WorldWideScience

Sample records for vaccine therapy gm-csf

  1. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs.

    Science.gov (United States)

    Zhou, Ming; Wang, Lei; Zhou, Songqin; Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F

    2015-11-17

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs.

  2. Coadministration of cruzipain and GM-CSF DNAs, a new immunotherapeutic vaccine against Trypanosoma cruzi infection.

    Science.gov (United States)

    Cerny, Natacha; Sánchez Alberti, Andrés; Bivona, Augusto E; De Marzi, Mauricio C; Frank, Fernanda M; Cazorla, Silvia I; Malchiodi, Emilio L

    2016-01-01

    Therapeutic vaccine research and development are especially important in Chagas disease considering the characteristics of the chronic infection and the number of people in the Americas living with a parasite infection for decades. We have previously reported the efficacy of attenuated Salmonella enterica (S) carrying plasmid encoding cruzipain (SCz) to protect against Trypanosoma cruzi infection. In the present work we investigated whether Cz DNA vaccine immunotherapy could be effective in controlling an ongoing T. cruzi infection in mice. We here report the intramuscular administration of naked Cz DNA or the oral administration of Salmonella as Cz DNA delivery system as therapeutic vaccines in mice during acute or chronic infection. The coadministration of a plasmid encoding GM-CSF improved vaccine performance, indicating that the stimulation of innate immune cells is needed in the event of an ongoing infection. These therapeutic vaccines were able to address the response to a protective and sustained Th1 biased profile not only against Cz but also against a variety of parasite antigens. The combined therapeutic vaccine during the chronic phase of infection prevents tissue pathology as shown by a reduced level of enzyme activity characteristic of tissue damage and a tissue status compatible with normal tissue. The obtained results suggest that immunotherapy with Cz and GM-CSF DNAs, either alone or in combination with other drug treatments, may represent a promising alternative for Chagas disease therapy.

  3. Human autologous in vitro models of glioma immunogene therapy using B7-2, GM-CSF, and IL12

    International Nuclear Information System (INIS)

    Parney, I.F.; Farr-Jones, M.A.; Kane, K.; Chang, L.-J.; Petruk, K.C.

    2002-01-01

    Cancer immunogene therapy is based on vaccination with radiated, autologous tumor cells transduced with immunostimulatory genes. To help determine an optimal glioma immunogene therapy strategy, we stimulated lymphocytes with autologous human glioma cells transduced with B7-2 (CD86), granulocyte-macrophage colony-stimulating factor (GM-CSF), and/or interleukin-12 (IL12). A human glioma-derived cell culture (Ed147.BT) was transduced with B7-2, GM-CSF, and/or IL12 using retroviral vectors. Autologous peripheral blood mononuclear cells (PBMC) were co-cultured with irradiated gene-transduced tumor alone or a combination of radiated wild type and gene-transduced cells. Peripheral blood mononuclear cells proliferation was determined by serial cell counts. Peripheral blood mononuclear cells phenotype was assessed by flow cytometry for CD4, CD8, and CD16. Anti-tumor cytotoxicity was determined by chromium-51 ( 51 Cr) release assay. Peripheral blood mononuclear cells cell numbers all decreased during primary stimulation but tumor cells expressing B7-2 or GM-CSF consistently caused secondary proliferation. Tumors expressing B7-2 and GM-CSF or B7-2,GM-CSF,and IL12 consistently increased PBMC CD8+ (cytotoxic T) and CD16+ (natural killer) percentages. Interestingly, anti-tumor cytotoxicity only exceeded that of PBMC stimulated with wild type tumor alone when peripheral blood mononuclear cells were stimulated with both wild type tumor and B7-2/GM-CSF- (but not IL12) transduced cells. PBMC proliferation and phenotype is altered as expected by exposure to immunostimulatory gene-transduced tumor. However, transduced tumor cells alone do not stimulate greater anti-tumor cytotoxicity than wild type tumor. Only B7-2/GM-CSF-transduced cells combined with wild type produced increased cytotoxicity. This may reflect selection of turnor subclones with limited antigenic spectra during retrovirus-mediated gene transfer. (author)

  4. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy

    Science.gov (United States)

    Bhattacharya, Palash; Budnick, Isadore; Singh, Medha; Thiruppathi, Muthusamy; Alharshawi, Khaled; Elshabrawy, Hatem; Holterman, Mark J.

    2015-01-01

    Granulocyte macrophage colony stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine. Its inflammatory activity is primarily due its role as a growth and differentiation factor for granulocyte and macrophage populations. In this capacity, among other clinical applications, it has been used to bolster anti-tumor immune responses. GM-CSF-mediated inflammation has also been implicated in certain types of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. Thus, agents that can block GM-CSF or its receptor have been used as anti-inflammatory therapies. However, a review of literature reveals that in many situations GM-CSF can act as an anti-inflammatory/regulatory cytokine. We and others have shown that GM-CSF can modulate dendritic cell differentiation to render them “tolerogenic,” which, in turn, can increase regulatory T-cell numbers and function. Therefore, the pro-inflammatory and regulatory effects of GM-CSF appear to depend on the dose and the presence of other relevant cytokines in the context of an immune response. A thorough understanding of the various immunomodulatory effects of GM-CSF will facilitate more appropriate use and thus further enhance its clinical utility. PMID:25803788

  5. [Effects of cell-mediated immunity induced by intramuscular chitosan-pJME/ GM-CSF nano-DNA vaccine in BAlb/c mice].

    Science.gov (United States)

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2014-07-01

    This study aimed to investigate the immune adjuvant effect and mechanism induced by chitosan nanoparticles carrying pJME/GM-CSF. In this study, plasmid DNA (pJME/GM-CSF) was encapsulated in chitosan to prepare chitosan-pJME/GM-CSF nanoparticles using a complex coacervation process. Immunohistochemistry was used to detect the type of infiltrating cells at the site of intramuscular injection. The phenotype and functional changes of splenic DCs were measured by flow cytometry after different immunogens were injected intramuscularly. The killing activity of CTLs was assessed using the lactate dehydrogenase (LDH) release assay. The preparation of chitosan-pJME/GM-CSF nanoparticles matched the expected theoretical results. Our results also found that, after pJME/GM-CSF injection, the incoming cells were a mixture of macrophages, neutrophils, and immature DCs. Meanwhile, pJME/GM-CSF increased the expression of MHC class II molecules on splenic DCs, and enhanced their Ag capture and presentation functions. Cell-mediated immunity was induced by the vaccine. Furthermore, chitosan-pJME/GM-CSF nanoparticles outperformed the administration of standard pJME/GM-CSF in terms of DC recruitment, antigen processing and presentation, and vaccine enhancement. These findings reveal that chitosan could be used as delivery vector for DNA vaccine intramuscular immunizations, and enhance pJME/GM-CSF-induced cellular immune responses.

  6. Clinical significance of determination of changes of serum NO, NOS and GM-CSF levels after massage therapy in patients with periarthritis of shoulder diseases

    International Nuclear Information System (INIS)

    Liu Feng; Chen Lixia; Pan Xiaohong

    2011-01-01

    Objective: To explore the clinical significance of changes of serum NO, NOS and GM-CSF levels after massage therapy in patients with periarthritis of shoulder diseases. Methods: Serum GM-CSF level was determined with RIA and serum NO, NOS levels were determined with chemical methods both before and after massage therapy in 33 patients with periarthritis of shoulder diseases as well as in 35 normal healthy controls. Results: Before massage therapy the serum concertration of NO, NOS and GM-CSF in the patients were significantly higher than those in controls (P 0.05). Conclusion: Detection of serum NO, NOS and GM-CSF levels were closely related to the occurrence and development of the disease also provides important value clinically. (authors)

  7. Cellular immunotherapy using irradiated lung cancer cell vaccine co-expressing GM-CSF and IL-18 can induce significant antitumor effects

    International Nuclear Information System (INIS)

    Tian, Hongwei; Zhang, Xiaomei; Dai, Lei; Chen, Xiaolei; Zhang, Shuang; Yang, Yang; Yu, Dechao; Wei, Yuquan; Deng, Hongxin; Shi, Gang; Yang, Guoyou; Zhang, Junfeng; Li, Yiming; Du, Tao; Wang, Jianzhou; Xu, Fen; Cheng, Lin

    2014-01-01

    Although the whole tumor cell vaccine can provide the best source of immunizing antigens, there is still a limitation that most tumors are not naturally immunogenic. Tumor cells genetically modified to secrete immune activating cytokines have been proved to be more immunogenic. IL-18 could augment proliferation of T cells and cytotoxicity of NK cells. GM-CSF could stimulate dendritic cells, macrophages and enhance presentation of tumor antigens. In our study, we used mouse GM-CSF combined with IL-18 to modify Lewis lung cancer LL/2, then investigated whether vaccination could suppress tumor growth and promote survival. The Lewis lung cancer LL/2 was transfected with co-expressing mouse GM-CSF and IL-18 plasmid by cationic liposome, then irradiated with a sublethal dose X ray (100 Gy) to prepare vaccines. Mice were subcutaneously immunized with this inactivated vaccine and then inoculated with autologous LL/2 to estimate the antitumor efficacy. The studies reported here showed that LL/2 tumor cell vaccine modified by a co-expressing mouse GM-CSF and IL-18 plasmid could significantly inhibit tumor growth and increased survival of the mice bearing LL/2 tumor whether prophylactic or adoptive immunotherapy in vivo. A significant reduction of proliferation and increase of apoptosis were also observed in the tumor treated with vaccine of co-expressing GM-CSF and IL-18. The potent antitumor effect correlated with higher secretion levels of pro-inflammatory cytokines such as IL-18, GM-CSF, interferon-γ in serum, the proliferation of CD4 + IFN-γ + , CD8 + IFN-γ + T lymphocytes in spleen and the infiltration of CD4 + , CD8 + T in tumor. Furthermore, the mechanism of tumor-specific immune response was further proved by 51 Cr cytotoxicity assay in vitro and depletion of CD4, CD8, NK immune cell subsets in vivo. The results suggested that the antitumor mechanism was mainly depended on CD4 + , CD8 + T lymphocytes. These results provide a new insight into therapeutic mechanisms

  8. Enhancement of an Allogeneic GM-CSF-Secreting Breast Cancer Vaccine by Immunomodulatory Doses of Cyclophosphamide and Doxorubicin

    National Research Council Canada - National Science Library

    Emens, Leisha

    2003-01-01

    .... We have applied the use of tumor cells genetically modified to secrete GM-CSF to the preclinical neu transgenic mouse model, characterized by spontaneous tumor development and pre-existing immune tolerance to HER-2/neu...

  9. Enrichment of Ly6Chi monocytes by multiple GM-CSF injections with HBV vaccine contributes to viral clearance in a HBV mouse model.

    Science.gov (United States)

    Zhao, Weidong; Zhou, Xian; Zhao, Gan; Lin, Qing; Wang, Xianzheng; Yu, Xueping; Wang, Bin

    2017-12-02

    Adjuvants are considered a necessary component for HBV therapeutic vaccines but few are licensed in clinical practice due to concerns about safety or efficiency. In our recent study, we established that a combination protocol of 3-day pretreatments with GM-CSF before a vaccination (3 × GM-CSF+VACCINE) into the same injection site could break immune tolerance and cause over 90% reduction of HBsAg level in the HBsAg transgenic mouse model. Herein, we further investigated the therapeutic potential of the combination in AAV8-1.3HBV-infected mice. After 4 vaccinations, both serum HBeAg and HBsAg were cleared and there was a 95% reduction of HBV-positive hepatocytes, in addition to the presence of large number of infiltrating CD8 + T cells in the livers. Mechanistically, the HBV-specific T-cell responses were elicited via a 3 × GM-CSF+VACCINE-induced conversion of CCR2-dependent CD11b + Ly6C hi monocytes into CD11b + CD11c + DCs. Experimental depletion of Ly6C hi monocytes resulted in a defective HBV-specific immune response thereby abrogating HBV eradication. This vaccination strategy could lead to development of an effective therapeutic protocol against chronic HBV in infected patients.

  10. GM-CSF production allows the identification of immunoprevalent antigens recognized by human CD4+ T cells following smallpox vaccination.

    Directory of Open Access Journals (Sweden)

    Valeria Judkowski

    Full Text Available The threat of bioterrorism with smallpox and the broad use of vaccinia vectors for other vaccines have led to the resurgence in the study of vaccinia immunological memory. The importance of the role of CD4+ T cells in the control of vaccinia infection is well known. However, more CD8+ than CD4+ T cell epitopes recognized by human subjects immunized with vaccinia virus have been reported. This could be, in part, due to the fact that most of the studies that have identified human CD4+ specific protein-derived fragments or peptides have used IFN-γ production to evaluate vaccinia specific T cell responses. Based on these findings, we reasoned that analyzing a large panel of cytokines would permit us to generate a more complete analysis of the CD4 T cell responses. The results presented provide clear evidence that TNF-α is an excellent readout of vaccinia specificity and that other cytokines such as GM-CSF can be used to evaluate the reactivity of CD4+ T cells in response to vaccinia antigens. Furthermore, using these cytokines as readout of vaccinia specificity, we present the identification of novel peptides from immunoprevalent vaccinia proteins recognized by CD4+ T cells derived from smallpox vaccinated human subjects. In conclusion, we describe a "T cell-driven" methodology that can be implemented to determine the specificity of the T cell response upon vaccination or infection. Together, the single pathogen in vitro stimulation, the selection of CD4+ T cells specific to the pathogen by limiting dilution, the evaluation of pathogen specificity by detecting multiple cytokines, and the screening of the clones with synthetic combinatorial libraries, constitutes a novel and valuable approach for the elucidation of human CD4+ T cell specificity in response to large pathogens.

  11. Recombinant Newcastle disease virus (NDV) with inserted gene coding for GM-CSF as a new vector for cancer immunogene therapy

    NARCIS (Netherlands)

    Janke, M.; Peeters, B.P.H.; Leeuw, de O.S.; Moormann, R.J.M.; Arnold, A.; Fournier, P.; Schirrmacher, V.

    2007-01-01

    This is the first report describing recombinant (rec) Newcastle disease virus (NDV) as vector for gene therapy of cancer. The gene encoding granulocyte/macrophage colony-stimulating factor (GM-CSF) was inserted as an additional transcription unit at two different positions into the NDV genome. The

  12. Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy.

    Science.gov (United States)

    van de Laar, Lianne; Coffer, Paul J; Woltman, Andrea M

    2012-04-12

    Dendritic cells (DCs) represent a small and heterogeneous fraction of the hematopoietic system, specialized in antigen capture, processing, and presentation. The different DC subsets act as sentinels throughout the body and perform a key role in the induction of immunogenic as well as tolerogenic immune responses. Because of their limited lifespan, continuous replenishment of DC is required. Whereas the importance of GM-CSF in regulating DC homeostasis has long been underestimated, this cytokine is currently considered a critical factor for DC development under both steady-state and inflammatory conditions. Regulation of cellular actions by GM-CSF depends on the activation of intracellular signaling modules, including JAK/STAT, MAPK, PI3K, and canonical NF-κB. By directing the activity of transcription factors and other cellular effector proteins, these pathways influence differentiation, survival and/or proliferation of uncommitted hematopoietic progenitors, and DC subset-specific precursors, thereby contributing to specific aspects of DC subset development. The specific intracellular events resulting from GM-CSF-induced signaling provide a molecular explanation for GM-CSF-dependent subset distribution as well as clues to the specific characteristics and functions of GM-CSF-differentiated DCs compared with DCs generated by fms-related tyrosine kinase 3 ligand. This knowledge can be used to identify therapeutic targets to improve GM-CSF-dependent DC-based strategies to regulate immunity.

  13. Coadministration of Recombinant Adenovirus Expressing GM-CSF with Inactivated H5N1 Avian Influenza Vaccine Increased the Immune Responses and Protective Efficacy Against a Wild Bird Source of H5N1 Challenge.

    Science.gov (United States)

    Wang, Xiangwei; Wang, Xinglong; Jia, Yanqing; Wang, Chongyang; Tang, Qiuxia; Han, Qingsong; Xiao, Sa; Yang, Zengqi

    2017-10-01

    Wild birds play a key role in the spread of avian influenza virus (AIV). There is a continual urgent requirement for AIV vaccines to address the ongoing genetic changes of AIV. In the current study, we trialed a novel AIV vaccine against the wild bird source of H5N1 type AIV with recombinant adenovirus expressing granulocyte monocyte colony-stimulating factor (GM-CSF) as an adjuvant. A total of 150-day-old commercial chicks, with AIV-maternal-derived antibody, were divided into 6 groups. The primary vaccination was performed at day 14 followed by a subsequent boosting and intramuscular challenge on day 28 and 42, respectively. Recombinant GM-CSF (rGM-CSF) expressed by adenovirus, named as rAd-GM-CSF, raised the hemagglutination inhibition (HI) titers (log 2 ) against AIV from 7.0 (vaccinate with inactivated vaccine alone) to 8.4 after booster immunization. Moreover, the rGM-CSF addition markedly increased the expression of interferon-γ, interleukin-4, and major histocompatibility complex-II in the lungs, compared with those immunized with inactivated vaccine alone on day 29, that is, 18 h post booster immunization. Following challenge, chicks inoculated with the inactivated AIV vaccine and rAd-GM-CSF together exhibited mild clinical signs and 62% survivals compared to 33% in the group immunized with inactivated AIV vaccine alone. Higher level of HI titers, immune related molecule expressions, and protection ratio demonstrates a good potential of rGM-CSF in improving humoral and cell mediated immune responses of inactivated AIV vaccines.

  14. Pivotal Roles of GM-CSF in Autoimmunity and Inflammation

    Science.gov (United States)

    Shiomi, Aoi; Usui, Takashi

    2015-01-01

    Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor, which stimulates the proliferation of granulocytes and macrophages from bone marrow precursor cells. In autoimmune and inflammatory diseases, Th17 cells have been considered as strong inducers of tissue inflammation. However, recent evidence indicates that GM-CSF has prominent proinflammatory functions and that this growth factor (not IL-17) is critical for the pathogenicity of CD4+ T cells. Therefore, the mechanism of GM-CSF-producing CD4+ T cell differentiation and the role of GM-CSF in the development of autoimmune and inflammatory diseases are gaining increasing attention. This review summarizes the latest knowledge of GM-CSF and its relationship with autoimmune and inflammatory diseases. The potential therapies targeting GM-CSF as well as their possible side effects have also been addressed in this review. PMID:25838639

  15. GM-CSF increases mucosal and systemic immunogenicity of an H1N1 influenza DNA vaccine administered into the epidermis of non-human primates.

    Directory of Open Access Journals (Sweden)

    Peter T Loudon

    2010-06-01

    Full Text Available The recent H5N1 avian and H1N1 swine-origin influenza virus outbreaks reaffirm that the threat of a world-wide influenza pandemic is both real and ever-present. Vaccination is still considered the best strategy for protection against influenza virus infection but a significant challenge is to identify new vaccine approaches that offer accelerated production, broader protection against drifted and shifted strains, and the capacity to elicit anti-viral immune responses in the respiratory tract at the site of viral entry. As a safe alternative to live attenuated vaccines, the mucosal and systemic immunogenicity of an H1N1 influenza (A/New Caledonia/20/99 HA DNA vaccine administered by particle-mediated epidermal delivery (PMED or gene gun was analyzed in rhesus macaques.Macaques were immunized at weeks 0, 8, and 16 using a disposable single-shot particle-mediated delivery device designed for clinical use that delivers plasmid DNA directly into cells of the epidermis. Significant levels of hemagglutination inhibiting (HI antibodies and cytokine-secreting HA-specific T cells were observed in the periphery of macaques following 1-3 doses of the PMED HA DNA vaccine. In addition, HA DNA vaccination induced detectable levels of HA-specific mucosal antibodies and T cells in the lung and gut-associated lymphoid tissues of vaccinated macaques. Importantly, co-delivery of a DNA encoding the rhesus macaque GM-CSF gene was found to significantly enhance both the systemic and mucosal immunogenicity of the HA DNA vaccine.These results provide strong support for the development of a particle-mediated epidermal DNA vaccine for protection against respiratory pathogens such as influenza and demonstrate, for the first time, the ability of skin-delivered GM-CSF to serve as an effective mucosal adjuvant for vaccine induction of immune responses in the gut and respiratory tract.

  16. Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice.

    Science.gov (United States)

    Wang, Xianzheng; Dong, Aihua; Xiao, Jingjing; Zhou, Xingjun; Mi, Haili; Xu, Hanqian; Zhang, Jiming; Wang, Bin

    2016-11-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to be a potential vaccine adjuvant despite contradictory results from animal and human studies. The discrepancies may be due to the different doses and regimens of GM-CSF that were used, given that either mature or immature dendritic cells (DCs) could be induced under different conditions. To test the hypothesis that GM-CSF can be used as a novel adjuvant for a hepatitis B virus (HBV) therapeutic vaccine, we administered GM-CSF once per day for three days prior to vaccination with recombinant HBV vaccine (rHBVvac) in mice. We observed greater DC maturation in these pre-treated animals at day 3 as compared to day 1 or day 2 of daily GM-CSF administration. This strategy was further investigated for its ability to break the immune tolerance established in hepatitis B surface antigen-transgenic (HBsAg-Tg) animals. We found that the levels of induced anti-HBsAg antibodies were significantly higher in animals following three days of GM-CSF pre-treatment before rHBV vaccination after the third immunization. In addition to the increase in anti-HBsAg antibody levels, cell-mediated anti-HBsAg responses, including delayed-type hypersensitivity, T-cell proliferation, interferon-γ production, and cytotoxic T lymphocytes, were dramatically enhanced in the three-day GM-CSF pre-treated group. After adoptive transfers of CD8 + T cells from immunized animals, antigen-specific CD8 + T cells were observed in the livers of recipient HBsAg-Tg animals. Moreover, the three-day pre-treatments with GM-CSF prior to rHBVvac vaccination could significantly eliminate HBsAg-positive hepatocytes, suggesting beneficial therapeutic effects. Therefore, this protocol utilizing GM-CSF as an adjuvant in combination with the rHBVvac vaccine has the potential to become a novel immunotherapy for chronic hepatitis B patients.

  17. Successful use of a defined antigen/GM-CSF adjuvant vaccine to treat mucosal leishmaniasis refractory to antimony: a case report

    Directory of Open Access Journals (Sweden)

    Badaro Roberto

    2001-01-01

    Full Text Available Immunotherapy has been proposed as a method to treat mucosal leishmaniasis for many years, but the approach has been hampered by poor definition and variability of antigens used, and results have been inconclusive. We report here a case of antimonial-refractory mucosal leishmaniasis in a 45 year old male who was treated with three single injections (one per month with a cocktail of four Leishmania recombinant antigens selected after documented hypo-responsiveness of the patient to these antigens, plus 50mg of GM-CSF as vaccine adjuvant. Three months after treatment, all lesions had resolved completely and the patient remains without relapse after two years. Side effects of the treatment included only moderate erythema and induration at the injection site after the second and third injections. We conclude that carefully selected microbial antigens and cytokine adjuvant can be successful as immunotherapy for patients with antimonial-refractory mucosal leishmaniasis.

  18. Combination of intratumoral injections of vaccinia virus MVA expressing GM-CSF and immunization with DNA vaccine prolongs the survival of mice bearing HPV16 induced tumors with downregulated expression of MHC class I molecules

    Czech Academy of Sciences Publication Activity Database

    Němečková, Š.; Šmahel, M.; Hainz, P.; Macková, J.; Zurková, K.; Gabriel, P.; Indrová, Marie; Kutinová, L.

    2007-01-01

    Roč. 54, č. 4 (2007), s. 326-333 ISSN 0028-2685 R&D Projects: GA MZd NR8004 Institutional research plan: CEZ:AV0Z50520514 Keywords : vaccinia virus MVA expressing GM- CSF * DNA vaccine * HPV16 induced tumors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.208, year: 2007

  19. Effects of prostaglandin E2 and cAMP elevating drugs on GM-CSF release by cultured human airway smooth muscle cells. Relevance to asthma therapy.

    Science.gov (United States)

    Lazzeri, N; Belvisi, M G; Patel, H J; Yacoub, M H; Chung, K F; Mitchell, J A

    2001-01-01

    Human airway smooth muscle (HASM) cells release granulocyte macrophage-colony stimulating factor (GM-CSF) and express cyclooxygenase (COX)-2 (resulting in the release of prostaglandin [PG] E2) after stimulation with cytokines. Because COX-2 activity can regulate a number of inflammatory processes, we have assessed its effects, as well as those of agents that modulate cyclic adenosine monophosphate (cAMP), on GM-CSF release by HASM cells. Cells stimulated with a combination of proinflammatory cytokines (interleukin-1beta and tumor necrosis factor-alpha each at 10 ng/ml) for 24 h released significant amounts of PGE2 (measured by radioimmunoassay) and GM-CSF (measured by enzyme-linked immunosorbent assay). Indomethacin and other COX-1/COX-2 inhibitors caused concentration-dependent inhibitions of PGE2 concomitantly with increases in GM-CSF formation. Addition of exogenous PGE2 or the beta2-agonist fenoterol, which increase cAMP, to cytokine-treated HASM cells had no effect on GM-CSF release unless COX activity was first blocked with indomethacin. The type 4 phosphodiesterase inhibitors rolipram and SB 207499 both caused concentration-dependent reductions in GM-CSF production. Thus, when HASM cells are activated with cytokines they release PGE2, which acts as a "braking mechanism" to limit the coproduction of GM-CSF. Moreover, agents that elevate cAMP also reduce GM-CSF formation by these cells.

  20. Delivery of GM-CSF to Protect against Influenza Pneumonia

    Science.gov (United States)

    Subramaniam, Renuka; Hillberry, Zachary; Chen, Han; Feng, Yan; Fletcher, Kalyn; Neuenschwander, Pierre; Shams, Homayoun

    2015-01-01

    Background Since adaptive immunity is thought to be central to immunity against influenza A virus (IAV) pneumonias, preventive strategies have focused primarily on vaccines. However, vaccine efficacy has been variable, in part because of antigenic shift and drift in circulating influenza viruses. Recent studies have highlighted the importance of innate immunity in protecting against influenza. Methods Granulocyte-macrophage colony stimulating factor (GM-CSF) contributes to maturation of mononuclear phagocytes, enhancing their capacity for phagocytosis and cytokine production. Results Overexpression of granulocyte macrophage-colony stimulating factor (GM-CSF) in the lung of transgenic mice provides remarkable protection against IAV, which depends on alveolar macrophages (AM). In this study, we report that pulmonary delivery of GM-CSF to wild type young and aged mice abrogated mortality from IAV. Conclusion We also demonstrate that protection is species specific and human GM-CSF do not protect the mice nor stimulates mouse immunity. We also show that IAV-induced lung injury is the culprit for side-effects of GM-CSF in treating mice after IAV infection, and introduce a novel strategy to deliver the GM-CSF to and retain it in the alveolar space even after IAV infection. PMID:25923215

  1. Delivery of GM-CSF to Protect against Influenza Pneumonia.

    Directory of Open Access Journals (Sweden)

    Renuka Subramaniam

    Full Text Available Since adaptive immunity is thought to be central to immunity against influenza A virus (IAV pneumonias, preventive strategies have focused primarily on vaccines. However, vaccine efficacy has been variable, in part because of antigenic shift and drift in circulating influenza viruses. Recent studies have highlighted the importance of innate immunity in protecting against influenza.Granulocyte-macrophage colony stimulating factor (GM-CSF contributes to maturation of mononuclear phagocytes, enhancing their capacity for phagocytosis and cytokine production.Overexpression of granulocyte macrophage-colony stimulating factor (GM-CSF in the lung of transgenic mice provides remarkable protection against IAV, which depends on alveolar macrophages (AM. In this study, we report that pulmonary delivery of GM-CSF to wild type young and aged mice abrogated mortality from IAV.We also demonstrate that protection is species specific and human GM-CSF do not protect the mice nor stimulates mouse immunity. We also show that IAV-induced lung injury is the culprit for side-effects of GM-CSF in treating mice after IAV infection, and introduce a novel strategy to deliver the GM-CSF to and retain it in the alveolar space even after IAV infection.

  2. Needle-free Biojector injection of a dengue virus type 1 DNA vaccine with human immunostimulatory sequences and the GM-CSF gene increases immunogenicity and protection from virus challenge in Aotus monkeys

    International Nuclear Information System (INIS)

    Raviprakash, Kanakatte; Ewing, Dan; Simmons, Monika; Porter, Kevin R.; Jones, Trevor R.; Hayes, Curtis G.; Stout, Richard; Murphy, Gerald S.

    2003-01-01

    A dengue-1 DNA vaccine containing sequences encoding premembrane and envelope proteins (DIME) was previously shown to elicit virus neutralizing antibodies in rhesus and Aotus monkeys, and the primates were partially protected from viremia upon challenge. To increase the neutralizing antibody levels and subsequent protection from virus challenge, four strategies were evaluated: (a) coimmunization with a plasmid expressing Aotus GM-CSF gene; (b) coimmunization with a plasmid containing human immunostimulatory sequences (ISS); (c) coimmunization with both the GM-CSF gene and ISS; and (d) delivery of vaccine using the needle-free Biojector system. Vaccination with the mixed formulation containing DIME, GM-CSF gene, and ISS, by either needle injection or Biojector, led to neutralizing antibody titers that were stable for up to 6 months after vaccination. Furthermore, 6 of 7 monkeys (85%), and 7 of 8 monkeys (87%) receiving this formulation were completely protected from viremia when challenged 1 and 6 months after vaccination, respectively. This is a significant improvement compared to our previous study in which one of three monkeys (33%) receiving just the DIME vaccine was completely protected from viremia at 6 months after immunization

  3. Silencing of Foxp3 enhances the antitumor efficacy of GM-CSF genetically modified tumor cell vaccine against B16 melanoma

    Directory of Open Access Journals (Sweden)

    Miguel A

    2017-01-01

    Full Text Available Antonio Miguel,1 Luis Sendra,1 Verónica Noé,2 Carles J Ciudad,2 Francisco Dasí,3,4 David Hervas,5 María José Herrero,1,6 Salvador F Aliño17 1Department of Pharmacology, Faculty of Medicine, University of Valencia, 2Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, 3Research University Hospital of Valencia, INCLIVA Health Research Institute, 4Department of Physiology, Faculty of Medicine, University of Valencia Foundation, 5Biostatistics Unit, 6Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe (IIS La Fe, 7Clinical Pharmacology Unit, ACM Hospital Universitario y Politécnico La Fe, Valencia, Spain Abstract: The antitumor response after therapeutic vaccination has a limited effect and seems to be related to the presence of T regulatory cells (Treg, which express the immunoregulatory molecules CTLA4 and Foxp3. The blockage of CTLA4 using antibodies has shown an effective antitumor response conducing to the approval of the human anti-CTLA4 antibody ipilimumab by the US Food and Drug Administration. On the other hand, Foxp3 is crucial for Treg development. For this reason, it is an attractive target for cancer treatment. This study aims to evaluate whether combining therapeutic vaccination with CTLA4 or Foxp3 gene silencing enhances the antitumor response. First, the “in vitro” cell entrance and gene silencing efficacy of two tools, 2'-O-methyl phosphorotioate-modified oligonucleotides (2'-OMe-PS-ASOs and polypurine reverse Hoogsteen hairpins (PPRHs, were evaluated in EL4 cells and cultured primary lymphocytes. Following B16 tumor transplant, C57BL6 mice were vaccinated with irradiated B16 tumor cells engineered to produce granulocyte-macrophage colony-stimulating factor (GM-CSF and were intraperitoneally treated with CTLA4 and Foxp3 2'-OMe-PS-ASO before and after vaccination. Tumor growth, mice survival, and CTLA4 and Foxp3 expression in blood cells were measured. The following

  4. GM-CSF enhances tumor invasion by elevated MMP-2, -9, and -26 expression

    International Nuclear Information System (INIS)

    Gutschalk, Claudia M; Yanamandra, Archana K; Linde, Nina; Meides, Alice; Depner, Sofia; Mueller, Margareta M

    2013-01-01

    Granulocyte–macrophage colony-stimulating factor (GM-CSF) promotes tumor progression in different tumor models in an autocrine and paracrine manner. However, at the same time GM-CSF is used in cancer therapies to ameliorate neutropenia. We have previously shown in GM-CSF and G-CSF expressing or negative skin or head and neck squamous cell carcinoma that GM-CSF expression is associated with a highly angiogenic and invasive tumor phenotype. To determine the functional contribution of GM-CSF to tumor invasion, we stably transfected a GM-CSF negative colon adenocarcinoma cell line HT-29 with GM-CSF or treated the same cell line with exogenous GM-CSF. While GM-CSF overexpression and treatment reduced tumor cell proliferation and tumor growth in vitro and in vivo, respectively, it contributed to tumor progression. Together with an enhanced migratory capacity in vitro, we observed a striking increase in tumor cell invasion into the surrounding tissue concomitant with the induction of an activated tumor stroma in GM-CSF overexpressing or GM-CSF treated tumors. In a complex 3D in vitro model, enhanced GM-CSF expression was associated with a discontinued basement membrane deposition that might be mediated by the increased expression and activation of MMP-2, -9, and -26. Treatment with GM-CSF blocking antibodies reversed this effect. The increased presence and activity of these tumor cell derived proteases was confirmed in vivo. Here, expression of MMP-26 protein was predominantly located in pre- and early-invasive areas suggesting MMP-26 expression as an early event in promoting GM-CSF dependent tumor invasion

  5. Disabled infectious single cycle herpes simplex virus (DISC-HSV) is a candidate vector system for gene delivery/expression of GM-CSF in human prostate cancer therapy.

    Science.gov (United States)

    Parkinson, Richard J; Mian, Shahid; Bishop, Michael C; Gray, Trevor; Li, Geng; McArdle, Stephanie E B; Ali, Selman; Rees, Robert C

    2003-06-15

    DISC-HSV is a replication incompetent herpes simplex virus that is a highly efficient vector for the transduction of genes in vivo and in vitro. We examine the ability of DISC-HSV to infect human prostate cancer cell-lines and xenograft tumor models, and induce expression of reporter and therapeutic cytokine genes. Infection was confirmed by cellular staining for the beta-galactosidase reporter gene product, and by EM. Human GM-CSF production following DISC-hGMCSF infection was measured using ELISA. The metabolic activity of infected cells was determined by NADP/NADPH assay. Cell death was estimated by cell-cycle analysis using flow cytometry with propidium iodide staining. Infection of DU145, PC3 and LNCaP cells with DISC-HSV was dose dependent. Cells infected with DISC-hGM-CSF released significant levels of hGM-CSF for 3 days. NADP/NADPH assay suggested that infected cells continued to be metabolically active for 3 days post-infection, which was consistent with flow cytometry findings that cell death did not occur within 7 days of infection. Tumor xenografts injected with DISC-HSV expressed beta-galactosidase, and intracellular viral particles were demonstrated using EM. We have previously reported the rejection of established tumors following intra-tumoral injection of DISC-GMCSF. This study demonstrates the ability of DISC-HSV to infect prostate cancer and express GMCSF at significant levels. We suggest that prostate cancer is a potential target for therapy using DISC-HSV containing GM-CSF. Copyright 2003 Wiley-Liss, Inc.

  6. Chimeric HIV-1 Envelope Glycoproteins with Potent Intrinsic Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Activity*

    Science.gov (United States)

    Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Sanders, Rogier W.

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed EnvGM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized EnvGM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric EnvGM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins. PMID:23565193

  7. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF activity.

    Directory of Open Access Journals (Sweden)

    Gözde Isik

    Full Text Available HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs that target the envelope glycoprotein complex (Env. An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.

  8. Differential transfection efficiency rates of the GM-CSF gene into human renal cell carcinoma lines by lipofection.

    Science.gov (United States)

    Hernández, A; Zöller, K; Enczmann, J; Ebert, T; Schmitz-Draeger, B; Ackermann, R; Wernet, P

    1997-01-01

    One of the major questions in any gene therapy approach is the selection of the appropriate vector system. Here, the optimization of a gene transfer protocol for renal cell carcinoma using lipofection as a nonviral gene transduction system was evaluated. To select the promoter which gives the highest expression, different plasmids which are able to express Escherichia coli beta-galactosidase gene as a reporter gene under the control of different promoters were tested: human cytomegalovirus promoter (pCMVbeta), simian virus 40 promoter (pSVbeta), adenovirus promoter (ADbeta), and herpes simplex virus thymidine kinase promoter (TKbeta). The pCMVbeta revealed the highest expression of the beta-gal gene in the renal cell carcinoma (RCC) lines. Thus this CMV promoter was selected for the expression of the granulocyte-macrophage colony stimulator factor (GM-CSF) gene. Three different lipids (LipofectAmine, LipofectAce, and Lipofectin) were compared for their transduction efficiency, and the optimal conditions for quantitatively high lipofection rates were established. The consistently best results regarding gene expression as well as viability of the RCC lines were obtained when Lipofectin was used. Gene expression was monitored by a specific enzyme-linked immunosorbent assay and functionally validated by a cell proliferation test. The GM-CSF expression profile showed a peak at 48 hours after transfection and was still detectable after 5 days. Here the feasibility of efficient lipofection of the GM-CSF gene into RCC lines is demonstrated. Most importantly, considerable differences in the relative quantity of GM-CSF gene transfer into the different RCC lines was observed here. This may be of critical relevance for the design of any clinical gene transduction protocol in tumor cell vaccination attempts.

  9. Summary of bi-shRNA/GM-CSF augmented autologous tumor cell immunotherapy (FANG™) in advanced cancer of the liver.

    Science.gov (United States)

    Nemunaitis, John; Barve, Minal; Orr, Douglas; Kuhn, Joseph; Magee, Mitchell; Lamont, Jeffrey; Bedell, Cynthia; Wallraven, Gladice; Pappen, Beena O; Roth, Alyssa; Horvath, Staci; Nemunaitis, Derek; Kumar, Padmasini; Maples, Phillip B; Senzer, Neil

    2014-01-01

    Therapies for advanced hepatocellular carcinoma (HCC) are limited. We carried out a phase I trial of a novel autologous whole-cell tumor cell immunotherapy (FANG™), which incorporates a dual granulocyte macrophage colony-stimulating factor (GM-CSF) expressive/bifunctional small hairpin RNA interference (bi-shRNAi) vector. The bi-shRNAi DNA targets furin, which is a proconvertase of transforming growth factors beta (TGFβ) 1 and 2. Safety, mechanism, immunoeffectiveness, and suggested benefit were previously shown [Senzer et al.: Mol Ther 2012;20:679-689; Senzer et al.: J Vaccines Vaccin 2013;4:209]. We now provide further follow-up of a subset of 8 HCC patients. FANG manufacturing was successful in 7 of 8 attempts (one failure due to insufficient cell yield). Median GM-CSF expression was 144 pg/10(6) cells, TGFβ1 knockdown was 100%, and TGFβ2 knockdown was 93% of the vector-transported cells. Five patients were vaccinated (1 or 2.5×10(7) cells/intradermal injection, 6-11 vaccinations). No FANG toxicity was observed. Three of these patients demonstrated evidence of an immune response to the autologous tumor cell sample. Long-term follow-up demonstrated survival of 319, 729, 784, 931+, and 1,043+ days of the FANG-treated patients. In conclusion, evidence supports further assessment of the FANG immunotherapy in HCC. © 2014 S. Karger AG, Basel.

