WorldWideScience

Sample records for vaccine vectors based

  1. Viral vector-based influenza vaccines

    Science.gov (United States)

    de Vries, Rory D.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors. PMID:27455345

  2. Improved NYVAC-based vaccine vectors.

    Directory of Open Access Journals (Sweden)

    Karen V Kibler

    Full Text Available While as yet there is no vaccine against HIV/AIDS, the results of the phase III Thai trial (RV144 have been encouraging and suggest that further improvements of the prime/boost vaccine combination of a poxvirus and protein are needed. With this aim, in this investigation we have generated derivatives of the candidate vaccinia virus vaccine vector NYVAC with potentially improved functions. This has been achieved by the re-incorporation into the virus genome of two host range genes, K1L and C7L, in conjunction with the removal of the immunomodulatory viral molecule B19, an antagonist of type I interferon action. These novel virus vectors, referred to as NYVAC-C-KC and NYVAC-C-KC-ΔB19R, have acquired relevant biological characteristics, giving higher levels of antigen expression in infected cells, replication-competency in human keratinocytes and dermal fibroblasts, activation of selective host cell signal transduction pathways, and limited virus spread in tissues. Importantly, these replication-competent viruses have been demonstrated to maintain a highly attenuated phenotype.

  3. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    Science.gov (United States)

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  4. An Adenoviral Vector Based Vaccine for Rhodococcus equi.

    Directory of Open Access Journals (Sweden)

    Carla Giles

    Full Text Available Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals.

  5. DEVELOPMENT OF VACCINES BASED ON ADENOVIRAL VECTORS: A REVIEW OF FOREIGN CLINICAL STUDIES (PART 2

    Directory of Open Access Journals (Sweden)

    L. V. Cherenova

    2017-01-01

    Full Text Available Currently, many human infectious diseases do not developed effective methods of treatment and prevention. One of the latest successes of biotechnology is the use of adenoviral vectors carrying immunodominant antigens  of various pathogens as genetically engineered vaccines  both  preventive and therapeutic. The use of genetic  engineering technologies allows not  to use in the  manufacture of vaccines  live viruses and  bacteria, reduces  the  time  needed for vaccine  creation and  production of new vaccines.  Adenoviral vectors  naturally penetrate into human cells, causing a rather  long and significant  both humoral and cellular immune response. In the second  part of review, we provide  information about  the ongoing  worldwide  clinical  trials of adenoviral vector-based vaccines against various infectious diseases such as influenza, malaria, Ebola haemorrhagic fever, tuberculosis, hepatitis and  several others, like as to consider selection parameters of volunteers, vaccination schedule, doses of drug administration, results of completed experiments, and preliminary data  on currently ongoing  research.

  6. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant.

    Directory of Open Access Journals (Sweden)

    Hamada F Rady

    Full Text Available Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC. DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route.

  7. Expanding the repertoire of Modified Vaccinia Ankara-based vaccine vectors via genetic complementation strategies.

    Directory of Open Access Journals (Sweden)

    David A Garber

    Full Text Available Modified Vaccinia virus Ankara (MVA is a safe, highly attenuated orthopoxvirus that is being developed as a recombinant vaccine vector for immunization against a number of infectious diseases and cancers. However, the expression by MVA vectors of large numbers of poxvirus antigens, which display immunodominance over vectored antigens-of-interest for the priming of T cell responses, and the induction of vector-neutralizing antibodies, which curtail the efficacy of subsequent booster immunizations, remain as significant impediments to the overall utility of such vaccines. Thus, genetic approaches that enable the derivation of MVA vectors that are antigenically less complex may allow for rational improvement of MVA-based vaccines.We have developed a genetic complementation system that enables the deletion of essential viral genes from the MVA genome, thereby allowing us to generate MVA vaccine vectors that are antigenically less complex. Using this system, we deleted the essential uracil-DNA-glycosylase (udg gene from MVA and propagated this otherwise replication-defective variant on a complementing cell line that constitutively expresses the poxvirus udg gene and that was derived from a newly identified continuous cell line that is permissive for growth of wild type MVA. The resulting virus, MVADeltaudg, does not replicate its DNA genome or express late viral gene products during infection of non-complementing cells in culture. As proof-of-concept for immunological 'focusing', we demonstrate that immunization of mice with MVADeltaudg elicits CD8+ T cell responses that are directed against a restricted repertoire of vector antigens, as compared to immunization with parental MVA. Immunization of rhesus macaques with MVADeltaudg-gag, a udg(- recombinant virus that expresses an HIV subtype-B consensus gag transgene, elicited significantly higher frequencies of Gag-specific CD8 and CD4 T cells following both primary (2-4-fold and booster (2-fold

  8. Mucosal Lactobacillus vectored vaccines.

    Science.gov (United States)

    Yu, Qinghua; Zhu, Liqi; Kang, Haihong; Yang, Qian

    2013-04-01

    Traditional non-gastrointestinal vaccines can prevent effectively the invasion of pathogens; however, these vaccines are less effective against mucosal infections because there is not a sufficient immune response at the mucosa. Most pathogens invade via a mucosal pathway (oral, intranasal, or vaginal). It is widely accepted that Lactobacillus species play a critical role as commensals in the gastrointestinal (GI) tract. Their ability to survive in the digestive tract, their close association with the intestinal epithelium, their immunomodulatory properties and their safety even when consumed in large amounts make lactobacilli attractive candidates for live vehicles for the delivery of immunogens to the intestinal mucosa. The oral or intranasal administration of Lactobacillus-based vaccines is a promising method to control mucosal infection because these vaccines could induce strong humoral and cellular immune responses both in the blood and at mucosal sites.

  9. Type III interferon attenuates a vesicular stomatitis virus-based vaccine vector.

    Science.gov (United States)

    Guayasamin, Ryann C; Reynolds, Tracy D; Wei, Xin; Fujiwara, Mai; Robek, Michael D

    2014-09-01

    Vesicular stomatitis virus (VSV) has been extensively studied as a vaccine vector and oncolytic agent. Nevertheless, safety concerns have limited its widespread use in humans. The type III lambda interferon (IFN-λ) family of cytokines shares common signaling pathways with the IFN-α/β family and thus evokes similar antiviral activities. However, IFN-λ signals through a distinct receptor complex that is expressed in a cell type-specific manner, which restricts its activity to epithelial barriers, particularly those corresponding to the respiratory and gastrointestinal tracts. In this study, we determined how IFN-λ expression from recombinant VSV would influence vector replication, spread, and immunogenicity. We demonstrate that IFN-λ expression severely attenuates VSV in cell culture. In vivo, IFN-λ limits VSV replication in the mouse lung after intranasal administration and reduces virus spread to other organs. Despite this attenuation, however, the vector retains its capacity to induce protective CD8 T cell and antibody responses after a single immunization. These findings demonstrate a novel method of viral vector attenuation that could be used in both vaccine and oncolytic virus applications. Viruses such as VSV that are used as vaccine vectors can induce protective T cell and antibody responses after a single dose. Additionally, IFN-λ is a potent antiviral agent that has certain advantages for clinical use compared to IFN-α/β, such as fewer patient side effects. Here, we demonstrate that IFN-λ attenuates VSV replication and spread following intranasal virus delivery but does not reduce the ability of VSV to induce potent protective immune responses. These findings demonstrate that the type III IFN family may have widespread applicability for improving the safety and efficacy of viral vaccine and oncolytic vectors. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Genetic Vaccines for Anthrax Based on Recombinant Adeno-associated Virus Vectors

    OpenAIRE

    Liu, Te-Hui; Oscherwitz, Jon; Schnepp, Bruce; Jacobs, Jana; Yu, Fen; Cease, Kemp B; Johnson, Philip R.

    2008-01-01

    Bacillus anthracis represents a formidable bioterrorism and biowarfare threat for which new vaccines are needed with improved safety and efficacy over current options. Toward this end, we created recombinant adeno-associated virus type 1 (rAAV1) vectors containing synthetic genes derived from the protective antigen (PA) or lethal factor (LF) of anthrax lethal toxin (LeTx) and tested them for immunogenicity and induction of toxin-neutralizing antibodies in rabbits. Codon-optimized segments enc...

  11. Alphavirus-Based Vaccines.

    Science.gov (United States)

    Lundstrom, Kenneth

    2016-01-01

    Alphavirus vectors based on Semliki Forest virus, Sindbis virus, and Venezuelan equine encephalitis virus have been widely applied for vaccine development. Naked RNA replicons, recombinant viral particles, and layered DNA vectors have been subjected to immunization in preclinical animal models with antigens for viral targets and tumor antigens. Moreover, a limited number of clinical trials have been conducted in humans. Vaccination with alphavirus vectors has demonstrated efficient immune responses and has showed protection against challenges with lethal doses of virus and tumor cells, respectively. Moreover, vaccines have been developed against alphaviruses causing epidemics such as Chikungunya virus.

  12. Biosafety aspects of modified vaccinia virus Ankara (MVA)-based vectors used for gene therapy or vaccination.

    Science.gov (United States)

    Verheust, Céline; Goossens, Martine; Pauwels, Katia; Breyer, Didier

    2012-03-30

    The modified vaccinia virus Ankara (MVA) strain is a highly attenuated strain of vaccinia virus that has been demonstrated to be safe for humans. MVA is widely considered as the vaccinia virus strain of choice for clinical investigation because of its high safety profile. It also represents an excellent candidate for use as vector system in recombinant vaccine development for gene delivery or vaccination against infectious diseases or tumours, even in immunocompromised individuals. The use of MVA and recombinant MVA vectors must comply with various regulatory requirements, particularly relating to the assessment of potential risks for human health and the environment. The purpose of the present paper is to highlight some biological characteristics of MVA and MVA-based recombinant vectors and to discuss these from a biosafety point of view in the context of the European regulatory framework for genetically modified organisms with emphasis on the assessment of potential risks associated with environmental release. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Evaluation of vaccine competition using HVT vector vaccines

    Science.gov (United States)

    Turkey herpesvirus (HVT) has been widely used as a vaccine for Marek’s disease (MD) since the 1970s. Because HVT is a safe vaccine that is poorly sensitive to interference from maternally derived antibodies, it has seen rising use as a vector for vaccines developed for protection against other comm...

  14. Chimeric avian paramyxovirus-based vector immunization against highly pathogenic avian influenza followed by conventional Newcastle disease vaccination eliminates lack of protection from virulent ND virus

    OpenAIRE

    Steglich, C.; Grund, C.; A. Röder; Zhao, N.; Mettenleiter, T C; Römer-Oberdörfer, A.

    2014-01-01

    Recently, we described a chimeric, hemagglutinin of highly pathogenic avian influenza virus (HPAIV) H5 expressing Newcastle disease virus (NDV)-based vector vaccine (chNDVFHNPMV8H5) in which NDV envelope glycoproteins were replaced by those of avian paramyxovirus-8 (APMV-8). This chimeric vaccine induced solid protection against lethal HPAIV H5N1 even in chickens with maternal antibodies against NDV (MDA+). However, due to the absence of the major NDV immunogens it failed to induce protection...

  15. Hybrid viral vectors for vaccine and antibody production in plants.

    Science.gov (United States)

    Yusibov, Vidadi; Streatfield, Stephen J; Kushnir, Natasha; Roy, Gourgopal; Padmanaban, Annamalai

    2013-01-01

    Plants have a demonstrated potential for large-scale, rapid production of recombinant proteins for diverse product applications, including subunit vaccines and monoclonal antibodies. In this field, the accent has recently shifted from the engineering of "edible" vaccines based on stable expression of target protein in transgenic or transplastomic plants to the development of purified formulated vaccines that are delivered via injection. The injectable vaccines are commonly produced using transient expression of target gene delivered into genetically unmodified plant host via viral or bacterial vectors. Most viral vectors are based on plant RNA viruses, where nonessential sequences are replaced with the gene of interest. Utilization of viral hybrids that consist of genes and regulatory elements of different virus species, or transcomplementation systems (vector/transgene) had a substantial impact on the level of target protein expression. Development and introduction of agroviral hybrid vectors that combine genetic elements of bacterial binary plasmids and plant viral vectors, and agroinfiltration as a tool of the vector delivery have resulted in significant progress in large-scale production of recombinant vaccines and monoclonal antibodies in plants. This article presents an overview of plant hybrid viral vector expression systems developed so far.

  16. Nonintegrating Lentiviral Vector-Based Vaccine Efficiently Induces Functional and Persistent CD8+ T Cell Responses in Mice

    Directory of Open Access Journals (Sweden)

    Donatella R. M. Negri

    2010-01-01

    Full Text Available CD8+ T cells are an essential component of an effective host immune response to tumors and viral infections. Genetic immunization is particularly suitable for inducing CTL responses, because the encoded proteins enter the MHC class I processing pathway through either transgene expression or cross-presentation. In order to compare the efficiency and persistence of immune response induced by genetic vaccines, BALB/c mice were immunized either twice intramuscularly with DNA plasmid expressing a codon-optimized HIV-1 gp120 Envelope sequence together with murine GM-CSF sequence or with a single immunization using an integrase defective lentiviral vector (IDLV expressing the same proteins. Results strongly indicated that the schedule based on IDLV vaccine was more efficient in inducing specific immune response, as evaluated three months after the last immunization by IFN ELISPOT in both splenocytes and bone marrow- (BM- derived cells, chromium release assay in splenocytes, and antibody detection in sera. In addition, IDLV immunization induced high frequency of polyfunctional CD8+ T cells able to simultaneously produce IFN, TNF, and IL2.

  17. Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses.

    Directory of Open Access Journals (Sweden)

    Ahmed O Hassan

    Full Text Available The emergence of H5, H7, and H9 avian influenza virus subtypes in humans reveals their pandemic potential. Although human-to-human transmission has been limited, the genetic reassortment of the avian and human/porcine influenza viruses or mutations in some of the genes resulting in virus replication in the upper respiratory tract of humans could generate novel pandemic influenza viruses. Current vaccines do not provide cross protection against antigenically distinct strains of the H5, H7, and H9 influenza viruses. Therefore, newer vaccine approaches are needed to overcome these potential threats. We developed an egg-independent, adenovirus vector-based, multi-epitope (ME vaccine approach using the relatively conserved immunogenic domains of the H5N1 influenza virus [M2 ectodomain (M2e, hemagglutinin (HA fusion domain (HFD, T-cell epitope of nucleoprotein (TNP. and HA α-helix domain (HαD]. Our ME vaccine induced humoral and cell-mediated immune responses and caused a significant reduction in the viral loads in the lungs of vaccinated mice that were challenged with antigenically distinct H5, H7, or H9 avian influenza viruses. These results suggest that our ME vaccine approach provided broad protection against the avian influenza viruses. Further improvement of this vaccine will lead to a pre-pandemic vaccine that may lower morbidity, hinder transmission, and prevent mortality in a pandemic situation before a strain-matched vaccine becomes available.

  18. Construction and Application of Newcastle Disease Virus-Based Vector Vaccines

    NARCIS (Netherlands)

    Wichgers Schreur, P.J.

    2016-01-01

    Paramyxoviruses are able to stably express a wide-variety of heterologous antigens at relatively high levels in various species and are consequently considered as potent gene delivery vehicles. A single vaccination is frequently sufficient for the induction of robust humoral and cellular immune

  19. An alphavirus vector-based tetravalent dengue vaccine induces a rapid and protective immune response in macaques that differs qualitatively from immunity induced by live virus infection.

    Science.gov (United States)

    White, Laura J; Sariol, Carlos A; Mattocks, Melissa D; Wahala M P B, Wahala; Yingsiwaphat, Vorraphun; Collier, Martha L; Whitley, Jill; Mikkelsen, Rochelle; Rodriguez, Idia V; Martinez, Melween I; de Silva, Aravinda; Johnston, Robert E

    2013-03-01

    Despite many years of research, a dengue vaccine is not available, and the more advanced live attenuated vaccine candidate in clinical trials requires multiple immunizations with long interdose periods and provides low protective efficacy. Here, we report important contributions to the development of a second-generation dengue vaccine. First, we demonstrate that a nonpropagating vaccine vector based on Venezuelan equine encephalitis virus replicon particles (VRP) expressing two configurations of dengue virus E antigen (subviral particles [prME] and soluble E dimers [E85]) successfully immunized and protected macaques against dengue virus, while antivector antibodies did not interfere with a booster immunization. Second, compared to prME-VRP, E85-VRP induced neutralizing antibodies faster, to higher titers, and with improved protective efficacy. Third, this study is the first to map antigenic domains and specificities targeted by vaccination versus natural infection, revealing that, unlike prME-VRP and live virus, E85-VRP induced only serotype-specific antibodies, which predominantly targeted EDIII, suggesting a protective mechanism different from that induced by live virus and possibly live attenuated vaccines. Fourth, a tetravalent E85-VRP dengue vaccine induced a simultaneous and protective response to all 4 serotypes after 2 doses given 6 weeks apart. Balanced responses and protection in macaques provided further support for exploring the immunogenicity and safety of this vaccine candidate in humans.

  20. Chimeric avian paramyxovirus-based vector immunization against highly pathogenic avian influenza followed by conventional Newcastle disease vaccination eliminates lack of protection from virulent ND virus

    Directory of Open Access Journals (Sweden)

    C. Steglich

    2014-01-01

    Full Text Available Recently, we described a chimeric, hemagglutinin of highly pathogenic avian influenza virus (HPAIV H5 expressing Newcastle disease virus (NDV-based vector vaccine (chNDVFHNPMV8H5 in which NDV envelope glycoproteins were replaced by those of avian paramyxovirus-8 (APMV-8. This chimeric vaccine induced solid protection against lethal HPAIV H5N1 even in chickens with maternal antibodies against NDV (MDA+. However, due to the absence of the major NDV immunogens it failed to induce protection against Newcastle disease (ND. Here, we report on protection of MDA+ chickens against HPAI H5N1 and ND, by vaccination with chNDVFHNPMV8H5 either on day 1 or day seven after hatch, and subsequent immunization with live attenuated NDV seven days later. Vaccination was well tolerated and three weeks after immunization, challenge infections with highly pathogenic NDV as well as HPAIV H5N1 were carried out. All animals remained healthy without exhibiting any clinical signs, whereas non-vaccinated animals showed morbidity and mortality. Therefore, vaccination with chNDVFHNPMV8H5 can be followed by NDV vaccination to protect chickens from HPAIV as well as NDV, indicating that the antibody response against chNDVFHNPMV8H5 does not interfere with live ND vaccination.

  1. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Directory of Open Access Journals (Sweden)

    Daniel M Appledorn

    2010-03-01

    Full Text Available Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals.In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions.The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  2. Assembly of pseudorabies virus genome-based transfer vehicle carrying major antigen sites of S gene of transmissible gastroenteritis virus: potential perspective for developing live vector vaccines.

    Science.gov (United States)

    Yin, Jiechao; Ren, Xiaofeng; Tian, Zhijun; Li, Yijing

    2007-03-01

    Two severe porcine infectious diseases, pseudorabies (PR) and transmissible gastroenteritis (TGE) caused by pseudorabies virus (PRV) and transmissible gastroenteritis virus (TGEV) respectively often result in serious economic loss in animal husbandry worldwide. Vaccination is the important prevention means against both infections. To achieve a PRV genome-based virus live vector, aiming at further TGEV/PRV bivalent vaccine development, a recombinant plasmid pUG was constructed via inserting partial PK and full-length gG genes of PRV strain Bartha K-61 amplified into pUC119 vector. In parallel, another recombinant pHS was generated by introducing a fragment designated S1 encoding the major antigen sites of S gene from TGEV strain TH-98 into a prokaryotic expression vector pP(RO)EX HTc. The SV40 polyA sequence was then inserted into the downstream of S1 fragment of pHS. The continuous region containing S1fragment, SV40 polyA and four single restriction enzyme sites digested from pHS was subcloned into the downstream of gG promoter of pUG. In addition, a LacZ reporter gene was introduced into the universal transfer vector named pUGS-LacZ. Subsequently, a PRV genome-based virus live vector was generated via homologous recombination. The functionally effective vector was purified and partially characterized. Moreover, the potential advantages of this system are discussed.

  3. Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: a model-based analysis.

    Science.gov (United States)

    Knerer, Gerhart; Currie, Christine S M; Brailsford, Sally C

    2015-06-01

    Dengue fever is a vector-borne disease prevalent in tropical and subtropical regions. It is an important public health problem with a considerable and often under-valued disease burden in terms of frequency, cost and quality-of-life. Recent literature reviews have documented the development of mathematical models of dengue fever both to identify important characteristics for future model development as well as to assess the impact of dengue control interventions. Such reviews highlight the importance of short-term cross-protection; antibody-dependent enhancement; and seasonality (in terms of both favourable and unfavourable conditions for mosquitoes). The compartmental model extends work by Bartley (2002) and combines the following factors: seasonality, age-structure, consecutive infection by all four serotypes, cross-protection and immune enhancement, as well as combined vector-host transmission. The model is used to represent dengue transmission dynamics using parameters appropriate for Thailand and to assess the potential impact of combined vector-control and vaccination strategies including routine and catch-up vaccination strategies on disease dynamics. When seasonality and temporary cross-protection between serotypes are included, the model is able to approximate the observed incidence of dengue fever in Thailand. We find vaccination to be the most effective single intervention, albeit with imperfect efficacy (30.2 %) and limited duration of protection. However, in combination, control interventions and vaccination exhibit a marked impact on dengue fever transmission. This study shows that an imperfect vaccine can be a useful weapon in reducing disease spread within the community, although it will be most effective when promoted as one of several strategies for combating dengue fever transmission.

  4. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants.

    Science.gov (United States)

    Chen, Qiang; He, Junyun; Phoolcharoen, Waranyoo; Mason, Hugh S

    2011-03-01

    Expression of recombinant vaccine antigens and monoclonal antibodies using plant viral vectors has developed extensively during the past several years. The approach benefits from high yields of recombinant protein obtained within days after transient delivery of viral vectors to leaves of Nicotiana benthamiana, a tobacco relative. Modified viral genomes of both RNA and DNA viruses have been created. Geminiviruses such as bean yellow dwarf virus (BeYDV) have a small, single stranded DNA genome that replicates in the nucleus of an infected plant cell, using the cellular DNA synthesis apparatus and a virus-encoded replication initiator protein (Rep). BeYDV-derived expression vectors contain deletions of the viral genes encoding coat and movement proteins and insertion of an expression cassette for a protein of interest. Delivery of the geminiviral vector to leaf cells via Agrobacterium-mediated delivery produces very high levels of recombinant DNA that can act as a transcription template, yielding high levels of mRNA for the protein of interest. Several vaccine antigens, including Norwalk virus capsid protein and hepatitis B core antigen, were expressed using the BeYDV vector at levels up to 1 mg per g of leaf mass. BeYDV replicons can be stacked in the same vector molecule by linking them in tandem, which enables production of multi-subunit proteins like monoclonal antibody (mAb) heavy and light chains. The protective mAb 6D8 against Ebola virus was produced at 0.5 mg per g of leaf mass. Multi-replicon vectors could be conveniently used to produce protein complexes, e.g. virus-like particles that require two or more subunits.

  5. Safety and serological response to a matrix gene-deleted rabies virus-based vaccine vector in dogs.

    Science.gov (United States)

    McGettigan, James P; David, Frederic; Figueiredo, Monica Dias; Minke, Jules; Mebatsion, Teshome; Schnell, Matthias J

    2014-03-26

    Dogs account for the majority of human exposures and deaths due to rabies virus (RABV) worldwide. In this report, we show that a replication-deficient RABV-based vaccine in which the matrix gene is deleted (RABV-ΔM) is safe and induces rapid and potent VNA titers after a single inoculation in dogs. Average VNA titers peaked at 3.02 or 5.11 international units (IU/ml) by 14 days post-immunization with a single dose of 10(6) or 10(7) focus forming units (ffu), respectively, of RABV-ΔM. By day 70 post immunization, all dogs immunized with either dose of vaccine showed VNA titers >0.5IU/ml, the level indicative of a satisfactory immunization. Importantly, no systemic or local reactions were noted in any dog immunized with RABV-ΔM. The elimination of dog rabies through mass vaccination is hindered by limited resources, requirement for repeat vaccinations often for the life of a dog, and in some parts of the world, inferior vaccine quality. Our preliminary safety and immunogenicity data in dogs suggest that RABV-ΔM might complement currently used inactivated RABV-based vaccines in vaccination campaigns by helping to obtain 100% response in vaccinated dogs, thereby increasing overall vaccination coverage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Optimal vaccination scenarios against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene

    Using a process oriented semi-agent based model we simulated the spread of Bluetongue virus in Denmark. We evaluated the efficiency and minimum vaccination cover for eight different preventive vaccination strategies in Denmark. The simulation model replicates both passive and active flight....... Results in this presentation were obtained building upon the model presented in: Simulating spread of Bluetongue Virus by flying vectors between hosts on pasture. Kaare Græsbøll et al. Scientific Reports. 2:863 (2012)....

  7. A novel candidate HIV vaccine vector based on the replication deficient Capripoxvirus, Lumpy skin disease virus (LSDV

    Directory of Open Access Journals (Sweden)

    Johnston Nicolette

    2011-05-01

    Full Text Available Abstract Background The Capripoxvirus, Lumpy skin disease virus (LSDV has a restricted host-range and is being investigated as a novel HIV-1 vaccine vector. LSDV does not complete its replication cycle in non-ruminant hosts. Methods The safety of LSDV was tested at doses of 104 and 106 plaque forming units in two strains of immunocompromised mice, namely RAG mice and CD4 T cell knockout mice. LSDV expressing HIV-1 subtype C Gag, reverse transcriptase (RT, Tat and Nef as a polyprotein (Grttn, (rLSDV-grttn, was constructed. The immunogenicity of rLSDV-grttn was tested in homologous prime-boost regimens as well as heterologous prime-boost regimes in combination with a DNA vaccine (pVRC-grttn or modified vaccinia Ankara vaccine (rMVA-grttn both expressing Grttn. Results Safety was demonstrated in two strains of immunocompromised mice. In the immunogenicity experiments mice developed high magnitudes of HIV-specific cells producing IFN-gamma and IL-2. A comparison of rLSDV-grttn and rMVA-grttn to boost a DNA vaccine (pVRC-grttn indicated a DNA prime and rLSDV-grttn boost induced a 2 fold (p Conclusions LSDV was demonstrated to be non-pathogenic in immunocompromised mice. The rLSDV-grttn vaccine was immunogenic in mice particularly in prime-boost regimens. The data suggests that this novel vaccine may be useful for enhancing, in particular, HIV-specific CD4 IFN- gamma and IL-2 responses induced by a priming vaccine.

  8. A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice.

    Science.gov (United States)

    Fonseca, Jairo A; McCaffery, Jessica N; Kashentseva, Elena; Singh, Balwan; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2017-05-31

    Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4 + T cell responses. Based on evidence that viral vectors increase CD8 + T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8 + T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8 + T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. VectorBase

    Data.gov (United States)

    U.S. Department of Health & Human Services — VectorBase is a Bioinformatics Resource Center for invertebrate vectors. It is one of four Bioinformatics Resource Centers funded by NIAID to provide web-based...

  10. Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy

    OpenAIRE

    Wold, William S. M.; Toth, Karoly

    2013-01-01

    Adenovirus vectors are the most commonly employed vector for cancer gene therapy. They are also used for gene therapy and as vaccines to express foreign antigens. Adenovirus vectors can be replication-defective; certain essential viral genes are deleted and replaced by a cassette that expresses a foreign therapeutic gene. Such vectors are used for gene therapy, as vaccines, and for cancer therapy. Replication-competent (oncolytic) vectors are employed for cancer gene therapy. Oncolytic vector...

  11. Spray dried human and chimpanzee adenoviral-vectored vaccines are thermally stable and immunogenic in vivo.

    Science.gov (United States)

    Afkhami, Sam; LeClair, Daniel A; Haddadi, Siamak; Lai, Rocky; Toniolo, Steven P; Ertl, Hildegund C; Cranston, Emily D; Thompson, Michael R; Xing, Zhou

    2017-05-19

    Cold chain-free vaccine technologies are needed to ensure effective vaccine delivery and coverage, particularly in resource-poor countries. However, the immunogenicity and thermostability of spray dried live viral vector-based vaccines such as recombinant adenoviral-vectored vaccines remain to be investigated. To address this issue, we have spray dried human adenoviral (AdHu5)- and chimpanzee adenoviral (AdCh68)-vectored tuberculosis vaccines in a mannitol and dextran matrix. Spray dried powders containing these two vaccines display the morphologic and chemical properties desired for long-term thermostability and vaccination. Upon reconstitution, they effectively transfected the cells in vitro with relatively small losses in viral infectivity related to the spray drying process. Following in vivo vaccination, AdHu5- and AdCh68-vectored vaccines were as immunogenic as the conventional fresh, cryopreserved liquid vaccine samples. Of importance, even after cold chain-free storage, at ambient temperatures and relatively low humidity for 30 and 90days, the vaccines retained their in vivo immunogenicity, while the liquid vaccine samples stored under the same conditions lost their immune-activating capability almost entirely. Our results support further development of our spray drying technologies for generating thermally stable adenoviral-vectored and other viral-vectored vaccines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [Creation of DNA vaccine vector based on codon-optimized gene of rabies virus glycoprotein (G protein) with consensus amino acid sequence].

    Science.gov (United States)

    Starodubova, E S; Kuzmenko, Y V; Latanova, A A; Preobrazhenskaya, O V; Karpov, V L

    2016-01-01

    An optimized design of the rabies virus glycoprotein (G protein) for use within DNA vaccines has been suggested. The design represents a territorially adapted antigen constructed taking into account glycoprotein amino acid sequences of the rabies viruses registered in the Russian Federation and the vaccine Vnukovo-32 strain. Based on the created consensus amino acid sequence, the nucleotide codon-optimized sequence of this modified glycoprotein was obtained and cloned into the pVAX1 plasmid (a vector of the last generation used in the creation of DNA vaccines). A twofold increase in this gene expression compared to the expression of the Vnukovo-32 strain viral glycoprotein gene in a similar vector was registered in the transfected cell culture. It has been demonstrated that the accumulation of modified G protein exceeds the number of the control protein synthesized using the plasmid with the Vnukovo-32 strain viral glycoprotein gene by 20 times. Thus, the obtained modified rabies virus glycoprotein can be considered to be a promising DNA vaccine antigen.

  13. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages

    Science.gov (United States)

    Kramberger, Petra; Urbas, Lidija; Štrancar, Aleš

    2015-01-01

    Downstream processing of nanoplexes (viruses, virus-like particles, bacteriophages) is characterized by complexity of the starting material, number of purification methods to choose from, regulations that are setting the frame for the final product and analytical methods for upstream and downstream monitoring. This review gives an overview on the nanoplex downstream challenges and chromatography based analytical methods for efficient monitoring of the nanoplex production. PMID:25751122

  14. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    Energy Technology Data Exchange (ETDEWEB)

    Aurisicchio, Luigi, E-mail: aurisicchio@takis-it.it [Takis, via di Castel Romano 100, 00128 Rome (Italy); BIOGEM scarl, via Camporeale, 83031 Ariano Irpino (AV) (Italy); Ciliberto, Gennaro [Takis, via di Castel Romano 100, 00128 Rome (Italy); Dipartimento di Medicina Sperimentale e Clinica, Università degli studi di Catanzaro “Magna Graecia”, 88100 Catanzaro (Italy)

    2011-09-22

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.

  15. Molecular Characterization of Heterologous HIV-1gp120 Gene Expression Disruption in Mycobacterium bovis BCG Host Strain: A Critical Issue for Engineering Mycobacterial Based-Vaccine Vectors

    Directory of Open Access Journals (Sweden)

    Joan Joseph

    2010-01-01

    Full Text Available Mycobacterium bovis Bacillus Calmette-Guérin (BCG as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261 and Mycobacteria spp. α-antigen promoter (in plasmid pJH222. Among 14 rBCG:HIV-1gp120 (pMV261 colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222 colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors.

  16. Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model.

    Science.gov (United States)

    Tillman, B W; Hayes, T L; DeGruijl, T D; Douglas, J T; Curiel, D T

    2000-10-01

    Dendritic cells (DCs) represent a unique junction from which to initiate antigen-specific immunity. One of the most challenging obstacles for DC-based immunotherapy has been the means by which to convey tumor antigen-encoding genes to DCs. In this study, we show that adenoviral (or adenovirus, Ad) vectors targeted to CD40 by means of bispecific antibodies can enhance gene transfer to murine DCs. Moreover, we illustrate that this vector initiates phenotypic changes characteristic of DC maturation. To explore the in vivo potential of this strategy, we coupled this targeting approach with an Ad vector carrying the gene for a tumor antigen. In particular, the human papillomavirus (HPV) E7 antigen represents an attractive target for antigen-specific immunity of cervical cancer. Relative to DCs infected by untargeted Ad, DCs infected by AdE7 targeted to the receptor CD40 enhanced protection against HPV-16-induced tumor cells in a murine model. We have further established that this protection was both antigen specific and CD8+ T-cell dependent. Illustrating that Ad-modified DCs may be used in repeated vaccination, we report that preimmunization of animals with Ad infected DCs prior to E7 vaccination only moderately reduced vaccine efficacy. Finally, we have observed that CD40-targeted AdE7 can initiate partial therapeutic immunity in mice bearing established tumors. These findings suggest that gene-based vaccination of DCs with tumor antigens can elicit productive antitumoral immunity and that enhancements in gene transfer efficacy and/or DC maturation may facilitate this process.

  17. A novel candidate HIV vaccine vector based on the replication deficient Capripoxvirus, Lumpy skin disease virus (LSDV).

    Science.gov (United States)

    Shen, Yen-Ju; Shephard, Enid; Douglass, Nicola; Johnston, Nicolette; Adams, Craig; Williamson, Carolyn; Williamson, Anna-Lise

    2011-05-30

    The Capripoxvirus, Lumpy skin disease virus (LSDV) has a restricted host-range and is being investigated as a novel HIV-1 vaccine vector. LSDV does not complete its replication cycle in non-ruminant hosts. The safety of LSDV was tested at doses of 104 and 106 plaque forming units in two strains of immunocompromised mice, namely RAG mice and CD4 T cell knockout mice. LSDV expressing HIV-1 subtype C Gag, reverse transcriptase (RT), Tat and Nef as a polyprotein (Grttn), (rLSDV-grttn), was constructed. The immunogenicity of rLSDV-grttn was tested in homologous prime-boost regimens as well as heterologous prime-boost regimes in combination with a DNA vaccine (pVRC-grttn) or modified vaccinia Ankara vaccine (rMVA-grttn) both expressing Grttn. Safety was demonstrated in two strains of immunocompromised mice.In the immunogenicity experiments mice developed high magnitudes of HIV-specific cells producing IFN-gamma and IL-2. A comparison of rLSDV-grttn and rMVA-grttn to boost a DNA vaccine (pVRC-grttn) indicated a DNA prime and rLSDV-grttn boost induced a 2 fold (p < 0.01) lower cumulative frequency of Gag- and RT-specific IFN-γ CD8 and CD4 cells than a boost with rMVA-grttn. However, the HIV-specific cells induced by the DNA vaccine prime rLSDV-grttn boost produced greater than 3 fold (p < 0.01) more IFN- gamma than the HIV-specific cells induced by the DNA vaccine prime rMVA-grttn boost. A boost of HIV-specific CD4 cells producing IL-2 was only achieved with the DNA vaccine prime and rLSDV-grttn boost. Heterologous prime-boost combinations of rLSDV-grttn and rMVA-grttn induced similar cumulative frequencies of IFN- gamma producing Gag- and RT-specific CD8 and CD4 cells. A significant difference (p < 0.01) between the regimens was the higher capacity (2.1 fold) of Gag-and RT-specific CD4 cells to produce IFN-γ with a rMVA-grttn prime - rLSDV-grttn boost. This regimen also induced a 1.5 fold higher (p < 0.05) frequency of Gag- and RT-specific CD4 cells producing IL-2. LSDV

  18. Three-year duration of immunity in cats vaccinated with a canarypox-vectored recombinant rabies virus vaccine.

    Science.gov (United States)

    Jas, D; Coupier, C; Toulemonde, C Edlund; Guigal, P-M; Poulet, H

    2012-11-19

    Despite the availability of efficacious vaccines for animals and humans, rabies is still a major zoonosis. Prevention of rabies in dogs and cats is key for reducing the risk of transmission of this deadly disease to humans. Most veterinary vaccines are adjuvanted inactivated vaccines and have been shown to provide one to four-year duration of immunity. In response to debates about the safety of adjuvanted vaccines in cats, a non-adjuvanted feline rabies vaccine with one-year duration of immunity claim was specifically developed using the canarypoxvirus vector technology. The objective of this study was to validate a vaccination program based on primary vaccination, revaccination one year later and boosters every three years. Seronegative cats were vaccinated at 12 weeks of age and received a booster vaccination one year later. This vaccination regimen induced a strong and sustained antibody response, and all vaccinated animals were protected against virulent rabies challenge carried out 3 years after vaccination. These results validated 3-year duration of immunity after a complete basic vaccination program consisting in primary vaccination from 12 weeks of age followed by revaccination one year later with a non-adjuvanted canarypox-vectored vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Replicon RNA Viral Vectors as Vaccines

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom

    2016-11-01

    Full Text Available Single-stranded RNA viruses of both positive and negative polarity have been used as vectors for vaccine development. In this context, alphaviruses, flaviviruses, measles virus and rhabdoviruses have been engineered for expression of surface protein genes and antigens. Administration of replicon RNA vectors has resulted in strong immune responses and generation of neutralizing antibodies in various animal models. Immunization of mice, chicken, pigs and primates with virus-like particles, naked RNA or layered DNA/RNA plasmids has provided protection against challenges with lethal doses of infectious agents and administered tumor cells. Both prophylactic and therapeutic efficacy has been achieved in cancer immunotherapy. Moreover, recombinant particles and replicon RNAs have been encapsulated by liposomes to improve delivery and targeting. Replicon RNA vectors have also been subjected to clinical trials. Overall, immunization with self-replicating RNA viruses provides high transient expression levels of antigens resulting in generation of neutralizing antibody responses and protection against lethal challenges under safe conditions.

  20. Novel vector vaccine against Brucella abortus based on influenza A viruses expressing Brucella L7/L12 or Omp16 proteins: evaluation of protection in pregnant heifers.

    Science.gov (United States)

    Tabynov, Kaissar; Yespembetov, Bolat; Sansyzbay, Abylai

    2014-10-14

    The present study provides the first information about the protection of a novel influenza viral vector vaccine expressing the Brucella proteins ribosomal L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10) or subcutaneous (n=10) route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with Brucella abortus S19 (n=10) or B. abortus RB51 (n=10) and a negative (PBS+Montanide Gel01; n=10) control group. Via both the conjunctival or subcutaneous route, evaluation of protectiveness against abortion, effectiveness of vaccination and index of infection (in heifers and their fetuses or calves) demonstrated the vector vaccine provided good protection against B. abortus 544 infection compared to the negative control group (PBS+Montanide Gel01) and comparable protection to commercial vaccines B. abortus S19 or B. abortus RB51. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations.

    Science.gov (United States)

    Slike, Bonnie M; Creegan, Matthew; Marovich, Mary; Ngauy, Viseth

    2017-01-01

    Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years) and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity) may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb) responses to vaccinia waned after 5-10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT) of 250 to baseline (vaccination. This contrasted with a comparator group of adults, ages 35-49, who were vaccinated with Dryvax® as children. In the childhood vaccinees, titers persisted for >30 years with a GMT of 210 (range 112-3234). This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program.

  2. Development of replication-competent viral vectors for HIV vaccine delivery.

    Science.gov (United States)

    Parks, Christopher L; Picker, Louis J; King, C Richter

    2013-09-01

    To briefly describe some of the replication-competent vectors being investigated for development of candidate HIV vaccines focusing primarily on technologies that have advanced to testing in macaques or have entered clinical trials. Replication-competent viral vectors have advanced to the stage at which decisions can be made regarding the future development of HIV vaccines. The viruses being used as replication-competent vector platforms vary considerably, and their unique attributes make it possible to test multiple vaccine design concepts and also mimic various aspects of an HIV infection. Replication-competent viral vectors encoding simian immunodeficiency virus or HIV proteins can be used to safely immunize macaques, and in some cases, there is evidence of significant vaccine efficacy in challenge protection studies. Several live HIV vaccine vectors are in clinical trials to evaluate immunogenicity, safety, the effect of mucosal delivery, and potential effects of preexisting immunity. A variety of DNA and RNA viruses are being used to develop replication-competent viral vectors for HIV vaccine delivery. Multiple viral vector platforms have proven to be well tolerated and immunogenic with evidence of efficacy in macaques. Some of the more advanced HIV vaccine prototypes based on vesicular stomatitis virus, vaccinia virus, measles virus, and Sendai virus are in clinical trials.

  3. Individual and bivalent vaccines against botulinum neurotoxin serotypes A and B using DNA-based Semliki Forest virus vectors.

    Science.gov (United States)

    Yu, Yunzhou; Yu, Jiyu; Li, Na; Wang, Shuang; Yu, Weiyuan; Sun, Zhiwei

    2009-10-19

    We evaluated individual and bivalent replicon vaccines against Clostridiumbotulinum neurotoxin serotypes A (BoNT/A) or B (BoNT/B). The DNA replicon vaccine (pSCARSBHc) encoding the Hc domain of BoNT/B (BHc) induced better responses and protection against BoNT/B mouse challenge than conventional DNA vaccine. The dual-expressing DNA vaccine (pSCARSA/BHc) protected similarly to a DNA replicon vaccine mixture (pSCARSAHc+pSCARSBHc). Additionally, recombinant SFV particles, VRP-AHc or VRP-BHc, protected mice from high-dose BoNT/A or BoNT/B challenge, respectively. Mice given either dual-expressing VRP-A/BHc or mixture of VRP-AHc and VRP-BHc were protected from challenge with serotype A/B mixtures. These data justify further testing in other animals or humans.

  4. Stabilizing formulations for inhalable powders of an adenovirus 35-vectored tuberculosis (TB) vaccine (AERAS-402)

    NARCIS (Netherlands)

    Jin, Tom H.; Tsao, Eric; Goudsmit, Jaap; Dheenadhayalan, Veerabadran; Sadoff, Jerald

    2010-01-01

    A powder vaccine intended for aerosol delivery was formulated by spray drying the Ad35-vectored tuberculosis (TB) AERAS-402 vaccine with mannitol-based stabilizers. Thermodynamic properties, water absorption, particle size distribution and morphology of the powders were evaluated. Virus survival

  5. Poxvirus vectors as HIV/AIDS vaccines in humans

    National Research Council Canada - National Science Library

    Elena Gómez, Carmen; Perdiguero, Beatriz; García-Arriaza, Juan; Esteban, Mariano

    2012-01-01

    The RV144 phase III clinical trial with the combination of the poxvirus vector ALVAC and the HIV gp120 protein has taught us that a vaccine against HIV/AIDS is possible but further improvements are still needed...

  6. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations.

    Directory of Open Access Journals (Sweden)

    Bonnie M Slike

    Full Text Available Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb responses to vaccinia waned after 5-10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT of 250 to baseline (30 years with a GMT of 210 (range 112-3234. This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program.

  7. Initial preclinical safety of non-replicating human endogenous retrovirus envelope protein-coated baculovirus vector-based vaccines against human papillomavirus.

    Science.gov (United States)

    Han, Su-Eun; Kim, Mi-Gyeong; Lee, Soondong; Cho, Hee-Jeong; Byun, Youngro; Kim, Sujeong; Kim, Young Bong; Choi, Yongseok; Oh, Yu-Kyoung

    2013-12-01

    Human endogenous retrovirus (HERV) envelope protein-coated, baculovirus vector-based HPV 16 L1 (AcHERV-HPV16L1) is a non-replicating recombinant baculoviral vaccine. Here, we report an initial evaluation of the preclinical safety of AcHERV-HPV16L1 vaccine. In an acute toxicity study, a single administration of AcHERV-HPV16L1 DNA vaccine given intramuscularly (i.m.) to mice at a dose of 1 × 10(8) plaque-forming units (PFU) did not cause significant changes in body weight compared with vehicle-treated controls. It did cause a brief increase in the weights of some organs on day 15 post-treatment, but by day 30, all organ weights were not significantly different from those in the vehicle-treated control group. No hematological changes were observed on day 30 post-treatment. In a range-finding toxicity study with three doses of 1 × 10(7) , 2 × 10(7) and 5 × 10(7) PFU once daily for 5 days, the group treated with 5 × 10(7) PFU showed a transient decrease in the body weights from day 5 to day 15 post-treatment, but recovery to the levels similar to those in the vehicle-treated control group by post-treatment day 20. Organ weights were slightly higher for lymph nodes, spleen, thymus and liver after repeated dosing with 5 × 10(7) PFU on day 15, but had normalized by day 30. Moreover, repeated administration of AcHERV-HPV16L1 did not induce myosin-specific autoantibody in serum, and did not cause immune complex deposition or tissue damage at injection sites. Taken together, these results provide preliminary evidence of the preclinical safety of AcHERV-based HPV16L1 DNA vaccines in mice. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Viral Vectors for Use in the Development of Biodefense Vaccines

    National Research Council Canada - National Science Library

    Lee, John S; Hadjipanayis, Angela G; Parker, Michael D

    2005-01-01

    ... agents of bioterrorism or biowarfare. The use of viruses, for example adenovirus, vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine-vectors has enabled researchers to develop effective means for countering the threat of bioterrorism and biowarfare. An overview of the different viral vectors and the threats they counter will be discussed.

  9. Viral Vectors for Use in the Development of Biodefense Vaccines

    Science.gov (United States)

    2005-06-17

    development . . . . . . . . . . . . . . . . . . 1308 6. Anti-vector immune responses associated with virus-vectored vaccines...to influence the outcome of a local election. Another radical group in Japan, the Aum Shinrikyo, allegedly conducted research on BoNT, B. anthracis...aflotoxin and actively researched Clostridium perfringins, rotavirus , echovi- rus 71, and camelpox virus for use in biological warfare [2,3]. Their

  10. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV that expresses an individual filovirus glycoprotein (GP in place of the VSV glycoprotein (G. The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV GP; three animals received rVSV-wild type (wt vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.

  11. VSV-GP: a potent viral vaccine vector that boosts the immune response upon repeated applications.

    Science.gov (United States)

    Tober, Reinhard; Banki, Zoltan; Egerer, Lisa; Muik, Alexander; Behmüller, Sandra; Kreppel, Florian; Greczmiel, Ute; Oxenius, Annette; von Laer, Dorothee; Kimpel, Janine

    2014-05-01

    Antivector immunity limits the response to homologous boosting for viral vector vaccines. Here, we describe a new, potent vaccine vector based on replication-competent vesicular stomatitis virus pseudotyped with the glycoprotein of the lymphocytic choriomeningitis virus (VSV-GP), which we previously showed to be safe in mice. In mice, VSV and VSV-GP encoding ovalbumin (OVA) as a model antigen (VSV-OVA and VSV-GP-OVA) induced equal levels of OVA-specific humoral and cellular immune responses upon a single immunization. However, boosting with the same vector was possible only for VSV-GP-OVA as neutralizing antibodies to VSV limited the immunogenicity of the VSV-OVA boost. OVA-specific cytotoxic T-lymphocyte (CTL) responses induced by VSV-GP-OVA were at least as potent as those induced by an adenoviral state-of-the-art vaccine vector and completely protected mice in a Listeria monocytogenes challenge model. VSV-GP is so far the only replication-competent vaccine vector that does not lose efficacy upon repeated application. Although there has been great progress in treatment and prevention of infectious diseases in the past several years, effective vaccines against some of the most serious infections, e.g., AIDS, malaria, hepatitis C, or tuberculosis, are urgently needed. Here, several approaches based on viral vector vaccines are under development. However, for all viral vaccine vectors currently in clinical testing, repeated application is limited by neutralizing antibodies to the vector itself. Here, we have exploited the potential of vesicular stomatitis virus pseudotyped with the glycoprotein of the lymphocytic choriomeningitis virus (VSV-GP) as a vaccine platform. VSV-GP is the first replication-competent viral vector vaccine that does not induce vector-specific humoral immunity, i.e., neutralizing antibodies, and therefore can boost immune responses against a foreign antigen by repeated applications. The vector allows introduction of various antigens and

  12. The Influence of Delivery Vectors on HIV Vaccine Efficacy

    Directory of Open Access Journals (Sweden)

    Beatrice Omusiro Ondondo

    2014-08-01

    Full Text Available Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximise transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502 where human adenovirus serotype 5 (Ad5 was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared towards delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.

  13. Virus-Vectored Influenza Virus Vaccines

    OpenAIRE

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformul...

  14. Vesicular stomatitis virus-based vaccines against Lassa and Ebola viruses.

    Science.gov (United States)

    Marzi, Andrea; Feldmann, Friederike; Geisbert, Thomas W; Feldmann, Heinz; Safronetz, David

    2015-02-01

    We demonstrated that previous vaccination with a vesicular stomatitis virus (VSV)-based Lassa virus vaccine does not alter protective efficacy of subsequent vaccination with a VSV-based Ebola virus vaccine. These findings demonstrate the utility of VSV-based vaccines against divergent viral pathogens, even when preexisting immunity to the vaccine vector is present.

  15. Capripoxvirus-vectored vaccines against livestock diseases in Africa.

    Science.gov (United States)

    Boshra, Hani; Truong, Thang; Nfon, Charles; Gerdts, Volker; Tikoo, Suresh; Babiuk, Lorne A; Kara, Pravesh; Mather, Arshad; Wallace, David; Babiuk, Shawn

    2013-05-01

    Five different viral diseases of livestock, lumpy skin disease (LSD), sheep pox (SPP), goat pox (GTP), Rift Valley fever (RVF) and peste des petits ruminants (PPR), circulate in the same regions of Africa, imposing a major burden on economic activity and public health. While commercial vaccines against these viruses are available, the cost of implementing regular vaccination regimens against multiple diseases is prohibitive for most African farmers. A single, affordable multivalent vaccine that simultaneously protects against all 5 diseases would therefore be of significant benefit to the livestock sector in Africa. It could also serve as a platform for the development of new vaccines of significance to other developing countries around the world. In this paper, we present an overview of the economic importance of livestock in Africa, the pathogens responsible for RVF, PPR, SPP, GTP and LSD and the vaccination strategies currently used to combat them. We then review experience with the development of attenuated capripoxviruses as vaccines against LSD, SPP and GTP and of recombinant capripoxvirus-vectored vaccines against RVF and PPR. We conclude the article by presenting the rationale for a single, multivalent capripoxvirus-vectored vaccine that would protect against all 5 diseases of livestock, and describe the approach being taken by a consortium of Canadian and South African researchers to develop such a vaccine. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  16. Improved influenza viral vector based Brucella abortus vaccine induces robust B and T-cell responses and protection against Brucella melitensis infection in pregnant sheep and goats.

    Science.gov (United States)

    Mailybayeva, Aigerim; Yespembetov, Bolat; Ryskeldinova, Sholpan; Zinina, Nadezhda; Sansyzbay, Abylai; Renukaradhya, Gourapura J; Petrovsky, Nikolai; Tabynov, Kaissar

    2017-01-01

    We previously developed a potent candidate vaccine against bovine brucellosis caused by Brucella abortus using the influenza viral vector expressing Brucella Omp16 and L7/L12 proteins (Flu-BA). Our success in the Flu-BA vaccine trial in cattle and results of a pilot study in non-pregnant small ruminants prompted us in the current study to test its efficacy against B. melitensis infection in pregnant sheep and goats. In this study, we improved the Flu-BA vaccine formulation and immunization method to achieve maximum efficacy and safety. The Flu-BA vaccine formulation had two additional proteins Omp19 and SOD, and administered thrice with 20% Montanide Gel01 adjuvant, simultaneously by both subcutaneous and conjunctival routes at 21 days intervals in pregnant sheep and goats. At 42 days post-vaccination (DPV) we detected antigen-specific IgG antibodies predominantly of IgG2a isotype but also IgG1, and also detected a strong lymphocyte recall response with IFN-γ production. Importantly, our candidate vaccine prevented abortion in 66.7% and 77.8% of pregnant sheep and goats, respectively. Furthermore, complete protection (absence of live B. melitensis 16M) was observed in 55.6% and 66.7% of challenged sheep and goats, and 72.7% and 90.0% of their fetuses (lambs/yeanlings), respectively. The severity of B. melitensis 16M infection in vaccinated sheep and goats and their fetuses (index of infection and rates of Brucella colonization in tissues) was significantly lower than in control groups. None of the protection parameters after vaccination with Flu-BA vaccine were statistically inferior to protection seen with the commercial B. melitensis Rev.1 vaccine (protection against abortion and vaccination efficacy, alpha = 0.18-0.34, infection index, P = 0.37-0.77, Brucella colonization, P = 0.16 to P > 0.99). In conclusion, our improved Flu-BA vaccine formulation and delivery method were found safe and effective in protecting pregnant sheep and goats against adverse

  17. Poxvirus-vectored vaccines for rabies--a review.

    Science.gov (United States)

    Weyer, Jacqueline; Rupprecht, Charles E; Nel, Louis H

    2009-11-27

    Oral rabies vaccination of target reservoir species has proved to be one of the pillars of successful rabies elimination programs. The use of live attenuated rabies virus vaccines has been extensive but several limitations hamper its future use. A recombinant vaccinia-rabies vaccine has also been successfully used for the oral vaccination of several species. Nevertheless, its lack of efficacy in certain important rabies reservoirs and concerns on the use of this potent live virus as vaccine carrier (vector) impair the expansion of its use for new target species and new areas. Several attenuated and host-restricted poxvirus alternatives, which supposedly offer enhanced safety, have been investigated. Once again, efficacy in certain target species and innocuity through the oral route remain major limitations of these vaccines. Alternative recombinant vaccines using adenovirus as an antigen delivery vector have been extensively investigated and may provide an important addition to the currently available oral rabies vaccine repertoire, but are not the primary subject of this review.

  18. [Immuno-modulating effects of eukaryotic expressing vectors of IL-12 and GM-CSF associated to DNA-based vaccination against experimental cutaneous leishmaniasis in BALB/c mouse].

    Science.gov (United States)

    Ahmed, S Ben Hadj; Dellagi, K; Bahloul, C

    2009-01-01

    Different works of DNA based vaccination against leishmaniasis highlight the complexity of the induced immune responses to fight against the disease. In this work, we exploited the capacity of IL-12 and GMC-SF to activate immune cell mediators and effectors to induce a Th1 response, more capable of clearing the parasite. To generate these immunomodulating activities, we associated eukaryotic expressing vectors of murine IL-12 and GMC-SF to several DNA based vaccine candidates encoding to several L. (L.) major antigens, in the BALB/c mouse. When mice were challenged with a high parasitic load in the hind footpad, no additional protective effect could be generated. However, when the challenge was carried out in the inner face of the ear with a small parasitic load, the association of plasmids encoding to IL-12 and GMC-SF to DNA based vaccination, the protective effects were increased.

  19. Vector transmission of leishmania abrogates vaccine-induced protective immunity.

    Directory of Open Access Journals (Sweden)

    Nathan C Peters

    2009-06-01

    Full Text Available Numerous experimental vaccines have been developed to protect against the cutaneous and visceral forms of leishmaniasis caused by infection with the obligate intracellular protozoan Leishmania, but a human vaccine still does not exist. Remarkably, the efficacy of anti-Leishmania vaccines has never been fully evaluated under experimental conditions following natural vector transmission by infected sand fly bite. The only immunization strategy known to protect humans against natural exposure is "leishmanization," in which viable L. major parasites are intentionally inoculated into a selected site in the skin. We employed mice with healed L. major infections to mimic leishmanization, and found tissue-seeking, cytokine-producing CD4+ T cells specific for Leishmania at the site of challenge by infected sand fly bite within 24 hours, and these mice were highly resistant to sand fly transmitted infection. In contrast, mice vaccinated with a killed vaccine comprised of autoclaved L. major antigen (ALM+CpG oligodeoxynucleotides that protected against needle inoculation of parasites, showed delayed expression of protective immunity and failed to protect against infected sand fly challenge. Two-photon intra-vital microscopy and flow cytometric analysis revealed that sand fly, but not needle challenge, resulted in the maintenance of a localized neutrophilic response at the inoculation site, and removal of neutrophils following vector transmission led to increased parasite-specific immune responses and promoted the efficacy of the killed vaccine. These observations identify the critical immunological factors influencing vaccine efficacy following natural transmission of Leishmania.

  20. Vector transmission of leishmania abrogates vaccine-induced protective immunity.

    Science.gov (United States)

    Peters, Nathan C; Kimblin, Nicola; Secundino, Nagila; Kamhawi, Shaden; Lawyer, Phillip; Sacks, David L

    2009-06-01

    Numerous experimental vaccines have been developed to protect against the cutaneous and visceral forms of leishmaniasis caused by infection with the obligate intracellular protozoan Leishmania, but a human vaccine still does not exist. Remarkably, the efficacy of anti-Leishmania vaccines has never been fully evaluated under experimental conditions following natural vector transmission by infected sand fly bite. The only immunization strategy known to protect humans against natural exposure is "leishmanization," in which viable L. major parasites are intentionally inoculated into a selected site in the skin. We employed mice with healed L. major infections to mimic leishmanization, and found tissue-seeking, cytokine-producing CD4+ T cells specific for Leishmania at the site of challenge by infected sand fly bite within 24 hours, and these mice were highly resistant to sand fly transmitted infection. In contrast, mice vaccinated with a killed vaccine comprised of autoclaved L. major antigen (ALM)+CpG oligodeoxynucleotides that protected against needle inoculation of parasites, showed delayed expression of protective immunity and failed to protect against infected sand fly challenge. Two-photon intra-vital microscopy and flow cytometric analysis revealed that sand fly, but not needle challenge, resulted in the maintenance of a localized neutrophilic response at the inoculation site, and removal of neutrophils following vector transmission led to increased parasite-specific immune responses and promoted the efficacy of the killed vaccine. These observations identify the critical immunological factors influencing vaccine efficacy following natural transmission of Leishmania.

  1. Evaluation of three avian infectious laryngotracheitis vaccination programmes using two commercial vectorized vaccines in broilers

    OpenAIRE

    Charca P., Silvia; Laboratorio de Patología Aviar, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; Icochea D’A., Eliana; Laboratorio de Patología Aviar, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; González V., Rosa; Laboratorio de Patología Aviar, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; Perales C., Rosa; Laboratorio de Histología, Embriología y Patología Veterinaria, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; San Martín D., Viviana; Laboratorio de Patología Aviar, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; Cribillero C., Nelly; Laboratorio de Patología Aviar, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; Reyna S., Pablo; Laboratorio de Patología Aviar, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima

    2015-01-01

    The aim of this study was to evaluate the protection of three immunization programmes against infectious laryngotracheitis (ILT) in broilers using two recombinant commercial vaccines. A total of 288 1-day-old Ross-308-line male birds were distributed in four experimental groups of 72 animals with three replicates of 24 birds per group. Group A was subcutaneously vaccinated at 1 day of age with a commercial recombinant fowlpox virus (FPV)-vectored vaccine expressing ILT virus (ILTV) glycoprote...

  2. Viral vectors for avian influenza vaccines

    Science.gov (United States)

    Prior to 2003, vaccines against avian influenza (AI) had limited, individual country or regional use in poultry. In late 2003, H5N1 high pathogenicity (HP) AI spread from China to multiple Southeast Asian countries, and to Europe during 2005 and Africa during 2006, challenging governments and all p...

  3. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    Science.gov (United States)

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  4. Evaluation of different heterologous prime-boost immunization strategies against Babesia bovis using viral vectored and protein-adjuvant vaccines based on a chimeric multi-antigen.

    Science.gov (United States)

    Jaramillo Ortiz, José Manuel; Molinari, María Paula; Gravisaco, María José; Paoletta, Martina Soledad; Montenegro, Valeria Noely; Wilkowsky, Silvina Elizabeth

    2016-07-19

    Protection against the intraerythrocytic bovine parasite Babesia bovis requires both humoral and cellular immune responses. Therefore, tailored combinations of immunogens targeted at both arms of the immune system are strategies of choice to pursue sterilizing immunity. In this study, different heterologous prime-boost vaccination schemes were evaluated in mice to compare the immunogenicity induced by a recombinant adenovirus, a modified vaccinia Ankara vector or a subunit vaccine all expressing a chimeric multi-antigen. This multi-antigen includes the immunodominant B and T cell epitopes of three B. bovis proteins: Merozoite Surface Antigen - 2c (MSA-2c), Rhoptry Associated Protein - 1 (RAP-1) and Heat Shock Protein 20 (HSP20). Both priming with the adenovirus or recombinant multi-antigen and boosting with the modified vaccinia Ankara vector achieved a high degree of activation of TNFα and IFNγ-secreting CD4(+) and CD8(+) specific T cells 60days after the first immunization. High titers of specific IgG antibodies were also detected at the same time point and lasted up to day 120 of the first immunization. Only the adenovirus - MVA combination triggered a marked isotype skew for the IgG2a antibody subclass meanwhile for the other immune traits analyzed here, both vaccination schemes showed similar performances. The immunological characterization in the murine model of these rationally designed immunogens led us to propose that adenoviruses as well as the bacterially expressed multi-antigen are highly reliable primer candidates to be considered in future experiments in cattle to test protection against bovine babesiosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Complementing defective viruses that express separate paramyxovirus glycoproteins provide a new vaccine vector approach.

