this decision varies as a function of mass vaccination strategies of varying efficiency. If disease is considered possible but unlikely (risk of outbreak less than 0.1), delay vaccination is a good strategy if a reasonably efficient campaign is expected. The advantage of waiting increases as the rate of transmission is reduced (low R0) suggesting that vector control programmes and emergency vaccination preparedness work together to favour this strategy. The opposing strategy, vaccinating pre-emptively, is favoured if the probability of yellow fever urbanization is high or if expected R0 is high and emergency action is expected to be slow. In summary, our model highlights the nonlinear dependence of an individual's best strategy on the preparedness of a response to a yellow fever outbreak or other emergent infectious disease.

  6. Experiments with a homologous, inactivated canine parvovirus vaccine in vaccination programmers for dogs.

    Science.gov (United States)

    Wilson, J H; Hermann-Dekkers, W M

    1982-01-01

    The significance of canine parvovirus (CPV) infections as a permanent threat susceptible dogs, in particular pups, made the authors develop three liquid homologous inactivated adjuvant CPV vaccines that were compatible with existing canine vaccines and could be incorporated in current vaccination programmes. On vaccine (Kavak Parvo) contained only the CPV component, the second product (Kavak i-LP) also contained two inactivated leptospiral antigens, and the third vaccine (Kavak i-HLP) contained in addition an inactivated canine hepatitis virus. This paper reports on the studies conducted to test the safety and efficacy of the three products. They were used as such and as diluents for freeze dried vaccines containing live attenuated measles, distemper, and hepatitis viruses. The study was performed in a breeding kennel where all dogs were free from CPV antibodies and the nonvaccinated sentinels remained so for the course of the study. All vaccines proved to be safe in dogs of all ages, including pregnant bitches. The efficacy of the CPV component was studied both by monitoring antibody titres for more than a year and by challenge exposure of some dogs to virulent CPV. The results obtained from these studies prove that the CPV component used in the three vaccines can be incorporated as indicated in the recommended canine vaccination programmes. The observations that the inactivated CPV and hepatitis components do induce an active immunity in pups that are still protected by low levels of maternally derived antibodies against these viruses, make those vaccines very suitable in breeding kennels. Additional studies on a comparative basis are being continued in edemically CPV infected breeding kennels to quantify the significance of these observations in these special conditions.

  7. Aluminiumallergi og granulomer som følge af vaccination hos børn

    DEFF Research Database (Denmark)

    Andersen, Rosa Marie Ø; Zachariae, Claus; Johansen, Jeanne Duus

    2015-01-01

    Vaccination with aluminium-adsorbed vaccines can induce aluminium allergy with persistent itching subcutaneous nodules at the injection site – vaccination granulomas. In this article we give an overview of childhood aluminium-adsorbed vaccines available in Denmark. Through literature studies we...

  8. Pressure-induced ferroelectric to antiferroelectric phase transformation in porous PZT95/5 ceramics

    International Nuclear Information System (INIS)

    Zeng, T.; Dong, X.L.; Chen, X.F.; Yao, C.H.; He, H.L.

    2007-01-01

    The hydrostatic pressure-induced ferroelectric to antiferroelectric (FE-AFE) phase transformation of PZT95/5 ceramics was investigated as a function of porosity, pore shape and pore size. FE-AFE phase transformations were more diffuse and occurred at lower hydrostatic pressures with increasing porosity. The porous PZT95/5 ceramics with spherical pores exhibited higher transformation pressures than those with irregular pores. Moreover, FE-AFE phase transformations of porous PZT95/5 ceramics with polydisperse irregular pores were more diffuse than those of porous PZT95/5 ceramics with monodisperse irregular pores. The relation between pore structure and hydrostatic pressure-induced FE-AFE transformation was established according to stress concentration theory. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. A DNA vaccine co-expressing Trichinella spiralis MIF and MCD-1 with murine ubiquitin induces partial protective immunity in mice.