  10. Epithelial GM-CSF induction by Candida glabrata.

    Science.gov (United States)

    Li, L; Dongari-Bagtzoglou, A

    2009-08-01

    The main cytokine induced by the interaction of oral epithelial cells with C. glabrata is granulocyte monocyte colony-stimulating factor (GM-CSF); however, the mechanisms regulating this response are unknown. Based on previously published information on the interactions of C. albicans with oral epithelial cells, we hypothesized that interaction with viable C. glabrata triggers GM-CSF synthesis via NF-kappaB activation. We found that C. glabrata-induced GM-CSF synthesis was adhesion-dependent, enhanced by endocytosis, and required fungal viability. NF-kappaB activation was noted during interaction of epithelial cells with C. glabrata, and pre-treatment with an NF-kappaB inhibitor partly inhibited GM-CSF synthesis. Blocking TLR4 with anti-TLR4 antibody did not inhibit GM-CSF production. In contrast, an anti-CDw17 antibody triggered significant inhibition of NF-kappaB activation and GM-CSF synthesis. beta-glucans did not stimulate GM-CSF synthesis, suggesting that the CDw17/NF-kappaB/GM-CSF pathway may be beta-glucan-independent. This study provides new insights into the mechanism of GM-CSF induction by C. glabrata.

  11. Influence of rhTPO/GM-CSF fusion protein on hemopoiesis in mice irradiated with 60Co γ-rays

    International Nuclear Information System (INIS)

    Cao Hua; Ge Zhongliang; Zhang Qunwei; Liu Xiuzhen

    1999-01-01

    Objective: To find a new biological therapy for secondary hematopoietic failure including anemia, infection and hemorrhage after administration of chemotherapeutic drugs etc. Methods: hGM-CSF gene was ligated with hTPO gene isolated from human fetal liver mRNA and a new fusion protein rh TPO/GM-CSF obtained. Results: The new fusion protein could promote recovery of peripheral WBC and PLT of 5.0 Gy irradiated mice. BFU-E, CFU-Meg and CFU-GM in bone marrow of mice after irradiation recovered significantly by treatment with rhTPO/GM-CSF fusion protein for 10 days. Conclusion: These results suggest that the new fusion protein has the biological activity of both hTPO and hGM-CSF simultaneously and can stimulate the proliferation of megakaryocytes and granulocyte progenitors

  12. Treatment of minimal residual disease after surgery or chemotherapy in mice carrying HPV16-associated tumours: cytokine and gene therapy with IL-2 and GM-CSF

    Czech Academy of Sciences Publication Activity Database

    Mikyšková, Romana; Indrová, Marie; Šímová, Jana; Jandlová, Táňa; Bieblová, Jana; Jinoch, P.; Bubeník, Jan; Vonka, V.

    2004-01-01

    Roč. 24, č. 1 (2004), s. 161-167 ISSN 1019-6439 R&D Projects: GA MZd NC7148; GA MZd NC7552; GA ČR GA301/01/0985 Institutional research plan: CEZ:AV0Z5052915 Keywords : HPV16 * gene therapy * minimal residual tumour disease Subject RIV: FD - Oncology ; Hematology Impact factor: 3.056, year: 2004

  13. A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer.

    Science.gov (United States)

    Morse, Michael A; Niedzwiecki, Donna; Marshall, John L; Garrett, Christopher; Chang, David Z; Aklilu, Mebea; Crocenzi, Todd S; Cole, David J; Dessureault, Sophie; Hobeika, Amy C; Osada, Takuya; Onaitis, Mark; Clary, Bryan M; Hsu, David; Devi, Gayathri R; Bulusu, Anuradha; Annechiarico, Robert P; Chadaram, Vijaya; Clay, Timothy M; Lyerly, H Kim

    2013-12-01

    To determine whether 1 of 2 vaccines based on dendritic cells (DCs) and poxvectors encoding CEA (carcinoembryonic antigen) and MUC1 (PANVAC) would lengthen survival in patients with resected metastases of colorectal cancer (CRC). Recurrences after complete resections of metastatic CRC remain frequent. Immune responses to CRC are associated with fewer recurrences, suggesting a role for cancer vaccines as adjuvant therapy. Both DCs and poxvectors are potent stimulators of immune responses against cancer antigens. Patients, disease-free after CRC metastasectomy and perioperative chemotherapy (n = 74), were randomized to injections of autologous DCs modified with PANVAC (DC/PANVAC) or PANVAC with per injection GM-CSF (granulocyte-macrophage colony-stimulating factor). Endpoints were recurrence-free survival overall survival, and rate of CEA-specific immune responses. Clinical outcome was compared with that of an unvaccinated, contemporary group of patients who had undergone CRC metastasectomy, received similar perioperative therapy, and would have otherwise been eligible for the study. Recurrence-free survival at 2 years was similar (47% and 55% for DC/PANVAC and PANVAC/GM-CSF, respectively) (χ P = 0.48). At a median follow-up of 35.7 months, there were 2 of 37 deaths in the DC/PANVAC arm and 5 of 37 deaths in the PANVAC/GM-CSF arm. The rate and magnitude of T-cell responses against CEA was statistically similar between study arms. As a group, vaccinated patients had superior survival compared with the contemporary unvaccinated group. Both DC and poxvector vaccines have similar activity. Survival was longer for vaccinated patients than for a contemporary unvaccinated group, suggesting that a randomized trial of poxvector vaccinations compared with standard follow-up after metastasectomy is warranted. (NCT00103142).

  14. Adenoviral vector-mediated GM-CSF gene transfer improves anti-mycobacterial immunity in mice - role of regulatory T cells.

    Science.gov (United States)

    Singpiel, Alena; Kramer, Julia; Maus, Regina; Stolper, Jennifer; Bittersohl, Lara Friederike; Gauldie, Jack; Kolb, Martin; Welte, Tobias; Sparwasser, Tim; Maus, Ulrich A

    2018-03-01

    Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor involved in differentiation, survival and activation of myeloid and non-myeloid cells with important implications for lung antibacterial immunity. Here we examined the effect of pulmonary adenoviral vector-mediated delivery of GM-CSF (AdGM-CSF) on anti-mycobacterial immunity in M. bovis BCG infected mice. Exposure of M. bovis BCG infected mice to AdGM-CSF either applied on 6h, or 6h and 7days post-infection substantially increased alveolar recruitment of iNOS and IL-12 expressing macrophages, and significantly increased accumulation of IFNγ pos T cells and particularly regulatory T cells (Tregs). This was accompanied by significantly reduced mycobacterial loads in the lungs of mice. Importantly, diphtheria toxin-induced depletion of Tregs did not influence mycobacterial loads, but accentuated immunopathology in AdGM-CSF-exposed mice infected with M. bovis BCG. Together, the data demonstrate that AdGM-CSF therapy improves lung protective immunity against M. bovis BCG infection in mice independent of co-recruited Tregs, which however critically contribute to limit lung immunopathology in BCG-infected mice. These data may be relevant to the development of immunomodulatory strategies to limit immunopathology-based lung injury in tuberculosis in humans. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Combination Immunotherapy of B16 Melanoma Using Anti–Cytotoxic T Lymphocyte–Associated Antigen 4 (Ctla-4) and Granulocyte/Macrophage Colony-Stimulating Factor (Gm-Csf)-Producing Vaccines Induces Rejection of Subcutaneous and Metastatic Tumors Accompanied by Autoimmune Depigmentation

    Science.gov (United States)

    van Elsas, Andrea; Hurwitz, Arthur A.; Allison, James P.

    1999-01-01

    We examined the effectiveness of cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) blockade, alone or in combination with a granulocyte/macrophage colony-stimulating factor (GM-CSF)–expressing tumor cell vaccine, on rejection of the highly tumorigenic, poorly immunogenic murine melanoma B16-BL6. Recently established tumors could be eradicated in 80% (68/85) of the cases using combination treatment, whereas each treatment by itself showed little or no effect. Tumor rejection was dependent on CD8+ and NK1.1+ cells but occurred irrespective of the presence of CD4+ T cells. Mice surviving a primary challenge rejected a secondary challenge with B16-BL6 or the parental B16-F0 line. The same treatment regimen was found to be therapeutically effective against outgrowth of preestablished B16-F10 lung metastases, inducing long-term survival. Of all mice surviving B16-BL6 or B16-F10 tumors after combination treatment, 56% (38/68) developed depigmentation, starting at the site of vaccination or challenge and in most cases progressing to distant locations. Depigmentation was found to occur in CD4-depleted mice, strongly suggesting that the effect was mediated by CTLs. This study shows that CTLA-4 blockade provides a powerful tool to enhance T cell activation and memory against a poorly immunogenic spontaneous murine tumor and that this may involve recruitment of autoreactive T cells. PMID:10430624

  16. Local application of GM-CSF for treatment of chemoirradiation-induced mucositis in patients with advanced carcinoma of the head and neck: results of controlled clinical trial

    International Nuclear Information System (INIS)

    Reichtomann, K.A.

    2002-01-01

    Purpose: the study was designed to assess prospectively the efficacy of GM-CSF (granulocyte-macrophage colony-stimulating factor) mouthwash solution in the management of chemoirradiation induced oral mucositis for head and neck cancer patients. Methods and materials: thirty-five patients with advanced carcinoma of the head and neck were evaluated for mucositis during the first cycle of chemoirradiation therapy. GM-CSF 400 μg in 250 cc of water for 1 h of mouth washing was prescribed. Active comparator was a conventional mucositis therapy combination. The procedure started once mucositis grade 1 (using the WHO grading) was detected. Patients, examined twice a week, were evaluated for oral mucositis and oral infections. Assessment of subjective pain was provided using a visual analogue scale. Blood tests were taken weekly. Results: the results of statistical evaluation of mucositis using the WHO-grading showed no significant differences between the two treatment groups. Local application of GM-CSF significantly reduced subjective pain during the second week of chemoirradiation therapy. Statistical analysis of the leucocytes-, platelet count, haemoglobin level and development of oral infections revealed no significant differences between the two treatment groups. Conclusion: in combined chemoirradiation therapy schemes the RTOG/EORTC toxicity scale should be used. In selected cases of mucositis attended with severe pain, GM-CSF should be observed within the therapeutic considerations. Controlled clinical trials with larger patient population are required to evaluate the role of GM-CSF in this indication. (author)

  17. Recombinant Granulocyte-Macrophage Colony-Stimulating Factor (rGM-CSF) : A Review of its Pharmacological Properties and Prospective Role in the Management of Myelosuppression.

    Science.gov (United States)

    Grant, Susan M; Heel, Rennie C

    1992-04-01

    Recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) is a polypeptide hormone produced through recombinant DNA technologies in glycosylated (yeast or mammalian expression systems) or nonglycosylated (Escherichia coli expression system) form. It is a multilineage haematopoietin which stimulates proliferation and differentiation of bone marrow myeloid progenitors and increases peripheral white blood cell counts when administered systemically. Treatment is generally well tolerated, although mild to moderate flu-like symptoms are common and rGM-CSF-induced fever and fluid retention may be problematic in occasional patients. rGM-CSF accelerates recovery of peripheral neutrophil counts after bone marrow transplantation, and results of a placebo-controlled randomised trial correlate this with reduced infectious episodes and shortened length of hospitalisation in patients with lymphoid malignancies. A substantial number of patients with graft failure after bone marrow transplantation also respond to rGM-CSF. The duration of myelosuppression secondary to cancer chemotherapy can be significantly reduced by rGM-CSF which has permitted investigation of antineoplastic dose-intensity escalation. In some haematopoietic disorders (e.g. aplastic anaemia, myelodysplasia and neutropenia secondary to HIV infection and antiviral therapy), rGM-CSF produces clinically useful increases in peripheral blood granulocyte counts, although the effect is generally not sustained after drug withdrawal. The potential for rGM-CSF to stimulate proliferation of the abnormal clone in myelodysplasia and in acute myelogenous leukaemia following induction therapy is of concern. Available data suggest, however, that with appropriate monitoring and exclusion of high-risk patients this serious potential risk can be avoided, and that myelopoiesis is enhanced in such patients by rGM-CSF treatment. Recombinant colony-stimulating factors are a new therapeutic modality; hence many aspects of

  18. Efficacy and safety of granulocyte macrophage-colony stimulating factor (GM-CSF) on the frequency and severity of radiation mucositis in patients with head and neck carcinoma

    International Nuclear Information System (INIS)

    Kannan, V.; Bapsy, Poonamallee P.; Anantha, Naranappa; Doval, Dinesh Chandra; Vaithianathan, Hema; Banumathy, G.; Reddy, Krishnamurthy B.; Kumaraswamy, Saklaspur Veerappaiah; Shenoy, Ashok Mohan

    1997-01-01

    Purpose: Based on the clinical evidence of mucosal protection by GM-CSF during cytotoxic chemotherapy, a pilot study was undertaken to determine the safety and mucosal reaction of patients receiving GM-CSF while undergoing definitive conventional fractionated radiotherapy in head and neck carcinoma. Methods and Materials: Patients were considered eligible if buccal mucosa and oropharynx were included in the teleradiation field. Ten adult patients with squamous cell carcinoma of head and neck (buccal mucosa--8 and posterior (1(3)) tongue--2) were entered into the trial. Radiation therapy was delivered with telecobalt machine at conventional 2 Gy fraction and 5 fractions/week. The radiation portals consisted of two parallel opposing lateral fields. GM-CSF was given subcutaneously at a dose of 1 μg/kg body weight, daily, after 20 Gy until the completion of radiation therapy. Patients were evaluated daily for mucosal reaction, pain, and functional impairment. Results: The median radiation dose was 66 Gy. Eight patients received ≥60 Gy. The tolerance to GM-CSF was good. All 10 patients completed the planned daily dose of GM-CSF without interruption. Mucosal toxicity was Grade I in four patients till the completion of radiotherapy (dose range 50-66 Gy). Six patients developed Grade II reaction, fibrinous mucosal lesions of maximum size 1.0-1.5 cm, during radiotherapy. None developed Grade III mucositis. The maximum mucosal pain was Grade I during GM-CSF therapy. In two patients after starting GM-CSF the pain reduced in intensity. Functional impairment was mild to moderate. All patients were able to maintain adequate oral intake during the treatment period. Total regression of mucosal reaction occurred within 8 days following completion of radiotherapy. Conclusions: GM-CSF administration concurrently with conventional fractionated radiotherapy was feasible without significant toxicity. The acute side effects of radiotherapy namely mucositis, pain, and functional

  19. Use of an oncolytic virus secreting GM-CSF as combined oncolytic and immunotherapy for treatment of colorectal and hepatic adenocarcinomas.

    Science.gov (United States)

    Malhotra, Sandeep; Kim, Teresa; Zager, Jonathan; Bennett, Joseph; Ebright, Michael; D'Angelica, Michael; Fong, Yuman

    2007-04-01

    Oncolytic cancer therapy using herpes simplex viruses (HSV) that have direct tumoricidal effects and cancer immunotherapy using the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) have each been effective in preclinical testing. NV1034 is a multimutated oncolytic HSV carrying the gene for murine GM-CSF that attempts to combine these 2 anticancer strategies. The purpose of this study was to compare NV1034 to NV1023, the parent HSV mutants lacking GM-CSF, to determine if such combined oncolytic and immunotherapy using a single vector has advantages over oncolytic therapy alone. Expression GM-CSF in vitro did not alter the infectivity, cytotoxicity, or replication of NV1034 compared to the noncytokine-secreting control. Tumors infected with NV1034 produced GM-CSF in picogram quantities. In vivo efficacy of the viruses against murine colorectal carcinoma CT26 and murine hepatoma Hepa l-6 was then tested in subcutaneous tumors in syngeneic Balb/c and C57 L/J mice, respectively. In these immune-competent models, NV1034 and NV1023 each demonstrated potent antitumor activity. Treatment with NV1034 had significantly better antitumor effect compared to treatment with NV1023. Furthermore, there was no difference in the antitumor efficacy of these viruses in mice depleted of CD4+ and CD8+ T lymphocytes. Viral vectors combining oncolytic and immunotherapy are promising agents in treatment of colorectal carcinoma and hepatoma.

  20. Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis.

    Science.gov (United States)

    Al-Mossawi, M H; Chen, L; Fang, H; Ridley, A; de Wit, J; Yager, N; Hammitzsch, A; Pulyakhina, I; Fairfax, B P; Simone, D; Yi, Yao; Bandyopadhyay, S; Doig, K; Gundle, R; Kendrick, B; Powrie, F; Knight, J C; Bowness, P

    2017-11-15

    Spondyloarthritis encompasses a group of common inflammatory diseases thought to be driven by IL-17A-secreting type-17 lymphocytes. Here we show increased numbers of GM-CSF-producing CD4 and CD8 lymphocytes in the blood and joints of patients with spondyloarthritis, and increased numbers of IL-17A + GM-CSF + double-producing CD4, CD8, γδ and NK cells. GM-CSF production in CD4 T cells occurs both independently and in combination with classical Th1 and Th17 cytokines. Type 3 innate lymphoid cells producing predominantly GM-CSF are expanded in synovial tissues from patients with spondyloarthritis. GM-CSF + CD4 + cells, isolated using a triple cytokine capture approach, have a specific transcriptional signature. Both GM-CSF + and IL-17A + GM-CSF + double-producing CD4 T cells express increased levels of GPR65, a proton-sensing receptor associated with spondyloarthritis in genome-wide association studies and pathogenicity in murine inflammatory disease models. Silencing GPR65 in primary CD4 T cells reduces GM-CSF production. GM-CSF and GPR65 may thus serve as targets for therapeutic intervention of spondyloarthritis.

  1. GM-CSF/IL-3/IL-5 receptor common β chain (CD131 expression as a biomarker of antigen-stimulated CD8+ T cells

    Directory of Open Access Journals (Sweden)

    Maric Dragan

    2008-04-01

    Full Text Available Abstract Background Upon Ag-activation cytotoxic T cells (CTLs produce IFN-γ GM-CSF and TNF-α, which deliver simultaneously pro-apoptotic and pro-inflammatory signals to the surrounding microenvironment. Whether this secretion affects in an autocrine loop the CTLs themselves is unknown. Methods Here, we compared the transcriptional profile of Ag-activated, Flu-specific CTL stimulated with the FLU M1:58-66 peptide to that of convivial CTLs expanded in vitro in the same culture. PBMCs from 6 HLA-A*0201 expressing donors were expanded for 7 days in culture following Flu M1:58-66 stimulation in the presence of 300 IU/ml of interleukin-2 and than sorted by high speed sorting to high purity CD8+ expressing T cells gated according to FluM1:58-66 tetrameric human leukocyte antigen complexes expression. Results Ag-activated CTLs displayed higher levels of IFN-γ, GM-CSF (CSF2 and GM-CSF/IL-3/IL-5 receptor common β- chain (CD131 but lacked completely expression of IFN-γ receptor-II and IFN-stimulated genes (ISGs. This observation suggested that Ag-activated CTLs in preparation for the release of IFN-γ and GM-CSF shield themselves from the potentially apoptotic effects of the former entrusting their survival to GM-SCF. In vitro phenotyping confirmed the selective surface expression of CD131 by Ag-activated CTLs and their increased proliferation upon exogenous administration of GM-CSF. Conclusion The selective responsiveness of Ag-activated CTLs to GM-CSF may provide an alternative explanation to the usefulness of this chemokine as an adjuvant for T cell aimed vaccines. Moreover, the selective expression of CD131 by Ag-activated CTLs proposes CD131 as a novel biomarker of Ag-dependent CTL activation.

  2. MDSCs are involved in the protumorigenic potentials of GM-CSF in colitis-associated cancer.

    Science.gov (United States)

    Ma, Ning; Liu, Qilin; Hou, Lin; Wang, Yalin; Liu, Ziling

    2017-06-01

    Chronic inflammation is thought to be a major driving force for the development of colitis-associated colorectal cancer (CAC). As one member of proinflammatory cytokine family, granulocyte macrophage colony-stimulating factor (GM-CSF) has been identified to play a key role in CAC pathogenesis recently. The underlying mechanisms, however, remain largely unknown. In this study, we found that myeloid-derived suppressor cells (MDSCs) accumulated increasingly in the lesions during the progression from colitis to cancer, which was critical for CAC formation. Importantly, this MDSC accumulation was controlled by GM-CSF. MDSC number decreased significantly in GM-CSF-deficient mice suffering from CAC induction, and transfusion of MDSCs from wild-type CAC-bearing mice into GM-CSF-deficient counterparts led to recurrence of CAC. Furthermore, the supernatants of CAC lesions or GM-CSF alone was sufficient to differentiate hematopoietic precursors into MDSCs. Addition of neutralizing anti-GM-CSF antibody impaired the MDSC-differentiating effects of the supernatants of CAC lesions. Overall, these findings shed new insights into the mechanisms of GM-CSF underlying CAC development, by inducing/recruiting CAC-promoting MDSCs. Blocking GM-CSF activity or MDSC function may represent new therapeutic strategies for CAC in clinic.

  3. Granulocyte-macrophage colony-stimulating factor does not increase the potency or efficacy of a foot-and-mouth disease virus subunit vaccine Fator estimulante de colônias de granu-lócitos e macrófagos (GM-CSF não aumenta a eficácia ou potência da vacina de subunidades da febre aftosa em suínos

    Directory of Open Access Journals (Sweden)

    Luizinho Caron

    2005-09-01

    Full Text Available Foot-and-mouth disease (FMD is one of the most feared diseases of livestock worldwide. Vaccination has been a very effective weapon in controlling the disease, however a number of concerns with the current vaccine including the inability of approved diagnostic tests to reliably distinguish vaccinated from infected animals and the need for high containment facilities for vaccine production, have limited its use during outbreaks in countries previously free of the disease. A number of FMD vaccine candidates have been tested and a replication-defective human adenovirus type 5 (Ad5 vector containing the FMDV capsid (P1-2A and 3C protease coding regions has been shown to completely protect pigs against challenge with the homologous virus (FMDV A12 and A24. An Ad5-P1-2A+3C vaccine for FMDV O1 Campos (Ad5-O1C, however, only induced a low FMDV-specific neutralizing antibody response in swine potency tests. Granulocyte-macrophage colony-stimulating factor (GM-CSF has been successfully used to stimulate the immune response in vaccine formulations against a number of diseases, including HIV, hepatitis C and B. To attempt to improve the FMDV-specific immune response induced by Ad5-O1C, we inoculated swine with Ad5-O1C and an Ad5 vector containing the gene for porcine GM-CSF (pGM-CSF. However, in the conditions used in this trial, pGM-CSF did not improve the immune response to Ad5-O1C and adversely affected the level of protection of swine challenged with homologous FMDV.A febre aftosa é uma das doenças mais temidas nos rebanhos em todo o mundo. A vacinação tem sido uma arma eficiente no controle da doença, no entanto há preocupações com as vacinas atualmente utilizadas incluindo a necessidade de instalações de alta segurança para a produção dessas vacinas e a falta de um teste de diagnóstico aprovado que faça distinção precisa entre animais vacinados dos infectados. Várias vacinas têm sido testadas contra a febre aftosa e uma dessas

  4. GM-CSF augments the immunosuppressive capacity of neonatal spleen cells in vitro

    International Nuclear Information System (INIS)

    Morrissey, P.J.; Ireland, R.

    1991-01-01

    Addition of exogenous granulocyte-macrophage colony stimulating factor (GM-CSF) to cultures of adult murine spleen cells with sheep red blood cells (SRBC) results in an augmented plaque forming cell (PFC) response. The influence of GM-CSF on the ability of neonatal spleen cells to suppress the anti-SRBC plaque forming response of adult spleen cells was tested by adding GM-CSF to cultures of neonatal and adult spleen cells. The suppressive capacity of the neonatal spleen cells was augmented by exogenous GM-CSF. The augmented suppression of the neonatal spleen cells was dependent on a G-10 adherent population since the addition of GM-CSF to cultures containing G-10 passed neonatal spleen cells resulted in an augmented PFC response and not suppression. Neonatal splenic glass adherent cells were also capable of suppressing the response. Neonatal spleen cells or purified neonatal glass adherent spleen cells cultured in the presence of GM-CSF had markedly increased levels of PGE2 in the culture supernatant. Neonatal spleen cells cultured with GM-CSF had increased numbers of morphologically identifiable macrophages after 48 hr of culture. Both irradiation and G-10 passage of the neonatal spleen diminished the numbers of macrophages formed in response to GM-CSF, and both of these manipulations resulted in reversal of suppression in response to GM-CSF. Thus, the augmented suppressive capacity of neonatal spleen cells in response to GM-CSF is probably mediated by its ability to drive monocyte to macrophage differentiation as well as increase the suppressive capacity of the existing neonatal splenic macrophages by increasing their production of PGE2

  5. Targeting the GM-CSF receptor for the treatment of CNS autoimmunity.

    Science.gov (United States)

    Ifergan, Igal; Davidson, Todd S; Kebir, Hania; Xu, Dan; Palacios-Macapagal, Daphne; Cann, Jennifer; Rodgers, Jane M; Hunter, Zoe N; Pittet, Camille L; Beddow, Sara; Jones, Clare A; Prat, Alexandre; Sleeman, Matthew A; Miller, Stephen D

    2017-11-01

    In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα + myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. MafB antagonizes phenotypic alteration induced by GM-CSF in microglia

    Energy Technology Data Exchange (ETDEWEB)

    Koshida, Ryusuke, E-mail: rkoshida-myz@umin.ac.jp; Oishi, Hisashi, E-mail: hoishi@md.tsukuba.ac.jp; Hamada, Michito; Takahashi, Satoru

    2015-07-17

    Microglia are tissue-resident macrophages which are distributed throughout the central nervous system (CNS). Recent studies suggest that microglia are a unique myeloid population distinct from peripheral macrophages in terms of origin and gene expression signature. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a pleiotropic cytokine regulating myeloid development, has been shown to stimulate proliferation and alter phenotype of microglia in vitro. However, how its signaling is modulated in microglia is poorly characterized. MafB, a bZip transcriptional factor, is highly expressed in monocyte-macrophage lineage cells including microglia, although its role in microglia is largely unknown. We investigated the crosstalk between GM-CSF signaling and MafB by analyzing primary microglia. We found that Mafb-deficient microglia grew more rapidly than wild-type microglia in response to GM-CSF. Moreover, the expression of genes associated with microglial differentiation was more downregulated in Mafb-deficient microglia cultured with GM-CSF. Notably, such differences between the genotypes were not observed in the presence of M-CSF. In addition, we found that Mafb-deficient microglia cultured with GM-CSF barely extended their membrane protrusions, probably due to abnormal activation of RhoA, a key regulator of cytoskeletal remodeling. Altogether, our study reveals that MafB is a negative regulator of GM-CSF signaling in microglia. These findings could provide new insight into the modulation of cytokine signaling by transcription factors in microglia. - Highlights: • GM-CSF alters the phenotype of microglia in vitro more potently than M-CSF. • Transcription factor MafB antagonizes the effect of GM-CSF on microglia in vitro. • MafB deficiency leads to RhoA activation in microglia in response to GM-CSF. • We show for the first time the function of MafB in microglia.

  7. GM-CSF ameliorates microvascular barrier integrity via pericyte-derived Ang-1 in wound healing.

    Science.gov (United States)

    Yan, Min; Hu, Yange; Yao, Min; Bao, Shisan; Fang, Yong

    2017-11-01

    Skin wound healing involves complex coordinated interactions of cells, tissues, and mediators. Maintaining microvascular barrier integrity is one of the key events for endothelial homeostasis during wound healing. Vasodilation is observed after vasoconstriction, which causes blood vessels to become porous, facilitates leukocyte infiltration and aids angiogenesis at the wound-area, postinjury. Eventually, vessel integrity has to be reestablished for vascular maturation. Numerous studies have found that granulocyte macrophage colony-stimulating factor (GM-CSF) accelerates wound healing by inducing recruitment of repair cells into the injury area and releases of cytokines. However, whether GM-CSF is involving in the maintaining of microvascular barrier integrity and the underlying mechanism remain still unclear. Aim of this study was to investigate the effects of GM-CSF on modulation of microvascular permeability in wound healing and underlying mechanisms. Wound closure and microvascular leakage was investigated using a full-thickness skin wound mouse model after GM-CSF intervention. The endothelial permeability was measured by Evans blue assay in vivo and in vitro endothelium/pericyte co-culture system using a FITC-Dextran permeability assay. To identify the source of angiopoietin-1 (Ang-1), double staining is used in vivo and ELISA and qPCR are used in vitro. To determine the specific effect of Ang-1 on GM-CSF maintaining microvascular stabilization, Ang-1 siRNA was applied to inhibit Ang-1 production in vivo and in vitro. Wound closure was significantly accelerated and microvascular leakage was ameliorated after GM-CSF treatment in mouse wound sites. GM-CSF decreased endothelial permeability through tightening endothelial junctions and increased Ang-1 protein level that was derived by perictye. Furthermore, applications of siRNAAng-1 inhibited GM-CSF mediated protection of microvascular barrier integrity both in vivo and in vitro. Our data indicate that GM-CSF

  8. GM-CSF-Producing Th Cells in Rats Sensitive and Resistant to Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Stojić-Vukanić, Zorica; Pilipović, Ivan; Vujnović, Ivana; Nacka-Aleksić, Mirjana; Petrović, Raisa; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Leposavić, Gordana

    2016-01-01

    Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord (SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined. The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (susceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed lower frequency of IL-17+IFN-γ+, IL-17+IFN-γ-, and IL-17-IFN-γ+ cells accompanied by higher frequency of IL-17-IFN-γ- cells among them in AO than in DA rats. Compared with DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumulation of highly pathogenic GM-CSF+IFN-γ+ Th17 cells in SC) on GM-CSF+IFN-γ+ Th17 lymphocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO rats were shown to be less supportive of GM-CSF+IFN-γ+ Th17 cell differentiation (judging by lower expression of mRNAs for IL-1β, IL-6 and IL-23/p19). In accordance with the (i) lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflammatory monocytes among peripheral blood cells and their progeny (CD45hi cells) among the SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indicate that the strain specificities in efficacy of several mechanisms

  9. Granulocyte macrophage colony stimulating factor (GM-CSF biological actions on human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    S Montagnani

    2009-12-01

    Full Text Available Fibroblasts are involved in all pathologies characterized by increased ExtraCellularMatrix synthesis, from wound healing to fibrosis. Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF is a cytokine isolated as an hemopoietic growth factor but recently indicated as a differentiative agent on endothelial cells. In this work we demonstrated the expression of the receptor for GM-CSF (GMCSFR on human normal skin fibroblasts from healthy subjects (NFPC and on a human normal fibroblast cell line (NHDF and we try to investigate the biological effects of this cytokine. Human normal fibroblasts were cultured with different doses of GM-CSF to study the effects of this factor on GMCSFR expression, on cell proliferation and adhesion structures. In addition we studied the production of some Extra-Cellular Matrix (ECM components such as Fibronectin, Tenascin and Collagen I. The growth rate of fibroblasts from healthy donors (NFPC is not augmented by GM-CSF stimulation in spite of increased expression of the GM-CSFR. On the contrary, the proliferation of normal human dermal fibroblasts (NHDF cell line seems more influenced by high concentration of GM-CSF in the culture medium. The adhesion structures and the ECM components appear variously influenced by GM-CSF treatment as compared to fibroblasts cultured in basal condition, but newly only NHDF cells are really induced to increase their synthesis activity. We suggest that the in vitro treatment with GM-CSF can shift human normal fibroblasts towards a more differentiated state, due or accompanied by an increased expression of GM-CSFR and that such “differentiation” is an important event induced by such cytokine.

  10. Use of rhu-GM-CSF in pulmonary tuberculosis patients: results of a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Diana Brasil Pedral-Sampaio

    Full Text Available It has been postulated that deficient or incomplete clinical and/or microbiological response to tuberculosis treatment is associated with cell-mediated immunological dysfunction involving monocytes and macrophages. A phase 2 safety trial was conducted by treating patients with either recombinant human granulocyte-macrophage colony-stimulating factor (rhu-GM-CSF or a placebo, both in combination with anti-tuberculosis chemotherapy. Thirty-one patients with documented pulmonary tuberculosis were treated with rifampin/isoniazid for six months, plus pyrazinamide for the first two months. At the beginning of treatment, rhu-GM-CSF (125µg/M² was randomly assigned to 16 patients and injected subcutaneously twice weekly for four weeks; the other 15 patients received a placebo. The patients were accompanied in the hospital for two weeks, then monthly on an out patient basis, for 12 months. Clinical outcomes were similar in both groups, with no difference in acid-fast bacilli (AFB clearance in sputum at the end of the fourth week of treatment. Nevertheless, a trend to faster conversion to negative was observed in the rhu-GM-CSF group until the eighth week of treatment (p=0.07, after which all patients converted to AFB negative. Adverse events in the rhu-GM-CSF group were local skin inflammation and an increase in the leukocyte count after each injection, returning to normal 72 hours after rhu-GM-CSF injection. Three patients developed SGOP and SGPT > 2.5 times the normal values. All patients included in the GM-CSF group were culture negative at six months, except one who had primary TB resistance. None of the patients had to discontinue the treatment in either group. We conclude that rhu-GM-CSF adjuvant immunotherapy could be safely explored in a phase 3 trial with patients who have active tuberculosis.

  11. Use of rhu-GM-CSF in pulmonary tuberculosis patients: results of a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Pedral-Sampaio Diana Brasil

    2003-01-01

    Full Text Available It has been postulated that deficient or incomplete clinical and/or microbiological response to tuberculosis treatment is associated with cell-mediated immunological dysfunction involving monocytes and macrophages. A phase 2 safety trial was conducted by treating patients with either recombinant human granulocyte-macrophage colony-stimulating factor (rhu-GM-CSF or a placebo, both in combination with anti-tuberculosis chemotherapy. Thirty-one patients with documented pulmonary tuberculosis were treated with rifampin/isoniazid for six months, plus pyrazinamide for the first two months. At the beginning of treatment, rhu-GM-CSF (125µg/M² was randomly assigned to 16 patients and injected subcutaneously twice weekly for four weeks; the other 15 patients received a placebo. The patients were accompanied in the hospital for two weeks, then monthly on an out patient basis, for 12 months. Clinical outcomes were similar in both groups, with no difference in acid-fast bacilli (AFB clearance in sputum at the end of the fourth week of treatment. Nevertheless, a trend to faster conversion to negative was observed in the rhu-GM-CSF group until the eighth week of treatment (p=0.07, after which all patients converted to AFB negative. Adverse events in the rhu-GM-CSF group were local skin inflammation and an increase in the leukocyte count after each injection, returning to normal 72 hours after rhu-GM-CSF injection. Three patients developed SGOP and SGPT > 2.5 times the normal values. All patients included in the GM-CSF group were culture negative at six months, except one who had primary TB resistance. None of the patients had to discontinue the treatment in either group. We conclude that rhu-GM-CSF adjuvant immunotherapy could be safely explored in a phase 3 trial with patients who have active tuberculosis.

  12. GM-CSF: An Immune Modulatory Cytokine that can Suppress Autoimmunity

    Science.gov (United States)

    Bhattacharya, Palash; Thiruppathi, Muthusamy; Elshabrawy, Hatem A.; Alharshawi, Khaled; Kumar, Prabhakaran; Prabhakar, Bellur S.

    2015-01-01

    GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases like Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance. PMID:26113402

  13. Tumour-derived GM-CSF promotes granulocyte immunosuppression in mesothelioma patients.

    Science.gov (United States)

    Khanna, Swati; Graef, Suzanne; Mussai, Francis; Thomas, Anish; Wali, Neha; Yenidunya, Bahar Guliz; Yuan, Constance M; Morrow, Betsy; Zhang, Jingli; Korangy, Firouzeh; Greten, Tim F; Steinberg, Seth M; Stetler-Stevenson, Maryalice; Middleton, Gary; De Santo, Carmela; Hassan, Raffit

    2018-03-30

    The cross talk between tumour cells, myeloid cells, and T cells play a critical role in tumour pathogenesis and response to immunotherapies. Although the aetiology of mesothelioma is well understood the impact of mesothelioma on the surrounding immune microenvironment is less well studied. In this study the effect of the mesothelioma microenvironment on circulating and infiltrating granulocytes and T cells is investigated. Tumour and peripheral blood from mesothelioma patients were evaluated for presence of granulocytes, which were then tested for their T cell suppression. Co-cultures of granulocytes, mesothelioma cells, T cells were used to identify the mechanism of T cell inhibition. Analysis of tumours showed that the mesothelioma microenvironment is enriched in infiltrating granulocytes, which inhibit T cell proliferation and activation. Characterisation of the blood at diagnosis identified similar, circulating, immunosuppressive CD11b+CD15+HLADR- granulocytes at increased frequency compared to healthy controls. Culture of healthy-donor granulocytes with human mesothelioma cells showed that GM-CSF upregulates NOX2 expression and the release of Reactive Oxygen Species (ROS) from granulocytes, resulting in T cell suppression. Immunohistochemistry and transcriptomic analysis revealed that a majority of mesothelioma tumours express GM-CSF and that higher GM-CSF expression correlated with clinical progression. Blockade of GM-CSF with neutralising antibody, or ROS inhibition, restored T cell proliferation suggesting that targeting of GM-CSF could be of therapeutic benefit in these patients. Our study presents the mechanism behind the cross-talk between mesothelioma and the immune micro-environment and indicates that targeting GM-CSF could be a novel treatment strategy to augment immunotherapy. Copyright ©2018, American Association for Cancer Research.