    Science.gov (United States)

    Chattopadhyay, Anasuya; Rose, John K

    2011-03-01

    Replication-defective vaccine vectors based on vesicular stomatitis virus (VSV) lacking its envelope glycoprotein gene (G) are highly effective in animal models. However, such ΔG vectors are difficult to grow because they require complementation with the VSV G protein. In addition, the complementing G protein induces neutralizing antibodies in animals and thus limits multiple vector applications. In the process of generating an experimental Nipah virus (a paramyxovirus) vaccine, we generated two defective VSVΔG vectors, each expressing one of the two Nipah virus (NiV) glycoproteins (G and F) that are both required for virus entry to host cells. These replication-defective VSV vectors were effective at generating NiV neutralizing antibody in mice. Most interestingly, we found that these two defective viruses could be grown together and passaged in tissue culture cells in the absence of VSV G complementation. This mixture of complementing defective viruses was also highly effective at generating NiV neutralizing antibody in animals. This novel approach to growing and producing a vaccine from two defective viruses could be generally applicable to vaccine production for other paramyxoviruses or for other viruses where the expression of at least two different proteins is required for viral entry. Such an approach minimizes biosafety concerns that could apply to single, replication-competent VSV recombinants expressing all proteins required for infection.

  6. Cellular based cancer vaccines

    DEFF Research Database (Denmark)

    Hansen, Morten; Met, O; Svane, I M

    2012-01-01

    Cancer vaccines designed to re-calibrate the existing host-tumour interaction, tipping the balance from tumor acceptance towards tumor control holds huge potential to complement traditional cancer therapies. In general, limited success has been achieved with vaccines composed of tumor...... in vitro migration via autocrine receptor-mediated endocytosis of CCR7. In the current review, we discuss optimal design of DC maturation focused on pre-clinical as well as clinical results from standard and polarized dendritic cell based cancer vaccines....

  7. Cellular based cancer vaccines

    DEFF Research Database (Denmark)

    Hansen, M; Met, Ö; Svane, I M

    2012-01-01

    Cancer vaccines designed to re-calibrate the existing host-tumour interaction, tipping the balance from tumor acceptance towards tumor control holds huge potential to complement traditional cancer therapies. In general, limited success has been achieved with vaccines composed of tumor...... to transiently affect in vitro migration via autocrine receptor-mediated endocytosis of CCR7. In the current review, we discuss optimal design of DC maturation focused on pre-clinical as well as clinical results from standard and polarized dendritic cell based cancer vaccines....

  8. Optimal vaccination strategies against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene

    2014-01-01

    Using a process oriented semi-agent based model, we simulated the spread of Bluetongue virus by Culicoides, biting midges, between cattle in Denmark. We evaluated the minimum vaccination cover and minimum cost for eight different preventive vaccination strategies in Denmark. The simulation model...

  9. Engineering new mycobacterial vaccine design for HIV–TB pediatric vaccine vectored by lysine auxotroph of BCG

    Science.gov (United States)

    Saubi, Narcís; Gea-Mallorquí, Ester; Ferrer, Pau; Hurtado, Carmen; Sánchez-Úbeda, Sara; Eto, Yoshiki; Gatell, Josep M; Hanke, Tomáš; Joseph, Joan

    2014-01-01

    In this study, we have engineered a new mycobacterial vaccine design by using an antibiotic-free plasmid selection system. We assembled a novel Escherichia coli (E. coli)–mycobacterial shuttle plasmid p2auxo.HIVA, expressing the HIV-1 clade A immunogen HIVA. This shuttle vector employs an antibiotic resistance-free mechanism for plasmid selection and maintenance based on glycine complementation in E. coli and lysine complementation in mycobacteria. This plasmid was first transformed into glycine auxotroph of E. coli strain and subsequently transformed into lysine auxotroph of Mycobacterium bovis BCG strain to generate vaccine BCG.HIVA2auxo. We demonstrated that the episomal plasmid p2auxo.HIVA was stable in vivo over a 7-week period and genetically and phenotypically characterized the BCG.HIVA2auxo vaccine strain. The BCG.HIVA2auxo vaccine in combination with modified vaccinia virus Ankara (MVA). HIVA was safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. Polyfunctional HIV-1-specific CD8+ T cells, which produce interferon-γ and tumor necrosis factor-α and express the degranulation marker CD107a, were induced. Thus, we engineered a novel, safer, good laboratory practice–compatible BCG-vectored vaccine using prototype immunogen HIVA. This antibiotic-free plasmid selection system based on “double” auxotrophic complementation might be a new mycobacterial vaccine platform to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective response soon after birth. PMID:26015961

  10. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines.

    Directory of Open Access Journals (Sweden)

    Clement A Meseda

    Full Text Available The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification. The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1 elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that

  11. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant

    Directory of Open Access Journals (Sweden)

    Shailbala Singh

    2014-10-01

    Full Text Available Gene-based vaccination strategies, specifically viral vectors encoding vaccine immunogens are effective at priming strong immune responses. Mucosal routes offer practical advantages for vaccination by ease of needle-free administration, and immunogen delivery at readily accessible oral/nasal sites to efficiently induce immunity at distant gut and genital tissues. However, since mucosal tissues are inherently tolerant for induction of immune responses, incorporation of adjuvants for optimal mucosal vaccination strategies is important. We report here the effectiveness of alpha-galactosylceramide (α-GalCer, a synthetic glycolipid agonist of natural killer T (NKT cells, as an adjuvant for enhancing immunogenicity of vaccine antigens delivered using viral vectors by mucosal routes in murine and nonhuman primate models. Significant improvement in adaptive immune responses in systemic and mucosal tissues was observed by including α-GalCer adjuvant for intranasal immunization of mice with vesicular stomatitis virus vector encoding the model antigen ovalbumin and adenoviral vectors expressing HIV env and Gag antigens. Activation of NKT cells in systemic and mucosal tissues along with significant increases in adaptive immune responses were observed in rhesus macaques immunized by intranasal and sublingual routes with protein or adenovirus vectored antigens when combined with α-GalCer adjuvant. These results support the utility of α-GalCer adjuvant for enhancing immunogenicity of mucosal vaccines delivered using viral vectors.

  12. Interleukin-Encoding Adenoviral Vectors as Genetic Adjuvant for Vaccination against Retroviral Infection

    Science.gov (United States)

    Ohs, Inga; Windmann, Sonja; Wildner, Oliver; Dittmer, Ulf; Bayer, Wibke

    2013-01-01

    Interleukins (IL) are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4+ T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV) surface envelope protein gp70 (Ad.pIXgp70) in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4+ T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4+ T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity. PMID:24349306

  13. Interleukin-encoding adenoviral vectors as genetic adjuvant for vaccination against retroviral infection.

    Directory of Open Access Journals (Sweden)

    Inga Ohs

    Full Text Available Interleukins (IL are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4(+ T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV surface envelope protein gp70 (Ad.pIXgp70 in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4(+ T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4(+ T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity.

  14. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    Science.gov (United States)

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-07

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Infectivity of attenuated poxvirus vaccine vectors and immunogenicity of a raccoonpox vectored rabies vaccine in the Brazilian Free-tailed bat (Tadarida brasiliensis).

    Science.gov (United States)

    Stading, Ben R; Osorio, Jorge E; Velasco-Villa, Andres; Smotherman, Michael; Kingstad-Bakke, Brock; Rocke, Tonie E

    2016-10-17

    Bats (Order Chiroptera) are an abundant group of mammals with tremendous ecological value as insectivores and plant dispersers, but their role as reservoirs of zoonotic diseases has received more attention in the last decade. With the goal of managing disease in free-ranging bats, we tested modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) as potential vaccine vectors in the Brazilian Free-tailed bat (Tadarida brasiliensis), using biophotonic in vivo imaging and immunogenicity studies. Animals were administered recombinant poxviral vectors expressing the luciferase gene (MVA-luc, RCN-luc) through oronasal (ON) or intramuscular (IM) routes and subsequently monitored for bioluminescent signal indicative of viral infection. No clinical illness was noted after exposure to any of the vectors, and limited luciferase expression was observed. Higher and longer levels of expression were observed with the RCN-luc construct. When given IM, luciferase expression was limited to the site of injection, while ON exposure led to initial expression in the oral cavity, often followed by secondary replication at another location, likely the gastric mucosa or gastric associated lymphatic tissue. Viral DNA was detected in oral swabs up to 7 and 9 days post infection (dpi) for MVA and RCN, respectively. While no live virus was detected in oral swabs from MVA-infected bats, titers up to 3.88 x 10 4 PFU/ml were recovered from oral swabs of RCN-infected bats. Viral DNA was also detected in fecal samples from two bats inoculated IM with RCN, but no live virus was recovered. Finally, we examined the immunogenicity of a RCN based rabies vaccine (RCN-G) following ON administration. Significant rabies neutralizing antibody titers were detected in the serum of immunized bats using the rapid fluorescence focus inhibition test (RFFIT). These studies highlight the safety and immunogenicity of attenuated poxviruses and their potential use as vaccine vectors in bats. Published by Elsevier Ltd.

  16. Infectivity of attenuated poxvirus vaccine vectors and immunogenicity of a raccoonpox vectored rabies vaccine in the Brazilian Free-tailed bat (Tadarida brasiliensis)

    Science.gov (United States)

    Stading, Benjamin; Osorio, Jorge E.; Velasco-Villa, Andres; Smotherman, Michael; Kingstad-Bakke, Brock; Rocke, Tonie E.

    2016-01-01

    Bats (Order Chiroptera) are an abundant group of mammals with tremendous ecological value as insectivores and plant dispersers, but their role as reservoirs of zoonotic diseases has received more attention in the last decade. With the goal of managing disease in free-ranging bats, we tested modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) as potential vaccine vectors in the Brazilian Free-tailed bat (Tadarida brasiliensis), using biophotonic in vivo imaging and immunogenicity studies. Animals were administered recombinant poxviral vectors expressing the luciferase gene (MVA-luc, RCN-luc) through oronasal (ON) or intramuscular (IM) routes and subsequently monitored for bioluminescent signal indicative of viral infection. No clinical illness was noted after exposure to any of the vectors, and limited luciferase expression was observed. Higher and longer levels of expression were observed with the RCN-luc construct. When given IM, luciferase expression was limited to the site of injection, while ON exposure led to initial expression in the oral cavity, often followed by secondary replication at another location, likely the gastric mucosa or gastric associated lymphatic tissue. Viral DNA was detected in oral swabs up to 7 and 9 days post infection (dpi) for MVA and RCN, respectively. While no live virus was detected in oral swabs from MVA-infected bats, titers up to 3.88 x 104 PFU/ml were recovered from oral swabs of RCN-infected bats. Viral DNA was also detected in fecal samples from two bats inoculated IM with RCN, but no live virus was recovered. Finally, we examined the immunogenicity of a RCN based rabies vaccine (RCN-G) following ON administration. Significant rabies neutralizing antibody titers were detected in the serum of immunized bats using the rapid fluorescence focus inhibition test (RFFIT). These studies highlight the safety and immunogenicity of attenuated poxviruses and their potential use as vaccine vectors in bats.

  17. CRISPR/Cas9—Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development

    Science.gov (United States)

    Okoli, Arinze; Okeke, Malachy I.; Tryland, Morten; Moens, Ugo

    2018-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them. PMID:29361752

  18. CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development.

    Science.gov (United States)

    Okoli, Arinze; Okeke, Malachy I; Tryland, Morten; Moens, Ugo

    2018-01-22

    The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them.

  19. Safety of recombinant VSV-Ebola virus vaccine vector in pigs.

    Science.gov (United States)

    de Wit, Emmie; Marzi, Andrea; Bushmaker, Trenton; Brining, Doug; Scott, Dana; Richt, Juergen A; Geisbert, Thomas W; Feldmann, Heinz

    2015-04-01

    The ongoing Ebola outbreak in West Africa has resulted in fast-track development of vaccine candidates. We tested a vesicular stomatitis virus vector expressing Ebola virus glycoprotein for safety in pigs. Inoculation did not cause disease and vaccine virus shedding was minimal, which indicated that the vaccine virus does not pose a risk of dissemination in pigs.

  20. Assessment of Lactobacillus gasseri as a candidate oral vaccine vector.

    Science.gov (United States)

    Stoeker, Laura; Nordone, Shila; Gunderson, Sara; Zhang, Lin; Kajikawa, Akinobu; LaVoy, Alora; Miller, Michael; Klaenhammer, Todd R; Dean, Gregg A

    2011-11-01

    Lactobacillus species are commensal bacteria that have long been recognized as probiotic microbes and are generally regarded as safe (GRAS) for human consumption. We have investigated the use of L. gasseri as a vaccine vector for oral immunization against mucosal pathogens. Recent research has shown that the immune response to different lactobacilli can vary widely depending on the species or subspecies of Lactobacillus being studied. While some lactobacilli seem to induce oral tolerance, others induce an adaptive immune response. This study characterized the systemic and mucosal immune response to wild-type and genetically modified L. gasseri. L. gasseri primarily activates TLR2/6, with additional activation through the TLR2 homodimer. To expand the Toll-like receptor (TLR) activation profile of L. gasseri and the immunogenicity of the vector, a plasmid containing fliC, the gene encoding bacterial flagellin, was introduced which resulted in the strong activation of TLR5. The treatment of human myeloid dendritic cells with recombinant lactobacilli expressing flagellin triggered phenotypic maturation and the release of proinflammatory cytokines. In contrast, bacterial treatment also resulted in a statistically significant increase in IL-10 production. In vivo studies established that treatment with L. gasseri led to a diversification of B-cell populations in the lamina propria of the murine colon. Furthermore, treatment with genetically modified L. gasseri led to a significant decrease in the percentage of FoxP3(+) colonic lymphocytes. Taken together, these data clarify the interaction of L. gasseri with the host immune system and support further investigation of the in vivo immunogenicity of L. gasseri expressing both flagellin and candidate vaccine antigens.

  1. Prime-boost immunization with poxvirus or adenovirus vectors as a strategy to develop a protective vaccine for HIV-1.

    Science.gov (United States)

    Paris, Robert M; Kim, Jerome H; Robb, Merlin L; Michael, Nelson L

    2010-09-01

    Challenges in the development of an effective HIV-1 vaccine are myriad with significant hurdles posed by viral diversity, the lack of a human correlate of protection and difficulty in creating immunogens capable of eliciting broadly neutralizing antibodies. The implicit requirement for novel approaches to these problems has resulted in vaccine candidates designed to elicit cellular and/or humoral immune responses, to include recombinant DNA, viral and bacterial vectors, and subunit proteins. Here, we review data from clinical studies primarily of poxvirus and adenovirus vector vaccines, used in a heterologous prime-boost combination strategy. Currently, this strategy appears to hold the most promise for an effective vaccine based on results from immunogenicity testing and nonhuman primate challenge models, as well as the modest efficacy recently observed in the Thai prime-boost trial.

  2. Development of malaria vaccines that block transmission of parasites by mosquito vectors

    OpenAIRE

    Hisaeda, Hajime; Yasutomo, Koji

    2002-01-01

    Malaria is still one of the infectious diseases urgently requiring control and causes socioeconomic burdens on people residing in developing countries. Malaria vaccines are expected to control the disease. However, there is no effective vaccine available despite the intense efforts of malaria scientists. One strategy for a malaria vaccine is to prevent parasite spread by means of interfering with parasite development in mosquito vectors, which is the so-called transmission-blocking vaccine (T...

  3. Kunjin virus replicons: an RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications

    NARCIS (Netherlands)

    Pijlman, G.P.; Suhrbier, A.; Khromykh, A.A.

    2006-01-01

    The application of viral vectors for gene expression and delivery is rapidly evolving, with several entering clinical trials. However, a number of issues, including safety, gene expression levels, cell selectivity and antivector immunity, are driving the search for new vector systems. A number of

  4. Immunogenicity of bivalent human papillomavirus DNA vaccine using human endogenous retrovirus envelope-coated baculoviral vectors in mice and pigs.

    Directory of Open Access Journals (Sweden)

    Hee-Jung Lee

    Full Text Available Human papillomavirus is known to be the major pathogen of cervical cancer. Here, we report the efficacy of a bivalent human papillomavirus type 16 and 18 DNA vaccine system following repeated dosing in mice and pigs using a recombinant baculovirus bearing human endogenous retrovirus envelope protein (AcHERV as a vector. The intramuscular administration of AcHERV-based HPV16L1 and HPV18L1 DNA vaccines induced antigen-specific serum IgG, vaginal IgA, and neutralizing antibodies to levels comparable to those achieved using the commercially marketed vaccine Cervarix. Similar to Cervarix, AcHERV-based bivalent vaccinations completely blocked subsequent vaginal challenge with HPV type-specific pseudovirions. However, AcHERV-based bivalent vaccinations induced significantly higher cell-mediated immune responses than Cervarix, promoting 4.5- (HPV16L1 and 3.9-(HPV18L1 fold higher interferon-γ production in splenocytes upon stimulation with antigen type-specific pseudovirions. Repeated dosing did not affect the immunogenicity of AcHERV DNA vaccines. Three sequential immunizations with AcHERV-HP18L1 DNA vaccine followed by three repeated dosing with AcHERV-HP16L1 over 11 weeks induced an initial production of anti-HPV18L1 antibody followed by subsequent induction of anti-HPV16L1 antibody. Finally, AcHERV-based bivalent DNA vaccination induced antigen-specific serum IgG immune responses in pigs. These results support the further development of AcHERV as a bivalent human papillomavirus DNA vaccine system for use in preventing the viral infection as well as treating the infected women by inducing both humoral and cell-mediated immune responses. Moreover, the possibility of repeated dosing indicates the utility of AcHERV system for reusable vectors of other viral pathogen vaccines.

  5. Immunogenicity of bivalent human papillomavirus DNA vaccine using human endogenous retrovirus envelope-coated baculoviral vectors in mice and pigs.

    Science.gov (United States)

    Lee, Hee-Jung; Hur, Yoon-Ki; Cho, Youn-Dong; Kim, Mi-Gyeong; Lee, Hoon-Taek; Oh, Yu-Kyoung; Kim, Young Bong

    2012-01-01

    Human papillomavirus is known to be the major pathogen of cervical cancer. Here, we report the efficacy of a bivalent human papillomavirus type 16 and 18 DNA vaccine system following repeated dosing in mice and pigs using a recombinant baculovirus bearing human endogenous retrovirus envelope protein (AcHERV) as a vector. The intramuscular administration of AcHERV-based HPV16L1 and HPV18L1 DNA vaccines induced antigen-specific serum IgG, vaginal IgA, and neutralizing antibodies to levels comparable to those achieved using the commercially marketed vaccine Cervarix. Similar to Cervarix, AcHERV-based bivalent vaccinations completely blocked subsequent vaginal challenge with HPV type-specific pseudovirions. However, AcHERV-based bivalent vaccinations induced significantly higher cell-mediated immune responses than Cervarix, promoting 4.5- (HPV16L1) and 3.9-(HPV18L1) fold higher interferon-γ production in splenocytes upon stimulation with antigen type-specific pseudovirions. Repeated dosing did not affect the immunogenicity of AcHERV DNA vaccines. Three sequential immunizations with AcHERV-HP18L1 DNA vaccine followed by three repeated dosing with AcHERV-HP16L1 over 11 weeks induced an initial production of anti-HPV18L1 antibody followed by subsequent induction of anti-HPV16L1 antibody. Finally, AcHERV-based bivalent DNA vaccination induced antigen-specific serum IgG immune responses in pigs. These results support the further development of AcHERV as a bivalent human papillomavirus DNA vaccine system for use in preventing the viral infection as well as treating the infected women by inducing both humoral and cell-mediated immune responses. Moreover, the possibility of repeated dosing indicates the utility of AcHERV system for reusable vectors of other viral pathogen vaccines.

  6. Successful therapeutic vaccination with integrase defective lentiviral vector expressing nononcogenic human papillomavirus E7 protein.

    Science.gov (United States)

    Grasso, Felicia; Negri, Donatella R M; Mochi, Stefania; Rossi, Alessandra; Cesolini, Armando; Giovannelli, Andrea; Chiantore, Maria Vincenza; Leone, Pasqualina; Giorgi, Colomba; Cara, Andrea

    2013-01-15

    Persistent infection with high risk genotypes of human papillomavirus (HPV) is the cause of cervical cancer, one of most common cancer among woman worldwide, and represents an important risk factor associated with other anogenital and oropharyngeal cancers in men and women. Here, we designed a therapeutic vaccine based on integrase defective lentiviral vector (IDLV) to deliver a mutated nononcogenic form of HPV16 E7 protein, considered as a tumor specific antigen for immunotherapy of HPV-associated cervical cancer, fused to calreticulin (CRT), a protein able to enhance major histocompatibility complex class I antigen presentation (IDLV-CRT/E7). Vaccination with IDLV-CRT/E7 induced a potent and persistent E7-specific T cell response up to 1 year after a single immunization. Importantly, a single immunization with IDLV-CRT/E7 was able to prevent growth of E7-expressing TC-1 tumor cells and to eradicate established tumors in mice. The strong therapeutic effect induced by the IDLV-based vaccine in this preclinical model suggests that this strategy may be further exploited as a safe and attractive anticancer immunotherapeutic vaccine in humans. Copyright © 2012 UICC.

  7. A Respiratory Syncytial Virus Vaccine Vectored by a Stable Chimeric and Replication-Deficient Sendai Virus Protects Mice without Inducing Enhanced Disease.

    Science.gov (United States)

    Wiegand, Marian Alexander; Gori-Savellini, Gianni; Gandolfo, Claudia; Papa, Guido; Kaufmann, Christine; Felder, Eva; Ginori, Alessandro; Disanto, Maria Giulia; Spina, Donatella; Cusi, Maria Grazia

    2017-05-15

    Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in children and elderly people, and no marketed vaccine exists. In this study, we generated and analyzed a subunit vaccine against RSV based on a novel genome replication-deficient Sendai virus (SeV) vector. We inserted the RSV F protein, known to be a genetically stable antigen, into our vector in a specific way to optimize the vaccine features. By exchanging the ectodomain of the SeV F protein for its counterpart from RSV, we created a chimeric vectored vaccine that contains the RSV F protein as an essential structural component. In this way, the antigen is actively expressed on the surfaces of vaccine particles in its prefusion conformation, and as recently reported for other vectored vaccines, the occurrence of silencing mutations of the transgene in the vaccine genome can be prevented. In addition, its active gene expression contributes to further stimulation of the immune response. In order to understand the best route of immunization, we compared vaccine efficacies after intranasal (i.n.) or intramuscular (i.m.) immunization of BALB/c mice. Via both routes, substantial RSV-specific immune responses were induced, consisting of serum IgG and neutralizing antibodies, as well as cytotoxic T cells. Moreover, i.n. immunization was also able to stimulate specific mucosal IgA in the upper and lower respiratory tract. In virus challenge experiments, animals were protected against RSV infection after both i.n. and i.m. immunization without inducing vaccine-enhanced disease. Above all, the replication-deficient SeV appeared to be safe and well tolerated.IMPORTANCE Respiratory syncytial virus (RSV) is a major cause of respiratory diseases in young children and elderly people worldwide. There is a great demand for a licensed vaccine. Promising existing vaccine approaches based on live-attenuated vaccines or viral vectors have suffered from unforeseen drawbacks related to immunogenicity

  8. Safety mechanism assisted by the repressor of tetracycline (SMART) vaccinia virus vectors for vaccines and therapeutics.

    Science.gov (United States)

    Grigg, Patricia; Titong, Allison; Jones, Leslie A; Yilma, Tilahun D; Verardi, Paulo H

    2013-09-17

    Replication-competent viruses, such as Vaccinia virus (VACV), are powerful tools for the development of oncolytic viral therapies and elicit superior immune responses when used as vaccine and immunotherapeutic vectors. However, severe complications from uncontrolled viral replication can occur, particularly in immunocompromised individuals or in those with other predisposing conditions. VACVs constitutively expressing interferon-γ (IFN-γ) replicate in cell culture indistinguishably from control viruses; however, they replicate in vivo to low or undetectable levels, and are rapidly cleared even in immunodeficient animals. In an effort to develop safe and highly effective replication-competent VACV vectors, we established a system to inducibly express IFN-γ. Our SMART (safety mechanism assisted by the repressor of tetracycline) vectors are designed to express the tetracycline repressor under a constitutive VACV promoter and IFN-γ under engineered tetracycline-inducible promoters. Immunodeficient SCID mice inoculated with VACVs not expressing IFN-γ demonstrated severe weight loss, whereas those given VACVs expressing IFN-γ under constitutive VACV promoters showed no signs of infection. Most importantly, mice inoculated with a VACV expressing the IFN-γ gene under an inducible promoter remained healthy in the presence of doxycycline, but exhibited severe weight loss in the absence of doxycycline. In this study, we developed a safety mechanism for VACV based on the conditional expression of IFN-γ under a tightly controlled tetracycline-inducible VACV promoter for use in vaccines and oncolytic cancer therapies.

  9. Bacteroides Fragilis OmpA: Utility as a Live Vaccine Vector for Biodefense Agents

    Science.gov (United States)

    2008-01-01

    as a live vaccine vector for Biodefense Agents PRINCIPAL INVESTIGATOR: Hannah M. Wexler, Ph.D...29 DEC 2007 4. TITLE AND SUBTITLE Bacteroides fragilis OmpA: Utility as a live vaccine vector for Biodefense Agents 5a. CONTRACT NUMBER 5b...were cut out from the gel, placed in dialysis bags and mashed manually. Buffer containing 25 mM Tris, 192 mM glycine, 0.1% SDS, and 3 mM sodium

  10. [Vesicular stomatitis virus (VSV) as a vaccine vector for immunization against viral infections].

    Science.gov (United States)

    Tomczyk, Tomasz; Orzechowska, Beata

    2013-01-11

    Vesicular stomatitis virus (VSV), a member of the Rhabdoviridae family, is a promising candidate for potential use in construction of antiviral vaccines. In the natural environment VSV is a pathogen of wild ungulates and livestock. Some of the features that make VSV an excellent platform for the development of a range of viral therapeutics includes its immunogenicity and ability to grow to high titers in cell lines approved for vaccine use. Infection in humans is rare and usually asymptomatic, with mild flu-like symptoms. Moreover, due to affinity of VSV envelope glycoprotein to the LDL (low-density lipoprotein) receptor, VSV is effective at targeting a variety of tissues in vivo. A series of research results confirm the possibility of developing VSV-based vaccines against human papilloma viruses (HPV), human immunodeficiency virus (HIV), hepatitis B virus (HBV) and filoviruses (MARV, ZEBOV and SEBOV), as well as the potential use of a successfully developed vaccine against hepatitis C virus (HCV). VSV is neurotropic and infection can cause a viral encephalitis in experimental animals. Therefore, intensive studies are being undertaken to achieve satisfactory expression of the viral antigens while maintaining the safety of the constructed vectors.

  11. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8plus T Cell Responses with Distinct Clonotype and Epitope Specificity

    Energy Technology Data Exchange (ETDEWEB)

    M Honda; R Wang; W Kong; M Kanekiyo; Q Akahata; L Xu; K Matsuo; K Natarajan; H Robinson; et al.

    2011-12-31

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternative vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.

  12. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8+ T Cell Responses with Distinct Clonotype and Epitope Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M.; Robinson, H.; Wang, R.; Kong, W.-P.; Kanekiyo, M.; Akahata, W.; Xu, L.; Matsuo, K.; Natarajan, K.; Asher, T. E.; Price, D. A.; Douek, D. C.; Margulies, D. H.; Nabel, G. J.

    2009-08-15

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternative vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.

  13. An adenovirus-vectored nasal vaccine confers rapid and sustained protection against anthrax in a single-dose regimen.

    Science.gov (United States)

    Zhang, Jianfeng; Jex, Edward; Feng, Tsungwei; Sivko, Gloria S; Baillie, Leslie W; Goldman, Stanley; Van Kampen, Kent R; Tang, De-chu C

    2013-01-01

    Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sustained protection against inhalation anthrax in mice in a single-dose regimen in the presence of preexisting adenovirus immunity. The potency of the vaccine was greatly enhanced when codons of the antigen gene were optimized to match the tRNA pool found in human cells. In addition, an adenovirus vector encoding lethal factor can confer partial protection against inhalation anthrax and might be coadministered with a protective antigen-based vaccine.

  14. Novel Cocaine Vaccine Linked to a Disrupted Adenovirus Gene Transfer Vector Blocks Cocaine Psychostimulant and Reinforcing Effects

    Science.gov (United States)

    Wee, Sunmee; Hicks, Martin J; De, Bishnu P; Rosenberg, Jonathan B; Moreno, Amira Y; Kaminsky, Stephen M; Janda, Kim D; Crystal, Ronald G; Koob, George F

    2012-01-01

    Immunotherapy is a promising treatment for drug addiction. However, insufficient immune responses to vaccines in most subjects pose a challenge. In this study, we tested the efficacy of a new cocaine vaccine (dAd5GNE) in antagonizing cocaine addiction-related behaviors in rats. This vaccine used a disrupted serotype 5 adenovirus (Ad) gene transfer vector coupled to a third-generation cocaine hapten, termed GNE (6-(2R,3S)-3-(benzoyloxy)-8-methyl-8-azabicyclo [3.2.1] octane-2-carboxamido-hexanoic acid). Three groups of rats were immunized with dAd5GNE. One group was injected with 3H-cocaine, and radioactivity in the blood and brain was determined. A second group was tested for cocaine-induced locomotor sensitization. A third group was examined for cocaine self-administration, extinction, and reinstatement of responding for cocaine. Antibody titers were determined at various time-points. In each experiment, we added a control group that was immunized with dAd5 without a hapten. The vaccination with dAd5GNE produced long-lasting high titers (>105) of anti-cocaine antibodies in all of the rats. The vaccination inhibited cocaine-induced hyperlocomotor activity and sensitization. Vaccinated rats acquired cocaine self-administration, but they showed less motivation to self-administer cocaine under a progressive-ratio schedule than control rats. When cocaine was not available in a session, control rats exhibited ‘extinction burst' responding, whereas vaccinated rats did not. Moreover, when primed with cocaine, vaccinated rats did not reinstate responding, suggesting a blockade of cocaine-seeking behavior. These data strongly suggest that our dAd5GNE vector-based vaccine may be effective in treating cocaine abuse and addiction. PMID:21918504

  15. Novel chimpanzee adenovirus-vectored respiratory mucosal tuberculosis vaccine: overcoming local anti-human adenovirus immunity for potent TB protection.

    Science.gov (United States)

    Jeyanathan, M; Thanthrige-Don, N; Afkhami, S; Lai, R; Damjanovic, D; Zganiacz, A; Feng, X; Yao, X-D; Rosenthal, K L; Medina, M Fe; Gauldie, J; Ertl, H C; Xing, Z

    2015-11-01

    Pulmonary tuberculosis (TB) remains to be a major global health problem despite many decades of parenteral use of Bacillus Calmette-Guérin (BCG) vaccine. Developing safe and effective respiratory mucosal TB vaccines represents a unique challenge. Over the past decade or so, the human serotype 5 adenovirus (AdHu5)-based TB vaccine has emerged as one of the most promising candidates based on a plethora of preclinical and early clinical studies. However, anti-AdHu5 immunity widely present in the lung of humans poses a serious gap and limitation to its real-world applications. In this study we have developed a novel chimpanzee adenovirus 68 (AdCh68)-vectored TB vaccine amenable to the respiratory route of vaccination. We have evaluated AdCh68-based TB vaccine for its safety, T-cell immunogenicity, and protective efficacy in relevant animal models of human pulmonary TB with or without parenteral BCG priming. We have also compared AdCh68-based TB vaccine with its AdHu5 counterpart in both naive animals and those with preexisting anti-AdHu5 immunity in the lung. We provide compelling evidence that AdCh68-based TB vaccine is not only safe when delivered to the respiratory tract but, importantly, is also superior to its AdHu5 counterpart in induction of T-cell responses and immune protection, and limiting lung immunopathology in the presence of preexisting anti-AdHu5 immunity in the lung. Our findings thus suggest AdCh68-based TB vaccine to be an ideal candidate for respiratory mucosal immunization, endorsing its further clinical development in humans.

  16. Replicating viral vectors as HIV vaccines: Summary report from IAVI Sponsored Satellite Symposium, International AIDS Society Conference, July 22, 2007

    NARCIS (Netherlands)

    Koff, W. C.; Parks, C. L.; Berkhout, B.; Ackland, J.; Noble, S.; Gust, I. D.

    2008-01-01

    At the International AIDS Society Conference oil Pathogenesis, Treatment and Prevention held in Sydney, Australia, in July 2007, the International AIDS Vaccine Initiative (IAVI) convened a satellite symposium entitled 'Accelerating the Development of Replicating Viral Vectors for AIDS Vaccines.' Its

  17. Mucosal vaccination with heterologous viral vectored vaccine targeting subdominant SIV accessory antigens strongly inhibits early viral replication

    DEFF Research Database (Denmark)

    Xu, Huanbin; Andersson, Anne-Marie Carola; Ragonnaud, Emeline

    2017-01-01

    Conventional HIV T cell vaccine strategies have not been successful in containing acute peak viremia, nor in providing long-term control. We immunized rhesus macaques intramuscularly and rectally using a heterologous adenovirus vectored SIV vaccine regimen encoding normally weakly immunogenic tat...... immune hyperactivation as measured by naïve T cell depletion, Ki-67 and PD-1 expression on T cells. These results indicate that vaccination towards SIV accessory antigens vaccine can provide a level of acute control of SIV replication with a suggestion of beneficial immunological consequences in infected...... animals of unknown long-term significance. In conclusion, our studies demonstrate that a vaccine encoding subdominant antigens not normally associated with virus control can exert a significant impact on acute peak viremia....

  18. VectorBase: a home for invertebrate vectors of human pathogens

    Science.gov (United States)

    Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Emmert, David; Hammond, Martin; Hill, Catherine A.; Kennedy, Ryan C.; Lobo, Neil F.; MacCallum, M. Robert; Madey, Greg; Megy, Karine; Redmond, Seth; Russo, Susan; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Zdobnov, Evgeny M.; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.

    2007-01-01

    VectorBase () is a web-accessible data repository for information about invertebrate vectors of human pathogens. VectorBase annotates and maintains vector genomes providing an integrated resource for the research community. Currently, VectorBase contains genome information for two organisms: Anopheles gambiae, a vector for the Plasmodium protozoan agent causing malaria, and Aedes aegypti, a vector for the flaviviral agents causing Yellow fever and Dengue fever. PMID:17145709

  19. Improved vaccine protection against retrovirus infection after co-administration of adenoviral vectors encoding viral antigens and type I interferon subtypes

    Directory of Open Access Journals (Sweden)

    Groitl Peter

    2011-09-01

    Full Text Available Abstract Background Type I interferons (IFNs exhibit direct antiviral effects, but also distinct immunomodulatory properties. In this study, we analyzed type I IFN subtypes for their effect on prophylactic adenovirus-based anti-retroviral vaccination of mice against Friend retrovirus (FV or HIV. Results Mice were vaccinated with adenoviral vectors encoding FV Env and Gag proteins alone or in combination with vectors encoding IFNα1, IFNα2, IFNα4, IFNα5, IFNα6, IFNα9 or IFNβ. Only the co-administration of adenoviral vectors encoding IFNα2, IFNα4, IFNα6 and IFNα9 resulted in strongly improved immune protection of vaccinated mice from subsequent FV challenge infection with high control over FV-induced splenomegaly and reduced viral loads. The level of protection correlated with augmented virus-specific CD4+ T cell responses and enhanced antibody titers. Similar results were obtained when mice were vaccinated against HIV with adenoviral vectors encoding HIV Env and Gag-Pol in combination with various type I IFN encoding vectors. Here mainly CD4+ T cell responses were enhanced by IFNα subtypes. Conclusions Our results indicate that certain IFNα subtypes have the potential to improve the protective effect of adenovirus-based vaccines against retroviruses. This correlated with augmented virus-specific CD4+ T cell and antibody responses. Thus, co-expression of select type I IFNs may be a valuable tool for the development of anti-retroviral vaccines.

  20. Comparison of antibody response to a non-adjuvanted, live canarypox-vectored recombinant rabies vaccine and a killed, adjuvanted rabies vaccine in Eld's deer (Rucervus eldi thamin).

    Science.gov (United States)

    Marrow, Judilee C; Padilla, Luis R; Hayek, Lee-Ann C; Bush, Mitch; Murray, Suzan

    2014-06-01

    Captive Eld's deer (Rucervus eldi thamin) were evaluated for the presence of rabies virus-neutralizing antibodies using a rapid fluorescent focus inhibition after vaccination with either a live canarypox-vectored recombinant rabies vaccine or a killed monovalent rabies vaccine. Twelve deer were vaccinated with 1.0 ml of killed, adjuvanted, monovalent rabies vaccine at 5-33 mo of age then annually thereafter, and 14 deer were vaccinated with 1.0 ml nonadjuvanted, live canarypox-vectored rabies vaccine at 3-15 mo of age then annually thereafter. Banked serum was available or collected prospectively from deer at 6 mo and 1 yr after initial vaccination, then collected annually. Rabies virus-neutralizing antibodies considered adequate (>0.5 IU/ml) were present in 20/34 samples vaccinated with canarypox-vectored rabies vaccine and in 12/14 samples vaccinated with killed adjuvanted rabies vaccine. Poor seroconversion was noted in deer less than 6 mo of age vaccinated with the canarypox-vectored rabies vaccine.

  1. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors.

    Science.gov (United States)

    Wang, Hai-Chao; An, Huai-Jie; Yu, Yun-Zhou; Xu, Qing

    2015-02-01

    DNA vaccines require improvement for human use because they are generally weak stimulators of the immune system in humans. The efficacy of DNA vaccines can be improved using a viral replicon as vector to administer antigen of pathogen. In this study, we comprehensively evaluated the conventional non-viral DNA, viral replicon DNA or viral replicon particles (VRP) vaccines encoding different forms of anthrax protective antigen (PA) for specific immunity and protective potency against anthrax. Our current results clearly suggested that these viral replicon DNA or VRP vaccines derived from Semliki Forest virus (SFV) induced stronger PA-specific immune responses than the conventional non-viral DNA vaccines when encoding the same antigen forms, which resulted in potent protection against challenge with the Bacillus anthracis strain A16R. Additionally, the naked PA-expressing SFV replicon DNA or VRP vaccines without the need for high doses or demanding particular delivery regimens elicited robust immune responses and afforded completely protective potencies, which indicated the potential of the SFV replicon as vector of anthrax vaccines for use in clinical application. Therefore, our results suggest that these PA-expressing SFV replicon DNA or VRP vaccines may be suitable as candidate vaccines against anthrax. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Live Attenuated Shigella as a Diarrheal Vaccine and/or Mucosal Delivery Vector for DNA Vaccines

    National Research Council Canada - National Science Library

    Venkatesan, M. M; Ranallo, R. T; Cassels, F. J; Hale, T. L; Cox, J; Kuta, E; Galley, L; Fouts, T; Lewis, G; Hanke, T; Than, S; Mehra, V

    2004-01-01

    .... Live, orally administered Shigella vaccine derivatives are also being evaluated as multivalent mucosal vaccines able to deliver both bacterial antigens and eukaryotic genes to the gut associated...

  3. Further development of raccoon poxvirus-vectored vaccines against plague (Yersinia pestis)

    Science.gov (United States)

    Rocke, T.E.; Iams, Keith P.; Dawe, S.; Smith, S.R.; Williamson, J.L.; Heisey, D.M.; Osorio, J.E.

    2009-01-01

    In previous studies, we demonstrated protection against plague in mice and prairie dogs using a raccoon pox (RCN) virus-vectored vaccine that expressed the F1 capsular antigen of Yersinia pestis. In order to improve vaccine efficacy, we have now constructed additional RCN-plague vaccines containing two different forms of the lcrV (V) gene, including full-length (Vfull) and a truncated form (V307). Mouse challenge studies with Y. pestis strain CO92 showed that vaccination with a combination of RCN-F1 and the truncated V construct (RCN-V307) provided the greatest improvement (P = 0.01) in protection against plague over vaccination with RCN-F1 alone. This effect was mediated primarily by anti-F1 and anti-V antibodies and both contributed independently to increased survival of vaccinated mice.

  4. Comparative evaluation of three capripoxvirus-vectored peste des petits ruminants vaccines.

    Science.gov (United States)

    Fakri, F; Bamouh, Z; Ghzal, F; Baha, W; Tadlaoui, K; Fihri, O Fassi; Chen, W; Bu, Z; Elharrak, M

    2017-11-30

    Sheep and goat pox (SGP) with peste des petits ruminants (PPR) are transboundary viral diseases of small ruminants that cause huge economic losses. Recombinant vaccines that can protect from both infections have been reported as a promising solution for the future. SGP was used as a vector to express two structural proteins hemagglutinin or the fusion protein of PPRV. We compared immunity conferred by recombinant capripoxvirus vaccines expressing H or F or both HF. Safety and efficacy were evaluated in goats and sheep. Two vaccine doses were tested in sheep, 104.5TCDI50 in 1ml dose was retained for the further experiment. Results showed that the recombinant HF confers an earlier and stronger immunity against both SGP and PPR. This recombinant vaccine protect also against the disease in exposed and unexposed sheep. The potential Differentiating Infected from Vaccinated Animals of recombinant vaccines is of great advantage in any eradication program. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Mucosal trafficking of vector-specific CD4+ T lymphocytes following vaccination of rhesus monkeys with adenovirus serotype 5.

    Science.gov (United States)

    Masek-Hammerman, Katherine; Li, Hualin; Liu, Jinyan; Abbink, Peter; La Porte, Annalena; O'Brien, Kara L; Whitney, James B; Carville, Angela; Mansfield, Keith G; Barouch, Dan H

    2010-10-01

    Post hoc analysis of the phase 2b Step study evaluating a recombinant adenovirus serotype 5 (rAd5)-based HIV-1 vaccine candidate suggested a potential increased risk of HIV-1 acquisition in subjects who were baseline Ad5 seropositive and uncircumcised. These concerns had a profound impact on the HIV-1 vaccine development field, although the mechanism underlying this observation remains unknown. It has been hypothesized that rAd5 vaccination of baseline Ad5-seropositive individuals may have resulted in anamnestic, vector-specific CD4(+) T lymphocytes that could have trafficked to mucosal sites and served as increased targets for HIV-1 infection. Here we show that Ad5-specific CD4(+) T lymphocyte responses at mucosal sites following rAd5-Gag/Pol/Nef vaccination were comparable in rhesus monkeys with and without baseline Ad5 immunity. Moreover, the total cellular inflammatory infiltrates and the CD3(+), CD4(+), HLA-DR(+), Ki67(+), and langerin(+) cellular subpopulations in colorectal and foreskin mucosa were similar in both groups. Thus, no greater trafficking of Ad5-specific CD4(+) T lymphocytes to mucosal target sites was observed following rAd5 vaccination of rhesus monkeys with baseline Ad5 immunity. These findings from this nonhuman primate model provide evidence against the hypothesis that recruitment of vector-specific target cells to mucosal sites led to increased HIV-1 acquisition in Ad5-seropositive, uncircumcised vaccinees in the Step study.

  6. Cationic lipid-formulated DNA vaccine against hepatitis B virus: immunogenicity of MIDGE-Th1 vectors encoding small and large surface antigen in comparison to a licensed protein vaccine.

    Directory of Open Access Journals (Sweden)

    Anne Endmann

    Full Text Available Currently marketed vaccines against hepatitis B virus (HBV based on the small (S hepatitis B surface antigen (HBsAg fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L protein of HBsAg in mice and pigs. In both animal models, vectors encoding the secretion-competent S protein induced stronger humoral responses than vectors encoding the L protein, which was shown to be retained mainly intracellularly despite the presence of a heterologous secretion signal. In pigs, SAINT-18-formulated MIDGE-Th1 vectors encoding the S protein elicited an immune response of the same magnitude as the licensed protein vaccine Engerix-B, with S protein-specific antibody levels significantly higher than those considered protective in humans, and lasting for at least six months after the third immunization. Thus, our results provide not only the proof of concept for the SAINT-18-formulated MIDGE-Th1 vector approach but also confirm that with a cationic-lipid formulation, a DNA vaccine at a relatively low dose can elicit an immune response similar to a human dose of an aluminum hydroxide-adjuvanted protein vaccine in large animals.

  7. Adenovirus-vectored drug-vaccine duo as a potential driver for conferring mass protection against infectious diseases.

    Science.gov (United States)

    Zhang, Jianfeng; Tarbet, E Bart; Toro, Haroldo; Tang, De-chu C

    2011-11-01

    The disease-fighting power of vaccines has been a public health bonanza credited with the worldwide reduction of mortality and morbidity. The goal to further amplify its power by boosting vaccine coverage requires the development of a new generation of rapid-response vaccines that can be mass produced at low costs and mass administered by nonmedical personnel. The new vaccines also have to be endowed with a higher safety margin than that of conventional vaccines. The nonreplicating adenovirus-vectored vaccine holds promise in boosting vaccine coverage because the vector can be rapidly manufactured in serum-free suspension cells in response to a surge in demand, and noninvasively administered by nasal spray into human subjects in compliance with evolutionary medicine. In contrast to parenteral injection, noninvasive mucosal vaccination minimizes systemic inflammation. Moreover, pre-existing adenovirus immunity does not interfere appreciably with the potency of an adenovirus-vectored nasal vaccine. Nasal administration of adenovirus vectors encoding pathogen antigens is not only fear-free and painless, but also confers rapid and sustained protection against mucosal pathogens as a drug-vaccine duo since adenovirus particles alone without transgene expression can induce an anti-influenza state in the airway. In addition to human vaccination, animals can also be mass immunized by this class of vectored vaccines.

  8. Design of vaccination and fumigation on Host-Vector Model by input-output linearization method

    Science.gov (United States)

    Nugraha, Edwin Setiawan; Naiborhu, Janson; Nuraini, Nuning

    2017-03-01

    Here, we analyze the Host-Vector Model and proposed design of vaccination and fumigation to control infectious population by using feedback control especially input-output liniearization method. Host population is divided into three compartments: susceptible, infectious and recovery. Whereas the vector population is divided into two compartment such as susceptible and infectious. In this system, vaccination and fumigation treat as input factors and infectious population as output result. The objective of design is to stabilize of the output asymptotically tend to zero. We also present the examples to illustrate the design model.

  9. Novel transgenic rice-based vaccines.

    Science.gov (United States)

    Azegami, Tatsuhiko; Itoh, Hiroshi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-04-01

    Oral vaccination can induce both systemic and mucosal antigen-specific immune responses. To control rampant mucosal infectious diseases, the development of new effective oral vaccines is needed. Plant-based vaccines are new candidates for oral vaccines, and have some advantages over the traditional vaccines in cost, safety, and scalability. Rice seeds are attractive for vaccine production because of their stability and resistance to digestion in the stomach. The efficacy of some rice-based vaccines for infectious, autoimmune, and other diseases has been already demonstrated in animal models. We reported the efficacy in mice, safety, and stability of a rice-based cholera toxin B subunit vaccine called MucoRice-CTB. To advance MucoRice-CTB for use in humans, we also examined its efficacy and safety in primates. The potential of transgenic rice production as a new mucosal vaccine delivery system is reviewed from the perspective of future development of effective oral vaccines.

  10. Dendritic cell targeted HIV-1 gag protein vaccine provides help to a recombinant Newcastle disease virus vectored vaccine including mobilization of protective CD8+T cells.

    Science.gov (United States)

    Ngu, Loveline N; Nji, Nadesh N; Ambada, Georgia; Ngoh, Apeh A; Njambe Priso, Ghislain D; Tchadji, Jules C; Lissom, Abel; Magagoum, Suzanne H; Sake, Carol N; Tchouangueu, Thibau F; Chukwuma, George O; Okoli, Arinze S; Sagnia, Bertrand; Chukwuanukwu, Rebecca; Tebit, Denis M; Esimone, Charles O; Waffo, Alain B; Park, Chae G; Überla, Klaus; Nchinda, Godwin W

    2018-03-01

    Recombinant Newcastle Disease virus (rNDV) vectored vaccines are safe mucosal applicable vaccines with intrinsic immune-modulatory properties for the induction of efficient immunity. Like all viral vectored vaccines repeated inoculation via mucosal routes invariably results to immunity against viral vaccine vectors. To obviate immunity against viral vaccine vectors and improve the ability of rNDV vectored vaccines in inducing T cell immunity in murine air way we have directed dendritic cell targeted HIV-1 gag protein (DEC-Gag) vaccine; for the induction of helper CD4 + T cells to a Recombinant Newcastle disease virus expressing codon optimized HIV-1 Gag P55 (rNDV-L-Gag) vaccine. We do so through successive administration of anti-DEC205-gagP24 protein plus polyICLC (DEC-Gag) vaccine and rNDV-L-Gag. First strong gag specific helper CD4 + T cells are induced in mice by selected targeting of anti-DEC205-gagP24 protein vaccine to dendritic cells (DC) in situ together with polyICLC as adjuvant. This targeting helped T cell immunity develop to a subsequent rNDV-L-Gag vaccine and improved both systemic and mucosal gag specific immunity. This sequential DEC-Gag vaccine prime followed by an rNDV-L-gag boost results to improved viral vectored immunization in murine airway, including mobilization of protective CD8 + T cells to a pathogenic virus infection site. Thus, complementary prime boost vaccination, in which prime and boost favor distinct types of T cell immunity, improves viral vectored immunization, including mobilization of protective CD8 + T cells to a pathogenic virus infection site such as the murine airway. © 2017 The Authors. Immunity, Inflammation and DiseasePublished by John Wiley & Sons Ltd.

  11. Safety of the novel influenza viral vector Brucella abortus vaccine in pregnant heifers

    Directory of Open Access Journals (Sweden)

    Kaissar Tabynov

    2016-01-01

    Full Text Available ABSTRACT: The present study provides the first information about the safety of a new influenza viral vector vaccine expressing the Brucella ribosomal protein L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10 or subcutaneous (n=10 route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with B. abortus S19 (n=10 or B. abortus RB51 (n=10 and a negative (PBS+Montanide Gel01; n=10 control group. Clinical studies, thermometry, assessment of local reactogenicity and observation of abortion showed that the vector vaccine via the conjunctival or subcutaneous route was completely safe for pregnant heifers compared to the commercial vaccines B. abortus S19 or B. abortus RB51. The only single adverse event was the formation of infiltration at the site of subcutaneous injection; this reaction was not observed for the conjunctival route.

  12. An antivector vaccine protects against a lethal vector-borne pathogen.

    Directory of Open Access Journals (Sweden)

    Milan Labuda

    2006-04-01

    Full Text Available Vaccines that target blood-feeding disease vectors, such as mosquitoes and ticks, have the potential to protect against the many diseases caused by vector-borne pathogens. We tested the ability of an anti-tick vaccine derived from a tick cement protein (64TRP of Rhipicephalus appendiculatus to protect mice against tick-borne encephalitis virus (TBEV transmitted by infected Ixodes ricinus ticks. The vaccine has a "dual action" in immunized animals: when infested with ticks, the inflammatory and immune responses first disrupt the skin feeding site, resulting in impaired blood feeding, and then specific anti-64TRP antibodies cross-react with midgut antigenic epitopes, causing rupture of the tick midgut and death of engorged ticks. Three parameters were measured: "transmission," number of uninfected nymphal ticks that became infected when cofeeding with an infected adult female tick; "support," number of mice supporting virus transmission from the infected tick to cofeeding uninfected nymphs; and "survival," number of mice that survived infection by tick bite and subsequent challenge by intraperitoneal inoculation of a lethal dose of TBEV. We show that one dose of the 64TRP vaccine protects mice against lethal challenge by infected ticks; control animals developed a fatal viral encephalitis. The protective effect of the 64TRP vaccine was comparable to that of a single dose of a commercial TBEV vaccine, while the transmission-blocking effect of 64TRP was better than that of the antiviral vaccine in reducing the number of animals supporting virus transmission. By contrast, the commercial antitick vaccine (TickGARD that targets only the tick's midgut showed transmission-blocking activity but was not protective. The 64TRP vaccine demonstrates the potential to control vector-borne disease by interfering with pathogen transmission, apparently by mediating a local cutaneous inflammatory immune response at the tick-feeding site.

  13. Cytomegalovirus and immunotherapy: opportunistic pathogen, novel target for cancer and a promising vaccine vector

    Science.gov (United States)

    Quinn, Michael; Erkes, Dan A; Snyder, Christopher M

    2016-01-01

    Cytomegalovirus (CMV) is a β-herpesvirus that infects most people in the world and is almost always asymptomatic in the healthy host. However, CMV persists for life, requiring continuous immune surveillance to prevent disease and thus, CMV is a frequent complication in immune compromised patients. Many groups have been exploring the potential for adoptive T-cell therapies to control CMV reactivation as well as the progression of solid tumors harboring CMV. In addition, CMV itself is being explored as a vaccine vector for eliciting potent T-cell responses. This review will discuss key features of the basic biology of CMV-specific T cells as well as highlighting unanswered questions and ongoing work in the development of T-cell-based immunotherapies to target CMV. PMID:26786895

  14. New technologies in using recombinant attenuated Salmonella vaccine vectors.

    Science.gov (United States)

    Curtiss, Roy; Xin, Wei; Li, Yuhua; Kong, Wei; Wanda, Soo-Young; Gunn, Bronwyn; Wang, Shifeng

    2010-01-01

    Recombinant attenuated Salmonella vaccines (RASVs) have been constructed to deliver antigens from other pathogens to induce immunity to those pathogens in vaccinated hosts. The attenuation means should ensure that the vaccine survives following vaccination to colonize lymphoid tissues without causing disease symptoms. This necessitates that attenuation and synthesis of recombinant gene encoded protective antigens do not diminish the ability of orally administered vaccines to survive stresses encountered in the gastrointestinal tract. We have eliminated these problems by using RASVs with regulated delayed expression of attenuation and regulated delayed synthesis of recombinant antigens. These changes result in RASVs that colonize effector lymphoid tissues efficiently to serve as "factories" to synthesize protective antigens that induce higher protective immune responses than achieved when using previously constructed RASVs. We have devised a biological containment system with regulated delayed lysis to preclude RASV persistence in vivo and survival if excreted. Attributes were added to reduce the mild diarrhea sometimes experienced with oral live RASVs and to ensure complete safety in newborns. These collective technologies have been used to develop a novel, low-cost, RASV-synthesizing, multiple-protective Streptococcus pneumoniae antigens that will be safe for newborns/infants and will induce protective immunity to diverse S. pneumoniae serotypes after oral immunization.

  15. Recombinant Salmonella enterica Serovar Typhimurium as a Vaccine Vector for HIV-1 Gag

    Directory of Open Access Journals (Sweden)

    Nyasha Chin'ombe

    2013-08-01

    Full Text Available The HIV/AIDS epidemic remains a global health problem, especially in Sub-Saharan Africa. An effective HIV-1 vaccine is therefore badly required to mitigate this ever-expanding problem. Since HIV-1 infects its host through the mucosal surface, a vaccine for the virus needs to trigger mucosal as well as systemic immune responses. Oral, attenuated recombinant Salmonella vaccines offer this potential of delivering HIV-1 antigens to both the mucosal and systemic compartments of the immune system. So far, a number of pre-clinical studies have been performed, in which HIV-1 Gag, a highly conserved viral antigen possessing both T- and B-cell epitopes, was successfully delivered by recombinant Salmonella vaccines and, in most cases, induced HIV-specific immune responses. In this review, the potential use of Salmonella enterica serovar Typhimurium as a live vaccine vector for HIV-1 Gag is explored.

  16. Surface display of Aeromonas hydrophila GAPDH in attenuated Vibrio anguillarum to develop a Noval multivalent vector vaccine.

    Science.gov (United States)

    Zhao, Yan; Liu, Qin; Wang, Xiuhua; Zhou, Lingyun; Wang, Qiyao; Zhang, Yuanxing

    2011-10-01

    Displaying foreign antigens on the surface of attenuated or avirulent bacteria is an important strategy to develop live multivalent vector vaccines. In our previous work, several efficient surface display systems have been established based on outer membrane anchoring elements, which could successfully display heterologous proteins in attenuated Vibrio anguillarum. In this work, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from pathogenic Aeromonas hydrophila LSA34 was fused to seven display systems and introduced into attenuated V. anguillarum strain MVAV6203 (AV) to get seven GAPDH-display strains. The strain AV/pN-gapA showed the best display efficacy of GAPDH and was tested as the multivalent vaccine candidate. Further immune protection evaluation of AV/pN-gapA in turbot (Scophtalmus maximus) demonstrated that the attenuated V. anguillarum with surface-displayed GAPDH of A. hydrophila LSA34 effectively protected turbot from the infections of A. hydrophila and V. anguillarum and showed potential value for further multivalent vaccine development.

  17. Vesicular stomatitis virus-based vaccines protect nonhuman primates against Bundibugyo ebolavirus.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available Ebola virus (EBOV causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs. Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV or Zaire ebolavirus (ZEBOV challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d'Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV, or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29-36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine

  18. An economic evaluation of vector control in the age of a dengue vaccine.

    Directory of Open Access Journals (Sweden)

    Christopher Fitzpatrick

    2017-08-01

    Full Text Available Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control.We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical highly targeted and low cost immunization strategy using a (non-hypothetical medium-efficacy vaccine.Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price reduce vector populations by 70-90%, the cost per disability-adjusted life year averted is 2013 US$ 679-1331 (best estimates relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50-70% reduction in vector populations and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine.Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted

  19. An economic evaluation of vector control in the age of a dengue vaccine.

    Science.gov (United States)

    Fitzpatrick, Christopher; Haines, Alexander; Bangert, Mathieu; Farlow, Andrew; Hemingway, Janet; Velayudhan, Raman

    2017-08-01

    Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control. We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine. Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70-90%, the cost per disability-adjusted life year averted is 2013 US$ 679-1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50-70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine. Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low

  20. Lactobacilli as live vaccine delivery vectors: Progress and prospects

    NARCIS (Netherlands)

    Seegers, J.F.M.L.

    2002-01-01

    Evidence is accumulating that lactobacilli influence the immune response in a strain-dependent manner. This immunomodulatory capacity is important for the development of the immune response, and also identifies Lactobacillus as a potent oral vaccine carrier. Most of our current knowledge of the use

  1. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using homologous challenge.

    Science.gov (United States)

    Schutta, Christopher; Barrera, José; Pisano, Melia; Zsak, Laszlo; Grubman, Marvin J; Mayr, Gregory A; Moraes, Mauro P; Kamicker, Barbara J; Brake, David A; Ettyreddy, Damodar; Brough, Douglas E; Butman, Bryan T; Neilan, John G

    2016-06-08

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularly to a total of 150 steers in doses ranging from approximately 1.0×10(8) to 2.1×10(11) particle units per animal. No detectable local or systemic reactions were observed after vaccination. At 7 days post-vaccination (dpv), vaccinated and control animals were challenged with FMDV serotype A24 Cruzeiro via the intradermal lingual route. Vaccine efficacy was measured by FMDV A24 serum neutralizing titers and by protection from clinical disease and viremia after challenge. The results of eight studies demonstrated a strong correlation between AdtA24 vaccine dose and protection from clinical disease (R(2)=0.97) and viremia (R(2)=0.98). There was also a strong correlation between FMDV A24 neutralization titers on day of challenge and protection from clinical disease (R(2)=0.99). Vaccination with AdtA24 enabled differentiation of infected from vaccinated animals (DIVA) as demonstrated by the absence of antibodies to the FMDV nonstructural proteins in vaccinates prior to challenge. Lack of AdtA24 vaccine shedding after vaccination was indicated by the absence of neutralizing antibody titers to both the adenovector and FMDV A24 Cruzeiro in control animals after co-mingling with vaccinated cattle for three to four weeks. In summary, a non-adjuvanted AdtA24 experimental vaccine was shown to be safe, immunogenic, consistently protected cattle at 7 dpv against direct, homologous FMDV challenge, and enabled differentiation of infected from vaccinated cattle prior to challenge. Published by Elsevier Ltd.

  2. In situ pneumococcal vaccine production and delivery through a hybrid biological-biomaterial vector.

    Science.gov (United States)

    Li, Yi; Beitelshees, Marie; Fang, Lei; Hill, Andrew; Ahmadi, Mahmoud Kamal; Chen, Mingfu; Davidson, Bruce A; Knight, Paul; Smith, Randall J; Andreadis, Stelios T; Hakansson, Anders P; Jones, Charles H; Pfeifer, Blaine A

    2016-07-01

    The type and potency of an immune response provoked during vaccination will determine ultimate success in disease prevention. The basis for this response will be the design and implementation of antigen presentation to the immune system. Whereas direct antigen administration will elicit some form of immunological response, a more sophisticated approach would couple the antigen of interest to a vector capable of broad delivery formats and designed for heightened response. New antigens associated with pneumococcal disease virulence were used to test the delivery and adjuvant capabilities of a hybrid biological-biomaterial vector consisting of a bacterial core electrostatically coated with a cationic polymer. The hybrid design provides (i) passive and active targeting of antigen-presenting cells, (ii) natural and multicomponent adjuvant properties, (iii) dual intracellular delivery mechanisms, and (iv) a simple formulation mechanism. In addition, the hybrid format enables device-specific, or in situ, antigen production and consolidation via localization within the bacterial component of the vector. This capability eliminates the need for dedicated antigen production and purification before vaccination efforts while leveraging the aforementioned features of the overall delivery device. We present the first disease-specific utilization of the vector toward pneumococcal disease highlighted by improved immune responses and protective capabilities when tested against traditional vaccine formulations and a range of clinically relevant Streptococcus pneumoniae strains. More broadly, the results point to similar levels of success with other diseases that would benefit from the production, delivery, and efficacy capabilities offered by the hybrid vector.