    Science.gov (United States)

    Tang, F; Xu, L; Yan, R; Song, X; Li, X

    2013-03-01

    Co-expression of Trichinella spiralis macrophage migration inhibitory factor (TsMIF) with T. spiralis cystatin-like domain protein (TsMCD-1) in a DNA vaccine induces a Th1 immune response and partial protection against T. spiralis infection. The present study evaluated whether co-expression of mouse ubiquitin (Ub) with TsMIF and TsMCD-1 might improve the immune response against T. spiralis infection. Groups of BALB/c mice were immunized twice at 2-week intervals with 100 μg of plasmid DNA encoding either a TsMIF-TsMCD-1 fusion protein (pVAX1-Tsmif-Tsmcd-1) or an Ub-co-expressing triple fusion protein Ub-TsMIF-TsMCD-1 (pVAX1-Ub-Tsmif-Tsmcd-1). Control animals were immunized with pVAX1-Ub or blank vector plasmid. Specific antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, IgA, IgE) against the recombinant protein TsMIF-TsMCD-1, serum cytokines (interferon (IFN)-γ, interleukin (IL)-4, IL-5, transforming growth factor (TGF)-β1 and IL-17), CD4+/CD8+ T cells and cytotoxic T lymphocyte (CTL) responses were monitored. Challenge infection was performed 2 weeks after the second immunization and worm burden was assayed at 35 days post-challenge. Antibody responses induced by pVAX1-Ub-Tsmif-Tsmcd-1 were significantly lower than for TsMIF-TsMCD-1, but the vaccine induced increased levels of Th1 cytokine (IFN-γ) and increased T-cell cytotoxicity. The reduction of worm burden (37.95%) following immunization with pVAX1-Ub-Tsmif-Tsmcd-1 was significantly greater than that induced by the pVAX1-Tsmif-Tsmcd-1 vaccine (23.17%; P< 0.05).

  10. Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine

    International Nuclear Information System (INIS)

    Sparger, Ellen E.; Dubie, Robert A.; Shacklett, Barbara L.; Cole, Kelly S.; Chang, W.L.; Luciw, Paul A.

    2008-01-01

    Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-γ enzyme-linked immunospot responses of low magnitude were observed after immunization with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus

  11. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    International Nuclear Information System (INIS)

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-01-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH

  12. The vaccination programme in Indonesia.

    Science.gov (United States)

    Sawitri Siregar, E; Darminto; Weaver, J; Bouma, A

    2007-01-01

    The Indonesian response to the outbreak of highly pathogenic avian influenza (HPAI) is being strengthened by increased intersectoral commitment and greater availability of staff and resources. Vaccination against avian influenza has been used widely in large commercial sectors but less so in other sectors. Generally, there has been a reduction in outbreaks and in the impact of HPAI on the commercial industry. Afield trial is described that might provide insight into the efficacy of vaccination on farms in sector 3. Preliminary data suggest that vaccination of layers induces high titres, whereas vaccination of native chickens might be difficult owing to a low response in these breeds. A much greater commitment of management, staff and resources is required before vaccination can become part of a successful sustainable campaign to eradicate HPAI. For success, the commercial poultry industry must become an integral part of the control programme, providing information and having the opportunity to identify or modify the priorities of the control programme.

  13. Enhanced immune responses by skin vaccination with influenza subunit vaccine in young hosts.

    Science.gov (United States)

    Koutsonanos, Dimitrios G; Esser, E Stein; McMaster, Sean R; Kalluri, Priya; Lee, Jeong-Woo; Prausnitz, Mark R; Skountzou, Ioanna; Denning, Timothy L; Kohlmeier, Jacob E; Compans, Richard W