  14. GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells

    Science.gov (United States)

    Greter, Melanie; Helft, Julie; Chow, Andrew; Hashimoto, Daigo; Mortha, Arthur; Agudo-Cantero, Judith; Bogunovic, Milena; Gautier, Emmanuel L.; Miller, Jennifer; Leboeuf, Marylene; Lu, Geming; Aloman, Costica; Brown, Brian D.; Pollard, Jeffrey W.; Xiong, Huabao; Randolph, Gwendalyn J.; Chipuk, Jerry E.; Frenette, Paul S.; Merad, Miriam

    2012-01-01

    SUMMARY GM-CSF (Csf-2) is a critical cytokine for the in vitro generation of dendritic cells (DCs) and is thought to control the development of inflammatory DCs and resident CD103+ DCs in some tissues. Here we showed that in contrast to the current understanding, Csf-2 receptor acts in the steady state to promote the survival and homeostasis of nonlymphoid tissue-resident CD103+ and CD11b+ DCs. Absence of Csf-2 receptor on lung DCs abrogated the induction of CD8+ T cell immunity after immunization with particulate antigens. In contrast, Csf-2 receptor was dispensable for the differentiation and innate function of inflammatory DCs during acute injuries. Instead, inflammatory DCs required Csf-1 receptor for their development. Thus, Csf-2 is important in vaccine-induced CD8+ T cell immunity through the regulation of nonlymphoid tissue DC homeostasis rather than control of inflammatory DCs in vivo. PMID:22749353

  15. Improved survival and marrow engraftment of mice transplanted with bone marrov of GM-CSF-treated donors

    International Nuclear Information System (INIS)

    Ballin, A.; Sagi, O.; Schiby, G.; Meytes, D.

    1993-01-01

    Recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) administered to bone marrow (BM) transplant recipients is associated with earlier recovery. We have investigated the possibility of stimulating normal donor mice in vivo with GM-CSF. Donor balb/c mice were injected i.p. with GM-CSF (5000 u) or saline. Seventy-two hours later 5 x 105 BM cells from either GM-CSF-treated or control donors were infused into lethally irradiated (850 R) recipients. In the recipients of BM from GM-CSF-treated donors, significantly higher CFU-S and significantly higher survival rate (57% [n = 65]; vs. 30% [n = 63]; p < 0.05) were noted. Donor mice of the GM-CSF group did not differ in bone-marrow cellularity and composition from their controls. However, recipients of BM from GM-CSF-treated mice had higher blood counts of haemoglobin, Leukocytes and platelets compared to controls. These data demonstrate that pretreatment of BM donors with GM-CSF may be of benefit in improving survival and marrow engraftment in mice. (au) (13 refs.)

  16. Clinical role of GM-CSF in neutrophil recovery in relation to health care parameters

    NARCIS (Netherlands)

    Hofstra, LS; DeVries, EGE; UylDeGroot, CA; Vellenga, E

    Recombinant human growth factors, particularly granulocyte-macrophage colony-stimulating factor (GM-CSF), have been only available for a few years. Since their introduction they have affected the management of drug-induced neutropenia, the use of dose intensive chemotherapy regimens and in the

  17. In vivo characterization of fusion protein comprising of A1 subunit of Shiga toxin and human GM-CSF: Assessment of its immunogenicity and toxicity.

    Science.gov (United States)

    Oloomi, Mana; Bouzari, Saeid; Shariati, Elaheh

    2010-10-01

    Most cancer cells become resistant to anti-cancer agents. In the last few years, a new approach for targeted therapy of human cancer has been developed using immunotoxins which comprise both the cell targeting and the cell killing moieties. In the present study, the recombinant Shiga toxin A1 subunit fused to human granulocyte-macrophage colony stimulating factor (A1-GM-CSF), previously produced in E. coli, was further characterized. The recombinant protein could cause 50% cytotoxicity and induced apoptosis in cells bearing GM-CSF receptors. The non-specific toxicity of the fusion protein was assessed in C57BL/6 and BALB/c mice. No mortality was observed in either group of mice, with different concentration of fusion protein. The lymphocyte proliferation assay, induction of specific IgG response and a mixed (Th1/Th2) response were observed only in BALB/c mice. The mixed response in BALB/c mice (Th1/Th2) could be explained on the basis of the two components of the fusion protein i.e. A1 and GM-CSF.

  18. Granulocyte-macrophage stimulating factor (GM-CSF increases circulating dendritic cells but does not abrogate suppression of adaptive cellular immunity in patients with metastatic colorectal cancer receiving chemotherapy

    Directory of Open Access Journals (Sweden)

    Martinez Micaela

    2012-01-01

    Full Text Available Abstract Background Advanced cancer and chemotherapy are both associated with immune system suppression. We initiated a clinical trial in patients receiving chemotherapy for metastatic colorectal cancer to determine if administration of GM-CSF in this setting was immunostimulatory. Methods Between June, 2003 and January, 2007, 20 patients were enrolled in a clinical trial (NCT00257322 in which they received 500 ug GM-CSF daily for 4 days starting 24 hours after each chemotherapy cycle. There were no toxicities or adverse events reported. Blood was obtained before chemotherapy/GM-CSF administration and 24 hours following the final dose of GM-CSF and evaluated for circulating dendritic cells and adaptive immune cellular subsets by flow cytometry. Peripheral blood mononuclear cell (PBMC expression of γ-interferon and T-bet transcription factor (Tbx21 by quantitative real-time PCR was performed as a measure of Th1 adaptive cellular immunity. Pre- and post-treatment (i.e., chemotherapy and GM-CSF samples were evaluable for 16 patients, ranging from 1 to 5 cycles (median 3 cycles, 6 biologic sample time points. Dendritic cells were defined as lineage (- and MHC class II high (+. Results 73% of patients had significant increases in circulating dendritic cells of ~3x for the overall group (5.8% to 13.6%, p = 0.02 and ~5x excluding non-responders (3.2% to 14.5%, p Tbx21 levels declined by 75% following each chemotherapy cycle despite administration of GM-CSF (p = 0.02. PBMC γ-interferon expression, however was unchanged. Conclusions This clinical trial confirms the suppressive effects of chemotherapy on Th1 cellular immunity in patients with metastatic colorectal cancer but demonstrates that mid-cycle administration of GM-CSF can significantly increase the proportion of circulating dendritic cells. As the role of dendritic cells in anti-tumor immunity becomes better defined, GM-CSF administration may provide a non-toxic intervention to augment this arm

  19. Cytokine-primed bone marrow stem cells vs. peripheral blood stem cells for autologous transplantation: a randomized comparison of GM-CSF vs. G-CSF.

    Science.gov (United States)

    Weisdorf, D; Miller, J; Verfaillie, C; Burns, L; Wagner, J; Blazar, B; Davies, S; Miller, W; Hannan, P; Steinbuch, M; Ramsay, N; McGlave, P

    1997-10-01

    Autologous transplantation for non-Hodgkins lymphoma and Hodgkin's disease is widely used as standard therapy for those with high-risk or relapsed tumor. Peripheral blood stem cell (PBSC) collections have nearly completely replaced bone marrow stem cell (BMSC) harvests because of the perceived advantages of more rapid engraftment, less tumor contamination in the inoculum, and better survival after therapy. The advantage of PBSC, however, may derive from the hematopoietic stimulating cytokines used for PBSC mobilization. Therefore, we tested a randomized comparison of GM-CSF vs. G-CSF used to prime either BMSC or PBSC before collection for use in autologous transplantation. Sixty-two patients receiving transplants (31 PBSC; 31 BMSC) for non-Hodgkin's lymphoma (n = 51) or Hodgkin's disease (n = 11) were treated. All patients received 6 days of randomly assigned cytokine. Those with cellular marrow in morphologic remission underwent BMSC harvest, while those with hypocellular marrow or microscopic marrow tumor involvement had PBSC collected. Neutrophil recovery was similarly rapid in all groups (median 14 days; range 10-23 days), though two patients had delayed neutrophil recovery using GM-CSF primed PBSC (p = 0.01). Red cell and platelet recovery were significantly quicker after BMSC mobilized with GM-CSF or PBSC mobilized with G-CSF. This speedier hematologic recovery resulted in earlier hospital discharge as well. However, in multivariate analysis, neither the stem cell source nor randomly assigned G-CSF vs. GM-CSF was independently associated with earlier multilineage hematologic recovery or shorter hospital stay. Relapse-free survival was not independently affected by either the assigned stem cell source or the randomly assigned priming cytokine, though malignant relapse was more frequent in those assigned to PBSC (RR of relapse 3.15, p = 0.03). These data document that BMSC, when collected following cytokine priming, can yield a similarly rapid hematologic

  20. [The therapeutic effect of HSV1-hGM-CSF combined with doxorubicin on the mouse breast cancer model].

    Science.gov (United States)

    Zhuang, X F; Zhang, S R; Liu, B L; Wu, J L; Li, X Q; Gu, H G; Shu, Y

    2018-03-23

    Objective: To evaluate the oncolytic effect of herpes simplex virus type 1 which carried recombined human granulocyte-macrophage colony-stimulating factor (HSV1-hGM-CSF) on the mouse breast cancer cell line 4T1 and compare the anticancer effects of HSV1-hGM-CSF, doxorubicin alone or combination on the breast cancer in mice. Methods: We investigated the cytotoxic effect on 4T1 cells in vitro, the cell growth, cell apoptosis and cell cycle of 4T1 cells treated with oncolytic HSV1-hGM-CSF at different MOIs (0, 0.5, 1 and 2) and doxorubicin at different concentrations (0, 2, 4 and 8 μg/ml). The effects of oncolytic HSV1-hGM-CSF and doxorubicin on the tumor growth, survival time and their side effects on the mouse breast cancer model were observed. Results: Both oncolytic HSV1-hGM-CSF and doxorubicin significantly inhibited the proliferation of 4T1 cells in vitro . Doxorubicin induced the G(2)/M phase arrest of 4T1 cells, while the cytotoxicity of oncolytic HSV1-hGM-CSF was no cell cycle-dependent.At day 16 after treatment with doxorubicin and HSV1-hGM-CSF, the tumor volume of 4T1 tumor bearing mice were (144.40±27.68)mm(3,) (216.80±57.18)mm(3,) (246.10±21.90)mm(3,) (327.50±44.24)mm(3,) (213.30±32.31)mm(3) and (495.80±75.87)mm(3) in the groups of doxorubicin combined with high dose HSV1-hGM-CSF, doxorubicin combined with low dose HSV1-hGM-CSF, doxorubicin alone, high dose HSV1-hGM-CSF alone, low dose HSV1-hGM-CSF alone and control, respectively.Compared with the control group, both doxorubicin and HSV1-hGM-CSF treatment exhibited significant reduction of primary tumor volume in vivo ( P CSF alone and low dose HSV1-hGM-CSF alone were significantly longer than that of control ( P CSF is observed in 4T1 mouse breast cancer.

  1. Molecular cloning of a second subunit of the receptor for human granulocyte - macrophage colony-stimulating factor (GM-CSF): Reconstitution of a high-affinity GM-CSF receptor

    International Nuclear Information System (INIS)

    Hayashida, Kazuhiro; Kitamura, Toshio; Gorman, D.M.; Miyajima, Atsushi; Arai, Kenichi; Yokota, Takashi

    1990-01-01

    Using the mouse interleukin 3 (IL-3) receptor cDNA as a probe, the authors obtained a monologous cDNA (KH97) from a cDNA library of a human hemopoietic cell line, TF-1. The protein encoded by the KH97 cDNA has 56% amino acid sequence identity with the mouse IL-3 receptor and retains features common to the family of cytokine receptors. Fibroblasts transfected with the KH97 cDNA expressed a protein of 120 kDa but did not bind any human cytokines, including IL-3 and granulocyte - macrophage colony-stimulating factor (GM-CSF). Interestingly, cotransfection of cDNAs for KH97 and the low-affinity human GM-CSF receptor in fibroblasts resulted in formation of a high-affinity receptor for GM-CSF. The dissociation rate of GM-CSF from the reconstituted high-affinity receptor was slower than that from the low-affinity site, whereas the association rate was unchanged. Cross-linking of 125 I-labeled GM-CSF to fibroblasts cotransfected with both cDNAs revealed the same cross-linking patterns as in TF-1 cells - i.e., two major proteins of 80 and 120 kDa which correspond to the low-affinity GM-CSF receptor and the KH97 protein, respectively. These results indicate that the high-affinity GM-CSF receptor is composed of at least two components in a manner analogous to the IL-2 receptor. They therefore propose to designate the low-affinity GM-CSF receptor and the KH97 protein as the α and β subunits of the GM-CSF receptor, respectively

  2. ZO-1 expression is suppressed by GM-CSF via miR-96/ERG in brain microvascular endothelial cells.

    Science.gov (United States)

    Zhang, Hu; Zhang, Shuhong; Zhang, Jilin; Liu, Dongxin; Wei, Jiayi; Fang, Wengang; Zhao, Weidong; Chen, Yuhua; Shang, Deshu

    2018-05-01

    The level of granulocyte-macrophage colony-stimulating factor (GM-CSF) increases in some disorders such as vascular dementia, Alzheimer's disease, and multiple sclerosis. We previously reported that in Alzheimer's disease patients, a high level of GM-CSF in the brain parenchyma downregulated expression of ZO-1, a blood-brain barrier tight junction protein, and facilitated the infiltration of peripheral monocytes across the blood-brain barrier. However, the molecular mechanism underlying regulation of ZO-1 expression by GM-CSF is unclear. Herein, we found that the erythroblast transformation-specific (ETS) transcription factor ERG cooperated with the proto-oncogene protein c-MYC in regulation of ZO-1 transcription in brain microvascular endothelial cells (BMECs). The ERG expression was suppressed by miR-96 which was increased by GM-CSF through the phosphoinositide-3 kinase (PI3K)/Akt pathway. Inhibition of miR-96 prevented ZO-1 down-regulation induced by GM-CSF both in vitro and in vivo. Our results revealed the mechanism of ZO-1 expression reduced by GM-CSF, and provided a potential target, miR-96, which could block ZO-1 down-regulation caused by GM-CSF in BMECs.

  3. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation.

    Science.gov (United States)

    Pearson, Claire; Thornton, Emily E; McKenzie, Brent; Schaupp, Anna-Lena; Huskens, Nicky; Griseri, Thibault; West, Nathaniel; Tung, Sim; Seddon, Benedict P; Uhlig, Holm H; Powrie, Fiona

    2016-01-18

    Innate lymphoid cells (ILCs) contribute to host defence and tissue repair but can induce immunopathology. Recent work has revealed tissue-specific roles for ILCs; however, the question of how a small population has large effects on immune homeostasis remains unclear. We identify two mechanisms that ILC3s utilise to exert their effects within intestinal tissue. ILC-driven colitis depends on production of granulocyte macrophage-colony stimulating factor (GM-CSF), which recruits and maintains intestinal inflammatory monocytes. ILCs present in the intestine also enter and exit cryptopatches in a highly dynamic process. During colitis, ILC3s mobilize from cryptopatches, a process that can be inhibited by blocking GM-CSF, and mobilization precedes inflammatory foci elsewhere in the tissue. Together these data identify the IL-23R/GM-CSF axis within ILC3 as a key control point in the accumulation of innate effector cells in the intestine and in the spatio-temporal dynamics of ILCs in the intestinal inflammatory response.

  4. Research Upregulation of CD23 (FcεRII Expression in Human Airway Smooth Muscle Cells (huASMC in Response to IL-4, GM-CSF, and IL-4/GM-CSF

    Directory of Open Access Journals (Sweden)

    Lew D Betty

    2005-05-01

    Full Text Available Abstract Background Airway smooth muscle cells play a key role in remodeling that contributes to airway hyperreactivity. Airway smooth muscle remodeling includes hypertrophy and hyperplasia. It has been previously shown that the expression of CD23 on ASMC in rabbits can be induced by the IgE component of the atopic serum. We examined if other components of atopic serum are capable of inducing CD23 expression independent of IgE. Methods Serum starved huASMC were stimulated with either IL-4, GM-CSF, IL-13, IL-5, PGD2, LTD4, tryptase or a combination of IL-4, IL-5, IL-13 each with GM-CSF for a period of 24 h. CD23 expression was analyzed by flow cytometry, western blot, and indirect immunofluorescence. Results The CD23 protein expression was upregulated in huASMC in response to IL-4, GM-CSF, and IL-4/GM-CSF. The percentage of cells with increased fluorescence intensity above the control was 25.1 ± 4.2% (IL-4, 15.6 ± 2.7% (GM-CSF and 32.9 ± 13.9% (IL-4/GMCSF combination(n = 3. The protein content of IL-4/GMCSF stimulated cells was significantly elevated. Expression of CD23 in response to IL-4, GM-CSF, IL-4/GM-CSF was accompanied by changes in cell morphology including depolymerization of isoactin fibers, cell spreading, and membrane ruffling. Western blot revealed abundant expression of the IL-4Rα and a low level expression of IL-2Rγc in huASMC. Stimulation with IL-4 resulted in the phosphorylation of STAT-6 and an increase in the expression of the IL-2Rγc. Conclusion CD23 on huASMC is upregulated by IL-4, GM-CSF, and IL-4/GM-CSF. The expression of CD23 is accompanied by an increase in cell volume and an increase in protein content per cell, suggesting hypertrophy. Upregulation of CD23 by IL-4/GM-CSF results in phenotypic changes in huASMC that could play a role in cell migration or a change in the synthetic function of the cells. Upregulation of CD23 in huASMC by IL-4 and GM-CSF can contribute to changes in huASMC and may provide an avenue

  5. The role of granulocyte macrophage colony stimulating factor (GM-CSF) in radiation-induced tumor cell migration.

    Science.gov (United States)

    Vilalta, Marta; Brune, Jourdan; Rafat, Marjan; Soto, Luis; Graves, Edward E

    2018-03-13

    Recently it has been observed in preclinical models that that radiation enhances the recruitment of circulating tumor cells to primary tumors, and results in tumor regrowth after treatment. This process may have implications for clinical radiotherapy, which improves control of a number of tumor types but which, despite continued dose escalation and aggressive fractionation, is unable to fully prevent local recurrences. By irradiating a single tumor within an animal bearing multiple lesions, we observed an increase in tumor cell migration to irradiated and unirradiated sites, suggesting a systemic component to this process. Previous work has identified the cytokine GM-CSF, produced by tumor cells following irradiation, as a key effector of this process. We evaluated the ability of systemic injections of a PEGylated form of GM-CSF to stimulate tumor cell migration. While increases in invasion and migration were observed for tumor cells in a transwell assay, we found that daily injections of PEG-GM-CSF to tumor-bearing animals did not increase migration of cells to tumors, despite the anticipated changes in circulating levels of granulocytes and monocytes produced by this treatment. Combination of PEG-GM-CSF treatment with radiation also did not increase tumor cell migration. These findings suggest that clinical use of GM-CSF to treat neutropenia in cancer patients will not have negative effects on the aggressiveness of residual cancer cells. However, further work is needed to characterize the mechanism by which GM-CSF facilitates systemic recruitment of trafficking tumor cells to tumors.

  6. GM-CSF production from human airway smooth muscle cells is potentiated by human serum

    Directory of Open Access Journals (Sweden)

    Maria B. Sukkar

    2000-01-01

    Full Text Available Recent evidence suggests that airway smooth muscle cells (ASMC actively participate in the airway inflammatory process in asthma. Interleukin–1β (IL–1β and tumour necrosis factor–α (TNF–α induce ASMC to release inflammatory mediators in vitro. ASMC mediator release in vivo, however, may be influenced by features of the allergic asthmatic phenotype. We determined whether; (1 allergic asthmatic serum (AAS modulates ASMC mediator release in response to IL–1β and TNF–α, and (2 IL–1β/TNF–α prime ASMC to release mediators in response to AAS. IL–5 and GMCSF were quantified by ELISA in culture supernatants of; (1 ASMC pre-incubated with either AAS, non-allergic non-asthmatic serum (NAS or MonomedTM (a serum substitute and subsequently stimulated with IL–1β and TNF–α and (2 ASMC stimulated with IL–1β/TNF–α and subsequently exposed to either AAS, NAS or MonomedTM. IL-1g and TNF–α induced GM-CSF release in ASMC pre-incubated with AAS was not greater than that in ASMC pre-incubated with NAS or MonomedTM. IL–1β and TNF–α, however, primed ASMC to release GM-CSF in response to human serum. GM-CSF production following IL–1β/TNF–α and serum exposure (AAS or NAS was significantly greater than that following IL–1β /TNF–α and MonomedTM exposure or IL–1β/TNF–α exposure only. Whilst the potentiating effects of human serum were not specific to allergic asthma, these findings suggest that the secretory capacity of ASMC may be up-regulated during exacerbations of asthma, where there is evidence of vascular leakage.

  7. The influence of protein malnutrition on the production of GM-CSF and M-CSF by macrophages

    Directory of Open Access Journals (Sweden)

    Dalila Cunha de Oliveira

    Full Text Available ABSTRACT It is well established that protein malnutrition (PM impairs immune defenses and increases susceptibility to infection. Macrophages are cells that play a central role in innate immunity, constituting one of the first barriers against infections. Macrophages produce several soluble factors, including cytokines and growth factors, important to the immune response. Among those growth factors, granulocyte-macrophage colony-stimulating factor (GM-CSF and macrophage colony-stimulating factor (M-CSF. GM-CSF and M-CSF are important to monocyte and macrophage development and stimulation of the immune response process. Knowing the importance of GM-CSF and M-CSF, we sought to investigate the influence of PM on macrophage production of these growth factors. Two-month-old male BALB/c mice were subjected to PM with a low-protein diet (2% and compared to a control diet (12% mouse group. Nutritional status, hemogram and the number of peritoneal cells were evaluated. Additionally, peritoneal macrophages were cultured and the production of GM-CSF and M-CSF and mRNA expression were evaluated. To determine if PM altered macrophage production of GM-CSF and M-CSF, they were stimulated with TNF-α. The PM animals had anemia, leukopenia and a reduced number of peritoneal cells. The production of M-CSF was not different between groups; however, cells from PM animals, stimulated with or without TNF-α, presented reduced capability to produce GM-CSF. These data imply that PM interferes with the production of GM-CSF, and consequently would affect the production and maturation of hematopoietic cells and the immune response.

  8. Reduced expression of granule proteins during extended survival of eosinophils in splenocyte culture with GM-CSF.

    Science.gov (United States)

    Ryu, Seul Hye; Na, Hye Young; Sohn, Moah; Han, Sun Murray; Choi, Wanho; In, Hyunju; Hong, Sookyung; Jeon, Hyejin; Seo, Jun-Young; Ahn, Jongcheol; Park, Chae Gyu

    2016-05-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multifaceted hematopoietic cytokine and the culture of mouse bone marrow with GM-CSF produces a variety of myeloid cells including granulocytes, macrophages, and dendritic cells. In the present study, we cultured mouse splenocytes with GM-CSF and examined the changes in hematopoietic cell populations over a week. Most of the splenic hematopoietic cells disappeared significantly from culture within 6days with or without the presence of GM-CSF. Among the splenic granulocyte populations, only eosinophils fully survived throughout the culture with GM-CSF for more than a week. During 10days of culture with GM-CSF, splenic eosinophils maintained their morphology as well as most of their surface molecules at high levels, including CCR3 and Siglec F. Meanwhile, the expression of mRNAs encoding major basic protein-1 (MBP-1) and eosinophil peroxidase (EPO), two major eosinophil-derived granule proteins, was diminished significantly from the cultured eosinophils. EPO assays also revealed that eosinophils in culture for more than 5days retained 30% or less EPO activity compared to those in uncultured splenocytes. In contrast, culture of splenocytes with GM-CSF did not change the capacity of eosinophils to migrate in response to eotaxin-1. Our results indicate that mouse splenic eosinophils are effectively cultured for lengthy periods while their expression of eosinophil-derived granule proteins is specifically suppressed. The relevance of these findings to eosinophilic inflammatory response is discussed. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  9. Molecular cloning, sequencing and structural studies of granulocyte-macrophage colony-stimulating factor (GM-CSF) from Indian water buffalo (Bubalus bubalis)

    KAUST Repository

    Sugumar, Thennarasu; Ganesan, Pugalenthi; Harishankar, Murugesan; Dhinakar Raj, Gopal

    2013-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that is essential for growth and development of progenitors of granulocytes and monocytes/macrophages. In this study, we report molecular cloning, sequencing and characterization of GM-CSF from Indian water buffalo, Bubalus bubalis. In addition, we performed sequence and structural analysis for buffalo GM-CSF. Buffalo GM-CSF has been compared with 17 mammalian GM-CSFs using multiple sequence alignment and phylogenetic tree. Three-dimensional model for buffalo GM-CSF and human receptor complex was built using homology modelling to study cross-reactivity between two species. Detailed analysis was performed to study GM-CSF interface and various interactions at the interface. © 2013 John Wiley & Sons Ltd.

  10. Molecular cloning, sequencing and structural studies of granulocyte-macrophage colony-stimulating factor (GM-CSF) from Indian water buffalo (Bubalus bubalis)

    KAUST Repository

    Sugumar, Thennarasu

    2013-06-25

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that is essential for growth and development of progenitors of granulocytes and monocytes/macrophages. In this study, we report molecular cloning, sequencing and characterization of GM-CSF from Indian water buffalo, Bubalus bubalis. In addition, we performed sequence and structural analysis for buffalo GM-CSF. Buffalo GM-CSF has been compared with 17 mammalian GM-CSFs using multiple sequence alignment and phylogenetic tree. Three-dimensional model for buffalo GM-CSF and human receptor complex was built using homology modelling to study cross-reactivity between two species. Detailed analysis was performed to study GM-CSF interface and various interactions at the interface. © 2013 John Wiley & Sons Ltd.

  11. Human papillomavirus infection is associated with decreased levels of GM-CSF in cervico-vaginal fluid of infected women.

    Science.gov (United States)

    Comar, Manola; Monasta, Lorenzo; Zanotta, Nunzia; Vecchi Brumatti, Liza; Ricci, Giuseppe; Zauli, Giorgio

    2013-10-01

    Although human papillomavirus (HPV) is the most common sexually transmitted infection, there are very scant data about the influence of this virus on the in vitro fertilization outcome. To assess the presence of HPV in the cervico-vaginal fluid in relationship to the in vitro fertilization (IVF) outcome and to the concentration of selected cytokines, known to affect embryo implantation and gestation: granulocyte-macrophage colony stimulating factor (GM-CSF) and granulocyte colony stimulating factor (G-CSF). Cervico-vaginal samples were collected on the day of oocyte pick-up from 82 women. Vaginas were flushed with 50 mL of sterile water and 3 mL of fluid was collected. Twelve women (15%) were positive for HPV. Interestingly, among HPV(+) women live birth rate was about half of the rate in HPV(-) women, although the differences were not statistically significant due to the low number of cases. Cervico-vaginal samples of a sub-group of 29 (8 HPV(+) and 21 HPV(-)) women were analyzed for GM-CSF and G-CSF by ELISA. GM-CSF but not G-CSF was significantly lower in the cervico-vaginal fluid of HPV(+) than in HPV(-) women. Since GM-CSF plays an important role during pregnancy, the reduced levels of GM-CSF in the cervico-vaginal fluid of HPV(+) women might contribute to explain the reduced live birth rate observed in HPV(+) women. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF Factor on Corneal Epithelial Cells in Corneal Wound Healing Model.

    Directory of Open Access Journals (Sweden)

    Chang Rae Rho

    Full Text Available Granulocyte-macrophage colony-stimulating factor (GM-CSF is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs. We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF. An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml. MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration.

  13. Clinical significance of determination of changes of serum GM-CSF, IL-8, IL-6 levels after treatment in pediatric patients with bronchial asthma

    International Nuclear Information System (INIS)

    Xue Hongfeng

    2006-01-01

    Objective: To investigate the changes of serum GM-CSF, IL-8 and IL-6 levels both before and after treatment in pediatric patients with bronchial asthma. Methods: Serum GM-CSF, IL-8 and IL-6 levels were measured with RIA in 32 pediatric patients with bronchial asthma both before and after treatment as well as in 30 controls. Results: Before treatment, the serum GM-CSF, IL-8, IL-6 levels were significantly higher in the patients than those in the controls (P 0.05). Conclusion: Abnormal high serum GM-CSF, IL-8, IL-6 levels played important role in the pathogenesis of bronchial asthma in children. (authors)

  14. Clinical significance of determination of changes of serum GM-CSF and platelet granular membrance protein (PGMP) contents after treatment in patients with cerebral infarction

    International Nuclear Information System (INIS)

    Zang Zhizhong; Pan Shengying; Tang Yong; Wang Jun

    2006-01-01

    Objective: To investigate the changes of serum GM-CSF and PGMP levels after treatment in patients with cerebral infarction. Methods: Serum GM-CSF and PGMP contents were measured with RIA in 36 patients with cerebral infarction both before and after treatment as well as in 30 controls. Results: Before treatment, the serum GM-CSF and PGMP levels in the patients were significantly higher than those in the controls (P<0.01). After 6 months' treatment, the levels (though dropped markedly), remained significantly higher (P<0.05). Conclusion: Serum GM-CSF and PGMP levels might be of prognostic value in patients with cerebral infarction. (authors)

  15. Clinical significance of determination of changes of serum GM-CSF, CGRP levels after treatment in pediatric patients with bronchial asthma

    International Nuclear Information System (INIS)

    Xu Lihua

    2007-01-01

    Objective: To explore the changes of serum GM-CSF and CGRP levels both before and after treatment in pediatric patients with bronchial asthma. Methods: Serum GM-CSF and CGRP levels were measured with RIA in 33 pediatric patients with bronchial asthma both before and after treatment as well as in 35 controls. Results: Before treatment, the serum GM-CSF levels was significantly higher in the patients than those in the controls (P 0.05). Conclusion: Abnormal high serum GM -CSF and low CGRP levels played important role in the pathogenesis of bronchial asthma in children. (authors)

  16. Clinical significance of determination of changes of serum NO, NOS and GM-CSF levels after treatment in children with bronchopneumonia

    International Nuclear Information System (INIS)

    Li Hongmei

    2007-01-01

    Objective: To investigate the clinical significance of changes of serum NO, NOS and GM-CSF levels after treatment in children with bronchopneumonia. Methods: Serum GM-CSF levels were determined with RIA, and serum NO, NOS levels were determined with biochemical methods both before and after treatment in 48 children with bronehopneumonia as well as in 35 controls. Results: Before treatment the serum concentrations of NO, NOS and GM-CSF in the patients were significantly higher than those in controls (P 0.05). Conclusion: Detection of serum NO, NOS and GM-CSF levels were useful for assessment of therapeutic efficacy. (authors)

  17. Clinical significance of determination of serum TNF, IL-8 and GM-CSF levels in pediatric patients with bronchial asthma

    International Nuclear Information System (INIS)

    Xu Donglin

    2005-01-01

    Objective: To investigate the clinical significance of changes of serum TNF, IL-8 and GM-CSF in pediatric patients with bronchial asthma. Methods: Serum TNF, IL-8 and GM-CSF levels were measured with RIA in 32 pediatric patients with bronchial asthma and 30 controls. Results: Serum levels of TNF, IL-8 and GM-CSF were very significantly higher in pediatric patients with bronchial asthma than those in controls (P<0.01). After one week treatment, the levels dropped considerably but still remained significantly higher than those in controls (P<0.05). Conclusion: These cytokines participated in the pathogenesis of bronchial asthma. Monitoring the changes of their serum levels was helpful for the management of the diseases. (authors)

  18. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    Energy Technology Data Exchange (ETDEWEB)

    Malur, Anagha; Huizar, Isham [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Wells, Greg [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Barna, Barbara P. [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by

  19. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    International Nuclear Information System (INIS)

    Malur, Anagha; Huizar, Isham; Wells, Greg; Barna, Barbara P.; Malur, Achut G.; Thomassen, Mary Jane

    2011-01-01

    Highlights: ► Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. ► Up-regulation of ABCG1 improves lung function. ► Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPARγ) and the PPARγ-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte–macrophage colony stimulating factor (GM-CSF), an upregulator of PPARγ. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPARγ plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPARγ or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by analysis of bronchoalveolar lavage fluid. Lung compliance was diminished in untreated GMCSF KO mice

  20. [Therapeutic use of hematopoietic growth factors. II. GM-CSF and G-CSF].

    Science.gov (United States)

    Royer, B; Arock, M

    1998-01-01

    The second part of this review on haematopoietic growth factors is focused on the therapeutic use of GM-CSF and G-CSF. Such therapeutic applications have raised very great hopes for clinical haematology. However, it should not be forgotten that these haematopoietic growth factors, which are very costly, are powerful two-edged weapons capable of triggering a cascade of reactions, and have a field of activity that often goes beyond the single highly specific property which it is hoped they possess. The risks and costs of their use are currently being evaluated. Waited developments concerning these molecules focus on three axes: a best use of factors already commercialized, especially concerning adaptation of posologies and new indications, the development of hybrid molecules from already known haematopoietic growth factors, possessing the advantages of respective factors, but not their disadvantages, the discovery of new haematopoietic growth factors with potential therapeutic application.

  1. A randomized clinical trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization

    DEFF Research Database (Denmark)

    Ziebe, Søren; Loft, Anne; Povlsen, Betina B

    2013-01-01

    To evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium on ongoing implantation rate (OIR).......To evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium on ongoing implantation rate (OIR)....

  2. GM-CSF, IL-3 and G-CSF receptors on acute myeloid leukemia cells : function, regulation of expression, and ligand binding characteristics

    NARCIS (Netherlands)

    L.M. Budel (Leo)

    1993-01-01

    textabstractIL-3, GM-CSF and G-CSF stimulate proliferation of human acute myeloid leukemia in vitro, but patterns of response among clinical cases are diverse. As described in Chapters 2 and 3, numbers and affinity of IL-3, GM-CSF and G-CSF receptors on cells of patients with AML were assessed and

  3. Specific Contributions of CSF-1 and GM-CSF to the Dynamics of the Mononuclear Phagocyte System.

    Science.gov (United States)

    Louis, Cynthia; Cook, Andrew D; Lacey, Derek; Fleetwood, Andrew J; Vlahos, Ross; Anderson, Gary P; Hamilton, John A

    2015-07-01

    M-CSF (or CSF-1) and GM-CSF can regulate the development and function of the mononuclear phagocyte system (MPS). To address some of the outstanding and sometimes conflicting issues surrounding this biology, we undertook a comparative analysis of the effects of neutralizing mAbs to these CSFs on murine MPS populations in the steady-state and during acute inflammatory reactions. CSF-1 neutralization, but not of GM-CSF, in normal mice rapidly reduced the numbers of more mature Ly6C(-) monocytes in blood and bone marrow, without any effect on proliferating precursors, and also the numbers of the resident peritoneal macrophages, observations consistent with CSF-1 signaling being essential only at a relatively late state in steady-state MPS development; in contrast, GM-CSF neutralization had no effect on the numbers of these particular populations. In Ag-induced peritonitis (AIP), thioglycolate-induced peritonitis, and LPS-induced lung inflammation, CSF-1 neutralization lowered inflammatory macrophage number; in the AIP model, this reduced number was not due to suppressed proliferation. More detailed studies with the convenient AIP model indicated that CSF-1 neutralization led to a relatively uniform reduction in all inflammatory cell populations; GM-CSF neutralization, in contrast, was more selective, resulting in the preferential loss among the MPS populations of a cycling, monocyte-derived inflammatory dendritic cell population. Some mechanistic options for the specific CSF-dependent biologies enumerated are discussed. Copyright © 2015 by The American Association of Immunologists, Inc.

  4. Distinct changes in pulmonary surfactant homeostasis in common beta-chain-and GM-CSF-deficient mice

    NARCIS (Netherlands)

    Reed, JA; Ikegami, M; Robb, L; Begley, CG; Ross, G; Whitsett, JA

    Pulmonary alveolar proteinosis (PAP) is caused by inactivation of either granulocyte-macrophage colony-stimulating factor (GMCSF) or GM receptor common beta-chain (beta(c)) genes in mice [GM(-/-), beta(c)(-/-)], demonstrating a critical role of GM-CSF signaling in surfactant homeostasis. To

  5. Clinical significance of determination of changes of serum IGF-II, GM-CSF and TNF-α levels after treatment in children with acute nephritis

    International Nuclear Information System (INIS)

    Xu Xiaoyan; Zhou Hong; Xu Weiqin; Li Xinghua

    2008-01-01

    Objective: To explore the clinical significance of determination of changes of serum IGF-II, GM-CSF and TNF- α levels after treatment in children with acute nephritis. Methods: Serum IGF-II, GM-CSF and TNF-α levels (with RIA) were measured in 31 pediatric patients with acute nephritis and 35 controls. Results: Before treatment, the serum IGF-II, GM-CSF and TNF-α levels in the patients were significantly higher than those in controls (P< O.01). After treatment for 3 months, the serum IGF-II, GM-CSF and TNF-α levels, though markedly corrected, remained significantly higher than those in controls (P<0.05). Conclusion: Determination of changes of serum IGF-II, GM-CSF and TNF-α contents after treatment might be of prognostic importance in pediatric patients with acute nephritis. (authors)

  6. Prolongation of the survival of breast cancer-bearing mice immunized with GM-CSF-secreting syngeneic/allogeneic fibroblasts transfected with a cDNA expression library from breast cancer cells.

    Science.gov (United States)

    Kim, Tae S; Jung, Mi Y; Cho, Daeho; Cohen, Edward P

    2006-10-30

    Breast cancer cells, like other types of neoplastic cells, form weakly immunogenic tumor-associated antigens. The antigenic properties of the tumor-associated antigens can be enhanced if they are expressed by highly immunogenic cells. In this study, a cancer vaccine was prepared by transfer of a cDNA expression library from SB5b breast carcinoma into mouse fibroblast cells of C3H/He mouse origin (H-2(k)), that had been previously modified to secrete GM-CSF and to express allogeneic class I-determinants (H-2(b)). The transfected syngeneic/allogeneic fibroblasts secreting GM-CSF were used as a vaccine in C3H/He mice. Robust cell-mediated immunity toward the breast cancer cells was generated in mice immunized with the cDNA-based vaccine. The immunity, mediated predominantly by CD8(+) T lymphocytes, was directed toward the breast cancer cells, but not against either of two other non-cross-reactive neoplasms of C3H/He mice. The immunity was sufficient to prolong the survival of mice with established breast cancer. Among other advantages, preparation of the vaccine by cDNA-transfer into a fibroblast cell line enabled the recipient cells to be modified in advance of DNA-transfer to augment their immunogenic properties. As the transferred DNA is replicated as the transfected cells divide, the vaccine could be prepared from microgram quantities of tumor tissue.

  7. A sequential erythropoietin and GM-CSF schedule offers clinical benefits in the treatment of anaemia in myelodysplastic syndromes.