  3. Intranasal vaccination with AAV5 and 9 vectors against human papillomavirus type 16 in rhesus macaques.

    Science.gov (United States)

    Nieto, Karen; Stahl-Hennig, Christiane; Leuchs, Barbara; Müller, Martin; Gissmann, Lutz; Kleinschmidt, Jürgen A

    2012-07-01

    Cervical cancer is the second most common cancer in women worldwide. Persistent high-risk human papillomavirus (HPV) infection has been identified as the causative event for the development of this type of cancer. Recombinant adeno-associated viruses (rAAVs) are currently being developed and evaluated as vaccine vector. In previous work, we demonstrated that rAAVs administered intranasally in mice induced high titers and long-lasting neutralizing antibodies against HPV type 16 (HPV16). To extend this approach to a more human-related species, we immunized rhesus macaques (Macaca mulatta) with AAVs expressing an HPV16 L1 protein using rAAV5 and 9 vectors in an intranasal prophylactic setting. An rAAV5-L1 vector followed by a boost with rAAV9-L1 induced higher titers of L1-specific serum antibodies than a single rAAV5-L1 immunization. L1-specific antibodies elicited by AAV9 vector neutralized HPV16 pseudovirions and persisted for at least 7 months post immunization. Interestingly, nasal application of rAAV9 was immunogenic even in the presence of high AAV9 antibody titers, allowing reimmunization with the same serotype without prevention of the transgene expression. Two of six animals did not respond to AAV-mediated intranasal vaccination, although they were not tolerant, as both developed antibodies after intramuscular vaccination with HPV16 virus-like particles. These data clearly show the efficacy of an intranasal immunization using rAAV9-L1 vectors without the need of an adjuvant. We conclude from our results that rAAV9 vector is a promising candidate for a noninvasive nasal vaccination strategy.

  4. Comparison of Current Regulatory Status for Gene-Based Vaccines in the U.S., Europe and Japan

    Directory of Open Access Journals (Sweden)

    Yoshikazu Nakayama

    2015-03-01

    Full Text Available Gene-based vaccines as typified by plasmid DNA vaccines and recombinant viral-vectored vaccines are expected as promising solutions against infectious diseases for which no effective prophylactic vaccines exist such as HIV, dengue virus, Ebola virus and malaria, and for which more improved vaccines are needed such as tuberculosis and influenza virus. Although many preclinical and clinical trials have been conducted to date, no DNA vaccines or recombinant viral-vectored vaccines expressing heterologous antigens for human use have yet been licensed in the U.S., Europe or Japan. In this research, we describe the current regulatory context for gene-based prophylactic vaccines against infectious disease in the U.S., Europe, and Japan. We identify the important considerations, in particular, on the preclinical assessments that would allow these vaccines to proceed to clinical trials, and the differences on the regulatory pathway for the marketing authorization in each region.

  5. Comparison of Current Regulatory Status for Gene-Based Vaccines in the U.S., Europe and Japan

    Science.gov (United States)

    Nakayama, Yoshikazu; Aruga, Atsushi

    2015-01-01

    Gene-based vaccines as typified by plasmid DNA vaccines and recombinant viral-vectored vaccines are expected as promising solutions against infectious diseases for which no effective prophylactic vaccines exist such as HIV, dengue virus, Ebola virus and malaria, and for which more improved vaccines are needed such as tuberculosis and influenza virus. Although many preclinical and clinical trials have been conducted to date, no DNA vaccines or recombinant viral-vectored vaccines expressing heterologous antigens for human use have yet been licensed in the U.S., Europe or Japan. In this research, we describe the current regulatory context for gene-based prophylactic vaccines against infectious disease in the U.S., Europe, and Japan. We identify the important considerations, in particular, on the preclinical assessments that would allow these vaccines to proceed to clinical trials, and the differences on the regulatory pathway for the marketing authorization in each region. PMID:26344953

  6. Adenoviral Vector Vaccination Induces a Conserved Program of CD8+ T Cell Memory Differentiation in Mouse and Man

    Directory of Open Access Journals (Sweden)

    Beatrice Bolinger

    2015-11-01

    Full Text Available Following exposure to vaccines, antigen-specific CD8+ T cell responses develop as long-term memory pools. Vaccine strategies based on adenoviral vectors, e.g., those developed for HCV, are able to induce and sustain substantial CD8+ T cell populations. How such populations evolve following vaccination remains to be defined at a transcriptional level. We addressed the transcriptional regulation of divergent CD8+ T cell memory pools induced by an adenovector encoding a model antigen (beta-galactosidase. We observe transcriptional profiles that mimic those following infection with persistent pathogens, murine and human cytomegalovirus (CMV. Key transcriptional hallmarks include upregulation of homing receptors and anti-apoptotic pathways, driven by conserved networks of transcription factors, including T-bet. In humans, an adenovirus vaccine induced similar CMV-like phenotypes and transcription factor regulation. These data clarify the core features of CD8+ T cell memory following vaccination with adenovectors and indicate a conserved pathway for memory development shared with persistent herpesviruses.

  7. Use of a Recombinant Gamma-2 Herpesvirus Vaccine Vector against Dengue Virus in Rhesus Monkeys.

    Science.gov (United States)

    Bischof, Georg F; Magnani, Diogo M; Ricciardi, Michael; Shin, Young C; Domingues, Aline; Bailey, Varian K; Gonzalez-Nieto, Lucas; Rakasz, Eva G; Watkins, David I; Desrosiers, Ronald C

    2017-08-15

    Research on vaccine approaches that can provide long-term protection against dengue virus infection is needed. Here we describe the construction, immunogenicity, and preliminary information on the protective capacity of recombinant, replication-competent rhesus monkey rhadinovirus (RRV), a persisting herpesvirus. One RRV construct expressed nonstructural protein 5 (NS5), while a second recombinant expressed a soluble variant of the E protein (E85) of dengue virus 2 (DENV2). Four rhesus macaques received a single vaccination with a mixture of both recombinant RRVs and were subsequently challenged 19 weeks later with 1 × 10 5 PFU of DENV2. During the vaccine phase, plasma of all vaccinated monkeys showed neutralizing activity against DENV2. Cellular immune responses against NS5 were also elicited, as evidenced by major histocompatibility complex class I (MHC-I) tetramer staining in the one vaccinated monkey that was Mamu-A*01 positive. Unlike two of two unvaccinated controls, two of the four vaccinated monkeys showed no detectable viral RNA sequences in plasma after challenge. One of these two monkeys also showed no anamnestic increases in antibody levels following challenge and thus appeared to be protected against the acquisition of DENV2 following high-dose challenge. Continued study will be needed to evaluate the performance of herpesviral and other persisting vectors for achieving long-term protection against dengue virus infection. IMPORTANCE Continuing studies of vaccine approaches against dengue virus (DENV) infection are warranted, particularly ones that may provide long-term immunity against all four serotypes. Here we investigated whether recombinant rhesus monkey rhadinovirus (RRV) could be used as a vaccine against DENV2 infection in rhesus monkeys. Upon vaccination, all animals generated antibodies capable of neutralizing DENV2. Two of four vaccinated monkeys showed no detectable viral RNA after subsequent high-dose DENV2 challenge at 19 weeks

  8. Antigen design enhances the immunogenicity of Semliki Forest virus-based therapeutic human papillomavirus vaccines

    NARCIS (Netherlands)

    Ip, P. P.; Boerma, A.; Walczak, M.; Oosterhuis, K.; Haanen, J. B.; Schumacher, T. N.; Nijman, H. W.; Daemen, T.

    Cellular immunity against cancer can be achieved with viral vector-and DNA-based immunizations. In preclinical studies, cancer vaccines are very potent, but in clinical trials these potencies are not achieved yet. Thus, a rational approach to improve cancer vaccines is warranted. We previously

  9. Generalized Derivative Based Kernelized Learning Vector Quantization

    NARCIS (Netherlands)

    Schleif, Frank-Michael; Villmann, Thomas; Hammer, Barbara; Schneider, Petra; Biehl, Michael; Fyfe, Colin; Tino, Peter; Charles, Darryl; Garcia-Osoro, Cesar; Yin, Hujun

    2010-01-01

    We derive a novel derivative based version of kernelized Generalized Learning Vector Quantization (KGLVQ) as an effective, easy to interpret, prototype based and kernelized classifier. It is called D-KGLVQ and we provide generalization error bounds, experimental results on real world data, showing

  10. Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys

    NARCIS (Netherlands)

    Liu, J.; O'Brien, K.L.; Lynch, D.M.; Simmons, N.L.; Porte, A. La; Riggs, A.M.; Abbink, P.; Coffey, R.T.; Grandpre, L.E.; Seaman, M.S.; Landucci, G.; Forthal, D.N.; Montefiori, D.C.; Carville, A.; Mansfield, K.G.; Havenga, M.J.; Pau, M.G.; Goudsmit, J.; Barouch, D.H.

    2009-01-01

    A recombinant adenovirus serotype 5 (rAd5) vector-based vaccine for HIV-1 has recently failed in a phase 2b efficacy study in humans. Consistent with these results, preclinical studies have demonstrated that rAd5 vectors expressing simian immunodeficiency virus (SIV) Gag failed to reduce peak or

  11. Safety of inoculation of bovine parainfluenza virus 3 as potential vaccine vector in pigs.

    Science.gov (United States)

    Wang, Feng-Xue; Liu, Ying; Zhu, Hong-Wei; Liu, Xing; Yang, Yong; Sun, Na; Cheng, Shi-Peng; Wen, Yong-Jun

    2015-06-01

    Bovine parainfluenza virus 3 (BPIV3) is one of the most important respiratory pathogens in cattle. One BPIV3, named NM09, was isolated from cattle suffering from severe respiratory diseases in 2009. BPIV3 is a potential recombinant vaccine vector. To investigate whether NM09 can infect pigs and determine BPIV3 defense in these animals, BPIV3 antibody-free pigs were inoculated intramuscularly with the BPIV3 NM09 strain in a continuous passage. Clinical signs were observed each day after inoculation. Viral nucleic acid was detected in nasal and anal secretions. Results showed that virus-inoculated pigs displayed few observable clinical signs related to respiratory diseases. The antibody was identified, but the virus could not be detected in the second continuous passage in pigs. Thus, BPIV3 is a potential vaccine vector for genetic engineering.

  12. HIV-1 vaccine-specific responses induced by Listeria vector vaccines are maintained in mice subsequently infected with a model helminth parasite, Schistosoma mansoni.

    Science.gov (United States)

    Shollenberger, Lisa M; Bui, Cac T; Paterson, Yvonne; Nyhoff, Lindsay; Harn, Donald A

    2013-11-19

    In areas co-endemic for helminth parasites and HIV/AIDS, infants are often administered vaccines prior to infection with immune modulatory helminth parasites. Systemic Th2 biasing and immune suppression caused by helminth infection reduces cell-mediated responses to vaccines such as tetanus toxoid and BCG. Therefore, we asked if infection with helminthes post-vaccination, alters already established vaccine induced immune responses. In our model, mice are vaccinated against HIV-1 Gag using a Listeria vaccine vector (Lm-Gag) in a prime-boost manner, then infected with the human helminth parasite Schistosoma mansoni. This allows us to determine if established vaccine responses are maintained or altered after helminth infection. Our second objective asked if helminth infection post-vaccination alters the recipient's ability to respond to a second boost. Here we compared responses between uninfected mice, schistosome infected mice, and infected mice that were given an anthelminthic, which occurred coincident with the boost or four weeks prior, as well as comparing to un-boosted mice. We report that HIV-1 vaccine-specific responses generated by Listeria vector HIV-1 vaccines are maintained following subsequent chronic schistosome infection, providing further evidence that Listeria vector vaccines induce potent vaccine-specific responses that can withstand helminth infection. We also were able to demonstrate that administration of a second Listeria boost, which markedly enhanced the immune response, was minimally impacted by schistosome infection, or anthelminthic therapy. Surprisingly, we also observed enhanced antibody responses to HIV Gag in vaccinated mice subsequently infected with schistosomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. A Sand Fly Salivary Protein Vaccine Shows Efficacy Against Vector-Transmitted Cutaneous Leishmaniasis in Nonhuman Primates

    Science.gov (United States)

    2015-06-03

    LE I SHMAN IAS I S A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates Fabiano...Lawyer,2 John F. Andersen,8 Shaden Kamhawi,1† Jesus G. Valenzuela1† Currently, there are no commercially available human vaccines against leishmaniasis ...In rodents, cellular immunity to salivary proteins of sand fly vectors is associated to protection against leishmaniasis , making them worthy targets

  14. Vector Development for the Expression of Foreign Proteins in the Vaccine Strain Brucella abortus S19

    Science.gov (United States)

    Comerci, Diego J.; Pollevick, Guido D.; Vigliocco, Ana M.; Frasch, Alberto C. C.; Ugalde, Rodolfo A.

    1998-01-01

    A vector for the expression of foreign antigens in the vaccine strain Brucella abortus S19 was developed by using a DNA fragment containing the regulatory sequences and the signal peptide of the Brucella bcsp31 gene. This fragment was cloned in broad-host-range plasmid pBBR4MCS, resulting in plasmid pBEV. As a reporter protein, a repetitive antigen of Trypanosoma cruzi was used. The recombinant fusion protein is stably expressed and secreted into the Brucella periplasmic space, inducing a good antibody response against the T. cruzi antigen. The expression of the repetitive antigen in Brucella neither altered its growth pattern nor generated a toxic or lethal effect during experimental infection. The application of this strategy for the generation of live recombinant vaccines and the tagging of B. abortus S19 vaccine is discussed. This is the first time that a recombinant protein has been expressed in the periplasm of brucellae. PMID:9673273

  15. Co-expression of tumor antigen and interleukin-2 from an adenoviral vector augments the efficiency of therapeutic tumor vaccination

    DEFF Research Database (Denmark)

    Jensen, Benjamin Anderschou Holbech; Steffensen, Maria Abildgaard; Nørgaard Nielsen, Karen

    2014-01-01

    We have previously shown that for the majority of antigens, adenoviral vaccines expressing the target antigen fused to the MHC associated invariant chain (Ii) induce an accelerated, augmented, and prolonged transgene-specific CD8+ T-cell response. Here we describe a new adenoviral vaccine vector...... tailored to meet specific demands: in the context of therapeutic vaccination, the capacity to promote an augmented effector T-cell response.Molecular Therapy (2014); doi:10.1038/mt.2014.130....

  16. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance.

    Directory of Open Access Journals (Sweden)

    Emily Xie

    Full Text Available The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases.

  17. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance

    Science.gov (United States)

    Xie, Emily; Kotha, Abhiroop; Biaco, Tracy; Sedani, Nikita; Zou, Jonathan; Stashenko, Phillip; Duncan, Margaret J.; Campos-Neto, Antonio; Cayabyab, Mark J.

    2015-01-01

    The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis) that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases. PMID:26618634

  18. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery

    Directory of Open Access Journals (Sweden)

    Ivan Y. C. Lin

    2015-11-01

    Full Text Available Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined.

  19. Comparing human T cell and NK cell responses in viral-based malaria vaccine trials.

    Science.gov (United States)

    Berthoud, Tamara K; Fletcher, Helen; Porter, David; Thompson, Fiona; Hill, Adrian V S; Todryk, Stephen M

    2009-12-10

    Vaccination with viral-based vaccines continues to hold promise for the prevention of malaria. Whilst antigen-specific T cell responses are considered a major aim of such an approach, a role for induced NK cells as anti-malarial effector cells, or in shaping T cell responses, has received less attention. In this study naïve human volunteers were vaccinated in a prime-boost vaccination regimen comprising recombinant viral vectors fowlpox (FP9) and modified vaccinia Ankara (MVA) encoding liver-stage antigens, or a virosome vaccine. Significant T cell responses specific for the vectored vaccine antigens were demonstrated by IFNgamma ELISPOT and intracellular cytokine staining (ICS) for IFNgamma and IL-2, the ICS being associated with increased time to parasitaemia following subsequent challenge. Numbers of CD56(bright) lymphocytes increased significantly following vaccination, as did CD3(+) CD56(+) lymphocytes, whilst CD56(dim) cells did not. No such increases were seen with the virosome vaccine. There was no significant correlation of these CD56(+) populations with the antigen-specific T cell responses nor time to parasitaemia. To investigate pathways of immune activation that could contribute to these lymphocyte responses, viral vectors were shown in vitro to efficiently infect APCs but not lymphocytes, and stimulated inflammatory cytokines such as type I interferons. In conclusion, measuring antigen-specific T cells is more meaningful than NK cells in these vaccination regimens.

  20. Newcastle Disease Virus Vectored Bivalent Vaccine against Virulent Infectious Bursal Disease and Newcastle Disease of Chickens

    Directory of Open Access Journals (Sweden)

    Sohini Dey

    2017-09-01

    Full Text Available Newcastle disease virus (NDV strain F is a lentogenic vaccine strain used for primary vaccination in day-old chickens against Newcastle disease (ND in India and Southeast Asian countries. Recombinant NDV-F virus and another recombinant NDV harboring the major capsid protein VP2 gene of a very virulent infectious bursal disease virus (IBDV; namely rNDV-F and rNDV-F/VP2, respectively, were generated using the NDV F strain. The rNDV-F/VP2 virus was slightly attenuated, as compared to the rNDV-F virus, as evidenced from the mean death time and intracerebral pathogenicity index analysis. This result indicates that rNDV-F/VP2 behaves as a lentogenic virus and it is stable even after 10 serial passages in embryonated chicken eggs. When chickens were vaccinated with the rNDV F/VP2, it induced both humoral and cell mediated immunity, and was able to confer complete protection against very virulent IBDV challenge and 80% protection against virulent NDV challenge. These results suggest that rNDV-F could be an effective and inherently safe vaccine vector. Here, we demonstrate that a bivalent NDV-IBDV vaccine candidate generated by reverse genetics method is safe, efficacious and cost-effective, which will greatly aid the poultry industry in developing countries.

  1. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA.

    Science.gov (United States)

    Tripp, Daniel W; Rocke, Tonie E; Streich, Sean P; Abbott, Rachel C; Osorio, Jorge E; Miller, Michael W

    2015-04-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  2. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA

    Science.gov (United States)

    Tripp, Daniel W.; Rocke, Tonie E.; Streich, Sean P.; Abbott, Rachel C.; Osorio, Jorge E.; Miller, Michael W.

    2015-01-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  3. Apple Latent Spherical Virus Vector as Vaccine for the Prevention and Treatment of Mosaic Diseases in Pea, Broad Bean, and Eustoma Plants by Bean Yellow Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Nozomi Satoh

    2014-11-01

    Full Text Available We investigated the protective effects of a viral vector based on an Apple latent spherical virus (ALSV harboring a segment of the Bean yellow mosaic virus (BYMV genome against mosaic diseases in pea, broad bean, and eustoma plants caused by BYMV infection. In pea plants pre-inoculated with the ALSV vaccine and challenge inoculated with BYMV expressing green fluorescence protein, BYMV multiplication occurred in inoculated leaves, but was markedly inhibited in the upper leaves. No mosaic symptoms due to BYMV infection were observed in the challenged plants pre-inoculated with the ALSV vaccine. Simultaneous inoculation with the ALSV vaccine and BYMV also prevented mosaic symptoms in broad bean and eustoma plants, and BYMV accumulation was strongly inhibited in the upper leaves of plants treated with the ALSV vaccine. Pea and eustoma plants were pre-inoculated with BYMV followed by inoculation with the ALSV vaccine to investigate the curative effects of the ALSV vaccine. In both plant species, recovery from mosaic symptoms was observed in upper leaves and BYMV accumulation was inhibited in leaves developing post-ALSV vaccination. These results show that ALSV vaccination not only prevents mosaic diseases in pea, broad bean, and eustoma, but that it is also effective in curing these diseases.

  4. Protective efficacy of a single immunization with capripoxvirus-vectored recombinant peste des petits ruminants vaccines in presence of pre-existing immunity.

    Science.gov (United States)

    Caufour, Philippe; Rufael, Tesfaye; Lamien, Charles Euloge; Lancelot, Renaud; Kidane, Menbere; Awel, Dino; Sertse, Tefera; Kwiatek, Olivier; Libeau, Geneviève; Sahle, Mesfin; Diallo, Adama; Albina, Emmanuel

    2014-06-24

    Sheeppox, goatpox and peste des petits ruminants (PPR) are highly contagious ruminant diseases widely distributed in Africa, the Middle East and Asia. Capripoxvirus (CPV)-vectored recombinant PPR vaccines (rCPV-PPR vaccines), which have been developed and shown to protect against both Capripox (CP) and PPR, would be critical tools in the control of these important diseases. In most parts of the world, these disease distributions overlap each other leaving concerns about the potential impact that pre-existing immunity against either disease may have on the protective efficacy of these bivalent rCPV-PPR vaccines. Currently, this question has not been indisputably addressed. Therefore, we undertook this study, under experimental conditions designed for the context of mass vaccination campaigns of small ruminants, using the two CPV recombinants (Kenya sheep-1 (KS-1) strain-based constructs) developed previously in our laboratory. Pre-existing immunity was first induced by immunization either with an attenuated CPV vaccine strain (KS-1) or the attenuated PPRV vaccine strain (Nigeria 75/1) and animals were thereafter inoculated once subcutaneously with a mixture of CPV recombinants expressing either the hemagglutinin (H) or the fusion (F) protein gene of PPRV (10(3) TCID50/animal of each). Finally, these animals were challenged with a virulent CPV strain followed by a virulent PPRV strain 3 weeks later. Our study demonstrated full protection against CP for vaccinated animals with prior exposure to PPRV and a partial protection against PPR for vaccinated animals with prior exposure to CPV. The latter animals exhibited a mild clinical form of PPR and did not show any post-challenge anamnestic neutralizing antibody response against PPRV. The implications of these results are discussed herein and suggestions made for future research regarding the development of CPV-vectored vaccines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The "STEP-wise" future of adenovirus-based HIV vaccines.

    Science.gov (United States)

    Patterson, L J

    2011-01-01

    The HIV pandemic continues to be a public health crisis with over 30 million people currently living with the disease and, depending on the estimate, another 2 - 2.8 million infected annually. The disappointing results of the first Phase II study of a highly immunogenic adenovirus-vectored vaccine, named the STEP trial, was a wake up call to both the clinical and preclinical HIV vaccine fields. A vaccine designed only to elicit T cells and including a single HIV gene insert, will not be sufficient to reduce transmission or lower viremia in people. Additionally, future use of adenovirus-based vectored vaccines needs to be carefully planned with respect to vector type, gene inserts, route of immunization and risk factors among subject volunteers. The initial observation of a transient, increased risk of infection in Ad5 seropositive, uncircumcised men who have sex with men (MSM) is still unexplained, and may yet be considered simply a random event. The vaccine field has not given up on adenoviruses and there is continued interest in pursuing these highly immunogenic vectors, either in combination approaches with DNA, use of rare serotypes with low seroprevalence, or those derived from simian origin. Finally, evaluation of replicating adenovirus vectors known to be capable of inducing potent cellular, humoral, and mucosal immunity will be vital to meeting our future goal of an effective HIV vaccine.

  6. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment.

    Science.gov (United States)

    Monath, Thomas P; Seligman, Stephen J; Robertson, James S; Guy, Bruno; Hayes, Edward B; Condit, Richard C; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  7. Human adenovirus-specific T cells modulate HIV-specific T cell responses to an Ad5-vectored HIV-1 vaccine

    National Research Council Canada - National Science Library

    Frahm, Nicole; DeCamp, Allan C; Friedrich, David P; Carter, Donald K; Defawe, Olivier D; Kublin, James G; Casimiro, Danilo R; Duerr, Ann; Robertson, Michael N; Buchbinder, Susan P; Huang, Yunda; Spies, Gregory A; De Rosa, Stephen C; McElrath, M Juliana

    2012-01-01

    .... Here, we have identified and compared adenovirus-specific and HIV-specific T cell responses in subjects participating in two HIV-1 vaccine trials using a vaccine vectored by adenovirus serotype 5 (Ad5...

  8. Adolescent Attitudes toward Influenza Vaccination and Vaccine Uptake in a School-Based Influenza Vaccination Intervention: A Mediation Analysis

    Science.gov (United States)

    Painter, Julia E.; Sales, Jessica M.; Pazol, Karen; Wingood, Gina M.; Windle, Michael; Orenstein, Walter A.; DiClemente, Ralph J.

    2011-01-01

    Background: School-based vaccination programs may provide an effective strategy to immunize adolescents against influenza. This study examined whether adolescent attitudes toward influenza vaccination mediated the relationship between receipt of a school-based influenza vaccination intervention and vaccine uptake. Methods: Participants were…

  9. Bacillus subtilis as a tool for vaccine development: from antigen factories to delivery vectors

    Directory of Open Access Journals (Sweden)

    Luís C.S. Ferreira

    2005-03-01

    Full Text Available Bacillus subtilis and some of its close relatives have a long history of industrial and biotechnological applications. Search for antigen expression systems based on recombinant B. subtilis strains sounds attractive both by the extensive genetic knowledge and the lack of an outer membrane, which simplify the secretion and purification of heterologous proteins. More recently, genetically modified B. subtilis spores have been described as indestructible delivery vehicles for vaccine antigens. Nonetheless both production and delivery of antigens by B. subtilis strains face some inherent obstacles, as unstable gene expression and reduced immunogenicity that, otherwise, can be overcome by already available gene technology approaches. In the present review we present the status of B. subtilis-based vaccine research, either as protein factories or delivery vectors, and discuss some alternatives for a better use of genetically modified strains.Bacillus subtilis e alguns de seus parentes mais próximos possuem uma longa história de aplicações industriais e biotecnológicas. A busca de sistemas de expressão de antígenos baseados em linhagens recombinants de B. subtilis mostra-se atrativa em função do conhecimento genético disponível e ausência de uma membrana externa, o que simplifica a secreção e a purificação de proteínas heterólogas. Mais recentemente, esporos geneticamente modificados de B. subtilis foram descritos com veículos indestrutíveis para o transporte de antígenos vacinais. Todavia a produção e o transporte de antígenos por linhagens de B. subtilis encontra obstáculos, como a expressão gênica instável e imunogenicidade reduzida, que podem ser superados com o auxílio de tecnologias genéticas atualmente disponíveis. Apresentamos nesta revisão o estado atual da pesquisa em vacinas baseadas em B. subtilis, empregado tanto como fábrica de proteínas ou veículos, e discute algumas alternativas para o uso mais

  10. Live attenuated rubella vectors expressing SIV and HIV vaccine antigens replicate and elicit durable immune responses in rhesus macaques

    Science.gov (United States)

    2013-01-01

    Background Live attenuated viruses are among our most potent and effective vaccines. For human immunodeficiency virus, however, a live attenuated strain could present substantial safety concerns. We have used the live attenuated rubella vaccine strain RA27/3 as a vector to express SIV and HIV vaccine antigens because its safety and immunogenicity have been demonstrated in millions of children. One dose protects for life against rubella infection. In previous studies, rubella vectors replicated to high titers in cell culture while stably expressing SIV and HIV antigens. Their viability in vivo, however, as well as immunogenicity and antibody persistence, were unknown. Results This paper reports the first successful trial of rubella vectors in rhesus macaques, in combination with DNA vaccines in a prime and boost strategy. The vectors grew robustly in vivo, and the protein inserts were highly immunogenic. Antibody titers elicited by the SIV Gag vector were greater than or equal to those elicited by natural SIV infection. The antibodies were long lasting, and they were boosted by a second dose of replication-competent rubella vectors given six months later, indicating the induction of memory B cells. Conclusions Rubella vectors can serve as a vaccine platform for safe delivery and expression of SIV and HIV antigens. By presenting these antigens in the context of an acute infection, at a high level and for a prolonged duration, these vectors can stimulate a strong and persistent immune response, including maturation of memory B cells. Rhesus macaques will provide an ideal animal model for demonstrating immunogenicity of novel vectors and protection against SIV or SHIV challenge. PMID:24041113

  11. Future prospects for the development of cost-effective Adenovirus vaccines

    DEFF Research Database (Denmark)

    Fougeroux, Cyrielle; Holst, Peter J

    2017-01-01

    -vectored vaccine technology with a focus on adenoviral-based vaccines. Adenovirus (Ad) vaccines have proven to be efficient in military vaccinations against Ad4 and Ad7 and as highly efficient vectored vaccines against rabies. The question of how other adenovirus-based vaccines can become as efficient...... as the rabies vaccine is the underlying theme in this review. Here, we will first give an overview of the basic properties of vectored vaccines, followed by an introduction to the characteristics of adenoviral vectors and previously tested modifications of the vector backbone and expression cassettes...

  12. A Novel Rabies Vaccine Based on a Recombinant Parainfluenza Virus 5 Expressing Rabies Virus Glycoprotein

    Science.gov (United States)

    Chen, Zhenhai; Zhou, Ming; Gao, Xiudan; Zhang, Guoqing; Ren, Guiping; Gnanadurai, Clement W.

    2013-01-01

    Untreated rabies virus (RABV) infection leads to death. Vaccine and postexposure treatment have been effective in preventing RABV infection. However, due to cost, rabies vaccination and treatment have not been widely used in developing countries. There are 55,000 human death caused by rabies annually. An efficacious and cost-effective rabies vaccine is needed. Parainfluenza virus 5 (PIV5) is thought to contribute to kennel cough, and kennel cough vaccines containing live PIV5 have been used in dogs for many years. In this work, a PIV5-vectored rabies vaccine was tested in mice. A recombinant PIV5 encoding RABV glycoprotein (G) (rPIV5-RV-G) was administered to mice via intranasal (i.n.), intramuscular (i.m.), and oral inoculation. The vaccinated mice were challenged with a 50% lethal challenge dose (LD50) of RABV challenge virus standard 24 (CVS-24) intracerebrally. A single dose of 106 PFU of rPIV5-RV-G was sufficient for 100% protection when administered via the i.n. route. The mice vaccinated with a single dose of 108 PFU of rPIV5-RV-G via the i.m. route showed very robust protection (90% to 100%). Intriguingly, the mice vaccinated orally with a single dose of 108 PFU of rPIV5-RV-G showed a 50% survival rate, which is comparable to the 60% survival rate among mice inoculated with an attenuated rabies vaccine strain, recombinant LBNSE. This is first report of an orally effective rabies vaccine candidate in animals based on PIV5 as a vector. These results indicate that rPIV5-RV-G is an excellent candidate for a new generation of recombinant rabies vaccine for humans and animals and PIV5 is a potential vector for oral vaccines. PMID:23269806

  13. A novel rabies vaccine based on a recombinant parainfluenza virus 5 expressing rabies virus glycoprotein.

    Science.gov (United States)

    Chen, Zhenhai; Zhou, Ming; Gao, Xiudan; Zhang, Guoqing; Ren, Guiping; Gnanadurai, Clement W; Fu, Zhen F; He, Biao

    2013-03-01

    Untreated rabies virus (RABV) infection leads to death. Vaccine and postexposure treatment have been effective in preventing RABV infection. However, due to cost, rabies vaccination and treatment have not been widely used in developing countries. There are 55,000 human death caused by rabies annually. An efficacious and cost-effective rabies vaccine is needed. Parainfluenza virus 5 (PIV5) is thought to contribute to kennel cough, and kennel cough vaccines containing live PIV5 have been used in dogs for many years. In this work, a PIV5-vectored rabies vaccine was tested in mice. A recombinant PIV5 encoding RABV glycoprotein (G) (rPIV5-RV-G) was administered to mice via intranasal (i.n.), intramuscular (i.m.), and oral inoculation. The vaccinated mice were challenged with a 50% lethal challenge dose (LD(50)) of RABV challenge virus standard 24 (CVS-24) intracerebrally. A single dose of 10(6) PFU of rPIV5-RV-G was sufficient for 100% protection when administered via the i.n. route. The mice vaccinated with a single dose of 10(8) PFU of rPIV5-RV-G via the i.m. route showed very robust protection (90% to 100%). Intriguingly, the mice vaccinated orally with a single dose of 10(8) PFU of rPIV5-RV-G showed a 50% survival rate, which is comparable to the 60% survival rate among mice inoculated with an attenuated rabies vaccine strain, recombinant LBNSE. This is first report of an orally effective rabies vaccine candidate in animals based on PIV5 as a vector. These results indicate that rPIV5-RV-G is an excellent candidate for a new generation of recombinant rabies vaccine for humans and animals and PIV5 is a potential vector for oral vaccines.

  14. Particulate based vaccines for cancer immunotherapy

    NARCIS (Netherlands)

    Rosalia, Rodney Alexander

    2014-01-01

    In this thesis we describe our studies aimed at optimizing the efficacy of synthetic long peptide (SLP) vaccines via the encapsulation in Poly-(lactic-co-glycolic acid) (PLGA)particles. Immunotherapy based on SLP-vaccines has resulted in strong tumor specific immune response and importantly,

  15. Recent advances in recombinant protein-based malaria vaccines.

    Science.gov (United States)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Live Virus Vaccines Based on a Yellow Fever Vaccine Backbone: Standardized Template with Key Considerations for a Risk/Benefit Assessment*

    Science.gov (United States)

    Monath, Thomas P.; Seligman, Stephen J.; Robertson, James S.; Guy, Bruno; Hayes, Edward B.; Condit, Richard C.; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called “chimeric virus vaccines”). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were replaced by the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  17. Different Levels of Immunogenicity of Two Strains of Fowlpox Virus as Recombinant Vaccine Vectors Eliciting T-Cell Responses in Heterologous Prime-Boost Vaccination Strategies

    OpenAIRE

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T.; Richard J Anderson; Howard, M. Keith; Schneider, Jörg; Skinner, Michael A.

    2006-01-01

    The FP9 strain of Fowlpox virus has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recom...

  18. Vaccination of rabbits with an adenovirus vector expressing the papillomavirus E2 protein leads to clearance of papillomas and infection.

    Science.gov (United States)

    Brandsma, Janet L; Shlyankevich, Mark; Zhang, Lixin; Slade, Martin D; Goodwin, Edward C; Peh, Woei; Deisseroth, Albert B

    2004-01-01

    Cervical cancer arises from lesions caused by infection with high-risk types of human papillomavirus (HPV). Therefore, vaccination against HPV could prevent carcinogenesis by preventing HPV infection or inducing lesion regression. HPV E2 protein is an attractive candidate for vaccine development because it is required for papilloma formation, is involved in all stages of the virus life cycle, and is expressed in all premalignant lesions as well as some cancers. This study reports vaccination against E2 protein using a rabbit model of papillomavirus infection. A recombinant adenovirus (Ad) vector expressing the E2 protein of cottontail rabbit papillomavirus (CRPV) was tested for therapeutic efficacy in CRPV-infected rabbits. Primary immunization with the Ad-E2 vaccine, compared to immunization with a control Ad vector, reduced the number of papilloma-forming sites from 17 of 45 to 4 of 45. After booster immunization, vaccinated rabbits formed no new papillomas versus an additional 23 papillomas in rabbits that received the control vector. Papillomas in the Ad-E2 vaccinees were significantly smaller than those in the control rabbits, and all four papillomas in the Ad-E2 vaccinated rabbits regressed. No CRPV DNA was detected either in the regression sites or in sites that did not form papillomas, indicating that the vaccination led to clearance of CRPV from all infected sites.

  19. Vaccination with lentiviral vector expressing the nfa1 gene confers a protective immune response to mice infected with Naegleria fowleri.

    Science.gov (United States)

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Yang, Hee-Jong; Chwae, Yong-Joon; Kim, Kyongmin; Park, Sun; Shin, Ho-Joon

    2013-07-01

    Naegleria fowleri, a pathogenic free-living amoeba, causes fatal primary amoebic meningoencephalitis (PAM) in humans and animals. The nfa1 gene (360 bp), cloned from a cDNA library of N. fowleri, produces a 13.1-kDa recombinant protein which is located on pseudopodia, particularly the food cup structure. The nfa1 gene plays an important role in the pathogenesis of N. fowleri infection. To examine the effect of nfa1 DNA vaccination against N. fowleri infection, we constructed a lentiviral vector (pCDH) expressing the nfa1 gene. For the in vivo mouse study, BALB/c mice were intranasally vaccinated with viral particles of a viral vector expressing the nfa1 gene. To evaluate the effect of vaccination and immune responses of mice, we analyzed the IgG levels (IgG, IgG1, and IgG2a), cytokine induction (interleukin-4 [IL-4] and gamma interferon [IFN-γ]), and survival rates of mice that developed PAM. The levels of both IgG and IgG subclasses (IgG1 and IgG2a) in vaccinated mice were significantly increased. The cytokine analysis showed that vaccinated mice exhibited greater IL-4 and IFN-γ production than the other control groups, suggesting a Th1/Th2 mixed-type immune response. In vaccinated mice, high levels of Nfa1-specific IgG antibodies continued until 12 weeks postvaccination. The mice vaccinated with viral vector expressing the nfa1 gene also exhibited significantly higher survival rates (90%) after challenge with N. fowleri trophozoites. Finally, the nfa1 vaccination effectively induced protective immunity by humoral and cellular immune responses in N. fowleri-infected mice. These results suggest that DNA vaccination using a viral vector may be a potential tool against N. fowleri infection.

  20. Influence of HEK293 metabolism on the production of viral vectors and vaccine.

    Science.gov (United States)

    Petiot, Emma; Cuperlovic-Culf, Miroslava; Shen, Chun Fang; Kamen, Amine

    2015-11-04

    Mammalian cell cultures are increasingly used for the production of complex biopharmaceuticals including viral vectors and vaccines. HEK293 is the predominant cell line used for the transient expression of recombinant proteins and a well-established system for the production of viral vectors. Understanding metabolic requirements for high productivity in HEK293 cells remains an important area of investigation. Many authors have presented approaches for increased productivity through optimization of cellular metabolism from two distinct perspectives. One is a non-targeted approach, which is directed to improving feeding strategies by addition of exhausted or critical substrates and eventually removal of toxic metabolites. Alternatively, a targeted approach has attempted to identify specific targets for optimization through better understanding of the cellular metabolism under different operating conditions. This review will present both approaches and their successes with regards to improvement of viral production in HEK293 cells outlining the key relations between HEK293 cell metabolism and viral vector productivity. Also, we will summarize the current knowledge on HEK293 metabolism indicating remaining issues to address and problems to resolve to maximize the productivity of viral vectors in HEK293 cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Genetic Stability of Parainfluenza Virus 5-Vectored Human Respiratory Syncytial Virus Vaccine Candidates after In Vitro and In Vivo Passage.

    Science.gov (United States)

    Phan, Shannon I; Adam, Carolyn M; Chen, Zhenhai; Citron, Michael; Liang, Xiaoping; Espeseth, Amy S; Wang, Dai; He, Biao

    2017-10-01

    . However, the function of the foreign gene insertion may need to be considered when designing PIV5-based vaccines.IMPORTANCE The genetic stability of live viral vaccines is important for safety and efficacy. PIV5 is a promising live viral vector and has been used to develop vaccines. In this work, we examined the genetic stability of a PIV5-based RSV vaccine in vitro and in vivo We found that insertions of foreign genes, such as the RSV F and G genes, were stably maintained in the PIV5 genome and there was no mutation that abolished the expression of RSV F or G. Interestingly, the function of the inserted gene may have an impact on PIV5 genome stability. Copyright © 2017 American Society for Microbiology.

  2. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  3. Algae-based oral recombinant vaccines

    Science.gov (United States)

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  4. Defective interfering viruses and their impact on vaccines and viral vectors.

    Science.gov (United States)

    Frensing, Timo

    2015-05-01

    Defective interfering particles (DIPs) have been found for many important viral pathogens and it is believed that most viruses generate DIPs. This article reviews the current knowledge of the generation and amplification of DIPs, which possess deletions in the viral genome but retain the ability to replicate in the presence of a complete helper virus. In addition, mechanisms are discussed by which DIPs interfere with the replication of their helper virus leading to the production of mainly progeny DIPs by coinfected cells. Even though DIPs cannot replicate on their own, they are biologically active and it is well known that they have a huge impact on virus replication, evolution, and pathogenesis. Moreover, defective genomes are potent inducers of the innate immune response. Yet, little attention has been paid to DIPs in recent years and their impact on biotechnological products such as vaccines and viral vectors remains elusive in most cases. With a focus on influenza virus, this review demonstrates that DIPs are important for basic research on viruses and for the production of viral vaccines and vectors. Reducing the generation and/or amplification of DIPs ensures reproducible results as well as high yields and consistent product quality in virus production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Alphavirus-based Vaccines Encoding Nonstructural Proteins of Hepatitis C Virus Induce Robust and Protective T-cell Responses

    NARCIS (Netherlands)

    Ip, Peng; Boerma, Annemarie; Regts, Joke; Meijerhof, Tjarko; Wilschut, Jan; Nijman, Hans W.; Daemen, Toos

    An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all-or a part of

  6. Mucosal Vaccine Development Based on Liposome Technology.

    Science.gov (United States)

    Bernasconi, Valentina; Norling, Karin; Bally, Marta; Höök, Fredrik; Lycke, Nils Y

    2016-01-01

    Immune protection against infectious diseases is most effective if located at the portal of entry of the pathogen. Hence, there is an increasing demand for vaccine formulations that can induce strong protective immunity following oral, respiratory, or genital tract administration. At present, only few mucosal vaccines are found on the market, but recent technological advancements and a better understanding of the principles that govern priming of mucosal immune responses have contributed to a more optimistic view on the future of mucosal vaccines. Compared to live attenuated vaccines, subcomponent vaccines, most often protein-based, are considered safer, more stable, and less complicated to manufacture, but they require the addition of nontoxic and clinically safe adjuvants to be effective. In addition, another limiting factor is the large antigen dose that usually is required for mucosal vaccines. Therefore, the combination of mucosal adjuvants with the recent progress in nanoparticle technology provides an attractive solution to these problems. In particular, the liposome technology is ideal for combining protein antigen and adjuvant into an effective mucosal vaccine. Here, we describe and discuss recent progress in nanoparticle formulations using various types of liposomes that convey strong promise for the successful development of the next generation of mucosal vaccines.

  7. Pre-Clinical Development of BCG.HIVACAT, an Antibiotic-Free Selection Strain, for HIV-TB Pediatric Vaccine Vectored by Lysine Auxotroph of BCG

    Science.gov (United States)

    Saubi, Narcís; Mbewe-Mvula, Alice; Gea-Mallorqui, Ester; Rosario, Maximillian; Gatell, Josep Maria; Hanke, Tomáš; Joseph, Joan

    2012-01-01

    In the past, we proposed to develop a heterologous recombinant BCG prime-recombinant modified vaccinia virus Ankara (MVA) boost dual pediatric vaccine platform against transmission of breast milk HIV-1 and Mycobacterium tuberculosis (Mtb). In this study, we assembled an E. coli-mycobacterial shuttle plasmid pJH222.HIVACAT expressing HIV-1 clade A immunogen HIVA. This shuttle vector employs an antibiotic resistance-free mechanism based on Operator-Repressor Titration (ORT) system for plasmid selection and maintenance in E. coli and lysine complementation in mycobacteria. This shuttle plasmid was electroporated into parental lysine auxotroph (safer) strain of BCG to generate vaccine BCG.HIVACAT. All procedures complied with Good Laboratory Practices (GLPs). We demonstrated that the episomal plasmid pJH222.HIVACAT was stable in vivo over a 20-week period, and genetically and phenotypically characterized the BCG.HIVACAT vaccine strain. The BCG.HIVACAT vaccine in combination with MVA.HIVA induced HIV-1- and Mtb-specific interferon γ-producing T-cell responses in newborn and adult BALB/c mice. On the other hand, when adult mice were primed with BCG.HIVACAT and boosted with MVA.HIVA.85A, HIV-1-specific CD8+ T-cells producing IFN-γ, TNF-α, IL-2 and CD107a were induced. To assess the biosafety profile of BCG.HIVACAT-MVA.HIVA regimen, body mass loss of newborn mice was monitored regularly throughout the vaccination experiment and no difference was observed between the vaccinated and naïve groups of animals. Thus, we demonstrated T-cell immunogenicity of a novel, safer, GLP-compatible BCG-vectored vaccine using prototype immunogen HIVA. Second generation immunogens derived from HIV-1 as well as other major pediatric pathogens can be constructed in a similar fashion to prime protective responses soon after birth. PMID:22927933

  8. Pre-clinical development of BCG.HIVA(CAT, an antibiotic-free selection strain, for HIV-TB pediatric vaccine vectored by lysine auxotroph of BCG.

    Directory of Open Access Journals (Sweden)

    Narcís Saubi

    Full Text Available In the past, we proposed to develop a heterologous recombinant BCG prime-recombinant modified vaccinia virus Ankara (MVA boost dual pediatric vaccine platform against transmission of breast milk HIV-1 and Mycobacterium tuberculosis (Mtb. In this study, we assembled an E. coli-mycobacterial shuttle plasmid pJH222.HIVA(CAT expressing HIV-1 clade A immunogen HIVA. This shuttle vector employs an antibiotic resistance-free mechanism based on Operator-Repressor Titration (ORT system for plasmid selection and maintenance in E. coli and lysine complementation in mycobacteria. This shuttle plasmid was electroporated into parental lysine auxotroph (safer strain of BCG to generate vaccine BCG.HIVA(CAT. All procedures complied with Good Laboratory Practices (GLPs. We demonstrated that the episomal plasmid pJH222.HIVA(CAT was stable in vivo over a 20-week period, and genetically and phenotypically characterized the BCG.HIVA(CAT vaccine strain. The BCG.HIVA(CAT vaccine in combination with MVA.HIVA induced HIV-1- and Mtb-specific interferon γ-producing T-cell responses in newborn and adult BALB/c mice. On the other hand, when adult mice were primed with BCG.HIVA(CAT and boosted with MVA.HIVA.85A, HIV-1-specific CD8(+ T-cells producing IFN-γ, TNF-α, IL-2 and CD107a were induced. To assess the biosafety profile of BCG.HIVA(CAT-MVA.HIVA regimen, body mass loss of newborn mice was monitored regularly throughout the vaccination experiment and no difference was observed between the vaccinated and naïve groups of animals. Thus, we demonstrated T-cell immunogenicity of a novel, safer, GLP-compatible BCG-vectored vaccine using prototype immunogen HIVA. Second generation immunogens derived from HIV-1 as well as other major pediatric pathogens can be constructed in a similar fashion to prime protective responses soon after birth.

  9. A bivalent typhoid live vector vaccine expressing both chromosome- and plasmid-encoded Yersinia pestis antigens fully protects against murine lethal pulmonary plague infection.

    Science.gov (United States)

    Galen, James E; Wang, Jin Yuan; Carrasco, Jose A; Lloyd, Scott A; Mellado-Sanchez, Gabriela; Diaz-McNair, Jovita; Franco, Olga; Buskirk, Amanda D; Nataro, James P; Pasetti, Marcela F

    2015-01-01

    Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen of Yersinia pestis and the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. A Bivalent Typhoid Live Vector Vaccine Expressing both Chromosome- and Plasmid-Encoded Yersinia pestis Antigens Fully Protects against Murine Lethal Pulmonary Plague Infection

    Science.gov (United States)

    Wang, Jin Yuan; Carrasco, Jose A.; Lloyd, Scott A.; Mellado-Sanchez, Gabriela; Diaz-McNair, Jovita; Franco, Olga; Buskirk, Amanda D.; Nataro, James P.; Pasetti, Marcela F.

    2014-01-01

    Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen of Yersinia pestis and the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity. PMID:25332120

  11. Vectors

    DEFF Research Database (Denmark)

    Boeriis, Morten; van Leeuwen, Theo

    2017-01-01

    This article revisits the concept of vectors, which, in Kress and van Leeuwen’s Reading Images (2006), plays a crucial role in distinguishing between ‘narrative’, action-oriented processes and ‘conceptual’, state-oriented processes. The use of this concept in image analysis has usually focused...... on the most salient vectors, and this works well, but many images contain a plethora of vectors, which makes their structure quite different from the linguistic transitivity structures with which Kress and van Leeuwen have compared ‘narrative’ images. It can also be asked whether facial expression vectors...... should be taken into account in discussing ‘reactions’, which Kress and van Leeuwen link only to eyeline vectors. Finally, the question can be raised as to whether actions are always realized by vectors. Drawing on a re-reading of Rudolf Arnheim’s account of vectors, these issues are outlined...

  12. A new rotavirus VP6-based foreign epitope presenting vector and immunoreactivity of VP4 epitope chimeric proteins.

    Science.gov (United States)

    Teng, Yumei; Zhao, Bingxin; Pan, Xiaoxia; Wen, Yuling; Chen, Yuanding

    2014-04-01

    The VP6, the group antigenic rotavirus (RV), is highly conserved and the most abundant, constituting about 39% of the viral structure proteins by weight. The high degree of identity (>87%-99%) in the primary amino acid sequences suggests VP6-based vaccines could potentially provide heterotypic protection. Although some efforts have been made toward producing recombinant rotavirus VP6 vaccines, the native VP6 is still unsatisfactory as an optimal vaccine. The major neutralizing antigenic epitopes that exist on VP4 or VP7 are not on the native VP6, and as a vector the native VP6 lacks insertion sites that can be used for insertion of foreign epitopes. In this study, a new foreign epitope presenting system using VP6 as a vector (VP6F) was constructed on the outer surface of the vector six sites that could be used for insertion of the foreign epitopes created. Using this system, three VP6-based VP4 epitope chimeric proteins were constructed. Results showed that these chimeric proteins reacted with anti-VP6 and -VP4 antibodies, and elicited antibodies against VP6 and VP4 in guinea pigs. Antibodies against VP6F or antibodies against the chimeric proteins neutralized RV Wa and SA11 infection in vitro. It is optimistic that the limitation for using the native VP6 as a vaccine candidate or vector will be solved with our proposed approach. It is expected that this VP6-based epitope presenting system and the VP6-based VP4 epitope chimeric proteins will be valuable for and contribute to the development of novel RV vaccines and vaccine vectors.

  13. Combined prophylactic and therapeutic intranasal vaccination against human papillomavirus type-16 using different adeno-associated virus serotype vectors.

    Science.gov (United States)

    Nieto, Karen; Kern, Andrea; Leuchs, Barbara; Gissmann, Lutz; Müller, Martin; Kleinschmidt, Jürgen A

    2009-01-01

    Cervical cancer is the second most frequent cancer among woman worldwide and is considered to be caused by infection with high-risk papilloma viruses. Genetic immunization using recombinant adeno-associated virus (rAAV) vectors has shown great promise for vaccination against human papillomavirus (HPV) infections. rAAV5, -8 and -9 vectors expressing an HPV16 L1/E7 fusion gene were generated and applied intranasally for combined prophylactic and therapeutic vaccination of mice. The rAAV5 and the rAAV9 vectors showed efficient induction of both humoral and cellular immune responses, whereas rAAV8 failed to immunize mice by the intranasal route. The L1-specific immune response evoked by expression of the L1/E7 fusion gene, however, was lower than that evoked by expression of the L1 antigen alone. This deficiency could be compensated by application of Escherichia coli heat-labile enterotoxin or monophsphoryl lipid as adjuvant upon vaccination with rAAV5-L1/E7. Coimmunization of rAAV9-L1/E7 with rAAV5-L1 or boosting of rAAV9-L1/E7 with rAAV5-L1 strongly increased L1-specific neutralizing antibody titres to levels above those achieved by vaccination with vectors expressing L1 alone. Both vectors elicited a vibrant cytotoxic T-lymphocyte response against L1 or E7. Nasal immunization with rAAV5 or rAAV9 was superior to vaccination with HPV16-L1 virus-like particles (VLPs) or HPV16-L1/E7 CVLPs with respect to humoral and cellular immune responses. Vaccination with the rAAV vectors led to a significant protection of animals against a challenge with different HPV tumour cell lines. Our results show that rAAV5 and rAAV9 vectors are promising candidates for a non-invasive nasal vaccination strategy.

  14. Assessment of Lactobacillus gasseri as a Candidate Oral Vaccine Vector

    Science.gov (United States)

    Stoeker, Laura; Nordone, Shila; Gunderson, Sara; Zhang, Lin; Kajikawa, Akinobu; LaVoy, Alora; Miller, Michael; Klaenhammer, Todd R.; Dean, Gregg A.

    2011-01-01

    Lactobacillus species are commensal bacteria that have long been recognized as probiotic microbes and are generally regarded as safe (GRAS) for human consumption. We have investigated the use of L. gasseri as a vaccine vector for oral immunization against mucosal pathogens. Recent research has shown that the immune response to different lactobacilli can vary widely depending on the species or subspecies of Lactobacillus being studied. While some lactobacilli seem to induce oral tolerance, others induce an adaptive immune response. This study characterized the systemic and mucosal immune response to wild-type and genetically modified L. gasseri. L. gasseri primarily activates TLR2/6, with additional activation through the TLR2 homodimer. To expand the Toll-like receptor (TLR) activation profile of L. gasseri and the immunogenicity of the vector, a plasmid containing fliC, the gene encoding bacterial flagellin, was introduced which resulted in the strong activation of TLR5. The treatment of human myeloid dendritic cells with recombinant lactobacilli expressing flagellin triggered phenotypic maturation and the release of proinflammatory cytokines. In contrast, bacterial treatment also resulted in a statistically significant increase in IL-10 production. In vivo studies established that treatment with L. gasseri led to a diversification of B-cell populations in the lamina propria of the murine colon. Furthermore, treatment with genetically modified L. gasseri led to a significant decrease in the percentage of FoxP3+ colonic lymphocytes. Taken together, these data clarify the interaction of L. gasseri with the host immune system and support further investigation of the in vivo immunogenicity of L. gasseri expressing both flagellin and candidate vaccine antigens. PMID:21900526

  15. Evaluation of lumpy skin disease virus, a capripoxvirus, as a replication-deficient vaccine vector.

    Science.gov (United States)

    Aspden, Kate; Passmore, Jo-Ann; Tiedt, Friedrich; Williamson, Anna-Lise

    2003-08-01

    Lumpy skin disease virus (LSDV), a capripoxvirus with a host range limited to ruminants, was evaluated as a replication-deficient vaccine vector for use in non-ruminant hosts. By using the rabies virus glycoprotein (RG) as a model antigen, it was demonstrated that recombinant LSDV encoding the rabies glycoprotein (rLSDV-RG) was able to express RG in both permissive (ruminant) and non-permissive (non-ruminant) cells. The recombinant LSDV, however, replicated to maturity only in permissive but not in non-permissive cells. Recombinant LSDV-RG was assessed for its ability to generate immunity against RG in non-ruminant hosts (rabbits and mice). Rabbits inoculated with rLSDV-RG produced rabies virus (RV) neutralizing antibodies at levels twofold higher than those reported by the WHO to be protective. BALB/c mice immunized with rLSDV-RG elicited levels of RV-specific cellular immunity (T-cell proliferation) comparable with those of mice immunized with a commercial inactivated rabies vaccine (Verorab; Pasteur Merieux). Most importantly, mice immunized with rLSDV-RG were protected from an aggressive intracranial rabies virus challenge.

  16. Blocking Pathogen Transmission at the Source: Reservoir Targeted OspA-Based Vaccines Against Borrelia burgdorferi

    Directory of Open Access Journals (Sweden)

    Maria eGomes-Solecki

    2014-09-01

    Full Text Available Control strategies are especially challenging for microbial diseases caused by pathogens that persist in wildlife reservoirs and use arthropod vectors to cycle amongst those species. One of the most relevant illnesses that pose a direct human health risk is Lyme disease; in the US, the Centers for Disease Control and Prevention (CDC recently revised the probable number of cases by 10 fold, to 300,000 cases per year. Caused by Borrelia burgdorferi, Lyme disease can affect the nervous system, joints and heart. No human vaccine is approved by the Food and Drug Administration. In addition to novel human vaccines, new strategies for prevention of Lyme disease consist of pest management interventions, vector-targeted vaccines and reservoir-targeted vaccines. However, even the most efficacious human vaccines can not prevent Lyme disease expansion into other geographical areas. The other strategies aim indirectly at reducing tick density and at disrupting the transmission of B. burgdorferi by targeting one or more key elements that maintain the enzootic cycle: the reservoir host and/or the tick vector. Here, I provide a brief overview of the application of an OspA-based wildlife reservoir targeted vaccine aimed at reducing transmission of B. burgdorferi and present it as a strategy for reducing Lyme disease risk to humans.

  17. Construction and screening of attenuated ΔphoP/Q Salmonella typhimurium vectored plague vaccine candidates.

    Science.gov (United States)

    Sizemore, Donata R; Warner, Elizabeth A; Lawrence, Julie A; Thomas, Lawrence J; Roland, Kenneth L; Killeen, Kevin P

    2012-03-01

    Preclinical studies evaluating plague vaccine candidates have demonstrated that the F1 and V protein antigens of Yersinia pestis confer protection against challenge from virulent strains. Live-attenuated ΔphoP/Q Salmonella typhimurium recombinants were constructed expressing either F1, V antigens, F1 and V antigens, or a F1-V fusion from Asd (+) balanced-lethal plasmids. To improve antigen delivery, genes encoding plague antigens were modified in order to localize antigens to specific bacterial cellular compartments which include cytoplasmic, outer membrane, or secreted. Candidate vaccine strains were evaluated for growth characteristics, full-length lipopolysaccharide (LPS), plasmid stability, and antigen expression in vitro. Plague vaccine candidate strains with favorable in vitro profiles were evaluated in murine or rabbit preclinical oral immunogenicity studies. Attenuated S. typhimurium strains expressing cytoplasmically localized F1-V and V antigen antigens were more immunogenic than strains that secreted or localized plague antigens to the outer membrane. In particular, S. typhimurium M020 and M023, which express Asd(+)-plasmid derived soluble F1-V and soluble V antigen, respectively, at high levels in the bacterial cell cytoplasm were found to induce the highest levels of plague-specific serum antibodies. To further evaluate balanced-lethal plasmid retention capacity, ΔphoP/Q S. typhimurium PurB(+) and GlnA(+) balanced-lethal plasmid systems harboring F1-V were compared with M020 in vitro and in BALB/c mice in a immunogenicity study. Although there was no detectable difference in plague antigen expression in vitro, S. typhimurium M020 was the most immunogenic plague antigen vector strain evaluated, inducing high-titer serum IgG antibodies specific against F1, V and F1-V.

  18. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain

    DEFF Research Database (Denmark)

    Mikkelsen, Marianne; Holst, Peter Johannes; Bukh, Jens

    2011-01-01

    memory. Functionally, the AdIiNS3-vaccinated mice had a significantly increased cytotoxic capacity compared with the AdNS3 group. The AdIiNS3-induced CD8(+) T cells protected mice from infection with recombinant vaccinia virus expressing HCV NS3 of heterologous 1b strains, and studies in knockout mice...

  19. Novel Cytotoxic Vectors Based on Adeno-Associated Virus

    Directory of Open Access Journals (Sweden)

    Johannes Kohlschütter

    2010-12-01

    Full Text Available Vectors based on adeno-associated virus (AAV are promising tools for gene therapy. The production of strongly toxic vectors, for example for cancer-directed gene transfer, is often unfeasible due to uncontrolled expression of toxic genes in vector-producing cells. Using an approach based on transcriptional repression, we have created novel AAV vectors carrying the genes coding for diphtheria toxin A (DTA and the pro-apoptotic PUMA protein. The DTA vector had a significant toxic effect on a panel of tumor cell lines, and abrogation of protein synthesis could be shown. The PUMA vector had a toxic effect on HeLa and RPMI 8226 cells, and sensitized transduced cells to doxorubicin. To permit targeted gene transfer, we incorporated the DTA gene into a genetically modified AAV-2 capsid previously developed by our group that mediates enhanced transduction of murine breast cancer cells in vitro. This vector had a stronger cytotoxic effect on breast cancer cells than DTA vectors with wildtype AAV capsid or vectors with a random capsid modification. The vector production and application system presented here allows for easy exchange of promotors, transgenes and capsid specificity for certain target cells. It will therefore be of great possible value in a broad range of applications in cytotoxic gene therapy and significantly broadens the spectrum of available tools for AAV-based gene therapy.

  20. Immune responses to rAAV6: The influence of canine parvovirus vaccination and neonatal administration of viral vector

    Directory of Open Access Journals (Sweden)

    Andrea L H Arnett

    2011-11-01

    Full Text Available Recombinant adeno-associated viral (rAAV vectors promote long-term gene transfer in many animal species. Significant effort has focused on the evaluation of rAAV delivery and the immune response in both murine and canine models of neuromuscular disease. However, canines provided for research purposes are routinely vaccinated against canine parvovirus (CPV. rAAV and CPV possess significant homology and are both parvoviruses. Thus, any immune response generated to CPV vaccination has the potential to cross-react with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no significant differences were observed in the magnitude of the rAAV6-directed immune response between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-vaccination in neonatal mice. The influence of maternal hormones and cytokines leads to a relatively permissive state in the neonate. We hypothesized that immaturity of the immune system would permit induction of tolerance to rAAV6 when delivered during the neonatal period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged with rAAV6 exposure during adulthood via two sequential IM injections, one month apart. All vaccinated animals generated a significant neutralizing antibody response to rAAV6-vaccination that was enhanced following IM injection in adulthood. Taken together, these data demonstrate that the immune response raised against rAAV6 is distinct from that which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable tolerization in neonatal mice.

  1. The prevalence of neutralizing antibodies against AAV serotype 1 in healthy subjects in China: implications for gene therapy and vaccines using AAV1 vector.