    2015-09-08

    Skin has gained substantial attention as a vaccine target organ due to its immunological properties, which include a high density of professional antigen presenting cells (APCs). Previous studies have demonstrated the effectiveness of this vaccination route not only in animal models but also in adults. Young children represent a population group that is at high risk from influenza infection. As a result, this group could benefit significantly from influenza vaccine delivery approaches through the skin and the improved immune response it can induce. In this study, we compared the immune responses in young BALB/c mice upon skin delivery of influenza vaccine with vaccination by the conventional intramuscular route. Young mice that received 5 μg of H1N1 A/Ca/07/09 influenza subunit vaccine using MN demonstrated an improved serum antibody response (IgG1 and IgG2a) when compared to the young IM group, accompanied by higher numbers of influenza-specific antibody secreting cells (ASCs) in the bone marrow. In addition, we observed increased activation of follicular helper T cells and formation of germinal centers in the regional lymph nodes in the MN immunized group, rapid clearance of the virus from their lungs as well as complete survival, compared with partial protection observed in the IM-vaccinated group. Our results support the hypothesis that influenza vaccine delivery through the skin would be beneficial for protecting the high-risk young population from influenza infection. Copyright © 2015. Published by Elsevier Ltd.

  14. Development of Antibody-Based Vaccines Targeting the Tumor Vasculature.

    Science.gov (United States)

    Zhuang, Xiaodong; Bicknell, Roy

    2016-01-01

    A functional vasculature is essential for tumor progression and malignant cell metastasis. Endothelial cells lining blood vessels in the tumor are exposed to a unique microenvironment, which in turn induces expression of specific proteins designated as tumor endothelial markers (TEMs). TEMs either localized at the plasma membrane or secreted into the extracellular matrix are accessible for antibody targeting, which can be either infused or generated de novo via vaccination. Recent studies have demonstrated vaccines against several TEMs can induce a strong antibody response accompanied by a potent antitumor effect in animal models. These findings present an exciting field for novel anticancer therapy development. As most of the TEMs are self-antigens, breaking tolerance is necessary for a successful vaccine. This chapter describes approaches to efficiently induce a robust antibody response against the tumor vasculature.

  15. A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study.

    Science.gov (United States)

    Wiedermann, Ursula; Wiltschke, C; Jasinska, J; Kundi, M; Zurbriggen, R; Garner-Spitzer, E; Bartsch, R; Steger, G; Pehamberger, H; Scheiner, O; Zielinski, C C

    2010-02-01

    We have previously shown in mice that vaccination with three Her-2-peptides representing B-cell epitopes of the extracellular domain of Her-2/neu induces Her-2/neu-specific IgG antibodies with strong anti-tumor activity in vitro and in vivo. We have now finalized a phase I clinical trial with an anti-Her-2/neu vaccine-construct of immunopotentiating reconstituted influenza virosomes with the three peptides in patients with metastatic breast cancer (MBC). Ten MBC patients with low protein overexpression of Her-2/neu of MBC (+ or ++ upon immunohistochemistry, FISH negative) and positive hormone receptor status were enrolled in a single center phase I study. The virosomal formulated vaccine, consisting of 10 microg/peptide, was intramuscularly applied three times on days 1, 28, and 56. The primary endpoint of the study, which lasted 12 weeks, was safety, the secondary endpoint immunogenicity. Local erythema at the injection site was the only vaccine-related side effect occurring in four patients. In 8 of 10 patients an increase in peptide-specific antibody titer measured by ELISA was found. Importantly, the induced antibodies were also directed against the native Her-2/neu protein. Cellular immune responses, as measured by in vitro production of IL-2, IFN-c, and TNF-a of PBMCs showed a marked increase after vaccination in the majority of vaccinees. Notably, the number of CD4+CD25+Foxp3+T regulatory cells, which were significantly increased compared to healthy controls prior to vaccination, was markedly reduced following vaccination. In all, the immunological responses after vaccination indicated that the patients in stage IV of disease were immunocompetent and susceptible to vaccination. The Her-2/neu multipeptide vaccine was safe, well tolerated and effective in overcoming immunological tolerance to Her-2/neu. The induction of anti-Her-2-specific antibodies could result in clinical benefit comparable to passive anti-Her-2 antibody therapy.