    Science.gov (United States)

    Bernell, P; Stenke, L; Wallvik, J; Hippe, E; Hast, R

    1996-08-01

    In order to reduce anaemia in patients with myelodysplastic syndromes (MDS) a stepwise treatment protocol including erythropoietin (EP) and granulocyte-macrophage colony-stimulating factor (GM-CSF) was designed. Thirty-seven MDS patients (stages I-III) with symptomatic anaemia were first given EPO 10,000 U s.c. 3 times weekly for 6 weeks. Those not responding, i.e. increased their haemoglobin levels > 15 g/l, proceeded into the second phase of the study where GM-CSF (200 micrograms/d. s.c. on weeks 1-6) was combined with EPO (10,000 U s.c. 3 times weekly on weeks 5-14). Following the initial EPO treatment phase, 14 of the 37 patients (38%) responded with increased haemoglobin levels. Responders were significantly different from non-responders in that their pre-treatment values of s-EPO, s-LDH and bone marrow blast cell counts were lower, their baseline haemoglobin levels higher and their transfusion dependency less pronounced. Eighteen of the 23 non-responders proceeded into the second phase, 13 of those were evaluable having completed the entire schedule. Three of the 13 initially EPO resistant patients (23%) responded to the GM-CSF/EPO combination with increased haemoglobin levels, suggesting a positive synergy between the two cytokines. Thus, the overall response rate to the present protocol was 46% (17 of 37 cases), but only a limited subset of the patients did clearly benefit from the combined GM-CSF/EPO administration. Therefore, we believe this step-wise approach to multiple growth factor treatment in MDS, starting with EPO alone and reserving the combination for refractory cases, has considerable advantages, taking into account both medical and socio-economical aspects.

  8. Functional paralysis of GM-CSF-derived bone marrow cells productively infected with ectromelia virus.

    Directory of Open Access Journals (Sweden)

    Lidia Szulc-Dąbrowska

    Full Text Available Ectromelia virus (ECTV is an orthopoxvirus responsible for mousepox, a lethal disease of certain strains of mice that is similar to smallpox in humans, caused by variola virus (VARV. ECTV, similar to VARV, exhibits a narrow host range and has co-evolved with its natural host. Consequently, ECTV employs sophisticated and host-specific strategies to control the immune cells that are important for induction of antiviral immune response. In the present study we investigated the influence of ECTV infection on immune functions of murine GM-CSF-derived bone marrow cells (GM-BM, comprised of conventional dendritic cells (cDCs and macrophages. Our results showed for the first time that ECTV is able to replicate productively in GM-BM and severely impaired their innate and adaptive immune functions. Infected GM-BM exhibited dramatic changes in morphology and increased apoptosis during the late stages of infection. Moreover, GM-BM cells were unable to uptake and process antigen, reach full maturity and mount a proinflammatory response. Inhibition of cytokine/chemokine response may result from the alteration of nuclear translocation of NF-κB, IRF3 and IRF7 transcription factors and down-regulation of many genes involved in TLR, RLR, NLR and type I IFN signaling pathways. Consequently, GM-BM show inability to stimulate proliferation of purified allogeneic CD4+ T cells in a primary mixed leukocyte reaction (MLR. Taken together, our data clearly indicate that ECTV induces immunosuppressive mechanisms in GM-BM leading to their functional paralysis, thus compromising their ability to initiate downstream T-cell activation events.

  9. IL-12 and GM-CSF in DNA/MVA immunizations against HIV-1 CRF12_BF Nef induced T-cell responses with an enhanced magnitude, breadth and quality.

    Directory of Open Access Journals (Sweden)

    Ana María Rodríguez

    Full Text Available In Argentina, the HIV epidemic is characterized by the co-circulation of subtype B and BF recombinant viral variants. Nef is an HIV protein highly variable among subtypes, making it a good tool to study the impact of HIV variability in the vaccine design setting. We have previously reported a specific cellular response against NefBF with low cross-reactivity to NefB in mice. The aim of this work was to analyze whether the co-administration of IL-12 and GM-CSF, using DNA and MVA vaccine vectors, could improve the final cellular response induced. Mice received three DNA priming doses of a plasmid that express NefBF plus DNAs expressing IL-12 and/or GM-CSF. Afterwards, all the groups were boosted with a MVAnefBF dose. The highest increase in the magnitude of the NefBF response, compared to that induced in the control was found in the IL-12 group. Importantly, a response with higher breadth was detected in groups which received IL-12 or GM-CSF, evidenced as an increased frequency of recognition of homologous (BF and heterologous (B Nef peptides, as well as a higher number of other Nef peptide pools representing different viral subtypes. However, these improvements were lost when both DNA cytokines were simultaneously administered, as the response was focused against the immunodominant peptide with a detrimental response towards subdominant epitopes. The pattern of cytokines secreted and the specific-T-cell proliferative capacity were improved in IL-12 and IL-12+GM-CSF groups. Importantly IL-12 generated a significant higher T-cell avidity against a B heterologous peptide.This study indicates that the incorporation of DNA expressing IL-12 in DNA/MVA schemes produced the best results in terms of improvements of T-cell-response key properties such as breadth, cross-reactivity and quality (avidity and pattern of cytokines secreted. These relevant results contribute to the design of strategies aimed to induce T-cell responses against HIV antigens with

  10. The Combined Impact of Surgery and Immunomodulation With Low Dose Cytoxan and GM-CSF in the Early Treatment of Breast Cancer

    National Research Council Canada - National Science Library

    Kendra, Kari L

    2004-01-01

    The purpose of this study was to evaluate the combined impact of surgery and immunomodulation with low dose cytoxan and GM-CSF on the development of dendritic cells and the activation of T cells in vivo...

  11. X-ray-induced production of granulocyte-macrophage colony-stimulating factor (GM-CSF) by mouse spleen cells in culture

    International Nuclear Information System (INIS)

    Onoda, M.; Shinoda, M.; Tsuneoka, K.; Shikita, M.

    1980-01-01

    Spleen cells were collected from normal mice and cultured in a medium containing 20% calf serum. Addition of lipopolysaccharide (LPS) in the culture significantly increased the production of granulocyte-macrophage colony-stimulating factor (GM-CSF), and a maximum induction was attained in 5 days. Irradiation of the spleen cells with 300 to 3000 R x rays also enhanced the production of GM-CSF, but there was a latent period of about 5 days before the factor appeared in the culture medium. The observed difference between LPS and x rays in the timing of inducing GM-CSF production in the spleen cell culture was consistent with the difference observed in animals. These results suggest that different mechanisms of GM-CSF production operate in the spleen in response to either LPS or x rays

  12. Clinical significance of measurement of changes in serum TNF-α and GM-CSF levels after treatment in children with bronchial asthma

    International Nuclear Information System (INIS)

    Liu Heng

    2006-01-01

    Objective: To study the clinical significance of the changes of levels of tumor necrosis factor-α (TNF-α) and granulocyte-macrophage colony stimulating factor (GM-CSF) after treatment in children with bronchial asthma. Methods: Serum TNF-α and GM-CSF levels were measured with RIA in 32 patients with bronchial asthma both before and after treatment as well as in 30 controls. Results: Before treatment the serum TNF-α and GM-CSF levels in patients were significantly higher than those in the controls (P 0.05 ). Conclusion: Changes of serum TNF-α and GM-CSF levels contents after treatment might be of prognostic importance in children with bronchial asthma. (authors)

  13. Clinical significance of determination of changes of serum IL-6, IL-10 and GM-CSF levels after treatment in pediatric patients with bronchial asthma

    International Nuclear Information System (INIS)

    Qin Wenjing

    2008-01-01

    Objective: To explore the changes of Serum IL-6, IL-10 and GM-CSF levels after treatment in pediatric patients with bronchial asthma. Methods: Serum IL-6, IL-10 and GM-CSF levels were measured with RIA in 33 pediatric patients with bronchial asthma both before and after treatment as well as in 30 controls. Results: Before treatment, the serum IL-6, IL-10 and GM-CSF levels were significantly higher than those in controls (P 0.05). Conclusion: Detection of serum IL-6, IL-10 and GM-CSF levels were useful for assessment of therapeutic efficacy and were of important clinical values in pediatric patients with bronchial asthma. (authors)

  14. Clinical significance of determination of serum IL-2, IL-6 and GM-CSF levels after treatment in pediatric patients with bronchial asthma

    International Nuclear Information System (INIS)

    Wang Zhuo; Sun Jin; Yao Li

    2009-01-01

    Objective: To explore the clinical significance of changes of serum IL-2, IL-6 and GM-CSF levels after treatment in pediatric patients with bronchial asthma. Methods: Serum levels of IL-2, IL-6 and GM-CSF were measured with RIA in 36 pediatric patients with bronchiol asthma and 30 controls. Results: Before treatment, the serum levels of IL-6, GM-CSF were significantly higher in the patients than those in controls (P 0.05), Serum IL-2 levels were negatively correlated with the IL-6 and GM-CSF levels (r=-0.5846, -0.6018, P<0.01). Conclusion: These cytokines participated in the pathogenesis of bronchial asthma in pediatric patients. Mornitoring the changes of their serum levels was helpful for the management of the diseases. (authors)

  15. GM-CSF produced by non-hematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa1,2

    Science.gov (United States)

    Egea, Laia; McAllister, Christopher S.; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Kagnoff, Martin F.

    2012-01-01

    GM-CSF is a growth factor that promotes the survival and activation of macrophages and granulocytes, and dendritic cell (DC) differentiation and survival in vitro. The mechanism by which exogenous GM-CSF ameliorates the severity of Crohn’s disease in humans and colitis in murine models has been considered mainly to reflect its activity on myeloid cells. We used GM-CSF deficient (GM-CSF−/−) mice to probe the functional role of endogenous host-produced GM-CSF in a colitis model induced after injury to the colon epithelium. Dextran sodium sulfate (DSS) at doses that resulted in little epithelial damage and mucosal ulceration in wild type (WT) mice resulted in marked colon ulceration and delayed ulcer healing in GM-CSF−/− mice. Colon crypt epithelial cell proliferation in vivo was significantly decreased in GM-CSF−/− mice at early times after DSS injury. This was paralleled by decreased expression of crypt epithelial cell genes involved in cell cycle, proliferation, and wound healing. Decreased crypt cell proliferation and delayed ulcer healing in GM-CSF−/− mice were rescued by exogenous GM-CSF, indicating the lack of a developmental abnormality in the epithelial cell proliferative response in those mice. Non-hematopoietic cells and not myeloid cells produced the GM-CSF important for colon epithelial proliferation after DSS-induced injury as revealed by bone marrow chimera and DC depletion experiments, with colon epithelial cells being the cellular source of GM-CSF. Endogenous epithelial cell produced GM-CSF has a novel non-redundant role in facilitating epithelial cell proliferation and ulcer healing in response to injury of the colon crypt epithelium. PMID:23325885

  16. CD14-dependent monocyte isolation enhances phagocytosis of listeria monocytogenes by proinflammatory, GM-CSF-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Caroline Neu

    Full Text Available Macrophages are an important line of defence against invading pathogens. Human macrophages derived by different methods were tested for their suitability as models to investigate Listeria monocytogenes (Lm infection and compared to macrophage-like THP-1 cells. Human primary monocytes were isolated by either positive or negative immunomagnetic selection and differentiated in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF or macrophage colony-stimulating factor (M-CSF into pro- or anti-inflammatory macrophages, respectively. Regardless of the isolation method, GM-CSF-derived macrophages (GM-Mφ stained positive for CD206 and M-CSF-derived macrophages (M-Mφ for CD163. THP-1 cells did not express CD206 or CD163 following incubation with PMA, M- or GM-CSF alone or in combination. Upon infection with Lm, all primary macrophages showed good survival at high multiplicities of infection whereas viability of THP-1 was severely reduced even at lower bacterial numbers. M-Mφ generally showed high phagocytosis of Lm. Strikingly, phagocytosis of Lm by GM-Mφ was markedly influenced by the method used for isolation of monocytes. GM-Mφ derived from negatively isolated monocytes showed low phagocytosis of Lm whereas GM-Mφ generated from positively selected monocytes displayed high phagocytosis of Lm. Moreover, incubation with CD14 antibody was sufficient to enhance phagocytosis of Lm by GM-Mφ generated from negatively isolated monocytes. By contrast, non-specific phagocytosis of latex beads by GM-Mφ was not influenced by treatment with CD14 antibody. Furthermore, phagocytosis of Lactococcus lactis, Escherichia coli, human cytomegalovirus and the protozoan parasite Leishmania major by GM-Mφ was not enhanced upon treatment with CD14 antibody indicating that this effect is specific for Lm. Based on these observations, we propose macrophages derived by ex vivo differentiation of negatively selected human primary monocytes as the most

  17. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma

    International Nuclear Information System (INIS)

    Kim, Wonwoo; Seong, Jinsil; Oh, Hae-Jin; Koom, Woong-Sub; Choi, Kyung-Joo; Yun, Chae-Ok

    2011-01-01

    In this study, a novel combination treatment of armed oncolytic adenovirus expressing interleukin 12 (IL-12) and granulocyte-macrophage colony-stimulating factor (GM-CSF) with radiation was investigated for antitumor and antimetastatic effect in a murine hepatic cancer (HCa-I) model. Tumor bearing syngeneic mice were treated with radiation, armed oncolytic virus Ad-ΔE1Bmt7 (dB7) expressing both IL-12 and GM-CSF (armed dB7), or a combination of both. The adenovirus was administered by intratumoral injection 1 x 10 8 plaque forming units (PFU) per tumor in 50 μl of phosphate buffered saline (PBS) four times every other day. Tumor response to treatment was determined by a tumor growth delay assay. Metastatic potential was evaluated by a lung metastasis model. To understand the underlying mechanism, the level of apoptosis was examined as well as the change in microvessel density and expression of immunological markers: CD4+, CD8+ and Cd11c. The combination of armed dB7 and radiation resulted in significant growth delay of murine hepatic cancer, HCa-1, with an enhancement factor of 4.3. The combination treatment also resulted in significant suppression of lung metastasis. Increase of apoptosis level as well as decrease of microvessel density was shown in the combination treatment, suggesting an underlying mechanism for the enhancement of antitumor effect. Expression of immunological markers: CD4+, CD8+ and Cd11c also increased in the combination treatment. This study showed that a novel combination treatment of radiotherapy with armed oncolytic adenovirus expressing IL-12 and GM-CSF was effective in suppressing primary tumor growth. (author)

  18. Granulocyte macrophage-colony stimulating factor (GM-CSF) and sucralfate in prevention of radiation-induced mucositis: a prospective randomized study

    International Nuclear Information System (INIS)

    Makkonen, Tuula A.; Minn, Heikki; Jekunen, Antti; Vilja, Pekka; Tuominen, Juhani; Joensuu, Heikki

    2000-01-01

    Purpose: To compare subcutaneously given molgramostim (GM-CSF) and sucralfate mouth washings to sucralfate mouth washings in prevention of radiation-induced mucositis. Methods and Materials: Forty head and neck cancer patients were randomly assigned to use either GM-CSF and sucralfate (n = 20) or sucralfate alone (n = 20) during radiotherapy. Sucralfate was used as 1.0 g mouth washing 6 times daily after the first 10 Gy of radiotherapy, and 150-300 μg GM-CSF was given subcutaneously. The grade of radiation mucositis and blood cell counts were monitored weekly. Salivary lactoferrin was measured as a surrogate marker for oral mucositis. Results: We found no significant difference between the molgramostim and the control groups in the oral mucositis grade, oral pain, use of analgesic drugs, weight loss, or survival. The median maximum neutrophil counts (median, 9.2 x 10 9 /L vs. 5.9 x 10 9 /L, p = 0.0005), eosinophil counts (median, 1.3 x 10 9 /L vs. 0.2 x 10 9 /L, p = 0.0004), and salivary lactoferrin concentrations were higher in patients who received GM-CSF. The most common toxicities in the GM-CSF plus sucralfate group were skin reactions at the GM-CSF injection site (65%), fever (30%), bone pain (25%), and nausea (15%), whereas the toxicity of sucralfate given alone was minimal. Conclusion: We found no evidence indicating that subcutaneously given GM-CSF reduces the severity of radiation-induced mucositis

  19. GM-CSF and IL-3 Modulate Human Monocyte TNF-α Production and Renewal in In Vitro Models of Trained Immunity.

    Science.gov (United States)

    Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Loffredo, Stefania; Scamardella, Eloise; Galdiero, Maria Rosaria; Varricchi, Gilda; Granata, Francescopaolo; Portella, Giuseppe; Marone, Gianni

    2016-01-01

    GM-CSF and IL-3 are hematopoietic cytokines that also modulate the effector functions of several immune cell subsets. In particular, GM-CSF and IL-3 exert a significant control on monocyte and macrophage effector functions, as assessed in experimental models of inflammatory and autoimmune diseases and also in human studies. Here, we sought to investigate the mechanisms and the extent to which GM-CSF and IL-3 modulate the pro-inflammatory, LPS-mediated, activation of human CD14 + monocytes taking into account the new concept of trained immunity (i.e., the priming stimulus modulates the response to subsequent stimuli mainly by inducing chromatin remodeling and increased transcription at relevant genetic loci). We demonstrate that GM-CSF and IL-3 priming enhances TNF-α production upon subsequent LPS stimulation (short-term model of trained immunity) in a p38- and SIRT2-dependent manner without increasing TNF primary transcript levels (a more direct measure of transcription), thus supporting a posttranscriptional regulation of TNF-α in primed monocytes. GM-CSF and IL-3 priming followed by 6 days of resting also results in increased TNF-α production upon LPS stimulation (long-term model of trained immunity). In this case, however, GM-CSF and IL-3 priming induces a c-Myc-dependent monocyte renewal and increase in cell number that is in turn responsible for heightened TNF-α production. Overall, our results provide insights to understand the biology of monocytes in health and disease conditions in which the hematopoietic cytokines GM-CSF and IL-3 play a role and also extend our knowledge of the cellular and molecular mechanisms of trained immunity.

  20. GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization.

    Science.gov (United States)

    Halstead, E Scott; Umstead, Todd M; Davies, Michael L; Kawasawa, Yuka Imamura; Silveyra, Patricia; Howyrlak, Judie; Yang, Linlin; Guo, Weichao; Hu, Sanmei; Hewage, Eranda Kurundu; Chroneos, Zissis C

    2018-01-05

    Influenza A viruses cause life-threatening pneumonia and lung injury in the lower respiratory tract. Application of high GM-CSF levels prior to infection has been shown to reduce morbidity and mortality from pathogenic influenza infection in mice, but the mechanisms of protection and treatment efficacy have not been established. Mice were infected intranasally with influenza A virus (PR8 strain). Supra-physiologic levels of GM-CSF were induced in the airways using the double transgenic GM-CSF (DTGM) or littermate control mice starting on 3 days post-infection (dpi). Assessment of respiratory mechanical parameters was performed using the flexiVent rodent ventilator. RNA sequence analysis was performed on FACS-sorted airway macrophage subsets at 8 dpi. Supra-physiologic levels of GM-CSF conferred a survival benefit, arrested the deterioration of lung mechanics, and reduced the abundance of protein exudates in bronchoalveolar (BAL) fluid to near baseline levels. Transcriptome analysis, and subsequent validation ELISA assays, revealed that excess GM-CSF re-directs macrophages from an "M1-like" to a more "M2-like" activation state as revealed by alterations in the ratios of CXCL9 and CCL17 in BAL fluid, respectively. Ingenuity pathway analysis predicted that GM-CSF surplus during IAV infection elicits expression of anti-inflammatory mediators and moderates M1 macrophage pro-inflammatory signaling by Type II interferon (IFN-γ). Our data indicate that application of high levels of GM-CSF in the lung after influenza A virus infection alters pathogenic "M1-like" macrophage inflammation. These results indicate a possible therapeutic strategy for respiratory virus-associated pneumonia and acute lung injury.

  1. Synovial CD4+ T-cell-derived GM-CSF supports the differentiation of an inflammatory dendritic cell population in rheumatoid arthritis

    Science.gov (United States)

    Reynolds, G; Gibbon, J R; Pratt, A G; Wood, M J; Coady, D; Raftery, G; Lorenzi, A R; Gray, A; Filer, A; Buckley, C D; Haniffa, M A; Isaacs, J D; Hilkens, C M U

    2016-01-01

    Objective A population of synovial inflammatory dendritic cells (infDCs) has recently been identified in rheumatoid arthritis (RA) and is thought to be monocyte-derived. Here, we investigated the role and source of granulocyte macrophage-colony-stimulating factor (GM-CSF) in the differentiation of synovial infDC in RA. Methods Production of GM-CSF by peripheral blood (PB) and synovial fluid (SF) CD4+ T cells was assessed by ELISA and flow cytometry. In vitro CD4+ T-cell polarisation experiments were performed with T-cell activating CD2/CD3/CD28-coated beads in the absence or presence of pro-Th1 or pro-Th17 cytokines. CD1c+ DC and CD16+ macrophage subsets were flow-sorted and analysed morphologically and functionally (T-cell stimulatory/polarising capacity). Results RA-SF CD4+ T cells produced abundant GM-CSF upon stimulation and significantly more than RA-SF mononuclear cells depleted of CD4+ T cells. GM-CSF-producing T cells were significantly increased in RA-SF compared with non-RA inflammatory arthritis SF, active RA PB and healthy donor PB. GM-CSF-producing CD4+ T cells were expanded by Th1-promoting but not Th17-promoting conditions. Following coculture with RA-SF CD4+ T cells, but not healthy donor PB CD4+ T cells, a subpopulation of monocytes differentiated into CD1c+ infDC; a process dependent on GM-CSF. These infDC displayed potent alloproliferative capacity and enhanced GM-CSF, interleukin-17 and interferon-γ production by CD4+ T cells. InfDC with an identical phenotype to in vitro generated cells were significantly enriched in RA-SF compared with non-RA-SF/tissue/PB. Conclusions We demonstrate a therapeutically tractable feedback loop of GM-CSF secreted by RA synovial CD4+ T cells promoting the differentiation of infDC with potent capacity to induce GM-CSF-producing CD4+ T cells. PMID:25923217

  2. GM-CSF and IL-4 produced by NKT cells inversely regulate IL-1β production by macrophages.

    Science.gov (United States)

    Ahn, Sehee; Jeong, Dongjin; Oh, Sae Jin; Ahn, Jiye; Lee, Seung Hyo; Chung, Doo Hyun

    2017-02-01

    Natural Killer T (NKT) cells are distinct T cell subset that link innate and adaptive immune responses. IL-1β, produced by various immune cells, plays a key role in the regulation of innate immunity in vivo. However, it is unclear whether NKT cells regulate IL-1β production by macrophages. To address this, we co-cultured NKT cells and peritoneal macrophages in the presence of TCR stimulation and inflammasome activators. Among cytokines secreted from NKT cells, GM-CSF enhanced IL-1β production by macrophages via regulating LPS-mediated pro-IL-1β expression and NLRP3-dependent inflammasome activation, whereas IL-4 enhanced M2-differentiation of macrophages and decreased IL-1β production. Together, our findings suggest the NKT cells have double-sided effects on IL-1β-mediated innate immune responses by producing IL-4 and GM-CSF. These findings may be helpful for a comprehensive understanding of NKT cell-mediated regulatory mechanisms of the pro-inflammatory effects of IL-1β in inflammatory diseases in vivo. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  3. Autoimmune Th17 Cells Induced Synovial Stromal and Innate Lymphoid Cell Secretion of the Cytokine GM-CSF to Initiate and Augment Autoimmune Arthritis.

    Science.gov (United States)

    Hirota, Keiji; Hashimoto, Motomu; Ito, Yoshinaga; Matsuura, Mayumi; Ito, Hiromu; Tanaka, Masao; Watanabe, Hitomi; Kondoh, Gen; Tanaka, Atsushi; Yasuda, Keiko; Kopf, Manfred; Potocnik, Alexandre J; Stockinger, Brigitta; Sakaguchi, Noriko; Sakaguchi, Shimon

    2018-06-19

    Despite the importance of Th17 cells in autoimmune diseases, it remains unclear how they control other inflammatory cells in autoimmune tissue damage. Using a model of spontaneous autoimmune arthritis, we showed that arthritogenic Th17 cells stimulated fibroblast-like synoviocytes via interleukin-17 (IL-17) to secrete the cytokine GM-CSF and also expanded synovial-resident innate lymphoid cells (ILCs) in inflamed joints. Activated synovial ILCs, which expressed CD25, IL-33Ra, and TLR9, produced abundant GM-CSF upon stimulation by IL-2, IL-33, or CpG DNA. Loss of GM-CSF production by either ILCs or radio-resistant stromal cells prevented Th17 cell-mediated arthritis. GM-CSF production by Th17 cells augmented chronic inflammation but was dispensable for the initiation of arthritis. We showed that GM-CSF-producing ILCs were present in inflamed joints of rheumatoid arthritis patients. Thus, a cellular cascade of autoimmune Th17 cells, ILCs, and stromal cells, via IL-17 and GM-CSF, mediates chronic joint inflammation and can be a target for therapeutic intervention. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Novel insights in preventing Gram-negative bacterial infection in cirrhotic patients: review on the effects of GM-CSF in maintaining homeostasis of the immune system.

    Science.gov (United States)

    Xu, Dong; Zhao, Manzhi; Song, Yuhu; Song, Jianxin; Huang, Yuancheng; Wang, Junshuai

    2015-01-01

    Cirrhotic patients with dysfunctional and/or low numbers of leukocytes are often infected with bacteria, especially Gram-negative bacteria, which is characterized by producing lipopolysaccharide (LPS). Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that influences the production, maturation, function, and survival of various immune cells. In this paper, we reviewed not only Toll-like receptors 4 (TLR4) signaling pathway and its immunological effect, but also the specific stimulating function and autocrine performance of GM-CSF on hematopoietic cells, as well as the recent discovery of innate response activator-B cells in protection against microbial sepsis and the direct LPS-TLR4 signaling on hematopoiesis. Thus we concluded that GM-CSF might play important roles in preventing Gram-negative bacterial infections in cirrhotic patients through maintaining immune system functions and homeostasis.

  5. Novel adapter proteins that link the human GM-CSF receptor to the phosphatidylino-sitol 3-kinase and Shc/Grb2/ras signaling pathways.

    Science.gov (United States)

    Jücker, M; Feldman, R A

    1996-01-01

    We have used a human GM-CSF-dependent hematopoietic cell line that responds to physiological concentrations of hGM-CSF to analyze a set of signaling events that occur in normal myelopoiesis and whose deregulation may lead to leukemogenesis. Stimulation of these cells with hGM-CSF induced the assembly of multimeric complexes that contained known and novel phosphotyrosyl proteins. One of the new proteins was a major phosphotyrosyl substrate of 76-85 kDa (p80) that was directly associated with the p85 subunit of phosphatidylinositol (PI) 3-kinase through the SH2 domains of p85. p80 also associated with the beta subunit of the activated hGM-CSF receptor, and assembly of this complex correlated with activation of PI 3-kinase. A second phosphotyrosyl protein we identified, p140, associated with the Shc and Grb2 adapter proteins by direct binding to a novel phosphotyrosine-interacting domain located at the N-terminus of Shc. and to the SH3 domains of Grb2, respectively. The Shc/p140/Grb2 complex was found to be constitutively activated in acute myeloid leukemia cells, indicating that activation of this pathway may be a necessary step in the development of some leukemias. The p80/p85/PI 3-kinase and the Shc/Grb2/p140 complexes were tightly associated with Src family kinases, which were prime candidates for phosphorylation of Shc, p80, p140 and other phosphotyrosyl substrates present in these complexes. Our studies suggest that p80 and p140 may link the hGM-CSF receptor to the PI 3-kinase and Shc/Grb2/ras signaling pathways, respectively, and that abnormal activation of hGM-CSF-dependent targets may play a role in leukemogenesis.

  6. Immune-enhancing effect of nano-DNA vaccine encoding a gene of the prME protein of Japanese encephalitis virus and BALB/c mouse granulocyte-macrophage colony-stimulating factor.

    Science.gov (United States)

    Zhai, Yongzhen; Zhou, Yan; Li, Ximei; Feng, Guohe

    2015-07-01

    Plasmid-encoded granulocyte-macrophage colony-stimulating factor (GM‑CSF) is an adjuvant for genetic vaccines; however, how GM-CSF enhances immunogenicity remains to be elucidated. In the present study, it was demonstrated that injection of a plasmid encoding the premembrane (prM) and envelope (E) protein of Japanese encephalitis virus and mouse GM-CSF (pJME/GM-CSF) into mouse muscle recruited large and multifocal conglomerates of macrophages and granulocytes, predominantly neutrophils. During the peak of the infiltration, an appreciable number of immature dendritic cells (DCs) appeared, although no T and B-cells was detected. pJME/GM-CSF increased the number of splenic DCs and the expression of major histocompatibility complex class II (MHCII) on splenic DC, and enhanced the antigenic capture, processing and presentation functions of splenic DCs, and the cell-mediated immunity induced by the vaccine. These findings suggested that the immune-enhancing effect by pJME/GM-CSF was associated with infiltrate size and the appearance of integrin αx (CD11c)+cells. Chitosan-pJME/GM-CSF nanoparticles, prepared by coacervation via intramuscular injection, outperformed standard pJME/GM-CSF administrations in DC recruitment, antigen processing and presentation, and vaccine enhancement. This revealed that muscular injection of chitosan‑pJME/GM-CSF nanoparticles may enhance the immunoadjuvant properties of GM-CSF.

  7. The Activin A-Peroxisome Proliferator-Activated Receptor Gamma Axis Contributes to the Transcriptome of GM-CSF-Conditioned Human Macrophages.

    Science.gov (United States)

    Nieto, Concha; Bragado, Rafael; Municio, Cristina; Sierra-Filardi, Elena; Alonso, Bárbara; Escribese, María M; Domínguez-Andrés, Jorge; Ardavín, Carlos; Castrillo, Antonio; Vega, Miguel A; Puig-Kröger, Amaya; Corbí, Angel L

    2018-01-01

    GM-CSF promotes the functional maturation of lung alveolar macrophages (A-MØ), whose differentiation is dependent on the peroxisome proliferator-activated receptor gamma (PPARγ) transcription factor. In fact, blockade of GM-CSF-initiated signaling or deletion of the PPARγ-encoding gene PPARG leads to functionally defective A-MØ and the onset of pulmonary alveolar proteinosis. In vitro , macrophages generated in the presence of GM-CSF display potent proinflammatory, immunogenic and tumor growth-limiting activities. Since GM-CSF upregulates PPARγ expression, we hypothesized that PPARγ might contribute to the gene signature and functional profile of human GM-CSF-conditioned macrophages. To verify this hypothesis, PPARγ expression and activity was assessed in human monocyte-derived macrophages generated in the presence of GM-CSF [proinflammatory GM-CSF-conditioned human monocyte-derived macrophages (GM-MØ)] or M-CSF (anti-inflammatory M-MØ), as well as in ex vivo isolated human A-MØ. GM-MØ showed higher PPARγ expression than M-MØ, and the expression of PPARγ in GM-MØ was found to largely depend on activin A. Ligand-induced activation of PPARγ also resulted in distinct transcriptional and functional outcomes in GM-MØ and M-MØ. Moreover, and in the absence of exogenous activating ligands, PPARγ knockdown significantly altered the GM-MØ transcriptome, causing a global upregulation of proinflammatory genes and significantly modulating the expression of genes involved in cell proliferation and migration. Similar effects were observed in ex vivo isolated human A-MØ, where PPARγ silencing led to enhanced expression of genes coding for growth factors and chemokines and downregulation of cell surface pathogen receptors. Therefore, PPARγ shapes the transcriptome of GM-CSF-dependent human macrophages ( in vitro derived GM-MØ and ex vivo isolated A-MØ) in the absence of exogenous activating ligands, and its expression is primarily regulated by activin A

  8. Determination of the levels of serum TNF-α, GM-CSF and HA in asthmatic patients

    International Nuclear Information System (INIS)

    Li Qing; Ma Yunbao

    2002-01-01

    Objective: To study the relationship between the diversity of the state of asthma and the three serum markers (TNF-α, GM-CSF and HA). Methods: RIA was adopted to measure the three markers in 66 asthmatic patients and 30 controls. Results: The levels of the three markers in patients during attack (n = 36) were significantly higher than those in controls (p < 0.01, p < 0.01, p < 0.05). The three markers declined significantly in remission group (n = 30), but were still significantly higher than those in controls (p < 0.05). Conclusion: There is a close relationship between the levels of the three markers and the attack of asthma. Immunomodulator is therefore suggested to be used in addition to anti inflammatory treatment

  9. Experimental study of changes of skin blister fluid NPY, IL-12, sICAM-1 and GM-CSF levels in patients with vitiligo in progressive stage

    International Nuclear Information System (INIS)

    Bi Mingye; Huang Haifen

    2011-01-01

    Objective: To explore the significance of changes of skin blister fluid NPY, IL-12, sICAM-1 and GM-CSF levels in patients with vitiligo in progressive stage. Methods: 80 patients with vitiligo in progressive stage were divided into two groups (vulgaris vitiligo groups : n=54, segmental vitiligo groups : n=26) Their blister fluid levels of NPY and GM-CSF were determined by radioimmunoassay(RIA), and IL-12 and sICAM-1 were determined by enzyme immunoassay. Results: The levels of skin blister fluid NPY were definitely higher in vitiliginous skin than those in non-vitiliginous patches in segmental vitiligo groups (P 0.05). The levels of skin blister fluid IL-12, sICAM-1 and GM-CSF were all obviously higher in vitiliginous skin than that in non-vitiliginous patches in vulgaris vitiligo groups (P 0.05). Conclusion: The changes of skin blister fluid NPY, IL-12, sICAM-1 and GM-CSF levels in vitiliginous skin may be closely related to development of difference type vitiligo patients with vitiligo, determination of 4 indexes might be helpful for studying the pathogenesis and clinical diagnosis of vitiligo. (authors)

  10. Cost-effectiveness and quality-of-life assessment of GM-CSF as an adjunct to intensive remission induction chemotherapy in elderly patients with acute myeloid leukaemia

    NARCIS (Netherlands)

    Uyl-de Groot, CA; Lowenberg, B; Vellenga, E; Suciu, S; Willemze, R; Rutten, FFH

    We conducted a prospective, randomized, multicentre clinical trial comparing the effects and costs of GM-CSF as an adjunct to intensive chemotherapy in elderly patients with acute myeloid leukaemia (AML). The patients were randomized to either daunomycin-cytosine arabinoside (control arm: rr = 161)

  11. Multi-response model for rheumatoid arthritis based on delay differential equations in collagen-induced arthritic mice treated with an anti-GM-CSF antibody.

    Science.gov (United States)

    Koch, Gilbert; Wagner, Thomas; Plater-Zyberk, Christine; Lahu, Gezim; Schropp, Johannes

    2012-02-01

    Collagen-induced arthritis (CIA) in mice is an experimental model for rheumatoid arthritis, a human chronic inflammatory destructive disease. The therapeutic effect of neutralizing the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) by an antibody was examined in the mouse disease in a view of deriving a pharmacokinetic/pharmacodynamic (PKPD) model. In CIA mice the development of disease is measured by a total arthritic score (TAS) and an ankylosis score (AKS). We present a multi-response PKPD model which describes the time course of the unperturbed and perturbed TAS and AKS. The antibody acts directly on GM-CSF by binding to it. Therefore, a compartment for the cytokine GM-CSF is an essential component of the mathematical model. This compartment drives the disease development in the PKPD model. Different known properties of arthritis development in the CIA model are included in the PKPD model. Firstly, the inflammation, driven by GM-CSF, dominates at the beginning of the disease and decreases after some time. Secondly, a destructive (ankylosis) part evolves in the TAS that is delayed in time. In order to model these two properties a delay differential equation was used. The PKPD model was applied to different experiments with doses ranging from 0.1 to 100 mg/kg. The influence of the drug was modeled by a non-linear approach. The final mathematical model consists of three differential equations representing the compartments for GM-CSF, inflammation and destruction. Our mathematical model described well all available dosing schedules by a simultaneous fit. We also present an equivalent and easy reformulation as ordinary differential equation which grants the use of standard PKPD software.

  12. GM-CSF Monocyte-Derived Cells and Langerhans Cells As Part of the Dendritic Cell Family

    Directory of Open Access Journals (Sweden)

    Manfred B. Lutz

    2017-10-01

    Full Text Available Dendritic cells (DCs and macrophages (Mph share many characteristics as components of the innate immune system. The criteria to classify the multitude of subsets within the mononuclear phagocyte system are currently phenotype, ontogeny, transcription patterns, epigenetic adaptations, and function. More recently, ontogenetic, transcriptional, and proteomic research approaches uncovered major developmental differences between Flt3L-dependent conventional DCs as compared with Mphs and monocyte-derived DCs (MoDCs, the latter mainly generated in vitro from murine bone marrow-derived DCs (BM-DCs or human CD14+ peripheral blood monocytes. Conversely, in vitro GM-CSF-dependent monocyte-derived Mphs largely resemble MoDCs whereas tissue-resident Mphs show a common embryonic origin from yolk sac and fetal liver with Langerhans cells (LCs. The novel ontogenetic findings opened discussions on the terminology of DCs versus Mphs. Here, we bring forward arguments to facilitate definitions of BM-DCs, MoDCs, and LCs. We propose a group model of terminology for all DC subsets that attempts to encompass both ontogeny and function.

  13. IL-2 and GM-CSF are regulated by DNA demethylation during activation of T cells, B cells and macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan [College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi 712100 (China); Department of Genome Biology, John Curtin School of Medical Research, The Australian National University, ACT 2601 (Australia); Ohms, Stephen J. [ACRF Biomolecular Resource Facility, John Curtin School of Medical Research, The Australian National University, ACT 2601 (Australia); Shannon, Frances M. [Department of Genome Biology, John Curtin School of Medical Research, The Australian National University, ACT 2601 (Australia); The University of Canberra, ACT 2602 (Australia); Sun, Chao, E-mail: sunchao2775@163.com [College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi 712100 (China); Fan, Jun Y., E-mail: jun.fan@anu.edu.au [Department of Genome Biology, John Curtin School of Medical Research, The Australian National University, ACT 2601 (Australia)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer DNA methylation is dynamic and flexible and changes rapidly upon cell activation. Black-Right-Pointing-Pointer DNA methylation controls the inducible gene expression in a given cell type. Black-Right-Pointing-Pointer Some enzymes are involved in maintaining the methylation profile of immune cells. -- Abstract: DNA demethylation has been found to occur at the promoters of a number of actively expressed cytokines and is believed to play a critical role in transcriptional regulation. While many DNA demethylation studies have focused on T cell activation, proliferation and differentiation, changes in DNA methylation in other types of immune cells are less well studied. We found that the expression of two cytokines (IL-2 and GM-CSF) responded differently to activation in three types of immune cells: EL4, A20 and RAW264.7 cells. Using the McrBC and MeDIP approaches, we observed decreases in DNA methylation at a genome-wide level and at the promoters of the genes of these cytokines. The expression of several potential enzymes/co-enzymes involved in the DNA demethylation pathways seemed to be associated with immune cell activation.