    Science.gov (United States)

    Liu, Qiang; Huang, Weijin; Zhao, Chenyan; Zhang, Li; Meng, Shufang; Gao, Dongying; Wang, Youchun

    2013-09-01

    Recombinant adeno-associated virus serotype 1 (AAV1) has attracted tremendous interest as a promising vector for gene therapy and vaccine applications. However, the presence of AAV1 neutralizing antibodies as a consequence of exposure to wild type AAV1 can limit significantly effective gene transfer for biologics based AAV1 vector. Prior studies have reported that a prevalence of AAV1 neutralizing antibodies ranged from 10% to 50% in different countries around the world, and up to 79% in Dutch subjects. However, few studies have reported on the AAV1 neutralizing antibody prevalence in Chinese subjects. In this study, a high-throughput luciferase-based virus neutralization assay was established and standardized for critical parameters, including the appropriate cell line, and the optimal viral infection dose, and the infection time with homologous AAV1 vaccinated mice and guinea pig sera. Then, a total of 500 healthy individual serum samples from two separate regions of China were screened for the AAV1 neutralizing antibodies by conducting a non-randomized, cross-sectional analysis. Interestingly, a high prevalence of AAV1 neutralizing antibody (69.8%) was found in all individuals. There was significant difference observed for prevalence by gender (P = 0.042), age range (P = 0.011) and geographic origin (P AAV1 neutralizing antibodies (NT50  > 10) in teenagers (year AAV1-based vaccination and gene therapy strategies in Beijing and Anhui provinces of China. Copyright © 2013 Wiley Periodicals, Inc.

  2. Support vector machines optimization based theory, algorithms, and extensions

    CERN Document Server

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  3. A Prime-Boost Vaccination Strategy in Cattle to Prevent Foot-and-Mouth Disease Using a "Single-Cycle" Alphavirus Vector and Empty Capsid Particles.

    Directory of Open Access Journals (Sweden)

    Maria Gullberg

    Full Text Available Foot-and-mouth disease (FMD remains one of the most economically important infectious diseases of production animals globally. Vaccination can successfully control this disease, however, current vaccines are imperfect. They are made using chemically inactivated FMD virus (FMDV that is produced in large-scale mammalian cell culture under high containment conditions. Here, we have expressed the FMDV capsid protein precursor (P1-2A of strain O1 Manisa alone or with the FMDV 3C protease (3Cpro using a "single cycle" packaged alphavirus self-replicating RNA based on Semliki Forest virus (SFV. When the FMDV P1-2A was expressed with 3Cpro then processing of the FMDV capsid precursor protein is observed within cells and the proteins assemble into empty capsid particles. The products interact with anti-FMDV antibodies in an ELISA and bind to the integrin αvβ6 (a cellular receptor for FMDV. In cattle vaccinated with these rSFV-FMDV vectors alone, anti-FMDV antibodies were elicited but the immune response was insufficient to give protection against FMDV challenge. However, the prior vaccination with these vectors resulted in a much stronger immune response against FMDV post-challenge and the viremia observed was decreased in level and duration. In subsequent experiments, cattle were sequentially vaccinated with a rSFV-FMDV followed by recombinant FMDV empty capsid particles, or vice versa, prior to challenge. Animals given a primary vaccination with the rSFV-FMDV vector and then boosted with FMDV empty capsids showed a strong anti-FMDV antibody response prior to challenge, they were protected against disease and no FMDV RNA was detected in their sera post-challenge. Initial inoculation with empty capsids followed by the rSFV-FMDV was much less effective at combating the FMDV challenge and a large post-challenge boost to the level of anti-FMDV antibodies was observed. This prime-boost system, using reagents that can be generated outside of high

  4. Risk based surveillance for vector borne diseases

    DEFF Research Database (Denmark)

    Bødker, Rene

    an increasing trend in transmission potential over the last 25 years. However the model suggested that the climate in the Baltic See Region has always permitted transmission of these diseases. The model therefore suggests that a presently unknown factor until recently prevented introduction and spread......Increased temperatures and changes in rainfall pattern are likely to facilitate the spread and establishment of new vector borne diseases in the Baltic See Region. There are a large number of potential vector borne threats to the area. Existing endemic vector borne diseases are likely to increase...... and new exotic diseases like Usutu and West Nile Virus may lead to outbreaks in the region. In the worst case the combined effect of climate change and globalization may potentially lead to European outbreaks of important zoonotic mosquito borne infections like Rift Valley Fever in cattle and Japanese...

  5. Differential immunogenicity of various heterologous prime-boost vaccine regimens using DNA and viral vectors in healthy volunteers.

    Science.gov (United States)

    Vuola, Jenni M; Keating, Sheila; Webster, Daniel P; Berthoud, Tamara; Dunachie, Susanna; Gilbert, Sarah C; Hill, Adrian V S

    2005-01-01

    Heterologous prime-boost vaccination has been shown to be an efficient way of inducing T cell responses in animals and in humans. We have used three vaccine vectors, naked DNA, modified vaccinia virus Ankara (MVA), and attenuated fowlpox strain, FP9, for prime-boost vaccination approaches against Plasmodium falciparum malaria in humans. In this study, we characterize, using two types of ELISPOT assays and FACS analysis, cell-mediated immune responses induced by different prime-boost combinations where all vectors encode a multiepitope string fused to the pre-erythrocytic Ag thrombospondin-related adhesion protein. We show that these different vectors need to be used in a specific order for an optimal ex vivo IFN-gamma response. From the different combinations, DNA priming followed by MVA boosting and FP9 priming followed by MVA boosting were most immunogenic and in both cases the IFN-gamma response was of broad specificity and cross-reactive against two P. falciparum strains (3D7 and T9/96). Immunization with all three vectors showed no improvement over optimal two vector regimes. Strong ex vivo IFN-gamma responses peaked 1 wk after the booster dose, but cultured ELISPOT assays revealed longer-lasting T cell memory responses for at least 6 mo. In the DNA-primed vaccinees the IFN-gamma response was mainly due to CD4(+) T cells, whereas in the FP9-primed vaccinees it was mainly due to CD4-dependent CD8(+) T cells. This difference may be of importance for the protective efficacy of these vaccination approaches against various diseases.

  6. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Bragstad, Karoline

    2015-01-01

    to public health by diminishing the risk of emerging highly pathogenic reassortants. Current inactivated protein vaccines against swine influenza produce only short-lived immunity and have no efficacy against heterologous strains. DNA vaccines are a potential alternative with advantages...... expressed by next-generation vectors. These new vectors can improve gene expression, but they are also efficiently produced on large scales and comply with regulatory guidelines by avoiding antibiotic resistance genes. In addition, a new needle-free delivery of the vaccine, convenient for mass vaccinations...

  7. Research of DOA Estimation Based on Single MEMS Vector Hydrophone.

    Science.gov (United States)

    Zhang, Wen Dong; Guan, Ling Gang; Zhang, Guo Jun; Xue, Chen Yang; Zhang, Kai Rui; Wang, Jian Ping

    2009-01-01

    The MEMS vector hydrophone is a novel acoustic sensor with a "four-beam-cilia" structure. Based on the MEMS vector hydrophone with this structure, the paper studies the method of estimated direction of arrival (DOA). According to various research papers, many algorithms can be applied to vector hydrophones. The beam-forming approach and bar graph approach are described in detail. Laboratory tests by means of the a standing-wave tube are performed to validate the theoretical results. Both the theoretical analysis and the results of tests prove that the proposed MEMS vector hydrophone possesses the desired directional function.

  8. Protective Efficacy in Sheep of Adenovirus-Vectored Vaccines against Bluetongue Virus Is Associated with Specific T Cell Responses

    Science.gov (United States)

    Martín, Verónica; Pascual, Elena; Avia, Miguel; Peña, Lourdes; Valcárcel, Félix; Sevilla, Noemí

    2015-01-01

    Bluetongue virus (BTV) is an economically important Orbivirus of the Reoviridae family that causes a hemorrhagic disease in ruminants. Its control has been achieved by inactivated-vaccines that have proven to protect against homologous BTV challenge although unable to induce long-term immunity. Therefore, a more efficient control strategy needs to be developed. Recombinant adenovirus vectors are lead vaccine candidates for protection of several diseases, mainly because of their potency to induce potent T cell immunity. Here we report the induction of humoral and T-cell mediated responses able to protect animals against BTV challenge by recombinant replication-defective human adenovirus serotype 5 (Ad5) expressing either VP7, VP2 or NS3 BTV proteins. First we used the IFNAR(-/-) mouse model system to establish a proof of principle, and afterwards we assayed the protective efficacy in sheep, the natural host of BTV. Mice were completely protected against BTV challenge, developing humoral and BTV-specific CD8+- and CD4+-T cell responses by vaccination with the different rAd5. Sheep vaccinated with Ad5-BTV-VP2 and Ad5-BTV-VP7 or only with Ad5-BTV-VP7 and challenged with BTV showed mild disease symptoms and reduced viremia. This partial protection was achieved in the absence of neutralizing antibodies but strong BTV-specific CD8+ T cell responses in those sheep vaccinated with Ad5-BTV-VP7. These data indicate that rAd5 is a suitable vaccine vector to induce T cell immunity during BTV vaccination and provide new data regarding the relevance of T cell responses in protection during BTV infection. PMID:26619062

  9. HIV-1 adenoviral vector vaccines expressing multi-trimeric BAFF and 4-1BBL enhance T cell mediated anti-viral immunity.

    Science.gov (United States)

    Kanagavelu, Saravana; Termini, James M; Gupta, Sachin; Raffa, Francesca N; Fuller, Katherine A; Rivas, Yaelis; Philip, Sakhi; Kornbluth, Richard S; Stone, Geoffrey W

    2014-01-01

    Adenoviral vectored vaccines have shown considerable promise but could be improved by molecular adjuvants. Ligands in the TNF superfamily (TNFSF) are potential adjuvants for adenoviral vector (Ad5) vaccines based on their central role in adaptive immunity. Many TNFSF ligands require aggregation beyond the trimeric state (multi-trimerization) for optimal biological function. Here we describe Ad5 vaccines for HIV-1 Gag antigen (Ad5-Gag) adjuvanted with the TNFSF ligands 4-1BBL, BAFF, GITRL and CD27L constructed as soluble multi-trimeric proteins via fusion to Surfactant Protein D (SP-D) as a multimerization scaffold. Mice were vaccinated with Ad5-Gag combined with Ad5 expressing one of the SP-D-TNFSF constructs or single-chain IL-12p70 as adjuvant. To evaluate vaccine-induced protection, mice were challenged with vaccinia virus expressing Gag (vaccinia-Gag) which is known to target the female genital tract, a major route of sexually acquired HIV-1 infection. In this system, SP-D-4-1BBL or SP-D-BAFF led to significantly reduced vaccinia-Gag replication when compared to Ad5-Gag alone. In contrast, IL-12p70, SP-D-CD27L and SP-D-GITRL were not protective. Histological examination following vaccinia-Gag challenge showed a dramatic lymphocytic infiltration into the uterus and ovaries of SP-D-4-1BBL and SP-D-BAFF-treated animals. By day 5 post challenge, proinflammatory cytokines in the tissue were reduced, consistent with the enhanced control over viral replication. Splenocytes had no specific immune markers that correlated with protection induced by SP-D-4-1BBL and SP-D-BAFF versus other groups. IL-12p70, despite lack of anti-viral efficacy, increased the total numbers of splenic dextramer positive CD8+ T cells, effector memory T cells, and effector Gag-specific CD8+ T cells, suggesting that these markers are poor predictors of anti-viral immunity in this model. In conclusion, soluble multi-trimeric 4-1BBL and BAFF adjuvants led to strong protection from vaccinia

  10. Protective Efficacy and Immunogenicity of an Adenoviral Vector Vaccine Encoding the Codon-Optimized F Protein of Respiratory Syncytial Virus▿

    OpenAIRE

    Kohlmann, Rebekka; Schwannecke, Sarah; Tippler, Bettina; Ternette, Nicola; Temchura, Vladimir V.; Tenbusch, Matthias; Überla, Klaus; Grunwald, Thomas

    2009-01-01

    Adenoviral vectors (AdV) have received considerable attention for vaccine development because of their high immunogenicity and efficacy. In previous studies, it was shown that DNA immunization of mice with codon-optimized expression plasmids encoding the fusion protein of respiratory syncytial virus (RSV F) resulted in enhanced protection against RSV challenge compared to immunization with plasmids carrying the wild-type cDNA sequence of RSV F. In this study, we constructed AdV carrying the c...

  11. The Immune Response to a Vesicular Stomatitis Virus Vaccine Vector Is Independent of Particulate Antigen Secretion and Protein Turnover Rate

    Science.gov (United States)

    Cobleigh, Melissa A.; Bradfield, Clinton; Liu, Yuanjie; Mehta, Anand

    2012-01-01

    Vesicular stomatitis virus (VSV) is a highly cytopathic virus being developed as a vaccine vector due to its ability to induce strong protective T cell and antibody responses after a single dose. However, little is known regarding the mechanisms underlying the potent immune responses elicited by VSV. We previously generated a VSV vector expressing the hepatitis B virus middle envelope surface glycoprotein (MS) that induces strong MS-specific T cell and antibody responses in mice. After synthesis in the cytoplasm, the MS protein translocates to the endoplasmic reticulum, where it forms subviral particles that are secreted from the cell. To better understand the contributions of secreted and intracellular protein to the VSV-induced immune response, we produced a vector expressing a secretion-deficient MS mutant (MSC69A) and compared the immunogenicity of this vector to that of the wild-type VSV-MS vector in mice. As expected, the MSC69A protein was not secreted from VSV-infected cells and displayed enhanced proteasome-mediated degradation. Surprisingly, despite these differences in intracellular protein processing, the T cell and antibody responses generated to MSC69A were comparable to those elicited by virus expressing wild-type MS protein. Therefore, when it is expressed from VSV, the immune responses to MS are independent of particulate antigen secretion and the turnover rate of cytoplasmic protein. These results are consistent with a model in which the immune responses to VSV are strongly influenced by the replication cycle of the vector and demonstrate that characteristics of the vector have the capacity to affect vaccine efficacy more than do the properties of the antigen itself. PMID:22345454

  12. Development and Applications of VSV Vectors Based on Cell Tropism.

    Science.gov (United States)

    Tani, Hideki; Morikawa, Shigeru; Matsuura, Yoshiharu

    2011-01-01

    Viral vectors have been available in various fields such as medical and biological research or gene therapy applications. Targeting vectors pseudotyped with distinct viral envelope proteins that influence cell tropism and transfection efficiency are useful tools not only for examining entry mechanisms or cell tropisms but also for vaccine vector development. Vesicular stomatitis virus (VSV) is an excellent candidate for development as a pseudotype vector. A recombinant VSV lacking its own envelope (G) gene has been used to produce a pseudotype or recombinant VSV possessing the envelope proteins of heterologous viruses. These viruses possess a reporter gene instead of a VSV G gene in their genome, and therefore it is easy to evaluate their infectivity in the study of viral entry, including identification of viral receptors. Furthermore, advantage can be taken of a property of the pseudotype VSV, which is competence for single-round infection, in handling many different viruses that are either difficult to amplify in cultured cells or animals or that require specialized containment facilities. Here we describe procedures for producing pseudotype or recombinant VSVs and a few of the more prominent examples from envelope viruses, such as hepatitis C virus, Japanese encephalitis virus, baculovirus, and hemorrhagic fever viruses.

  13. Development of Recombinant Vaccine Using Herpesvirus of Turkey (Hvt as Vector for Several Viral Diseases in Poultry Industry

    Directory of Open Access Journals (Sweden)

    Risza Hartawan

    2011-03-01

    Full Text Available Herpesvirus of turkey (HVT has been utilised as live vaccine against Marek’s disease in poultry industry world-wide for many years. However, the potency of HVT is not limited on the Marek’s disease only. Along with rapid development of recombinant technique, the potency of HVT can be broaden for other diseases. As naturally apathogenic virus, HVT is a suitable candidate as vector vaccine to express important antigens of viral pathogens. Several researches have been dedicated to design HVT recombinant vaccine by inserting gene of important virus, such as Marek’s disease virus (MDV, immuno bursal disease virus (IBDV, Newcastle disease virus (NDV and Avian Influenza virus (AIV. Therefore, the future recombinant of HVT has been expected to be better in performance along with the improvement of recombinant technique.

  14. T Helper 17 Promotes Induction of Antigen-Specific Gut-Mucosal Cytotoxic T Lymphocytes following Adenovirus Vector Vaccination

    Directory of Open Access Journals (Sweden)

    Masahisa Hemmi

    2017-11-01

    Full Text Available Few current vaccines can establish antigen (Ag-specific immune responses in both mucosal and systemic compartments. Therefore, development of vaccines providing defense against diverse infectious agents in both compartments is of high priority in global health. Intramuscular vaccination of an adenovirus vector (Adv has been shown to induce Ag-specific cytotoxic T lymphocytes (CTLs in both systemic and gut-mucosal compartments. We previously found that type I interferon (IFN signaling is required for induction of gut-mucosal, but not systemic, CTLs following vaccination; however, the molecular mechanism involving type I IFN signaling remains unknown. Here, we found that T helper 17 (Th17-polarizing cytokine expression was down-regulated in the inguinal lymph nodes (iLNs of Ifnar2−/− mice, resulting in the reduction of Ag-specific Th17 cells in the iLNs and gut mucosa of the mice. We also found that prior transfer of Th17 cells reversed the decrease in the number of Ag-specific gut-mucosal CTLs in Ifnar2−/− mice following Adv vaccination. Additionally, prior transfer of Th17 cells into wild-type mice enhanced the induction of Ag-specific CTLs in the gut mucosa, but not in systemic compartments, suggesting a gut mucosa-specific mechanism where Th17 cells regulate the magnitude of vaccine-elicited Ag-specific CTL responses. These data suggest that Th17 cells translate systemic type I IFN signaling into a gut-mucosal CTL response following vaccination, which could promote the development of promising Adv vaccines capable of establishing both systemic and gut-mucosal protective immunity.

  15. LandSat-Based Land Use-Land Cover (Vector)

    Data.gov (United States)

    Minnesota Department of Natural Resources — Vector-based land cover data set derived from classified 30 meter resolution Thematic Mapper satellite imagery. Classification is divided into 16 classes with source...

  16. Preclinical development of BCG.HIVA2auxo.int, harboring an integrative expression vector, for a HIV-TB Pediatric vaccine. Enhancement of stability and specific HIV-1 T-cell immunity

    Science.gov (United States)

    Mahant, Aakash; Saubi, Narcís; Eto, Yoshiki; Guitart, Núria; Gatell, Josep Ma; Hanke, Tomáš; Joseph, Joan

    2017-01-01

    ABSTRACT One of the critical issues that should be addressed in the development of a BCG-based HIV vaccine is genetic plasmid stability. Therefore, to address this issue we have considered using integrative vectors and the auxotrophic mutant of BCG complemented with a plasmid carrying a wild-type complementing gene. In this study, we have constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HIVAint, expressing the HIV-1 clade A immunogen HIVA. This shuttle vector uses an antibiotic resistance-free mechanism for plasmid selection and maintenance. It was first transformed into a glycine auxotrophic E. coli strain and subsequently transformed into a lysine auxotrophic Mycobacterium bovis BCG strain to generate the vaccine BCG.HIVA2auxo.int. Presence of the HIVA gene sequence and protein expression was confirmed. We demonstrated that the in vitro stability of the integrative plasmid p2auxo.HIVAint was increased 4-fold, as compared with the BCG strain harboring the episomal plasmid, and was genetically and phenotypically characterized. The BCG.HIVA2auxo.int vaccine in combination with modified vaccinia virus Ankara (MVA).HIVA was found to be safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. We have engineered a more stable and immunogenic BCG-vectored vaccine using the prototype immunogen HIVA. Thus, the use of integrative expression vectors and the antibiotic-free plasmid selection system based on “double” auxotrophic complementation are likely to improve the mycobacterial vaccine stability in vivo and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth. PMID:28426273

  17. Preclinical development of BCG.HIVA2auxo.int, harboring an integrative expression vector, for a HIV-TB Pediatric vaccine. Enhancement of stability and specific HIV-1 T-cell immunity.

    Science.gov (United States)

    Mahant, Aakash; Saubi, Narcís; Eto, Yoshiki; Guitart, Núria; Gatell, Josep Ma; Hanke, Tomáš; Joseph, Joan

    2017-08-03

    One of the critical issues that should be addressed in the development of a BCG-based HIV vaccine is genetic plasmid stability. Therefore, to address this issue we have considered using integrative vectors and the auxotrophic mutant of BCG complemented with a plasmid carrying a wild-type complementing gene. In this study, we have constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HIVA int , expressing the HIV-1 clade A immunogen HIVA. This shuttle vector uses an antibiotic resistance-free mechanism for plasmid selection and maintenance. It was first transformed into a glycine auxotrophic E. coli strain and subsequently transformed into a lysine auxotrophic Mycobacterium bovis BCG strain to generate the vaccine BCG.HIVA 2auxo.int . Presence of the HIVA gene sequence and protein expression was confirmed. We demonstrated that the in vitro stability of the integrative plasmid p2auxo.HIVA int was increased 4-fold, as compared with the BCG strain harboring the episomal plasmid, and was genetically and phenotypically characterized. The BCG.HIVA 2auxo.int vaccine in combination with modified vaccinia virus Ankara (MVA).HIVA was found to be safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. We have engineered a more stable and immunogenic BCG-vectored vaccine using the prototype immunogen HIVA. Thus, the use of integrative expression vectors and the antibiotic-free plasmid selection system based on "double" auxotrophic complementation are likely to improve the mycobacterial vaccine stability in vivo and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.

  18. Immunogenicity and efficacy of fowlpox-vectored and inactivated avian influenza vaccines alone or in a prime-boost schedule in chickens with maternal antibodies

    Science.gov (United States)

    Inactivated and fowlpox (FP)-vectored vaccines have been used to control avian influenza (AI) in poultry. In endemic countries, breeder flocks are vaccinated and therefore, maternally-derived antibodies (MDA) are transferred to their progeny. Results of several immunogenicity and efficacy studies ...

  19. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites.

    Science.gov (United States)

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E; Yoshida, Shigeto

    2014-10-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Highly Sensitive Method for Titration of Adenovirus Vectors

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Hildegund Ertl, ZhiQuan Xiang, Yan Li, Dongming Zhou, Xiangyang Zhou, Wynetta Giles-Davis & Yi-lin E. Liu ### Abstract Clinical development of vaccines based on adenovirus (Ad) vectors requires accurate techniques to determine vector doses including contents of infectious particles. For vectors derived from Ad virus of human serotype 5 content of infectious particles can readily be determined by plaque assays. Vaccine vectors based on alternative Ad serotypes such as thos...

  1. Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Thomas W Geisbert

    2008-11-01

    Full Text Available Ebola virus (EBOV is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV is particularly robust, as it can also confer protection when administered as a postexposure treatment. A concern that has been raised regarding the replication-competent VSV vectors that express EBOV glycoproteins is how these vectors would be tolerated by individuals with altered or compromised immune systems such as patients infected with HIV. This is especially important as all EBOV outbreaks to date have occurred in areas of Central and Western Africa with high HIV incidence rates in the population. In order to address this concern, we evaluated the safety of the recombinant VSV vector expressing the Zaire ebolavirus glycoprotein (VSVDeltaG/ZEBOVGP in six rhesus macaques infected with simian-human immunodeficiency virus (SHIV. All six animals showed no evidence of illness associated with the VSVDeltaG/ZEBOVGP vaccine, suggesting that this vaccine may be safe in immunocompromised populations. While one goal of the study was to evaluate the safety of the candidate vaccine platform, it was also of interest to determine if altered immune status would affect vaccine efficacy. The vaccine protected 4 of 6 SHIV-infected macaques from death following ZEBOV challenge. Evaluation of CD4+ T cells in all animals showed that the animals that succumbed to lethal ZEBOV challenge had the lowest CD4+ counts, suggesting that CD4+ T cells may play a role in mediating protection against ZEBOV.

  2. Type I Interferons are essential for the efficacy of replicase-based DNA vaccines.

    Science.gov (United States)

    Leitner, Wolfgang W; Bergmann-Leitner, Elke S; Hwang, Leroy N; Restifo, Nicholas P

    2006-06-12

    The immunogenicity and efficacy of nucleic acid vaccines can be greatly enhanced when antigen production is under the control of an alphaviral replicase enzyme. However, replicase-mediated mRNA overproduction does not necessarily result in enhanced antigen level. Instead, the strong adaptive immune response of alphavirus replicon-based vectors is due to their production of double-stranded RNA (dsRNA) intermediates, which trigger innate immunity. Because viral infections are known to trigger innate immune responses that lead to the rapid production of Type I Interferons (IFNs), namely IFN-alpha and IFN-beta, we investigated the role of Type I IFNs in the enhanced immunogenicity of replicase-based DNA vaccines. In vitro, cells transfected with replicase-based plasmids produce significantly more Type I IFNs than cells transfected with a conventional DNA plasmid. In vivo, replicase-based DNA vaccines yield stronger humoral responses in the absence of Type I IFN signaling but the lack of this signaling pathway in IFN-alphabeta receptor-/- (knockout) mice abolishes T cell mediated efficacy against tumors of both conventional and alphavirus replicase-based DNA vaccines. Moreover, the co-delivery of an IFNalpha-encoding plasmid significantly improved the efficacy of a weakly immunogenic conventional plasmid. These results suggest a central role for Type I IFNs in the mechanism of replicase-based DNA vaccines and indicate that vaccines can be enhanced by enabling their capacity to triggering innate anti-viral defense pathways.

  3. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies.

    Science.gov (United States)

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A

    2006-07-01

    The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector.

  4. Microneedle arrays delivery of the conventional vaccines based on nonvirulent viruses.

    Science.gov (United States)

    Li, Ning; Wang, Ning; Wang, Xueting; Zhen, Yuanyuan; Wang, Ting

    2016-11-01

    Recently, microneedle arrays (MAs) have been developed for painless inoculation of vaccines and possess many prominent advantages, including convenience for inoculation, and exact delivery of vaccine to the exact epidermal and dermal or mucosal compartments which teem with antigen-presenting cells (APCs). Among different types of MAs, while the micro-environmental stimulus-responsive MAs represent one of the developmental trends in the field, the MAs combined with the conventional vaccines that are based on nonvirulent viruses, such as live attenuated or whole inactivated viruses, and antigen-encoding DNA viral vectors, have developed rapidly into the advanced stages, with certain products already on clinical trials. The pre- and clinical research outcomes showed that the painless MA delivery of the conventional vaccines through mammalian skin or mucosa can not only elicit robust systemic and even mucosal immunity to pathogens but also, in certain circumstances, redirect the immune response toward a specific Th1 pathway, resulting in cytotoxic T lymphocytes (CTL) to erase the cell-hidden pathogens, thanks to the robust adjuvant function of MAs exerted through damaging the contacted cells to release dangerous signals. This paper focuses on reviewing the latest research and advancements in MA delivery of the conventional vaccines that are based on nonvirulent viruses, underlining MA enhancement of the overall vaccine performance and the most advanced MA vaccine products that are relatively close to markets.

  5. School-Based Influenza Vaccination: Parents’ Perspectives

    Science.gov (United States)

    Lind, Candace; Russell, Margaret L.; MacDonald, Judy; Collins, Ramona; Frank, Christine J.; Davis, Amy E.

    2014-01-01

    Background School-age children are important drivers of annual influenza epidemics yet influenza vaccination coverage of this population is low despite universal publicly funded influenza vaccination in Alberta, Canada. Immunizing children at school may potentially increase vaccine uptake. As parents are a key stakeholder group for such a program, it is important to consider their concerns. Purpose We explored parents’ perspectives on the acceptability of adding an annual influenza immunization to the immunization program that is currently delivered in Alberta schools, and obtained suggestions for structuring such a program. Participants Forty-eight parents of children aged 5-18 years participated in 9 focus groups. Participants lived in urban areas of the Alberta Health Services Calgary Zone. Findings Three major themes emerged: Advantages of school-based influenza vaccination (SBIV), Disadvantages of SBIV, and Implications for program design & delivery. Advantages were perceived to occur for different populations: children (e.g. emotional support), families (e.g. convenience), the community (e.g. benefits for school and multicultural communities), the health sector (e.g. reductions in costs due to burden of illness) and to society at large (e.g. indirect conduit of information about health services, building structure for pandemic preparedness, building healthy lifestyles). Disadvantages, however, might also occur for children (e.g. older children less likely to be immunized), families (e.g. communication challenges, perceived loss of parental control over information, choices and decisions) and the education sector (loss of instructional time). Nine second-level themes emerged within the major theme of Implications for program design & delivery: program goals/objectives, consent process, stakeholder consultation, age-appropriate program, education, communication, logistics, immunizing agent, and clinic process. Conclusions Parents perceived advantages and

  6. School-based influenza vaccination: parents' perspectives.

    Science.gov (United States)

    Lind, Candace; Russell, Margaret L; MacDonald, Judy; Collins, Ramona; Frank, Christine J; Davis, Amy E

    2014-01-01

    School-age children are important drivers of annual influenza epidemics yet influenza vaccination coverage of this population is low despite universal publicly funded influenza vaccination in Alberta, Canada. Immunizing children at school may potentially increase vaccine uptake. As parents are a key stakeholder group for such a program, it is important to consider their concerns. We explored parents' perspectives on the acceptability of adding an annual influenza immunization to the immunization program that is currently delivered in Alberta schools, and obtained suggestions for structuring such a program. Forty-eight parents of children aged 5-18 years participated in 9 focus groups. Participants lived in urban areas of the Alberta Health Services Calgary Zone. Three major themes emerged: Advantages of school-based influenza vaccination (SBIV), Disadvantages of SBIV, and Implications for program design & delivery. Advantages were perceived to occur for different populations: children (e.g. emotional support), families (e.g. convenience), the community (e.g. benefits for school and multicultural communities), the health sector (e.g. reductions in costs due to burden of illness) and to society at large (e.g. indirect conduit of information about health services, building structure for pandemic preparedness, building healthy lifestyles). Disadvantages, however, might also occur for children (e.g. older children less likely to be immunized), families (e.g. communication challenges, perceived loss of parental control over information, choices and decisions) and the education sector (loss of instructional time). Nine second-level themes emerged within the major theme of Implications for program design & delivery: program goals/objectives, consent process, stakeholder consultation, age-appropriate program, education, communication, logistics, immunizing agent, and clinic process. Parents perceived advantages and disadvantages to delivering annual seasonal influenza

  7. School-based influenza vaccination: parents' perspectives.

    Directory of Open Access Journals (Sweden)

    Candace Lind

    Full Text Available BACKGROUND: School-age children are important drivers of annual influenza epidemics yet influenza vaccination coverage of this population is low despite universal publicly funded influenza vaccination in Alberta, Canada. Immunizing children at school may potentially increase vaccine uptake. As parents are a key stakeholder group for such a program, it is important to consider their concerns. PURPOSE: We explored parents' perspectives on the acceptability of adding an annual influenza immunization to the immunization program that is currently delivered in Alberta schools, and obtained suggestions for structuring such a program. PARTICIPANTS: Forty-eight parents of children aged 5-18 years participated in 9 focus groups. Participants lived in urban areas of the Alberta Health Services Calgary Zone. FINDINGS: Three major themes emerged: Advantages of school-based influenza vaccination (SBIV, Disadvantages of SBIV, and Implications for program design & delivery. Advantages were perceived to occur for different populations: children (e.g. emotional support, families (e.g. convenience, the community (e.g. benefits for school and multicultural communities, the health sector (e.g. reductions in costs due to burden of illness and to society at large (e.g. indirect conduit of information about health services, building structure for pandemic preparedness, building healthy lifestyles. Disadvantages, however, might also occur for children (e.g. older children less likely to be immunized, families (e.g. communication challenges, perceived loss of parental control over information, choices and decisions and the education sector (loss of instructional time. Nine second-level themes emerged within the major theme of Implications for program design & delivery: program goals/objectives, consent process, stakeholder consultation, age-appropriate program, education, communication, logistics, immunizing agent, and clinic process. CONCLUSIONS: Parents perceived

  8. Development and evaluation of a potential universal Salmonella-vectored avian influenza vaccine

    Science.gov (United States)

    Development of vaccines for effective control of avian influenza (AI) virus in poultry and wild birds is in high demand. Most AI vaccines target the immunodominant antigens such as hemagglutinin (HA) and neuraminidase (NA); however, these vaccines only provide protection against a particular AI ser...

  9. Recombinant viral-vectored vaccines for the control of avian influenza in poultry

    Science.gov (United States)

    Vaccination is a commonly used tool for the control of both low pathogenic and highly pathogenic avian influenza viruses. Traditionally inactivated adjuvanted vaccines made from a low pathogenic field strain has been used for vaccination, but advances in molecular biology has allowed a number of di...

  10. Recent advances in recombinant protein-based malaria vaccines

    DEFF Research Database (Denmark)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito...... vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard......, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite...

  11. Effect of School-based Human Papillomavirus (HPV) Vaccination on ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    Technology for Health (PATH) to evaluate different HPV vaccine delivery strategies. A school-based HPV vaccine delivery strategy was adopted in Ibanda targeting girls enrolled in primary grade five (P5). In Nakasongola, the HPV vaccine was delivered during the routine Child. Days Plus (CDP) program, targeting girls of at.

  12. Biology of Francisella tularensis subspecies holarctica live vaccine strain in the tick vector Dermacentor variabilis.

    Science.gov (United States)

    Mani, Rinosh J; Reichard, Mason V; Morton, Rebecca J; Kocan, Katherine M; Clinkenbeard, Kenneth D

    2012-01-01

    The γ-proteobacterium Francisella tularensis is the etiologic agent of seasonal tick-transmitted tularemia epizootics in rodents and rabbits and of incidental infections in humans. The biology of F. tularensis in its tick vectors has not been fully described, particularly with respect to its quanta and duration of colonization, tissue dissemination, and transovarial transmission. A systematic study of the colonization of Dermacentor variabilis by the F. tularensis subsp. holarctica live vaccine strain (LVS) was undertaken to better understand whether D. variabilis may serve as an inter-epizootic reservoir for F. tularensis. Colony-reared larva, nymph, and adult D. variabilis were artificially fed LVS via glass capillary tubes fitted over the tick mouthparts, and the level of colonization determined by microbial culture. Larvae and nymphs were initially colonized with 8.8 ± 0.8 × 10(1) and 1.1 ± 0.03 × 10(3) CFU/tick, respectively. Post-molting, a significant increase in colonization of both molted nymphs and adults occurred, and LVS persisted in 42% of molted adult ticks at 126 days post-capillary tube feeding. In adult ticks, LVS initially colonized the gut, disseminated to hemolymph and salivary glands by 21 days, and persisted up to 165 days. LVS was detected in the salivary secretions of adult ticks after four days post intra-hemocoelic inoculation, and LVS recovered from salivary gland was infectious to mice with an infectious dose 50% of 3 CFU. LVS in gravid female ticks colonized via the intra-hemocoelic route disseminated to the ovaries and then to the oocytes, but the pathogen was not recovered from the subsequently-hatched larvae. This study demonstrates that D. variabilis can be efficiently colonized with F. tularensis using artificial methods. The persistence of F. tularensis in D. variabilis suggests that this tick species may be involved in the maintenance of enzootic foci of tularemia in the central United States.

  13. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    Directory of Open Access Journals (Sweden)

    Samantha Sayers

    2012-01-01

    Full Text Available Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO in the Web Ontology Language (OWL format.

  14. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    Science.gov (United States)

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine. Crown Copyright © 2012. Published by Elsevier India Pvt Ltd. All rights reserved.

  15. Space vector-based analysis of overmodulation in triangle ...

    Indian Academy of Sciences (India)

    The equivalence of triangle-comparison-based pulse width modulation (TCPWM) and space vector based PWM (SVPWM) during linear modulation is well-known. This paper analyses triangle-comparison based PWM techniques (TCPWM) such as sine-triangle PWM (SPWM) and common-mode voltage injection PWM ...

  16. Orally administered recombinant Lactobacillus casei vector vaccine expressing β-toxoid of Clostridium perfringens that induced protective immunity responses.

    Science.gov (United States)

    Alimolaei, Mojtaba; Golchin, Mehdi; Ezatkhah, Majid

    2017-12-01

    Clostridium perfringens types B and C cause enteritis and enterotoxemia in animals. The conventional vaccine production systems need time-consuming detoxification and difficult quality control steps. In this study, a modified β-toxoid gene was synthesized, cloned into the pT1NX vector, and electroporated into Lactobacillus casei competent cells to yield L. casei-β recombinant strain. Surface expression of the recombinant β-toxoid was evaluated by ELISA and confirmed by immunofluorescence microscopy. Vaccinated BALB/c mice with L. casei-β induced potent humoral and cell-mediated immune responses that were protective against lethal challenges with 100 MLD/mL of the β-toxin. Safety and efficacy of the recombinant clone was evaluated and the presumptive toxicity of L. casei-β was studied by toxicity test and histopathological findings, which were the same as negative controls. Our results support the use of L. casei as a live oral vector vaccine, and that the recombinant L. casei-β is a potential candidate for being used in the control of enterotoxemia diseases caused by C. perfringens types B and C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Viral vector-based prime-boost immunization regimens : a possible involvement of T-cell competition

    NARCIS (Netherlands)

    de Mare, A.; Lambeck, A. J. A.; Regts, J.; van Dam, G. M.; Nijman, H. W.; Snippe, H.; Wilschut, J.; Daemen, T.

    Vaccination with recombinant viral vectors may be impeded by preexisting vector-specific immunity or by vector-specific immunity induced during the priming immunization. It is assumed that virus-neutralizing antibodies represent the principal effector mechanism of vector-specific immunity, while

  18. Stable expression of Shigella dysenteriae serotype 1 O-antigen genes integrated into the chromosome of live Salmonella oral vaccine vector Ty21a.

    Science.gov (United States)

    Dharmasena, Madushini N; Osorio, Manuel; Filipova, Svetlana; Marsh, Christina; Stibitz, Scott; Kopecko, Dennis J

    2016-09-20

    Typhoid fever and shigellosis cause high morbidity and mortality worldwide, yet no anti-Shigella vaccine is currently available. However, to protect against typhoid fever, an approved vaccine, based on the attenuated Salmonella enterica serovar Typhi strain Ty21a is available. We have investigated Ty21a as a live oral vaccine vector for expression of heterologous foreign antigens to protect against other diseases (e.g. shigellosis, anthrax, and plague). Shigella LPS is a potent vaccine antigen for serotype-specific protection against Shigellae. We previously reported the construction of a Ty21a derivative expressing S. sonnei O-antigen by insertion of a large (∼12.5 kb) operon comprising the S. sonnei O-antigen biosynthetic genes into a targeted site within the Ty21a chromosome using modified λ red recombineering methods. In the current study, S. dysenteriae 1 O-antigen biosynthetic genes from 2 separate genetic loci, rfp and rfb were assembled and inserted into the Ty21a chromosome by λ red-mediated recombineering to construct strain Ty21a-Sd. To obtain a high level of heterologous LPS expression, the native upstream promoter was replaced with the constitutive lpp promoter, which resulted in Ty21a-Sdl with enhanced heterologous LPS expression. Both Ty21a-Sd and Ty21a-Sdl elicited significant serum antibody responses in mice against both Ty21a and this heterologous Shigella LPS, and conferred protection against virulent S. dysenteriae 1 challenge. This work represents progress toward the goal of a safe and effective vaccine against Shigella. Published by Oxford University Press on behalf of FEMS 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Databases and in silico tools for vaccine design.

    Science.gov (United States)

    He, Yongqun; Xiang, Zuoshuang

    2013-01-01

    In vaccine design, databases and in silico tools play different but complementary roles. Databases collect experimentally verified vaccines and vaccine components, and in silico tools provide computational methods to predict and design new vaccines and vaccine components. Vaccine-related databases include databases of vaccines and vaccine components. In the USA, the Food and Drug Administration (FDA) maintains a database of licensed human vaccines, and the US Department of Agriculture keeps a database of licensed animal vaccines. Databases of vaccine clinical trials and vaccines in research also exist. The important vaccine components include vaccine antigens, vaccine adjuvants, vaccine vectors, and -vaccine preservatives. The vaccine antigens can be whole proteins or immune epitopes. Various in silico vaccine design tools are also available. The Vaccine Investigation and Online Information Network (VIOLIN; http://www.violinet.org ) is a comprehensive vaccine database and analysis system. The VIOLIN database includes various types of vaccines and vaccine components. VIOLIN also includes Vaxign, a Web-based in silico vaccine design program based on the reverse vaccinology strategy. Vaccine information and resources can be integrated with Vaccine Ontology (VO). This chapter introduces databases and in silico tools that facilitate vaccine design, especially those in the VIOLIN system.

  20. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    Science.gov (United States)

    Bermúdez-Humarán, Luis G.; Innocentin, Silvia; Lefèvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  1. Alphavirus vector-based replicon particles expressing multivalent cross-protective Lassa virus glycoproteins.

    Science.gov (United States)

    Wang, Min; Jokinen, Jenny; Tretyakova, Irina; Pushko, Peter; Lukashevich, Igor S

    2018-01-29

    Lassa virus (LASV) is the most prevalent rodent-borne arenavirus circulated in West Africa. With population at risk from Senegal to Nigeria, LASV causes Lassa fever and is responsible for thousands of deaths annually. High genetic diversity of LASV is one of the challenges for vaccine R&D. We developed multivalent virus-like particle vectors (VLPVs) derived from the human Venezuelan equine encephalitis TC-83 IND vaccine (VEEV) as the next generation of alphavirus-based bicistronic RNA replicon particles. The genes encoding VEEV structural proteins were replaced with LASV glycoproteins (GPC) from distantly related clades I and IV with individual 26S promoters. Bicistronic RNA replicons encoding wild-type LASV GPC (GPCwt) and C-terminally deleted, non-cleavable modified glycoprotein (ΔGPfib), were encapsidated into VLPV particles using VEEV capsid and glycoproteins provided in trans. In transduced cells, VLPVs induced simultaneous expression of LASV GPCwt and ΔGPfib from 26S alphavirus promoters. LASV ΔGPfib was predominantly expressed as trimers, accumulated in the endoplasmic reticulum, induced ER stress and apoptosis promoting antigen cross-priming. VLPV vaccines were immunogenic and protective in mice and upregulated CD11c + /CD8 + dendritic cells playing the major role in cross-presentation. Notably, VLPV vaccination resulted in induction of cross-reactive multifunctional T cell responses after stimulation of immune splenocytes with peptide cocktails derived from LASV from clades I-IV. Multivalent RNA replicon-based LASV vaccines can be applicable for first responders, international travelers visiting endemic areas, military and lab personnel. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Novel bivalent vectored vaccine for control of myxomatosis and rabbit haemorrhagic disease.

    Science.gov (United States)

    Spibey, N; McCabe, V J; Greenwood, N M; Jack, S C; Sutton, D; van der Waart, L

    2012-03-24

    A novel, recombinant myxoma virus-rabbit haemorrhagic disease virus (RHDV) vaccine has been developed for the prevention of myxomatosis and rabbit haemorrhagic disease (RHD). A number of laboratory studies are described illustrating the safety and efficacy of the vaccine following subcutaneous administration in laboratory rabbits from four weeks of age onwards. In these studies, both vaccinated and unvaccinated control rabbits were challenged using pathogenic strains of RHD and myxoma viruses, and 100 per cent of the vaccinated rabbits were protected against both myxomatosis and RHD.

  3. Synergism/complementarity of recombinant adenoviral vectors and other vaccination platforms during induction of protective immunity against malaria

    Directory of Open Access Journals (Sweden)

    Ana Paula Morais Martins Almeida

    2011-08-01

    Full Text Available The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures, has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject.

  4. Safety and Tolerability of Conserved Region Vaccines Vectored by Plasmid DNA, Simian Adenovirus and Modified Vaccinia Virus Ankara Administered to Human Immunodeficiency Virus Type 1-Uninfected Adults in a Randomized, Single-Blind Phase I Trial: e101591

    National Research Council Canada - National Science Library

    Emma-Jo Hayton; Annie Rose; Umar Ibrahimsa; Mariarosaria Del Sorbo; Stefania Capone; Alison Crook; Antony P Black; Lucy Dorrell; Tomás Hanke

    2014-01-01

      Trial Design HIV-1 vaccine development has advanced slowly due to viral antigenic diversity, poor immunogenicity and recently, safety concerns associated with human adenovirus serotype-5 vectors...

  5. Knowledge-Based Green's Kernel for Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Tahir Farooq

    2010-01-01

    Full Text Available This paper presents a novel prior knowledge-based Green's kernel for support vector regression (SVR. After reviewing the correspondence between support vector kernels used in support vector machines (SVMs and regularization operators used in regularization networks and the use of Green's function of their corresponding regularization operators to construct support vector kernels, a mathematical framework is presented to obtain the domain knowledge about magnitude of the Fourier transform of the function to be predicted and design a prior knowledge-based Green's kernel that exhibits optimal regularization properties by using the concept of matched filters. The matched filter behavior of the proposed kernel function makes it suitable for signals corrupted with noise that includes many real world systems. We conduct several experiments mostly using benchmark datasets to compare the performance of our proposed technique with the results already published in literature for other existing support vector kernel over a variety of settings including different noise levels, noise models, loss functions, and SVM variations. Experimental results indicate that knowledge-based Green's kernel could be seen as a good choice among the other candidate kernel functions.

  6. Biology of Francisella tularensis subspecies holarctica live vaccine strain in the tick vector Dermacentor variabilis.

    Directory of Open Access Journals (Sweden)

    Rinosh J Mani

    Full Text Available BACKGROUND: The γ-proteobacterium Francisella tularensis is the etiologic agent of seasonal tick-transmitted tularemia epizootics in rodents and rabbits and of incidental infections in humans. The biology of F. tularensis in its tick vectors has not been fully described, particularly with respect to its quanta and duration of colonization, tissue dissemination, and transovarial transmission. A systematic study of the colonization of Dermacentor variabilis by the F. tularensis subsp. holarctica live vaccine strain (LVS was undertaken to better understand whether D. variabilis may serve as an inter-epizootic reservoir for F. tularensis. METHODOLOGY/PRINCIPAL FINDINGS: Colony-reared larva, nymph, and adult D. variabilis were artificially fed LVS via glass capillary tubes fitted over the tick mouthparts, and the level of colonization determined by microbial culture. Larvae and nymphs were initially colonized with 8.8 ± 0.8 × 10(1 and 1.1 ± 0.03 × 10(3 CFU/tick, respectively. Post-molting, a significant increase in colonization of both molted nymphs and adults occurred, and LVS persisted in 42% of molted adult ticks at 126 days post-capillary tube feeding. In adult ticks, LVS initially colonized the gut, disseminated to hemolymph and salivary glands by 21 days, and persisted up to 165 days. LVS was detected in the salivary secretions of adult ticks after four days post intra-hemocoelic inoculation, and LVS recovered from salivary gland was infectious to mice with an infectious dose 50% of 3 CFU. LVS in gravid female ticks colonized via the intra-hemocoelic route disseminated to the ovaries and then to the oocytes, but the pathogen was not recovered from the subsequently-hatched larvae. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that D. variabilis can be efficiently colonized with F. tularensis using artificial methods. The persistence of F. tularensis in D. variabilis suggests that this tick species may be involved in the maintenance of

  7. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine.

    Directory of Open Access Journals (Sweden)

    Daiane P Oldiges

    2016-12-01

    Full Text Available The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST. The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein-blasticidin deaminase, and HlGST fused to the MSA-1 (merozoite surface antigen 1 signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on Hl

  8. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network

    Science.gov (United States)

    2011-01-01

    Background Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH) annotation in the vaccine field. Vaccine Ontology (VO) is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of vaccine-gene interaction networks. As a test case, we have examined vaccines for Brucella, the causative agent of brucellosis in humans and animals. Results The VO-based SciMiner (VO-SciMiner) was developed to incorporate a total of 67 Brucella vaccine terms. A set of rules for term expansion of VO terms were learned from training data, consisting of 90 biomedical articles related to Brucella vaccine terms. VO-SciMiner demonstrated high recall (91%) and precision (99%) from testing a separate set of 100 manually selected biomedical articles. VO-SciMiner indexing exhibited superior performance in retrieving Brucella vaccine-related papers over that obtained with MeSH-based PubMed literature search. For example, a VO-SciMiner search of "live attenuated Brucella vaccine" returned 922 hits as of April 20, 2011, while a PubMed search of the same query resulted in only 74 hits. Using the abstracts of 14,947 Brucella-related papers, VO-SciMiner identified 140 Brucella genes associated with Brucella vaccines. These genes included known protective antigens, virulence factors, and genes closely related to Brucella vaccines. These VO-interacting Brucella genes were significantly over-represented in biological functional categories, including metabolite transport and metabolism, replication and repair, cell wall biogenesis, intracellular trafficking and secretion, posttranslational modification, and chaperones. Furthermore, a comprehensive interaction network of Brucella vaccines and genes were

  9. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network.

    Science.gov (United States)

    Hur, Junguk; Xiang, Zuoshuang; Feldman, Eva L; He, Yongqun

    2011-08-26

    Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH) annotation in the vaccine field. Vaccine Ontology (VO) is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of vaccine-gene interaction networks. As a test case, we have examined vaccines for Brucella, the causative agent of brucellosis in humans and animals. The VO-based SciMiner (VO-SciMiner) was developed to incorporate a total of 67 Brucella vaccine terms. A set of rules for term expansion of VO terms were learned from training data, consisting of 90 biomedical articles related to Brucella vaccine terms. VO-SciMiner demonstrated high recall (91%) and precision (99%) from testing a separate set of 100 manually selected biomedical articles. VO-SciMiner indexing exhibited superior performance in retrieving Brucella vaccine-related papers over that obtained with MeSH-based PubMed literature search. For example, a VO-SciMiner search of "live attenuated Brucella vaccine" returned 922 hits as of April 20, 2011, while a PubMed search of the same query resulted in only 74 hits. Using the abstracts of 14,947 Brucella-related papers, VO-SciMiner identified 140 Brucella genes associated with Brucella vaccines. These genes included known protective antigens, virulence factors, and genes closely related to Brucella vaccines. These VO-interacting Brucella genes were significantly over-represented in biological functional categories, including metabolite transport and metabolism, replication and repair, cell wall biogenesis, intracellular trafficking and secretion, posttranslational modification, and chaperones. Furthermore, a comprehensive interaction network of Brucella vaccines and genes were identified. The asserted

  10. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network

    Directory of Open Access Journals (Sweden)

    Xiang Zuoshuang

    2011-08-01

    Full Text Available Abstract Background Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH annotation in the vaccine field. Vaccine Ontology (VO is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of vaccine-gene interaction networks. As a test case, we have examined vaccines for Brucella, the causative agent of brucellosis in humans and animals. Results The VO-based SciMiner (VO-SciMiner was developed to incorporate a total of 67 Brucella vaccine terms. A set of rules for term expansion of VO terms were learned from training data, consisting of 90 biomedical articles related to Brucella vaccine terms. VO-SciMiner demonstrated high recall (91% and precision (99% from testing a separate set of 100 manually selected biomedical articles. VO-SciMiner indexing exhibited superior performance in retrieving Brucella vaccine-related papers over that obtained with MeSH-based PubMed literature search. For example, a VO-SciMiner search of "live attenuated Brucella vaccine" returned 922 hits as of April 20, 2011, while a PubMed search of the same query resulted in only 74 hits. Using the abstracts of 14,947 Brucella-related papers, VO-SciMiner identified 140 Brucella genes associated with Brucella vaccines. These genes included known protective antigens, virulence factors, and genes closely related to Brucella vaccines. These VO-interacting Brucella genes were significantly over-represented in biological functional categories, including metabolite transport and metabolism, replication and repair, cell wall biogenesis, intracellular trafficking and secretion, posttranslational modification, and chaperones. Furthermore, a comprehensive interaction network of Brucella

  11. VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics.

    Science.gov (United States)

    Megy, Karine; Emrich, Scott J; Lawson, Daniel; Campbell, David; Dialynas, Emmanuel; Hughes, Daniel S T; Koscielny, Gautier; Louis, Christos; Maccallum, Robert M; Redmond, Seth N; Sheehan, Andrew; Topalis, Pantelis; Wilson, Derek

    2012-01-01

    VectorBase (http://www.vectorbase.org) is a NIAID-supported bioinformatics resource for invertebrate vectors of human pathogens. It hosts data for nine genomes: mosquitoes (three Anopheles gambiae genomes, Aedes aegypti and Culex quinquefasciatus), tick (Ixodes scapularis), body louse (Pediculus humanus), kissing bug (Rhodnius prolixus) and tsetse fly (Glossina morsitans). Hosted data range from genomic features and expression data to population genetics and ontologies. We describe improvements and integration of new data that expand our taxonomic coverage. Releases are bi-monthly and include the delivery of preliminary data for emerging genomes. Frequent updates of the genome browser provide VectorBase users with increasing options for visualizing their own high-throughput data. One major development is a new population biology resource for storing genomic variations, insecticide resistance data and their associated metadata. It takes advantage of improved ontologies and controlled vocabularies. Combined, these new features ensure timely release of multiple types of data in the public domain while helping overcome the bottlenecks of bioinformatics and annotation by engaging with our user community.

  12. Carbohydrate-Based Ice Recrystallization Inhibitors Increase Infectivity and Thermostability of Viral Vectors

    Science.gov (United States)

    Ghobadloo, Shahrokh M.; Balcerzak, Anna K.; Gargaun, Ana; Muharemagic, Darija; Mironov, Gleb G.; Capicciotti, Chantelle J.; Briard, Jennie G.; Ben, Robert N.; Berezovski, Maxim V.

    2014-07-01

    The inability of vaccines to retain sufficient thermostability has been an obstacle to global vaccination programs. To address this major limitation, we utilized carbohydrate-based ice recrystallization inhibitors (IRIs) to eliminate the cold chain and stabilize the potency of Vaccinia virus (VV), Vesicular Stomatitis virus (VSV) and Herpes virus-1 (HSV-1). The impact of these IRIs was tested on the potency of the viral vectors using a plaque forming unit assay following room temperature storage, cryopreservation with successive freeze-thaw cycles and lyophilization. Viral potency after storage with all three conditions demonstrated that N-octyl-gluconamide (NOGlc) recovered the infectivity of shelf stored VV, 5.6 Log10 PFU mL-1 during 40 days, and HSV-1, 2.7 Log10 PFU mL-1 during 9 days. Carbon-linked antifreeze glycoprotein analogue ornithine-glycine-glycine-galactose (OGG-Gal) increases the recovery of VV and VSV more than 1 Log10 PFU mL-1 after 10 freeze-thaw cycles. In VSV, cryostorage with OGG-Gal maintains high infectivity and reduces temperature-induced aggregation of viral particles by 2 times that of the control. In total, OGG-Gal and NOGlc preserve virus potency during cryostorage. Remarkably, NOGlc has potential to eliminate the cold chain and permit room temperature storage of viral vectors.

  13. Vectors based on modified vaccinia Ankara expressing influenza H5N1 hemagglutinin induce substantial cross-clade protective immunity.

    Directory of Open Access Journals (Sweden)

    Annett Hessel

    utilizing MVA vector technology, should be based on the VN/1203 hemagglutinin. Furthermore, the recombinant MVA-HA-VN, as characterized in the present study, would be a promising candidate for such a vaccine.

  14. Mucosal immunization of rhesus monkeys against respiratory syncytial virus subgroups A and B and human parainfluenza virus type 3 by using a live cDNA-derived vaccine based on a host range-attenuated bovine parainfluenza virus type 3 vector backbone.

    Science.gov (United States)

    Schmidt, Alexander C; Wenzke, Daniel R; McAuliffe, Josephine M; St Claire, Marisa; Elkins, William R; Murphy, Brian R; Collins, Peter L

    2002-02-01

    Reverse genetics was used to develop a two-component, trivalent live attenuated vaccine against human parainfluenza virus type 3 (HPIV3) and respiratory syncytial virus (RSV) subgroups A and B. The backbone for each of the two components of this vaccine was the attenuated recombinant bovine/human PIV3 (rB/HPIV3), a recombinant BPIV3 in which the bovine HN and F protective antigens are replaced by their HPIV3 counterparts (48). This chimera retains the well-characterized host range attenuation phenotype of BPIV3, which appears to be appropriate for immunization of young infants. The open reading frames (ORFs) for the G and F major protective antigens of RSV subgroup A and B were each placed under the control of PIV3 transcription signals and inserted individually or in homologous pairs as supernumerary genes in the promoter proximal position of rB/HPIV3. The level of replication of rB/HPIV3-RSV chimeric viruses in the respiratory tract of rhesus monkeys was similar to that of their parent virus rB/HPIV3, and each of the chimeras induced a robust immune response to both RSV and HPIV3. RSV-neutralizing antibody titers induced by rB/HPIV3-RSV chimeric viruses were equivalent to those induced by infection with wild-type RSV, and HPIV3-specific antibody responses were similar to, or slightly less than, after infection with the rB/HPIV3 vector itself. This study describes a novel vaccine strategy against RSV in which vaccine viruses with a common attenuated backbone, specifically rB/HPIV3 derivatives expressing the G and/or F major protective antigens of RSV subgroup A and of RSV subgroup B, are used to immunize by the intranasal route against RSV and HPIV3, which are the first and second most important viral agents of pediatric respiratory tract disease worldwide.

  15. A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus.

    Science.gov (United States)

    Tsuda, Yoshimi; Caposio, Patrizia; Parkins, Christopher J; Botto, Sara; Messaoudi, Ilhem; Cicin-Sain, Luka; Feldmann, Heinz; Jarvis, Michael A

    2011-08-01

    Human outbreaks of Ebola virus (EBOV) are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees) are an important source of EBOV transmission to humans due to increased hunting of wildlife including the 'bush-meat' trade. Cytomegalovirus (CMV) is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes. We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a 'proof-of-concept' for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV) vector expressing a CD8+ T cell epitope from the nucleoprotein (NP) of Zaire ebolavirus (ZEBOV) (MCMV/ZEBOV-NP(CTL)). MCMV/ZEBOV-NP(CTL) induced high levels of long-lasting (>8 months) CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection. This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for 'disseminating' CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.

  16. A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus.

    Directory of Open Access Journals (Sweden)

    Yoshimi Tsuda

    2011-08-01

    Full Text Available Human outbreaks of Ebola virus (EBOV are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees are an important source of EBOV transmission to humans due to increased hunting of wildlife including the 'bush-meat' trade. Cytomegalovirus (CMV is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes.We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a 'proof-of-concept' for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV vector expressing a CD8+ T cell epitope from the nucleoprotein (NP of Zaire ebolavirus (ZEBOV (MCMV/ZEBOV-NP(CTL. MCMV/ZEBOV-NP(CTL induced high levels of long-lasting (>8 months CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection.This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for 'disseminating' CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.

  17. A novel stepwise support vector machine (SVM) method based on ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-23

    Nov 23, 2011 ... began to use computational approaches, particularly machine learning methods to identify pre-miRNAs (Xue et al., 2005; Huang et al., 2007; Jiang et al., 2007). Xue et al. (2005) presented a support vector machine (SVM)- based classifier called triplet-SVM, which classifies human pre-miRNAs from pseudo ...

  18. The Mathematics of Divergence Based Online Learning in Vector Quantization

    NARCIS (Netherlands)

    Villmann, Thomas; Haase, Sven; Schleif, Frank-Michael; Hammer, Barbara; Biehl, Michael

    2010-01-01

    We propose the utilization of divergences in gradient descent learning of supervised and unsupervised vector quantization as an alternative for the squared Euclidean distance. The approach is based on the determination of the Fréchet-derivatives for the divergences, wich can be immediately plugged

  19. Generation of Recombinant Capripoxvirus Vectors for Vaccines and Gene Knockout Function Studies.

    Science.gov (United States)

    Boshra, Hani; Cao, Jingxin; Babiuk, Shawn

    2016-01-01

    The ability to manipulate capripoxvirus through gene knockouts and gene insertions has become an increasingly valuable research tool in elucidating the function of individual genes of capripoxvirus, as well as in the development of capripoxvirus-based recombinant vaccines. The homologous recombination technique is used to generate capripoxvirus knockout viruses (KO), and is based on the targeting a particular viral gene of interest. This technique can also be used to insert a gene of interest. A protocol for the generation of a viral gene knockout is described. This technique involves the use of a plasmid which encodes the flanking sequences of the regions where the homologous recombination will occur, and will result in the insertion of an EGFP reporter gene for visualization of recombinant virus, as well as the E. coli gpt gene as a positive selection marker. If an additional gene is to be incorporated, this can be achieved by inserting a gene of interest for expression under a poxvirus promoter into the plasmid between the flanking regions for insertion. This chapter describes a protocol for generating such recombinant capripoxviruses.

  20. Production of papillomavirus-based gene transfer vectors.

    Science.gov (United States)

    Buck, Christopher B; Thompson, Cynthia D

    2007-12-01

    Papillomaviruses are a diverse group of pathogens that infect the skin and mucosal tissues of humans and various animal species. The viral genome is a circular, double-stranded DNA molecule approximately 8-kb in length. The non-enveloped papillomavirus capsid is composed of a virally encoded major coat protein, L1, and a minor coat protein, L2. L1 and L2 co-assemble when expressed in mammalian cells, and can promiscuously encapsidate essentially any papillomavirus-based gene transfer vectors (also known as pseudoviruses). This unit outlines the production and propagative amplification of papillomaviral vectors. The system represents a highly tractable method for converting pre-existing mammalian expression plasmids into infectious virus stocks. The resulting vectors have utility for in vitro, as well as in vivo gene delivery applications. (c) 2007 by John Wiley & Sons, Inc.