  16. Coombs Antiglobulin Test Using Brucella abortus 99 as Antigen To Detect Incomplete Antibodies Induced by B. abortus RB51 Vaccine in Cattle

    OpenAIRE

    Ciuchini, Franco; Adone, Rosanna; Pasquali, Paolo

    2002-01-01

    This study showed that vaccination of cattle with Brucella abortus rough strain RB51 induces incomplete antibodies that can be detectable by a Coombs antiglobulin test using the B. abortus 99 smooth strain.

  17. Vaccine platform recombinant measles virus.

    Science.gov (United States)

    Mühlebach, Michael D

    2017-10-01

    The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.

  18. Establishing Correlates of Protection for Vaccine Development: Considerations for the Respiratory Syncytial Virus Vaccine Field.

    Science.gov (United States)

    Kulkarni, Prasad S; Hurwitz, Julia L; Simões, Eric A F; Piedra, Pedro A

    2018-03-01

    Correlates of protection (CoPs) can play a significant role in vaccine development by assisting the selection of vaccine candidates for clinical trials, supporting clinical trial design and implementation, and simplifying tests of vaccine modifications. Because of this important role in vaccine development, it is essential that CoPs be defined by well-designed immunogenicity and efficacy studies, with attention paid to benefits and limitations. The respiratory syncytial virus (RSV) field is unique in that a great deal of information about the humoral response is available from basic research and clinical studies. Polyclonal and monoclonal antibodies have been used routinely in the clinic to protect vulnerable infants from infection, providing a wealth of information about correlations between neutralizing antibodies and disease prevention. Considerations for the establishment of future CoPs to support RSV vaccine development in different populations are therefore discussed.

  19. Human papilloma virus vaccine associated uveitis.

    Science.gov (United States)

    Holt, Henry D; Hinkle, David M; Falk, Naomi S; Fraunfelder, Frederick T; Fraunfelder, Frederick W

    2014-03-01

    To report a possible association between human papilloma virus (HPV) vaccination and uveitis. Spontaneous reports from the National Registry of Drug-Induced Ocular Side effects, World Health Organization and Food and Drug Administration were collected on uveitis associated with human papilloma virus vaccination. A MEDLINE search was performed using keywords "uveitis," "iritis," "iridocyclitis," "human papilloma virus," "Cervarix", and "Gardasil." Data garnered from spontaneous reports included the age, gender, adverse drug reaction (ADR), date of administration, concomitant administration of other vaccinations, time until onset of ADR, other systemic reactions, and dechallenge and rechallenge data. A total of 24 case reports of uveitis associated with human papilloma virus vaccination were identified, all cases were female, and the median age was 17. Median time from HPV vaccination to reported ADR was 30 days (range 0-476 days). According to World Health Organization criteria, the relationship between human papilloma virus vaccination and uveitis is "possible." Causality assessments are based on the time relationship of drug administration, uveitis development and re-challenge data. Clinicians should be aware of a possible bilateral uveitis and papillitis following HPV vaccination.

  20. Combinatorial synthetic peptide vaccine strategy protects against hypervirulent CovR/S mutant streptococci

    DEFF Research Database (Denmark)

    Pandey, Manisha; Mortensen, Rasmus; Calcutt, Ainslie

    2016-01-01

    -mediated killing and enabling ingress of bacteria from a superficial wound to deep tissue.We previously showed that a combination vaccine incorporating J8-DT (conserved peptide vaccine from theM protein) and a recombinant SpyCEP fragment protects against CovR/S mutants. To enhance the vaccine's safety profile, we......), and it would be to the organism's advantage if the host did not induce a strong Ab response against it. However, S2 conjugated to diphtheria toxoid is highly immunogenic and induces Abs that recognize and neutralize SpyCEP. Hence, we describe a two-component peptide vaccine that induces Abs (anti-S2....... This protection correlated with a significant influx of neutrophils to the infection site. The data strongly suggest that the lack of natural immunity to hypervirulent GAS strains in humans could be rectified by this combination vaccine....