  14. IL-2 and GM-CSF are regulated by DNA demethylation during activation of T cells, B cells and macrophages

    International Nuclear Information System (INIS)

    Li, Yan; Ohms, Stephen J.; Shannon, Frances M.; Sun, Chao; Fan, Jun Y.

    2012-01-01

    Highlights: ► DNA methylation is dynamic and flexible and changes rapidly upon cell activation. ► DNA methylation controls the inducible gene expression in a given cell type. ► Some enzymes are involved in maintaining the methylation profile of immune cells. -- Abstract: DNA demethylation has been found to occur at the promoters of a number of actively expressed cytokines and is believed to play a critical role in transcriptional regulation. While many DNA demethylation studies have focused on T cell activation, proliferation and differentiation, changes in DNA methylation in other types of immune cells are less well studied. We found that the expression of two cytokines (IL-2 and GM-CSF) responded differently to activation in three types of immune cells: EL4, A20 and RAW264.7 cells. Using the McrBC and MeDIP approaches, we observed decreases in DNA methylation at a genome-wide level and at the promoters of the genes of these cytokines. The expression of several potential enzymes/co-enzymes involved in the DNA demethylation pathways seemed to be associated with immune cell activation.

  15. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage

    Science.gov (United States)

    Ushach, Irina; Zlotnik, Albert

    2016-01-01

    M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413

  16. Clinical significance of measurement of plasma relevant cytokines (GM-CSF, IL-2, TPO, EPO) levels in patients with aplastic anemia

    International Nuclear Information System (INIS)

    Yu Tintin

    2006-01-01

    Objective: To investigate the role of relevant cytokines in the development and pathogenesis of aplastic anemia. Methods: Plasma GM-CSF, IL-2, TPO (with RIA) and EPO (with CLIA) contents were measured in 100 patients (acute 43, chronic 57) with aplastic anemia and 50 controls. Complete blood count was also performed in all these subjects. Results: The peripheral RBC, WBC, platelet counts and GM-CSF contents were significantly lower in the patients with aplastic anemia than those in the controls (P<0.05), while the IL-2, EPO and TPO contents were significantly higher in the patients (P<0.05). GM-CSF contents were positively correlated with the WBC numbers. EPO contents were negatively correlated with the RBC counts and TPO contents were correlated (negatively) with the platelet counts. Conclusion: There was correlationship between each blood elements (WBC, RBC, platelet) and its corresponding cytokine (GS-CSF, EPO, TPO respectively). IL-2 contents were not correlated with WBC counts. (authors)

  17. CC chemokine receptor 4 is required for experimental autoimmune encephalomyelitis by regulating GM-CSF and IL-23 production in dendritic cells

    Science.gov (United States)

    Poppensieker, Karola; Otte, David-Marian; Schürmann, Britta; Limmer, Andreas; Dresing, Philipp; Drews, Eva; Schumak, Beatrix; Klotz, Luisa; Raasch, Jennifer; Mildner, Alexander; Waisman, Ari; Scheu, Stefanie; Knolle, Percy; Förster, Irmgard; Prinz, Marco; Maier, Wolfgang; Zimmer, Andreas; Alferink, Judith

    2012-01-01

    Dendritic cells (DCs) are pivotal for the development of experimental autoimmune encephalomyelitis (EAE). However, the mechanisms by which they control disease remain to be determined. This study demonstrates that expression of CC chemokine receptor 4 (CCR4) by DCs is required for EAE induction. CCR4−/− mice presented enhanced resistance to EAE associated with a reduction in IL-23 and GM-CSF expression in the CNS. Restoring CCR4 on myeloid cells in bone marrow chimeras or intracerebral microinjection of CCR4-competent DCs, but not macrophages, restored EAE in CCR4−/− mice, indicating that CCR4+ DCs are cellular mediators of EAE development. Mechanistically, CCR4−/− DCs were less efficient in GM-CSF and IL-23 production and also TH-17 maintenance. Intraspinal IL-23 reconstitution restored EAE in CCR4−/− mice, whereas intracerebral inoculation using IL-23−/− DCs or GM-CSF−/− DCs failed to induce disease. Thus, CCR4-dependent GM-CSF production in DCs required for IL-23 release in these cells is a major component in the development of EAE. Our study identified a unique role for CCR4 in regulating DC function in EAE, harboring therapeutic potential for the treatment of CNS autoimmunity by targeting CCR4 on this specific cell type. PMID:22355103

  18. Electronegative L5-LDL induces the production of G-CSF and GM-CSF in human macrophages through LOX-1 involving NF-κB and ERK2 activation.

    Science.gov (United States)

    Yang, Tzu-Ching; Chang, Po-Yuan; Kuo, Tzu-Ling; Lu, Shao-Chun

    2017-12-01

    Circulating levels of granulocyte colony-stimulating factor (G-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF) are associated with the severity of acute myocardial infarction (AMI). However, what causes increases in G-CSF and GM-CSF is unclear. In this study, we investigated whether L5-low-density lipoprotein (LDL), a mildly oxidized LDL from AMI, can induce G-CSF and GM-CSF production in human macrophages. L1-LDL and L5-LDL were isolated through anion-exchange chromatography from AMI plasma. Human macrophages derived from THP-1 and peripheral blood mononuclear cells were treated with L1-LDL, L5-LDL, or copper-oxidized LDL (Cu-oxLDL) and G-CSF and GM-CSF protein levels in the medium were determined. In addition, the effects of L5-LDL on G-CSF and GM-CSF production were tested in lectin-type oxidized LDL receptor-1 (LOX-1), CD36, extracellular signal-regulated kinase (ERK) 1, and ERK2 knockdown THP-1 macrophages. L5-LDL but not L1-LDL or Cu-oxLDL significantly induced production of G-CSF and GM-CSF in macrophages. In vitro oxidation of L1-LDL and L5-LDL altered their ability to induce G-CSF and GM-CSF, suggesting that the degree of oxidation is critical for the effects. Knockdown and antibody neutralization experiments suggested that the effects were caused by LOX-1. In addition, nuclear factor (NF)-κB and ERK1/2 inhibition resulted in marked reductions of L5-LDL-induced G-CSF and GM-CSF production. Moreover, knockdown of ERK2, but not ERK1, hindered L5-LDL-induced G-CSF and GM-CSF production. The results indicate that L5-LDL, a naturally occurring mild oxidized LDL, induced G-CSF and GM-CSF production in human macrophages through LOX-1, ERK2, and NF-κB dependent pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. In whole blood, LPS, TNF-alpha and GM-CSF increase monocyte uptake of {sup 99m}technetium stannous colloid but do not affect neutrophil uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, Stuart C. [Townsville Nuclear Medicine, Mater Hospital, Pimlico, Queensland 4812 (Australia) and School of Medicine, James Cook University, Townsville, Queensland 4811 (Australia)]. E-mail: stuart.ramsay1@jcu.edu.au; Maggs, Jacqueline [Department of Nuclear Medicine, Townsville Hospital, Townsville, Queensland 4814 (Australia); Powell, Kellie [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); School of Medicine, James Cook University, Townsville, Queensland 4811 (Australia); Barnes, Jodie [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Ketheesan, Natkunam [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); School of Medicine, James Cook University, Townsville, Queensland 4811 (Australia)

    2006-07-15

    Introduction: {sup 99m}Technetium stannous colloid (TcSnC) is used in white cell scanning. It labels neutrophils and monocytes via phagocytosis, with uptake mediated by the phagocytic receptor CD11b/CD18 in neutrophils. Uptake of TcSnC is altered by gram-negative infection, possibly due to the endotoxin component lipopolysaccharide (LPS) or to cytokines released during infection (e.g., TNF-alpha and IFN-gamma). Endotoxemia and increased TNF-alpha levels also occur in inflammatory bowel disease. Another potential confounder in cell labeling is that sepsis patients may be treated with GM-CSF and G-CSF, which alter phagocytic cell function. This study aimed to determine how these factors affect TcSnC cellular uptake. Methods: Whole blood from six healthy volunteers was incubated with LPS, TNF-alpha, IFN-gamma, GM-CSF or G-CSF. Samples were then mixed with TcSnC. Blood was separated across density gradients and imaged using a gamma camera. Three radioactive count peaks were observed in each tube: free plasma activity, mononuclear cell uptake and neutrophil uptake. Results: Compared with controls, significant increases in mononuclear cell uptake were induced by LPS, TNF-alpha and GM-CSF stimulation. It was incidentally noted that exogenous estrogens appear to affect TcSnC labeling and may influence the neutrophil response to stimulation. Neutrophil uptake and plasma activity were not significantly affected. IFN-gamma and G-CSF had no significant effect. Conclusions: In whole blood, the effect of LPS on TcSnC monocyte uptake is different to its effect on neutrophils, consistent with previously reported differences in CD11b/CD18 expression. TNF-alpha response parallels LPS response. GM-CSF also increases TcSnC uptake by monocytes. These effects should be considered when using TcSnC for imaging purposes, as they will tend to increase monocyte labeling. Estrogens may also affect TcSnC labeling. Responses to IFN-gamma and G-CSF are consistent with previously reported effects

  20. Interleukin-4 enhances trafficking and functional activities of GM-CSF-stimulated mouse myeloid-derived dendritic cells at late differentiation stage

    International Nuclear Information System (INIS)

    Yin, Shu-Yi; Wang, Chien-Yu; Yang, Ning-Sun

    2011-01-01

    Mouse bone marrow-derived dendritic cells (BMDCs) are being employed as an important model for translational research into the development of DC-based therapeutics. For such use, the localization and specialized mobility of injected BMDCs within specific immune tissues are known to define their immunity and usefulness in vivo. In this study, we demonstrate that IL-4, a key driving factor for in vitro propagation and differentiation of BMDCs, when added during a late culture stage can enhance the in vivo trafficking activity of granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced BMDCs. It suggests that the temporal control of IL-4 stimulation during the in vitro generation of DCs drastically affects the DC trafficking efficiency in vivo. With this modification of IL-4 stimulation, we also show that much less cytokine was needed to generate BMDCs with high purity and yield that secrete a high level of cytokines and possess a good capacity to induce proliferation of allogeneic CD4 + T cells, as compared to the conventional method that uses a continuous supplement of GM-CSF and IL-4 throughout cultivation. These results provide us with an important know-how for differentiation of BMDCs from myeloid stem cells, and for use of other immune cells in related medical or stem cell applications.

  1. Interleukin-4 enhances trafficking and functional activities of GM-CSF-stimulated mouse myeloid-derived dendritic cells at late differentiation stage

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shu-Yi, E-mail: in_shuyi@hotmail.com [Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, ROC (China); Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC (China); Taiwan International Graduate Program (TIGP), Molecular and Biological Agricultural Sciences Program, Academia Sinica, Taipei, Taiwan, ROC (China); Wang, Chien-Yu, E-mail: sallywang1973@hotmail.com [Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, ROC (China); Yang, Ning-Sun, E-mail: nsyang@gate.sinica.edu.tw [Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, ROC (China); Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC (China); Taiwan International Graduate Program (TIGP), Molecular and Biological Agricultural Sciences Program, Academia Sinica, Taipei, Taiwan, ROC (China)

    2011-09-10

    Mouse bone marrow-derived dendritic cells (BMDCs) are being employed as an important model for translational research into the development of DC-based therapeutics. For such use, the localization and specialized mobility of injected BMDCs within specific immune tissues are known to define their immunity and usefulness in vivo. In this study, we demonstrate that IL-4, a key driving factor for in vitro propagation and differentiation of BMDCs, when added during a late culture stage can enhance the in vivo trafficking activity of granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced BMDCs. It suggests that the temporal control of IL-4 stimulation during the in vitro generation of DCs drastically affects the DC trafficking efficiency in vivo. With this modification of IL-4 stimulation, we also show that much less cytokine was needed to generate BMDCs with high purity and yield that secrete a high level of cytokines and possess a good capacity to induce proliferation of allogeneic CD4{sup +}T cells, as compared to the conventional method that uses a continuous supplement of GM-CSF and IL-4 throughout cultivation. These results provide us with an important know-how for differentiation of BMDCs from myeloid stem cells, and for use of other immune cells in related medical or stem cell applications.

  2. CCR6+ Th cells in the cerebrospinal fluid of persons with multiple sclerosis are dominated by pathogenic non-classic Th1 cells and GM-CSF-only-secreting Th cells.

    Science.gov (United States)

    Restorick, S M; Durant, L; Kalra, S; Hassan-Smith, G; Rathbone, E; Douglas, M R; Curnow, S J

    2017-08-01

    Considerable attention has been given to CCR6 + IL-17-secreting CD4 + T cells (Th17) in the pathology of a number of autoimmune diseases including multiple sclerosis (MS). However, other Th subsets also play important pathogenic roles, including those that secrete IFNγ and GM-CSF. CCR6 expression by Th17 cells allows their migration across the choroid plexus into the cerebrospinal fluid (CSF), where they are involved in the early phase of experimental autoimmune encephalomyelitis (EAE), and in MS these cells are elevated in the CSF during relapses and contain high frequencies of autoreactive cells. However, the relatively low frequency of Th17 cells suggests they cannot by themselves account for the high percentage of CCR6 + cells in MS CSF. Here we identify the dominant CCR6 + T cell subsets in both the blood and CSF as non-classic Th1 cells, including many that secrete GM-CSF, a key encephalitogenic cytokine. In addition, we show that Th cells secreting GM-CSF but not IFNγ or IL-17, a subset termed GM-CSF-only-secreting Th cells, also accumulate in the CSF. Importantly, in MS the proportion of IFNγ- and GM-CSF-secreting T cells expressing CCR6 was significantly enriched in the CSF, and was elevated in MS, suggesting these cells play a pathogenic role in this disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Serum concentrations of GM-CSF and G-CSF correlate with the Th1/Th2 cytokine response in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection

    DEFF Research Database (Denmark)

    Moser, Claus; Jensen, Peter Østrup; Pressler, Tacjana

    2005-01-01

    mobilizing monocytes and PMNs from the bone marrow, GM-CSF, G-CSF and IL-3 select subsets of dendritic cells, which subsequently induce distinct Th responses. Therefore, the present study examines the correlation between the mobilizing cytokines in serum and the Th responses. The IFN-gamma and IL-4...... production by peripheral blood mononuclear cells, and the concentrations of GM-CSF and G-CSF in serum as well as lung function, were determined in 37 CF patients with and 6 CF patients without chronic P. aeruginosa lung infection. The GM-CSF/G-CSF ratio correlated both with the IFN-gamma production and good...... lung function. In addition, an inverse correlation between IL-3 and IFN-gamma was observed. The results indicate involvement of endogenous GM-CSF, G-CSF and IL-3 in the skewed Th response in CF, and change to a Th1-dominated response might be achieved with GM-CSF treatment....

  4. Regulation of dendritic cell development by GM-CSF: Molecular control and implications for immune homeostasis and therapy

    NARCIS (Netherlands)

    L. van de Laar (Lianne); P.J. Coffer (Paul); A.M. Woltman (Andrea)

    2012-01-01

    textabstractDendritic cells (DCs) represent a small and heterogeneous fraction of the hematopoietic system, specialized in antigen capture, processing, and presentation. The different DC subsets act as sentinels throughout the body and perform a key role in the induction of immunogenic as well as

  5. Effect of intramammary infusion of recombinant bovine GM-CSF and IL-8 on CMT score, somatic cell count, and milk mononuclear cell populations in Holstein cows with Staphylococcus aureus subclinical mastitis.

    Science.gov (United States)

    Kiku, Yoshio; Ozawa, Tomomi; Takahashi, Hideyuki; Kushibiki, Shiro; Inumaru, Shigeki; Shingu, Hiroyuki; Nagasawa, Yuya; Watanabe, Atsushi; Hata, Eiji; Hayashi, Tomohito

    2017-09-01

    The effect of intramammary infusion of recombinant bovine granulocyte-macrophage colony-stimulating factor (rbGM-CSF) and interleukin-8 (rbIL-8) on mononuclear cell populations in quarters, somatic cell count (SCC) and the California Mastitis Test (CMT) score were investigated. From the selected cows with naturally occurring Staphylococcus aureus subclinical mastitis, one quarter of each cow were selected for the infusions of rbGM-CSF (400 μg/5 mL/quarter, n = 9), rbIL-8 (1 mg/5 mL/quarter, n = 9), and phosphate-buffered saline (5 mL/quarter, n = 7). The CMT score of both cytokines post infusion temporarily increased between days 0 and 1 and significantly decreased between days 7 and 14 compared to the preinfusion level. The SCC on day 14 after infusions of rbGM-CSF tended to be lower than that of the control group. The percentage of CD14+ cells increased on days 1 and 2 post infusion of rbGM-CSF. The percentage of CD4+ and CD8+ cells also increased on days 2 and 3, suggesting that the infusion of rbGM-CSF enhanced cellular immunity in the mammary gland. In contrast, the percentage of CD14+ cells decreased on days 0.25 and 1 post infusion of rbIL-8. No significant changes in the percentages of CD4+ and CD8+ cells in milk after infusion of rbIL-8 were evident during the experimental period, which suggested that rbIL-8 had little effect on the function of T cells in the mammary gland. These results indicated that rbGM-CSF and rbIL-8 decreased the CMT score by a different mechanism and may have a potential as therapeutic agents for subclinical mastitis.

  6. Mapping of monoclonal antibody- and receptor-binding domains on human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) using a surface plasmon resonance-based biosensor.

    Science.gov (United States)

    Laricchia-Robbio, L; Liedberg, B; Platou-Vikinge, T; Rovero, P; Beffy, P; Revoltella, R P

    1996-10-01

    An automated surface plasmon resonance (SPR)-based biosensor system has been used for mapping antibody and receptor-binding regions on the recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) molecule. A rabbit antimouse IgG1-Fc antibody (RAM.Fc) was coupled to an extended carboxymethylated-hydrogel matrix attached to a gold surface in order to capture an anti-rhGM-CSF monoclonal antibody (MAb) injected over the sensing layer. rhGM-CSF was subsequently injected and allowed to bind to this antibody. Multisite binding assays were then performed, by flowing sequentially other antibodies and peptides over the surface, and the capacity of the latter to interact with the entrapped rhGM-CSF in a multimolecular complex was monitored in real time with SPR. Eleven MAb (all IgG1K), were analyzed: respectively, four antipeptide MAb raised against three distinct epitopes of the cytokine (two clones against residues 14-24, that includes part of the first alpha-helix toward the N-terminal region; one clone against peptide 30-41, an intrahelical loop; and one clone against residues 79-91, including part of the third alpha-helix) and seven antiprotein MAbs raised against the entire rhGM-CSF, whose target native epitopes are still undetermined. In addition, the binding capacity to rhGM-CSF of a synthetic peptide, corresponding to residues 238-254 of the extracellular human GM-CSF receptor alpha-chain, endowed with rhGM-CSF binding activity, was tested. The results from experiments performed with the biosensor were compared with those obtained by a sandwich enzyme-linked immunosorbent assay (ELISA), using the same reagents. The features of the biosensor technology (fully automated, measure in real time, sharpened yes/no response, less background disturbances, no need for washing step or labeling of the reagent) offered several advantages in these studies of MAb immunoreactivity and epitope mapping, giving a much better resolution and enabling more distinct

  7. CD1d(hi)CD5+ B cells expanded by GM-CSF in vivo suppress experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Sheng, Jian Rong; Quan, Songhua; Soliven, Betty

    2014-09-15

    IL-10-competent subset within CD1d(hi)CD5(+) B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. Whether B10 cells can prevent or suppress the development of experimental autoimmune myasthenia gravis (EAMG) has not been studied. In this study, we investigated whether low-dose GM-CSF, which suppresses EAMG, can expand B10 cells in vivo, and whether adoptive transfer of CD1d(hi)CD5(+) B cells would prevent or suppress EAMG. We found that treatment of EAMG mice with low-dose GM-CSF increased the proportion of CD1d(hi)CD5(+) B cells and B10 cells. In vitro coculture studies revealed that CD1d(hi)CD5(+) B cells altered T cell cytokine profile but did not directly inhibit T cell proliferation. In contrast, CD1d(hi)CD5(+) B cells inhibited B cell proliferation and its autoantibody production in an IL-10-dependent manner. Adoptive transfer of CD1d(hi)CD5(+) B cells to mice could prevent disease, as well as suppress EAMG after disease onset. This was associated with downregulation of mature dendritic cell markers and expansion of regulatory T cells resulting in the suppression of acetylcholine receptor-specific T cell and B cell responses. Thus, our data have provided significant insight into the mechanisms underlying the tolerogenic effects of B10 cells in EAMG. These observations suggest that in vivo or in vitro expansion of CD1d(hi)CD5(+) B cells or B10 cells may represent an effective strategy in the treatment of human myasthenia gravis. Copyright © 2014 by The American Association of Immunologists, Inc.

  8. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF) activity

    NARCIS (Netherlands)

    Isik, Gözde; van Montfort, Thijs; Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Sanders, Rogier W.

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env

  9. Heat shock protein 27-derived atheroprotection involves reverse cholesterol transport that is dependent on GM-CSF to maintain ABCA1 and ABCG1 expression in ApoE-/- mice.

    Science.gov (United States)

    Pulakazhi Venu, Vivek Krishna; Adijiang, Ayinuer; Seibert, Tara; Chen, Yong-Xiang; Shi, Chunhua; Batulan, Zarah; O'Brien, Edward R

    2017-06-01

    Recently, we demonstrated that heat shock protein (HSP)-27 is protective against the development of experimental atherosclerosis, reducing plaque cholesterol content by more than 30%. Moreover, elevated HSP-27 levels are predictive of relative freedom from clinical cardiovascular events. HSP-27 signaling occurs via the activation of NF-κB, which induces a marked up-regulation in expression of granulocyte-monocyte colony-stimulating factor (GM-CSF), a cytokine that is known to alter ABC transporters involved in reverse cholesterol transport (RCT). Therefore, we hypothesized that HSP-27-derived GM-CSF has a potent role in impeding plaque formation by promoting macrophage RCT and sought to better characterize this pathway. Treatment of THP-1 cells, RAW-Blue cells, and primary macrophages with recombinant HSP-27 resulted in NF-κB activation via TLR-4 and was inhibited by various pharmacologic blockers of this pathway. Moreover, HSP-27-induced upregulation of GM-CSF expression was dependent on TLR-4 signaling. Recombinant (r)HSP-27 treatment of ApoE -/- female (but not male) mice for 4 wk yielded reductions in plaque area and cholesterol clefts of 33 and 47%, respectively, with no effect on GM-CSF -/- ApoE -/- mice. With 12 wk of rHSP-27 treatment, both female and male mice showed reductions in plaque burden (55 and 42%, respectively) and a 60% reduction in necrotic core area but no treatment effect in GM-CSF -/- ApoE -/- mice. In vitro functional studies revealed that HSP-27 enhanced the expression of ABCA1 and ABCG1, as well as facilitated cholesterol efflux in vitro by ∼10%. These novel findings establish a paradigm for HSP-27-mediated RCT and set the stage for the development of HSP-27 atheroprotective therapeutics.-Pulakazhi Venu, V. K., Adijiang, A., Seibert, T., Chen, Y.-X., Shi, C., Batulan, Z., O'Brien, E. R. Heat shock protein 27-derived atheroprotection involves reverse cholesterol transport that is dependent on GM-CSF to maintain ABCA1 and ABCG1

  10. [Cytokines in cancer chemotherapy: present state and problems in use of G- and GM-CSF for solid tumors in Japan].

    Science.gov (United States)

    Ogawara, M

    1998-01-01

    The present state and the problems of G and GM-CSF in cancer chemotherapy, especially for solid tumors in Japan, were reviewed. One of the problems is that adaptation is restricted to several tumors, and the other that recommended doses are about half or one-fourth as much as in North America or Europe. With G-CSF after dose-intensive chemotherapy in small-cell lung cancer, three studies showed G-CSF shortened the duration of neutropenia, and reduced the incidence of neutropenic fever, use of antibiotics and hospitalization, while they showed no advantages in terms of response rate and the incidence of infection-related death. Moreover, the effect on survival has not been proved. In afebrile neutropenic patients, G-CSF could accelerate recovery from neutropenia, but did not reduce the incidence of neutropenic fever. In febrile neutropenic patients with antibiotics, it could also accelerate recovery from neutropenia, but did not reduce neutropenic fever compared with no CSF except in some subsets. Our retrospective study showed the effects of G-CSF in grade 4 neutropenia were comparable with grade 3 neutropenia. The functions of neutrophils with G-CSF after chemotherapy were reported to be increased or maintained. Clinical benefits were only obtained in certain dose-intensive chemotherapy or in limited subsets. Additional clinical trials and a guideline like ASCO's should be planned.

  11. Effect of the association of IGF-I, IGF-II, bFGF, TGF-beta1, GM-CSF, and LIF on the development of bovine embryos produced in vitro.

    Science.gov (United States)

    Neira, J A; Tainturier, D; Peña, M A; Martal, J

    2010-03-15

    This study examined the influence of the following growth factors and cytokines on early embryonic development: insulin-like growth factors I and II (IGF-I, IGF-II), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), granulocyte-macrophage colony-stimulating factor (GM-CSF), and leukemia inhibitory factor (LIF). Synthetic oviduct fluid (SOF) was used as the culture medium. We studied the development of bovine embryos produced in vitro and cultured until Day 9 after fertilization. TGF-beta1, bFGF, GM-CSF, and LIF used on their own significantly improved the yield of hatched blastocysts. IGF-I, bFGF, TGF-beta1, GM-CSF, and LIF significantly accelerated embryonic development, especially the change from the expanded blastocyst to hatched blastocyst stages. Use of a combination of these growth factors and cytokines (GF-CYK) in SOF medium produced higher percentages of blastocysts and hatched blastocysts than did use of SOF alone (45% and 22% vs. 24% and 12%; PGM-CSF, produces similar results to 10% fetal calf serum for the development of in vitro-produced bovine embryos. This entirely synthetic method of embryo culture has undeniable advantages for the biosecurity of embryo transfer. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Distinct Properties of Human M-CSF and GM-CSF Monocyte-Derived Macrophages to Simulate Pathological Lung Conditions In Vitro: Application to Systemic and Inflammatory Disorders with Pulmonary Involvement.

    Science.gov (United States)

    Lescoat, Alain; Ballerie, Alice; Augagneur, Yu; Morzadec, Claudie; Vernhet, Laurent; Fardel, Olivier; Jégo, Patrick; Jouneau, Stéphane; Lecureur, Valérie

    2018-03-17

    Macrophages play a central role in the pathogenesis of inflammatory and fibrotic lung diseases. However, alveolar macrophages (AM) are poorly available in humans to perform in vitro studies due to a limited access to broncho-alveolar lavage (BAL). In this study, to identify the best alternative in vitro model for human AM, we compared the phenotype of AM obtained from BAL of patients suffering from three lung diseases (lung cancers, sarcoidosis and Systemic Sclerosis (SSc)-associated interstitial lung disease) to human blood monocyte-derived macrophages (MDMs) differentiated with M-CSF or GM-CSF. The expression of eight membrane markers was evaluated by flow cytometry. Globally, AM phenotype was closer to GM-CSF MDMs. However, the expression levels of CD163, CD169, CD204, CD64 and CD36 were significantly higher in SSc-ILD than in lung cancers. Considering the expression of CD204 and CD36, the phenotype of SSc-AM was closer to MDMs, from healthy donors or SSc patients, differentiated by M-CSF rather than GM-CSF. The comparative secretion of IL-6 by SSc-MDMs and SSc-AM is concordant with these phenotypic considerations. Altogether, these results support the M-CSF MDM model as a relevant in vitro alternative to simulate AM in fibrotic disorders such as SSc.

  13. SV-BR-1-GM, a Clinically Effective GM-CSF-Secreting Breast Cancer Cell Line, Expresses an Immune Signature and Directly Activates CD4+ T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Markus D. Lacher

    2018-05-01

    Full Text Available Targeted cancer immunotherapy with irradiated, granulocyte–macrophage colony-stimulating factor (GM-CSF-secreting, allogeneic cancer cell lines has been an effective approach to reduce tumor burden in several patients. It is generally assumed that to be effective, these cell lines need to express immunogenic antigens coexpressed in patient tumor cells, and antigen-presenting cells need to take up such antigens then present them to patient T cells. We have previously reported that, in a phase I pilot study (ClinicalTrials.gov NCT00095862, a subject with stage IV breast cancer experienced substantial regression of breast, lung, and brain lesions following inoculation with clinical formulations of SV-BR-1-GM, a GM-CSF-secreting breast tumor cell line. To identify diagnostic features permitting the prospective identification of patients likely to benefit from SV-BR-1-GM, we conducted a molecular analysis of the SV-BR-1-GM cell line and of patient-derived blood, as well as a tumor specimen. Compared to normal human breast cells, SV-BR-1-GM cells overexpress genes encoding tumor-associated antigens (TAAs such as PRAME, a cancer/testis antigen. Curiously, despite its presumptive breast epithelial origin, the cell line expresses major histocompatibility complex (MHC class II genes (HLA-DRA, HLA-DRB3, HLA-DMA, HLA-DMB, in addition to several other factors known to play immunostimulatory roles. These factors include MHC class I components (B2M, HLA-A, HLA-B, ADA (encoding adenosine deaminase, ADGRE5 (CD97, CD58 (LFA3, CD74 (encoding invariant chain and CLIP, CD83, CXCL8 (IL8, CXCL16, HLA-F, IL6, IL18, and KITLG. Moreover, both SV-BR-1-GM cells and the responding study subject carried an HLA-DRB3*02:02 allele, raising the question of whether SV-BR-1-GM cells can directly present endogenous antigens to T cells, thereby inducing a tumor-directed immune response. In support of this, SV-BR-1-GM cells (which also carry the HLA-DRB3*01:01 allele treated with

  14. Benefits of gene transduction of granulocyte macrophage colony-stimulating factor in cancer vaccine using genetically modified dendritic cells.

    Science.gov (United States)

    Ojima, Toshiyasu; Iwahashi, Makoto; Nakamura, Masaki; Matsuda, Kenji; Nakamori, Mikihito; Ueda, Kentaro; Naka, Teiji; Katsuda, Masahiro; Miyazawa, Motoki; Yamaue, Hiroki

    2007-10-01

    Granulocyte macrophage colony-stimulating factor (GM-CSF) is a key cytokine for the generation and stimulation of dendritic cells (DCs), and it may also play a pivotal role in promoting the survival of DCs. In this study, the feasibility of creating a cancer vaccine using DCs adenovirally transduced with the carcinoembryonic antigen (CEA) gene and the GM-CSF gene was examined. In addition, the effect of the co-transduction of GM-CSF gene on the lifespan of these genetically modified DCs was determined. A cytotoxic assay using peripheral blood mononuclear cell (PBMC)-derived cytotoxic T lymphocytes (CTLs) was performed in a 4-h 51Cr release assay. The apoptosis of DCs was examined by TdT-mediated dUTP-FITC nick end labeling (TUNEL) assay. CEA-specific CTLs were generated from PBMCs stimulated with genetically modified DCs expressing CEA. The cytotoxicity of these CTLs was augmented by co-transduction of DCs with the GM-CSF gene. Co-transduction of the GM-CSF gene into DCs inhibited apoptosis of these DCs themselves via up-regulation of Bcl-x(L) expression, leading to the extension of the lifespan of these DCs. Furthermore, the transduction of the GM-CSF gene into DCs also suppressed the incidence of apoptosis of DCs induced by transforming growth factor-beta1 (TGFbeta-1). Immunotherapy using these genetically modified DCs may therefore be useful with several advantages as follows: i) adenoviral toxicity to DCs can be reduced; ii) the lifespan of vaccinated DCs can be prolonged; and iii) GM-CSF may protect DCs from apoptosis induced by tumor-derived TGFbeta-1 in the regional lymph nodes.

  15. PU.1 is essential for CD11c expression in CD8(+/CD8(- lymphoid and monocyte-derived dendritic cells during GM-CSF or FLT3L-induced differentiation.

    Directory of Open Access Journals (Sweden)

    Xue-Jun Zhu

    Full Text Available Dendritic cells (DCs regulate innate and acquired immunity through their roles as antigen-presenting cells. Specific subsets of mature DCs, including monocyte-derived and lymphoid-derived DCs, can be distinguished based on distinct immunophenotypes and functional properties. The leukocyte integrin, CD11c, is considered a specific marker for DCs and it is expressed by all DC subsets. We created a strain of mice in which DCs and their progenitors could be lineage traced based on activity of the CD11c proximal promoter. Surprisingly, we observed levels of CD11c promoter activity that were similar in DCs and in other mature leukocytes, including monocytes, granulocytes, and lymphocytes. We sought to identify DNA elements and transcription factors that regulate DC-associated expression of CD11c. The ets transcription factor, PU.1, is a key regulator of DC development, and expression of PU.1 varies in different DC subsets. GM-CSF increased monocyte-derived DCs in mice and from mouse bone marrow cultured in vitro, but it did not increase CD8(+ lymphoid-derived DCs or B220(+ plasmacytoid DCs. FLT3L increased both monocyte-derived DCs and lymphoid-derived DCs from mouse bone marrow cultured in vitro. GM-CSF increased the 5.3 Kb CD11c proximal promoter activity in monocyte-derived DCs and CD8(+ lymphoid-derived DCs, but not in B220(+ plasmacytoid DCs. In contrast, FLT3L increased the CD11c proximal promoter activity in both monocyte-derived DCs and B220(+ plasmacytoid DCs. We used shRNA gene knockdown and chromatin immunoprecipitation to demonstrate that PU.1 is required for the effects of GM-CSF or FLT3L on monocyte-derived DCs. We conclude that both GM-CSF and FLT3L act through PU.1 to activate the 5.3 Kb CD11c proximal promoter in DCs and to induce differentiation of monocyte-derived DCs. We also confirm that the CD11c proximal promoter is not sufficient to direct lineage specificity of CD11c expression, and that additional DNA elements are required

  16. The frequency of clinical pregnancy and implantation rate after cultivation of embryos in a medium with granulocyte macrophage colony-stimulating factor (GM-CSF) in patients with preceding failed attempts of ART.

    Science.gov (United States)

    Tevkin, S; Lokshin, V; Shishimorova, M; Polumiskov, V

    2014-10-01

    The application in IVF practice of modern techniques can improve positive outcome of each cycle in the assisted reproductive technology (ART) programs and the effectiveness of treatment as a whole. There are embryos in the female reproductive tract in physiological medium which contain various cytokines and growth factors. It plays an important role in the regulation of normal embryonic development, improve implantation and subsequently optimizing the development of the fetus and the placenta. Granulocyte macrophage colony-stimulating factor (GM-CSF is one of the cytokines playing an important role in reproductive function. Addition of recombinant GM-CSF to the culture medium can makes closer human embryos culture to in vivo conditions and improve the efficacy ART cycles. The analysis of culture embryos in EmbryoGen medium has shown that fertilization rate embryo culture and transfer to patients with previous unsuccessful attempts increases clinical pregnancy rate compared to the control group 39.1 versus 27.8%, respectively. It is noted that the implantation rate (on 7 weeks' gestation) and progressive clinical pregnancy rate (on 12 weeks' gestation) were significantly higher in group embryos culture in EmbryoGen medium compared to standard combination of medium (ISM1+VA), and were 20.4 and 17.4% versus 11.6 and 9.1%, respectively.

  17. TL1A increases expression of CD25, LFA-1, CD134 and CD154, and induces IL-22 and GM-CSF production from effector CD4 T-cells

    DEFF Research Database (Denmark)

    Reichwald, Kirsten; Jørgensen, Tina Z.; Skov, Søren

    2014-01-01

    Elevated levels of the cytokine TL1A is associated with several autoimmune diseases e.g. rheumatoid arthritis and inflammatory bowel disease. However, the exact role of TL1A remains elusive. In this study, we investigated the function of TL1A in a pro-inflammatory setting. We show that TL1A toget...... of CD25 (IL-2Rα) and CD11a (α-chain of LFA-1) on CD4 T-cells, likely governing increased IL-2/IL-15 sensitivity and cell-cell contact. Along with this, TL1A co-stimulation caused a specific induction of IL-22 and GM-CSF from the activated T-cells. These results substantially contribute...

  18. Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Seo Kang

    2007-11-01

    Full Text Available Abstract Purpose An open-label Phase 1 study of recombinant prime-boost poxviruses targeting CEA and MUC-1 in patients with advanced pancreatic cancer was conducted to determine safety, tolerability and obtain preliminary data on immune response and survival. Patients and methods Ten patients with advanced pancreatic cancer were treated on a Phase I clinical trial. The vaccination regimen consisted of vaccinia virus expressing tumor antigens carcinoembryonic antigen (CEA and mucin-1 (MUC-1 with three costimulatory molecules B7.1, ICAM-1 and LFA-3 (TRICOM (PANVAC-V and fowlpox virus expressing the same antigens and costimulatory molecules (PANVAC-F. Patients were primed with PANVAC-V followed by three booster vaccinations using PANVAC-F. Granulocyte-macrophage colony-stimulating factor (GM-CSF was used as a local adjuvant after each vaccination and for 3 consecutive days thereafter. Monthly booster vaccinations for up to 12 months were provided for patients without progressive disease. Peripheral blood was collected before, during and after vaccinations for immune analysis. Results The most common treatment-related adverse events were mild injection-site reactions. Antibody responses against vaccinia virus was observed in all 10 patients and antigen-specific T cell responses were observed in 5 out of 8 evaluable patients (62.5%. Median overall survival was 6.3 months and a significant increase in overall survival was noted in patients who generated anti CEA- and/or MUC-1-specific immune responses compared with those who did not (15.1 vs 3.9 months, respectively; P = .002. Conclusion Poxvirus vaccination is safe, well tolerated, and capable of generating antigen-specific immune responses in patients with advanced pancreatic cancer.

  19. Proteomic Analysis Reveals Distinct Metabolic Differences Between Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Macrophage Colony Stimulating Factor (M-CSF) Grown Macrophages Derived from Murine Bone Marrow Cells.