  1. Retrovirus-based vectors for transient and permanent cell modification.

    Science.gov (United States)

    Schott, Juliane W; Hoffmann, Dirk; Schambach, Axel

    2015-10-01

    Retroviral vectors are commonly employed for long-term transgene expression via integrating vector technology. However, three alternative retrovirus-based platforms are currently available that allow transient cell modification. Gene expression can be mediated from either episomal DNA or RNA templates, or selected proteins can be directly transferred through retroviral nanoparticles. The different technologies are functionally graded with respect to safety, expression magnitude and expression duration. Improvement of the initial technologies, including modification of vector designs, targeted increase in expression strength and duration as well as improved safety characteristics, has allowed maturation of retroviral systems into efficient and promising tools that meet the technological demands of a wide variety of potential application areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. High stability vector-based direct power control for DFIG-based wind turbine

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Wu, Xiaojie

    2015-01-01

    This paper proposes an improved vector-based direct power control (DPC) strategy for the doubly-fed induction generator (DFIG)-based wind energy conversion system. Based on the small signal model, the proposed DPC improves the stability of the DFIG, and avoids the DFIG operating in the marginal...... stable region (the real part of eigenvalue is equal to zero). The vector-based DPC combines with a space vector modulation technique to achieve a constant switching frequency. The simulation and experimental results clearly validate the effectiveness and feasibility of the proposed vector-based DPC...

  3. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    Science.gov (United States)

    Vitelli, Alessandra; Quirion, Mary R; Lo, Chia-Yun; Misplon, Julia A; Grabowska, Agnieszka K; Pierantoni, Angiolo; Ammendola, Virginia; Price, Graeme E; Soboleski, Mark R; Cortese, Riccardo; Colloca, Stefano; Nicosia, Alfredo; Epstein, Suzanne L

    2013-01-01

    Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.

  4. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    Directory of Open Access Journals (Sweden)

    Alessandra Vitelli

    Full Text Available Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP and matrix 1 (M1. We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.

  5. malERA: An updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication.

    Science.gov (United States)

    2017-11-01

    Since the turn of the century, a remarkable expansion has been achieved in the range and effectiveness of products and strategies available to prevent, treat, and control malaria, including advances in diagnostics, drugs, vaccines, and vector control. These advances have once again put malaria elimination on the agenda. However, it is clear that even with the means available today, malaria control and elimination pose a formidable challenge in many settings. Thus, currently available resources must be used more effectively, and new products and approaches likely to achieve these goals must be developed. This paper considers tools (both those available and others that may be required) to achieve and maintain malaria elimination. New diagnostics are needed to direct treatment and detect transmission potential; new drugs and vaccines to overcome existing resistance and protect against clinical and severe disease, as well as block transmission and prevent relapses; and new vector control measures to overcome insecticide resistance and more powerfully interrupt transmission. It is also essential that strategies for combining new and existing approaches are developed for different settings to maximise their longevity and effectiveness in areas with continuing transmission and receptivity. For areas where local elimination has been recently achieved, understanding which measures are needed to maintain elimination is necessary to prevent rebound and the reestablishment of transmission. This becomes increasingly important as more countries move towards elimination.

  6. Clinical Trials of an Experimental Ebola Vaccine: A Canadian ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This initiative supports phases 2 and 3 clinical trials of an experimental Ebola vaccine. The experimental vaccine is based on an attenuated recombinant Vesicular Stomatitis Virus vector (VSV-EBOV). The Public Health Agency of Canada developed the vaccine and licensed it to NewLink Genetics and Merck. Early vaccine ...

  7. Efficient Vector-Based Forwarding for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng Xie

    2010-01-01

    Full Text Available Underwater Sensor Networks (UWSNs are significantly different from terrestrial sensor networks in the following aspects: low bandwidth, high latency, node mobility, high error probability, and 3-dimensional space. These new features bring many challenges to the network protocol design of UWSNs. In this paper, we tackle one fundamental problem in UWSNs: robust, scalable, and energy efficient routing. We propose vector-based forwarding (VBF, a geographic routing protocol. In VBF, the forwarding path is guided by a vector from the source to the target, no state information is required on the sensor nodes, and only a small fraction of the nodes is involved in routing. To improve the robustness, packets are forwarded in redundant and interleaved paths. Further, a localized and distributed self-adaptation algorithm allows the nodes to reduce energy consumption by discarding redundant packets. VBF performs well in dense networks. For sparse networks, we propose a hop-by-hop vector-based forwarding (HH-VBF protocol, which adapts the vector-based approach at every hop. We evaluate the performance of VBF and HH-VBF through extensive simulations. The simulation results show that VBF achieves high packet delivery ratio and energy efficiency in dense networks and HH-VBF has high packet delivery ratio even in sparse networks.

  8. Quality of the transgene-specific CD8+ T cell response induced by adenoviral vector immunization is critically influenced by virus dose and route of vaccination

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Ørskov, Cathrine; Thomsen, Allan Randrup

    2010-01-01

    Adenoviral vectors have been widely used for experimental gene therapy and vaccination, yet there is a surprising lack of knowledge connecting the route and dose of adenovirus administration to the induced transgene-specific immune response. We have recently demonstrated polyfunctional CD8(+) T...... effector functions, accumulated in the spleen. These findings indicate that the localization of the adenoviral inoculum and not the total Ag load determines the quality of the CD8(+) T cell response induced with adenoviral vaccines....

  9. Outpatient-based pneumococcal vaccine campaign and survey of perceptions about pneumococcal vaccination in patients and doctors.

    Science.gov (United States)

    Song, Joon Young; Cheong, Hee Jin; Heo, Jung Yeon; Noh, Ji Yun; Seo, Yu Bin; Kim, In Seon; Choi, Won Suk; Kim, Woo Joo

    2013-03-01

    Despite the ready availability of pneumococcal vaccine, vaccination rates are quite low in South Korea. This study was designed to assess perceptions and awareness about pneumococcal vaccines among subjects at risk and find strategies to increases vaccine coverage rates. A cross sectional, community-based survey was conducted to assess perceptions about the pneumococcal vaccine at a local public health center. In a tertiary hospital, an outpatient- based pneumococcal vaccine campaign was carried out for the elderly and individuals with chronic co-morbidities from May to July of 2007. Based on the survey, only 7.6% were ever informed about pneumococcal vaccination. The coverage rates of the pneumococcal vaccine before and after the hospital campaign showed an increased annual rate from 3.39% to 5.91%. The most common reason for vaccination was "doctor's advice" (53.3%). As for the reasons for not receiving vaccination, about 75% of high risk patients were not aware of the pneumococcal vaccine, which was the most important barrier to vaccination. Negative clinician's attitude was the second most common cause of non-vaccination. Annual outpatient-based campaigns early in the influenza season may improve pneumococcal vaccine coverage rates. Doctor's advice was the most important encouraging factor for vaccination.

  10. Preclinical pharmacokinetics and biodistribution of human papillomavirus DNA vaccine delivered in human endogenous retrovirus envelope-coated baculovirus vector.

    Science.gov (United States)

    Cho, Hee-Jeong; Lee, Soondong; Im, Saewon; Kim, Mi-Gyeong; Lee, Jaewoo; Lee, Hee-Jung; Lee, Keyong Ho; Kim, Sujeong; Kim, Young Bong; Oh, Yu-Kyoung

    2012-02-01

    Test pharmacokinetics and biodistribution of a human papillomavirus(HPV)16L1 DNA vaccine delivered in human endogenous retrovirus envelope protein (HERV)-expressing baculovirus (AcHERV) and those of naked plasmid vaccine. HPV16L1 gene was administrated as a naked plasmid or in AcHERV to mice via intravenous and intramuscular routes. HPV16L1 gene was extracted and assayed by quantitative real-time polymerase chain reaction, which was determined to have a detection limit of 50 copies/µg genomic DNA.. Mean residence times of HPV16L1 in AcHERV were 4.8- and 272.2-fold higher than naked HPV16L1 DNA vaccines after intramuscular and intravenous administration, respectively. Naked HPV16L1 DNA levels 1 month after injection were >3 orders of magnitude lower in each tissue tested than AcHERV-delivered HPV16L1, which was retained in most tissues without specific tissue tropism. AcHERV-delivered HPV16L1 administered intramuscularly persisted at the injection sites. However, the levels of copy numbers in muscle were low (1,800/μg genomic DNA) after 1 month, and undetectable after 6 months. HPV16L1 delivered via AcHERV resides longer in the body than HPV16L1 in naked form. The lack of tissue tropism ensures the safety of AcHERV vectors for further development.

  11. Protective Efficacy and Immunogenicity of an Adenoviral Vector Vaccine Encoding the Codon-Optimized F Protein of Respiratory Syncytial Virus▿

    Science.gov (United States)

    Kohlmann, Rebekka; Schwannecke, Sarah; Tippler, Bettina; Ternette, Nicola; Temchura, Vladimir V.; Tenbusch, Matthias; Überla, Klaus; Grunwald, Thomas

    2009-01-01

    Adenoviral vectors (AdV) have received considerable attention for vaccine development because of their high immunogenicity and efficacy. In previous studies, it was shown that DNA immunization of mice with codon-optimized expression plasmids encoding the fusion protein of respiratory syncytial virus (RSV F) resulted in enhanced protection against RSV challenge compared to immunization with plasmids carrying the wild-type cDNA sequence of RSV F. In this study, we constructed AdV carrying the codon-optimized full-length RSV F gene (AdV-F) or the soluble form of the RSV F gene (AdV-Fsol). BALB/c mice were immunized twice with AdV-F or AdV-Fsol and challenged with RSV intranasally. Substantial levels of antibody to RSV F were induced by both AdV vaccines, with peak neutralizing-antibody titers of 1:900. Consistently, the viral loads in lung homogenates and bronchoalveolar lavage fluids were significantly reduced by a factor of more than 60,000. The protection against viral challenge could be measured even 8 months after the booster immunization. AdV-F and AdV-Fsol induced similar levels of immunogenicity and protective efficacy. Therefore, these results encourage further development of AdV vaccines against RSV infection in humans. PMID:19776123

  12. Protective efficacy and immunogenicity of an adenoviral vector vaccine encoding the codon-optimized F protein of respiratory syncytial virus.

    Science.gov (United States)

    Kohlmann, Rebekka; Schwannecke, Sarah; Tippler, Bettina; Ternette, Nicola; Temchura, Vladimir V; Tenbusch, Matthias; Uberla, Klaus; Grunwald, Thomas

    2009-12-01

    Adenoviral vectors (AdV) have received considerable attention for vaccine development because of their high immunogenicity and efficacy. In previous studies, it was shown that DNA immunization of mice with codon-optimized expression plasmids encoding the fusion protein of respiratory syncytial virus (RSV F) resulted in enhanced protection against RSV challenge compared to immunization with plasmids carrying the wild-type cDNA sequence of RSV F. In this study, we constructed AdV carrying the codon-optimized full-length RSV F gene (AdV-F) or the soluble form of the RSV F gene (AdV-Fsol). BALB/c mice were immunized twice with AdV-F or AdV-Fsol and challenged with RSV intranasally. Substantial levels of antibody to RSV F were induced by both AdV vaccines, with peak neutralizing-antibody titers of 1:900. Consistently, the viral loads in lung homogenates and bronchoalveolar lavage fluids were significantly reduced by a factor of more than 60,000. The protection against viral challenge could be measured even 8 months after the booster immunization. AdV-F and AdV-Fsol induced similar levels of immunogenicity and protective efficacy. Therefore, these results encourage further development of AdV vaccines against RSV infection in humans.

  13. TMV-Gate vectors: Gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins

    Science.gov (United States)

    Kagale, Sateesh; Uzuhashi, Shihomi; Wigness, Merek; Bender, Tricia; Yang, Wen; Borhan, M. Hossein; Rozwadowski, Kevin

    2012-01-01

    Plant viral expression vectors are advantageous for high-throughput functional characterization studies of genes due to their capability for rapid, high-level transient expression of proteins. We have constructed a series of tobacco mosaic virus (TMV) based vectors that are compatible with Gateway technology to enable rapid assembly of expression constructs and exploitation of ORFeome collections. In addition to the potential of producing recombinant protein at grams per kilogram FW of leaf tissue, these vectors facilitate either N- or C-terminal fusions to a broad series of epitope tag(s) and fluorescent proteins. We demonstrate the utility of these vectors in affinity purification, immunodetection and subcellular localisation studies. We also apply the vectors to characterize protein-protein interactions and demonstrate their utility in screening plant pathogen effectors. Given its broad utility in defining protein properties, this vector series will serve as a useful resource to expedite gene characterization efforts. PMID:23166857

  14. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network

    OpenAIRE

    Xiang Zuoshuang; Hur Junguk; Feldman Eva L; He Yongqun

    2011-01-01

    Abstract Background Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH) annotation in the vaccine field. Vaccine Ontology (VO) is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of va...

  15. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine.

    Science.gov (United States)

    Theisen, Michael; Jore, Matthijs M; Sauerwein, Robert

    2017-04-01

    Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which are essential for the transmission to the mosquito vector. A vaccine targeting the sexual stages of the parasite and thus blocking transmission will be instrumental for the eradication of malaria. One of the leading transmission blocking vaccine candidates is the sexual stage antigen Pfs48/45. Areas covered: PubMed was searched to review the progress and future prospects for clinical development of a Pfs48/45-based subunit vaccine. We will focus on biological function, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production of recombinant protein and preclinical studies. Expert commentary: Pfs48/45 is one of the lead-candidates for a transmission blocking vaccine and should be further explored in clinical trials.

  16. An Efficient Audio Classification Approach Based on Support Vector Machines

    OpenAIRE

    Lhoucine Bahatti; Omar Bouattane; My Elhoussine Echhibat; Mohamed Hicham Zaggaf

    2016-01-01

    In order to achieve an audio classification aimed to identify the composer, the use of adequate and relevant features is important to improve performance especially when the classification algorithm is based on support vector machines. As opposed to conventional approaches that often use timbral features based on a time-frequency representation of the musical signal using constant window, this paper deals with a new audio classification method which improves the features extraction according ...

  17. A thermostable messenger RNA based vaccine against rabies.

    Science.gov (United States)

    Stitz, Lothar; Vogel, Annette; Schnee, Margit; Voss, Daniel; Rauch, Susanne; Mutzke, Thorsten; Ketterer, Thomas; Kramps, Thomas; Petsch, Benjamin

    2017-12-01

    Although effective rabies virus vaccines have been existing for decades, each year, rabies virus infections still cause around 50.000 fatalities worldwide. Most of these cases occur in developing countries, where these vaccines are not available. The reasons for this are the prohibitive high costs of cell culture or egg grown rabies virus vaccines and the lack of a functional cold chain in many regions in which rabies virus is endemic. Here, we describe the excellent temperature resistance of a non-replicating mRNA based rabies virus vaccine encoding the rabies virus glycoprotein (RABV-G). Prolonged storage of the vaccine from -80°C to up to +70°C for several months did not impact the protective capacity of the mRNA vaccine. Efficacy after storage was demonstrated by the induction of rabies specific virus neutralizing antibodies and protection in mice against lethal rabies infection. Moreover, storing the vaccine at oscillating temperatures between +4° and +56°C for 20 cycles in order to simulate interruptions of the cold chain during vaccine transport, did not affect the vaccine's immunogenicity and protective characteristics, indicating that maintenance of a cold chain is not essential for this vaccine.

  18. A thermostable messenger RNA based vaccine against rabies.

    Directory of Open Access Journals (Sweden)

    Lothar Stitz

    2017-12-01

    Full Text Available Although effective rabies virus vaccines have been existing for decades, each year, rabies virus infections still cause around 50.000 fatalities worldwide. Most of these cases occur in developing countries, where these vaccines are not available. The reasons for this are the prohibitive high costs of cell culture or egg grown rabies virus vaccines and the lack of a functional cold chain in many regions in which rabies virus is endemic. Here, we describe the excellent temperature resistance of a non-replicating mRNA based rabies virus vaccine encoding the rabies virus glycoprotein (RABV-G. Prolonged storage of the vaccine from -80°C to up to +70°C for several months did not impact the protective capacity of the mRNA vaccine. Efficacy after storage was demonstrated by the induction of rabies specific virus neutralizing antibodies and protection in mice against lethal rabies infection. Moreover, storing the vaccine at oscillating temperatures between +4° and +56°C for 20 cycles in order to simulate interruptions of the cold chain during vaccine transport, did not affect the vaccine's immunogenicity and protective characteristics, indicating that maintenance of a cold chain is not essential for this vaccine.

  19. Immunogenicity of ORFV-based vectors expressing the rabies virus glycoprotein in livestock species.

    Science.gov (United States)

    Martins, Mathias; Joshi, Lok R; Rodrigues, Fernando S; Anziliero, Deniz; Frandoloso, Rafael; Kutish, Gerald F; Rock, Daniel L; Weiblen, Rudi; Flores, Eduardo F; Diel, Diego G

    2017-11-01

    The parapoxvirus Orf virus (ORFV) encodes several immunomodulatory proteins (IMPs) that modulate host-innate and pro-inflammatory responses and has been proposed as a vaccine delivery vector for use in animal species. Here we describe the construction and characterization of two recombinant ORFV vectors expressing the rabies virus (RABV) glycoprotein (G). The RABV-G gene was inserted in the ORFV024 or ORFV121 gene loci, which encode for IMPs that are unique to parapoxviruses and inhibit activation of the NF-κB signaling pathway. The immunogenicity of the resultant recombinant viruses (ORFV∆024RABV-G or ORFV∆121RABV-G, respectively) was evaluated in pigs and cattle. Immunization of the target species with ORFV∆024RABV-G and ORFV∆121RABV-G elicited robust neutralizing antibody responses against RABV. Notably, neutralizing antibody titers induced in ORFV∆121RABV-G-immunized pigs and cattle were significantly higher than those detected in ORFV∆024RABV-G-immunized animals, indicating a higher immunogenicity of ORFVΔ121-based vectors in these animal species. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Efficient Transient Expression of Recombinant Proteins in Plants by the Novel pEff Vector Based on the Genome of Potato Virus X.

    Science.gov (United States)

    Mardanova, Eugenia S; Blokhina, Elena A; Tsybalova, Liudmila M; Peyret, Hadrien; Lomonossoff, George P; Ravin, Nikolai V

    2017-01-01

    Agroinfiltration of plant leaves with binary vectors carrying a gene of interest within a plant viral vector is a rapid and efficient method for protein production in plants. Previously, we constructed a self-replicating vector, pA7248AMV, based on the genetic elements of potato virus X (PVX), and have shown that this vector can be used for the expression of recombinant proteins in Nicotiana benthamiana. However, this vector is almost 18 kb long and therefore not convenient for genetic manipulation. Furthermore, for efficient expression of the target protein it should be co-agroinfiltrated with an additional binary vector expressing a suppressor of post-transcriptional gene silencing. Here, we improved this expression system by creating the novel pEff vector. Its backbone is about 5 kb shorter than the original vector and it contains an expression cassette for the silencing suppressor, P24, from grapevine leafroll-associated virus-2 alongside PVX genetic elements, thus eliminating the need of co-agroinfiltration. The pEff vector provides green fluorescent protein expression levels of up to 30% of total soluble protein. The novel vector was used for expression of the influenza vaccine candidate, M2eHBc, consisting of an extracellular domain of influenza virus M2 protein (M2e) fused to hepatitis B core antigen. Using the pEff system, M2eHBc was expressed to 5-10% of total soluble protein, several times higher than with original pA7248AMV vector. Plant-produced M2eHBc formed virus-like particles in vivo, as required for its use as a vaccine. The new self-replicating pEff vector could be used for fast and efficient production of various recombinant proteins in plants.

  1. A goat poxvirus-vectored peste-des-petits-ruminants vaccine induces long-lasting neutralization antibody to high levels in goats and sheep.

    Science.gov (United States)

    Chen, Weiye; Hu, Sen; Qu, Linmao; Hu, Qianqian; Zhang, Qian; Zhi, Haibing; Huang, Kehe; Bu, Zhigao

    2010-07-05

    Recombinant capripoxvirus (CPV) is a promising candidate differentiating infected from vaccinated animals (DIVA) vaccine against peste-des-petits-ruminants (PPR). In order for recombinant CPV to be successfully used in the field, there should exist dependable indicators for quality control of vaccine products, surveillance and vaccination evaluation. Viral neutralization antibody (VNA) is correlated to protection against PPR and is a technically feasible indicator for this purpose. The immunogenicity of this vectored vaccine in goats and sheep, however, has not been fully evaluated. In this study, we generated two recombinant CPV viruses, rCPV-PPRVH and rCPV-PPRVF, that express PPR virus (PPRV) glycoproteins H and F, respectively. Vaccination studies with different dosages of recombinant viruses showed that rCPV-PPRVH was a more potent inducer of PPRV VNA than rCPV-PPRVF. One dose of rCPV-PPRVH was enough to seroconvert 80% of immunized sheep. A second dose induced significantly higher PPRV VNA titers. There was no significant difference in PPRV VNA responses between goats and sheep. Subcutaneous inoculation also induced a significant PPRV VNA response. PPRV VNA could be detected for over 6 months in more than 80% of vaccinated goats and sheep. Boost vaccination at 6-month intervals induced significant re-boost efficacy of PPRV VNA in goats and sheep. More over, two doses of rCPV-PPRVH could completely overcome the interference caused by pre-existing immunity to the CPV vaccine backbone in animals. Vaccination with rCPV-PPRVH also protected goats from virulent CPV challenge. Our results demonstrate that VNA can serve as a dependent indicator for effective vaccination and immune protection of animals in the field. The recombinant CPV vaccine used in our studies could be a practical and useful candidate DIVA vaccine in countries where PPR newly emerges or where stamp-out plans are yet to be implemented. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Secreted Expression of the Cap Gene of Porcine Circovirus Type 2 in Classical Swine Fever Virus C-Strain: Potential of C-Strain Used as a Vaccine Vector

    Directory of Open Access Journals (Sweden)

    Lingkai Zhang

    2017-10-01

    Full Text Available Bivalent vaccines based on live attenuated viruses expressing a heterologous protein are an attractive strategy to address co-infections with various pathogens in the field. Considering the excellent efficacy and safety of the lapinized live attenuated vaccine C-strain (HCLV strain of classical swine fever virus (CSFV, we proposed that C-strain has the potential as a viral vector for developing bivalent vaccines. To this end, we generated three recombinant viruses based on C-strain, one expressing the capsid (Cap gene of porcine circovirus type 2 (PCV2 with the nuclear localization signal (NLS (rHCLV-2ACap, and the other two expressing the PCV2 Cap gene without the NLS yet containing the signal peptide of the prolactin gene (rHCLV-pspCap or that of the ubiquitin-specific peptidase gene (rHCLV-uspCap. All the recombinant viruses exhibited phenotypes similar to those of the parental virus and produced high-level anti-CSFV neutralizing antibodies (NAbs in rabbits. Interestingly, rHCLV-uspCap and rHCLV-pspCap, but not rHCLV-2ACap, elicited detectable anti-Cap and -PCV2 NAbs in rabbits. Taken together, our data demonstrate that C-strain can be used as a viral vector to develop bivalent vaccines.

  3. Ebola Virus Disease Candidate Vaccines Under Evaluation in Clinical Trials

    Science.gov (United States)

    2016-06-02

    vaccines against Ebola virus disease, with a focus on those that are currently under evaluation in clinical trials. INTRODUCTION Filoviruses (the...Crucell Holland B.V. developed the Ad26-vectored EVD vaccine Ad26.ZEBOV based on extensive experience testing Ad26 and Ad35 vectors for malaria and...a vector in the development of vaccines against many diseases, including malaria , hepatitis C, influenza, and, of course, filovirus diseases

  4. DNA-based influenza vaccines as immunoprophylactic agents toward universality.

    Science.gov (United States)

    Zhang, Han; El Zowalaty, Mohamed E

    2016-01-01

    Influenza is an illness of global public health concern. Influenza viruses have been responsible for several pandemics affecting humans. Current influenza vaccines have proved satisfactory safety; however, they have limitations and do not provide protection against unexpected emerging influenza virus strains. Therefore, there is an urgent need for alternative approaches to conventional influenza vaccines. The development of universal influenza vaccines will help alleviate the severity of influenza pandemics. Influenza DNA vaccines have been the subject of many studies over the past decades due to their ability to induce broad-based protective immune responses in various animal models. The present review highlights the recent advances in influenza DNA vaccine research and its potential as an affordable universal influenza vaccine.

  5. Early phase clinical trials with human immunodeficiency virus-1 and malaria vectored vaccines in The Gambia: frontline challenges in study design and implementation.

    Science.gov (United States)

    Afolabi, Muhammed O; Adetifa, Jane U; Imoukhuede, Egeruan B; Viebig, Nicola K; Kampmann, Beate; Bojang, Kalifa

    2014-05-01

    Human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) and malaria are among the most important infectious diseases in developing countries. Existing control strategies are unlikely to curtail these diseases in the absence of efficacious vaccines. Testing of HIV and malaria vaccines candidates start with early phase trials that are increasingly being conducted in developing countries where the burden of the diseases is high. Unique challenges, which affect planning and implementation of vaccine trials according to internationally accepted standards have thus been identified. In this review, we highlight specific challenges encountered during two early phase trials of novel HIV-1 and malaria vectored vaccine candidates conducted in The Gambia and how some of these issues were pragmatically addressed. We hope our experience will be useful for key study personnel involved in day-to-day running of similar clinical trials. It may also guide future design and implementation of vaccine trials in resource-constrained settings.

  6. Enhancement of protective efficacy through adenoviral vectored vaccine priming and protein boosting strategy encoding triosephosphate isomerase (SjTPI) against Schistosoma japonicum in mice.

    Science.gov (United States)

    Dai, Yang; Wang, Xiaoting; Tang, Jianxia; Zhao, Song; Xing, Yuntian; Dai, Jianrong; Jin, Xiaolin; Zhu, Yinchang

    2015-01-01

    Schistosomiasis japonica is a zoonotic parasitic disease; developing transmission blocking veterinary vaccines are urgently needed for the prevention and control of schistosomiasis in China. Heterologous prime-boost strategy, a novel vaccination approach, is more effective in enhancing vaccine efficacy against multiple pathogens. In the present study, we established a novel heterologous prime-boost vaccination strategy, the rAdV-SjTPI.opt intramuscular priming and rSjTPI subcutaneous boosting strategy, and evaluated its protective efficacy against Schistosoma japonicum in mice. Adenoviral vectored vaccine (rAdV-SjTPI.opt) and recombinant protein vaccine (rSjTPI) were prepared and used in different combinations as vaccines in a mouse model. The specific immune responses and protective efficacies were evaluated. Furthermore, the longevity of protective efficacy was also determined. Results showed that the rAdV-SjTPI.opt priming-rSjTPI boosting strategy elicited higher levels of specific IgG responses and broad-spectrum specific cellular immune responses. The protective efficacy could reach up to nearly 70% and 50% of protection could be observed at 10 weeks after the last immunization in mice. The rAdV-SjTPI.opt intramuscular priming-rSjTPI subcutaneous boosting vaccination strategy is a novel, highly efficient, and stable approach to developing vaccines against Schistosoma japonicum infections in China.

  7. Enhancement of protective efficacy through adenoviral vectored vaccine priming and protein boosting strategy encoding triosephosphate isomerase (SjTPI against Schistosoma japonicum in mice.

    Directory of Open Access Journals (Sweden)

    Yang Dai

    Full Text Available Schistosomiasis japonica is a zoonotic parasitic disease; developing transmission blocking veterinary vaccines are urgently needed for the prevention and control of schistosomiasis in China. Heterologous prime-boost strategy, a novel vaccination approach, is more effective in enhancing vaccine efficacy against multiple pathogens. In the present study, we established a novel heterologous prime-boost vaccination strategy, the rAdV-SjTPI.opt intramuscular priming and rSjTPI subcutaneous boosting strategy, and evaluated its protective efficacy against Schistosoma japonicum in mice.Adenoviral vectored vaccine (rAdV-SjTPI.opt and recombinant protein vaccine (rSjTPI were prepared and used in different combinations as vaccines in a mouse model. The specific immune responses and protective efficacies were evaluated. Furthermore, the longevity of protective efficacy was also determined. Results showed that the rAdV-SjTPI.opt priming-rSjTPI boosting strategy elicited higher levels of specific IgG responses and broad-spectrum specific cellular immune responses. The protective efficacy could reach up to nearly 70% and 50% of protection could be observed at 10 weeks after the last immunization in mice.The rAdV-SjTPI.opt intramuscular priming-rSjTPI subcutaneous boosting vaccination strategy is a novel, highly efficient, and stable approach to developing vaccines against Schistosoma japonicum infections in China.

  8. Biosensor method and system based on feature vector extraction

    Science.gov (United States)

    Greenbaum, Elias [Knoxville, TN; Rodriguez, Jr., Miguel; Qi, Hairong [Knoxville, TN; Wang, Xiaoling [San Jose, CA

    2012-04-17

    A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  9. Protein and modified vaccinia virus Ankara-based influenza virus nucleoprotein vaccines are differentially immunogenic in BALB/c mice.

    Science.gov (United States)

    Altenburg, A F; Magnusson, S E; Bosman, F; Stertman, L; de Vries, R D; Rimmelzwaan, G F

    2017-10-01

    Because of the high variability of seasonal influenza viruses and the eminent threat of influenza viruses with pandemic potential, there is great interest in the development of vaccines that induce broadly protective immunity. Most probably, broadly protective influenza vaccines are based on conserved proteins, such as nucleoprotein (NP). NP is a vaccine target of interest as it has been shown to induce cross-reactive antibody and T cell responses. Here we tested and compared various NP-based vaccine preparations for their capacity to induce humoral and cellular immune responses to influenza virus NP. The immunogenicity of protein-based vaccine preparations with Matrix-M™ adjuvant as well as recombinant viral vaccine vector modified Vaccinia virus Ankara (MVA) expressing the influenza virus NP gene, with or without modifications that aim at optimization of CD8 + T cell responses, was addressed in BALB/c mice. Addition of Matrix-M™ adjuvant to NP wild-type protein-based vaccines significantly improved T cell responses. Furthermore, recombinant MVA expressing the influenza virus NP induced strong antibody and CD8 + T cell responses, which could not be improved further by modifications of NP to increase antigen processing and presentation. © 2017 British Society for Immunology.

  10. A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination.

    Directory of Open Access Journals (Sweden)

    Xiaoxing Huang

    Full Text Available Mucosal vaccination offers great advantage for inducing protective immune response to prevent viral transmission and dissemination. Here, we report our findings of a head-to-head comparison of two viral vectors modified vaccinia Ankara (MVA and a novel replication-competent modified vaccinia Tian Tan (MVTT for inducing neutralizing antibodies (Nabs via intramuscular and mucosal vaccinations in mice. MVTT is an attenuated variant of the wild-type VTT, which was historically used as a smallpox vaccine for millions of Chinese people. The spike glycoprotein (S of SARS-CoV was used as the test antigen after the S gene was constructed in the identical genomic location of two vectors to generate vaccine candidates MVTT-S and MVA-S. Using identical doses, MVTT-S induced lower levels ( approximately 2-3-fold of anti- SARS-CoV neutralizing antibodies (Nabs than MVA-S through intramuscular inoculation. MVTT-S, however, was capable of inducing consistently 20-to-100-fold higher levels of Nabs than MVA-S when inoculated via either intranasal or intraoral routes. These levels of MVTT-S-induced Nab responses were substantially (approximately 10-fold higher than that induced via the intramuscular route in the same experiments. Moreover, pre-exposure to the wild-type VTT via intranasal or intraoral route impaired the Nab response via the same routes of MVTT-S vaccination probably due to the pre-existing anti-VTT Nab response. The efficacy of intranasal or intraoral vaccination, however, was still 20-to-50-fold better than intramuscular inoculation despite the subcutaneous pre-exposure to wild-type VTT. Our data have implications for people who maintain low levels of anti-VTT Nabs after historical smallpox vaccination. MVTT is therefore an attractive live viral vector for mucosal vaccination.

  11. Dynamic Model Based Vector Control of Linear Induction Motor

    Science.gov (United States)

    2012-05-01

    sensorless control is critical for LIM control in some special case. Reference [13] introduces a direct torque and flux control based on space...Industry Applications, IEEE Transactions on, vol. 28, no. 5, pp. 1054–1061, 1992. [4] J. Nash, “ Direct torque control , induction motor vector ...13] C. Lascu, I. Boldea, and F. Blaabjerg, “A modified direct torque control for induction motor sensorless drive,” Industry Applications,

  12. Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector.

    OpenAIRE

    Caley, I J; Betts, M R; Irlbeck, D M; Davis, N L; Swanstrom, R; Frelinger, J A; Johnston, R E

    1997-01-01

    A molecularly cloned attenuated strain of Venezuelan equine encephalitis virus (VEE) has been genetically configured as a replication-competent vaccine vector for the expression of heterologous viral proteins (N. L. Davis, K. W. Brown, and R. E. Johnston, J. Virol. 70:3781-3787, 1996). The matrix/capsid (MA/CA) coding domain of human immunodeficiency virus type 1 (HIV-1) was cloned into the VEE vector to determine the ability of a VEE vector to stimulate an anti-HIV immune response in mice. T...

  13. M2e-Based Universal Influenza A Vaccines

    Science.gov (United States)

    Deng, Lei; Cho, Ki Joon; Fiers, Walter; Saelens, Xavier

    2015-01-01

    The successful isolation of a human influenza virus in 1933 was soon followed by the first attempts to develop an influenza vaccine. Nowadays, vaccination is still the most effective method to prevent human influenza disease. However, licensed influenza vaccines offer protection against antigenically matching viruses, and the composition of these vaccines needs to be updated nearly every year. Vaccines that target conserved epitopes of influenza viruses would in principle not require such updating and would probably have a considerable positive impact on global human health in case of a pandemic outbreak. The extracellular domain of Matrix 2 (M2e) protein is an evolutionarily conserved region in influenza A viruses and a promising epitope for designing a universal influenza vaccine. Here we review the seminal and recent studies that focused on M2e as a vaccine antigen. We address the mechanism of action and the clinical development of M2e-vaccines. Finally, we try to foresee how M2e-based vaccines could be implemented clinically in the future. PMID:26344949

  14. A thermostable messenger RNA based vaccine against rabies

    Science.gov (United States)

    Stitz, Lothar; Vogel, Annette; Schnee, Margit; Voss, Daniel; Rauch, Susanne; Mutzke, Thorsten; Ketterer, Thomas; Kramps, Thomas

    2017-01-01

    Although effective rabies virus vaccines have been existing for decades, each year, rabies virus infections still cause around 50.000 fatalities worldwide. Most of these cases occur in developing countries, where these vaccines are not available. The reasons for this are the prohibitive high costs of cell culture or egg grown rabies virus vaccines and the lack of a functional cold chain in many regions in which rabies virus is endemic. Here, we describe the excellent temperature resistance of a non-replicating mRNA based rabies virus vaccine encoding the rabies virus glycoprotein (RABV-G). Prolonged storage of the vaccine from -80°C to up to +70°C for several months did not impact the protective capacity of the mRNA vaccine. Efficacy after storage was demonstrated by the induction of rabies specific virus neutralizing antibodies and protection in mice against lethal rabies infection. Moreover, storing the vaccine at oscillating temperatures between +4° and +56°C for 20 cycles in order to simulate interruptions of the cold chain during vaccine transport, did not affect the vaccine’s immunogenicity and protective characteristics, indicating that maintenance of a cold chain is not essential for this vaccine. PMID:29216187

  15. Safety and High Level Efficacy of the Combination Malaria Vaccine Regimen of RTS,S/AS01B With Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara Vectored Vaccines Expressing ME-TRAP.

    Science.gov (United States)

    Rampling, Tommy; Ewer, Katie J; Bowyer, Georgina; Bliss, Carly M; Edwards, Nick J; Wright, Danny; Payne, Ruth O; Venkatraman, Navin; de Barra, Eoghan; Snudden, Claudia M; Poulton, Ian D; de Graaf, Hans; Sukhtankar, Priya; Roberts, Rachel; Ivinson, Karen; Weltzin, Rich; Rajkumar, Bebi-Yassin; Wille-Reece, Ulrike; Lee, Cynthia K; Ockenhouse, Christian F; Sinden, Robert E; Gerry, Stephen; Lawrie, Alison M; Vekemans, Johan; Morelle, Danielle; Lievens, Marc; Ballou, Ripley W; Cooke, Graham S; Faust, Saul N; Gilbert, Sarah; Hill, Adrian V S

    2016-09-01

    The need for a highly efficacious vaccine against Plasmodium falciparum remains pressing. In this controlled human malaria infection (CHMI) study, we assessed the safety, efficacy and immunogenicity of a schedule combining 2 distinct vaccine types in a staggered immunization regimen: one inducing high-titer antibodies to circumsporozoite protein (RTS,S/AS01B) and the other inducing potent T-cell responses to thrombospondin-related adhesion protein (TRAP) by using a viral vector. Thirty-seven healthy malaria-naive adults were vaccinated with either a chimpanzee adenovirus 63 and modified vaccinia virus Ankara-vectored vaccine expressing a multiepitope string fused to TRAP and 3 doses of RTS,S/AS01B (group 1; n = 20) or 3 doses of RTS,S/AS01B alone (group 2; n = 17). CHMI was delivered by mosquito bites to 33 vaccinated subjects at week 12 after the first vaccination and to 6 unvaccinated controls. No suspected unexpected serious adverse reactions or severe adverse events related to vaccination were reported. Protective vaccine efficacy was observed in 14 of 17 subjects (82.4%) in group 1 and 12 of 16 subjects (75%) in group 2. All control subjects received a diagnosis of blood-stage malaria parasite infection. Both vaccination regimens were immunogenic. Fourteen protected subjects underwent repeat CHMI 6 months after initial CHMI; 7 of 8 (87.5%) in group 1 and 5 of 6 (83.3%) in group 2 remained protected. The high level of sterile efficacy observed in this trial is encouraging for further evaluation of combination approaches using these vaccine types. NCT01883609. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  16. M2-based influenza vaccines: recent advances and clinical potential.

    Science.gov (United States)

    Kolpe, Annasaheb; Schepens, Bert; Fiers, Walter; Saelens, Xavier

    2017-02-01

    Current influenza vaccines can prevent disease caused by influenza viruses but require annual administration and almost yearly reformulation. An attractive alternative approach would be to use a vaccine that provides broad and, ideally, lifelong protection against all influenza A and B virus strains. The extracellular domain of matrix protein 2 (M2e) of influenza A viruses is conserved and thus fits well in such a broadly protective vaccine. Areas covered: Recent advances in M2e vaccine design, the mode of action of M2e-based immunity and clinical progress of M2-based influenza vaccines. Expert commentary: Many M2e vaccine have been successfully tested for efficacy against a panel of divergent influenza viruses in animal models. More recently, clinical studies have been conducted with M2e vaccine candidates, which demonstrated their safety and immunogenicity in humans. Efficacy studies in humans are still needed to provide evidence that an M2e-based vaccine can protect against human influenza.

  17. Have we found an optimal insertion site in a Newcastle disease virus vector to express a foreign gene for vaccine and gene therapy purposes?

    Science.gov (United States)

    Using reverse genetics technology, many strains of Newcastle disease virus (NDV) have been developed as vectors to express foreign genes for vaccine and gene therapy purposes. The foreign gene is usually inserted into a non-coding region of the NDV genome as an independent transcription unit. Eval...

  18. Oral immunization of mice against Clostridium perfringens epsilon toxin with a Lactobacillus casei vector vaccine expressing epsilon toxoid.

    Science.gov (United States)

    Alimolaei, Mojtaba; Golchin, Mehdi; Daneshvar, Hamid

    2016-06-01

    Clostridium perfringens type D infects ruminants and causes the enterotoxemia disease by ε-toxin. A mutated ε-toxin gene lacking toxicity was designed, synthesized, and cloned into the pT1NX vector and electroporated into Lactobacillus casei competent cells to yield LC-pT1NX-ε recombinant strain. BALB/c mice, immunized orally with this strain, highly induced mucosal, humoral, and cell-mediated immune responses and developed a protection against 200 MLD/ml of the activated ε-toxin. This study showed that the LC-pT1NX-ε could be a promising vaccine candidate against the enterotoxemia disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The yellow fever 17D vaccine virus: molecular basis of viral attenuation and its use as an expression vector

    Directory of Open Access Journals (Sweden)

    Galler R.

    1997-01-01

    Full Text Available The yellow fever (YF virus is the prototype flavivirus. The use of molecular techniques has unraveled the basic mechanisms of viral genome structure and expression. Recent trends in flavivirus research include the use of infectious clone technology with which it is possible to recover virus from cloned cDNA. Using this technique, mutations can be introduced at any point of the viral genome and their resulting effect on virus phenotype can be assessed. This approach has opened new possibilities to study several biological viral features with special emphasis on the issue of virulence/attenuation of the YF virus. The feasibility of using YF virus 17D vaccine strain, for which infectious cDNA is available, as a vector for the expression of heterologous antigens is reviewed

  20. Neural cell image segmentation method based on support vector machine

    Science.gov (United States)

    Niu, Shiwei; Ren, Kan

    2015-10-01

    In the analysis of neural cell images gained by optical microscope, accurate and rapid segmentation is the foundation of nerve cell detection system. In this paper, a modified image segmentation method based on Support Vector Machine (SVM) is proposed to reduce the adverse impact caused by low contrast ratio between objects and background, adherent and clustered cells' interference etc. Firstly, Morphological Filtering and OTSU Method are applied to preprocess images for extracting the neural cells roughly. Secondly, the Stellate Vector, Circularity and Histogram of Oriented Gradient (HOG) features are computed to train SVM model. Finally, the incremental learning SVM classifier is used to classify the preprocessed images, and the initial recognition areas identified by the SVM classifier are added to the library as the positive samples for training SVM model. Experiment results show that the proposed algorithm can achieve much better segmented results than the classic segmentation algorithms.

  1. Novel Bivalent Viral-Vectored Vaccines Induce Potent Humoral and Cellular Immune Responses Conferring Protection against Stringent Influenza A Virus Challenge.

    Science.gov (United States)

    Tully, Claire M; Chinnakannan, Senthil; Mullarkey, Caitlin E; Ulaszewska, Marta; Ferrara, Francesca; Temperton, Nigel; Gilbert, Sarah C; Lambe, Teresa

    2017-07-19

    Seasonal influenza viruses are a common cause of acute respiratory illness worldwide and generate a significant socioeconomic burden. Influenza viruses mutate rapidly, necessitating annual vaccine reformulation because traditional vaccines do not typically induce broad-spectrum immunity. In addition to seasonal infections, emerging pandemic influenza viruses present a continued threat to global public health. Pandemic influenza viruses have consistently higher attack rates and are typically associated with greater mortality compared with seasonal strains. Ongoing strategies to improve vaccine efficacy typically focus on providing broad-spectrum immunity; although B and T cells can mediate heterosubtypic responses, typical vaccine development will augment either humoral or cellular immunity. However, multipronged approaches that target several Ags may limit the generation of viral escape mutants. There are few vaccine platforms that can deliver multiple Ags and generate robust cellular and humoral immunity. In this article, we describe a novel vaccination strategy, tested preclinically in mice, for the delivery of novel bivalent viral-vectored vaccines. We show this strategy elicits potent T cell responses toward highly conserved internal Ags while simultaneously inducing high levels of Abs toward hemagglutinin. Importantly, these humoral responses generate long-lived plasma cells and generate Abs capable of neutralizing variant hemagglutinin-expressing pseudotyped lentiviruses. Significantly, these novel viral-vectored vaccines induce strong immune responses capable of conferring protection in a stringent influenza A virus challenge. Thus, this vaccination regimen induces lasting efficacy toward influenza. Importantly, the simultaneous delivery of dual Ags may alleviate the selective pressure that is thought to potentiate antigenic diversity in avian influenza viruses. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Overview of dendritic cell-based vaccine development for leishmaniasis.

    Science.gov (United States)

    Bagirova, M; Allahverdiyev, A M; Abamor, E S; Ullah, I; Cosar, G; Aydogdu, M; Senturk, H; Ergenoglu, B

    2016-11-01

    Leishmaniasis is one of the most serious vector-borne diseases in the world and is distributed over 98 countries. It is estimated that 350 million people are at risk for leishmaniasis. There are three different generation of vaccines that have been developed to provide immunity and protection against leishmaniasis. However, their use has been limited due to undesired side effects. These vaccines have also failed to provide effective and reliable protection and, as such, currently, there is no safe and effective vaccine for leishmaniasis. Dendritic cells (DCs) are a unique population of cells that come from bone marrow and become specialized to take up, process and present antigens to helper T cells in a mechanism similar to macrophages. By considering these significant features, DCs stimulated with different kinds of Leishmania antigens have been used in recent vaccine studies for leishmaniasis with promising results so far. In this review, we aim to review and combine the latest studies about this issue after defining potential problems in vaccine development for leishmaniasis and considering the importance of DCs in the immunopathogenesis of the disease. © 2016 John Wiley & Sons Ltd.

  3. Dendritic cell-based vaccine efficacy: aiming for hot spots

    Directory of Open Access Journals (Sweden)

    Gabriela Andrea Pizzurro

    2015-03-01

    Full Text Available Many approaches for cancer immunotherapy have targeted dendritic cells (DC, directly or indirectly, for the induction of antitumor immune responses. DC-based vaccines have been developed using a wide variety of ex vivo DC culture conditions, antigen source and loading strategies, maturation agents and routes of vaccination. Adjuvants are used to activate innate immune cells at the vaccine injection site, to promote antigen transport to the draining lymph nodes (LNs and to model adaptive immune responses. Despite years of effort, the effective induction of strong and durable antitumor T cell responses in vaccinated patients remains a challenge. The study of vaccine interactions with other immune cells in the LNs and, more recently, in the injection site has opened new doors for understanding antitumor effector T cell licensing and function. In this review, we will briefly discuss the relevant sites and up-to-date facts regarding possible targets for antitumor vaccine refinement. We will focus on the processes taking place at the injection site, adjuvant combinations and their role in DC-based vaccines LN homing and modeling vaccine-induced immune responses capable of controlling tumor growth and generating immune memory.

  4. Adenovirus-vectored drug-vaccine duo as a rapid-response tool for conferring seamless protection against influenza.

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    Full Text Available Few other diseases exert such a huge toll of suffering as influenza. We report here that intranasal (i.n. administration of E1/E3-defective (ΔE1E3 adenovirus serotype 5 (Ad5 particles rapidly induced an anti-influenza state as a means of prophylactic therapy which persisted for several weeks in mice. By encoding an influenza virus (IFV hemagglutinin (HA HA1 domain, an Ad5-HA1 vector conferred rapid protection as a prophylactic drug followed by elicitation of sustained protective immunity as a vaccine for inducing seamless protection against influenza as a drug-vaccine duo (DVD in a single package. Since Ad5 particles induce a complex web of host responses, which could arrest influenza by activating a specific arm of innate immunity to impede IFV growth in the airway, it is conceivable that this multi-pronged influenza DVD may escape the fate of drug resistance that impairs the current influenza drugs.

  5. HIV-1 vaccines based on replication-competent Tiantan vaccinia protected Chinese rhesus macaques from simian HIV infection.

    Science.gov (United States)

    Liu, Qiang; Li, Yue; Luo, Zhenwu; Yang, Guibo; Liu, Yong; Liu, Ying; Sun, Maosheng; Dai, Jiejie; Li, Qihan; Qin, Chuan; Shao, Yiming

    2015-03-27

    To assess the efficacy of HIV vaccines constructed from replication-competent Tiantan vaccinia virus (rTV) alone or combined with DNA in protecting Chinese rhesus macaques from homologous Simian/Human Immunodeficiency Virus (SHIV)-CN97001 challenge. The nef, gag, pol, and gp140 genes from strain CRF07_BC HIV-1 CN54 were selected to construct an HIV vaccine using the rTV or rTV/DNA vaccine. After vaccination, the vaccine and control groups were intravenously challenged with SHIV-CN97001 (32 MID50). HIV-specific antibodies and neutralizing antibodies, gp70 V1V2 binding antibodies, and cytotoxic T-lymphocyte responses were measured prospectively after vaccination with an ELISA, a virus infectivity assay in TZM-bl cells, and ELISPOT assays, respectively. Viral RNA was quantified after challenge with real-time reverse transcriptase-PCR (RT-PCR), and protection efficacy was determined with an analysis of CD8 lymphocyte depletion in vivo. Both rTV and DNA/rTV vaccine groups developed strong cellular and humoral responses against HIV-1 CN54 antigens, including Gag and Env, and also developed significant and persistent anti-Env antibodies and neutralizing antibodies after immunization. Both the rTV and DNA/rTV groups were significantly protected against SHIV-CN97001 or displayed lower viremia than the controls. After CD8 lymphocyte depletion, no viremia was detectable in the vaccinated monkeys, but rebounded rapidly in the control animals. Protection against infection correlated with vaccine-elicited neutralizing antibodies specific for homologous HIV-1 viruses. An rTV-based HIV-1 vaccine, with or without a DNA primer, provided protection from SHIV challenge in a macaque model. Replication-competent Tiantan vaccinia is a promising vector and should enable advances in HIV-1 vaccine development.

  6. Virus-based transient expression vectors for woody crops: a new frontier for vector design and use.

    Science.gov (United States)

    Dawson, William O; Folimonova, Svetlana Y

    2013-01-01

    Virus-based expression vectors are commonplace tools for the production of proteins or the induction of RNA silencing in herbaceous plants. This review considers a completely different set of uses for viral vectors in perennial fruit and nut crops, which can be productive for periods of up to 100 years. Viral vectors could be used in the field to modify existing plants. Furthermore, with continually emerging pathogens and pests, viral vectors could express genes to protect the plants or even to treat plants after they become infected. As technologies develop during the life span of these crops, viral vectors can be used for adding new genes as an alternative to pushing up the crop and replanting with transgenic plants. Another value of virus-based vectors is that they add nothing permanently to the environment. This requires that effective and stable viral vectors be developed for specific crops from endemic viruses. Studies using viruses from perennial hosts suggest that these objectives could be accomplished.

  7. A novel MVA vectored Chikungunya virus vaccine elicits protective immunity in mice.

    Science.gov (United States)

    Weger-Lucarelli, James; Chu, Haiyan; Aliota, Matthew T; Partidos, Charalambos D; Osorio, Jorge E

    2014-07-01

    Chikungunya virus (CHIKV) is a re-emerging arbovirus associated with febrile illness often accompanied by rash and arthralgia that may persist for several years. Outbreaks are associated with high morbidity and create a public health challenge for countries affected. Recent outbreaks have occurred in both Europe and the Americas, suggesting CHIKV may continue to spread. Despite the sustained threat of the virus, there is no approved vaccine or antiviral therapy against CHIKV. Therefore, it is critical to develop a vaccine that is both well tolerated and highly protective. In this study, we describe the construction and characterization of a modified Vaccinia virus Ankara (MVA) virus expressing CHIKV E3 and E2 proteins (MVA-CHIK) that protected several mouse models from challenge with CHIKV. In particular, BALB/c mice were completely protected against viremia upon challenge with CHIKV after two doses of MVA-CHIK. Additionally, A129 mice (deficient in IFNα/β) were protected from viremia, footpad swelling, and mortality. While high anti-virus antibodies were elicited, low or undetectable levels of neutralizing antibodies were produced in both mouse models. However, passive transfer of MVA-CHIK immune serum to naïve mice did not protect against mortality, suggesting that antibodies may not be the main effectors of protection afforded by MVA-CHIK. Furthermore, depletion of CD4(+), but not CD8(+) T-cells from vaccinated mice resulted in 100% mortality, implicating the indispensable role of CD4(+) T-cells in the protection afforded by MVA-CHIK. The results presented herein demonstrate the potential of MVA to effectively express CHIKV E3-E2 proteins and generate protective immune responses. Our findings challenge the assumption that only neutralizing antibodies are effective in providing protection against CHIKV, and provides a framework for the development of novel, more effective vaccine strategies to combat CHIKV.

  8. A novel MVA vectored Chikungunya virus vaccine elicits protective immunity in mice.

    Directory of Open Access Journals (Sweden)

    James Weger-Lucarelli

    2014-07-01

    Full Text Available Chikungunya virus (CHIKV is a re-emerging arbovirus associated with febrile illness often accompanied by rash and arthralgia that may persist for several years. Outbreaks are associated with high morbidity and create a public health challenge for countries affected. Recent outbreaks have occurred in both Europe and the Americas, suggesting CHIKV may continue to spread. Despite the sustained threat of the virus, there is no approved vaccine or antiviral therapy against CHIKV. Therefore, it is critical to develop a vaccine that is both well tolerated and highly protective.In this study, we describe the construction and characterization of a modified Vaccinia virus Ankara (MVA virus expressing CHIKV E3 and E2 proteins (MVA-CHIK that protected several mouse models from challenge with CHIKV. In particular, BALB/c mice were completely protected against viremia upon challenge with CHIKV after two doses of MVA-CHIK. Additionally, A129 mice (deficient in IFNα/β were protected from viremia, footpad swelling, and mortality. While high anti-virus antibodies were elicited, low or undetectable levels of neutralizing antibodies were produced in both mouse models. However, passive transfer of MVA-CHIK immune serum to naïve mice did not protect against mortality, suggesting that antibodies may not be the main effectors of protection afforded by MVA-CHIK. Furthermore, depletion of CD4(+, but not CD8(+ T-cells from vaccinated mice resulted in 100% mortality, implicating the indispensable role of CD4(+ T-cells in the protection afforded by MVA-CHIK.The results presented herein demonstrate the potential of MVA to effectively express CHIKV E3-E2 proteins and generate protective immune responses. Our findings challenge the assumption that only neutralizing antibodies are effective in providing protection against CHIKV, and provides a framework for the development of novel, more effective vaccine strategies to combat CHIKV.

  9. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems.

    Science.gov (United States)

    Guan, S; Rosenecker, J

    2017-03-01

    Because of its safe and effective protein expression profile, in vitro transcribed messenger RNA (IVT-mRNA) represents a promising candidate in the development of novel therapeutics for genetic diseases, vaccines or gene editing strategies, especially when its inherent shortcomings (for example, instability and immunogenicity) have been partially addressed via structural modifications. However, numerous unsolved technical difficulties in successful in vivo delivery of IVT-mRNA have greatly hindered the applications of IVT-mRNA in clinical development. Recent advances in nanotechnology and material science have yielded many promising nonviral delivery systems, some of which were able to efficiently facilitate targeted in vivo delivery of IVT-mRNA in safe and noninvasive manners. The diversity and flexibility of these delivery systems highlight the recent progress of IVT-mRNA-based therapy using nonviral vectors. In this review, we summarize recent advances of existing and emerging nonviral vector-based nanotechnologies for IVT-mRNA delivery and briefly summarize the interesting but rarely discussed applications on simultaneous delivery of IVT-mRNA with DNA.

  10. Construction of an expression vector for Lactococcus lactis based on ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... developed for vaccine delivery (Ramasamy et al., 2006; van Roosmalen et al., 2006; ... of several viral and eukaryotic proteins (Kunji et al., 2003;. Madsen et al., 1999). ..... Lactococcus lactis in oral immunisations. Vaccine, 24: ...

  11. Newcastle Disease Virus-Vectored Rabies Vaccine Is Safe, Highly Immunogenic, and Provides Long-Lasting Protection in Dogs and Cats ▿

    Science.gov (United States)

    Ge, Jinying; Wang, Xijun; Tao, Lihong; Wen, Zhiyuan; Feng, Na; Yang, Songtao; Xia, Xianzhu; Yang, Chinglai; Chen, Hualan; Bu, Zhigao

    2011-01-01

    Effective, safe, and affordable rabies vaccines are still being sought. Newcastle disease virus (NDV), an avian paramyxovirus, has shown promise as a vaccine vector for mammals. Here, we generated a recombinant avirulent NDV La Sota strain expressing the rabies virus glycoprotein (RVG) and evaluated its potential to serve as a vaccine against rabies. The recombinant virus, rL-RVG, retained its high-growth property in chicken eggs, with titers of up to 109.8 50% egg infective doses (EID50)/ml of allantoic fluid. RVG expression enabled rL-RVG to spread from cell to cell in a rabies virus-like manner, and RVG was incorporated on the surface of the rL-RVG viral particle. RVG incorporation did not alter the trypsin-dependent infectivity of the NDV vector in mammalian cells. rL-RVG and La Sota NDV showed similar levels of sensitivity to a neutralization antibody against NDV and similar levels of resistance to a neutralization antibody against rabies virus. Animal studies demonstrated that rL-RVG is safe in several species, including cats and dogs, when administered as multiple high doses of recombinant vaccine. Intramuscular vaccination with rL-RVG induced a substantial rabies virus neutralization antibody response and provided complete protection from challenge with circulating rabies virus strains. Most importantly, rL-RVG induced strong and long-lasting protective neutralization antibody responses to rabies virus in dogs and cats. A low vaccine dose of 108.3 EID50 completely protected dogs from challenge with a circulating strain of rabies virus for more than a year. This is the first study to demonstrate that immunization with an NDV-vectored vaccine can induce long-lasting, systemic protective immunity against rabies. PMID:21632762

  12. A plant‐based system for rapid production of influenza vaccine antigens

    National Research Council Canada - National Science Library

    Shoji, Yoko; Farrance, Christine E; Bautista, James; Bi, Hong; Musiychuk, Konstantin; Horsey, April; Park, HeeWoo; Jaje, Jennifer; Green, Brian J; Shamloul, Moneim; Sharma, Satish; Chichester, Jessica A; Mett, Vadim; Yusibov, Vidadi

    2012-01-01

    ... the regular seasonal influenza vaccine capacity. Current, egg‐based, influenza vaccine production is well established and provides an effective product, but has limited capacity and speed. Objectives...

  13. Virtual-vector-based space vector pulse width modulation of the DC-AC multilevel-clamped multilevel converter (MLC2)

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Busquets-Monge, Sergio; Blaabjerg, Frede

    2011-01-01

    This work presents the development of the space vector pulse width modulation (SVPWM) of a new multi-level converter topology. First, the proposed converter and its natural space vector diagram are presented. Secondly, a modified space vector diagram based on the virtual-vectors technique is shown...

  14. Prospects of HA-Based Universal Influenza Vaccine

    Directory of Open Access Journals (Sweden)

    Anwar M. Hashem

    2015-01-01

    Full Text Available Current influenza vaccines afford substantial protection in humans by inducing strain-specific neutralizing antibodies (Abs. Most of these Abs target highly variable immunodominant epitopes in the globular domain of the viral hemagglutinin (HA. Therefore, current vaccines may not be able to induce heterosubtypic immunity against the divergent influenza subtypes. The identification of broadly neutralizing Abs (BnAbs against influenza HA using recent technological advancements in antibody libraries, hybridoma, and isolation of single Ab-secreting plasma cells has increased the interest in developing a universal influenza vaccine as it could provide life-long protection. While these BnAbs can serve as a source for passive immunotherapy, their identification represents an important step towards the design of such a universal vaccine. This review describes the recent advances and approaches used in the development of universal influenza vaccine based on highly conserved HA regions identified by BnAbs.

  15. Adenovirus-based vaccine against Listeria monocytogenes

    DEFF Research Database (Denmark)

    Jensen, Søren; Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech

    2013-01-01

    The use of replication-deficient adenoviruses as vehicles for transfer of foreign genes offers many advantages in a vaccine setting, eliciting strong cellular immune responses involving both CD8(+) and CD4(+) T cells. Further improving the immunogenicity, tethering of the inserted target Ag to MHC...... class II-associated invariant chain (Ii) greatly enhances both the presentation of most target Ags, as well as overall protection against viral infection, such as lymphocytic choriomeningitis virus (LCMV). The present study extends this vaccination concept to include protection against intracellular...... bacteria, using Listeria monocytogenes as a model organism. Protection in C57BL/6 mice against recombinant L. monocytogenes expressing an immunodominant epitope of the LCMV glycoprotein (GP33) was greatly accelerated, augmented, and prolonged following vaccination with an adenoviral vaccine encoding GP...

  16. RNA-Based Vaccines in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Megan A. McNamara

    2015-01-01

    Full Text Available RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  17. Establishment of human sperm-specific voltage-dependent anion channel 3 recombinant vector for the production of a male contraceptive vaccine

    Directory of Open Access Journals (Sweden)

    Asmarinah Asmarinah

    2012-05-01

    Full Text Available Background: The aim of this study was to construct a recombinant vector of human sperm specific VDAC3 gene for production of VDAC3 antibody, which is potential as male contraception vaccine.Methods: Target fragment sequence of VDAC3 gene was obtained through amplification of human sperm VDAC3 cDNA with primers covering exon 5 to exon 8. Its PCR product in size of 435 bp was cloned to the pET101/D-TOPO expression vector (5753 bp. E. coli bacteria were transformed with this vector. Cloning of VDAC3 fragment gene to the vector was confirmed by the using of XbaI restriction enzyme and PCR colony method with primers covering exons 5-8 of the human VDAC3 gene.Results: Alignment analysis of amplified fragment covering exon 5 to exon 8 of VDAC3 gene showed 94% homology to human VDAC3 gene from databank. After cloning to the expression vector and transformation to E. coli competent cells, twelve colonies could grow in culture media. Gel electrophoresis of sliced VDAC3 recombinant vector showed a single band in the size of 6181 bp in 8 colonies. After application of PCR colony and amplicon sequencing, the result showed a single band in the size of 435 bp and fragment sequence with 94% identity to human VDAC3 gene.Conclusion: The construction of human sperm specific VDAC3 gene recombinant vector was established in this study. In the future, this recombinant vector will be used to produce VDAC3 antibody for the development of a male contraception vaccine. (Med J Indones. 2012;21:61-5Keywords: Contraception, recombinant vector, sperm, VDAC3

  18. 2D Vector Field Simplification Based on Robustness

    KAUST Repository

    Skraba, Primoz

    2014-03-01

    Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. These geometric metrics do not consider the flow magnitude, an important physical property of the flow. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness, which provides a complementary view on flow structure compared to the traditional topological-skeleton-based approaches. Robustness enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory, has fewer boundary restrictions, and so can handle more general cases. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. © 2014 IEEE.