    Science.gov (United States)

    Na, Yi Rang; Hong, Ji Hye; Lee, Min Yong; Jung, Jae Hun; Jung, Daun; Kim, Young Won; Son, Dain; Choi, Murim; Kim, Kwang Pyo; Seok, Seung Hyeok

    2015-10-01

    Macrophages are crucial in controlling infectious agents and tissue homeostasis. Macrophages require a wide range of functional capabilities in order to fulfill distinct roles in our body, one being rapid and robust immune responses. To gain insight into macrophage plasticity and the key regulatory protein networks governing their specific functions, we performed quantitative analyses of the proteome and phosphoproteome of murine primary GM-CSF and M-CSF grown bone marrow derived macrophages (GM-BMMs and M-BMMs, respectively) using the latest isobaric tag based tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Strikingly, metabolic processes emerged as a major difference between these macrophages. Specifically, GM-BMMs show significant enrichment of proteins involving glycolysis, the mevalonate pathway, and nitrogen compound biosynthesis. This evidence of enhanced glycolytic capability in GM-BMMs is particularly significant regarding their pro-inflammatory responses, because increased production of cytokines upon LPS stimulation in GM-BMMs depends on their acute glycolytic capacity. In contrast, M-BMMs up-regulate proteins involved in endocytosis, which correlates with a tendency toward homeostatic functions such as scavenging cellular debris. Together, our data describes a proteomic network that underlies the pro-inflammatory actions of GM-BMMs as well as the homeostatic functions of M-BMMs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Recurrent spleen enlargement during cyclic granulocyte-macrophage colony-stimulating factor therapy for myelodysplastic syndrome

    International Nuclear Information System (INIS)

    Delmer, A.; Karmochkine, M.; Cadiou, M.; Gerhartz, H.; Zittoun, R.

    1990-01-01

    A 65-year-old woman with refractory anemia with excess of blasts received sequential courses of granulocyte-macrophage colony-stimulating factor therapy (GM-CSF) and low-dose cytosine arabinoside. Each course of GM-CSF induced a rapid and tremendous increase in leukocyte count as well as in spleen size, 111-indium chloride scanning suggested a myeloid metaplasia of the spleen. This observation suggests that in some patients the granulopoietic response to the myeloid growth factor stimulation may be predominant in the spleen

  1. Regulation of CTL responses to MHC-restricted class I peptide of the gp70 tumour antigen by splenic parenchymal CD4+ T cells in mice failing immunotherapy with DISC-mGM-CSF.

    Science.gov (United States)

    Ahmad, Murrium; Rees, Robert C; McArdle, Stephanie E; Li, Geng; Mian, Shahid; Entwisle, Claire; Loudon, Peter; Ali, Selman A

    2005-07-20

    Direct intratumour injection of the disabled infectious single-cycle-herpes simplex virus-encoding murine granulocyte/macrophage colony-stimulating factor (DISC-HSV-mGM-CSF) into established colon carcinoma CT26 tumours induced complete tumour rejection in up to 70% of treated animals (regressors), while the remaining mice developed progressive tumours (progressors). This murine Balb/c model was used to dissect the cellular mechanisms involved in tumour regression or progression following immunotherapy. CTLs were generated by coculturing lymphocytes and parenchymal cells from the same spleens of individual regressor or progressor animals in the presence of the relevant AH-1 peptide derived from the gp70 tumour-associated antigens expressed by CT26 tumours. Tumour regression was correlated with potent CTL responses, spleen weight and cytokine (IFN-gamma) production. Conversely, progressor splenocytes exhibited weak to no CTL activity and poor IFN-gamma production, concomitant with the presence of a suppressor cell population in the progressor splenic parenchymal cell fraction. Further fractionation of this parenchymal subpopulation demonstrated that cells inhibitory to the activation of AH-1-specific CTLs, restimulated in vitro with peptide, were present in the nonadherent parenchymal fraction. In vitro depletion of progressor parenchymal CD3+/CD4+ T cells restored the CTL response of the cocultured splenocytes (regressor lymphocytes and progressor parenchymal cells) and decreased the production of IL-10, suggesting that CD3+CD4+ T lymphocytes present in the parenchymal fraction regulated the CTL response to AH-1. We examined the cellular responses associated with tumour rejection and progression, identifying regulatory pathways associated with failure to respond to immunotherapy. Copyright 2005 Wiley-Liss, Inc.

  2. Pancreatic cancer vaccine: a unique potential therapy

    Directory of Open Access Journals (Sweden)

    Cappello P

    2015-12-01

    Full Text Available Paola Cappello, Moitza Principe, Francesco Novelli Department of Molecular Biotechnologies and Health Sciences, Center for Experimental Research and Medical Studies, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy Abstract: Pancreatic ductal adenocarcinoma (PDA is a lethal disease and is one of the cancers that is most resistant to traditional therapies. Historically, neither chemotherapy nor radiotherapy has provided any significant increase in the survival of patients with PDA. Despite intensive efforts, any attempts to improve the survival in the past 15 years have failed. This holds true even after the introduction of molecularly targeted agents, chosen on the basis of their involvement in pathways that are considered to be important in PDA development and progression. Recently, however, FOLFIRINOX (5-fluorouracil, leucovorin, irinotecan, and oxaliplatin treatment has provided a limited survival advantage in patients with advanced PDA. Therefore, effective therapeutic strategies are urgently needed to improve the survival rate of patients with PDA. Results from the last 10 years of research in the field of PDA have helped to identify new immunological targets and develop new vaccines that are capable of stimulating an immune response. In addition, the information obtained about the role of the tumor microenvironment in suppressing the immune response and the possibility of targeting PDA microenvironment to limit immune suppression and enhance the response of effector T-cells has opened new avenues for treating this incurable disease. The time is ripe for developing new therapeutic approaches that are able to effectively counteract the progression and spreading of PDA. This review discusses the potential prospects in the care of patients with pancreatic cancer through vaccination and its combination therapy with surgery, chemotherapy, targeting of the tumor microenvironment, and inhibition of immunological

  3. Therapeutic efficacy of PD-L1 blockade in a breast cancer model is enhanced by cellular vaccines expressing B7-1 and glycolipid-anchored IL-12.

    Science.gov (United States)

    Bozeman, Erica N; He, Sara; Shafizadeh, Yalda; Selvaraj, Periasamy

    2016-01-01

    Immunotherapeutic approaches have emerged as promising strategies to treat various cancers, including breast cancer. A single approach, however, is unlikely to effectively combat the complex, immune evasive strategies found within the tumor microenvironment, thus novel, effective combination treatments must be explored. In this study, we investigated the efficacy of a combination therapy consisting of PD-L1 immune checkpoint blockade and whole cell vaccination in a HER-2 positive mouse model of breast cancer. We demonstrate that tumorigenicity is completely abrogated when adjuvanted with immune stimulatory molecules (ISMs) B7-1 and a cell-surface anchored (GPI) form of IL-12 or GM-CSF. Irradiated cellular vaccines expressing the combination of adjuvants B7-1 and GPI-IL-12 completely inhibited tumor formation which was correlative with robust HER-2 specific CTL activity. However, in a therapeutic setting, both cellular vaccination and PD-L1 blockade induced only 10-20% tumor regression when administered alone but resulted in 50% tumor regression as a combination therapy. This protection was significantly hindered following CD4 or CD8 depletion indicating the essential role played by cellular immunity. Collectively, these pre-clinical studies provide a strong rationale for further investigation into the efficacy of combination therapy with tumor cell vaccines adjuvanted with membrane-anchored ISMs along with PD-L1 blockade for the treatment of breast cancer.

  4. Improvement of different vaccine delivery systems for cancer therapy

    Directory of Open Access Journals (Sweden)

    Safaiyan Shima

    2011-01-01

    Full Text Available Abstract Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development.

  5. The impact of concurrent granulocyte macrophage-colony stimulating factor on radiation-induced mucositis in head and neck cancer patients: A double-blind placebo-controlled prospective Phase III study by Radiation Therapy Oncology Group 9901

    International Nuclear Information System (INIS)

    Ryu, Janice K.; Swann, Suzanne; LeVeque, Francis; Scarantino, Charles W.; Johnson, Darlene J.; Chen, Allan; Fortin, Andre; Pollock, JonDavid; Kim, Harold; Ang, Kian K.

    2007-01-01

    Purpose: Based on early clinical evidence of potential mucosal protection by granulocyte-macrophage colony stimulating factor (GM-CSF), the Radiation Therapy Oncology Group conducted a double-blind, placebo-controlled, randomized study to test the efficacy and safety of GM-CSF in reducing the severity and duration of mucosal injury and pain (mucositis) associated with curative radiotherapy (RT) in head-and-neck cancer patients. Methods and Materials: Eligible patients included those with head-and-neck cancer with radiation ports encompassing >50% of oral cavity and/or oropharynx. Standard RT ports were used to cover the primary tumor and regional lymphatics at risk in standard fractionation to 60-70 Gy. Concurrent cisplatin chemotherapy was allowed. Patients were randomized to receive subcutaneous injection of GM-CSF 250 μg/m 2 or placebo 3 times a week. Mucosal reaction was assessed during the course of RT using the National Cancer Institute Common Toxicity Criteria and the protocol-specific scoring system. Results: Between October 2000 and September 2002, 130 patients from 36 institutions were accrued. Nine patients (7%) were excluded from the analysis, 3 as a result of drug unavailability. More than 80% of the patients participated in the quality-of-life endpoint of this study. The GM-CSF did not cause any increase in toxicity compared with placebo. There was no statistically significant difference in the average mean mucositis score in the GM-CSF and placebo arms by a t test (p = 0.4006). Conclusion: This placebo-controlled, randomized study demonstrated no significant effect of GM-CSF given concurrently compared with placebo in reducing the severity or duration of RT-induced mucositis in patients undergoing definitive RT for head-and-neck cancer

  6. Therapeutic Cancer Vaccines in Combination with Conventional Therapy

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Junker, N.; Ellebaek, E.

    2010-01-01

    The clinical efficacy of most therapeutic vaccines against cancer has not yet met its promise. Data are emerging that strongly support the notion that combining immunotherapy with conventional therapies, for example, radiation and chemotherapy may improve efficacy. In particular combination...

  7. Therapeutic cancer vaccines in combination with conventional therapy

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Junker, Niels; Ellebaek, Eva

    2010-01-01

    The clinical efficacy of most therapeutic vaccines against cancer has not yet met its promise. Data are emerging that strongly support the notion that combining immunotherapy with conventional therapies, for example, radiation and chemotherapy may improve efficacy. In particular combination...

  8. Novel multi-peptide vaccination in Hla-A2+ hormone sensitive patients with biochemical relapse of prostate cancer.

    Science.gov (United States)

    Feyerabend, Susan; Stevanovic, Stefan; Gouttefangeas, Cécile; Wernet, Dorothee; Hennenlotter, Jörg; Bedke, Jens; Dietz, Klaus; Pascolo, Steve; Kuczyk, Markus; Rammensee, Hans-Georg; Stenzl, Arnulf

    2009-06-15

    A phase I/II trial was conducted to assess feasibility and tolerability of tumor associated antigen peptide vaccination in hormone sensitive prostate carcinoma (PC) patients with biochemical recurrence after primary surgical treatment. Nineteen HLA-A2 positive patients with rising PSA without detectable metastatic disease or local recurrence received 11 HLA-A*0201-restricted and two HLA class II synthetic peptides derived from PC tumor antigens subcutaneously for 18 months or until PSA progression. The vaccine was emulgated in montanide ISA51 and combined with imiquimod, GM-CSF, mucin-1-mRNA/protamine complex, local hyperthermia or no adjuvant. PSA was assessed, geometric mean doubling times (DT) calculated and clinical performance monitored. PSA DT of 4 out of 19 patients (21%) increased from 4.9 to 25.8 months during vaccination. Out of these, two patients (11%) exhibited PSA stability for 28 and 31 months which were still continuing at data cut-off. One patient showed no change of PSA DT during vaccination but decline after the therapy. Three patients had an interim PSA decline or DT increase followed by DT decrease compared to baseline PSA DT. Three of the responding patients received imiquimod and one the mucin-1-mRNA/protamine complex as adjuvant; both are Toll-like receptor-7 agonists. Eleven (58%) patients had progressive PSA values. The vaccine was well tolerated, and no grade III or IV toxicity occurred. Multi-peptide vaccination stabilized or slowed down PSA progress in four of 19 cases. The vaccination approach is promising with moderate adverse events. Long-term stability delayed androgen deprivation up to 31 months. TLR-7 co-activation seems to be beneficial.

  9. Challenges and future in vaccines, drug development, and immunomodulatory therapy.

    Science.gov (United States)

    Kling, Heather M; Nau, Gerard J; Ross, Ted M; Evans, Thomas G; Chakraborty, Krishnendu; Empey, Kerry M; Flynn, JoAnne L

    2014-08-01

    Pulmonary diseases and infections are among the top contributors to human morbidity and mortality worldwide, and despite the successful history of vaccines and antimicrobial therapeutics, infectious disease still presents a significant threat to human health. Effective vaccines are frequently unavailable in developing countries, and successful vaccines have yet to be developed for major global maladies, such as tuberculosis. Furthermore, antibiotic resistance poses a growing threat to human health. The "Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy" session of the 2013 Pittsburgh International Lung Conference highlighted several recent and current studies related to treatment and prevention of antibiotic-resistant bacterial infections, highly pathogenic influenza, respiratory syncytial virus, and tuberculosis. Research presented here focused on novel antimicrobial therapies, new vaccines that are either in development or currently in clinical trials, and the potential for immunomodulatory therapies. These studies are making important contributions to the areas of microbiology, virology, and immunology related to pulmonary diseases and infections and are paving the way for improvements in the efficacy of vaccines and antimicrobials.

  10. Chemoimmunotherapy in mice carrying HPV16-associated, MHC class I+ and class I- tumours: effects of CBM-4A potentiated with IL-2, IL-12, GM-CSF and genetically modified tumour vaccines

    Czech Academy of Sciences Publication Activity Database

    Indrová, Marie; Bubeník, Jan; Mikyšková, Romana; Mendoza, Luis; Šímová, Jana; Bieblová, Jana; Jandlová, Táňa; Jinoch, P.; Šmahel, M.; Vonka, V.; Pajtasz-Piasecka, E.

    2003-01-01

    Roč. 22, č. 3 (2003), s. 691-695 ISSN 1019-6439 R&D Projects: GA MZd NC7148; GA ČR GA301/00/0114; GA ČR GA301/01/0985; GA AV ČR IAA5052203; GA AV ČR IAA7052002 Grant - others:KBN(PL) P04A12314; Liga proti rakovině(CZ) - Institutional research plan: CEZ:AV0Z5052915 Keywords : chemotherapy -induced residual tumour disease * immunotherapy * HPV16-associated tumours Subject RIV: FD - Oncology ; Hematology Impact factor: 2.536, year: 2003

  11. Photodynamic therapy-generated vaccines prevent tumor recurrence after radiotherapy

    International Nuclear Information System (INIS)

    Korbelik, M.; Sun, J.

    2003-01-01

    Photodynamic therapy (PDT), an established clinical modality for a variety of malignant and non-malignant diseases, inflicts photoreactive drug-mediated oxidative stress that prompts the engagement of host inflammatory and immune responses which contribute to the therapy outcome. Recently, it has become evident that in vitro PDT-treated tumor cells or their lysates can be utilized as an effective vaccine against established tumors of the same origin. The mechanism underlying the vaccine action appears to be based on eliciting immune recognition of the tumor and developing an efficient immune response even against poorly immunogenic tumors. This study examined whether PDT-generated vaccines can be effectively combined with radiotherapy. Subcutaneous SCCVII tumors (squamous cell carcinomas) growing in syngeneic C3H/HeN mice were treated by radiotherapy (60 Gy x-ray dose). PDT-vaccine treatment, done by peritumoral injection of in vitro PDT-treated SCCVII cells (20 million/mouse), was performed either immediately after radiotherapy or ten days later. The mice were then observed for tumor regression/recurrence. The tumors treated with radiotherapy alone shrunk and became impalpable for a brief period after which they all recurred. In contrast, vaccination performed at 10 days post radiotherapy delayed tumor recurrence and prevented it in one of six mice. Even better results were obtained with mice vaccinated immediately after radiotherapy, with mice showing not only a delayed tumor recurrence but also no sign of tumor in 50% of mice. The PDT-vaccine treatment without radiotherapy produced in this trial a significant tumor growth retardation but no complete regressions. These results indicate that PDT-generated vaccines can ensure immune rejection of cancer once the lesion size is reduced by radiotherapy. Even without obtaining a systemic immunity for the elimination of disseminated malignant deposits, these findings suggest that PDT-vaccines can improve local control

  12. Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy

    Science.gov (United States)

    Nau, Gerard J.; Ross, Ted M.; Evans, Thomas G.; Chakraborty, Krishnendu; Empey, Kerry M.; Flynn, JoAnne L.

    2014-01-01

    Pulmonary diseases and infections are among the top contributors to human morbidity and mortality worldwide, and despite the successful history of vaccines and antimicrobial therapeutics, infectious disease still presents a significant threat to human health. Effective vaccines are frequently unavailable in developing countries, and successful vaccines have yet to be developed for major global maladies, such as tuberculosis. Furthermore, antibiotic resistance poses a growing threat to human health. The “Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy” session of the 2013 Pittsburgh International Lung Conference highlighted several recent and current studies related to treatment and prevention of antibiotic-resistant bacterial infections, highly pathogenic influenza, respiratory syncytial virus, and tuberculosis. Research presented here focused on novel antimicrobial therapies, new vaccines that are either in development or currently in clinical trials, and the potential for immunomodulatory therapies. These studies are making important contributions to the areas of microbiology, virology, and immunology related to pulmonary diseases and infections and are paving the way for improvements in the efficacy of vaccines and antimicrobials. PMID:25148426

  13. Immunomodulators as adjuvants for vaccines and antimicrobial therapy.

    Science.gov (United States)

    Nicholls, Erin F; Madera, Laurence; Hancock, Robert E W

    2010-12-01

    A highly effective strategy for combating infectious diseases is to enhance host defenses using immunomodulators, either preventatively, through vaccination, or therapeutically. The effectiveness of many vaccines currently in use is due in part to adjuvants, molecules that have little immunogenicity by themselves but which help enhance and appropriately skew the immune response to an antigen. The development of new vaccines necessitates the development of new types of adjuvants to ensure an appropriate immune response. Herein, we review commonly used vaccine adjuvants and discuss promising adjuvant candidates. We also discuss various other immunomodulators (namely cytokines, Toll-like receptor agonists, and host defense peptides) that are, or have potential to be, useful for antimicrobial therapies that exert their effects by boosting host immune responses rather than targeting pathogens directly.

  14. Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during Mycobacterium tuberculosis Infection.

    Science.gov (United States)

    Rothchild, Alissa C; Stowell, Britni; Goyal, Girija; Nunes-Alves, Cláudio; Yang, Qianting; Papavinasasundaram, Kadamba; Sassetti, Christopher M; Dranoff, Glenn; Chen, Xinchun; Lee, Jinhee; Behar, Samuel M

    2017-10-24

    response to Mycobacterium tuberculosis While gamma interferon (IFN-γ) is a key effector function of T cells during infection, a failed phase IIb clinical trial and other studies have revealed that IFN-γ production alone is not sufficient to control M. tuberculosis In this study, we demonstrate that CD4 + , CD8 + , and nonconventional T cells produce GM-CSF during Mycobacterium tuberculosis infection in mice and in the peripheral blood of infected humans. Under conditions where other sources of GM-CSF are absent, T cell production of GM-CSF is protective and is required for control of infection. GM-CSF activation of macrophages to limit bacterial growth requires host expression of the transcription factor PPARγ. The identification of GM-CSF production as a T cell effector function may inform future host-directed therapy or vaccine designs. Copyright © 2017 Rothchild et al.

  15. Effects of oral deoxynivalenol exposure on immune-related parameters in lymphoid organs and serum of mice vaccinated with porcine parvovirus vaccine.

    Science.gov (United States)

    Choi, Byung-Kook; Jeong, Sang-Hee; Cho, Joon-Hyung; Shin, Hyo-Sook; Son, Seong-Wan; Yeo, Young-Keun; Kang, Hwan-Goo

    2013-08-01

    Mice were exposed to deoxynivalenol (DON) via drinking water at a concentration of 2 mg/L for 36 days. On day 8 of treatment, inactivated porcine parvovirus vaccine (PPV) was injected intraperitoneally. The relative and absolute weight of the spleen was significantly decreased in the DON-treated group (DON). Antibody titers to parvovirus in serum were 47.9 ± 2.4 in the vaccination group (Vac), but 15.2 ± 6.5 in the group treated with DON and vaccine (DON + Vac). The IgA and IgG was not different in the DON, Vac an,d DON + Vac groups. IgM was significantly lower only in the DON + Vac group. However IgE was significantly increased in the Vac and DON + Vac group, but no change was observed between the Vac and DON + Vac groups. The concentrations of IL-2, IL-4, GM-CSF, MCP-1 and Rantes in serum, and IL-1α in mesenteric lymph node and MIP-1β in spleen were significantly increased by DON treatment compared to control. The concentrations of IL-2, IL-5, IL-6, IL-9, IL-12, IL-13 and Rantes in thymus, of IL-2 in spleen, and of IL-1α, IL-1β, IL-3, IL-5, IL-10, IL-17, G-CSF, GM-CSF and MCP-1 in mesenteric lymph nodes were significantly decreased in mice compared to those in the Vac group, while concentrations of IL-1α, IL-2, IL-9, IL-13,G-CSF, GM-CSF, IFN-γ, MCP-1, MIP-1α and TNF-α were significantly increased in serum compared to the Vac group. In conclusion, the results presented here indicate that exposure to DON at 2.0 mg/L via drinking water can disrupt the immune response in vaccinated mice by modulating cytokines and chemokines involved in their immune response to infectious disease.

  16. Cancer treatment: the combination of vaccination with other therapies

    DEFF Research Database (Denmark)

    Andersen, M.H.; Sorensen, R.B.; Schrama, D.

    2008-01-01

    approach to fight cancer, the combination with additional therapy could create a number of synergistic effects. Herein we discuss the possibilities and prospects of vaccination when combined with other treatments. In this regard, cell death upon drug exposure may be immunogenic or non-immunogenic depending...... and endothelial cells. The efficacy of therapeutic vaccination against cancer will over the next few years be studied in settings taking advantage of strategies in which vaccination is combined with other treatment modalities. These combinations should be based on current knowledge not only regarding the biology...... of the cancer cell per se, but also considering how treatment may influence the malignant cell population as well as the immune system Udgivelsesdato: 2008/11...

  17. Gene therapy of cancer by vaccines carrying inserted immunostimulatory genes

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2007-01-01

    Roč. 53, č. 3 (2007), s. 71-73 ISSN 0015-5500 Grant - others:EU-FP6 NoE Clinigene(XE) 018933; Liga proti rakovině, Praha(CZ) XX Institutional research plan: CEZ:AV0Z50520514 Keywords : gene therapy * immunostimulatory genes * vaccine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.596, year: 2007

  18. Design of therapeutic vaccines as a novel antibody therapy for cardiovascular diseases.

    Science.gov (United States)

    Nakagami, Hironori

    2017-09-01

    Vaccines are primarily used worldwide as a preventive medicine for infectious diseases and have recently been applied to cancer. We and others have developed therapeutic vaccines designed for cardiovascular diseases that are notably different from previous vaccines. In the case of cancer vaccines, a specific protein in cancer cells is a target antigen, and the activation of cytotoxic T cells (CTL) is required to kill and remove the antigen-presenting cancer cells. Our therapeutic vaccines work against hypertension by targeting angiotensin II (Ang II) as the antigen, which is an endogenous hormone. Therapeutic vaccines must avoid CTL activation and induce the blocking antibodies for Ang II. The goal of our therapeutic vaccine for cardiovascular diseases is to induce the specific antibody response toward the target protein without inducing T-cell or antibody-mediated inflammation through the careful selection of the target antigen, carrier protein and adjuvants. The goal of our therapeutic vaccine is similar to that of antibody therapy. Recently, multiple antibody-based drugs have been developed for cancer, immune-related diseases, and dyslipidemia, which are efficient but expensive. If the effect of a therapeutic vaccine is nearly equivalent to antibody therapy as an alternative approach, the lower medical cost and improvement in drug adherence can be advantages of therapeutic vaccines. In this review, we will describe our concept of therapeutic vaccines for cardiovascular diseases and the future directions of therapeutic vaccines as novel antibody therapies. Copyright © 2017. Published by Elsevier Ltd.

  19. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity.

    Science.gov (United States)

    Schijns, Virgil E J C; Pretto, Chrystel; Devillers, Laurent; Pierre, Denis; Hofman, Florence M; Chen, Thomas C; Mespouille, Pascal; Hantos, Peter; Glorieux, Philippe; Bota, Daniela A; Stathopoulos, Apostolos

    2015-05-28

    Glioblastoma multiforme (GBM) patients have a poor prognosis. After tumor recurrence statistics suggest an imminent death within 1-4.5 months. Supportive preclinical data, from a rat model, provided the rational for a prototype clinical vaccine preparation, named Gliovac (or ERC 1671) composed of autologous antigens, derived from the patient's surgically removed tumor tissue, which is administered together with allogeneic antigens from glioma tissue resected from other GBM patients. We now report the first results of the Gliovac treatment for treatment-resistant GBM patients. Nine (9) recurrent GBM patients, after standard of care treatment, including surgery radio- and chemotherapy temozolomide, and for US patients, also bevacizumab (Avastin™), were treated under a compassionate use/hospital exemption protocol. Gliovac was given intradermally, together with human GM-CSF (Leukine(®)), and preceded by a regimen of regulatory T cell-depleting, low-dose cyclophosphamide. Gliovac administration in patients that have failed standard of care therapies showed minimal toxicity and enhanced overall survival (OS). Six-month (26 weeks) survival for the nine Gliovac patients was 100% versus 33% in control group. At week 40, the published overall survival was 10% if recurrent, reoperated patients were not treated. In the Gliovac treated group, the survival at 40 weeks was 77%. Our data suggest that Gliovac has low toxicity and a promising efficacy. A phase II trial has recently been initiated in recurrent, bevacizumab naïve GBM patients (NCT01903330). Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Phase I trial of anti-GD2 monoclonal antibody hu3F8 plus GM-CSF: Impact of body weight, immunogenicity and anti-GD2 response on pharmacokinetics and survival.

    Science.gov (United States)

    Cheung, Irene Y; Kushner, Brian H; Modak, Shakeel; Basu, Ellen M; Roberts, Stephen S; Cheung, Nai-Kong V

    2017-01-01

    Fifty-seven stage 4 patients with refractory/relapsed neuroblastoma were enrolled in a phase I trial (Clinicaltrials.gov NCT01757626) using humanized anti-GD2 monoclonal antibody hu3F8 in combination with granulocyte-macrophage colony-stimulating factor. The influence of body weight and human anti-human antibody (HAHA) on the pharmacokinetics (PK) of hu3F8, and the effect of de novo anti-GD2 response on patient outcome were explored. Serum samples before hu3F8 infusion, and serially up to day 12 during treatment cycle #1, and at 5 min after each hu3F8 infusion for all subsequent cycles were collected. PK was analyzed using non-compartmental modeling. Immunogenicity was assayed by HAHA response, and vaccination effect by induced host anti-GD2 response measured periodically until disease progression or last followup. Progression-free and overall survival was estimated by the Kaplan-Meier method. Despite dosing being based on body weight, smaller patients had consistently lower area-under-the-curve and faster clearance over the 15 dose levels (0.9 to 9.6 mg/kg per treatment cycle) in this trial. Positive HAHA, defined by the upper limit of normal, when measured within 10 days from the last hu3F8 dose received, was associated with significantly lower serum hu3F8. Despite prior sensitization to other anti-GD2 antibody, e.g. mouse 3F8 or ch14.18, 75% of the patients never developed HAHA response even after getting more treatment cycles. Hu3F8 induced a de novo anti-GD2 response in patients, which was prognostic of progression-free survival. We conclude that hu3F8 had low immunogenicity. During treatment, positive HAHA and low body weight affected PK adversely, whereas induced anti-GD2 response was an outcome predictor.

  1. Calreticulin as cancer treatment adjuvant: combination with photodynamic therapy and photodynamic therapy-generated vaccines

    Directory of Open Access Journals (Sweden)

    Mladen eKorbelik

    2015-02-01

    Full Text Available Calreticulin is recognized as one of pivotal damage-associated molecular pattern (DAMP molecules alerting the host of the presence of distressed cells. In this role, calreticulin becomes exposed on the surface of tumor cells treated by several types of cancer therapy including photodynamic therapy (PDT. The goal of the present study was to examine the potential of externally added calreticulin for augmenting antitumor effect mediated by PDT. Recombinant calreticulin was found to bind to mouse SCCVII tumor cells treated by PDT. Compared to the outcome with PDT alone, cure-rates of SCCVII tumors grown in immunocompetent C3H/HeN mice were elevated when calreticulin (0.4 mg/mouse was injected peritumorally immediately after PDT. Such therapeutic gain with PDT plus calreticulin combination was not obtained with SCCVII tumors growing in immunodeficient NOD-scid mice. In PDT vaccine protocol, where PDT-treated SCCVII cells are used for vaccination of SCCVII tumor-bearing mice, adding recombinant calreticulin to cells before their injection produced improved therapeutic effect. The expression of calreticulin gene was reduced in PDT-treated cells, while no changes were observed with the expression of this gene in tumor, liver, and spleen tissues in PDT vaccine-treated mice. These findings reveal that externally added recombinant calreticulin can boost antitumor responses elicited by PDT or PDT-generated vaccines, and can thus serve as an effective adjuvant for cancer treatment with PDT and probably other cancer cell stress-inducing modalities.

  2. Varicella Vaccination of Children With Leukemia Without Interruption of Maintenance Therapy

    DEFF Research Database (Denmark)

    Smedegaard, Lotte Møller; Poulsen, Anja; Kristensen, Ines Ackerl

    2016-01-01

    Background: Varicella-zoster virus (VZV) can be fatal or cause severe complications in children with acute lymphoblastic leukemia (ALL). This analysis set out to investigate the morbidity and mortality of VZV vaccination without interruption of maintenance therapy in children with ALL. Methods......: Files of 73 seronegative children with ALL were examined for data regarding VZV vaccination and infection, and long-term seroconversion was measured. Criteria before VZV vaccination were (1) seronegative, (2) in complete remission, (3) age >= 1.0 year, (4) lymphocyte count >= 0.6 × 109/L at time...... of vaccination and (5) receiving maintenance therapy. Results: Forty-five children were vaccinated. No child died or experienced serious adverse events due to VZV vaccination. Nine children developed late chickenpox despite vaccination. Long-term protection was found in 86% of children not receiving acyclovir...

  3. Travel and biologic therapy: travel-related infection risk, vaccine response and recommendations.

    Science.gov (United States)

    Hall, Victoria; Johnson, Douglas; Torresi, Joseph

    2018-01-01

    Biologic therapy has revolutionized the management of refractory chronic autoimmune and auto-inflammatory disease, as well as several malignancies, providing rapid symptomatic relief and/or disease remission. Patients receiving biologic therapies have an improved quality of life, facilitating travel to exotic destinations and potentially placing them at risk of a range of infections. For each biologic agent, we review associated travel-related infection risk and expected travel vaccine response and effectiveness. A PUBMED search [vaccination OR vaccine] AND/OR ['specific vaccine'] AND/OR [immunology OR immune response OR response] AND [biologic OR biological OR biologic agent] was performed. A review of the literature was performed in order to develop recommendations on vaccination for patients in receipt of biologic therapy travelling to high-risk travel destinations. There is a paucity of literature in this area, however, it is apparent that travel-related infection risk is increased in patients on biologic therapy and when illness occurs they are at a higher risk of complication and hospitalization. Patients in receipt of biologic agents are deemed as having a high level of immunosuppression-live vaccines, including the yellow fever vaccine, are contraindicated. Inactivated vaccines are considered safe; however, vaccine response can be attenuated by the patient's biologic therapy, thereby resulting in reduced vaccine effectiveness and protection. Best practice requires a collaborative approach between the patient's primary healthcare physician, relevant specialist and travel medicine expert, who should all be familiar with the immunosuppressive and immunomodulatory effects resulting from the biologic therapies. Timing of vaccines should be carefully planned, and if possible, vaccination provided well before established immunosuppression.

  4. Co-expression of HIV-1 virus-like particles and granulocyte-macrophage colony stimulating factor by GEO-D03 DNA vaccine

    Science.gov (United States)

    Hellerstein, Michael; Xu, Yongxian; Marino, Tracie; Lu, Shan; Yi, Hong; Wright, Elizabeth R.; Robinson, Harriet L.

    2012-01-01

    Here, we report on GEO-D03, a DNA vaccine that co-expresses non-infectious HIV-1 virus-like particles (VLPs) and the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). The virus-like particles display the native gp160 form of the HIV-1 Envelope glycoprotein (Env) and are designed to elicit antibody against the natural form of Env on virus and virus-infected cells. The DNA-expressed HIV Gag, Pol and Env proteins also have the potential to elicit virus-specific CD4 and CD8 T cells. The purpose of the co-expressed GM-CSF is to target a cytokine that recruits, expands and differentiates macrophages and dendritic cells to the site of VLP expression. The GEO-D03 DNA vaccine is currently entered into human trials as a prime for a recombinant modified vaccinia Ankara (MVA) boost. In preclinical studies in macaques using an SIV prototype vaccine, this vaccination regimen elicited both anti-viral T cells and antibody, and provided 70% protection against acquisition during 12 weekly rectal exposures with a heterologous SIV. Higher avidity of the Env-specific Ab for the native form of the Env in the challenge virus correlated with lower likelihood of SIV infection. PMID:23111169

  5. Anti-cancer vaccine therapy for hematologic malignancies: An evolving era.

    Science.gov (United States)

    Nahas, Myrna R; Rosenblatt, Jacalyn; Lazarus, Hillard M; Avigan, David

    2018-02-15

    The potential promise of therapeutic vaccination as effective therapy for hematologic malignancies is supported by the observation that allogeneic hematopoietic cell transplantation is curative for a subset of patients due to the graft-versus-tumor effect mediated by alloreactive lymphocytes. Tumor vaccines are being explored as a therapeutic strategy to re-educate host immunity to recognize and target malignant cells through the activation and expansion of effector cell populations. Via several mechanisms, tumor cells induce T cell dysfunction and senescence, amplifying and maintaining tumor cell immunosuppressive effects, resulting in failure of clinical trials of tumor vaccines and adoptive T cell therapies. The fundamental premise of successful vaccine design involves the introduction of tumor-associated antigens in the context of effective antigen presentation so that tolerance can be reversed and a productive response can be generated. With the increasing understanding of the role of both the tumor and tumor microenvironment in fostering immune tolerance, vaccine therapy is being explored in the context of immunomodulatory therapies. The most effective strategy may be to use combination therapies such as anti-cancer vaccines with checkpoint blockade to target critical aspects of this environment in an effort to prevent the re-establishment of tumor tolerance while limiting toxicity associated with autoimmunity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Selected anti-tumor vaccines merit a place in multimodal tumor therapies

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Eva-Maria; Wunderlich, Roland [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Ebel, Nina [Department of Process Technology and Machinery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Rubner, Yvonne [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Schlücker, Eberhard [Department of Process Technology and Machinery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Meyer-Pittroff, Roland [Competence Pool Weihenstephan, Technische Universität München, Freising (Germany); Ott, Oliver J.; Fietkau, Rainer; Gaipl, Udo S.; Frey, Benjamin, E-mail: benjamin.frey@uk-erlangen.de [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany)

    2012-10-09

    Multimodal approaches are nowadays successfully applied in cancer therapy. Primary locally acting therapies such as radiotherapy (RT) and surgery are combined with systemic administration of chemotherapeutics. Nevertheless, the therapy of cancer is still a big challenge in medicine. The treatments often fail to induce long-lasting anti-tumor responses. Tumor recurrences and metastases result. Immunotherapies are therefore ideal adjuncts to standard tumor therapies since they aim to activate the patient's immune system against malignant cells even outside the primary treatment areas (abscopal effects). Especially cancer vaccines may have the potential both to train the immune system against cancer cells and to generate an immunological memory, resulting in long-lasting anti-tumor effects. However, despite promising results in phase I and II studies, most of the concepts finally failed. There are some critical aspects in development and application of cancer vaccines that may decide on their efficiency. The time point and frequency of medication, usage of an adequate immune adjuvant, the vaccine's immunogenic potential, and the tumor burden of the patient are crucial. Whole tumor cell vaccines have advantages compared to peptide-based ones since a variety of tumor antigens (TAs) are present. The master requirements of cell-based, therapeutic tumor vaccines are the complete inactivation of the tumor cells and the increase of their immunogenicity. Since the latter is highly connected with the cell death modality, the inactivation procedure of the tumor cell material may significantly influence the vaccine's efficiency. We therefore also introduce high hydrostatic pressure (HHP) as an innovative inactivation technology for tumor cell-based vaccines and outline that HHP efficiently inactivates tumor cells by enhancing their immunogenicity. Finally studies are presented proving that anti-tumor immune responses can be triggered by combining RT with selected

  7. Changes in cytokine and biomarker blood levels in patients with colorectal cancer during dendritic cell-based vaccination

    DEFF Research Database (Denmark)

    Burgdorf, Stefan K; Claesson, Mogens Helweg; Nielsen, Hans J

    2009-01-01

    Introduction. Immunotherapy based on dendritic cell vaccination has exciting perspectives for treatment of cancer. In order to clarify immunological mechanisms during vaccination it is essential with intensive monitoring of the responses. This may lead to optimization of treatment and prediction...... of responding patients. The aim of this study was to evaluate cytokine and biomarker responses in patients with colorectal cancer treated with a cancer vaccine based on dendritic cells pulsed with an allogeneic melanoma cell lysate. Material and methods. Plasma and serum samples were collected prior...... disease showed increasing levels of plasma GM-CSF, TNF-alpha, IFN-gamma, IL-2, and IL-5. Patients with progressive disease showed significant increase in CEA and TIMP-1 levels, while patients with stable disease showed relatively unaltered levels. Conclusion. The increased levels of key pro...

  8. Therapy of HPV 16-induced tumours with IL-2, IL-12 and genetically modified tumour vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan; Mikyšková, Romana; Indrová, Marie; Vonka, V.; Šmahel, M.