  19. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    Science.gov (United States)

    Fonseca, Jairo Andres; Cabrera-Mora, Monica; Kashentseva, Elena A; Villegas, John Paul; Fernandez, Alejandra; Van Pelt, Amelia; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2016-01-01

    A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective

  20. Cardiovascular Response Identification Based on Nonlinear Support Vector Regression

    Science.gov (United States)

    Wang, Lu; Su, Steven W.; Chan, Gregory S. H.; Celler, Branko G.; Cheng, Teddy M.; Savkin, Andrey V.

    This study experimentally investigates the relationships between central cardiovascular variables and oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage. The modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with small training data set.

  1. Slope Deformation Prediction Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei JIA

    2013-07-01

    Full Text Available This paper principally studies the prediction of slope deformation based on Support Vector Machine (SVM. In the prediction process,explore how to reconstruct the phase space. The geological body’s displacement data obtained from chaotic time series are used as SVM’s training samples. Slope displacement caused by multivariable coupling is predicted by means of single variable. Results show that this model is of high fitting accuracy and generalization, and provides reference for deformation prediction in slope engineering.

  2. Quantum blind signature based on Two-State Vector Formalism

    Science.gov (United States)

    Qi, Su; Zheng, Huang; Qiaoyan, Wen; Wenmin, Li

    2010-11-01

    Two-State Vector Formalism (TSVF) including pre- and postselected states is a complete description of a system between two measurements. Consequently TSVF gives a perfect solution to the Mean King problem. In this paper, utilizing the dramatic correlation in the verification, we propose a quantum blind signature scheme based on TSVF. Compared with Wen's scheme, our scheme has 100% efficiency. Our scheme guarantees the unconditional security. Moreover, the proposed scheme, which is easy to implement, can be applied to E-payment system.

  3. A Novel Adeno-Associated Virus-Based Genetic Vaccine Encoding the Hepatitis C Virus NS3/4 Protein Exhibits Immunogenic Properties in Mice Superior to Those of an NS3-Protein-Based Vaccine.

    Directory of Open Access Journals (Sweden)

    Fengqin Zhu

    Full Text Available More than 170 million individuals worldwide are infected with hepatitis C virus (HCV, and up to an estimated 30% of chronically infected individuals will go on to develop progressive liver disease. Despite the recent advances in antiviral treatment of HCV infection, it remains a major public health problem. Thus, development of an effective vaccine is urgently required. In this study, we constructed novel adeno-associated virus (AAV vectors expressing the full-length NS3 or NS3/4 protein of HCV genotype 1b. The expression of the NS3 or NS3/4 protein in HepG2 cells was confirmed by western blotting. C57BL/6 mice were intramuscularly immunised with a single injection of AAV vectors, and the resultant immune response was investigated. The AAV2/rh32.33.NS3/4 vaccine induced stronger humoral and cellular responses than did the AAV2/rh32.33.NS3 vaccine. Our results demonstrate that AAV-based vaccines exhibit considerable potential for the development of an effective anti-HCV vaccine.

  4. Virus-based nanoparticles as platform technologies for modern vaccines

    Science.gov (United States)

    Lee, Karin L.; Twyman, Richard M.; Fiering, Steven

    2017-01-01

    Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic through multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. PMID:26782096

  5. Adenovirus-vectored foot-and-mouth disease vaccine confers early and full protection against FMDV O1 Manisa in swine.

    Science.gov (United States)

    Fernandez-Sainz, Ignacio; Medina, Gisselle N; Ramirez-Medina, Elizabeth; Koster, Marla J; Grubman, Marvin J; de Los Santos, Teresa

    2017-02-01

    A human adenovirus (Ad5) vectored foot-and-mouth disease virus (FMDV) O1-Manisa subunit vaccine (Ad5-O1Man) was engineered to deliver FMDV O1-Manisa capsid and capsid-processing proteins. Swine inoculated with Ad5-O1Man developed an FMDV-specific humoral response as compared to animals inoculated with an empty Ad5-vector. Vaccinated animals were completely protected against homologous challenge at 7 or 21 days post-vaccination. Potency studies exhibited a PD50 of about 107 pfu/animal while a dose of 4×107pfu/animal fully protected swine against FMDV intradermal challenge. In-vitro cross-neutralization analysis distinctly predicted that swine vaccinated with Ad5-O1Man would be protected against challenge with homologous FMDV O1Man Middle East-South Asia (ME-SA) topotype and also against recent outbreak strains of Mya-98 South East Asia (SEA) lineage including O1-UK-2001 and O1-South Korea-2010. These results indicate that recombinant Ad5-O1Man is an effective, safe and cross-reacting vaccine that could potentially be used preventively and in outbreak situations, to control FMDV O Mya-98 lineage in swine. Published by Elsevier Inc.

  6. Improvement of RF Vector Modulator Performance by Feed-forward Based Calibration

    CERN Document Server

    Tosovsky, Petr

    2010-01-01

    RF Vector Modulator enables independent control of a narrowband RF signal amplitude and phase. Unfortunately practical realization of an analog vector modulator suffers from misbalances and imperfections in the I and Q signal paths. Use of a feed-forward based calibration can compensate for them and significantly improve RF performance and control accuracy of a real vector modulator. Achieved improvements and results on a small series of vector modulator based phase shifters using feed-forward calibration are presented.

  7. Energy Based Clutter Filtering for Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Jensen, Jonas; Ewertsen, Caroline

    2017-01-01

    To obtain accurate blood flow velocity estimates it is important to remove the clutter signal originating from tissue. Conventionally, the clutter signal has been separated from the blood signal based on the difference of their spectral frequencies. However, this approach is not enough for obtain......To obtain accurate blood flow velocity estimates it is important to remove the clutter signal originating from tissue. Conventionally, the clutter signal has been separated from the blood signal based on the difference of their spectral frequencies. However, this approach is not enough...... for obtaining vector flow measurements, since the spectra overlaps at high beam-to-flow angles. In this work a distinct approach is proposed, where the energy of the velocity spectrum is used to differentiate among the two signals. The energy based method is applied by limiting the amplitude of the velocity...

  8. A history of adolescent school based vaccination in Australia.

    Science.gov (United States)

    Ward, Kirsten; Quinn, Helen; Menzies, Robert; McIntyre, Peter

    2013-06-30

    As adolescents have become an increasingly prominent target group for vaccination, school-based vaccination has emerged as an efficient and effective method of delivering nationally recommended vaccines to this often hard to reach group. School-based delivery of vaccines has occurred in Australia for over 80 years and has demonstrated advantages over primary care delivery for this part of the population. In the last decade school-based vaccination programs have become routine practice across all Australian states and territories. Using existing records and the recollection of experts we have compiled a history of school-based vaccination in Australia, primarily focusing on adolescents. This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General's Department, Robert Garran Offices, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca.

  9. In vivo image analysis of BoHV-4-based vector in mice.

    Directory of Open Access Journals (Sweden)

    Valentina Franceschi

    Full Text Available Due to its biological characteristics bovine herpesvirus 4 (BoHV-4 has been considered as an appropriate gene delivery vector. Its genomic clone, modified as a bacterial artificial chromosome (BAC, is better genetically manipulable and can be used as an efficient gene delivery and vaccine vector. Although a large amount of data have been accumulated in vitro on this specific aspect, the same cannot be asserted for the in vivo condition. Therefore, here we investigated the fate of a recombinant BoHV-4 strain expressing luciferase (BoHV-4-A-CMVlucΔTK after intraperitoneal or intravenous inoculation in mice, by generating a novel recombinant BoHV-4 expressing luciferase (BoHV-4-A-CMVlucΔTK and by following the virus replication through in vivo imaging analysis. BoHV-4-A-CMVlucΔTK was first characterized in vitro where it was shown, on one hand that its replication properties are identical to those of the parental virus, and on the other that the transduced/infected cells strongly express luciferase. When BoHV-4-A-CMVlucΔTK was inoculated in mice, either intraperitoneally or intravenously, BoHV-4-A-CMVlucΔTK infection/transduction was exclusively localized to the liver, as detected by in vivo image analysis, and in particular almost exclusively in the hepatocytes, as determined by immuno-histochemistry. These data, that add a new insight on the biology of BoHV-4 in vivo, provide the first indication for the potential use of a BoHV-4-based vector in gene-transfer in the liver.

  10. Enhanced protection against FMDV in cattle after prime- boost vaccination based on mucosal and inactivated FMD vaccine.

    Science.gov (United States)

    Khalifa, Manar E; El-Deeb, Ayman H; Zeidan, Sayed M; Hussein, Hussein A; Abu-El-Naga, Hany I

    2017-10-01

    Improved immunization and control strategies and platforms are greatly needed for foot and mouth disease virus (FMDV) and mucosal vaccines propose an effective strategy for the control FMDV by blocking viral entry. In this study, several immunization strategies, using two FMDV vaccine formulations, including Montanide ISA 206 oil-based FMD inactivated vaccine and Montanide IMS 1313 VG N PR-based concentrated semi-purified FMD mucosal vaccine, were applied. Results of intranasal immunization with the prepared FMD mucosal vaccine, given once or twice, induced IgA levels in both nasal and salivary secretions besides a high response of lymphocyte proliferation with protection levels reaching 20% and 40%, respectively, in a challenge trial in cattle. Immunization with Montanide 206 inactivated FMD vaccine was capable of inducing 80% protection whereas prime-boost strategy based on the administration of mucosal vaccine followed by inactivated vaccine appeared to be the most potent strategy by achieving 100% protection against an FMDV challenge. Indeed, the study reports the efficacy of the prepared IMS 1313 FMD mucosal vaccine and the possible use of this vaccine in the context of different vaccination strategies to control FMDV. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Setting up a platform for plant-based influenza virus vaccine production in South Africa

    Directory of Open Access Journals (Sweden)

    Mortimer Elizabeth

    2012-04-01

    Full Text Available Abstract Background During a global influenza pandemic, the vaccine requirements of developing countries can surpass their supply capabilities, if these exist at all, compelling them to rely on developed countries for stocks that may not be available in time. There is thus a need for developing countries in general to produce their own pandemic and possibly seasonal influenza vaccines. Here we describe the development of a plant-based platform for producing influenza vaccines locally, in South Africa. Plant-produced influenza vaccine candidates are quicker to develop and potentially cheaper than egg-produced influenza vaccines, and their production can be rapidly upscaled. In this study, we investigated the feasibility of producing a vaccine to the highly pathogenic avian influenza A subtype H5N1 virus, the most generally virulent influenza virus identified to date. Two variants of the haemagglutinin (HA surface glycoprotein gene were synthesised for optimum expression in plants: these were the full-length HA gene (H5 and a truncated form lacking the transmembrane domain (H5tr. The genes were cloned into a panel of Agrobacterium tumefaciens binary plant expression vectors in order to test HA accumulation in different cell compartments. The constructs were transiently expressed in tobacco by means of agroinfiltration. Stable transgenic tobacco plants were also generated to provide seed for stable storage of the material as a pre-pandemic strategy. Results For both transient and transgenic expression systems the highest accumulation of full-length H5 protein occurred in the apoplastic spaces, while the highest accumulation of H5tr was in the endoplasmic reticulum. The H5 proteins were produced at relatively high concentrations in both systems. Following partial purification, haemagglutination and haemagglutination inhibition tests indicated that the conformation of the plant-produced HA variants was correct and the proteins were functional. The

  12. Development of apple latent spherical virus-based vaccines against three tospoviruses.

    Science.gov (United States)

    Taki, Ayano; Yamagishi, Noriko; Yoshikawa, Nobuyuki

    2013-09-01

    Apple latent spherical virus (ALSV) is characterized by its relatively broad host range, latency in most host plants, and ability to induce gene silencing in host plants. Herein, we focus on the above characteristic of ALSV and describe our development of ALSV vector vaccines against three tospoviruses, namely, Impatiens necrotic spot virus (INSV), Iris yellow spot virus (IYSV), and Tomato spotted wilt virus (TSWV). DNA fragments of 201 nt of three tospovirus S-RNAs (silencing suppressor (NSS) and nucleocapsid protein (N) coding regions for each tospovirus) were inserted into an ALSV-RNA2 vector to obtain six types of ALSV vector vaccines. Nicotiana benthamiana plants at the five-leaf stage were inoculated with each ALSV vector vaccine and challenged with the corresponding tospovirus species. Tospovirus-induced symptoms and tospovirus replication after challenge were significantly suppressed in plants preinoculated with all ALSV vector vaccines having the N region fragment, indicating that strong resistance was acquired after infection with ALSV vector vaccines. On the other hand, cross protection was not significant in plants preinoculated with ALSV vectors having the NSs region fragment. Similarly, inoculation with an ALSV-RNA1 vector having the N region fragment in the 3'-noncoding region, but not the NSs region fragment, induced cross protection, indicating that cross protection is via RNA silencing, not via the function of the protein derived from the N region fragment. Our approach, wherein ALSV vectors and selected target inserts are used, enables rapid establishment of ALSV vector vaccines against many pathogenic RNA viruses with known sequences. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. BoHV-4-Based Vector Single Heterologous Antigen Delivery Protects STAT1(-/- Mice from Monkeypoxvirus Lethal Challenge.

    Directory of Open Access Journals (Sweden)

    Valentina Franceschi

    2015-06-01

    Full Text Available Monkeypox virus (MPXV is the etiological agent of human (MPX. It is an emerging orthopoxvirus zoonosis in the tropical rain forest of Africa and is endemic in the Congo-basin and sporadic in West Africa; it remains a tropical neglected disease of persons in impoverished rural areas. Interaction of the human population with wildlife increases human infection with MPX virus (MPXV, and infection from human to human is possible. Smallpox vaccination provides good cross-protection against MPX; however, the vaccination campaign ended in Africa in 1980, meaning that a large proportion of the population is currently unprotected against MPXV infection. Disease control hinges on deterring zoonotic exposure to the virus and, barring that, interrupting person-to-person spread. However, there are no FDA-approved therapies against MPX, and current vaccines are limited due to safety concerns. For this reason, new studies on pathogenesis, prophylaxis and therapeutics are still of great interest, not only for the scientific community but also for the governments concerned that MPXV could be used as a bioterror agent. In the present study, a new vaccination strategy approach based on three recombinant bovine herpesvirus 4 (BoHV-4 vectors, each expressing different MPXV glycoproteins, A29L, M1R and B6R were investigated in terms of protection from a lethal MPXV challenge in STAT1 knockout mice. BoHV-4-A-CMV-A29LgD106ΔTK, BoHV-4-A-EF1α-M1RgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK were successfully constructed by recombineering, and their capacity to express their transgene was demonstrated. A small challenge study was performed, and all three recombinant BoHV-4 appeared safe (no weight-loss or obvious adverse events following intraperitoneal administration. Further, BoHV-4-A-EF1α-M1RgD106ΔTK alone or in combination with BoHV-4-A-CMV-A29LgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK, was shown to be able to protect, 100% alone and 80% in combination, STAT1(-/- mice

  14. Matrix-Vector Based Fast Fourier Transformations on SDR Architectures

    Directory of Open Access Journals (Sweden)

    Y. He

    2008-05-01

    Full Text Available Today Discrete Fourier Transforms (DFTs are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex. It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT engines. However, in face of the Software Defined Radio (SDR development, more general (parallel processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.

  15. Disturbance observer based current controller for vector controlled IM drives

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Dal, Mehmet

    2008-01-01

    In order to increase the accuracy of the current control loop, usually, well known parameter compensation and/or cross decoupling techniques are employed for advanced ac drives. In this paper, instead of using these techniques an observer-based current controller is proposed for vector controlled...... induction motor (IM) drives. The control design, based on synchronously rotating d-q frame model of the machine, has a simple structure that combines the proportional portion of a conventional PI control and output of the observer. The observer is predicted to estimate the disturbances caused by parameters...... change in current control loop and, also to remove undesired cross coupling existing between components of the stator current. The observer uses the measured stator currents and estimated PWM voltages, and produces a disturbance signal with a low pass filter. The proposed control scheme reduces cross...

  16. Vector-based excitation amplitude imaging condition for elastic RTM

    Science.gov (United States)

    Zhou, Jinju; Wang, Deli

    2017-12-01

    In recent years, many studies have focused on elastic reverse time migration (RTM). In response to the problems associated with elastic RTM, we propose a new procedure for 2D elastic multicomponent RTM. In this new method, decomposed P- and S-wave components are obtained from the decoupled propagation of the source and receiver wavefields, which allows the expedient calculation of the Poynting vectors and the incident and reflection angles of the P- and S-waves. In addition, we deduce the vector-based excitation amplitude imaging condition. This process automatically accounts for the particle vibration directions when determining the angle-dependent signed reflection coefficients, and does not require the sign to be determined apart from the value of the reflection coefficients. This concept was further extended to the source-normalized crosscorrelation imaging condition. The reflection coefficient of the layered model test was in agreement with the Zoeppritz theory, the PP and PS wave images of the Marmousi II model were clear, and the PS wave images had higher resolution and richer details. In addition, since the calculated reflection coefficients are angle-dependent, they can be easily used for the extraction of angle-domain common-image gathers. Moreover, the imaging condition avoids the polarization reversal in PS wave images and does not require all of the source wavefield data. Consequently, the computation and storage requirements are significantly reduced, which will facilitate the use of the elastic RTM in practice.

  17. Victims, vectors and villains: are those who opt out of vaccination morally responsible for the deaths of others?

    OpenAIRE

    Jamrozik, Euzebiusz; Handfield, Toby; Selgelid, Michael J

    2016-01-01

    Mass vaccination has been a successful public health strategy for many contagious diseases. The immunity of the vaccinated also protects others who cannot be safely or effectively vaccinated?including infants and the immunosuppressed. When vaccination rates fall, diseases like measles can rapidly resurge in a population. Those who cannot be vaccinated for medical reasons are at the highest risk of severe disease and death. They thus may bear the burden of others' freedom to opt out of vaccina...

  18. Attenuation of Recombinant Vesicular Stomatitis Virus-Human Immunodeficiency Virus Type 1 Vaccine Vectors by Gene Translocations and G Gene Truncation Reduces Neurovirulence and Enhances Immunogenicity in Mice▿

    Science.gov (United States)

    Cooper, David; Wright, Kevin J.; Calderon, Priscilla C.; Guo, Min; Nasar, Farooq; Johnson, J. Erik; Coleman, John W.; Lee, Margaret; Kotash, Cheryl; Yurgelonis, Irene; Natuk, Robert J.; Hendry, R. Michael; Udem, Stephen A.; Clarke, David K.

    2008-01-01

    Recombinant vesicular stomatitis virus (rVSV) has shown great potential as a new viral vector for vaccination. However, the prototypic rVSV vector described previously was found to be insufficiently attenuated for clinical evaluation when assessed for neurovirulence in nonhuman primates. Here, we describe the attenuation, neurovirulence, and immunogenicity of rVSV vectors expressing human immunodeficiency virus type 1 Gag. These rVSV vectors were attenuated by combinations of the following manipulations: N gene translocations (N4), G gene truncations (CT1 or CT9), noncytopathic M gene mutations (Mncp), and positioning of the gag gene into the first position of the viral genome (gag1). The resulting N4CT1-gag1, N4CT9-gag1, and MncpCT1-gag1 vectors demonstrated dramatically reduced neurovirulence in mice following direct intracranial inoculation. Surprisingly, in spite of a very high level of attenuation, the N4CT1-gag1 and N4CT9-gag1 vectors generated robust Gag-specific immune responses following intramuscular immunization that were equivalent to or greater than immune responses generated by the more virulent prototypic vectors. MncpCT1-gag1 also induced Gag-specific immune responses following intramuscular immunization that were equivalent to immune responses generated by the prototypic rVSV vector. Placement of the gag gene in the first position of the VSV genome was associated with increased in vitro expression of Gag protein, in vivo expression of Gag mRNA, and enhanced immunogenicity of the vector. These findings demonstrate that through directed manipulation of the rVSV genome, vectors that have reduced neurovirulence and enhanced immunogenicity can be made. PMID:17942549

  19. Efficient Vaccine Distribution Based on a Hybrid Compartmental Model.

    Directory of Open Access Journals (Sweden)

    Zhiwen Yu

    Full Text Available To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible-exposed-infectious šC recovered model, named the hybrid SEIR-V model (HSEIR-V, which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk for controlling the spread of viral infections. Based on data from the 2009-2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics.

  20. Oral vaccination with a recombinant Salmonella vaccine vector provokes systemic HIV-1 subtype C Gag-specific CD4+ Th1 and Th2 cell immune responses in mice

    Directory of Open Access Journals (Sweden)

    Williamson Anna-Lise

    2009-06-01

    Full Text Available Abstract Background Recombinant Salmonella vaccine vectors may potentially be used to induce specific CD4+ T cell responses against foreign viral antigens. Such immune responses are required features of vaccines against pathogens such as human immunodeficiency virus type 1 (HIV-1. The aim of this study was to investigate the induction of systemic HIV-1-specific CD4+ T helper (Th responses in mice after oral immunization with a live attenuated Salmonella vaccine vector that expressed HIV-1 subtype C Gag. Groups of BALB/c mice were vaccinated orally three times (4 weeks apart with this recombinant Salmonella. At sacrifice, 28 days after the last immunization, systemic CD4+ Th1 and Th2 cytokine responses were evaluated by enzyme-linked immunospot assay and cytometric bead array. HIV-1 Gag-specific IgG1 and IgG2a humoral responses in the serum were determined by enzyme-linked immunosorbent assay. Results Mice vaccinated with the recombinant Salmonella elicited both HIV-1-specific Th1 (interferon-gamma (IFN-γ and tumour necrosis factor-alpha (TNF-α and Th2 (interleukin-4 (IL-4 and interleukin-5 (IL-5 cytokine responses. The vaccine induced 70 (IFN-γ spot-forming units (SFUs/10e6 splenocytes and 238 IL-4 SFUs/10e6 splenocytes. Splenocytes from vaccinated mice also produced high levels of Th1 and Th2 cytokines upon stimulation with a Gag CD4 peptide. The levels of IFN-γ, TNF-α, IL-4 and IL-5 were 7.5-, 29.1-, 26.2- and 89.3-fold above the background, respectively. Both HIV-1 Gag-specific IgG1 and IgG2a antibodies were detected in the sera of vaccinated mice. Conclusion The study highlights the potential of orally-delivered attenuated Salmonella as mucosal vaccine vectors for HIV-1 Subtype C Gag to induce Gag-specific CD4+ Th1 and Th2 cellular immune responses and antibodies which may be important characteristics required for protection against HIV-1 infection.

  1. The Vector Population Monitoring Tool (VPMT: High-Throughput DNA-Based Diagnostics for the Monitoring of Mosquito Vector Populations

    Directory of Open Access Journals (Sweden)

    Chris Bass

    2010-01-01

    Full Text Available Regular monitoring of mosquito vector populations is an integral component of most vector control programmes. Contemporary data on mosquito species composition, infection status, and resistance to insecticides are a prerequisite for effective intervention. For this purpose we, with funding from the Innovative Vector Control Consortium (IVCC, have developed a suite of high-throughput assays based on a single “closed-tube” platform that collectively comprise the “Vector Population Monitoring Tool” (VPMT. The VPMT can be used to screen mosquito disease vector populations for a number of traits including Anopheles gambiae s.l. and Anopheles funestus species identification, detection of infection with Plasmodium parasites, and identification of insecticide resistance mechanisms. In this paper we focus on the Anopheles-specific assays that comprise the VPMT and include details of a new assay for resistance todieldrin Rdl detection. The application of these tools, general and specific guidelines on their use based on field testing in Africa, and plans for further development are discussed.

  2. Genetic manipulation of endosymbionts to control vector and vector borne diseases

    Directory of Open Access Journals (Sweden)

    Jay Prakash Gupta

    Full Text Available Vector borne diseases (VBD are on the rise because of failure of the existing methods of control of vector and vector borne diseases and the climate change. A steep rise of VBDs are due to several factors like selection of insecticide resistant vector population, drug resistant parasite population and lack of effective vaccines against the VBDs. Environmental pollution, public health hazard and insecticide resistant vector population indicate that the insecticides are no longer a sustainable control method of vector and vector-borne diseases. Amongst the various alternative control strategies, symbiont based approach utilizing endosymbionts of arthropod vectors could be explored to control the vector and vector borne diseases. The endosymbiont population of arthropod vectors could be exploited in different ways viz., as a chemotherapeutic target, vaccine target for the control of vectors. Expression of molecules with antiparasitic activity by genetically transformed symbiotic bacteria of disease-transmitting arthropods may serve as a powerful approach to control certain arthropod-borne diseases. Genetic transformation of symbiotic bacteria of the arthropod vector to alter the vector’s ability to transmit pathogen is an alternative means of blocking the transmission of VBDs. In Indian scenario, where dengue, chikungunya, malaria and filariosis are prevalent, paratransgenic based approach can be used effectively. [Vet World 2012; 5(9.000: 571-576

  3. Expression of the Surface Glycoproteins of Human Parainfluenza Virus Type 3 by Bovine Parainfluenza Virus Type 3, a Novel Attenuated Virus Vaccine Vector

    Science.gov (United States)

    Haller, Aurelia A.; Miller, Tessa; Mitiku, Misrach; Coelingh, Kathleen

    2000-01-01

    Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive phenotype for growth in tissue culture at 39°C and was attenuated in the lungs of Syrian golden hamsters. In order to test whether r-bPIV3 could serve as a vector, the fusion and hemagglutinin-neuraminidase genes of bPIV3 were replaced with those of hPIV3. The resulting bovine/human PIV3 was temperature sensitive for growth in Vero cells at 37°C. The replication of bovine/human PIV3 was also restricted in the lungs of hamsters, albeit not as severely as was observed for r-bPIV3. Despite the attenuation phenotypes observed for r-bPIV3 and bovine/human PIV3, both of these viruses protected hamsters completely upon challenge with hPIV3. In summary, bPIV3 was shown to function as a virus vector that may be especially suitable for vaccination of infants and children against PIV3 and other viruses. PMID:11090161

  4. BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    V. Dheepa

    2012-07-01

    Full Text Available Along with the great increase of internet and e-commerce, the use of credit card is an unavoidable one. Due to the increase of credit card usage, the frauds associated with this have also increased. There are a lot of approaches used to detect the frauds. In this paper, behavior based classification approach using Support Vector Machines are employed and efficient feature extraction method also adopted. If any discrepancies occur in the behaviors transaction pattern then it is predicted as suspicious and taken for further consideration to find the frauds. Generally credit card fraud detection problem suffers from a large amount of data, which is rectified by the proposed method. Achieving finest accuracy, high fraud catching rate and low false alarms are the main tasks of this approach.

  5. Listeria-vectored vaccine expressing the Mycobacterium tuberculosis 30 kDa major secretory protein via the constitutively active prfA* regulon boosts BCG efficacy against tuberculosis.

    Science.gov (United States)

    Jia, Qingmei; Dillon, Barbara Jane; Masleša-Galić, Saša; Horwitz, Marcus A

    2017-06-19

    A potent vaccine against tuberculosis, one of the world's deadliest diseases, is needed to enhance the immunity of people worldwide, most of whom have been vaccinated with the partially effective BCG vaccine. Here we investigate novel live attenuated recombinant Listeria monocytogenes (rLm) vaccines expressing the Mycobacterium tuberculosis (Mtb) 30 kDa major secretory protein (r30/Ag85B) (rLm30) as heterologous booster vaccines in animals primed with BCG. Using three attenuated Lm vectors, rLm ΔactA (LmI), rLm ΔactA ΔinlB (LmII), and rLm ΔactA ΔinlBprfA* (LmIII), we constructed five rLm30 vaccine candidates expressing the r30 linked in-frame to the Lm Listeriolycin O signal sequence and driven by the hly promoter (h30) or linked in-frame to the ActA N-terminus and driven by the actA promoter (a30). All five rLm30 vaccines secreted r30 in broth and macrophages; while rLm expressing r30 via a constitutively active prfA* regulon (rLmIII/a30) expressed the greatest amount of r30 in broth culture, all five rLm vaccines expressed equivalent amounts of r30 in infected macrophages. In comparative studies, boosting BCG-immunized mice with rLmIII/a30 induced the strongest antigen-specific T-cell responses, including splenic and lung polyfunctional CD4+ T-cells expressing the three cytokines of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-2 (IL-2) (P vaccines were generally more potent booster vaccines than r30 in adjuvant and a recombinant adenovirus vaccine expressing r30. In a setting in which BCG alone was highly immunoprotective, boosting mice with rLmIII/a30, the most potent of the vaccines, significantly enhanced protection against aerosolized Mtb (P <0.01). Copyright © 2017 American Society for Microbiology.

  6. Trial Watch: Peptide-based anticancer vaccines.

    Science.gov (United States)

    Pol, Jonathan; Bloy, Norma; Buqué, Aitziber; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Galon, Jérôme; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-04-01

    Malignant cells express antigens that can be harnessed to elicit anticancer immune responses. One approach to achieve such goal consists in the administration of tumor-associated antigens (TAAs) or peptides thereof as recombinant proteins in the presence of adequate adjuvants. Throughout the past decade, peptide vaccines have been shown to mediate antineoplastic effects in various murine tumor models, especially when administered in the context of potent immunostimulatory regimens. In spite of multiple limitations, first of all the fact that anticancer vaccines are often employed as therapeutic (rather than prophylactic) agents, this immunotherapeutic paradigm has been intensively investigated in clinical scenarios, with promising results. Currently, both experimentalists and clinicians are focusing their efforts on the identification of so-called tumor rejection antigens, i.e., TAAs that can elicit an immune response leading to disease eradication, as well as to combinatorial immunostimulatory interventions with superior adjuvant activity in patients. Here, we summarize the latest advances in the development of peptide vaccines for cancer therapy.

  7. Infection of nonhost species dendritic cells in vitro with an attenuated myxoma virus induces gene expression that predicts its efficacy as a vaccine vector.

    Science.gov (United States)

    Top, S; Foulon, E; Pignolet, B; Deplanche, M; Caubet, C; Tasca, C; Bertagnoli, S; Meyer, G; Foucras, G

    2011-12-01

    Recombinant myxoma virus (MYXV) can be produced without a loss of infectivity, and its highly specific host range makes it an ideal vaccine vector candidate, although careful examination of its interaction with the immune system is necessary. Similar to rabbit bone marrow-derived dendritic cells (BM-DCs), ovine dendritic cells can be infected by SG33, a MYXV vaccine strain, and support recombinant antigen expression. The frequency of infected cells in the nonhost was lower and the virus cycle was abortive in these cell types. Among BM-DC subpopulations, Langerhans cell-like DCs were preferentially infected at low multiplicities of infection. Interestingly, ovine BM-DCs remained susceptible to MYXV after maturation, although apoptosis occurred shortly after infection as a function of the virus titer. When gene expression was assessed in infected BM-DC cultures, type I interferon (IFN)-related and inflammatory genes were strongly upregulated. DC gene expression profiles were compared with the profiles produced by other poxviruses in interaction with DCs, but very few commonalities were found, although genes that were previously shown to predict vaccine efficacy were present. Collectively, these data support the idea that MYXV permits efficient priming of adaptive immune responses and should be considered a promising vaccine vector along with other poxviruses.

  8. Infection of Nonhost Species Dendritic Cells In Vitro with an Attenuated Myxoma Virus Induces Gene Expression That Predicts Its Efficacy as a Vaccine Vector ▿ †

    Science.gov (United States)

    Top, S.; Foulon, E.; Pignolet, B.; Deplanche, M.; Caubet, C.; Tasca, C.; Bertagnoli, S.; Meyer, G.; Foucras, G.

    2011-01-01

    Recombinant myxoma virus (MYXV) can be produced without a loss of infectivity, and its highly specific host range makes it an ideal vaccine vector candidate, although careful examination of its interaction with the immune system is necessary. Similar to rabbit bone marrow-derived dendritic cells (BM-DCs), ovine dendritic cells can be infected by SG33, a MYXV vaccine strain, and support recombinant antigen expression. The frequency of infected cells in the nonhost was lower and the virus cycle was abortive in these cell types. Among BM-DC subpopulations, Langerhans cell-like DCs were preferentially infected at low multiplicities of infection. Interestingly, ovine BM-DCs remained susceptible to MYXV after maturation, although apoptosis occurred shortly after infection as a function of the virus titer. When gene expression was assessed in infected BM-DC cultures, type I interferon (IFN)-related and inflammatory genes were strongly upregulated. DC gene expression profiles were compared with the profiles produced by other poxviruses in interaction with DCs, but very few commonalities were found, although genes that were previously shown to predict vaccine efficacy were present. Collectively, these data support the idea that MYXV permits efficient priming of adaptive immune responses and should be considered a promising vaccine vector along with other poxviruses. PMID:21835800

  9. Alphavirus-based Vaccines Encoding Nonstructural Proteins of Hepatitis C Virus Induce Robust and Protective T-cell Responses

    Science.gov (United States)

    Ip, Peng Peng; Boerma, Annemarie; Regts, Joke; Meijerhof, Tjarko; Wilschut, Jan; Nijman, Hans W; Daemen, Toos

    2014-01-01

    An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all- or a part of the conserved nonstructural proteins (nsPs) of HCV. We demonstrated that an rSFV vector was able to encode a transgene as large as 6.1 kb without affecting its vaccine immunogenicity. Prime-boost immunizations of mice with rSFV expressing all nsPs induced strong and long-lasting NS3-specific CD8+ T-cell responses. The strength and functional heterogeneity of the T-cell response was similar to that induced with rSFV expressing only NS3/4A. Furthermore this leads to a significant growth delay and negative selection of HCV-expressing EL4 tumors in an in vivo mouse model. In general, as broad-spectrum T-cell responses are only seen in patients with resolved HCV infection, this rSFV-based vector, which expresses all nsPs, inducing robust T-cell activity has a potential for the treatment of HCV infections. PMID:24370701

  10. Induction of CD8(+) T cell responses and protective efficacy following microneedle-mediated delivery of a live adenovirus-vectored malaria vaccine.

    Science.gov (United States)

    Pearson, Frances E; O'Mahony, Conor; Moore, Anne C; Hill, Adrian V S

    2015-06-22

    There is an urgent need for improvements in vaccine delivery technologies. This is particularly pertinent for vaccination programmes within regions of limited resources, such as those required for adequate provision for disposal of used needles. Microneedles are micron-sized structures that penetrate the stratum corneum of the skin, creating temporary conduits for the needle-free delivery of drugs or vaccines. Here, we aimed to investigate immunity induced by the recombinant simian adenovirus-vectored vaccine ChAd63.ME-TRAP; currently undergoing clinical assessment as a candidate malaria vaccine, when delivered percutaneously by silicon microneedle arrays. In mice, we demonstrate that microneedle-mediated delivery of ChAd63.ME-TRAP induced similar numbers of transgene-specific CD8(+) T cells compared to intradermal (ID) administration with needle-and-syringe, following a single immunisation and after a ChAd63/MVA heterologous prime-boost schedule. When mice immunised with ChAd63/MVA were challenged with live Plasmodium berghei sporozoites, microneedle-mediated ChAd63.ME-TRAP priming demonstrated equivalent protective efficacy as did ID immunisation. Furthermore, responses following ChAd63/MVA immunisation correlated with a specific design parameter of the array used ('total array volume'). The level of transgene expression at the immunisation site and skin-draining lymph node (dLN) was also linked to total array volume. These findings have implications for defining silicon microneedle array design for use with live, vectored vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Immune complex-based vaccine for pig protection against parvovirus.

    Science.gov (United States)

    Roić, B; Cajavec, S; Ergotić, N; Lipej, Z; Madić, J; Lojkić, M; Pokrić, B

    2006-02-01

    generated by the IC containing the allogeneic antibodies were higher than that generated by the ICs containing the xenogeneic pig antibodies. It was similar to that generated by two-times higher content of the virus material administered by a commercially available vaccine. The IC-based vaccines belong to non-replicating, subunit vaccines, which are both ecologically convenient and the safest vaccines of all.

  12. Vector optical field generation based on birefringent phase plate.

    Science.gov (United States)

    Wang, Jiazhou; Cao, Axiu; Pang, Hui; Zhang, Man; Wang, Guangyi; Chen, Jian; Shi, Lifang; Deng, Qiling; Hu, Song

    2017-05-29

    Vector optical field has recently gained interest in a variety of application fields due to its novel characteristics. Conventional approaches of generating vector optical fields have difficulties in forming highly continuous polarization and suffer from the issue of high energy utilization rates. In order to address these issues, in this study a single optical path was proposed to generate vector optical fields where the birefringent phase plate modulated a linear polarized light into a vector optical field, which was then demodulated to a non-uniform linear polarization distribution of the vector optical field by the polarization demodulation module. Both a theoretical model and numerical simulations of the vector optical field generator were developed, illustrating the relationship between the polarization distribution of the target vector optical field and the depth distribution of the birefringent phase plate. Furthermore, the birefringent phase plate with predefined surface distributions was fabricated by grayscale exposure and ion etching. The generated vector optical field was experimentally characterized, capable of producing continuous polarization with high light energy utilization ratio, consistent with simulations. This new approach may have the potential of being widely used in future studies of generating well-controlled vector optical fields.

  13. HSV-1-Based Vectors for Gene Therapy of Neurological Diseases and Brain Tumors: Part II. Vector Systems and Applications

    Directory of Open Access Journals (Sweden)

    Andreas Jacobs

    1999-11-01

    Full Text Available Many properties of HSV-1 are especially suitable for using this virus as a vector to treat diseases affecting the central nervous system (CNS, such as Parkinson's disease or malignant gliomas. These advantageous properties include natural neurotropism, high transduction efficiency, large transgene capacity, and the ability of entering a latent state in neurons. Selective oncolysis in combination with modulation of the immune response mediated by replication-conditional HSV-1 vectors appears to be a highly promising approach in the battle against malignant glioma. Helper virus-free HSV/AAV hybrid amplicon vectors have great promise in mediating long-term gene expression in the PNS and CNS for the treatment of various neurodegenerative disorders or chronic pain. Current research focuses on the design of HSV-1-derived vectors which are targeted to certain cell types and support transcriptionally regulatable transgene expression. Here, we review the recent developments on HSV-1-based vector systems and their applications in experimental and clinical gene therapy protocols.

  14. Construction of an expression vector for Lactococcus lactis based on ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... To construct an expression vector for Lactococcus lactis, the EmPMT fragment which contained the erythromycin resistance gene, P32 promoter, multiple cloning site (MCS) and terminator (T) was subcloned into the small cryptic plasmid pAR141. The resulting vector, designated as pAR1411, was found to ...

  15. Cationic Lipid-Formulated DNA Vaccine against Hepatitis B Virus : Immunogenicity of MIDGE-Th1 Vectors Encoding Small and Large Surface Antigen in Comparison to a Licensed Protein Vaccine

    NARCIS (Netherlands)

    Endmann, Anne; Klunder, Katharina; Kapp, Kerstin; Riede, Oliver; Oswald, Detlef; Talman, Eduard G.; Schroff, Matthias; Kleuss, Christiane; Ruiters, Marcel H. J.; Juhls, Christiane

    2014-01-01

    Currently marketed vaccines against hepatitis B virus (HBV) based on the small (S) hepatitis B surface antigen (HBsAg) fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible

  16. Role of regulatory T-cells in immunization strategies involving a recombinant alphavirus vector system

    NARCIS (Netherlands)

    Walczak, Mateusz; Regts, Joke; van Oosterhout, Antoon J. M.; Boon, Louis; Wilschut, Jan; Nijman, Hans W.; Daemen, Toos

    2011-01-01

    Background: Regulatory T-cells (Treg) hamper immune responses elicited by cancer vaccines. Therefore, depletion of Treg is being used to improve the outcome of vaccinations. Methods: We studied whether an alphavirus vector-based immunotherapeutic vaccine changes the number and/or activity of Treg

  17. Vaccination with an adenoviral vector expressing calreticulin-human papillomavirus 16 E7 fusion protein eradicates E7 expressing established tumors in mice.

    Science.gov (United States)

    Gomez-Gutierrez, Jorge G; Elpek, Kutlu G; Montes de Oca-Luna, Roberto; Shirwan, Haval; Sam Zhou, H; McMasters, Kelly M

    2007-07-01

    Cervical cancer remains a leading cause of cancer-related mortality in women, particularly in developing countries. The causal association between genital human papilloma virus (HPV) infection and cervical cancer has been firmly established, and the oncogenic potential of certain HPV types has been clearly demonstrated. Vaccines targeting the oncogenic proteins, E6 and E7 of HPV-16 and -18 are the focus of current vaccine development. Previous studies have shown that calreticulin (CRT) enhances the MHC class I presentation of linked peptide/protein and may serve as an effective vaccination strategy for antigen-specific cancer treatment. Two replication-deficient adenoviruses, one expressing HPV-16 E7 (Ad-E7) and the other expressing CRT linked to E7 (Ad-CRT/E7), were assessed for their ability to induce cellular immune response and tested for prophylactic and therapeutic effects in an E7-expressing mouse tumor model. Vaccination with Ad-CRT/E7 led to a dramatic increase in E7-specific T cell proliferation, interferon (IFN)-gamma-secretion, and cytotoxic activity. Immunization of mice with Ad-CRT/E7 was effective in preventing E7-expressing tumor growth, as well as eradicating established tumors with long-term immunological memory. Vaccination with an adenoviral vector expressing CRT-E7 fusion protein represents an effective strategy for immunotherapy of cervical cancer in rodents, with possible therapeutic potential in clinical settings.

  18. Evaluation of Measles Vaccine Virus as a Vector to Deliver Respiratory Syncytial Virus Fusion Protein or Epstein-Barr Virus Glycoprotein gp350.

    Science.gov (United States)

    Mok, Hoyin; Cheng, Xing; Xu, Qi; Zengel, James R; Parhy, Bandita; Zhao, Jackie; Wang, C Kathy; Jin, Hong

    2012-01-01

    Live attenuated recombinant measles vaccine virus (MV) Edmonston-Zagreb (EZ) strain was evaluated as a viral vector to express the ectodomains of fusion protein of respiratory syncytial virus (RSV F) or glycoprotein 350 of Epstein-Barr virus (EBV gp350) as candidate vaccines for prophylaxis of RSV and EBV. The glycoprotein gene was inserted at the 1(st) or the 3(rd) position of the measles virus genome and the recombinant viruses were generated. Insertion of the foreign gene at the 3(rd) position had a minimal impact on viral replication in vitro. RSV F or EBV gp350 protein was secreted from infected cells. In cotton rats, EZ-RSV F and EZ-EBV gp350 induced MV- and insert-specific antibody responses. In addition, both vaccines also induced insert specific interferon gamma (IFN-γ) secreting T cell response. EZ-RSV F protected cotton rats from pulmonary replication of RSV A2 challenge infection. In rhesus macaques, although both EZ-RSV F and EZ-EBV gp350 induced MV specific neutralizing antibody responses, only RSV F specific antibody response was detected. Thus, the immunogenicity of the foreign antigens delivered by measles vaccine virus is dependent on the nature of the insert and the animal models used for vaccine evaluation.

  19. Identification of Coxiella burnetii CD8+ T-Cell Epitopes and Delivery by Attenuated Listeria monocytogenes as a Vaccine Vector in a C57BL/6 Mouse Model.

    Science.gov (United States)

    Xiong, Xiaolu; Jiao, Jun; Gregory, Anthony E; Wang, Pengcheng; Bi, Yujing; Wang, Xiaoyi; Jiang, Yongqiang; Wen, Bohai; Portnoy, Daniel A; Samuel, James E; Chen, Chen

    2017-05-15

    Coxiella burnetii is a gram-negative bacterium that causes acute and chronic Q fever. Because of the severe adverse effect of whole-cell vaccination, identification of immunodominant antigens of C. burnetii has become a major focus of Q fever vaccine development. We hypothesized that secreted C. burnetii type IV secretion system (T4SS) effectors may represent a major class of CD8+ T-cell antigens, owing to their cytosolic localization. Twenty-nine peptides were identified that elicited robust CD8+ T-cell interferon γ (IFN-γ) recall responses from mice infected with C. burnetii. Interestingly, 22 of 29 epitopes were derived from 17 T4SS-related proteins, none of which were identified as immunodominant antigens by using previous antibody-guided approaches. These epitopes were expressed in an attenuated Listeria monocytogenes vaccine strain. Immunization with recombinant L. monocytogenes vaccines induced a robust CD8+ T-cell response and conferred measurable protection against C. burnetii infection in mice. These data suggested that T4SS effectors represent an important class of C. burnetii antigens that can induce CD8+ T-cell responses. We also showed that attenuated L. monocytogenes vaccine vectors are an efficient antigen-delivery platform that can be used to induce robust protective CD8+ T-cell immune responses against C. burnetii infection. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  20. Ontology-Based Vaccine Adverse Event Representation and Analysis.

    Science.gov (United States)

    Xie, Jiangan; He, Yongqun

    2017-01-01

    Vaccine is the one of the greatest inventions of modern medicine that has contributed most to the relief of human misery and the exciting increase in life expectancy. In 1796, an English country physician, Edward Jenner, discovered that inoculating mankind with cowpox can protect them from smallpox (Riedel S, Edward Jenner and the history of smallpox and vaccination. Proceedings (Baylor University. Medical Center) 18(1):21, 2005). Based on the vaccination worldwide, we finally succeeded in the eradication of smallpox in 1977 (Henderson, Vaccine 29:D7-D9, 2011). Other disabling and lethal diseases, like poliomyelitis and measles, are targeted for eradication (Bonanni, Vaccine 17:S120-S125, 1999).Although vaccine development and administration are tremendously successful and cost-effective practices to human health, no vaccine is 100% safe for everyone because each person reacts to vaccinations differently given different genetic background and health conditions. Although all licensed vaccines are generally safe for the majority of people, vaccinees may still suffer adverse events (AEs) in reaction to various vaccines, some of which can be serious or even fatal (Haber et al., Drug Saf 32(4):309-323, 2009). Hence, the double-edged sword of vaccination remains a concern.To support integrative AE data collection and analysis, it is critical to adopt an AE normalization strategy. In the past decades, different controlled terminologies, including the Medical Dictionary for Regulatory Activities (MedDRA) (Brown EG, Wood L, Wood S, et al., Drug Saf 20(2):109-117, 1999), the Common Terminology Criteria for Adverse Events (CTCAE) (NCI, The Common Terminology Criteria for Adverse Events (CTCAE). Available from: http://evs.nci.nih.gov/ftp1/CTCAE/About.html . Access on 7 Oct 2015), and the World Health Organization (WHO) Adverse Reactions Terminology (WHO-ART) (WHO, The WHO Adverse Reaction Terminology - WHO-ART. Available from: https://www.umc-products.com/graphics/28010.pdf

  1. Recombinant viruses as vaccines against viral diseases

    Directory of Open Access Journals (Sweden)

    A.P.D. Souza

    2005-04-01

    Full Text Available Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.

  2. Updates on the web-based VIOLIN vaccine database and analysis system.

    Science.gov (United States)

    He, Yongqun; Racz, Rebecca; Sayers, Samantha; Lin, Yu; Todd, Thomas; Hur, Junguk; Li, Xinna; Patel, Mukti; Zhao, Boyang; Chung, Monica; Ostrow, Joseph; Sylora, Andrew; Dungarani, Priya; Ulysse, Guerlain; Kochhar, Kanika; Vidri, Boris; Strait, Kelsey; Jourdian, George W; Xiang, Zuoshuang

    2014-01-01

    The integrative Vaccine Investigation and Online Information Network (VIOLIN) vaccine research database and analysis system (http://www.violinet.org) curates, stores, analyses and integrates various vaccine-associated research data. Since its first publication in NAR in 2008, significant updates have been made. Starting from 211 vaccines annotated at the end of 2007, VIOLIN now includes over 3240 vaccines for 192 infectious diseases and eight noninfectious diseases (e.g. cancers and allergies). Under the umbrella of VIOLIN, >10 relatively independent programs are developed. For example, Protegen stores over 800 protective antigens experimentally proven valid for vaccine development. VirmugenDB annotated over 200 'virmugens', a term coined by us to represent those virulence factor genes that can be mutated to generate successful live attenuated vaccines. Specific patterns were identified from the genes collected in Protegen and VirmugenDB. VIOLIN also includes Vaxign, the first web-based vaccine candidate prediction program based on reverse vaccinology. VIOLIN collects and analyzes different vaccine components including vaccine adjuvants (Vaxjo) and DNA vaccine plasmids (DNAVaxDB). VIOLIN includes licensed human vaccines (Huvax) and veterinary vaccines (Vevax). The Vaccine Ontology is applied to standardize and integrate various data in VIOLIN. VIOLIN also hosts the Ontology of Vaccine Adverse Events (OVAE) that logically represents adverse events associated with licensed human vaccines.

  3. Environmental noise forecasting based on support vector machine

    Science.gov (United States)

    Fu, Yumei; Zan, Xinwu; Chen, Tianyi; Xiang, Shihan

    2018-01-01

    As an important pollution source, the noise pollution is always the researcher's focus. Especially in recent years, the noise pollution is seriously harmful to the human beings' environment, so the research about the noise pollution is a very hot spot. Some noise monitoring technologies and monitoring systems are applied in the environmental noise test, measurement and evaluation. But, the research about the environmental noise forecasting is weak. In this paper, a real-time environmental noise monitoring system is introduced briefly. This monitoring system is working in Mianyang City, Sichuan Province. It is monitoring and collecting the environmental noise about more than 20 enterprises in this district. Based on the large amount of noise data, the noise forecasting by the Support Vector Machine (SVM) is studied in detail. Compared with the time series forecasting model and the artificial neural network forecasting model, the SVM forecasting model has some advantages such as the smaller data size, the higher precision and stability. The noise forecasting results based on the SVM can provide the important and accuracy reference to the prevention and control of the environmental noise.

  4. Introducing the ESAT-6 free IGRA, a companion diagnostic for TB vaccines based on ESAT-6

    DEFF Research Database (Denmark)

    Ruhwald, Morten; de Thurah, Lena; Kuchaka, Davis

    2017-01-01

    There is a need for an improved vaccine for tuberculosis. ESAT-6 is a cardinal vaccine antigen with unique properties and is included in several vaccine candidates in development. ESAT-6 is also the core antigen in the IFN-γ release assays (IGRA) used to diagnose latent infection, rendering IGRA...... tests unspecific after vaccination. This challenge has prompted the development of a companion diagnostic for ESAT-6 based vaccines, an ESAT-6 free IGRA. We screened a panel of seven potential new diagnostic antigens not recognized in BCG vaccinated individuals. Three highly recognized antigens Esp...... containing vaccines and as adjunct test for latent infection....

  5. Improved Prefusion Stability, Optimized Codon Usage, and Augmented Virion Packaging Enhance the Immunogenicity of Respiratory Syncytial Virus Fusion Protein in a Vectored-Vaccine Candidate.

    Science.gov (United States)

    Liang, Bo; Ngwuta, Joan O; Surman, Sonja; Kabatova, Barbora; Liu, Xiang; Lingemann, Matthias; Liu, Xueqiao; Yang, Lijuan; Herbert, Richard; Swerczek, Joanna; Chen, Man; Moin, Syed M; Kumar, Azad; McLellan, Jason S; Kwong, Peter D; Graham, Barney S; Collins, Peter L; Munir, Shirin

    2017-08-01

    Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory tract disease worldwide, but it lacks a licensed vaccine or suitable antiviral drug. A live attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) was developed previously as a vector expressing RSV fusion (F) protein to confer bivalent protection against RSV and HPIV3. In a previous clinical trial in virus-naive children, rB/HPIV3 was well tolerated but the immunogenicity of wild-type RSV F was unsatisfactory. We previously modified RSV F with a designed disulfide bond (DS) to increase stability in the prefusion (pre-F) conformation and to be efficiently packaged in the vector virion. Here, we further stabilized pre-F by adding both disulfide and cavity-filling mutations (DS-Cav1), and we also modified RSV F codon usage to have a lower CpG content and a higher level of expression. This RSV F open reading frame was evaluated in rB/HPIV3 in three forms: (i) pre-F without vector-packaging signal, (ii) pre-F with vector-packaging signal, and (iii) secreted pre-F ectodomain trimer. Despite being efficiently expressed, the secreted pre-F was poorly immunogenic. DS-Cav1 stabilized pre-F, with or without packaging, induced higher titers of pre-F specific antibodies in hamsters, and improved the quality of RSV-neutralizing serum antibodies. Codon-optimized RSV F containing fewer CpG dinucleotides had higher F expression, replicated more efficiently in vivo, and was more immunogenic. The combination of DS-Cav1 pre-F stabilization, optimized codon usage, reduced CpG content, and vector packaging significantly improved vector immunogenicity and protective efficacy against RSV. This provides an improved vectored RSV vaccine candidate suitable for pediatric clinical evaluation.IMPORTANCE RSV and HPIV3 are the first and second leading viral causes of severe pediatric respiratory disease worldwide. Licensed vaccines or suitable antiviral drugs are not available. We

  6. Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines

    NARCIS (Netherlands)

    Gruijl, de Tanja; Eertwegh, van den Alfons; Pinedo, Herbert; Scheper, Rik

    2008-01-01

    The Weld of tumor vaccination is currently undergoing a shift in focus, from individualized tailor-made vaccines to more generally applicable vaccine formulations. Although primarily predicated by Wnancial and logistic considerations, stemming from a growing awareness that clinical development

  7. Role of innate signalling pathways in the immunogenicity of alphaviral replicon-based vaccines

    Directory of Open Access Journals (Sweden)

    Chen Margaret

    2011-01-01

    Full Text Available Abstract Background Alphaviral replicon-based vectors induce potent immune responses both when given as viral particles (VREP or as DNA (DREP. It has been suggested that the strong immune stimulatory effect induced by these types of vectors is mediated by induction of danger signals and activation of innate signalling pathways due to the replicase activity. To investigate the innate signalling pathways involved, mice deficient in either toll-like receptors or downstream innate signalling molecules were immunized with DREP or VREP. Results We show that the induction of a CD8+ T cell response did not require functional TLR3 or MyD88 signalling. However, IRF3, converging several innate signalling pathways and important for generation of pro-inflammatory cytokines and type I IFNs, was needed for obtaining a robust primary immune response. Interestingly, type I interferon (IFN, induced by most innate signalling pathways, had a suppressing effect on both the primary and memory T cell responses after DREP and VREP immunization. Conclusions We show that alphaviral replicon-based vectors activate multiple innate signalling pathways, which both activate and restrict the induced immune response. These results further show that there is a delicate balance in the strength of innate signalling and induction of adaptive immune responses that should be taken into consideration when innate signalling molecules, such as type I IFNs, are used as vaccine adjuvant.

  8. A Versatile System for USER Cloning-Based Assembly of Expression Vectors for Mammalian Cell Engineering

    DEFF Research Database (Denmark)

    Lund, Anne Mathilde; Kildegaard, Helene Faustrup; Petersen, Maja Borup Kjær

    2014-01-01

    A new versatile mammalian vector system for protein production, cell biology analyses, and cell factory engineering was developed. The vector system applies the ligation-free uracil-excision based technique – USER cloning – to rapidly construct mammalian expression vectors of multiple DNA fragments...... efficiency above 90%. The functionality of basic vectors for FAST assembly was tested and validated by transient expression of fluorescent model proteins in CHO, U-2-OS and HEK293 cell lines. In this test, we included many of the most common vector elements for heterologous gene expression in mammalian cells......, in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors....

  9. Transfer of Anti-Rotavirus Antibodies during Pregnancy and in Milk Following Maternal Vaccination with a Herpes Simplex Virus Type-1 Amplicon Vector

    Directory of Open Access Journals (Sweden)

    Anita F. Meier

    2017-02-01

    Full Text Available Rotaviruses (RVs are important enteric pathogens of newborn humans and animals, causing diarrhea and in rare cases death, especially in very young individuals. Rotavirus vaccines presently used are modified live vaccines that lack complete biological safety. Previous work from our laboratory suggested that vaccines based on in situ produced, non-infectious rotavirus-like particles (RVLPs are efficient while being entirely safe. However, using either vaccine, active mucosal immunization cannot induce protective immunity in newborns due to their immature immune system. We therefore hypothesized that offspring from vaccinated dams are passively immunized either by transfer of maternal antibodies during pregnancy or by taking up antibodies from milk. Using a codon optimized polycistronic gene expression cassette packaged into herpesvirus particles, the simultaneous expression of the RV capsid genes led to the intracellular formation of RVLPs in various cell lines. Vaccinated dams developed a strong RV specific IgG antibody response determined in sera and milk of both mother and pups. Moreover, sera of naïve pups nursed by vaccinated dams also had RV specific antibodies suggesting a lactogenic transfer of antibodies. Although full protection of pups was not achieved in this mouse model, our observations are important for the development of improved vaccines against RV in humans as well as in various animal species.

  10. Vaccination with an adenoviral vector encoding the tumor antigen directly linked to invariant chain induces potent CD4(+) T-cell-independent CD8(+) T-cell-mediated tumor control

    DEFF Research Database (Denmark)

    Sorensen, Maria R; Holst, Peter J; Pircher, Hanspeter

    2009-01-01

    vaccination with adenovirus expressing GP alone (Ad-GP), or GP and Ii unlinked (Ad-GP+Ii). Ad-Ii-GP- induced tumor control depended on an improved generation of the tumor-associated neoantigen-specific CD8(+) T-cell response and was independent of CD4(+) T cells. IFN-gamma was shown to be a key player during......Antigen-specific immunotherapy is an attractive strategy for cancer control. In the context of antiviral vaccines, adenoviral vectors have emerged as a favorable means for immunization. Therefore, we chose a strategy combining use of these vectors with another successful approach, namely linkage...... of the vaccine antigen to invariant chain (Ii). To evaluate this strategy we used a mouse model, in which an immunodominant epitope (GP33) of the LCMV glycoprotein (GP) represents the tumor-associated neoantigen. Prophylactic vaccination of C57BL/6 mice with a replication-deficient human adenovirus 5 vector...

  11. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases.

    Science.gov (United States)

    Kaslow, David C

    2004-10-01

    Vaccine development requires an amalgamation of disparate disciplines and has unique economic and regulatory drivers. Non-viral gene-based delivery systems, such as formulated plasmid DNA, are new and potentially disruptive technologies capable of providing 'cheaper, simpler, and more convenient-to-use' vaccines. Typically and somewhat ironically, disruptive technologies have poorer product performance, at least in the near-term, compared with the existing conventional technologies. Because successful product development requires that the product's performance must meet or exceed the efficacy threshold for a desired application, the appropriate selection of the initial product applications for a disruptive technology is critical for its successful evolution. In this regard, the near-term successes of gene-based vaccines will likely be for protection against bacterial toxins and acute viral and bacterial infections. Recent breakthroughs, however, herald increasing rather than languishing performance improvements in the efficacy of gene-based vaccines. Whether gene-based vaccines ultimately succeed in eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria and tuberculosis, for which the conventional vaccine technologies have failed, remains to be determined. A success against any one of the persistent intracellular pathogens would be sufficient proof that gene-based vaccines represent a disruptive technology against which future vaccine technologies will be measured.

  12. A Wavelet Kernel-Based Primal Twin Support Vector Machine for Economic Development Prediction

    Directory of Open Access Journals (Sweden)

    Fang Su

    2013-01-01

    Full Text Available Economic development forecasting allows planners to choose the right strategies for the future. This study is to propose economic development prediction method based on the wavelet kernel-based primal twin support vector machine algorithm. As gross domestic product (GDP is an important indicator to measure economic development, economic development prediction means GDP prediction in this study. The wavelet kernel-based primal twin support vector machine algorithm can solve two smaller sized quadratic programming problems instead of solving a large one as in the traditional support vector machine algorithm. Economic development data of Anhui province from 1992 to 2009 are used to study the prediction performance of the wavelet kernel-based primal twin support vector machine algorithm. The comparison of mean error of economic development prediction between wavelet kernel-based primal twin support vector machine and traditional support vector machine models trained by the training samples with the 3–5 dimensional input vectors, respectively, is given in this paper. The testing results show that the economic development prediction accuracy of the wavelet kernel-based primal twin support vector machine model is better than that of traditional support vector machine.

  13. Inelastic Vector Soliton Collisions: A Lattice-Based Quantum Representation

    National Research Council Canada - National Science Library

    Vahala, George; Vahala, Linda; Yepez, Jeffrey

    2004-01-01

    .... Under appropriate conditions the exact 2-soliton vector solutions yield in elastic soliton collisions, in agreement with the theoretical predictions of Radhakrishnan et al. (1997 Phys. Rev. E56, 2213...

  14. An oral vaccine for type 1 diabetes based on live attenuated Salmonella.

    Science.gov (United States)

    Husseiny, Mohamed I; Rawson, Jeffrey; Kaye, Alexander; Nair, Indu; Todorov, Ivan; Hensel, Michael; Kandeel, Fouad; Ferreri, Kevin

    2014-04-25

    Type 1 diabetes (T1D) is a metabolic disease that is initiated by the autoimmune destruction of pancreatic insulin-producing beta cells that is accompanied by the development of antigen-specific antibodies and cytotoxic T lymphocytes (CTLs). Several studies have shown that vaccination with diabetic autoantigens provides some protection against this process. In this report we describe a new oral vaccine that utilizes live attenuated Salmonella for simultaneous delivery of autoantigens in conjunction with immunomodulatory cytokine genes to immune cells in the gut mucosa. Recent data showed that live attenuated Salmonella is a safe, simple and effective vector for expression of antigens and cytokines by antigen-presenting cells (APCs) of gut-associated lymphatic tissue (GALT). This novel strategy was tested by fusion of the diabetic autoantigen preproinsulin with Salmonella secretory effector protein (SseF) of pathogenicity island-2 (SPI2). In this way the autoantigen is only expressed inside the host immune cells and translocated to the host cell cytosol. In addition Salmonella was used to deliver the gene for the immunomodulatory cytokine transforming growth factor beta (TGFβ) for host cell expression. Oral co-vaccination of 8 week-old non-obese diabetic (NOD) mice with three weekly doses of both the autoantigen and cytokine significantly reduced the development of diabetes, improved the response to glucose challenge, preserved beta cell mass, and reduced the severity of insulitis compared with controls and autoantigen alone. Combination therapy also resulted in increased circulating levels of IL10 four weeks post-vaccination and IL2 for 12 weeks post-vaccination, but without effect on proinflammatory cytokines IL6, IL12(p70), IL17 and IFNγ. However, in non-responders there was a significant rise in IL12 compared with responders. Future studies will examine the mechanism of this vaccination strategy in more detail. In conclusion, Salmonella-based oral vaccines

  15. Migration of dendritic cell based cancer vaccines: in vivo veritas?

    NARCIS (Netherlands)

    Adema, Gosse J.; de Vries, I. Jolanda M.; Punt, Cornelis J. A.; Figdor, Carl G.

    2005-01-01

    Ex vivo generated cancer vaccines based on dendritic cells (DCs) are currently applied in the clinic. The migration of DCs from the tissues to the lymph nodes is tightly controlled and involves many different mediators and their receptors. A recent study demonstrated that the rate of migration of

  16. Development of lactococcal GEM-based pneumococcal vaccines

    NARCIS (Netherlands)

    Audouy, Sandrine A. L.; van Selm, Saskia; van Roosmalen, Maarten L.; Post, Eduard; Kanninga, Rolf; Neef, Jolanda; Estevao, Silvia; Nieuwenhuis, Edward E. S.; Adrian, Peter V.; Leenhouts, Kees; Hermans, Peter W. M.

    2007-01-01

    We report the development of a novel protein-based nasal vaccine against Streptococcus pneumoniae, in which three pneumococcal proteins were displayed on the surface of a non-recombinant, killed Lactococcus lactis-derived delivery system, called Gram-positive Enhancer Matrix (GEM). The GEM particles

  17. Adenovirus type 35-vectored tuberculosis vaccine has an acceptable safety and tolerability profile in healthy, BCG-vaccinated, QuantiFERON(®)-TB Gold (+) Kenyan adults without evidence of tuberculosis.

    Science.gov (United States)

    Walsh, Douglas S; Owira, Victorine; Polhemus, Mark; Otieno, Lucas; Andagalu, Ben; Ogutu, Bernhards; Waitumbi, John; Hawkridge, Anthony; Shepherd, Barbara; Pau, Maria Grazia; Sadoff, Jerald; Douoguih, Macaya; McClain, J Bruce

    2016-05-05

    In a Phase 1 trial, we evaluated the safety of AERAS-402, an adenovirus 35-vectored TB vaccine candidate expressing 3 Mycobacterium tuberculosis (Mtb) immunodominant antigens, in subjects with and without latent Mtb infection. HIV-negative, BCG-vaccinated Kenyan adults without evidence of tuberculosis, 10 QuantiFERON(®)-TB Gold In-Tube test (QFT-G)(-) and 10 QFT-G(+), were randomized 4:1 to receive AERAS-402 or placebo as two doses, on Days 0 and 56, with follow up to Day 182. There were no deaths, serious adverse events or withdrawals. For 1 AERAS-402 QFT-G(-) and 1 AERAS-402 QFT-G(+) subject, there were 3 self-limiting severe AEs of injection site pain: 1 after the first vaccination and 1 after each vaccination, respectively. Two additional severe AEs considered vaccine-related were reported after the first vaccination in AERAS-402 QFT-G(+) subjects: elevated blood creatine phosphokinase and neutropenia, the latter slowly improving but remaining abnormal until study end. AERAS-402 was not detected in urine or throat cultures for any subject. In intracellular cytokine staining studies, curtailed by technical issues, we saw modest CD4+ and CD8+ T cell responses to Mtb Ag85A/b peptide pools among both QFT-G(-) and (+) subjects, with trends in the CD4+ T cells suggestive of boosting after the second vaccine dose, slightly more so in QFT-G(+) subjects. CD4+ and CD8+ responses to Mtb antigen TB10.4 were minimal. Increases in Adenovirus 35 neutralizing antibodies from screening to end of study, seen in 50% of AERAS-402 recipients, were mostly minimal. This small study confirms acceptable safety and tolerability profiles for AERAS-402, in line with other Phase 1 studies of AERAS-402, now to include QFT-G(+) subjects. Published by Elsevier Ltd.

  18. Vaccinations

    Science.gov (United States)

    ... disease — reinforcing the importance of vaccines in your pet's preventive health care program. Are there risks? Any treatment carries some risk, but these risks should be weighed against the benefits of protecting your pet from potentially fatal diseases. ...

  19. Noninvasive extraction of fetal electrocardiogram based on Support Vector Machine

    Science.gov (United States)

    Fu, Yumei; Xiang, Shihan; Chen, Tianyi; Zhou, Ping; Huang, Weiyan

    2015-10-01

    The fetal electrocardiogram (FECG) signal has important clinical value for diagnosing the fetal heart diseases and choosing suitable therapeutics schemes to doctors. So, the noninvasive extraction of FECG from electrocardiogram (ECG) signals becomes a hot research point. A new method, the Support Vector Machine (SVM) is utilized for the extraction of FECG with limited size of data. Firstly, the theory of the SVM and the principle of the extraction based on the SVM are studied. Secondly, the transformation of maternal electrocardiogram (MECG) component in abdominal composite signal is verified to be nonlinear and fitted with the SVM. Then, the SVM is trained, and the training results are compared with the real data to ensure the effect of the training. Meanwhile, the parameters of the SVM are optimized to achieve the best performance so that the learning machine can be utilized to fit the unknown samples. Finally, the FECG is extracted by removing the optimal estimation of MECG component from the abdominal composite signal. In order to evaluate the performance of FECG extraction based on the SVM, the Signal-to-Noise Ratio (SNR) and the visual test are used. The experimental results show that the FECG with good quality can be extracted, its SNR ratio is significantly increased as high as 9.2349 dB and the time cost is significantly decreased as short as 0.802 seconds. Compared with the traditional method, the noninvasive extraction method based on the SVM has a simple realization, the shorter treatment time and the better extraction quality under the same conditions.

  20. Are Clade Specific HIV Vaccines a Necessity? An Analysis Based on Mathematical Models

    Directory of Open Access Journals (Sweden)

    Dobromir Dimitrov

    2015-12-01

    Full Text Available As HIV-1 envelope immune responses are critical to vaccine related protection, most candidate HIV vaccines entering efficacy trials are based upon a clade specific design. This need for clade specific vaccine prototypes markedly reduces the implementation of potentially effective HIV vaccines. We utilized a mathematical model to determine the effectiveness of immediate roll-out of a non-clade matched vaccine with reduced efficacy compared to constructing clade specific vaccines, which would take considerable time to manufacture and test in safety and efficacy trials. We simulated the HIV epidemic in San Francisco (SF and South Africa (SA and projected effectiveness of three vaccination strategies: i immediate intervention with a 20–40% vaccine efficacy (VE non-matched vaccine, ii delayed intervention by developing a 50% VE clade-specific vaccine, and iii immediate intervention with a non-matched vaccine replaced by a clade-specific vaccine when developed. Immediate vaccination with a non-clade matched vaccine, even with reduced efficacy, would prevent thousands of new infections in SF and millions in SA over 30 years. Vaccination with 50% VE delayed for five years needs six and 12 years in SA to break-even with immediate 20 and 30% VE vaccination, respectively, while not able to surpass the impact of immediate 40% VE vaccination over 30 years. Replacing a 30% VE with a 50% VE vaccine after 5 years reduces the HIV acquisition by 5% compared to delayed vaccination. The immediate use of an HIV vaccine with reduced VE in high risk communities appears desirable over a short time line but higher VE should be the pursued to achieve strong long-term impact. Our analysis illustrates the importance of developing surrogate markers (correlates of protection to allow bridging types of immunogenicity studies to support more rapid assessment of clade specific vaccines.

  1. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production.

    Science.gov (United States)

    Oyarzún, Patricio; Kobe, Bostjan

    2016-03-03

    Novel vaccination approaches based on rational design of B- and T-cell epitopes - epitope-based vaccines - are making progress in the clinical trial pipeline. The epitope-focused recombinant protein-based malaria vaccine (termed RTS,S) is a next-generation approach that successfully reached phase-III trials, and will potentially become the first commercial vaccine against a human parasitic disease. Progress made on methods such as recombinant DNA technology, advanced cell-culture techniques, immunoinformatics and rational design of immunogens are driving the development of these novel concepts. Synthetic recombinant proteins comprising both B- and T-cell epitopes can be efficiently produced through modern biotechnology and bioprocessing methods, and can enable the induction of large repertoires of immune specificities. In particular, the inclusion of appropriate CD4+ T-cell epitopes is increasingly considered a key vaccine component to elicit robust immune responses, as suggested by results coming from HIV-1 clinical trials. In silico strategies for vaccine design are under active development to address genetic variation in pathogens and several broadly protective "universal" influenza and HIV-1 vaccines are currently at different stages of clinical trials. Other methods focus on improving population coverage in target populations by rationally considering specificity and prevalence of the HLA proteins, though a proof-of-concept in humans has not been demonstrated yet. Overall, we expect immunoinformatics and bioprocessing methods to become a central part of the next-generation epitope-based vaccine development and production process.

  2. Scalable chromatography-based purification of virus-like particle carrier for epitope based influenza A vaccine produced in Escherichia coli.

    Science.gov (United States)

    Lagoutte, Priscillia; Mignon, Charlotte; Donnat, Stéphanie; Stadthagen, Gustavo; Mast, Jan; Sodoyer, Régis; Lugari, Adrien; Werle, Bettina

    2016-06-01

    Virus-like particles (VLPs) are promising molecular structures for the design and construction of novel vaccines, diagnostic tools, and gene therapy vectors. Size, oligomer assembly and repetitiveness of epitopes are optimal features to induce strong immune responses. Several VLP-based vaccines are currently licensed and commercialized, and many vaccine candidates are now under preclinical and clinical studies. In recent years, the development of genetically engineered recombinant VLPs has accelerated the need for new, improved downstream processes. In particular, a rapid low cost purification process has been identified as a remaining key challenge in manufacturing process development. In the present study we set up a size-exclusion chromatography-based, scalable purification protocol for the purification of a VLP-based influenza A vaccine produced in Escherichia coli. Recombinant VLPs derived from the RNA bacteriophage MS2 displaying an epitope from the ectodomain of Matrix 2 protein from influenza A virus were produced and purified. The 3 steps purification protocol uses a recently developed multimodal size-exclusion chromatography medium (Capto™ Core 700) in combination with detergent extraction and size-exclusion polishing to reach a 89% VLP purity with a 19% yield. The combination of this downstream strategy following production in E. coli would be suited for production of VLP-based veterinary vaccines targeting livestock and companion animals where large amounts of doses must be produced at an affordable price. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Neuro-vector-based electrical machine driver combining a neural plant identifier and a conventional vector controller

    Science.gov (United States)

    Madani, Kurosh; Mercier, Gilles; Dinarvand, Mohammad; Depecker, Jean-Charles

    1999-03-01

    One of the most important problems, for a machine control process is the system identification. To identify varying parameters which are dependent from other system's parameters (speed, voltage and currents, etc.), one must have an adaptive control system. Synchronous machines conventional vector control's implementation using PID controllers have been recently proposed presenting the best actual solution. It supposes an appropriated model of the plant. But real plant's parameters vary and the P.I.D. controller is not suitable because of the parameters variation and non-linearity introduced by the machine's physical structure. In this paper, we present an on-line dynamic adaptive neural based vector control system identifying the motor's parameters of a synchronous machine. We present and discuss a DSP based real- time implementation of our adaptive neuro-controller. Simulation and experimental results validating our approach have been reported.

  4. Induction of broadly neutralising HCV antibodies in mice by integration-deficient lentiviral vector-based pseudotyped particles.

    Directory of Open Access Journals (Sweden)

    Yao Deng

    Full Text Available INTRODUCTION: Integration-deficient lentiviral vectors (IDLVs are a promising platform for immunisation to elicit both humoral immunity and cellular mediated immunity (CMI. Here, we compared the specific immunity in mice immunised via different regimens (homologous and cocktail with IDLV-based HCV pseudoparticles (HCVpps carrying pseudotyped glycoproteins E1E2 and bearing the HCV NS3 gene. Humoral and cell-mediated immune responses were also evaluated after IDLV-HCVpp immunisation combined with heterologous rAd5-CE1E2 priming protocols. Sera from the mice effectively elicited anti-E1, -E2, and -NS3 antibody responses, and neutralised various HCVpp subtypes (1a, 1b, 2a, 3a and 5a. No significant CMI was detected in the groups immunised with IDLV-based HCVpps. In contrast, the combination of rAd5-CE1E2 priming and IDLV-based HCVpp boosting induced significant CMI against multiple antigens (E1, E2, and NS3. CONCLUSION: IDLV-based HCVpps are a promising vaccination platform and the combination of rAd5-CE1E2 and IDLV-based HCVpp prime-boost strategy should be further explored for the development of a cross-protective HCV vaccine.

  5. Explaining Support Vector Machines: A Color Based Nomogram.

    Directory of Open Access Journals (Sweden)

    Vanya Van Belle

    Full Text Available Support vector machines (SVMs are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models.In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables.Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant. When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable.This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method.

  6. Using a Geographical-Information-System-Based Decision Support to Enhance Malaria Vector Control in Zambia

    Directory of Open Access Journals (Sweden)

    Emmanuel Chanda

    2012-01-01

    Full Text Available Geographic information systems (GISs with emerging technologies are being harnessed for studying spatial patterns in vector-borne diseases to reduce transmission. To implement effective vector control, increased knowledge on interactions of epidemiological and entomological malaria transmission determinants in the assessment of impact of interventions is critical. This requires availability of relevant spatial and attribute data to support malaria surveillance, monitoring, and evaluation. Monitoring the impact of vector control through a GIS-based decision support (DSS has revealed spatial relative change in prevalence of infection and vector susceptibility to insecticides and has enabled measurement of spatial heterogeneity of trend or impact. The revealed trends and interrelationships have allowed the identification of areas with reduced parasitaemia and increased insecticide resistance thus demonstrating the impact of resistance on vector control. The GIS-based DSS provides opportunity for rational policy formulation and cost-effective utilization of limited resources for enhanced malaria vector control.

  7. Viruses - from pathogens to vaccine carriers.

    Science.gov (United States)

    Small, Juliana C; Ertl, Hildegund C J

    2011-10-01

    Vaccination is mankind's greatest public health success story. By now vaccines to many of the viruses that once caused fatal childhood diseases are routinely used throughout the world. Traditional methods of vaccine development through inactivation or attenuation of viruses have failed for some of the most deadly human pathogens, necessitating new approaches. Genetic modification of viruses not only allows for their attenuation but also for incorporation of sequences from other viruses, turning one pathogen into a vaccine carrier for another. Recombinant viruses have pros and cons as vaccine carriers, as discussed below using vectors based on adenovirus, herpesvirus, flavivirus, and rhabdovirus as examples.

  8. Conservative rigid body dynamics by convected base vectors with implicit constraints

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2014-01-01

    A conservative time integration formulation is developed for rigid bodies based on a convected set of orthonormal base vectors. The base vectors are represented in terms of their absolute coordinates, and thus the formulation makes use of three translation components, plus nine components...... of the base vectors. Orthogonality and unit length of the base vectors are imposed by constraining the equivalent Green strain components, and the kinetic energy is represented corresponding to rigid body motion. The equations of motion are obtained via Hamilton’s equations including the zero......-strain conditions as well as external constraints via Lagrange multipliers. Subsequently, the Lagrange multipliers associated with the internal zero-strain constraints are eliminated by use of a set of orthogonality conditions between the generalized displacements and the momentum vector, leaving a set...

  9. The EB66® cell line as a valuable cell substrate for MVA-based vaccines production.

    Science.gov (United States)

    Léon, Arnaud; David, Anne-Laure; Madeline, Brice; Guianvarc'h, Laurence; Dureau, Elodie; Champion-Arnaud, Patrick; Hebben, Matthias; Huss, Thierry; Chatrenet, Benoît; Schwamborn, Klaus

    2016-11-21

    The selection of a cell substrate is a critical step for the development and manufacturing of a viral vaccine candidate. Several parameters such as cell susceptibility and permissiveness to the viral pathogens but also performance in terms of viral antigens quality and production yields are important considerations when identifying the ideal match between a viral vaccine and cell substrate. The modified vaccinia virus Ankara (MVA) is a replication-deficient viral vector that holds great promise as a vaccine platform, however only limited cell substrates have been tested or are available for industrialization. Here we evaluate the duck embryo-derived EB66® cell line as potential cell substrate for MVA production. To this end, we used two recombinant MVA constructs and demonstrated that EB66® cells are propagating the tested MVA viruses very efficiently, while preserving viral attenuation and transgene expression for up to 20 serial passages. Furthermore we developed upstream and downstream processes that enable industrialization of the virus production. In conclusion, we showed that EB66® cells can be used as potent cell substrate for MVA-based vaccines and represent therefore an attractive alternative for vaccine production. Copyright © 2016. Published by Elsevier Ltd.

  10. The Early Activation of CD8+ T Cells Is Dependent on Type I IFN Signaling following Intramuscular Vaccination of Adenovirus Vector

    Directory of Open Access Journals (Sweden)

    Masahisa Hemmi

    2014-01-01

    Full Text Available Few of the vaccines in current use can induce antigen- (Ag- specific immunity in both mucosal and systemic compartments. Hence, the development of vaccines that realize both mucosal and systemic protection against various pathogens is a high priority in global health. Recently, it has been reported that intramuscular (i.m. vaccination of an adenovirus vector (Adv can induce Ag-specific cytotoxic T lymphocytes (CTLs in both systemic and gut mucosal compartments. We previously revealed that type I IFN signaling is required for the induction of gut mucosal CTLs, not systemic CTLs. However, the molecular mechanism via type I IFN signaling is largely unknown. Here, we report that type I IFN signaling following i.m. Adv vaccination is required for the expression of type I IFN in the inguinal lymph nodes (iLNs, which are the draining lymph nodes of the administration site. We also showed that the type I IFN signaling is indispensable for the early activation of CTLs in iLNs. These data suggested that type I IFN signaling has an important role in the translation of systemic innate immune response into mucosal adaptive immunity by amplifying the innate immune signaling and activating CTLs in the iLN.

  11. An Overview on the Field of Micro- and Nanotechnologies for Synthetic Peptide-Based Vaccines

    Directory of Open Access Journals (Sweden)

    Aiala Salvador

    2011-01-01

    Full Text Available The development of synthetic peptide-based vaccines has many advantages in comparison with vaccines based on live attenuated organisms, inactivated or killed organism, or toxins. Peptide-based vaccines cannot revert to a virulent form, allow a better conservation, and are produced more easily and safely. However, they generate a weaker immune response than other vaccines, and the inclusion of adjuvants and/or the use of vaccine delivery systems is almost always needed. Among vaccine delivery systems, micro- and nanoparticulated ones are attractive, because their particulate nature can increase cross-presentation of the peptide. In addition, they can be passively or actively targeted to antigen presenting cells. Furthermore, particulate adjuvants are able to directly activate innate immune system in vivo. Here, we summarize micro- and nanoparticulated vaccine delivery systems used in the field of synthetic peptide-based vaccines as well as strategies to increase their immunogenicity.

  12. Victims, vectors and villains: are those who opt out of vaccination morally responsible for the deaths of others?

    Science.gov (United States)

    Jamrozik, Euzebiusz; Handfield, Toby; Selgelid, Michael J

    2016-12-01

    Mass vaccination has been a successful public health strategy for many contagious diseases. The immunity of the vaccinated also protects others who cannot be safely or effectively vaccinated-including infants and the immunosuppressed. When vaccination rates fall, diseases like measles can rapidly resurge in a population. Those who cannot be vaccinated for medical reasons are at the highest risk of severe disease and death. They thus may bear the burden of others' freedom to opt out of vaccination. It is often asked whether it is legitimate for states to adopt and enforce mandatory universal vaccination. Yet this neglects a related question: are those who opt out, where it is permitted, morally responsible when others are harmed or die as a result of their decision? In this article, we argue that individuals who opt out of vaccination are morally responsible for resultant harms to others. Using measles as our main example, we demonstrate the ways in which opting out of vaccination can result in a significant risk of harm and death to others, especially infants and the immunosuppressed. We argue that imposing these risks without good justification is blameworthy and examine ways of reaching a coherent understanding of individual moral responsibility for harms in the context of the collective action required for disease transmission. Finally, we consider several objections to this view, provide counterarguments and suggest morally permissible alternatives to mandatory universal vaccination including controlled infection, self-imposed social isolation and financial penalties for refusal to vaccinate. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Evaluation of attenuation, immunogenicity and efficacy of a bovine parainfluenza virus type 3 (PIV-3) vaccine and a recombinant chimeric bovine/human PIV-3 vaccine vector in rhesus monkeys.

    Science.gov (United States)

    Pennathur, Sridhar; Haller, Aurelia A; MacPhail, Mia; Rizzi, Tom; Kaderi, Sepideh; Fernandes, Fiona; Bicha, Leenas; Schickli, Jeanne H; Tang, Roderick S; Chen, Wendy; Nguyen, Nick; Mathie, Sharon; Mehta, Hersh; Coelingh, Kathleen L

    2003-12-01

    Restricted replication in the respiratory tract of rhesus monkeys is an intrinsic property of bovine parainfluenza virus type 3 (bPIV-3) strains. This host range phenotype of bPIV-3 has been utilized as a marker to evaluate the attenuation of bPIV-3 vaccines for human use. Two safety, immunogenicity and efficacy studies in primates evaluated and compared three human parainfluenza virus type 3 (hPIV-3) vaccine candidates: biologically derived bPIV-3, a plasmid-derived bPIV-3 (r-bPIV-3) and a chimeric bovine/human PIV-3 (b/hPIV-3). These studies also examined the feasibility of substituting Vero cells, cultured in the presence or absence of foetal bovine serum, for foetal rhesus lung-2 (FRhL-2) cells as the tissue culture substrate for the production of bPIV-3 vaccine. The results demonstrated that (i) Vero cell-produced bPIV-3 was as attenuated, immunogenic and efficacious as bPIV-3 vaccine grown in FRhL-2 cells, (ii) plasmid-derived bPIV-3 was as attenuated, immunogenic and efficacious as the biologically derived bPIV-3 and (iii) the b/hPIV-3 chimera displayed an intermediate attenuation phenotype and protected animals completely from hPIV-3 challenge. These results support the use of bPIV-3 vaccines propagated in Vero cells in human clinical trials and the use of b/hPIV-3 as a virus vaccine vector to express foreign viral antigens.

  14. Immune modulating effect by a phosphoprotein-deleted rabies virus vaccine vector expressing two copies of the rabies virus glycoprotein gene.

    Science.gov (United States)

    Cenna, Jonathan; Tan, Gene S; Papaneri, Amy B; Dietzschold, Bernhard; Schnell, Matthias J; McGettigan, James P

    2008-11-25

    The type of immune response induced by a vaccine is a critical factor that determines its effectiveness in preventing infection or disease. Inactivated and live rabies virus (RV) vaccine strains elicit an IgG1-biased and IgG1/IgG2a-balanced antibody response, respectively. However, IgG2a antibodies are potent inducers of anti-viral effector functions, and therefore, a viral vaccine vector that can elicit an IgG2a-biased antibody response may be more effective against RV infection. Here we describe the humoral immune response of a live replication-deficient phosphoprotein (P)-deleted RV vector (SPBN-DeltaP), or a recombinant P-deleted virus that expresses two copies of the RV glycoprotein (G) gene (SPBN-DeltaP-RVG), and compare it to a UV-inactivated RV. Mice inoculated with UV-inactivated RV induced predominantly an IgG1-specific antibody response, while live recombinant SPBN-DeltaP exhibited a mixed IgG1/IgG2a antibody response, which is consistent with the isotype profiles from the replication-competent parental viruses. Survivorship in mice after pathogenic RV challenge indicates a 10-fold higher efficiency of live SPBN-DeltaP compared to UV-inactivated SPBN-DeltaP. In addition, SPBN-DeltaP-RVG induced a more rapid and robust IgG2a response that protected mice more effectively than SPBN-DeltaP. Of note, 10(3)ffu of SPBN-DeltaP-RVG-induced anti-RV antibodies that were 100% protective in mice against pathogenic RV challenge. The increased immune response was directed not only against RV G but also against the ribonucleoprotein (RNP), indicating that the expression of two RV G genes from SPBN-DeltaP-RVG enhances the immune response to other RV antigens as well. In addition, Rag2 mice inoculated intramuscularly with 10(5)ffu/mouse of SPBN-DeltaP showed no clinical signs of rabies, and no viral RNA was detected in the spinal cord or brain of inoculated mice. Therefore, the safety of the P-deleted vectors along with the onset and magnitude of the IgG2a-induced immune

  15. T cell responses induced by adenoviral vectored vaccines can be adjuvanted by fusion of antigen to the oligomerization domain of C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Emily K Forbes

    Full Text Available Viral vectored vaccines have been shown to induce both T cell and antibody responses in animals and humans. However, the induction of even higher level T cell responses may be crucial in achieving vaccine efficacy against difficult disease targets, especially in humans. Here we investigate the oligomerization domain of the α-chain of C4b-binding protein (C4 bp as a candidate T cell "molecular adjuvant" when fused to malaria antigens expressed by human adenovirus serotype 5 (AdHu5 vectored vaccines in BALB/c mice. We demonstrate that i C-terminal fusion of an oligomerization domain can enhance the quantity of antigen-specific CD4(+ and CD8(+ T cell responses induced in mice after only a single immunization of recombinant AdHu5, and that the T cells maintain similar functional cytokine profiles; ii an adjuvant effect is observed for AdHu5 vectors expressing either the 42 kDa C-terminal domain of Plasmodium yoelii merozoite surface protein 1 (PyMSP1(42 or the 83 kDa ectodomain of P. falciparum strain 3D7 apical membrane antigen 1 (PfAMA1, but not a candidate 128kDa P. falciparum MSP1 biallelic fusion antigen; iii following two homologous immunizations of AdHu5 vaccines, antigen-specific T cell responses are further enhanced, however, in both BALB/c mice and New Zealand White rabbits no enhancement of functional antibody responses is observed; and iv that the T cell adjuvant activity of C4 bp is not dependent on a functional Fc-receptor γ-chain in the host, but is associated with the oligomerization of small (<80 kDa antigens expressed by recombinant AdHu5. The oligomerization domain of C4 bp can thus adjuvant T cell responses induced by AdHu5 vectors against selected antigens and its clinical utility as well as mechanism of action warrant further investigation.

  16. Comparative Study of Liver Gene Transfer With AAV Vectors Based on Natural and Engineered AAV Capsids.

    Science.gov (United States)

    Wang, Lili; Bell, Peter; Somanathan, Suryanarayan; Wang, Qiang; He, Zhenning; Yu, Hongwei; McMenamin, Deirdre; Goode, Tamara; Calcedo, Roberto; Wilson, James M

    2015-12-01

    Vectors based on the clade E family member adeno-associated virus (AAV) serotype 8 have shown promise in patients with hemophilia B and have emerged as best in class for human liver gene therapies. We conducted a thorough evaluation of liver-directed gene therapy using vectors based on several natural and engineered capsids including the clade E AAVrh10 and the largely uncharacterized and phylogenically distinct AAV3B. Included in this study was a putatively superior hepatotropic capsid, AAVLK03, which is very similar to AAV3B. Vectors based on these capsids were benchmarked against AAV8 and AAV2 in a number of in vitro and in vivo model systems including C57BL/6 mice, immune-deficient mice that are partially repopulated with human hepatocytes, and nonhuman primates. Our studies in nonhuman primates and human hepatocytes demonstrated high level transduction of the clade E-derived vectors and equally high transduction with vectors based on AAV3B. In contrast to previous reports, AAVLK03 vectors are not superior to either AAV3B or AAV8. Vectors based on AAV3B should be considered for liver-directed gene therapy when administered following, or before, treatment with the serologically distinct clade E vectors.

  17. Evaluation of a prime-boost vaccine schedule with distinct adenovirus vectors against malaria in rhesus monkeys

    NARCIS (Netherlands)

    Rodríguez, Ariane; Mintardjo, Ratna; Tax, Dennis; Gillissen, Gert; Custers, Jerome; Pau, Maria Grazia; Klap, Jaco; Santra, Sampa; Balachandran, Harikrishnan; Letvin, Norman L.; Goudsmit, Jaap; Radosević, Katarina

    2009-01-01

    A vaccine that elicits both specific antibodies and IFN-gamma-producing T cells is required to protect against pre-erythrocytic malaria. Among the most promising approaches to induce such complex immunity are heterologous prime-boost vaccination regiments, in particular ones containing liver viral

  18. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine

    DEFF Research Database (Denmark)

    Theisen, Michael; Jore, Matthijs M; Sauerwein, Robert

    2017-01-01

    Introduction: Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which...... are essential for the transmission to the mosquito vector. A vaccine targeting the sexual stages of the parasite and thus blocking transmission will be instrumental for the eradication of malaria. One of the leading transmission blocking vaccine candidates is the sexual stage antigen Pfs48/45. Areas covered...

  19. Immunogenicity of viral vector, prime-boost SIV vaccine regimens in infant rhesus macaques: attenuated vesicular stomatitis virus (VSV) and modified vaccinia Ankara (MVA) recombinant SIV vaccines compared to live-attenuated SIV.

    Science.gov (United States)

    Van Rompay, Koen K A; Abel, Kristina; Earl, Patricia; Kozlowski, Pamela A; Easlick, Juliet; Moore, Joseph; Buonocore-Buzzelli, Linda; Schmidt, Kimberli A; Wilson, Robert L; Simon, Ian; Moss, Bernard; Rose, Nina; Rose, John; Marthas, Marta L

    2010-02-10

    In a previously developed infant macaque model mimicking HIV infection by breast-feeding, we demonstrated that intramuscular immunization with recombinant poxvirus vaccines expressing simian immunodeficiency virus (SIV) structural proteins provided partial protection against infection following oral inoculation with virulent SIV. In an attempt to further increase systemic but also local antiviral immune responses at the site of viral entry, we tested the immunogenicity of different orally administered, replicating vaccines. One group of newborn macaques received an oral prime immunization with a recombinant vesicular stomatitis virus expressing SIVmac239 gag, pol and env (VSV-SIVgpe), followed 2 weeks later by an intramuscular boost immunization with MVA-SIV. Another group received two immunizations with live-attenuated SIVmac1A11, administered each time both orally and intravenously. Control animals received mock immunizations or non-SIV VSV and MVA control vectors. Analysis of SIV-specific immune responses in blood and lymphoid tissues at 4 weeks of age demonstrated that both vaccine regimens induced systemic antibody responses and both systemic and local cell-mediated immune responses. The safety and immunogenicity of the VSV-SIVgpe+MVA-SIV immunization regimen described in this report provide the scientific incentive to explore the efficacy of this vaccine regimen against virulent SIV exposure in the infant macaque model. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  20. Risk of inflammatory bowel disease following Bacille Calmette-Guérin and smallpox vaccination: a population-based Danish case-cohort study.

    Science.gov (United States)

    Villumsen, Marie; Jess, Tine; Sørup, Signe; Ravn, Henrik; Sturegård, Erik; Benn, Christine Stabell; Aaby, Peter; Roth, Adam

    2013-07-01

    Childhood immunology has been suggested to play a role in development of inflammatory bowel disease (IBD) based on the studies of childhood vaccinations, infections, and treatment with antibiotics. Bacille Calmette-Guérin (BCG) and smallpox vaccinations were gradually phased-out in Denmark for children born between 1965 and 1976, hence allowing the study of subsequent risk of Crohn's disease and ulcerative colitis in a unique prospective design. The Copenhagen School Health Records Register contains detailed documentation of vaccination. Among the background cohort of individuals born between 1965 and 1976 (N = 47,622), cases with Crohn's disease (n = 218) and ulcerative colitis (n = 256) were identified through linkage to the Danish National Patient Registry. The vaccination status of the cases was compared with that of a subcohort (n = 5741) of the background cohort and analyzed in a case-cohort design. No difference in risk of IBD was observed between individuals vaccinated and unvaccinated with BCG (hazard ratio = 0.95; 95% confidence interval, 0.75-1.19) or smallpox vaccine (hazard ratio = 1.01; 95% confidence interval, 0.77-1.32). This was also the case for Crohn's disease and ulcerative colitis separately. However, BCG given before 4 months of age may decrease the risk of IBD (hazard ratio = 0.43; 95% confidence interval, 0.20-0.93). This prospective long-term case-cohort study shows that BCG and smallpox vaccination do not cause IBD later in life. These findings are important for the etiological understanding of IBD and of clinical importance because BCG is still one of the most commonly used childhood vaccinations, smallpox vaccine has been reintroduced in the U.S. military, and both vaccines may be used as vectors in new vaccines.

  1. A comparative study on change vector analysis based change ...

    Indian Academy of Sciences (India)

    From this viewpoint, different change detection algorithms have been developed for land-use land-cover (LULC) region. Among the different change detection algorithms, change vector analysis (CVA) has level headed capability of extracting maximuminformation in terms of overall magnitude of change and the direction of ...

  2. Versatile Supramolecular Gene Vector Based on Host-Guest Interaction

    NARCIS (Netherlands)

    Liu, Jia; Hennink, Wim E.; Van Steenbergen, Mies J.; Zhuo, Renxi; Jiang, Xulin

    2016-01-01

    It is a great challenge to arrange multiple functional components into one gene vector system to overcome the extra- and intracellular obstacles for gene therapy. In this study, we developed a supramolecular approach for constructing a versatile gene delivery system composed of adamantyl-terminated

  3. Pre-vaccination care-seeking in females reporting severe adverse reactions to HPV vaccine. A registry based case-control study

    DEFF Research Database (Denmark)

    Mølbak, Kåre; Hansen, Niels Dalum; Valentiner-Branth, Palle

    2016-01-01

    Background Since 2013 the number of suspected adverse reactions to the quadrivalent human papillomavirus (HPV) vaccine reported to the Danish Medicines Agency (DMA) has increased. Due to the resulting public concerns about vaccine safety, the coverage of HPV vaccinations in the childhood...... vaccination programme has declined. The aim of the present study was to determine health care-seeking prior to the first HPV vaccination among females who suspected adverse reactions to HPV vaccine. Methods In this registry-based case-control study, we included as cases vaccinated females with reports...... to the DMA of suspected severe adverse reactions.We selected controls without reports of adverse reactions from the Danish vaccination registry and matched by year of vaccination, age of vaccination, and municipality, and obtained from the Danish National Patient Registry and The National Health Insurance...

  4. Skin injury model classification based on shape vector analysis.

    Science.gov (United States)

    Röhrich, Emil; Thali, Michael; Schweitzer, Wolf

    2012-11-06

    Skin injuries can be crucial in judicial decision making. Forensic experts base their classification on subjective opinions. This study investigates whether known classes of simulated skin injuries are correctly classified statistically based on 3D surface models and derived numerical shape descriptors. Skin injury surface characteristics are simulated with plasticine. Six injury classes - abrasions, incised wounds, gunshot entry wounds, smooth and textured strangulation marks as well as patterned injuries - with 18 instances each are used for a k-fold cross validation with six partitions. Deformed plasticine models are captured with a 3D surface scanner. Mean curvature is estimated for each polygon surface vertex. Subsequently, distance distributions and derived aspect ratios, convex hulls, concentric spheres, hyperbolic points and Fourier transforms are used to generate 1284-dimensional shape vectors. Subsequent descriptor reduction maximizing SNR (signal-to-noise ratio) result in an average of 41 descriptors (varying across k-folds). With non-normal multivariate distribution of heteroskedastic data, requirements for LDA (linear discriminant analysis) are not met. Thus, shrinkage parameters of RDA (regularized discriminant analysis) are optimized yielding a best performance with λ = 0.99 and γ = 0.001. Receiver Operating Characteristic of a descriptive RDA yields an ideal Area Under the Curve of 1.0 for all six categories. Predictive RDA results in an average CRR (correct recognition rate) of 97,22% under a 6 partition k-fold. Adding uniform noise within the range of one standard deviation degrades the average CRR to 71,3%. Digitized 3D surface shape data can be used to automatically classify idealized shape models of simulated skin injuries. Deriving some well established descriptors such as histograms, saddle shape of hyperbolic points or convex hulls with subsequent reduction of dimensionality while maximizing SNR seem to work well for the data at hand, as

  5. Optimization and scale-up of cell culture and purification processes for production of an adenovirus-vectored tuberculosis vaccine candidate.

    Science.gov (United States)

    Shen, Chun Fang; Jacob, Danielle; Zhu, Tao; Bernier, Alice; Shao, Zhongqi; Yu, Xuefeng; Patel, Mehul; Lanthier, Stephane; Kamen, Amine

    2016-06-17

    Tuberculosis (TB) is the second leading cause of death by infectious disease worldwide. The only available TB vaccine is the Bacille Calmette-Guerin (BCG). However, parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. AdAg85A, an adenoviral vector expressing the mycobacterial protein Ag85A, is a new tuberculosis vaccine candidate, and has shown promising results in pre-clinical studies and phase I trial. This adenovirus vectored vaccine is produced using HEK 293 cell culture. Here we report on the optimization of cell culture conditions, scale-up of production and purification of the AdAg85A at different scales. Four commercial serum-free media were evaluated under various conditions for supporting the growth of HEK293 cell and production of AdAg85A. A culturing strategy was employed to take advantages of two culture media with respective strengths in supporting the cell growth and virus production, which enabled to maintain virus productivity at higher cell densities and resulted in more than two folds of increases in culture titer. The production of AdAg85A was successfully scaled up and validated at 60L bioreactor under the optimal conditions. The AdAg85A generated from the 3L and 60L bioreactor runs was purified through several purification steps. More than 98% of total cellular proteins was removed, over 60% of viral particles was recovered after the purification process, and purity of AdAg85A was similar to that of the ATCC VR-1516 Ad5 standard. Vaccination of mice with the purified AdAg85A demonstrated a very good level of Ag85A-specific antibody responses. The optimized production and purification conditions were transferred to a GMP facility for manufacturing of AdAg85A for generation of clinical grade material to support clinical trials. Crown Copyright © 2016. Published by Elsevier Ltd. All rights

  6. Novel Vaccine Against Mycoplasma Hyosynoviae: The Immunogenic Effect of Iscom-Based Vaccines in Swine

    DEFF Research Database (Denmark)

    Lauritsen, Klara Tølbøll; Vinther Heydenreich, Annette; Riber, Ulla

    Arthritis in swine is frequently caused by Mycoplasma hyosynoviae (Mhs). For the development of an effective vaccine we investigated the immunogenic effect of three vaccine preparations with the ISCOM adjuvant Posintro™ from Nordic Vaccine. A: formalin fixed whole-cells Mhs (300 µg/dose) mixed...... with Posintro, B: Deoxycholate extracted lipoproteins from Mhs organisms (DOC-antigen, 300 μg/dose) in Posintro and C: DOC-antigen (50 μg/dose) in Posintro. Each vaccine-group contained three pigs. Vaccinations (i.m.) were performed at 12 and 15 weeks of age. The development of specific IgG and secretion...... of IFNγ were measured. Three weeks after the second vaccination, pigs were euthanised and autopsied. Vaccine B induced a high level of specific serum IgG in all pigs a week after boost. Vaccine C gave a variable response after boost, with two pigs seroconverting, while no response was seen by vaccine A...

  7. Avian adeno-associated virus-based expression of Newcastle disease virus hemagglutinin-neuraminidase protein for poultry vaccination.

    Science.gov (United States)

    Perozo, F; Villegas, P; Estevez, C; Alvarado, I R; Purvis, L B; Saume, E

    2008-06-01

    The avian adeno-associated virus (AAAV) is a replication-defective nonpathogenic virus member of the family Parvoviridae that has been proved to be useful as a viral vector for gene delivery. The use of AAAV for transgenic expression of Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) protein and its ability to induce immunity in chickens were assessed. Proposed advantages of this system include no interference with maternal antibodies, diminished immune response against the vector, and the ability to accommodate large fragments of genetic information. In this work the generation of recombinant AAAV virions expressing the HN protein (rAAAV-HN) was demonstrated by electron microscopy, immunocytochemistry, and western blot analysis. Serological evidence of HN protein expression after in ovo or intramuscular inoculation of the recombinant virus in specific-pathogen-free chickens was obtained. Serum from rAAAV-HN-vaccinated birds showed a systemic immune response evidenced by NDV-specific enzyme-linked immunosorbent assay and hemagglutination inhibition testing. Positive virus neutralization in embryonated chicken eggs and indirect immunofluorescence detection of NDV infected cells by serum from rAAAV-HN vaccinated birds is also reported. A vaccine-challenge experiment in commercial broiler chickens using a Venezuelan virulent viscerotropic strain of NDV was performed. All unvaccinated controls died within 5 days postchallenge. Protection up to 80% was observed in birds vaccinated in ovo and revaccinated at 7 days of age with the rAAAV-HN. The results demonstrate the feasibility of developing and using an AAAV-based gene delivery system for poultry vaccination.

  8. QA prime-boost vaccination strategy in prevent serotype O FMDV infection using a "single-cycle" alphavirus vector and empty capsid particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette

    Introduction Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. Vaccination can help to control this disease, however, current vaccines based on chemically inactivated FMDV, are imperfect and there is a need for new, safe...... and effective vaccines to control FMD. There is no cross protection between the 7 serotypes but serotype O is the most abundant globally. Material and methods The FMDV capsid protein precursor (P1-2A) of strain O1 Manisa has been expressed with the FMDV 3C protease (3Cpro) using a “single cycle” packaged....... Discussion This prime-boost system, using reagents that can be generated outside of high-containment facilities, offers significant advantages to achieve control of FMD by vaccination....

  9. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    Science.gov (United States)

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD. © 2015 The Author(s) Published by S. Karger AG, Basel.

  10. Improving influenza vaccination in chronically ill children using a tertiary-care based vaccination clinic: Is there a role for the live-attenuated influenza vaccine (LAIV)?

    Science.gov (United States)

    Merckx, Joanna; McCormack, Deirdre; Quach, Caroline

    2016-02-03

    Children with underlying medical conditions should receive influenza vaccine (IV) yearly; yet this remains sub-optimal. We aimed to describe our experience with a tertiary-care hospital-based influenza vaccination clinic for this at-risk population. From October to December 2012, 2013, and 2014, we ran an influenza vaccination clinic at the Montreal Children's Hospital, where children with high-risk conditions come for their follow-up. Both injectable IV (IIV) and live-attenuated IV (LAIV) were offered free of charge to patients and their household contacts. Upon vaccination, parents were asked to fill a pre-piloted questionnaire. We vaccinated a total of 2640 high-risk children and 1912 household members during the three influenza vaccination seasons. In 2012 and 2013, 631 and 630 patients with chronic illnesses were vaccinated, compared to 1379 in 2014. Caregivers preferred LAIV primarily because no needle was involved (49.0%) and because it was perceived as less painful (46.9%). LAIV was administered to 69% (2012), 55% (2013) and 47% (2014) of high-risk children. The main reason for not receiving LAIV was because it was contra-indicated. A small fraction of children previously vaccinated with LAIV who did not present any contraindication to LAIV opted for IIV: 12/101 (11.8%) in 2013 and 16/272 (5.9%) in 2014. In 2014, this was mainly due to a previous negative experience with LAIV (11/16). Having an influenza vaccination clinic on site at a tertiary care hospital, where children come for their scheduled visits, facilitates yearly influenza vaccination in children with chronic illnesses. LAIV is preferred by caregivers and patients, when not contraindicated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Strengthening vaccination policies in Latin America: an evidence-based approach.

    Science.gov (United States)

    Tapia-Conyer, Roberto; Betancourt-Cravioto, Miguel; Saucedo-Martínez, Rodrigo; Motta-Murguía, Lourdes; Gallardo-Rincón, Héctor

    2013-08-20

    Despite many successes in the region, Latin American vaccination policies have significant shortcomings, and further work is needed to maintain progress and prepare for the introduction of newly available vaccines. In order to address the challenges facing Latin America, the Commission for the Future of Vaccines in Latin America (COFVAL) has made recommendations for strengthening evidence-based policy-making and reducing regional inequalities in immunisation. We have conducted a comprehensive literature review to assess the feasibility of these recommendations. Standardisation of performance indicators for disease burden, vaccine coverage, epidemiological surveillance and national health resourcing can ensure comparability of the data used to assess vaccination programmes, allowing deeper analysis of how best to provide services. Regional vaccination reference schemes, as used in Europe, can be used to develop best practice models for vaccine introduction and scheduling. Successful models exist for the continuous training of vaccination providers and decision-makers, with a new Latin American diploma aiming to contribute to the successful implementation of vaccination programmes. Permanent, independent vaccine advisory committees, based on the US Advisory Committee on Immunization Practices (ACIP), could facilitate the uptake of new vaccines and support evidence-based decision-making in the administration of national immunisation programmes. Innovative financing mechanisms for the purchase of new vaccines, such as advance market commitments and cost front-loading, have shown potential for improving vaccine coverage. A common regulatory framework for vaccine approval is needed to accelerate delivery and pool human, technological and scientific resources in the region. Finally, public-private partnerships between industry, government, academia and non-profit sectors could provide new investment to stimulate vaccine development in the region, reducing prices in the

  12. Topical herpes simplex virus 2 (HSV-2) vaccination with human papillomavirus vectors expressing gB/gD ectodomains induces genital-tissue-resident memory CD8+ T cells and reduces genital disease and viral shedding after HSV-2 challenge.

    Science.gov (United States)

    Çuburu, Nicolas; Wang, Kening; Goodman, Kyle N; Pang, Yuk Ying; Thompson, Cynthia D; Lowy, Douglas R; Cohen, Jeffrey I; Schiller, John T

    2015-01-01

    HSV infection. To date, there is no licensed vaccine against HSV infection. This study describes intravaginal vaccination with a nonreplicating HPV-based vector expressing HSV glycoprotein antigens. The data presented in this study underscore the potential of HPV-based vectors as a platform for the induction of genital-tissue-resident memory T cell responses and the control of local manifestations of primary HSV infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Co-administration of the Campylobacter jejuni N-glycan based vaccine with probiotics improves vaccine performance in broiler chickens.

    Science.gov (United States)

    Nothaft, H; Perez-Muñoz, M E; Gouveia, G J; Duar, R M; Wanford, J J; Lango-Scholey, L; Panagos, C G; Srithayakumar, V; Plastow, G S; Coros, C; Bayliss, C D; Edison, A S; Walter, J; Szymanski, C M

    2017-09-22

    Source attribution studies report that consumption of contaminated poultry is the primary source for acquiring human campylobacteriosis. Oral administration of an engineered Escherichia coli strain expressing the Campylobacter jejuni N-glycan reduces bacterial colonization in specific-pathogen-free leghorn chickens, but only a fraction of birds respond to vaccination. Optimizing the vaccine for commercial broiler chickens has great potential to prevent pathogen entry into the food chain. Here, we tested the same vaccination approach in broilers and observed similar efficacy in pathogen load reduction, stimulation of host IgY response, lack of C. jejuni resistance development, uniformity in microbial gut composition, and bimodal response to treatment. Gut microbiota analysis of leghorn and broiler vaccine responders identified one member of the Clostridiales XIVa cluster, Anaerosporobacter mobilis, significantly more abundant in responder birds. In broilers, co-administration of the live vaccine with A. mobilis or Lactobacillus reuteri, a commonly used probiotic, resulted in increased vaccine efficacy, antibody response, and weight gain. To investigate whether the responder/non-responder effect was due to selection of a C. jejuni 'super colonizer mutant' with altered phase-variable genes, we analysed all polyG-containing loci of the input strain compared to non-responder colony isolates and found no evidence of phase state selection. However, untargeted NMR-based metabolomics identified a potential biomarker negatively correlated with C. jejuni colonization levels possibly linked to the increased microbial diversity in this subgroup. The comprehensive methods used to examine the vaccine response bimodality provide several opportunities to improve the C. jejuni vaccine and the efficacy of any vaccination strategy.ImportanceCampylobacter jejuni is a common cause of human diarrheal disease worldwide and listed by the World Health Organization as a high priority

  14. A novel approach to evaluating the UK childhood immunisation schedule: estimating the effective coverage vector across the entire vaccine programme.

    Science.gov (United States)

    Crowe, Sonya; Utley, Martin; Walker, Guy; Panovska-Griffiths, Jasmina; Grove, Peter; Pagel, Christina

    2015-12-29

    The availability of new vaccines can prompt policy makers to consider changes to the routine childhood immunisation programme in the UK. Alterations to one aspect of the schedule may have implications for other areas of the programme (e.g. adding more injections could reduce uptake of vaccines featuring later in the schedule). Colleagues at the Department of Health (DH) in the UK therefore wanted to know whether assessing the impact across the entire programme of a proposed change to the UK schedule could lead to different decisions than those made on the current case-by-case basis. This work is a first step towards addressing this question. A novel framework for estimating the effective coverage against all of the diseases within a vaccination programme was developed. The framework was applied to the current (August 2015) UK childhood immunisation programme, plausible extensions to it in the foreseeable future (introducing vaccination against Meningitis B and/or Hepatitis B) and a "what-if" scenario regarding a Hepatitis B vaccine scare that was developed in close collaboration with DH. Our applications of the framework demonstrate that a programme-view of hypothetical changes to the schedule is important. For example, we show how introducing Hepatitis B vaccination could negatively impact aspects of the current programme by reducing uptake of vaccines featuring later in the schedule, and illustrate that the potential benefits of introducing any new vaccine are susceptible to behaviour changes affecting uptake (e.g. a vaccine scare). We show how it may be useful to consider the potential benefits and scheduling needs of all vaccinations on the horizon of interest rather than those of an individual vaccine in isolation, e.g. how introducing Meningitis B vaccination could saturate the early (2-month) visit, thereby potentially restricting scheduling options for Hepatitis B immunisation should it be introduced to the programme in the future. Our results demonstrate

  15. A Single-Dose Recombinant Parainfluenza Virus 5-Vectored Vaccine Expressing Respiratory Syncytial Virus (RSV) F or G Protein Protected Cotton Rats and African Green Monkeys from RSV Challenge.

    Science.gov (United States)

    Wang, Dai; Phan, Shannon; DiStefano, Daniel J; Citron, Michael P; Callahan, Cheryl L; Indrawati, Lani; Dubey, Sheri A; Heidecker, Gwendolyn J; Govindarajan, Dhanasekaran; Liang, Xiaoping; He, Biao; Espeseth, Amy S

    2017-06-01

    Human respiratory syncytial virus (RSV) is a common cause of severe respiratory disease among infants, immunocompromised individuals, and the elderly. No licensed vaccine is currently available. In this study, we evaluated two parainfluenza virus 5 (PIV5)-vectored vaccines expressing RSV F (PIV5/F) or G (PIV5/G) protein in the cotton rat and African green monkey models for their replication, immunogenicity, and efficacy of protection against RSV challenge. Following a single intranasal inoculation, both animal species shed the vaccine viruses for a limited time but without noticeable clinical symptoms. In cotton rats, the vaccines elicited RSV F- or G-specific serum antibodies and conferred complete lung protection against RSV challenge at doses as low as 103 PFU. Neither vaccine produced the enhanced lung pathology observed in animals immunized with formalin-inactivated RSV. In African green monkeys, vaccine-induced serum and mucosal antibody responses were readily detected, as well. PIV5/F provided nearly complete protection against RSV infection in the upper and lower respiratory tract at a dose of 106 PFU of vaccine. At the same dose levels, PIV5/G was less efficacious. Both PIV5/F and PIV5/G were also able to boost neutralization titers in RSV-preexposed African green monkeys. Overall, our data indicated that PIV5/F is a promising RSV vaccine candidate.IMPORTANCE A safe and efficacious respiratory syncytial virus (RSV) vaccine remains elusive. We tested the recombinant parainfluenza virus 5 (PIV5) vectors expressing RSV glycoproteins for their immunogenicity and protective efficacy in cotton rats and African green monkeys, which are among the best available animal models to study RSV infection. In both species, a single dose of intranasal immunization with PIV5-vectored vaccines was able to produce systemic and local immunity and to protect animals from RSV challenge. The vaccines could also boost RSV neutralization antibody titers in African green monkeys

  16. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  17. DNA-based HIV vaccines do not induce generalized activation in mucosal tissue T cells.

    Science.gov (United States)

    Reuter, Morgan A; Yuan, Sally; Marx, Preston A; Kutzler, Michele A; Weiner, David B; Betts, Michael R

    2012-11-01

    HIV preferentially infects activated T cells, and activated mucosal CD4+ T cells are the primary sites of viral replication. One potential explanation for increased HIV acquisition rates in the STEP study is that vaccination with adenoviral (Ad) vectors increased CD4+ T cell activation levels at the site of infection, a concept that others and we continue to explore. Whether vaccination with HIV vaccine platforms increases the activation state of CD4+ T cells within peripheral tissues, such as the gastro-intestinal (GI) mucosa, is exceptionally important to determine as a vaccine safety measure, given the susceptibility of activated CD4+ T cells to HIV infection. In this study we examined whether vaccination with DNA plasmids and chemokine adjuvants alter the activation state of T cells within the GI mucosa, inguinal LN, and peripheral blood. T cell activation state was measured by expression of CD25, CD69, and HLA-DR over the course of the prime/boost study. DNA plasmid vaccination did not increase expression of any of these markers in the 3 tissues studied. Addition of the gut-homing chemokine TECK during DNA plasmid vaccination did not alter activation levels of CD4+ T cells at any of these sites. These findings indicate that DNA vaccines do not elicit generalized mucosal T cell activation. Thus, DNA platforms may be especially suitable for HIV vaccine development, where bystander activation could promote increased HIV transmission.

  18. A Population-Based Evaluation of a Publicly Funded, School-Based HPV Vaccine Program in British Columbia, Canada: Parental Factors Associated with HPV Vaccine Receipt

    Science.gov (United States)

    Ogilvie, Gina; Anderson, Maureen; Marra, Fawziah; McNeil, Shelly; Pielak, Karen; Dawar, Meena; McIvor, Marilyn; Ehlen, Thomas; Dobson, Simon; Money, Deborah; Patrick, David M.; Naus, Monika

    2010-01-01

    Background Information on factors that influence parental decisions for actual human papillomavirus (HPV) vaccine receipt in publicly funded, school-based HPV vaccine programs for girls is limited. We report on the level of uptake of the first dose of the HPV vaccine, and determine parental factors associated with receipt of the HPV vaccine, in a publicly funded school-based HPV vaccine program in British Columbia, Canada. Methods and Findings All parents of girls enrolled in grade 6 during the academic year of September 2008–June 2009 in the province of British Columbia were eligible to participate. Eligible households identified through the provincial public health information system were randomly selected and those who consented completed a validated survey exploring factors associated with HPV vaccine uptake. Bivariate and multivariate analyses were conducted to calculate adjusted odds ratios to identify the factors that were associated with parents' decision to vaccinate their daughter(s) against HPV. 2,025 parents agreed to complete the survey, and 65.1% (95% confidence interval [CI] 63.1–67.1) of parents in the survey reported that their daughters received the first dose of the HPV vaccine. In the same school-based vaccine program, 88.4% (95% CI 87.1–89.7) consented to the hepatitis B vaccine, and 86.5% (95% CI 85.1–87.9) consented to the meningococcal C vaccine. The main reasons for having a daughter receive the HPV vaccine were the effectiveness of the vaccine (47.9%), advice from a physician (8.7%), and concerns about daughter's health (8.4%). The main reasons for not having a daughter receive the HPV vaccine were concerns about HPV vaccine safety (29.2%), preference to wait until the daughter is older (15.6%), and not enough information to make an informed decision (12.6%). In multivariate analysis, overall attitudes to vaccines, the impact of the HPV vaccine on sexual practices, and childhood vaccine history were predictive of parents having a

  19. A population-based evaluation of a publicly funded, school-based HPV vaccine program in British Columbia, Canada: parental factors associated with HPV vaccine receipt.

    Directory of Open Access Journals (Sweden)

    Gina Ogilvie

    2010-05-01

    Full Text Available BACKGROUND: Information on factors that influence parental decisions for actual human papillomavirus (HPV vaccine receipt in publicly funded, school-based HPV vaccine programs for girls is limited. We report on the level of uptake of the first dose of the HPV vaccine, and determine parental factors associated with receipt of the HPV vaccine, in a publicly funded school-based HPV vaccine program in British Columbia, Canada. METHODS AND FINDINGS: All parents of girls enrolled in grade 6 during the academic year of September 2008-June 2009 in the province of British Columbia were eligible to participate. Eligible households identified through the provincial public health information system were randomly selected and those who consented completed a validated survey exploring factors associated with HPV vaccine uptake. Bivariate and multivariate analyses were conducted to calculate adjusted odds ratios to identify the factors that were associated with parents' decision to vaccinate their daughter(s against HPV. 2,025 parents agreed to complete the survey, and 65.1% (95% confidence interval [CI] 63.1-67.1 of parents in the survey reported that their daughters received the first dose of the HPV vaccine. In the same school-based vaccine program, 88.4% (95% CI 87.1-89.7 consented to the hepatitis B vaccine, and 86.5% (95% CI 85.1-87.9 consented to the meningococcal C vaccine. The main reasons for having a daughter receive the HPV vaccine were the effectiveness of the vaccine (47.9%, advice from a physician (8.7%, and concerns about daughter's health (8.4%. The main reasons for not having a daughter receive the HPV vaccine were concerns about HPV vaccine safety (29.2%, preference to wait until the daughter is older (15.6%, and not enough information to make an informed decision (12.6%. In multivariate analysis, overall attitudes to vaccines, the impact of the HPV vaccine on sexual practices, and childhood vaccine history were predictive of parents having

  20. Increased immunogenicity of recombinant Ad35-based malaria vaccine through formulation with aluminium phosphate adjuvant

    NARCIS (Netherlands)

    Ophorst, Olga J. A. E.; Radosevic, Katarina; Klap, Jaco M.; Sijtsma, Jeroen; Gillissen, Gert; Mintardjo, Ratna; van Ooij, Mark J. M.; Holterman, Lennart; Companjen, Arjen; Goudsmit, Jaap; Havenga, Menzo J. E.

    2007-01-01

    Previously, we have shown the potency of recombinant Adenovirus serotype 35 viral vaccines (rAd35) to induce strong immune response against the circumsporozoite protein (CS) of the plasmodium parasite. To further optimize immunogenicity of Ad35-based malaria vaccines we formulated rAd35.CS vaccine

  1. Learning from Successful School-based Vaccination Clinics during 2009 pH1N1

    Science.gov (United States)

    Klaiman, Tamar; O'Connell, Katherine; Stoto, Michael A.

    2014-01-01

    Background: The 2009 H1N1 vaccination campaign was the largest in US history. State health departments received vaccines from the federal government and sent them to local health departments (LHDs) who were responsible for getting vaccines to the public. Many LHD's used school-based clinics to ensure children were the first to receive limited…

  2. Chord Recognition Based on Temporal Correlation Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhongyang Rao

    2016-05-01

    Full Text Available In this paper, we propose a method called temporal correlation support vector machine (TCSVM for automatic major-minor chord recognition in audio music. We first use robust principal component analysis to separate the singing voice from the music to reduce the influence of the singing voice and consider the temporal correlations of the chord features. Using robust principal component analysis, we expect the low-rank component of the spectrogram matrix to contain the musical accompaniment and the sparse component to contain the vocal signals. Then, we extract a new logarithmic pitch class profile (LPCP feature called enhanced LPCP from the low-rank part. To exploit the temporal correlation among the LPCP features of chords, we propose an improved support vector machine algorithm called TCSVM. We perform this study using the MIREX’09 (Music Information Retrieval Evaluation eXchange Audio Chord Estimation dataset. Furthermore, we conduct comprehensive experiments using different pitch class profile feature vectors to examine the performance of TCSVM. The results of our method are comparable to the state-of-the-art methods that entered the MIREX in 2013 and 2014 for the MIREX’09 Audio Chord Estimation task dataset.

  3. Single-dose replication-defective VSV-based Nipah virus vaccines provide protection from lethal challenge in Syrian hamsters.

    Science.gov (United States)

    Lo, Michael K; Bird, Brian H; Chattopadhyay, Anasuya; Drew, Clifton P; Martin, Brock E; Coleman, Joann D; Rose, John K; Nichol, Stuart T; Spiropoulou, Christina F

    2014-01-01

    Nipah virus (NiV) continues to cause outbreaks of fatal human encephalitis due to spillover from its bat reservoir. We determined that a single dose of replication-defective vesicular stomatitis virus (VSV)-based vaccine vectors expressing either the NiV fusion (F) or attachment (G) glycoproteins protected hamsters from over 1000 times LD50 NiV challenge. This highly effective single-dose protection coupled with an enhanced safety profile makes these candidates ideal for potential use in livestock and humans. Published by Elsevier B.V.