    2002-01-01

    Roč. 98, Suppl. 13 (2002), s. P 1001 ISSN 0020-7136. [UICC International Cancer Congress /18./. 30.06.2002-05.07.2002, Oslo] Institutional research plan: CEZ:AV0Z5052915 Keywords : HPV 16 * interleukins * vaccine therapy Subject RIV: EB - Genetics ; Molecular Biology

  9. Clinical application of dendritic cells in cancer vaccination therapy

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Soot, Mette Line; Buus, Søren

    2003-01-01

    During the last decade use of dendritic cells (DC) has moved from murine and in vitro studies to clinical trials as adjuvant in cancer immunotherapy. Here they function as delivery vehicles for exogenous tumor antigens, promoting an efficient antigen presentation. The development of protocols...... for large-scale generation of dendritic cells for clinical applications has made possible phase I/II studies designed to analyze the toxicity, feasibility and efficacy of this approach. In clinical trials, DC-based vaccination of patients with advanced cancer has in many cases led to immunity...

  10. [VACCINES].

    Science.gov (United States)

    Bellver Capella, Vincente

    2015-10-01

    Vaccines are an extraordinary instrument of immunization of the population against infectious diseases. Around them there are many ethical issues. One of the most debated is what to do with certain groups opposition to vaccination of their children. States have managed in different ways the conflict between the duty of vaccination and the refusal to use vaccines: some impose the vaccination and others simply promote it. In this article we deal with which of these two approaches is the most suitable from an ethical and legal point of view. We stand up for the second option, which is the current one in Spain, and we propose some measures which should be kept in mind to improve immunization programs.

  11. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.

    Science.gov (United States)

    Golden, Joseph W; Josleyn, Matthew; Mucker, Eric M; Hung, Chien-Fu; Loudon, Peter T; Wu, T C; Hooper, Jay W

    2012-01-01

    Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA). We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT) to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV) nonhuman primate (NHP) challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

  12. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Joseph W Golden

    Full Text Available Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA. We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV nonhuman primate (NHP challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

  13. Primary cultured fibroblasts derived from patients with chronic wounds: a methodology to produce human cell lines and test putative growth factor therapy such as GMCSF

    Directory of Open Access Journals (Sweden)

    Coppock Donald L

    2008-12-01

    Full Text Available Abstract Background Multiple physiologic impairments are responsible for chronic wounds. A cell line grown which retains its phenotype from patient wounds would provide means of testing new therapies. Clinical information on patients from whom cells were grown can provide insights into mechanisms of specific disease such as diabetes or biological processes such as aging. The objective of this study was 1 To culture human cells derived from patients with chronic wounds and to test the effects of putative therapies, Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF on these cells. 2 To describe a methodology to create fibroblast cell lines from patients with chronic wounds. Methods Patient biopsies were obtained from 3 distinct locations on venous ulcers. Fibroblasts derived from different wound locations were tested for their migration capacities without stimulators and in response to GM-CSF. Another portion of the patient biopsy was used to develop primary fibroblast cultures after rigorous passage and antimicrobial testing. Results Fibroblasts from the non-healing edge had almost no migration capacity, wound base fibroblasts were intermediate, and fibroblasts derived from the healing edge had a capacity to migrate similar to healthy, normal, primary dermal fibroblasts. Non-healing edge fibroblasts did not respond to GM-CSF. Six fibroblast cell lines are currently available at the National Institute on Aging (NIA Cell Repository. Conclusion We conclude that primary cells from chronic ulcers can be established in culture and that they maintain their in vivo phenotype. These cells can be utilized for evaluating the effects of wound healing stimulators in vitro.

  14. Antitumor Cell-Complex Vaccines Employing Genetically Modified Tumor Cells and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Antonio Miguel

    2014-02-01

    Full Text Available The present study evaluates the immune response mediated by vaccination with cell complexes composed of irradiated B16 tumor cells and mouse fibroblasts genetically modified to produce GM-CSF. The animals were vaccinated with free B16 cells or cell complexes. We employed two gene plasmid constructions: one high producer (pMok and a low producer (p2F. Tumor transplant was performed by injection of B16 tumor cells. Plasma levels of total IgG and its subtypes were measured by ELISA. Tumor volumes were measured and survival curves were obtained. The study resulted in a cell complex vaccine able to stimulate the immune system to produce specific anti-tumor membrane proteins (TMP IgG. In the groups vaccinated with cells transfected with the low producer plasmid, IgG production was higher when we used free B16 cell rather than cell complexes. Nonspecific autoimmune response caused by cell complex was not greater than that induced by the tumor cells alone. Groups vaccinated with B16 transfected with low producer plasmid reached a tumor growth delay of 92% (p ≤ 0.01. When vaccinated with cell complex, the best group was that transfected with high producer plasmid, reaching a tumor growth inhibition of 56% (p ≤ 0.05. Significant survival (40% was only observed in the groups vaccinated with free transfected B16 cells.

  15. An Archaeosome-Adjuvanted Vaccine and Checkpoint Inhibitor Therapy Combination Significantly Enhances Protection from Murine Melanoma

    Directory of Open Access Journals (Sweden)

    Felicity C. Stark

    2017-10-01

    Full Text Available Archaeosomes constitute archaeal lipid vesicle vaccine adjuvants that evoke a strong CD8+ T cell response to antigenic cargo. Therapeutic treatment of murine B16-ovalbumin (B16-OVA melanoma with archaeosome-OVA eliminates small subcutaneous solid tumors; however, they eventually resurge despite an increased frequency of circulating and tumor infiltrating OVA-CD8+ T cells. Herein, a number of different approaches were evaluated to improve responses, including dose number, interval, and the combination of vaccine with checkpoint inhibitors. Firstly, we found that tumor protection could not be enhanced by repetitive and/or delayed boosting to maximize the CD8+ T cell number and/or phenotype. The in vivo cytotoxicity of vaccine-induced OVA-CD8+ T cells was impaired in tumor-bearing mice. Additionally, tumor-infiltrating OVA-CD8+ T cells had an increased expression of programmed cell death protein-1 (PD-1 compared to other organ compartments, suggesting impaired function. Combination therapy of tumor-bearing mice with the vaccine archaeosome-OVA, and α-CTLA-4 administered concurrently as well as α-PD-1 and an α-PD-L1 antibody administered starting 9 days after tumor challenge given on a Q3Dx4 schedule (days 9, 12, 15 and 18, significantly enhanced survival. Following multi-combination therapy ~70% of mice had rapid tumor recession, with no detectable tumor mass after >80 days in comparison to a median survival of 17–22 days for untreated or experimental groups receiving single therapies. Overall, archaeosomes offer a powerful platform for delivering cancer antigens when used in combination with checkpoint inhibitor immunotherapies.

  16. Sequential Vacc-4x and romidepsin during combination antiretroviral therapy (cART)

    DEFF Research Database (Denmark)

    Tapia, G; Højen, J F; Ökvist, M

    2017-01-01

    responses were found in 87.5% participants. No significant changes were observed in the proportion of polyfunctional CD8+ T-cells to HIV(Gag) by ICS. There was a trend towards increased viral inhibition from baseline to post-vaccination (p = 0.08). CONCLUSIONS: In this 'shock and kill' approach supported......OBJECTIVES: The REDUC clinical study Part B investigated Vacc-4x/rhuGM-CSF therapeutic vaccination prior to HIV latency reversal using romidepsin. The main finding was a statistically significant reduction from baseline in viral reservoir measurements. Here we evaluated HIV-specific functional T...... were followed by 3 weekly intravenous infusions of romidepsin (5 mg/m(2)). Immune responses were determined by IFN-γ ELISpot, T-cell proliferation to p24 15-mer peptides covering the Vacc-4x region, intracellular cytokine staining (ICS) to the entire HIV(Gag) and viral inhibition. RESULTS...

  17. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Greten, Tim F; Bruix, Jordi; Forner, Alejandro; Korangy, Firouzeh; N'Kontchou, Gisele; Barget, Nathalie; Ayuso, Carmen; Ormandy, Lars A; Manns, Michael P; Beaugrand, Michel

    2010-01-01

    The sole effective option for patients with advanced HCC is sorafenib and there is an urgent need to develop new therapeutic approaches. Immunotherapy is a promising option that deserves major investigation. In this open label, single arm clinical trial, we analyzed the effect of a low dose cyclophosphamide treatment in combination with a telomerase peptide (GV1001) vaccination in patients with advanced HCC. 40 patients with advanced HCC were treated with 300 mg/m 2 cyclophosphamide on day -3 followed by GM-CSF + GV1001 vaccinations on days 1, 3, 5, 8, 15, 22, 36 followed by 4-weekly injections. Primary endpoint of this phase II trial was tumor response; secondary endpoints evaluated were TTP, TTSP, PFS, OS, safety and immune responses. None of the patients had a complete or partial response to treatment, 17 patients (45.9%) demonstrated a stable disease six months after initiation of treatment. The median TTP was 57.0 days; the median TTSP was estimated to be 358.0 days. Cyclophosphamide, GV1001 and GM-CSF treatment were well tolerated and most adverse events, which were of grade 1 or 2, were generally related to the injection procedure and injection site reactions. GV1001 treatment resulted in a decrease in CD4 + CD25 + Foxp3 + regulatory T cells; however, no GV1001 specific immune responses were detected after vaccination. Low dose cyclophosphamide treatment followed by GV1001 vaccinations did not show antitumor efficacy as per tumor response and time to progression. Further studies are needed to analyze the effect of a combined chemo-immunotherapy to treat patients with HCC. NCT00444782

  18. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Ayuso Carmen

    2010-05-01

    Full Text Available Abstract Background The sole effective option for patients with advanced HCC is sorafenib and there is an urgent need to develop new therapeutic approaches. Immunotherapy is a promising option that deserves major investigation. In this open label, single arm clinical trial, we analyzed the effect of a low dose cyclophosphamide treatment in combination with a telomerase peptide (GV1001 vaccination in patients with advanced HCC. Methods 40 patients with advanced HCC were treated with 300 mg/m2 cyclophosphamide on day -3 followed by GM-CSF + GV1001 vaccinations on days 1, 3, 5, 8, 15, 22, 36 followed by 4-weekly injections. Primary endpoint of this phase II trial was tumor response; secondary endpoints evaluated were TTP, TTSP, PFS, OS, safety and immune responses. Results None of the patients had a complete or partial response to treatment, 17 patients (45.9% demonstrated a stable disease six months after initiation of treatment. The median TTP was 57.0 days; the median TTSP was estimated to be 358.0 days. Cyclophosphamide, GV1001 and GM-CSF treatment were well tolerated and most adverse events, which were of grade 1 or 2, were generally related to the injection procedure and injection site reactions. GV1001 treatment resulted in a decrease in CD4+CD25+Foxp3+ regulatory T cells; however, no GV1001 specific immune responses were detected after vaccination. Conclusions Low dose cyclophosphamide treatment followed by GV1001 vaccinations did not show antitumor efficacy as per tumor response and time to progression. Further studies are needed to analyze the effect of a combined chemo-immunotherapy to treat patients with HCC. Trial registration NCT00444782

  19. Use of ERC-1671 Vaccine in a Patient with Recurrent Glioblastoma Multiforme after Progression during Bevacizumab Therapy: First Published Report.

    Science.gov (United States)

    Bota, Daniela A; Alexandru-Abrams, Daniela; Pretto, Chrystel; Hofman, Florence M; Chen, Thomas C; Fu, Beverly; Carrillo, Jose A; Schijns, Virgil Ejc; Stathopoulos, Apostolos

    2015-01-01

    Glioblastoma multiforme is a highy aggressive tumor that recurs despite resection, focal beam radiation, and temozolamide chemotherapy. ERC-1671 is an experimental treatment strategy that uses the patient's own immune system to attack the tumor cells. The authors report preliminary data on the first human administration of ERC-1671 vaccination under a single-patient, compassionate-use protocol. The patient survived for ten months after the vaccine administration without any other adjuvant therapy and died of complications related to his previous chemotherapies.

  20. Safety and immunogenicity of therapeutic DNA vaccination in individuals treated with antiretroviral therapy during acute/early HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Eric S Rosenberg

    2010-05-01

    Full Text Available An effective therapeutic vaccine that could augment immune control of HIV-1 replication may abrogate or delay the need for antiretroviral therapy. AIDS Clinical Trials Group (ACTG A5187 was a phase I/II, randomized, placebo-controlled, double-blinded trial to evaluate the safety and immunogenicity of an HIV-1 DNA vaccine (VRC-HVDNA 009-00-VP in subjects treated with antiretroviral therapy during acute/early HIV-1 infection. (clinicaltrials.gov NCT00125099Twenty healthy HIV-1 infected subjects who were treated with antiretroviral therapy during acute/early HIV-1 infection and had HIV-1 RNA<50 copies/mL were randomized to receive either vaccine or placebo. The objectives of this study were to evaluate the safety and immunogenicity of the vaccine. Following vaccination, subjects interrupted antiretroviral treatment, and set-point HIV-1 viral loads and CD4 T cell counts were determined 17-23 weeks after treatment discontinuation.Twenty subjects received all scheduled vaccinations and discontinued antiretroviral therapy at week 30. No subject met a primary safety endpoint. No evidence of differences in immunogenicity were detected in subjects receiving vaccine versus placebo. There were also no significant differences in set-point HIV-1 viral loads or CD4 T cell counts following treatment discontinuation. Median set-point HIV-1 viral loads after treatment discontinuation in vaccine and placebo recipients were 3.5 and 3.7 log(10 HIV-1 RNA copies/mL, respectively.The HIV-1 DNA vaccine (VRC-HIVDNA 009-00-VP was safe but poorly immunogenic in subjects treated with antiretroviral therapy during acute/early HIV-1 infection. Viral set-points were similar between vaccine and placebo recipients following treatment interruption. However, median viral load set-points in both groups were lower than in historical controls, suggesting a possible role for antiretroviral therapy in persons with acute or early HIV-1 infection and supporting the safety of

  1. mRNA-based vaccines synergize with radiation therapy to eradicate established tumors

    International Nuclear Information System (INIS)

    Fotin-Mleczek, Mariola; Zanzinger, Kai; Heidenreich, Regina; Lorenz, Christina; Kowalczyk, Aleksandra; Kallen, Karl-Josef; Huber, Stephan M

    2014-01-01

    The eradication of large, established tumors by active immunotherapy is a major challenge because of the numerous cancer evasion mechanisms that exist. This study aimed to establish a novel combination therapy consisting of messenger RNA (mRNA)-based cancer vaccines and radiation, which would facilitate the effective treatment of established tumors with aggressive growth kinetics. The combination of a tumor-specific mRNA-based vaccination with radiation was tested in two syngeneic tumor models, a highly immunogenic E.G7-OVA and a low immunogenic Lewis lung cancer (LLC). The molecular mechanism induced by the combination therapy was evaluated via gene expression arrays as well as flow cytometry analyses of tumor infiltrating cells. In both tumor models we demonstrated that a combination of mRNA-based immunotherapy with radiation results in a strong synergistic anti-tumor effect. This was manifested as either complete tumor eradication or delay in tumor growth. Gene expression analysis of mouse tumors revealed a variety of substantial changes at the tumor site following radiation. Genes associated with antigen presentation, infiltration of immune cells, adhesion, and activation of the innate immune system were upregulated. A combination of radiation and immunotherapy induced significant downregulation of tumor associated factors and upregulation of tumor suppressors. Moreover, combination therapy significantly increased CD4 + , CD8 + and NKT cell infiltration of mouse tumors. Our data provide a scientific rationale for combining immunotherapy with radiation and provide a basis for the development of more potent anti-cancer therapies. The online version of this article (doi:10.1186/1748-717X-9-180) contains supplementary material, which is available to authorized users

  2. Biotechnology and genetic engineering in the new drug development. Part II. Monoclonal antibodies, modern vaccines and gene therapy.

    Science.gov (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, and interferons, as well as recombinant therapeutic proteins. Gene therapy opens up challenging new areas. In this review, a definitions of these processes are given and fields of application and products, as well as the future prospects, are discussed.

  3. Immunological monitoring for prediction of clinical response to antitumor vaccine therapy.

    Science.gov (United States)

    Mikhaylova, Irina N; Shubina, Irina Zh; Chkadua, George Z; Petenko, Natalia N; Morozova, Lidia F; Burova, Olga S; Beabelashvili, Robert Sh; Parsunkova, Kermen A; Balatskaya, Natalia V; Chebanov, Dmitrii K; Pospelov, Vadim I; Nazarova, Valeria V; Vihrova, Anastasia S; Cheremushkin, Evgeny A; Molodyk, Alvina A; Kiselevsky, Mikhail V; Demidov, Lev V

    2018-05-11

    Immunotherapy has shown promising results in a variety of cancers, including melanoma. However, the responses to therapy are usually heterogeneous, and understanding the factors affecting clinical outcome is still not achieved. Here, we show that immunological monitoring of the vaccine therapy for melanoma patients may help to predict the clinical course of the disease. We studied cytokine profile of cellular Th1 (IL-2, IL-12, IFN-γ) and humoral Th2 (IL-4, IL-10) immune response, vascular endothelial growth factor (VEGFA), transforming growth factor-β 2 (TGF-β 2), S100 protein (S100A1B and S100BB), adhesion molecule CD44 and serum cytokines β2-microglobulin to analyze different peripheral blood mononuclear cell subpopuations of patients treated with dendritic vaccines and/or cyclophosphamide in melanoma patients in the course of adjuvant treatment. The obtained data indicate predominance of cellular immunity in the first adjuvant group of patients with durable time to progression and shift to humoral with low cellular immunity in patients with short-term period to progression (increased levels of IL-4 and IL- 10). Beta-2 microglobulin was differentially expressed in adjuvant subgroups: its higher levels correlated with shorter progression-free survival and the total follow-up time. Immunoregulatory index was overall higher in patients with disease progression compared to the group of patients with no signs of disease progression.

  4. AAV2-mediated in vivo immune gene therapy of solid tumours

    LENUS (Irish Health Repository)

    Collins, Sara A

    2010-12-20

    Abstract Background Many strategies have been adopted to unleash the potential of gene therapy for cancer, involving a wide range of therapeutic genes delivered by various methods. Immune therapy has become one of the major strategies adopted for cancer gene therapy and seeks to stimulate the immune system to target tumour antigens. In this study, the feasibility of AAV2 mediated immunotherapy of growing tumours was examined, in isolation and combined with anti-angiogenic therapy. Methods Immune-competent Balb\\/C or C57 mice bearing subcutaneous JBS fibrosarcoma or Lewis Lung Carcinoma (LLC) tumour xenografts respectively were treated by intra-tumoural administration of AAV2 vector encoding the immune up-regulating cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) and the co-stimulatory molecule B7-1 to subcutaneous tumours, either alone or in combination with intra-muscular (IM) delivery of AAV2 vector encoding Nk4 14 days prior to tumour induction. Tumour growth and survival was monitored for all animals. Cured animals were re-challenged with tumourigenic doses of the original tumour type. In vivo cytotoxicity assays were used to investigate establishment of cell-mediated responses in treated animals. Results AAV2-mediated GM-CSF, B7-1 treatment resulted in a significant reduction in tumour growth and an increase in survival in both tumour models. Cured animals were resistant to re-challenge, and induction of T cell mediated anti-tumour responses were demonstrated. Adoptive transfer of splenocytes to naïve animals prevented tumour establishment. Systemic production of Nk4 induced by intra-muscular (IM) delivery of Nk4 significantly reduced subcutaneous tumour growth. However, combination of Nk4 treatment with GM-CSF, B7-1 therapy reduced the efficacy of the immune therapy. Conclusions Overall, this study demonstrates the potential for in vivo AAV2 mediated immune gene therapy, and provides data on the inter-relationship between tumour

  5. Adaptive T cell responses induced by oncolytic Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor therapy expanded by dendritic cell and cytokine-induced killer cell adoptive therapy.

    Science.gov (United States)

    Ren, Jun; Gwin, William R; Zhou, Xinna; Wang, Xiaoli; Huang, Hongyan; Jiang, Ni; Zhou, Lei; Agarwal, Pankaj; Hobeika, Amy; Crosby, Erika; Hartman, Zachary C; Morse, Michael A; H Eng, Kevin; Lyerly, H Kim

    2017-01-01

    Purpose : Although local oncolytic viral therapy (OVT) may enhance tumor lysis, antigen release, and adaptive immune responses, systemic antitumor responses post-therapy are limited. Adoptive immunotherapy with autologous dendritic cells (DC) and cytokine-induced killer cells (DC-CIK) synergizes with systemic therapies. We hypothesized that OVT with Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor (HSV-GM-CSF) would induce adaptive T cell responses that could be expanded systemically with sequential DC-CIK therapy. Patients and Methods : We performed a pilot study of intratumoral HSV-GM-CSF OVT followed by autologous DC-CIK cell therapy. In addition to safety and clinical endpoints, we monitored adaptive T cell responses by quantifying T cell receptor (TCR) populations in pre-oncolytic therapy, post-oncolytic therapy, and after DC-CIK therapy. Results : Nine patients with advanced malignancy were treated with OVT (OrienX010), of whom seven experienced stable disease (SD). Five of the OVT treated patients underwent leukapheresis, generation, and delivery of DC-CIKs, and two had SD, whereas three progressed. T cell receptor sequencing of TCR β sequences one month after OVT therapy demonstrates a dynamic TCR repertoire in response to OVT therapy in the majority of patients with the systematic expansion of multiple T cell clone populations following DC-CIK therapy. This treatment was well tolerated and long-term event free and overall survival was observed in six of the nine patients. Conclusions : Strategies inducing the local activation of tumor-specific immune responses can be combined with adoptive cellular therapies to expand the adaptive T cell responses systemically and further studies are warranted.

  6. Tumor Radiation Therapy Creates Therapeutic Vaccine Responses to the Colorectal Cancer Antigen GUCY2C

    Energy Technology Data Exchange (ETDEWEB)

    Witek, Matthew [Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Blomain, Erik S.; Magee, Michael S.; Xiang, Bo; Waldman, Scott A. [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Snook, Adam E., E-mail: adam.snook@jefferson.edu [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2014-04-01

    Purpose: Radiation therapy (RT) is thought to produce clinical responses in cancer patients, not only through direct toxicity to cancer cells and supporting tumor stroma cells, but also through activation of immunologic effectors. More recently, RT has potentiated the local and systemic effects of cancer immunotherapy (IT). However, combination regimens that maximize immunologic and clinical efficacy remain undefined. Methods and Materials: We evaluated the impact of local RT on adenoviral-mediated vaccination against the colorectal cancer antigen GUCY2C (Ad5-GUCY2C) in a murine subcutaneous tumor model using mouse CT26 colon cancer cells (CT26-GUCY2C). Immune responses were assessed by ELISpot, and clinical responses were assessed by tumor size and incidence. Results: The specific sequence of tumor-directed RT preceding Ad5-GUCY2C IT transformed inactive therapeutic Ad5-GUCY2C vaccination into a curative vaccine. GUCY2C-specific T cell responses were amplified (P<.05), tumor eradication was maximized (P<.01), and tumor volumes were minimized (P<.001) in mice whose tumors were irradiated before, compared with after, Ad5-GUCY2C vaccination. The immunologic and antitumor efficacy of Ad5-GUCY2C was amplified comparably by unfractionated (8 Gy × 1), or biologically equivalent doses of fractionated (3.5 Gy × 3), RT. The antitumor effects of sequential RT and IT (RT-IT) depended on expression of GUCY2C by tumor cells and the adenoviral vaccine vector, and tumor volumes were inversely related to the magnitude of GUCY2C-specific T cell responses. Moreover, mice cured of CT26-GUCY2C tumors by RT-IT showed long-lasting antigen-dependent protection, resisting tumors formed by GUCY2C-expressing 4T1 breast cancer cells inoculated 50 days after CT26 cells. Conclusions: Optimal sequencing of RT and IT amplifies antigen-specific local and systemic immune responses, revealing novel acute and long-term therapeutic antitumor protection. These observations underscore the importance

  7. Safety and immunogenicity of yellow fever 17D vaccine in adults receiving systemic corticosteroid therapy: an observational cohort study.

    Science.gov (United States)

    Kernéis, Solen; Launay, Odile; Ancelle, Thierry; Iordache, Laura; Naneix-Laroche, Véronique; Méchaï, Frédéric; Fehr, Thierry; Leroy, Jean-Philippe; Issartel, Bertrand; Dunand, Jean; van der Vliet, Diane; Wyplosz, Benjamin; Consigny, Paul-Henri; Hanslik, Thomas

    2013-09-01

    To assess the safety and immunogenicity of live attenuated yellow fever (YF) 17D vaccine in adults receiving systemic corticosteroid therapy. All adult travelers on systemic corticosteroid therapy who had received the YF17D vaccine in 24 French vaccination centers were prospectively enrolled and matched with healthy controls (1:2) on age and history of YF17D immunization. Safety was assessed in a self-administered standardized questionnaire within 10 days after immunization. YF-specific neutralizing antibody titers were measured 6 months after vaccination in patients receiving corticosteroids. Between July 2008 and February 2011, 102 vaccine recipients completed the safety study (34 receiving corticosteroids and 68 controls). The median age was 54.9 years (interquartile range [IQR] 45.1-60.3 years) and 45 participants had a history of previous YF17D immunization. The median time receiving corticosteroid therapy was 10 months (IQR 1-67 months) and the prednisone or equivalent dosage was 7 mg/day (IQR 5-20). Main indications were autoimmune diseases (n = 14), rheumatoid arthritis (n = 9), and upper respiratory tract infections (n = 8). No serious adverse event was reported; however, patients receiving corticosteroids reported more frequent moderate/severe local reactions than controls (12% and 2%, respectively; relative risk 8.0, 95% confidence interval 1.4-45.9). All subjects receiving corticosteroids who were tested (n = 20) had neutralizing antibody titers >10 after vaccination. After YF17D immunization, moderate/severe local reactions may be more frequent in patients receiving systemic corticosteroid therapy. Immunogenicity seems satisfactory. Large-scale studies are needed to confirm these results. Copyright © 2013 by the American College of Rheumatology.

  8. A full scale comparative study of methods for generation of functional Dendritic cells for use as cancer vaccines

    Directory of Open Access Journals (Sweden)

    Kvalheim Gunnar

    2007-07-01

    Full Text Available Background Dendritic cells (DCs are professional antigen-presenting cells with the ability to induce primary T-cell responses and are commonly produced by culturing monocytes in the presence of IL-4 and GM-CSF for 5–7 days (Standard DC. Recently, Dauer and co-workers presented a modified protocol for differentiation of human monocytes into mature DCs within 48 hours (Fast DC. Here we report a functional comparison of the two strategies for generation of DCs from human monocytes with adaptions for large-scale clinical use. Methods The Elutra Cell Selection System was used to isolate monocytes after collection of leukapheresis product. The enriched monocytes were cultured in gas permeable Teflon bags with IL-4 and GM-CSF for 24 hours (Fast DC or 5 days (Standard DC to obtain immature DCs. The cells were then transfected with mRNA from the leukemia cell line Jurkat E6 by electroporation and incubated for additional 24 h or 2 days in the presence of pro-inflammatory cytokines (TNFα, IL-1β, IL-6 and PGE2 to obtain mature DCs. Results Mature Fast DC and Standard DC displayed comparable levels of many markers expressed on DC, including HLA-DR, CD83, CD86, CD208 and CCR7. However, compared to Standard DC, mature Fast DC was CD14high CD209low. Fast DC and Standard DC transfected with Jurkat E6-cell mRNA were equally able to elicit T cell specifically recognizing transfected DCs in vitro. IFNγ-secreting T cells were observed in both the CD4+ and CD8+ subsets. Conclusion Our results indicate that mature Fast DC are functional antigen presenting cells (APCs capable of inducing primary T-cell responses, and suggest that these cells may be valuable for generation of anti-tumor vaccines.

  9. A full scale comparative study of methods for generation of functional Dendritic cells for use as cancer vaccines.

    Science.gov (United States)

    Jarnjak-Jankovic, Silvija; Hammerstad, Hege; Saebøe-Larssen, Stein; Kvalheim, Gunnar; Gaudernack, Gustav

    2007-07-03

    Dendritic cells (DCs) are professional antigen-presenting cells with the ability to induce primary T-cell responses and are commonly produced by culturing monocytes in the presence of IL-4 and GM-CSF for 5-7 days (Standard DC). Recently, Dauer and co-workers presented a modified protocol for differentiation of human monocytes into mature DCs within 48 hours (Fast DC). Here we report a functional comparison of the two strategies for generation of DCs from human monocytes with adaptions for large-scale clinical use. The Elutra Cell Selection System was used to isolate monocytes after collection of leukapheresis product. The enriched monocytes were cultured in gas permeable Teflon bags with IL-4 and GM-CSF for 24 hours (Fast DC) or 5 days (Standard DC) to obtain immature DCs. The cells were then transfected with mRNA from the leukemia cell line Jurkat E6 by electroporation and incubated for additional 24 h or 2 days in the presence of pro-inflammatory cytokines (TNFalpha, IL-1beta, IL-6 and PGE2) to obtain mature DCs. Mature Fast DC and Standard DC displayed comparable levels of many markers expressed on DC, including HLA-DR, CD83, CD86, CD208 and CCR7. However, compared to Standard DC, mature Fast DC was CD14high CD209low. Fast DC and Standard DC transfected with Jurkat E6-cell mRNA were equally able to elicit T cell specifically recognizing transfected DCs in vitro. IFNgamma-secreting T cells were observed in both the CD4+ and CD8+ subsets. Our results indicate that mature Fast DC are functional antigen presenting cells (APCs) capable of inducing primary T-cell responses, and suggest that these cells may be valuable for generation of anti-tumor vaccines.

  10. Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era

    Directory of Open Access Journals (Sweden)

    Koollawat Chupradit

    2017-09-01

    Full Text Available Human immunodeficiency virus (HIV is a causative agent of acquired immune deficiency syndrome (AIDS. Highly active antiretroviral therapy (HAART can slow down the replication of HIV-1, leading to an improvement in the survival of HIV-1-infected patients. However, drug toxicities and poor drug administration has led to the emergence of a drug-resistant strain. HIV-1 immunotherapy has been continuously developed, but antibody therapy and HIV vaccines take time to improve its efficiency and have limitations. HIV-1-specific chimeric antigen receptor (CAR-based immunotherapy founded on neutralizing antibodies is now being developed. In HIV-1 therapy, anti-HIV chimeric antigen receptors showed promising data in the suppression of HIV-1 replication; however, autologous transfusion is still a problem. This has led to the development of effective peptides and proteins for an alternative HIV-1 treatment. In this paper, we provide a comprehensive review of potent anti-HIV-1 peptides and proteins that reveal promising therapeutic activities. The inhibitory mechanisms of each therapeutic molecule in the different stages of the HIV-1 life cycle will be discussed herein.

  11. Pre-existing adenovirus immunity modifies a complex mixed Th1 and Th2 cytokine response to an Ad5/HIV-1 vaccine candidate in humans.

    Directory of Open Access Journals (Sweden)

    Samuel O Pine

    2011-04-01

    Full Text Available The results of the recent Step Study highlight a need to clarify the effects of pre-existing natural immunity to a vaccine vector on vaccine-induced T-cell responses. To investigate this interaction, we examined the relationship between pre-existing Ad5 immunity and T-cell cytokine response profiles in healthy, HIV-uninfected recipients of MRKAd5 HIV-1 gag vaccine (HVTN 050, ClinicalTrials.gov #NCT00849732. Participants were grouped by baseline Ad5 neutralizing antibody titer as either Ad5-seronegative (titer ≤18; n = 36 or Ad5-seropositive (titer >200; n = 34. Samples from vaccine recipients were analyzed for immune responses to either HIV-1 Gag peptide pools or Ad5 empty vector using an ex vivo assay that measures thirty cytokines in the absence of long-term culture. The overall profiles of cytokine responses to Gag and Ad5 had similar combinations of induced Th1- and Th2-type cytokines, including IFN-γ, IL-2, TNF-α, IP-10, IL-13, and IL-10, although the Ad5-specific responses were uniformly higher than the Gag-specific responses (p<0.0001 for 9 out of 11 significantly expressed analytes. At the peak response time point, PBMC from Ad5-seronegative vaccinees secreted significantly more IP-10 in response to Gag (p = 0.008, and significantly more IP-10 (p = 0.0009, IL-2 (p = 0.006 and IL-10 (p = 0.05 in response to Ad5 empty vector than PBMC from Ad5-seropositive vaccinees. Additionally, similar responses to the Ad5 vector prior to vaccination were observed in almost all subjects, regardless of Ad5 neutralizing antibody status, and the levels of secreted IFN-γ, IL-10, IL-1Ra and GM-CSF were blunted following vaccination. The cytokine response profile of Gag-specific T cells mirrored the Ad5-specific response present in all subjects before vaccination, and included a number of Th1- and Th2-associated cytokines not routinely assessed in current vaccine trials, such as IP-10, IL-10, IL-13, and GM-CSF. Together, these

  12. Live attenuated measles virus vaccine therapy for locally established malignant glioblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Al-Shammari AM

    2014-05-01

    Full Text Available Ahmed M Al-Shammari,1 Farah E Ismaeel,2 Shahlaa M Salih,2 Nahi Y Yaseen11Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Researches, Mustansiriya University, 2Departments of Biotechnology, College of Science, Al-Nahrain University, Baghdad, IraqAbstract: Glioblastoma multiforme is the most aggressive malignant primary brain tumor in humans, with poor prognosis. A new glioblastoma cell line (ANGM5 was established from a cerebral glioblastoma multiforme in a 72-year-old Iraqi man who underwent surgery for an intracranial tumor. This study was carried out to evaluate the antitumor effect of live attenuated measles virus (MV Schwarz vaccine strain on glioblastoma multiforme tumor cell lines in vitro. Live attenuated MV Schwarz strain was propagated on Vero, human rhabdomyosarcoma, and human glioblastoma-multiform (ANGM5 cell lines. The infected confluent monolayer appeared to be covered with syncytia with granulation and vacuolation, as well as cell rounding, shrinkage, and large empty space with cell debris as a result of cell lysis and death. Cell lines infected with virus have the ability for hemadsorption to human red blood cells after 72 hours of infection, whereas no hemadsorption of uninfected cells is seen. Detection of MV hemagglutinin protein by monoclonal antibodies in infected cells of all cell lines by immunocytochemistry assay gave positive results (brown color in the cytoplasm of infected cells. Cell viability was measured after 72 hours of infection by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Results showed a significant cytotoxic effect for MV (P≤0.05 on growth of ANGM5 and rhabdomyosarcoma cell lines after 72 hours of infection. Induction of apoptosis by MV was assessed by measuring mitochondrial membrane potentials in tumor cells after 48, 72, and 120 hours of infection. Apoptotic cells were counted, and the mean percentage of dead cells was significantly higher after 48, 72

  13. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells.

    Science.gov (United States)

    Burkhardt, Ute E; Hainz, Ursula; Stevenson, Kristen; Goldstein, Natalie R; Pasek, Mildred; Naito, Masayasu; Wu, Di; Ho, Vincent T; Alonso, Anselmo; Hammond, Naa Norkor; Wong, Jessica; Sievers, Quinlan L; Brusic, Ana; McDonough, Sean M; Zeng, Wanyong; Perrin, Ann; Brown, Jennifer R; Canning, Christine M; Koreth, John; Cutler, Corey; Armand, Philippe; Neuberg, Donna; Lee, Jeng-Shin; Antin, Joseph H; Mulligan, Richard C; Sasada, Tetsuro; Ritz, Jerome; Soiffer, Robert J; Dranoff, Glenn; Alyea, Edwin P; Wu, Catherine J

    2013-09-01

    Patients with advanced hematologic malignancies remain at risk for relapse following reduced-intensity conditioning (RIC) allogeneic hematopoietic stem cell transplantation (allo-HSCT). We conducted a prospective clinical trial to test whether vaccination with whole leukemia cells early after transplantation facilitates the expansion of leukemia-reactive T cells and thereby enhances antitumor immunity. We enrolled 22 patients with advanced chronic lymphocytic leukemia (CLL), 18 of whom received up to 6 vaccines initiated between days 30 and 45 after transplantation. Each vaccine consisted of irradiated autologous tumor cells admixed with GM-CSF-secreting bystander cells. Serial patient PBMC samples following transplantation were collected, and the impact of vaccination on T cell activity was evaluated. At a median follow-up of 2.9 (range, 1-4) years, the estimated 2-year progression-free and overall survival rates of vaccinated subjects were 82% (95% CI, 54%-94%) and 88% (95% CI, 59%-97%), respectively. Although vaccination only had a modest impact on recovering T cell numbers, CD8+ T cells from vaccinated patients consistently reacted against autologous tumor, but not alloantigen-bearing recipient cells with increased secretion of the effector cytokine IFN-γ, unlike T cells from nonvaccinated CLL patients undergoing allo-HSCT. Further analysis confirmed that 17% (range, 13%-33%) of CD8+ T cell clones isolated from 4 vaccinated patients by limiting dilution of bulk tumor-reactive T cells solely reacted against CLL-associated antigens. Our studies suggest that autologous tumor cell vaccination is an effective strategy to advance long-term leukemia control following allo-HSCT. Clinicaltrials.gov NCT00442130. NCI (5R21CA115043-2), NHLBI (5R01HL103532-03), and Leukemia and Lymphoma Society Translational Research Program.

  14. Molecular and Cellular Dynamics in the Skin, the Lymph Nodes, and the Blood of the Immune Response to Intradermal Injection of Modified Vaccinia Ankara Vaccine

    Directory of Open Access Journals (Sweden)

    Pierre Rosenbaum

    2018-04-01

    Full Text Available New vaccine design approaches would be greatly facilitated by a better understanding of the early systemic changes, and those that occur at the site of injection, responsible for the installation of a durable and oriented protective response. We performed a detailed characterization of very early infection and host response events following the intradermal administration of the modified vaccinia virus Ankara as a live attenuated vaccine model in non-human primates. Integrated analysis of the data obtained from in vivo imaging, histology, flow cytometry, multiplex cytokine, and transcriptomic analysis using tools derived from systems biology, such as co-expression networks, showed a strong early local and systemic inflammatory response that peaked at 24 h, which was then progressively replaced by an adaptive response during the installation of the host response to the vaccine. Granulocytes, macrophages, and monocytoid cells were massively recruited during the local innate response in association with local productions of GM-CSF, IL-1β, MIP1α, MIP1β, and TNFα. We also observed a rapid and transient granulocyte recruitment and the release of IL-6 and IL-1RA, followed by a persistent phase involving inflammatory monocytes. This systemic inflammation was confirmed by molecular signatures, such as upregulations of IL-6 and TNF pathways and acute phase response signaling. Such comprehensive approaches improve our understanding of the spatiotemporal orchestration of vaccine-elicited immune response, in a live-attenuated vaccine model, and thus contribute to rational vaccine development.