  4. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!).

    Science.gov (United States)

    Henao-Restrepo, Ana Maria; Camacho, Anton; Longini, Ira M; Watson, Conall H; Edmunds, W John; Egger, Matthias; Carroll, Miles W; Dean, Natalie E; Diatta, Ibrahima; Doumbia, Moussa; Draguez, Bertrand; Duraffour, Sophie; Enwere, Godwin; Grais, Rebecca; Gunther, Stephan; Gsell, Pierre-Stéphane; Hossmann, Stefanie; Watle, Sara Viksmoen; Kondé, Mandy Kader; Kéïta, Sakoba; Kone, Souleymane; Kuisma, Eewa; Levine, Myron M; Mandal, Sema; Mauget, Thomas; Norheim, Gunnstein; Riveros, Ximena; Soumah, Aboubacar; Trelle, Sven; Vicari, Andrea S; Røttingen, John-Arne; Kieny, Marie-Paule

    2017-02-04

    rVSV-ZEBOV is a recombinant, replication competent vesicular stomatitis virus-based candidate vaccine expressing a surface glycoprotein of Zaire Ebolavirus. We tested the effect of rVSV-ZEBOV in preventing Ebola virus disease in contacts and contacts of contacts of recently confirmed cases in Guinea, west Africa. We did an open-label, cluster-randomised ring vaccination trial (Ebola ça Suffit!) in the communities of Conakry and eight surrounding prefectures in the Basse-Guinée region of Guinea, and in Tomkolili and Bombali in Sierra Leone. We assessed the efficacy of a single intramuscular dose of rVSV-ZEBOV (2×107 plaque-forming units administered in the deltoid muscle) in the prevention of laboratory confirmed Ebola virus disease. After confirmation of a case of Ebola virus disease, we definitively enumerated on a list a ring (cluster) of all their contacts and contacts of contacts including named contacts and contacts of contacts who were absent at the time of the trial team visit. The list was archived, then we randomly assigned clusters (1:1) to either immediate vaccination or delayed vaccination (21 days later) of all eligible individuals (eg, those aged ≥18 years and not pregnant, breastfeeding, or severely ill). An independent statistician generated the assignment sequence using block randomisation with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 individuals vs >20 individuals). Ebola response teams and laboratory workers were unaware of assignments. After a recommendation by an independent data and safety monitoring board, randomisation was stopped and immediate vaccination was also offered to children aged 6-17 years and all identified rings. The prespecified primary outcome was a laboratory confirmed case of Ebola virus disease with onset 10 days or more from randomisation. The primary analysis compared the incidence of Ebola virus disease in eligible and vaccinated individuals assigned to immediate

  5. Measles virus glycoprotein-based lentiviral targeting vectors that avoid neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Sabrina Kneissl

    Full Text Available Lentiviral vectors (LVs are potent gene transfer vehicles frequently applied in research and recently also in clinical trials. Retargeting LV entry to cell types of interest is a key issue to improve gene transfer safety and efficacy. Recently, we have developed a targeting method for LVs by incorporating engineered measles virus (MV glycoproteins, the hemagglutinin (H, responsible for receptor recognition, and the fusion protein into their envelope. The H protein displays a single-chain antibody (scFv specific for the target receptor and is ablated for recognition of the MV receptors CD46 and SLAM by point mutations in its ectodomain. A potential hindrance to systemic administration in humans is pre-existing MV-specific immunity due to vaccination or natural infection. We compared transduction of targeting vectors and non-targeting vectors pseudotyped with MV glycoproteins unmodified in their ectodomains (MV-LV in presence of α-MV antibody-positive human plasma. At plasma dilution 1:160 MV-LV was almost completely neutralized, whereas targeting vectors showed relative transduction efficiencies from 60% to 90%. Furthermore, at plasma dilution 1:80 an at least 4-times higher multiplicity of infection (MOI of MV-LV had to be applied to obtain similar transduction efficiencies as with targeting vectors. Also when the vectors were normalized to their p24 values, targeting vectors showed partial protection against α-MV antibodies in human plasma. Furthermore, the monoclonal neutralizing antibody K71 with a putative epitope close to the receptor binding sites of H, did not neutralize the targeting vectors, but did neutralize MV-LV. The observed escape from neutralization may be due to the point mutations in the H ectodomain that might have destroyed antibody binding sites. Furthermore, scFv mediated cell entry via the target receptor may proceed in presence of α-MV antibodies interfering with entry via the natural MV receptors. These results are

  6. Vector mode conversion based on tilted fiber Bragg grating in ring-core fibers

    Science.gov (United States)

    Mi, Yuean; Ren, Guobin; Gao, Yixiao; Li, Haisu; Zhu, Bofeng; Liu, Yu

    2018-03-01

    We propose a vector mode conversion approach based on tilted fiber Bragg grating (TFBG) written in ring-core fiber with effective separation of eigenmodes. The mode coupling properties of TFBG are numerically investigated. It is shown that under the constraint of phase matching, the conversion of high-order vector modes could be achieved at specific wavelengths. Moreover, the polarization of incident light and tilt angle of TFBG play critical roles in mode coupling process. The proposed TFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for fibers based OAM beam generation and fiber lasers with vortex beams output.

  7. Parameter Selection Method for Support Vector Regression Based on Adaptive Fusion of the Mixed Kernel Function

    Directory of Open Access Journals (Sweden)

    Hailun Wang

    2017-01-01

    Full Text Available Support vector regression algorithm is widely used in fault diagnosis of rolling bearing. A new model parameter selection method for support vector regression based on adaptive fusion of the mixed kernel function is proposed in this paper. We choose the mixed kernel function as the kernel function of support vector regression. The mixed kernel function of the fusion coefficients, kernel function parameters, and regression parameters are combined together as the parameters of the state vector. Thus, the model selection problem is transformed into a nonlinear system state estimation problem. We use a 5th-degree cubature Kalman filter to estimate the parameters. In this way, we realize the adaptive selection of mixed kernel function weighted coefficients and the kernel parameters, the regression parameters. Compared with a single kernel function, unscented Kalman filter (UKF support vector regression algorithms, and genetic algorithms, the decision regression function obtained by the proposed method has better generalization ability and higher prediction accuracy.

  8. A Plasmodium falciparum candidate vaccine based on a six-antigen polyprotein encoded by recombinant poxviruses.

    Science.gov (United States)

    Prieur, Eric; Gilbert, Sarah C; Schneider, Joerg; Moore, Anne C; Sheu, Eric G; Goonetilleke, Nilu; Robson, Kathryn J H; Hill, Adrian V S

    2004-01-06

    To generate broadly protective T cell responses more similar to those acquired after vaccination with radiation-attenuated Plasmodium falciparum sporozoites, we have constructed candidate subunit malaria vaccines expressing six preerythrocytic antigens linked together to produce a 3240-aa-long polyprotein (L3SEPTL). This polyprotein was expressed by a plasmid DNA vaccine vector (DNA) and by two attenuated poxvirus vectors, modified vaccinia virus Ankara (MVA) and fowlpox virus of the FP9 strain. MVAL3SEPTL boosted anti-thrombospondin-related adhesive protein (anti-TRAP) and anti-liver stage antigen 1 (anti-LSA1) CD8(+) T cell responses when primed by single antigen TRAP- or LSA1-expressing DNAs, respectively, but not by DNA-L3SEPTL. However, prime boost regimes involving two heterologous viral vectors expressing L3SEPTL induced a strong cellular response directed against an LSA1 peptide located in the C-terminal region of the polyprotein. Peptide-specific T cells secreted IFN-gamma and were cytotoxic. IFN-gamma-secreting T cells specific for each of the six antigens were induced after vaccination with L3SEPTL, supporting the use of polyprotein inserts to induce multispecific T cells against P. falciparum. The use of polyprotein constructs in nonreplicating poxviruses should broaden the target antigen range of vaccine-induced immunity and increase the number of potential epitopes available for immunogenetically diverse human populations.

  9. Automatic SIMD vectorization of SSA-based control flow graphs

    CERN Document Server

    Karrenberg, Ralf

    2015-01-01

    Ralf Karrenberg presents Whole-Function Vectorization (WFV), an approach that allows a compiler to automatically create code that exploits data-parallelism using SIMD instructions. Data-parallel applications such as particle simulations, stock option price estimation or video decoding require the same computations to be performed on huge amounts of data. Without WFV, one processor core executes a single instance of a data-parallel function. WFV transforms the function to execute multiple instances at once using SIMD instructions. The author describes an advanced WFV algorithm that includes a v

  10. Sagnac Interferometer Based Generation of Controllable Cylindrical Vector Beams

    Directory of Open Access Journals (Sweden)

    Cristian Acevedo

    2016-01-01

    Full Text Available We report on a novel experimental geometry to generate cylindrical vector beams in a very robust manner. Continuous control of beams’ properties is obtained using an optically addressable spatial light modulator incorporated into a Sagnac interferometer. Forked computer-generated holograms allow introducing different topological charges while orthogonally polarized beams within the interferometer permit encoding the spatial distribution of polarization. We also demonstrate the generation of complex waveforms obtained by combining two orthogonal beams having both radial modulations and azimuthal dislocations.

  11. Experimental rabies vaccines for humans

    Science.gov (United States)

    McGettigan, James P

    2011-01-01

    Rabies remains a global public health threat that kills more than 55,000 people per year. Rabies disproportionately affects children and, therefore, is ranked the seventh most important infectious disease due to years lost. Prevention of human rabies is accomplished by controlling rabies in domestic and wild animals, including the use of vaccination programs. The usefulness of human rabies vaccines is hampered by high cost, complicated vaccination regimens and lack of compliance, especially in areas of Africa and Asia where human rabies infections are endemic. A single-dose vaccine would greatly benefit efforts to combat this global health threat. However, a single-dose vaccine based on current inactivated vaccines does not appear feasible and other approaches are needed. Technology has advanced since modern human rabies vaccines were developed over 40 years ago. In addition, our understanding of immunological principles that influence the outcome of vaccination has increased. This article describes the current status of inactivated rabies virus vaccines and recent developments arising from the use of reverse genetics technologies designed to develop replication-deficient or single-cycle live rabies virus-based vectors for use as a single-dose rabies vaccine for humans. PMID:20923268

  12. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool.

    Science.gov (United States)

    Huang, Zhuojie; Das, Anirrudha; Qiu, Youliang; Tatem, Andrew J

    2012-08-14

    Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR), to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya) and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements on the air travel network. The framework built provides a flexible

  13. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR tool

    Directory of Open Access Journals (Sweden)

    Huang Zhuojie

    2012-08-01

    Full Text Available Abstract Background Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR, to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Methods Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. Results The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. Conclusions VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements

  14. Safety and immunogenicity of an FP9-vectored candidate tuberculosis vaccine (FP85A), alone and with candidate vaccine MVA85A in BCG-vaccinated healthy adults: a phase I clinical trial.

    Science.gov (United States)

    Rowland, Rosalind; Pathan, Ansar A; Satti, Iman; Poulton, Ian D; Matsumiya, Magali M L; Whittaker, Megan; Minassian, Angela M; O'Hara, Geraldine A; Hamill, Matthew; Scott, Janet T; Harris, Stephanie A; Poyntz, Hazel C; Bateman, Cynthia; Meyer, Joel; Williams, Nicola; Gilbert, Sarah C; Lawrie, Alison M; Hill, Adrian V S; McShane, Helen

    2013-01-01

    The safety and immunogenicity of a new candidate tuberculosis (TB) vaccine, FP85A was evaluated alone and in heterologous prime-boost regimes with another candidate TB vaccine, MVA85A. This was an open label, non-controlled, non-randomized Phase I clinical trial. Healthy previously BCG-vaccinated adult subjects were enrolled sequentially into three groups and vaccinated with FP85A alone, or both FP85A and MVA85A, with a four week interval between vaccinations. Passive and active data on adverse events were collected. Immunogenicity was evaluated by Enzyme Linked Immunospot (ELISpot), flow cytometry and Enzyme Linked Immunosorbent assay (ELISA). Most adverse events were mild and there were no vaccine-related serious adverse events. FP85A vaccination did not enhance antigen 85A-specific cellular immunity. When MVA85A vaccination was preceded by FP85A vaccination, cellular immune responses were lower compared with when MVA85A vaccination was the first immunisation. MVA85A vaccination, but not FP85A vaccination, induced anti-MVA IgG antibodies. Both MVA85A and FP85A vaccinations induced anti-FP9 IgG antibodies. In conclusion, FP85A vaccination was well tolerated but did not induce antigen-specific cellular immune responses. We hypothesize that FP85A induced anti-FP9 IgG antibodies with cross-reactivity for MVA85A, which may have mediated inhibition of the immune response to subsequent MVA85A. ClinicalTrials.gov identification number: NCT00653770.

  15. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Joseph W Golden

    Full Text Available Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA. We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV nonhuman primate (NHP challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

  16. Evaluation of a Salmonella vectored vaccine expressing Mycobacterium avium subsp. paratuberculosis antigens against challenge in a goat model.

    Directory of Open Access Journals (Sweden)

    Syed M Faisal

    Full Text Available Johnes disease (JD, caused by Mycobacterium avium subsp paratuberculosis (MAP, occurs worldwide as chronic granulomatous enteritis of domestic and wild ruminants. To develop a cost effective vaccine, in a previous study we constructed an attenuated Salmonella strain that expressed a fusion product made up of partial fragments of MAP antigens (Ag85A, Ag85B and SOD that imparted protection against challenge in a mouse model. In the current study we evaluated the differential immune response and protective efficacy of the Sal-Ag vaccine against challenge in a goat model as compared to the live attenuated vaccine MAP316F. PBMCs from goats vaccinated with Sal-Ag and challenged with MAP generated significantly lower levels of IFN-γ, following in vitro stimulation with either Antigen-mix or PPD jhonin, than PBMC from MAP316F vaccinated animals. Flow cytometric analysis showed the increase in IFN-γ correlated with a significantly higher level of proliferation of CD4, CD8 and γδT cells and an increased expression of CD25 and CD45R0 in MAP316F vaccinated animals as compared to control animals. Evaluation of a range of cytokines involved in Th1, Th2, Treg, and Th17 immune responses by quantitative PCR showed low levels of expression of Th1 (IFN-γ, IL-2, IL-12 and proinflammatory cytokines (IL-6, IL-8, IL-18, TNF-α in the Sal-Ag immunized group. Significant levels of Th2 and anti-inflammatory cytokines transcripts (IL-4, IL-10, IL-13, TGF-β were expressed but their level was low and with a pattern similar to the control group. Over all, Sal-Ag vaccine imparted partial protection that limited colonization in tissues of some animals upon challenge with wild type MAP but not to the level achieved with MAP316F. In conclusion, the data indicates that Sal-Ag vaccine induced only a low level of protective immunity that failed to limit the colonization of MAP in infected animals. Hence the Sal-Ag vaccine needs further refinement to increase its efficacy.

  17. Phase Ia clinical evaluation of the safety and immunogenicity of the Plasmodium falciparum blood-stage antigen AMA1 in ChAd63 and MVA vaccine vectors.

    Directory of Open Access Journals (Sweden)

    Susanne H Sheehy

    Full Text Available Traditionally, vaccine development against the blood-stage of Plasmodium falciparum infection has focused on recombinant protein-adjuvant formulations in order to induce high-titer growth-inhibitory antibody responses. However, to date no such vaccine encoding a blood-stage antigen(s alone has induced significant protective efficacy against erythrocytic-stage infection in a pre-specified primary endpoint of a Phase IIa/b clinical trial designed to assess vaccine efficacy. Cell-mediated responses, acting in conjunction with functional antibodies, may be necessary for immunity against blood-stage P. falciparum. The development of a vaccine that could induce both cell-mediated and humoral immune responses would enable important proof-of-concept efficacy studies to be undertaken to address this question.We conducted a Phase Ia, non-randomized clinical trial in 16 healthy, malaria-naïve adults of the chimpanzee adenovirus 63 (ChAd63 and modified vaccinia virus Ankara (MVA replication-deficient viral vectored vaccines encoding two alleles (3D7 and FVO of the P. falciparum blood-stage malaria antigen; apical membrane antigen 1 (AMA1. ChAd63-MVA AMA1 administered in a heterologous prime-boost regime was shown to be safe and immunogenic, inducing high-level T cell responses to both alleles 3D7 (median 2036 SFU/million PBMC and FVO (median 1539 SFU/million PBMC, with a mixed CD4(+/CD8(+ phenotype, as well as substantial AMA1-specific serum IgG responses (medians of 49 µg/mL and 41 µg/mL for 3D7 and FVO AMA1 respectively that demonstrated growth inhibitory activity in vitro.ChAd63-MVA is a safe and highly immunogenic delivery platform for both alleles of the AMA1 antigen in humans which warrants further efficacy testing. ChAd63-MVA is a promising heterologous prime-boost vaccine strategy that could be applied to numerous other diseases where strong cellular and humoral immune responses are required for protection.ClinicalTrials.gov NCT01095055.

  18. Modified live infectious bursal disease virus (IBDV) vaccine delays infection of neonatal broiler chickens with variant IBDV compared to turkey herpesvirus (HVT)-IBDV vectored vaccine.

    Science.gov (United States)

    Kurukulasuriya, Shanika; Ahmed, Khawaja Ashfaque; Ojkic, Davor; Gunawardana, Thushari; Goonewardene, Kalhari; Gupta, Ashish; Chow-Lockerbie, Betty; Popowich, Shelly; Willson, Philip; Tikoo, Suresh K; Gomis, Susantha

    2017-02-07

    Chickens are commonly processed around 35-45days of age in broiler chicken industry hence; diseases that occur at a young age are of paramount economic importance. Early age infection with infectious bursal disease virus (IBDV) results in long-lasting immunosuppression and profound economic losses. To our knowledge, this is the first study comparing the protection efficacy of modified live (MdLV) IBDV and herpesvirus turkey (HVT)-IBDV vaccines against early age variant IBDV (varIBDV) infection in chicks. Experiments were carried out in IBDV maternal antibody (MtAb) positive chicks (n=330), divided into 6 groups (n=50-60/group), namely Group 1 (saline), Group 2 (saline+varIBDV), Group 3 (HVT-IBDV), Group 4 (HVT-IBDV+varIBDV), Group 5 (MdLV) and Group 6 (MdLV+varIBDV). HVT-IBDV vaccination was given via the in ovo route to 18-day-old embryonated eggs. MdLV was administered via the subcutaneous route in day-old broilers. Group 2, Group 4 and Group 6 were orally challenged with varIBDV (SK-09, 3×10 3 EID 50 ) at day 6 post-hatch. IBDV seroconversion, bursal weight to body weight ratio (BBW) and bursal histopathology were assessed at 19 and 35days of age. Histopathological examination at day 19 revealed that varIBDV-SK09 challenge caused severe bursal atrophy and lower BBW in HVT-IBDV but not in MdLV vaccinated chicks. However by day 35, all challenged groups showed bursal atrophy and seroconversion. Interestingly, RT-qPCR analysis after varIBDV-SK09 challenge demonstrated an early (9days of age) and significantly high viral load (∼5744 folds) in HVT-IBDV vaccinated group vs unvaccinated challenged group (∼2.25 folds). Furthermore, flow cytometry analysis revealed inhibition of cytotoxic CD8 + T-cell response (CD44-downregulation) and decreased splenic lymphocytes counts in chicks after HVT-IBDV vaccination. Overall, our data suggest that MdLV delays varIBDV pathogenesis, whereas, HVT-IBDV vaccine is potentially immunosuppressive, which may increase the risk of

  19. Development of novel AAV serotype 6 based vectors with selective tropism for human cancer cells.

    Science.gov (United States)

    Sayroo, R; Nolasco, D; Yin, Z; Colon-Cortes, Y; Pandya, M; Ling, C; Aslanidi, G

    2016-01-01

    Viral vectors-based gene therapy is an attractive alternative to common anti-cancer treatments. In the present studies, AAV serotype 6 vectors were identified to be particularly effective in the transduction of human prostate (PC3), breast (T47D) and liver (Huh7) cancer cells. Next, we developed chimeric AAV vectors with Arg-Gly-Asp (RGD) peptide incorporated into the viral capsid to enable specific targeting of integrin-overexpressing malignant cells. These AAV6-RGD vectors improved transduction efficiency approximately 3-fold compared with wild-type AAV6 vectors by enhancing the viral entry into the cells. We also observed that transduction efficiency significantly improved, up to approximately 5-fold, by the mutagenesis of surface-exposed tyrosine and threonine residues involved in the intracellular trafficking of AAV vectors. Therefore, in our study, the AAV6-Y705-731F+T492V vector was identified as the most efficient. The combination of RGD peptide, tyrosine and threonine mutations on the same AAV6 capsid further increased the transduction efficiency, approximately 8-fold in vitro. In addition, we mutated lysine (K531E) to impair the affinity of AAV6 vectors to heparan sulfate proteoglycan. Finally, we showed a significant increase in both specificity and efficiency of AAV6-RGD-Y705-731F+T492V+K531E vectors in a xenograft animal model in vivo. In summary, the approach described here can lead to the development of AAV vectors with selective tropism to human cancer cells.

  20. Development of cross-protective influenza A vaccines based on cellular responses

    Directory of Open Access Journals (Sweden)

    Peter Christiaan Soema

    2015-05-01

    Full Text Available Seasonal influenza vaccines provide protection against matching influenza A virus (IAV strains mainly through the induction of neutralizing serum IgG antibodies. However, these antibodies fail to confer a protective effect against mismatched IAV. This lack of efficacy against heterologous influenza strains has spurred the vaccine development community to look for other influenza vaccine concepts, which have the ability to elicit cross-protective immune responses.One of the concepts that is currently been worked on are influenza vaccines inducing influenza-specific T cell responses. T cells are able to lyse infected host cells, thereby clearing the virus. More interestingly, these T cells can recognize highly conserved epitopes of internal influenza proteins, making cellular responses less vulnerable to antigenic variability. T cells are therefore cross-reactive against many influenza strains, and thus are a promising concept for future influenza vaccines. Despite their potential, there are currently no T cell based IAV vaccines on the market. Selection of the proper antigen, appropriate vaccine formulation and evaluation of the efficacy of T cell vaccines remains challenging, both in preclinical and clinical settings.In this review, we will discuss the current developments in influenza T cell vaccines, focusing on existing protein-based and novel peptide-based vaccine formulations. Furthermore, we will discuss the feasibility of influenza T cell vaccines and their possible use in the future.

  1. Properties and use of novel replication-competent vectors based on Semliki Forest virus.

    Science.gov (United States)

    Rausalu, Kai; Iofik, Anna; Ulper, Liane; Karo-Astover, Liis; Lulla, Valeria; Merits, Andres

    2009-03-24

    Semliki Forest virus (SFV) has a positive strand RNA genome and infects different cells of vertebrates and invertebrates. The 5' two-thirds of the genome encodes non-structural proteins that are required for virus replication and synthesis of subgenomic (SG) mRNA for structural proteins. SG-mRNA is generated by internal initiation at the SG-promoter that is located at the complementary minus-strand template. Different types of expression systems including replication-competent vectors, which represent alphavirus genomes with inserted expression units, have been developed. The replication-competent vectors represent useful tools for studying alphaviruses and have potential therapeutic applications. In both cases, the properties of the vector, such as its genetic stability and expression level of the protein of interest, are important. We analysed 14 candidates of replication-competent vectors based on the genome of an SFV4 isolate that contained a duplicated SG promoter or an internal ribosomal entry site (IRES)-element controlled marker gene. It was found that the IRES elements and the minimal -21 to +5 SG promoter were non-functional in the context of these vectors. The efficient SG promoters contained at least 26 residues upstream of the start site of SG mRNA. The insertion site of the SG promoter and its length affected the genetic stability of the vectors, which was always higher when the SG promoter was inserted downstream of the coding region for structural proteins. The stability also depended on the conditions used for vector propagation. A procedure based on the in vitro transcription of ligation products was used for generation of replication-competent vector-based expression libraries that contained hundreds of thousands of different genomes, and maintained genetic diversity and the ability to express inserted genes over five passages in cell culture. The properties of replication-competent vectors of alphaviruses depend on the details of their

  2. A concurrent vector-based steering framework for particle transport

    CERN Document Server

    Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-01-01

    High Energy Physics has traditionally been a technology - limited science that has pushed the boundaries of both the detectors collecting the information about the particles and the computing infrastructure processing this information. However, since a few years the increase in computing power comes in the form of increased parallelism at all levels, and High Energy Physics has now to optimise its code to take advantage of the new architectures, including GPUs and hybrid systems. One of the primary targets for optimisation is the particle transport code used to simulate the detector response, as it is largely experiment independent and one of the most demanding applications in terms of CPU resources . The Geant Vector Prototype project aims to explore innovative designs in particle transport aimed at obtaining maximal performance on the new architectures. This paper describes the current status of the project and its future perspectives. In particular we describe how the present design tries to expose the par...

  3. Classification of e-government documents based on cooperative expression of word vectors

    Science.gov (United States)

    Fu, Qianqian; Liu, Hao; Wei, Zhiqiang

    2017-03-01

    The effective document classification is a powerful technique to deal with the huge amount of e-government documents automatically instead of accomplishing them manually. The word-to-vector (word2vec) model, which converts semantic word into low-dimensional vectors, could be successfully employed to classify the e-government documents. In this paper, we propose the cooperative expressions of word vector (Co-word-vector), whose multi-granularity of integration explores the possibility of modeling documents in the semantic space. Meanwhile, we also aim to improve the weighted continuous bag of words model based on word2vec model and distributed representation of topic-words based on LDA model. Furthermore, combining the two levels of word representation, performance result shows that our proposed method on the e-government document classification outperform than the traditional method.

  4. Frequency and 2D Angle Estimation Based on a Sparse Uniform Array of Electromagnetic Vector Sensors

    Directory of Open Access Journals (Sweden)

    Kwong Sam

    2006-01-01

    Full Text Available We present an ESPRIT-based algorithm that yields extended-aperture two-dimensional (2D arrival angle and carrier frequency estimates with a sparse uniform array of electromagnetic vector sensors. The ESPRIT-based frequency estimates are first achieved by using the temporal invariance structure out of the two time-delayed sets of data collected from vector sensor array. Each incident source's coarse direction of arrival (DOA estimation is then obtained through the Poynting vector estimates (using a vector cross-product estimator. The frequency and coarse angle estimate results are used jointly to disambiguate the cyclic phase ambiguities in ESPRIT's eigenvalues when the intervector sensor spacing exceeds a half wavelength. Monte Carlo simulation results verified the effectiveness of the proposed method.

  5. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium.

    Directory of Open Access Journals (Sweden)

    Dolores Rodríguez

    Full Text Available With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs carrying the CD8(+ T cell epitope (SYVPSAEQI of the circumsporozoite (CS protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS, and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+ T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV vectors from the Western Reserve (WR and modified virus Ankara (MVA strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.

  6. Ovarian dysfunction associated with zona pellucida-based immunocontraceptive vaccines.

    Science.gov (United States)

    Joonè, Carolynne J; Schulman, Martin L; Bertschinger, Henk J

    2017-02-01

    Despite more than 40 years of research into zona pellucida (ZP)-based vaccines, relatively little is known about their mechanism of action. Early research demonstrated precipitation of ZP glycoproteins by antiovarian antiserum, rendering oocytes resistant to sperm binding in vitro. Subsequent work showed significantly decreased fertilization rates following passive immunization, sparking interest in anti-ZP immunocontraception for human and animal use. The primary mechanism of action of ZP vaccines is generally considered to be an antibody-mediated interference with sperm-oocyte binding and/or fertilization. However, this mechanism of action excludes the potential for ovarian dysfunction associated with anti-ZP treatment in some species. A review of relevant literature in pertinent model, domestic and wildlife species reveals a variety of previous and current hypotheses for ovarian effects following ZP-based immunization. Ovarian dysfunction has been suggested to be a species-specific response. In addition, cytotoxic T-lymphocytes and the use of Freund's adjuvants have been suggested to play a role. Finally, the type and extent of glycosylation of ZP antigens have been proposed to influence ovarian effects. The validity of these hypotheses is re-examined in the light of current knowledge. Further investigation of ovarian function in species believed to be resistant to the ovarian effects of anti-ZP vaccines is warranted. To this end, anti-Müllerian hormone may provide a novel tool for the assessment of ovarian function during ZP-based immunocontraception, particularly in wildlife species not amenable to frequent clinical examination. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines

    OpenAIRE

    Gruijl, de, T.D.; Eertwegh, van den, A.J.M.; Pinedo, Herbert; Scheper, Rik

    2008-01-01

    The field of tumor vaccination is currently undergoing a shift in focus, from individualized tailor-made vaccines to more generally applicable vaccine formulations. Although primarily predicated by financial and logistic considerations, stemming from a growing awareness that clinical development for wide-scale application can only be achieved through backing from major pharmaceutical companies, these new approaches are also supported by a growing knowledge of the intricacies and minutiae of a...

  8. Hexavalent IPV-based combination vaccines for public-sector markets of low-resource countries.

    Science.gov (United States)

    Mahmood, Kutub; Pelkowski, Sonia; Atherly, Deborah; Sitrin, Robert D; Donnelly, John J

    2013-09-01

    In anticipation of the successful eradication of wild polio virus, alternative vaccination strategies for public-sector markets of low-resource countries are extremely important, but are still under development. Following polio eradication, inactivated polio vaccine (IPV) would be the only polio vaccine available, and would be needed for early childhood immunization for several years, as maintenance of herd immunity will be important for sustaining polio eradication. Low-cost combination vaccines containing IPV could provide reliable and continuous immunization in the post-polio eradication period. Combination vaccines can potentially simplify complex pediatric routine immunization schedules, improve compliance, and reduce costs. Hexavalent vaccines containing Diphtheria (D), Tetanus (T), whole cell pertussis (wP), Hepatitis B (HBV), Haemophilus b (Hib) and the three IPV serotype antigens have been considered as the ultimate combination vaccine for routine immunization. This product review evaluates potential hexavalent vaccine candidates by composition, probable time to market, expected cost of goods, presentation, and technical feasibility and offers suggestions for development of low-cost hexavalent combination vaccines. Because there are significant technical challenges facing wP-based hexavalent vaccine development, this review also discusses other alternative approaches to hexavalent that could also ensure a timely and reliable supply of low-cost IPV based combination vaccines.

  9. Online Order Priority Evaluation Based on Hybrid Harmony Search Algorithm of Optimized Support Vector Machines

    OpenAIRE

    Yuanyuan Zhao; Qian Chen

    2014-01-01

    To make production plan, online order priority evaluation is the current priority weakness of online order evaluation model. This thesis proposes an online order priority evaluation model based on hybrid harmony search algorithm of optimized support vector machine (HHS-SVM). Firstly, an online order priority evaluation index system is build, and then support vector machine is adopted to build an online order priority evaluation model; secondly, harmony search algorithm is used to optimize the...

  10. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    Science.gov (United States)

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  11. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors

    Science.gov (United States)

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-01-01

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233

  12. A pandemic influenza H1N1 live vaccine based on modified vaccinia Ankara is highly immunogenic and protects mice in active and passive immunizations.

    Directory of Open Access Journals (Sweden)

    Annett Hessel

    Full Text Available BACKGROUND: The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model. METHODOLOGY/PRINCIPAL FINDINGS: For this purpose, the hemagglutinin (HA and neuraminidase (NA genes of the influenza A/California/07/2009 (H1N1 strain (CA/07 were inserted into the replication-deficient modified vaccinia Ankara (MVA virus--a safe poxviral live vector--resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-gamma-secreting (IFN-gamma CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus. CONCLUSIONS/SIGNIFICANCE: The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for

  13. Predicting the host of influenza viruses based on the word vector

    Directory of Open Access Journals (Sweden)

    Beibei Xu

    2017-07-01

    Full Text Available Newly emerging influenza viruses continue to threaten public health. A rapid determination of the host range of newly discovered influenza viruses would assist in early assessment of their risk. Here, we attempted to predict the host of influenza viruses using the Support Vector Machine (SVM classifier based on the word vector, a new representation and feature extraction method for biological sequences. The results show that the length of the word within the word vector, the sequence type (DNA or protein and the species from which the sequences were derived for generating the word vector all influence the performance of models in predicting the host of influenza viruses. In nearly all cases, the models built on the surface proteins hemagglutinin (HA and neuraminidase (NA (or their genes produced better results than internal influenza proteins (or their genes. The best performance was achieved when the model was built on the HA gene based on word vectors (words of three-letters long generated from DNA sequences of the influenza virus. This results in accuracies of 99.7% for avian, 96.9% for human and 90.6% for swine influenza viruses. Compared to the method of sequence homology best-hit searches using the Basic Local Alignment Search Tool (BLAST, the word vector-based models still need further improvements in predicting the host of influenza A viruses.

  14. GET POKED: Comparing an Incentive-Based Flu Campaign with Vaccinate-or-Mask Policies to Boost Influenza Vaccination Rates Among Healthcare Workers.

    Science.gov (United States)

    Marwaha, Seema; Lorv, Bailey; Henseleit, Susanne; Iroanyah, Ngozi

    2016-01-01

    The median influenza vaccination rate for Toronto acute care facilities in 2013/14 was only 44%, well below the target rate of 90%. While many Toronto hospitals adopted a vaccinate-or-mask policy, Trillium Health Partners (THP) opted to create a multimodal incentives-based flu campaign entitled GET POKED. This campaign, which required significant additional resourcing, only increased our vaccination rate by 10%. While having some modest success, we believe it is unlikely that non-policy based interventions will efficiently and sustainably raise flu vaccine rates. Vaccinate-or-mask policies, while having some inherent challenges, may be worth exploring as part of THP's larger flu-prevention strategy.

  15. Health care utilization in general practice after HPV vaccination-A Danish nationwide register-based cohort study.

    Directory of Open Access Journals (Sweden)

    Lene Wulff Krogsgaard

    Full Text Available The Human Papillomavirus (HPV vaccine has increasingly been suspected of adverse effects in Denmark since 2013. By using consultations with the general practitioner (GP as an indicator for morbidity, this study aims to examine the association between HPV vaccination and morbidity in girls in the Danish childhood immunization program.The study is a nationwide register-based cohort study. Both the HPV and the Measles, Mumps and Rubella (MMR vaccines were offered to 12-year-old girls in Denmark in the study period (2008-2015. Therefore, both vaccines were included as exposures to allow differentiation between potential effects. This resulted in four exposure groups: HPV only vaccinated, HPV+MMR vaccinated, MMR only vaccinated, and Non-vaccinated girls. Outcomes were: daytime consultation rates and frequent GP attendance (> 7 annual GP consultations. We estimated consultation rates by negative binomial regressions analysis and frequent GP attendance by logistic regression analysis. Both analyses were stratified on the years 2008-2013 versus 2014.The study included 214,240 girls born in 1996-2002. All vaccinated groups consulted the GP more often than the non-vaccinated group, both before and after the vaccination. After the vaccination, an increase in consultations was observed for all three vaccinated groups; most distinct for girls vaccinated in 2014. For girls vaccinated before 2014, we found a slightly higher risk of frequent GP attendance after vaccination in the HPV only group compared to the non-vaccinated group, whereas in 2014, frequent GP attendance was seen for all three vaccinated groups; most substantial for the MMR only vaccinated group.In this study, no exclusive increase in health care utilization was detected after HPV vaccination. However, a general difference in the health care utilization pattern was found between vaccinated and non-vaccinated girls, which increased after the time of vaccination, primarily for girls vaccinated

  16. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Foged, Camilla; Korsholm, Karen Smith

    2016-01-01

    The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens...... for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce...... been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly...

  17. Segmentation Based Video Steganalysis to Detect Motion Vector Modification

    Directory of Open Access Journals (Sweden)

    Peipei Wang

    2017-01-01

    Full Text Available This paper presents a steganalytic approach against video steganography which modifies motion vector (MV in content adaptive manner. Current video steganalytic schemes extract features from fixed-length frames of the whole video and do not take advantage of the content diversity. Consequently, the effectiveness of the steganalytic feature is influenced by video content and the problem of cover source mismatch also affects the steganalytic performance. The goal of this paper is to propose a steganalytic method which can suppress the differences of statistical characteristics caused by video content. The given video is segmented to subsequences according to block’s motion in every frame. The steganalytic features extracted from each category of subsequences with close motion intensity are used to build one classifier. The final steganalytic result can be obtained by fusing the results of weighted classifiers. The experimental results have demonstrated that our method can effectively improve the performance of video steganalysis, especially for videos of low bitrate and low embedding ratio.

  18. Direct Time-Domain-Based Approach for Study of Space-Vector Pulsewidth Modulation

    DEFF Research Database (Denmark)

    Oleschuk, V.; Blaabjerg, Frede; Stankovic, A.M.

    2005-01-01

    Direct time-do main-based approach, which is characterized by the simplicity and clarity, is proposed for the study and design of space-vector based methods of pulsewidth modulation (PWM) for standard voltage source inverters for adjustable speed motor drives. This approach is based on the detailed...

  19. Integrating Transgenic Vector Manipulation with Clinical Interventions to Manage Vector-Borne Diseases.

    Science.gov (United States)

    Okamoto, Kenichi W; Gould, Fred; Lloyd, Alun L

    2016-03-01

    Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication) can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted). We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences-consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even modest

  20. Effect of School-based Human Papillomavirus (HPV) Vaccination on ...

    African Journals Online (AJOL)

    From 2008 to 2011, schoolgirls were vaccinated against HPV in two districts in Uganda following sensitization. This study assessed girls' knowledge of cervical cancer and HPV vaccine, and their acceptance of future vaccination of friends and hypothetical daughters. The cross-sectional, mixed methods comparative study ...

  1. Direct power control of DFIG based on discrete space vector modulation

    Energy Technology Data Exchange (ETDEWEB)

    Verij Kazemi, Mohammad; Sadeghi Yazdankhah, Ahmad; Madadi Kojabadi, Hossein [Electrical Engineering Department, Sahand University of Technology, Tabriz (Iran)

    2010-05-15

    This paper presents a new direct power control (DPC) strategy for a double fed induction generator (DFIG) based wind energy generation system. Switching vectors for rotor side converter were selected from the optimal switching table using the estimated stator flux position and the errors of the active and reactive power. A few number of voltage vectors may cause undesired power and stator current ripple. In this paper the increased number of voltage vectors with application of the Discrete Space Vector Modulation (DSVM) will be presented. Then a new switching table in supersynchronous and subsynchronous frames will be proposed. Simulation results of a 2 MW DFIG system demonstrate the effectiveness and robustness of the proposed control strategy during variations of active and reactive power, machine parameters, and wind speed. (author)

  2. A Web-Based Platform for Designing Vaccines against Existing and Emerging Strains of Mycobacterium tuberculosis.

    Science.gov (United States)

    Dhanda, Sandeep Kumar; Vir, Pooja; Singla, Deepak; Gupta, Sudheer; Kumar, Shailesh; Raghava, Gajendra P S

    2016-01-01

    Development of an effective vaccine against drug-resistant Mycobacterium tuberculosis (Mtb) is crucial for saving millions of premature deaths every year due to tuberculosis. This paper describes a web portal developed for assisting researchers in designing vaccines against emerging Mtb strains using traditional and modern approaches. Firstly, we annotated 59 genomes of Mycobacterium species to understand similarity/dissimilarity between tuberculoid, non-tuberculoid and vaccine strains at genome level. Secondly, antigen-based vaccine candidates have been predicted in each Mtb strain. Thirdly, epitopes-based vaccine candidates were predicted/discovered in above antigen-based vaccine candidates that can stimulate all arms of immune system. Finally, a database of predicted vaccine candidates at epitopes as well at antigen level has been developed for above strains. In order to design vaccine against a newly sequenced genome of Mtb strain, server integrates three modules for identification of strain-, antigen-, epitope-specific vaccine candidates. We observed that 103,522 unique peptides (9mers) had the potential to induce an antibody response and/or promiscuous binder to MHC alleles and/or have the capability to stimulate T lymphocytes. In summary, this web-portal will be useful for researchers working on designing vaccines against Mtb including drug-resistant strains. The database is available freely at http://crdd.osdd.net/raghava/mtbveb/.

  3. Role of T cell competition in the induction of cytotoxic T lymphocyte activity during viral vector-based immunization regimens.

    NARCIS (Netherlands)

    Lambeck, A.J.A.; Nijman, H.W.; Hoogeboom, B.N.; Regts, J.; Mare, A. de; Wilschut, J.; Daemen, T.

    2010-01-01

    T cell competition between antigen- and vector-specific T cells may determine the outcome of viral vector-based immunization regimens, as we previously proposed. Here, we unravelled the interplay between antigen- and vector-specific immunity, using recombinant Semliki Forest virus (rSFV). Priming of

  4. Increased immunogenicity of recombinant Ad35-based malaria vaccine through formulation with aluminium phosphate adjuvant.

    Science.gov (United States)

    Ophorst, Olga J A E; Radosević, Katarina; Klap, Jaco M; Sijtsma, Jeroen; Gillissen, Gert; Mintardjo, Ratna; van Ooij, Mark J M; Holterman, Lennart; Companjen, Arjen; Goudsmit, Jaap; Havenga, Menzo J E

    2007-08-29

    Previously, we have shown the potency of recombinant Adenovirus serotype 35 viral vaccines (rAd35) to induce strong immune response against the circumsporozoite protein (CS) of the plasmodium parasite. To further optimize immunogenicity of Ad35-based malaria vaccines we formulated rAd35.CS vaccine with aluminium phosphate adjuvant (AlPO(4)). In contrast to the conventional protein based vaccines no absorption to aluminium adjuvant was observed and rAd35 viral in vitro infectivity in mammalian cells was preserved. Immunization with Ad35.CS formulated with AlPO(4) resulted in significantly higher CS specific T and B cell responses in mice upon either single or prime-boost vaccination regimens as compared to rAd35.CS alone. With these results we report for the first time the feasibility of using an AlPO(4) adjuvant to increase the potency of a live adenovirus serotype 35-based vaccine.

  5. Need for a safe vaccine against respiratory syncytial virus infection

    Directory of Open Access Journals (Sweden)

    Joo-Young Kim

    2012-09-01

    Full Text Available Human respiratory syncytial virus (HRSV is a major cause of severe respiratory tract illnesses in infants and young children worldwide. Despite its importance as a respiratory pathogen, there is currently no licensed vaccine for HRSV. Following failure of the initial trial of formalin-inactivated virus particle vaccine, continuous efforts have been made for the development of safe and efficacious vaccines against HRSV. However, several obstacles persist that delay the development of HRSV vaccine, such as the immature immune system of newborn infants and the possible Th2-biased immune responses leading to subsequent vaccine-enhanced diseases. Many HRSV vaccine strategies are currently being developed and evaluated, including live-attenuated viruses, subunit-based, and vector-based candidates. In this review, the current HRSV vaccines are overviewed and the safety issues regarding asthma and vaccine-induced pathology are discussed.

  6. Genetic stability of a recombinant adenovirus vaccine vector seed library expressing human papillomavirus type 16 E6 and E7 proteins.

    Science.gov (United States)

    Wu, Jie; Chen, Ke-DA; Gao, Meng; Chen, Gang; Jin, Su-Feng; Zhuang, Fang-Cheng; Wu, Xiao-Hong; Jiang, Yun-Shui; Li, Jian-Bo

    2015-04-01

    The aim of the present study was to understand the genetic stability of a master seed bank (MSB) and a working seed bank (WSB) of an adenovirus vector vaccine expressing the human papillomavirus (HPV) type 16 E6 and E7 fusion proteins (Ad-HPV16E6E7). Microscopic examination and viral infectious efficacy were used to measure the infectious titers of the Ad-HPV16E6E7 MSB and WSB. Polymerase chain reaction was used to analyze the stability of the Ad-HPV16E6E7 target gene insertion, while western blot analysis and immunofluorescence were used to assess the expression levels of the Ad-HPV16E6E7 target protein. A C57BL/6 mouse TC-1 tumor cell growth inhibition model was used to evaluate the biological effect of Ad-HPV16E6E7 administration. The infectious titers of the Ad-HPV16E6E7 MSB and WSB were 6.31×109 IU/ml and 3.0×109 IU/ml, respectively. In addition, the expression levels of the inserted target genes and target proteins were found to be stable. In the mouse TC-1 tumor inhibition analysis, when the virus titers of the Ad-HPV16E6E7 MSB and WSB were 109 IU/ml, the tumor inhibition rate was 100%, which was significantly different when compared with the control group (χ2MSB=20.00 and χ2WSB=20.00; P<0.01). Therefore, the Ad-HPV16E6E7 vaccine seed bank is genetically stable and meets the requirements for vaccine development.

  7. Implication of respiratory syncytial virus (RSV) F transgene sequence heterogeneity observed in Phase 1 evaluation of MEDI-534, a live attenuated parainfluenza type 3 vectored RSV vaccine.

    Science.gov (United States)

    Yang, Chin-Fen; Wang, C Kathy; Malkin, Elissa; Schickli, Jeanne H; Shambaugh, Cindy; Zuo, Fengrong; Galinski, Mark S; Dubovsky, Filip; Tang, Roderick S

    2013-06-10

    MEDI-534 is the first live vectored RSV vaccine candidate to be evaluated in seronegative children. It consists of the bovine parainfluenza virus type 3 (PIV3) genome with substituted human PIV3 F and HN glycoproteins engineered to express RSV F protein. A Phase 1 study of 49 healthy RSV and PIV3 seronegative children 6 to <24 months of age demonstrated an acceptable safety profile at the following doses: 10(4), 10(5) and 10(6)TCID50. After 3 doses of MEDI-534 at 10(6)TCID50, administered at 0, 2 and 4 month intervals, 100% of subjects seroresponded to PIV3, whereas only 50% seroresponded to RSV. To investigate the discordance in seroresponse rates, the RSV F transgene and its flanking non-coding nucleotides were sequenced from shed virus recovered from the nasal washes of 24 MEDI-534-vaccinated children. Eleven out of 24 samples contained no nucleotide changes in the analyzed region. The other 13 samples contained mixtures of variant subpopulations. Fifty-five percent exhibited changes in the transcription termination poly A gene sequences of the upstream bPIV3N gene while 21% had variant subpopulations in the RSV F open reading frame that resulted in pre-mature stop codons. Both types of changes are expected to reduce RSV F expression. Evaluation of the administered vaccine by dual immunofluorescence staining showed ~2.5% variants with low or no RSV F expression while single nucleotide primer extension detected ~1% variation at nucleotide 2045 that resulted in a pre-mature translational termination at codon 85. An association between shedding of variants and lower RSV F serological response was observed but it was not possible to establish a definitive clinical significance due to the small number of subjects in this study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. In silico-based vaccine design against Ebola virus glycoprotein

    Directory of Open Access Journals (Sweden)

    Dash R

    2017-03-01

    Full Text Available Raju Dash,1 Rasel Das,2 Md Junaid,3 Md Forhad Chowdhury Akash,4 Ashekul Islam,5 SM Zahid Hosen1 1Molecular Modeling and Drug Design Laboratory (MMDDL, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR, Chittagong, Bangladesh; 2Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur, Malaysia; 3Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; 4Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh; 5Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh Abstract: Ebola virus (EBOV is one of the lethal viruses, causing more than 24 epidemic outbreaks to date. Despite having available molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet for the management and avoidance of EBOV infections in humans. Disclosing this, the present study described an epitope-based peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, followed by molecular docking and molecular dynamics simulation approach. Here, protein sequences of all glycoproteins of EBOV were collected and examined via in silico methods to determine the most immunogenic protein. From the identified antigenic protein, the peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions of 154–162 were considered the most potential B-cell and T-cell epitopes, correspondingly. Moreover, this peptide (HKEGAFFLY interacted with HLA-A*32:15 with the highest binding energy and stability, and also a good conservancy of 83.85% with maximum population coverage. The results imply that the designed epitopes could manifest vigorous enduring defensive immunity against EBOV. Keywords: Ebola virus, epitope, glycoprotein, vaccine design

  9. From ZikV genome to vaccine: in silico approach for the epitope-based peptide vaccine against Zika virus envelope glycoprotein.

    Science.gov (United States)

    Alam, Aftab; Ali, Shahnawaz; Ahamad, Shahzaib; Malik, Md Zubbair; Ishrat, Romana

    2016-12-01

    Zika virus (ZikV) has emerged as a potential threat to human health worldwide. A member of the Flaviviridae, ZikV is transmitted to humans by mosquitoes. It is related to other pathogenic vector-borne flaviviruses including dengue, West Nile and Japanese encephalitis viruses, but produces a comparatively mild disease in humans. As a result of its epidemic outbreak and the lack of potential medication, there is a need for improved vaccine/drugs. Computational techniques will provide further information about this virus. Comparative analysis of ZikV genomes should lead to the identification of the core characteristics that define a virus family, as well as its unique properties, while phylogenetic analysis will show the evolutionary relationships and provide clues about the protein's ancestry. Envelope glycoprotein of ZikV was obtained from a protein database and the most immunogenic epitope for T cells and B cells involved in cell-mediated immunity, whereas B cells are primarily responsible for humoral immunity. We mainly focused on MHC class I potential peptides. YRIMLSVHG, VLIFLSTAV and MMLELDPPF, GLDFSDLYY are the most potent peptides predicted as epitopes for CD4+ and CD8+ T cells, respectively, whereas MMLELDPPF and GLDFSDLYY had the highest pMHC-I immunogenicity score and these are further tested for interaction against the HLA molecules, using in silico docking techniques to verify the binding cleft epitope. However, this is an introductory approach to design an epitope-based peptide vaccine against ZikV; we hope that this model will be helpful in designing and predicting novel vaccine candidates. © 2016 John Wiley & Sons Ltd.

  10. Rigid Body Time Integration by Convected Base Vectors with Implicit Constraints

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2013-01-01

    A conservative time integration algorithm based on a convected set of orthonormal base vectors is presented. The equations of motion are derived from an extended Hamiltonian formulation, combining the components of the three base vectors with a set of orthonormality constraints. The particular form...... of the kinetic energy used in the present formulation is deliberately chosen to correspond to a rigid body rotation, and the orthonormality constraints are introduced via the equivalent Green strain components of the base vectors. The particular form of the extended inertia tensor used here implies a set....... The differential equations of motion are recast into discrete form using a suitable combination of mean values and increments, which is identified by considering a finite increment of the Hamiltonian. Examples illustrate the accuracy and conservation properties of the algorithm....

  11. Development of an Acid-Resistant Salmonella Typhi Ty21a Attenuated Vector For Improved Oral Vaccine Delivery.

    Directory of Open Access Journals (Sweden)

    Madushini N Dharmasena

    Full Text Available The licensed oral, live-attenuated bacterial vaccine for typhoid fever, Salmonella enterica serovar Typhi strain Ty21a, has also been utilized as a vaccine delivery platform for expression of diverse foreign antigens that stimulate protection against shigellosis, anthrax, plague, or human papilloma virus. However, Ty21a is acid-labile and, for effective oral immunization, stomach acidity has to be either neutralized with buffer or by-passed with Ty21a in an enteric-coated capsule (ECC. Several studies have shown that efficacy is reduced when Ty21a is administered in an ECC versus as a buffered liquid formulation, the former limiting exposure to GI tract lymphoid tissues. However, the ECC was selected as a more practical delivery format for both packaging/shipping and vaccine administration ease. We have sought to increase Ty21a acid-resistance to allow for removal from the ECC and immune enhancement. To improve Ty21a acid-resistance, glutamate-dependent acid resistance genes (GAD; responsible for Shigella spp. survival at very low pH were cloned on a multi-copy plasmid (pGad under a controllable arabinose-inducible promoter. pGad enhanced acid survival of Ty21a by 5 logs after 3 hours at pH 2.5, when cells were pre-grown in arabinose and under conditions that promote an acid-tolerance response (ATR. For genetically 100% stable expression, we inserted the gad genes into the Ty21a chromosome, using a method that allowed for subsequent removal of a selectable antibiotic resistance marker. Further, both bacterial growth curves and survival assays in cultured human monocytes/macrophages suggest that neither the genetic methods employed nor the resulting acid-resistance conferred by expression of the Gad proteins in Ty21a had any effect on the existing attenuation of this vaccine strain.

  12. Development of an Acid-Resistant Salmonella Typhi Ty21a Attenuated Vector For Improved Oral Vaccine Delivery.

    Science.gov (United States)

    Dharmasena, Madushini N; Feuille, Catherine M; Starke, Carly Elizabeth C; Bhagwat, Arvind A; Stibitz, Scott; Kopecko, Dennis J

    The licensed oral, live-attenuated bacterial vaccine for typhoid fever, Salmonella enterica serovar Typhi strain Ty21a, has also been utilized as a vaccine delivery platform for expression of diverse foreign antigens that stimulate protection against shigellosis, anthrax, plague, or human papilloma virus. However, Ty21a is acid-labile and, for effective oral immunization, stomach acidity has to be either neutralized with buffer or by-passed with Ty21a in an enteric-coated capsule (ECC). Several studies have shown that efficacy is reduced when Ty21a is administered in an ECC versus as a buffered liquid formulation, the former limiting exposure to GI tract lymphoid tissues. However, the ECC was selected as a more practical delivery format for both packaging/shipping and vaccine administration ease. We have sought to increase Ty21a acid-resistance to allow for removal from the ECC and immune enhancement. To improve Ty21a acid-resistance, glutamate-dependent acid resistance genes (GAD; responsible for Shigella spp. survival at very low pH) were cloned on a multi-copy plasmid (pGad) under a controllable arabinose-inducible promoter. pGad enhanced acid survival of Ty21a by 5 logs after 3 hours at pH 2.5, when cells were pre-grown in arabinose and under conditions that promote an acid-tolerance response (ATR). For genetically 100% stable expression, we inserted the gad genes into the Ty21a chromosome, using a method that allowed for subsequent removal of a selectable antibiotic resistance marker. Further, both bacterial growth curves and survival assays in cultured human monocytes/macrophages suggest that neither the genetic methods employed nor the resulting acid-resistance conferred by expression of the Gad proteins in Ty21a had any effect on the existing attenuation of this vaccine strain.

  13. Highest Vaccine Uptake after School-Based Delivery - A County-Level Evaluation of the Implementation Strategies for HPV Catch-Up Vaccination in Sweden.

    Science.gov (United States)

    Rehn, Moa; Uhnoo, Ingrid; Kühlmann-Berenzon, Sharon; Wallensten, Anders; Sparén, Pär; Netterlid, Eva

    2016-01-01

    The Swedish school-based vaccination programme offers HPV vaccine to girls born ≥1999 in 5-6th grade. In 2012, all counties introduced free-of-charge catch-up vaccination campaigns targeting girls born 1993-1998. Varying vaccine uptake in the catch-up group by December 2012 suggested that some implementation strategies were more successful than others. In order to inform future vaccination campaigns, we assessed the impact of different implementation strategies on the county-level catch-up vaccine uptake. We conducted an ecological study including all Swedish counties (n = 21), asking regional health offices about the information channels they used and where vaccination of the catch-up target group took place in their counties. The uptake of ≥1 dose by 30 September 2014 was estimated using data from the voluntary national vaccination register. We investigated associations between counties' catch-up vaccine uptake, information channels and vaccination settings by calculating incidence rate ratios (IRR) and 95% confidence intervals (CI), using negative binomial regression models. County level catch-up vaccine uptake varied between 49-84%. All counties offered vaccination through primary health care settings. Apart from this eight (34%) also offered the vaccine in some of their schools, four (19%) in all their schools, and two (10%) in other health care centres. The information channels most frequently used were: information at the national on-line health care consulting web-page (100%), letter/invitations (90%), and advertisement (81%). Counties offering vaccination to girls in all schools and counties offering vaccination in some of their schools, reached higher vaccine uptake compared to counties not offering vaccination in any of their schools (all schools adjusted IRR: 1.3, 95% CI: 1.1-1.5, some schools adjusted IRR: 1.2, 95% CI: 1.1-1.3). Counties offering HPV vaccination to catch-up groups in schools reached the highest vaccine uptake. No information

  14. Highest Vaccine Uptake after School-Based Delivery - A County-Level Evaluation of the Implementation Strategies for HPV Catch-Up Vaccination in Sweden.

    Directory of Open Access Journals (Sweden)

    Moa Rehn

    Full Text Available The Swedish school-based vaccination programme offers HPV vaccine to girls born ≥1999 in 5-6th grade. In 2012, all counties introduced free-of-charge catch-up vaccination campaigns targeting girls born 1993-1998. Varying vaccine uptake in the catch-up group by December 2012 suggested that some implementation strategies were more successful than others. In order to inform future vaccination campaigns, we assessed the impact of different implementation strategies on the county-level catch-up vaccine uptake.We conducted an ecological study including all Swedish counties (n = 21, asking regional health offices about the information channels they used and where vaccination of the catch-up target group took place in their counties. The uptake of ≥1 dose by 30 September 2014 was estimated using data from the voluntary national vaccination register. We investigated associations between counties' catch-up vaccine uptake, information channels and vaccination settings by calculating incidence rate ratios (IRR and 95% confidence intervals (CI, using negative binomial regression models.County level catch-up vaccine uptake varied between 49-84%. All counties offered vaccination through primary health care settings. Apart from this eight (34% also offered the vaccine in some of their schools, four (19% in all their schools, and two (10% in other health care centres. The information channels most frequently used were: information at the national on-line health care consulting web-page (100%, letter/invitations (90%, and advertisement (81%. Counties offering vaccination to girls in all schools and counties offering vaccination in some of their schools, reached higher vaccine uptake compared to counties not offering vaccination in any of their schools (all schools adjusted IRR: 1.3, 95% CI: 1.1-1.5, some schools adjusted IRR: 1.2, 95% CI: 1.1-1.3.Counties offering HPV vaccination to catch-up groups in schools reached the highest vaccine uptake. No information

  15. Anti-tumor effect of the alphavirus-based virus-like particle vector expressing prostate-specific antigen in a HLA-DR transgenic mouse model of prostate cancer.

    Science.gov (United States)

    Riabov, V; Tretyakova, I; Alexander, R B; Pushko, P; Klyushnenkova, E N

    2015-10-05

    The goal of this study was to determine if an alphavirus-based vaccine encoding human Prostate-Specific Antigen (PSA) could generate an effective anti-tumor immune response in a stringent mouse model of prostate cancer. DR2bxPSA F1 male mice expressing human PSA and HLA-DRB1(*)1501 transgenes were vaccinated with virus-like particle vector encoding PSA (VLPV-PSA) followed by the challenge with Transgenic Adenocarcinoma of Mouse Prostate cells engineered to express PSA (TRAMP-PSA). PSA-specific cellular and humoral immune responses were measured before and after tumor challenge. PSA and CD8 reactivity in the tumors was detected by immunohistochemistry. Tumor growth was compared in vaccinated and control groups. We found that VLPV-PSA could infect mouse dendritic cells in vitro and induce a robust PSA-specific immune response in vivo. A substantial proportion of splenic CD8 T cells (19.6 ± 7.4%) produced IFNγ in response to the immunodominant peptide PSA(65-73). In the blood of vaccinated mice, 18.4 ± 4.1% of CD8 T cells were PSA-specific as determined by the staining with H-2D(b)/PSA(65-73) dextramers. VLPV-PSA vaccination also strongly stimulated production of IgG2a/b anti-PSA antibodies. Tumors in vaccinated mice showed low levels of PSA expression and significant CD8+ T cell infiltration. Tumor growth in VLPV-PSA vaccinated mice was significantly delayed at early time points (p=0.002, Gehan-Breslow test). Our data suggest that TC-83-based VLPV-PSA vaccine can efficiently overcome immune tolerance to PSA, mediate rapid clearance of PSA-expressing tumor cells and delay tumor growth. The VLPV-PSA vaccine will undergo further testing for the immunotherapy of prostate cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fusion of Deep Features and Weighted VLAD Vectors based on Multiple Features for Image Retrieval

    Directory of Open Access Journals (Sweden)

    Wang Yanhong.

    2017-01-01

    Full Text Available In traditional vector of locally aggregated descriptors (VLAD method, the final VLAD vector is reshaped by summing up the residuals between each descriptor and its corresponding visual word. The norm of the residuals varies significantly, and it can make “visual burst”. This is caused by a fact that the contribution of each descriptor to VLAD vector is not the same. To address this problem, we add a different weight to each residual such that the contribution of each descriptor to the VLAD vector becomes even to a certain degree. Also, traditional VLAD method only uses the local gradient features of images. Thus it has a low discrimination. In this paper, local color features are extracted and used to the VLAD method. Moreover, we fuse deep features and the multiple VLAD vectors based on local gradient and color information. Also, in order to reduce running time and improve retrieval accuracy, PCA and whitening operations are used for VLAD vectors. Our proposed method is evaluated on three benchmark datasets, i.e., Holidays, Ukbench and Oxford5k. Experimental results show that our proposed method achieves good performance.

  17. Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides

    Science.gov (United States)

    Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.

    2011-01-01

    Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659

  18. A mammalian cell based FACS-panning platform for the selection of HIV-1 envelopes for vaccine development.

    Directory of Open Access Journals (Sweden)

    Tim-Henrik Bruun

    Full Text Available An increasing number of broadly neutralizing monoclonal antibodies (bnMAb against the HIV-1 envelope (Env protein has been discovered recently. Despite this progress, vaccination efforts with the aim to re-elicit bnMAbs that provide protective immunity have failed so far. Herein, we describe the develo