  15. Disabled infectious single cycle-herpes simplex virus (DISC-HSV) as a vector for immunogene therapy of cancer.

    Science.gov (United States)

    Rees, Robert C; McArdle, Stephanie; Mian, Shahid; Li, Geng; Ahmad, Murrium; Parkinson, Richard; Ali, Selman A

    2002-02-01

    Disabled infectious single cycle-herpes simplex viruses (DISC-HSV) have been shown to be safe for use in humans and may be considered efficacious as vectors for immunogene therapy in cancer. Preclinical studies show that DISC-HSV is an efficient delivery system for cytokine genes and antigens. DISC-HSV infects a high proportion of cells, resulting in rapid gene expression for at least 72 h. The DISC-HSV-mGM-CSF vector, when inoculated into tumors, induces tumor regression in a high percentage of animals, concomitant with establishing a cytotoxic T-cell response, which is MHC class I restricted and directed against peptides of known tumor antigens. The inherent properties of DISC-HSV makes it a suitable vector for consideration in human immunogene therapy trials.

  16. Surface protein mutations in chronic hepatitis B patients who received hepatitis B vaccine therapy

    Directory of Open Access Journals (Sweden)

    Maryam Daram

    2014-09-01

    Conclusion: In chronic carriers who already had HBsAg variants selected by the host-immune response, any immune stimulation by the vaccine had no effect on the chronic state of these patients or selected any remarkable escape mutants. Newer strategies should be considered based on third generation or the use of DNA vaccines or new adjuvants.

  17. Endothelial-derived GM-CSF influences expression of oncostatin M

    Science.gov (United States)

    During and following transendothelial migration, neutrophils undergo a number of phenotypic changes resulting from encounters with endothelial-derived factors. This report uses an in vitro model with HUVEC and isolated human neutrophils to examine the effects of two locally-derived cytokines, granul...

  18. Hemopoietic stem cells in rhesus monkeys : surface antigens, radiosensitivity, and responses to GM-CSF

    NARCIS (Netherlands)

    J.J. Wielenga (Jenne)

    1990-01-01

    textabstractRhesus monkeys (Macaca mulatta) were bred at the Primate Center TNO, Rijswijk, The Netherlands!. Both male and female animals were used for the experiments. The monkeys weighed 2.5-4 kg and were 2-4 years old at the time of the experiment. They were all typed for RhLA-A, -B and -DR

  19. The impact of vaccination and antiviral therapy on hepatitis B and hepatitis D epidemiology.

    Directory of Open Access Journals (Sweden)

    Ashish Goyal

    Full Text Available The major cause of liver cancer around the globe is hepatitis B virus (HBV, which also contributes to a large number of deaths due to liver failure alone. Hepatitis delta virus (HDV is as potentially alarming as HBV since life threatening cases are 10 times more likely with HBV-HDV dual infection compared to HBV monoinfection. So far, there is no established effective treatment against HDV and the only preventive action suggested by the World Health Organization is to introduce HBV vaccination for children immediately after birth (newborns and thus reduce the available pool for HDV infection. Here the main objective is to understand the complex dynamics of HBV-HDV infection in a human population that can inform public health policy makers on the level of different preventive measures required to eliminate HBV and HDV infections. Model simulations suggest that HBV vertical transmission and HBV vaccination rates for newborns are instrumental in determining HBV and HDV prevalence. A decrease in HBV prevalence is observed as vaccination coverage increases and it is possible to eradicate both HBV and HDV using high vaccination coverage of ≥80% in the long term. We further found that HDV presence results in lower HBV prevalence. An application of our model to China revealed that vaccinating every newborn in China will further prevent 1.69 million new infections by 2028 as compared to the current 90% vaccination coverage. Although, higher vaccination coverage of newborns should eliminate both HBV and HDV over a long time period, any short term strategy to eradicate HDV must include additional preventive measures such as HBV adult vaccination. Implementation of HBV adult vaccination programs at a rate of 10% per year over 15 years will further prevent 39 thousand new HDV infections in China by 2028 as compared to HBV vaccination programs solely for newborns.

  20. Induction of MAGE-A3 and HPV-16 immunity by Trojan vaccines in patients with head and neck carcinoma.

    Science.gov (United States)

    Voskens, Caroline J; Sewell, Duane; Hertzano, Ronna; DeSanto, Jennifer; Rollins, Sandra; Lee, Myounghee; Taylor, Rodney; Wolf, Jeffrey; Suntharalingam, Mohan; Gastman, Brian; Papadimitriou, John C; Lu, Changwan; Tan, Ming; Morales, Robert; Cullen, Kevin; Celis, Esteban; Mann, Dean; Strome, Scott E

    2012-12-01

    We performed a pilot study using Trojan vaccines in patients with advanced squamous cell carcinoma of the head and neck (SCCHN). These vaccines are composed of HLA-I and HLA-II restricted melanoma antigen E (MAGE)-A3 or human papillomavirus (HPV)-16 derived peptides, joined by furin-cleavable linkers, and linked to a "penetrin" peptide sequence derived from HIV-TAT. Thirty-one patients with SCCHN were screened for the trial and 5 were enrolled. Enrolled patients were treated with 300 μg of Trojan peptide supplemented with Montanide and granulocyte-macrophage colony-stimulating factor (GM-CSF) at 4-week intervals for up to 4 injections. Following vaccination, peripheral blood mononuclear cells (PBMCs) from 4 of 5 patients recognized both the full Trojan constructs and constituent HLA-II peptides, whereas responses to HLA-I restricted peptides were less pronounced. This treatment regimen seems to have acceptable toxicity and elicits measurable systemic immune responses against HLA-II restricted epitopes in a subset of patients with advanced SCCHN. Copyright © 2012 Wiley Periodicals, Inc.

  1. ABO blood type correlates with survival on prostate cancer vaccine therapy.

    Science.gov (United States)

    Muthana, Saddam M; Gulley, James L; Hodge, James W; Schlom, Jeffrey; Gildersleeve, Jeffrey C

    2015-10-13

    Immunotherapies for cancer are transforming patient care, but clinical responses vary considerably from patient to patient. Simple, inexpensive strategies to target treatment to likely responders could substantially improve efficacy while simultaneously reducing health care costs, but identification of reliable biomarkers has proven challenging. Previously, we found that pre-treatment serum IgM to blood group A (BG-A) correlated with survival for patients treated with PROSTVAC-VF, a therapeutic cancer vaccine in phase III clinical trials for the treatment of prostate cancer. These results suggested that ABO blood type might influence efficacy. Unfortunately, blood types were not available in the clinical records for all but 8 patients and insufficient amounts of sera were left for standard blood typing methods. To test the hypothesis, therefore, we developed a new glycan microarray-based method for determining ABO blood type. The method requires only 4 μL of serum, provides 97% accuracy, and allows simultaneous profiling of many other serum anti-glycan antibodies. After validation with 220 healthy subjects of known blood type, the method was then applied to 74 PROSTVAC-VF patients and 37 control patients from a phase II trial. In this retrospective study, we found that type B and O PROSTVAC-VF patients demonstrated markedly improved clinical outcomes relative to A and AB patients, including longer median survival, longer median survival relative to Halabi predicted survival, and improved overall survival via Kaplan-Meier survival analysis (p = 0.006). Consequently, blood type may provide an inexpensive screen to pre-select patients likely to benefit from PROSTVAC-VF therapy.

  2. THE CYTOKINES SYNTHESIS IN VITRO IN THE TICK-BORNE ENCEPHALITIS VIRUS INFECTED CELLS AND IN THE PRESENCE OF INACTIVATED VACCINE

    Directory of Open Access Journals (Sweden)

    M. V. Mesentseva

    2014-01-01

    Full Text Available Abstract. Tick-borne encephalitis (TBE is severe neuroinfectious disease with involvement of immune mechanisms in pathogenesis. Comparative analysis of synthesis of key cytokines had been performed for the TBE virus (TBEV infected cells and in the presence of inactivated vaccine against TBE in vitro. Persistent TBEV infection of immortal tissue culture of human larynx cancer cells caused transcription activation of interferons IFNα, IFNγ, IFNλ1, interleukins IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12, tumour necrosis factor TNFα as well as one of apoptosis factors Fas. Comparison of transcription and production of cytokines revealed that the TBEV infection resulted in posttranscription Th1 shift of cytokine response. In the presence of inactivated vaccine against TBE based on the same strain Sofjin of the TBEV activation of transcription of cytokines IFNα, IFNλ1, IL-4, IL-10 was also observed as after the TBEV infection that together with an additional stimulation of GM-CSF production might serve as an evidence of Th2 response. Involvement of IFNIII type (IFNλ1 both during persistent infection and after addition of inactivated vaccines was found in the first time. Differences in dynamics of cytokines IL-2, IL-8, IL-10, IL-12, TNFα response during the TBEV infection and in the presence of inactivated vaccine are described.

  3. Immunogenicity of influenza H1N1 vaccination in mixed connective tissue disease: effect of disease and therapy

    Directory of Open Access Journals (Sweden)

    Renata Miossi

    2013-01-01

    phosphokinase (p = 0.40 and ribonucleoprotein antibody levels (p = 0.98, remained largely unchanged pre and post-vaccination. No severe side effects were reported. CONCLUSIONS: The non-adjuvanted influenza A/H1N1 vaccination immune response in mixed connective tissue disease patients is adequate and does not depend on the disease manifestations and therapy.

  4. Vaccines: an ongoing promise?

    Science.gov (United States)

    Alsahli, M; Farrell, R J; Michetti, P

    2001-01-01

    Over the past decade, intensive research has focused on developing a vaccine therapy for Helicobacter pylori. Substantial unresolved questions cloud the current approach, and the development of a vaccine against this unique organism has proved very challenging. Many candidate vaccines have been tested in animal models. The immunogenicity and the safety of some vaccine formulations have been recently evaluated through clinical trials, and the efficacy of these vaccine therapies in humans will be determined in the near future. This article will provide an overview of the current knowledge of natural and vaccine-induced immune responses to H. pylori infection. It will also review past vaccine successes and failures in animal models and the limited experience to date in using vaccine therapy in humans. Several obstacles to H. pylori vaccine development efforts along with the future direction of these efforts will be discussed. Copyright 2001 S. Karger AG, Basel

  5. Prevention of oral mucositis in children receiving cancer therapy: a systematic review and evidence-based analysis.

    Science.gov (United States)

    Qutob, Akram F; Gue, Sumant; Revesz, Tamas; Logan, Richard M; Keefe, Dorothy

    2013-02-01

    This systematic review investigated, critically appraised, and rated the evidence on agents used to prevent oral mucositis in children. A comprehensive search of the relevant literature was performed up to December 2011. Articles were included according to the inclusion/exclusion criteria and were critically appraised for validation and quality assessment using a checklist consisting of 18 categories. Each article was then rated for its strength of evidence. 16,471 articles were retrieved from 19 different databases and then reduced to 27 articles that fit the inclusion criteria. Five articles on oral care protocols supported their use to prevent oral mucositis in children. Seven articles on chlorhexidine mouthwash and three on laser therapy had conflicting evidence of its use. The preventative agents that were supported by one or two articles included: benzydamine mouthwash, iseganan mouthwash, granulocyte-macrophage colony-stimulating factor (GM-CSF) mouthwash, oral/enteral glutamine, oral propantheline and cryotherapy, oral cryotherapy, oral sucralfate suspension, prostaglandin E2 tablets, and chewing gum. The reduction in the rates of occurrence of oral mucositis when using agents of fair (B) to good (A) evidence ranged from 22% to 52%. In conclusion, this review suggests the use of oral care protocols to prevent oral mucositis in children because of their strength of evidence (fair to good). The authors suggest avoiding agents with fair to good evidence against their use (oral sucralfate suspension, prostaglandin E2 tablets, and GM-CSF mouthwash). Agents with conflicting evidence (chlorhexidine mouthwash (used solely), laser therapy, and glutamine) should also be avoided until further research confirms their efficacy. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  6. H1N1 vaccines in a large observational cohort of patients with inflammatory bowel disease treated with immunomodulators and biological therapy.

    Science.gov (United States)

    Rahier, Jean-François; Papay, Pavol; Salleron, Julia; Sebastian, Shaji; Marzo, Manuela; Peyrin-Biroulet, Laurent; Garcia-Sanchez, Valle; Fries, Walter; van Asseldonk, Dirk P; Farkas, Klaudia; de Boer, Nanne K; Sipponen, Taina; Ellul, Pierre; Louis, Edouard; Peake, Simon T C; Kopylov, Uri; Maul, Jochen; Makhoul, Badira; Fiorino, Gionata; Yazdanpanah, Yazdan; Chaparro, Maria

    2011-04-01

    Safety data are lacking on influenza vaccination in general and on A (H1N1)v vaccination in particular in patients with inflammatory bowel disease (IBD) receiving immmunomodulators and/or biological therapy. The authors conducted a multicentre observational cohort study to evaluate symptoms associated with influenza H1N1 adjuvanted (Pandemrix, Focetria, FluvalP) and non-adjuvanted (Celvapan) vaccines and to assess the risk of flare of IBD after vaccination. Patients with stable IBD treated with immunomodulators and/or biological therapy were recruited from November 2009 until March 2010 in 12 European countries. Harvey-Bradshaw Index and Partial Mayo Score were used to assess disease activity before and 4 weeks after vaccination in Crohn's disease (CD) and ulcerative colitis (UC). Vaccination-related events up to 7 days after vaccination were recorded. Of 575 patients enrolled (407 CD, 159 UC and nine indeterminate colitis; 53.9% female; mean age 40.3 years, SD 13.9), local and systemic symptoms were reported by 34.6% and 15.5% of patients, respectively. The most common local and systemic reactions were pain in 32.8% and fatigue in 6.1% of subjects. Local symptoms were more common with adjuvanted (39.3%) than non-adjuvanted (3.9%) vaccines (p < 0.0001), whereas rates of systemic symptoms were similar with both types (15.0% vs 18.4%, p = 0.44). Among the adjuvanted group, Pandemrix more often induced local reactions than FluvalP and Focetria (51.2% vs 27.6% and 15.4%, p < 0.0001). Solicited adverse events were not associated with any patient characteristics, specific immunomodulatory treatment, or biological therapy. Four weeks after vaccination, absence of flare was observed in 377 patients with CD (96.7%) and 151 with UC (95.6%). Influenza A (H1N1)v vaccines are well tolerated in patients with IBD. Non-adjuvanted vaccines are associated with fewer local reactions. The risk of IBD flare is probably not increased after H1N1 vaccination.

  7. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    Science.gov (United States)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key Words: Ultraviolet radiation,Standard Erythema Dose(SED), Minimal Erythema Dose(MED), Sun Burns, Solar Dermatitis, Sun Burned Disease, DNA Damage,Cell Damage, Antiradiation UV Vaccine, Immune-Prophylaxis of Sun Burned Diseases, Immune-Prophylaxis of Sun Burns, Immune-Therapy of Sun-Burned Disease and Sun Burns,Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Toxic Epidermal Necrolysis(TEN). Introduction: High doses of UV generated by solar source and artificial sources create an exposure of mammals and other species which can lead to ultraviolet(UV)radiation- associated disease (including erythema, epilation, keratitis, etc.). UV radiation belongs to the non-ionizing part of the electromagnetic spectrum and ranges between 100 nm and 400 nm with 100 nm having been chosen arbitrarily as the boundary between non-ionizing and ionizing radiation, however EMR is a spectrum and UV can produce molecular ionization. UV radiation is conventionally categorized into 3 areas: UV-A (>315-400 nm),UV-B (>280-315 nm)and UV-C (>100-280 nm) [IARC,Working Group Reports,2005] An important consequence of stratospheric ozone depletion is the increased transmission of solar ultraviolet (UV)radiation to the Earth's lower atmosphere and surface. Stratospheric ozone levels have been falling, in certain areas, for the past several decades, so current surface ultraviolet-B (UV-B) radiation levels are thought to be close to their modern day maximum. [S.Madronich et al.1998] Overexposure of ultraviolet radiation a major cause of skin cancer including basal cell carcinoma (BCC), squamous cell carcinoma (SCC) { collectively referred to as “non-melanoma" skin cancer (NMSC) and melanoma as well, with skin cancers being the most common cancer in North America. [Armstrong et al. 1993, Gallagher et al. 2005] Methods and Experimental Design: Our experiments and testing of a novel UV “Antiradiation Vaccine” have employed a wide variety of laboratory animals which include : Chinchilla

  8. Impact of Estrogen Therapy on Lymphocyte Homeostasis and the Response to Seasonal Influenza Vaccine in Post-Menopausal Women.

    Directory of Open Access Journals (Sweden)

    Flora Engelmann

    Full Text Available It is widely recognized that changes in levels of ovarian steroids modulate severity of autoimmune disease and immune function in young adult women. These observations suggest that the loss of ovarian steroids associated with menopause could affect the age-related decline in immune function, known as immune senescence. Therefore, in this study, we determined the impact of menopause and estrogen therapy (ET on lymphocyte subset frequency as well as the immune response to seasonal influenza vaccine in three different groups: 1 young adult women (regular menstrual cycles, not on hormonal contraception; 2 post-menopausal (at least 2 years women who are not receiving any form of hormone therapy (HT and 3 post-menopausal hysterectomized women receiving ET. Although the numbers of circulating CD4 and CD20 B cells were reduced in the post-menopausal group receiving ET, we also detected a better preservation of naïve B cells, decreased CD4 T cell inflammatory cytokine production, and slightly lower circulating levels of the pro-inflammatory cytokine IL-6. Following vaccination, young adult women generated more robust antibody and T cell responses than both post-menopausal groups. Despite similar vaccine responses between the two post-menopausal groups, we observed a direct correlation between plasma 17β estradiol (E2 levels and fold increase in IgG titers within the ET group. These findings suggest that ET affects immune homeostasis and that higher plasma E2 levels may enhance humoral responses in post-menopausal women.

  9. Adjuvant therapeutic vaccination in patients with non-small cell lung cancer made lymphopenic and reconstituted with autologous PBMC: first clinical experience and evidence of an immune response

    Directory of Open Access Journals (Sweden)

    Schendel Dolores J

    2007-09-01

    Full Text Available Abstract Background Given the considerable toxicity and modest benefit of adjuvant chemotherapy for non-small cell lung cancer (NSCLC, there is clearly a need for new treatment modalities in the adjuvant setting. Active specific immunotherapy may represent such an option. However, clinical responses have been rare so far. Manipulating the host by inducing lymphopenia before vaccination resulted in a magnification of the immune response in the preclinical setting. To evaluate feasibility and safety of an irradiated, autologous tumor cell vaccine given following induction of lymphopenia by chemotherapy and reinfusion of autologous peripheral blood mononuclear cells (PBMC, we are currently conducting a pilot-phase I clinical trial in patients with NSCLC following surgical resection. This paper reports on the first clinical experience and evidence of an immune response in patients suffering from NSCLC. Methods NSCLC patients stages I-IIIA are recruited. Vaccines are generated from their resected lung specimens. Patients undergo leukapheresis to harvest their PBMC prior to or following the surgical procedure. Furthermore, patients receive preparative chemotherapy (cyclophosphamide 350 mg/m2 and fludarabine 20 mg/m2 on 3 consecutive days for induction of lymphopenia followed by reconstitution with their autologous PBMC. Vaccines are administered intradermally on day 1 following reconstitution and every two weeks for a total of up to five vaccinations. Granulocyte-macrophage-colony-stimulating-factor (GM-CSF is given continuously (at a rate of 50 μg/24 h at the site of vaccination via minipump for six consecutive days after each vaccination. Results To date, vaccines were successfully manufactured for 4 of 4 patients. The most common toxicities were local injection-site reactions and mild constitutional symptoms. Immune responses to chemotherapy, reconstitution and vaccination are measured by vaccine site and delayed type hypersensitivity (DTH skin

  10. Developing a HER3 Vaccine to Prevent Resistance to Endocrine Therapy

    Science.gov (United States)

    2014-10-01

    the vaccine include anaphylaxis, fever, skin reaction, autoimmunity ( colitis ), and hepatic insufficiency. Number of Patients Planned: 18 evaluable...could lead to developing an infection, skin rash, joint swelling, intestinal inflammation (chronic colitis ), or fluid around the heart and lungs...flu-like symptoms , anorexia, chills, nausea, and headache. These symptoms were also self-limiting and did not require intervention other than

  11. Genetically modified cellular vaccines for therapy of human papilloma virus type 16 (HPV 16)-associated tumours

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2008-01-01

    Roč. 8, č. 3 (2008), s. 180-186 ISSN 1568-0096 Grant - others:EU-FP6-NoE Clinigene(XE) 018933 Institutional research plan: CEZ:AV0Z50520514 Keywords : HPV 16 * genetically modified vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.316, year: 2008

  12. Mechanistic studies on long peptide-based vaccines for the use in cancer therapy

    NARCIS (Netherlands)

    Bijker, Martijn Sander

    2007-01-01

    Synthetic peptide vaccines aiming at the induction of a protective CD8+ T-cell response against infectious or malignant diseases are widely used in the clinic but, despite their success in animal models, they do not yet live up to their promise in humans. This thesis assesses the development of

  13. A comparative study on vaccination pain in the methods of massage therapy and mothers' breast feeding during injection of infants referring to Navabsafavi Health Care Center in Isfahan.

    Science.gov (United States)

    Esfahani, Mitra Savabi; Sheykhi, Sanaz; Abdeyazdan, Zahra; Jodakee, Mohamadreza; Boroumandfar, Khadijeh

    2013-11-01

    Vaccination is one of the most common painful procedures in infants. The irreversible consequences due to pain experiences in infants are enormous. Breast feeding and massage therapy methods are the non-drug methods of pain relief. Therefore, this research aimed to compare the vaccination-related pain in infants who underwent massage therapy or breast feeding during injection. This study is a randomized clinical trial. Ninety-six infants were allocated randomly and systematically to three groups (breast feeding, massage, and control groups). The study population comprised all infants, accompanied by their mothers, referring to one of the health centers in Isfahan for vaccination of hepatitis B and DPT at 6 months of age and for MMR at 12 months of age. Data gathering was done using questionnaire and checklist [neonatal infant pain scale (NIPS)]. Data analysis was done using descriptive and inferential statistical methods with SPSS software. Findings of the study showed that the three groups had no statistically significant difference in terms of demographic characteristics (P > 0/05). The mean pain scores in the breast feeding group, massage therapy, and control group were 3.4, 3.9, and 4.8, respectively (P massage therapy and breast feeding (P = 0.041), breast feeding group and control (P massage therapy and control groups (P = 0.002) were statistically significant. Considering the results of the study, it seems that breast feeding during vaccination has more analgesic effect than massage therapy. Therefore, it is suggested as a noninvasive, safe, and accessible method without any side effects for reducing vaccination-related pain.

  14. Have we found an optimal insertion site in a Newcastle disease virus vector to express a foreign gene for vaccine and gene therapy purposes?

    Science.gov (United States)

    Using reverse genetics technology, many strains of Newcastle disease virus (NDV) have been developed as vectors to express foreign genes for vaccine and gene therapy purposes. The foreign gene is usually inserted into a non-coding region of the NDV genome as an independent transcription unit. Eval...

  15. Hepatitis B virus prevalence and vaccine response in HIV-infected children and adolescents on combination antiretroviral therapy in Kigali, Rwanda

    NARCIS (Netherlands)

    Mutwa, Philippe R.; Boer, Kimberly R.; Rusine, John B.; Muganga, Narcisse; Tuyishimire, Diane; Reiss, Peter; Lange, Joep M. A.; Geelen, Sibyl P. M.

    2013-01-01

    The aim of this study was to determine the prevalence of hepatitis B virus (HBV) infection in a cohort of HIV-infected Rwandan children and adolescents on combination antiretroviral therapy (cART), and the success rate of HBV vaccination in those children found to be HBV negative. HIV-infected

  16. Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56.

    Science.gov (United States)

    Duffy, Margaret R; Alonso-Padilla, Julio; John, Lijo; Chandra, Naresh; Khan, Selina; Ballmann, Monika Z; Lipiec, Agnieszka; Heemskerk, Evert; Custers, Jerome; Arnberg, Niklas; Havenga, Menzo; Baker, Andrew H; Lemckert, Angelique

    2018-01-01

    The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.

  17. Incorporation of membrane-bound, mammalian-derived immunomodulatory proteins into influenza whole virus vaccines boosts immunogenicity and protection against lethal challenge

    Directory of Open Access Journals (Sweden)

    Roberts Paul C

    2009-04-01

    Full Text Available Abstract Background Influenza epidemics continue to cause morbidity and mortality within the human population despite widespread vaccination efforts. This, along with the ominous threat of an avian influenza pandemic (H5N1, demonstrates the need for a much improved, more sophisticated influenza vaccine. We have developed an in vitro model system for producing a membrane-bound Cytokine-bearing Influenza Vaccine (CYT-IVAC. Numerous cytokines are involved in directing both innate and adaptive immunity and it is our goal to utilize the properties of individual cytokines and other immunomodulatory proteins to create a more immunogenic vaccine. Results We have evaluated the immunogenicity of inactivated cytokine-bearing influenza vaccines using a mouse model of lethal influenza virus challenge. CYT-IVACs were produced by stably transfecting MDCK cell lines with mouse-derived cytokines (GM-CSF, IL-2 and IL-4 fused to the membrane-anchoring domain of the viral hemagglutinin. Influenza virus replication in these cell lines resulted in the uptake of the bioactive membrane-bound cytokines during virus budding and release. In vivo efficacy studies revealed that a single low dose of IL-2 or IL-4-bearing CYT-IVAC is superior at providing protection against lethal influenza challenge in a mouse model and provides a more balanced Th1/Th2 humoral immune response, similar to live virus infections. Conclusion We have validated the protective efficacy of CYT-IVACs in a mammalian model of influenza virus infection. This technology has broad applications in current influenza virus vaccine development and may prove particularly useful in boosting immune responses in the elderly, where current vaccines are minimally effective.

  18. Vaccines in Multiple Sclerosis.

    Science.gov (United States)

    Williamson, Eric M L; Chahin, Salim; Berger, Joseph R

    2016-04-01

    Vaccinations help prevent communicable disease. To be valuable, a vaccine's ability to prevent disease must exceed the risk of adverse effects from administration. Many vaccines present no risk of infection as they are comprised of killed or non-infectious components while other vaccines consist of live attenuated microorganisms which carry a potential risk of infection-particularly, in patients with compromised immunity. There are several unique considerations with respect to vaccination in the multiple sclerosis (MS) population. First, there has been concern that vaccination may trigger or aggravate the disease. Second, disease-modifying therapies (DMTs) employed in the treatment of MS may increase the risk of infectious complications from vaccines or alter their efficacy. Lastly, in some cases, vaccination strategies may be part of the treatment paradigm in attempts to avoid complications of therapy.

  19. Responses of primary human nasal epithelial cells to EDIII-DENV stimulation: the first step to intranasal dengue vaccination.

    Science.gov (United States)

    Nantachit, Nattika; Sunintaboon, Panya; Ubol, Sukathida

    2016-08-18

    About half of the world's population are living in the endemic area of dengue viruses implying that a rapid-mass vaccination may be required. In addition, a major target of dengue vaccine are children, thus, a needle-free administration is more attractive. These problems may be overcome by the alternative route of vaccination such as topical, oral and intranasal vaccination. Here, we investigated the possibility to deliver a dengue immunogen intranasally, a painless route of vaccination. The tested immunogen was the domain III of dengue serotype-3 E protein (EDIII-D3) loaded into trimethyl chitosan nanoparticles (EDIII-D3 TMC NPs). The primary human nasal epithelial cells, HNEpCs, were used as an in vitro model for nasal responses. At tested concentrations, EDIII-D3 TMC NPs not only exerted no detectable toxicity toward HNEpC cultures but also efficiently delivered EDIII-D3 immunogens into HNEpCs. Moreover, HNEpCs quickly and strongly produced proinflammatory cytokines (IL-1β, IL-6, TNF-α), type-I IFN, the growth factors (GM-CSF, IL-7), the chemokines (MCP-1, MIP-1β, IL-8), Th1-related cytokines (IL-2, IL-12p70, IL-17, IFN-γ) and Th2-related cytokine (IL-4) in response to EDIII-D3 TMC NPs treatment. A potential mucosal delivery system for dengue immunogens was revealed and found to stimulate a strong local innate antiviral response which possibly leading to a systemic adaptive immunity.

  20. Unexpected High Response Rate to Traditional Therapy after Dendritic Cell-Based Vaccine in Advanced Melanoma: Update of Clinical Outcome and Subgroup Analysis

    Directory of Open Access Journals (Sweden)

    Laura Ridolfi

    2010-01-01

    Full Text Available We reviewed the clinical results of a dendritic cell-based phase II clinical vaccine trial in stage IV melanoma and analyzed a patient subgroup treated with standard therapies after stopping vaccination. From 2003 to 2009, 24 metastatic melanoma patients were treated with mature dendritic cells pulsed with autologous tumor lysate and keyhole limpet hemocyanin and low-dose interleukin-2. Overall response (OR to vaccination was 37.5% with a clinical benefit of 54.1%. All 14 responders showed delayed type hypersensitivity positivity. Median overall survival (OS was 15 months (95% CI, 8–33. Eleven patients underwent other treatments (3 surgery, 2 biotherapy, 2 radiotherapy, 2 chemotherapy, and 4 biochemotherapy after stopping vaccination. Of these, 2 patients had a complete response and 5 a partial response, with an OR of 63.6%. Median OS was 34 months (range 16–61. Our results suggest that therapeutic DC vaccination could favor clinical response in patients after more than one line of therapy.

  1. Unexpected high response rate to traditional therapy after dendritic cell-based vaccine in advanced melanoma: update of clinical outcome and subgroup analysis.

    Science.gov (United States)

    Ridolfi, Laura; Petrini, Massimiliano; Fiammenghi, Laura; Granato, Anna Maria; Ancarani, Valentina; Pancisi, Elena; Scarpi, Emanuela; Guidoboni, Massimo; Migliori, Giuseppe; Sanna, Stefano; Tauceri, Francesca; Verdecchia, Giorgio Maria; Riccobon, Angela; Valmorri, Linda; Ridolfi, Ruggero

    2010-01-01

    We reviewed the clinical results of a dendritic cell-based phase II clinical vaccine trial in stage IV melanoma and analyzed a patient subgroup treated with standard therapies after stopping vaccination. From 2003 to 2009, 24 metastatic melanoma patients were treated with mature dendritic cells pulsed with autologous tumor lysate and keyhole limpet hemocyanin and low-dose interleukin-2. Overall response (OR) to vaccination was 37.5% with a clinical benefit of 54.1%. All 14 responders showed delayed type hypersensitivity positivity. Median overall survival (OS) was 15 months (95% CI, 8-33). Eleven patients underwent other treatments (3 surgery, 2 biotherapy, 2 radiotherapy, 2 chemotherapy, and 4 biochemotherapy) after stopping vaccination. Of these, 2 patients had a complete response and 5 a partial response, with an OR of 63.6%. Median OS was 34 months (range 16-61). Our results suggest that therapeutic DC vaccination could favor clinical response in patients after more than one line of therapy.

  2. Abnormal humoral immune response to influenza vaccination in pediatric type-1 human immunodeficiency virus infected patients receiving highly active antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Carlos J Montoya

    2007-06-01

    Full Text Available Given that highly active antiretroviral therapy (HAART has been demonstrated useful to restore immune competence in type-1 human immunodeficiency virus (HIV-1-infected subjects, we evaluated the specific antibody response to influenza vaccine in a cohort of HIV-1-infected children on HAART so as to analyze the quality of this immune response in patients under antiretroviral therapy. Sixteen HIV-1-infected children and 10 HIV-1 seronegative controls were immunized with a commercially available trivalent inactivated influenza vaccine containing the strains A/H1N1, A/H3N2, and B. Serum hemagglutinin inhibition (HI antibody titers were determined for the three viral strains at the time of vaccination and 1 month later. Immunization induced a significantly increased humoral response against the three influenza virus strains in controls, and only against A/H3N2 in HIV-1-infected children. The comparison of post-vaccination HI titers between HIV-1+ patients and HIV-1 negative controls showed significantly higher HI titers against the three strains in controls. In addition, post vaccination protective HI titers (defined as equal to or higher than 1:40 against the strains A/H3N2 and B were observed in a lower proportion of HIV-1+ children than in controls, while a similar proportion of individuals from each group achieved protective HI titers against the A/H1N1 strain. The CD4+ T cell count, CD4/CD8 T cells ratio, and serum viral load were not affected by influenza virus vaccination when pre- vs post-vaccination values were compared. These findings suggest that despite the fact that HAART is efficient in controlling HIV-1 replication and in increasing CD4+ T cell count in HIV-1-infected children, restoration of immune competence and response to cognate antigens remain incomplete, indicating that additional therapeutic strategies are required to achieve a full reconstitution of immune functions.

  3. Dendritic cell-based vaccines for therapy of HPV16-induced tumours

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan; Šímová, Jana; Vonka, V.; Šmahel, M.; Mikyšková, Romana; Mendoza, Luis

    2001-01-01

    Roč. 495, - (2001), s. 359-363 ISSN 0065-2598 R&D Projects: GA MZd NC5526; GA ČR GA312/98/0826; GA ČR GA312/99/0542; GA ČR GA301/00/0114; GA ČR GA301/01/0985; GA AV ČR IAA7052002 Institutional research plan: CEZ:AV0Z5052915 Keywords : HPV16 * dendritic cell s * tumour vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.513, year: 2000

  4. Dendritic cell-based vaccines for the therapy of experimental tumors

    Czech Academy of Sciences Publication Activity Database

    Piasecka, E.P.; Indrová, Marie

    2010-01-01

    Roč. 2, č. 2 (2010), s. 257-268 ISSN 1750-743X R&D Projects: GA AV ČR IAA500520807; GA ČR GA301/09/1024; GA MZd NS10660 Grant - others:Polish Ministry of Science and Higher Education(PL) NN401235334 Institutional research plan: CEZ:AV0Z50520514 Keywords : dendritic cells * preparation of vaccines * experimental tumors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.542, year: 2010

  5. Specific microtubule-depolymerizing agents augment efficacy of dendritic cell-based cancer vaccines

    Directory of Open Access Journals (Sweden)

    Chang Wei-Ting

    2011-06-01

    Full Text Available Abstract Background Damage-associated molecular patterns (DAMPs are associated with immunogenic cell death and have the ability to enhance maturation and antigen presentation of dendritic cells (DCs. Specific microtubule-depolymerizing agents (MDAs such as colchicine have been shown to confer anti-cancer activity and also trigger activation of DCs. Methods In this study, we evaluated the ability of three MDAs (colchicine and two 2-phenyl-4-quinolone analogues to induce immunogenic cell death in test tumor cells, activate DCs, and augment T-cell proliferation activity. These MDAs were further evaluated for use as an adjuvant in a tumor cell lysate-pulsed DC vaccine. Results The three test phytochemicals considerably increased the expression of DAMPs including HSP70, HSP90 and HMGB1, but had no effect on expression of calreticulin (CRT. DC vaccines pulsed with MDA-treated tumor cell lysates had a significant effect on tumor growth, showed cytotoxic T-lymphocyte activity against tumors, and increased the survival rate of test mice. In vivo antibody depletion experiments suggested that CD8+ and NK cells, but not CD4+ cells, were the main effector cells responsible for the observed anti-tumor activity. In addition, culture of DCs with GM-CSF and IL-4 during the pulsing and stimulation period significantly increased the production of IL-12 and decreased production of IL-10. MDAs also induced phenotypic maturation of DCs and augmented CD4+ and CD8+ T-cell proliferation when co-cultured with DCs. Conclusions Specific MDAs including the clinical drug, colchicine, can induce immunogenic cell death in tumor cells, and DCs pulsed with MDA-treated tumor cell lysates (TCLs can generate potent anti-tumor immunity in mice. This approach may warrant future clinical evaluation as a cancer vaccine.

  6. [Imiquimod combined with dendritic cell vaccine decreases Treg proportion and enhances anti-tumor responses in mice bearing melanoma].

    Science.gov (United States)

    Ren, Shurong; Wang, Qiubo; Zhang, Yanli; Lu, Cuixiu; Li, Ping; Li, Yumei

    2017-02-01

    Objective To investigate the therapeutic effect of Toll-like receptor 7 (TLR7) agonist imiquimod combined with dendritic cell (DC)-based tumor vaccine on melanoma in mice and the potential mechanism. Methods Melanoma-bearing mouse models were established by subcutanous injection of B16-OVA cells into C57BL/6 mice. DCs were isolated from mouse bone marrow and propagated in culture medium with recombinant mouse granulocyte-macrophage colony-stimulating factor (rmGM-CSF) and recombinant mouse interleukin-4 (rmIL-4). DC vaccine (OVA-DC) was prepared by overnight incubation of DCs added with chicken ovalbumin. C57BL/6 mice were separated into four groups which were treated with PBS, topical imiquimod application, OVA-DC intradermal injection and imiquimod plus OVA-DC, respectively. The tumor size was calculated by digital vernier caliper. Peripheral blood CD4 + FOXP3 + Tregs of the tumor-bearing mice was detected by flow cytometry. The cytotoxicity of splenic lymphocyte against B16-OVA was assessed in vitro by CCK-8 assay. Results Compared with the other three groups, B16-OVA-bearing mice treated with imiquimod plus DC vaccine had the smallest tumor volume. The percentage of CD4 + FOXP3 + Tregs decreased significantly in the combined treated mice. The combined treatment enhanced significantly cytotoxicity of splenic lymphocytes against B16-OVA cells. Conclusion Imiquimod combined with antigen-pulsed-DC vaccine could reduce CD4 + FOXP3 + Treg proportion and promote anti-tumor effect in mice with melanoma.

  7. Therapy of Venezuelan patients with severe mucocutaneous or early lesions of diffuse cutaneous leishmaniasis with a vaccine containing pasteurized Leishmania promastigotes and bacillus Calmette-Guerin: preliminary report

    Directory of Open Access Journals (Sweden)

    Jacinto Convit

    2004-02-01

    Full Text Available Severe mucocutaneous (MCL and diffuse (DCL forms of American cutaneous leishmaniasis (ACL are infrequent in Venezuela. Chemotherapy produces only transitory remission in DCL, and occasional treatment failures are observed in MCL. We have evaluated therapy with an experimental vaccine in patients with severe leishmaniasis. Four patients with MCL and 3 with early DCL were treated with monthly intradermal injections of a vaccine containing promastigotes of Leishmania (Viannia braziliensis killed by pasteurization and viable Bacillus Calmette- Guerin. Clinical and immunological responses were evaluated. Integrity of protein constituents in extracts of pasteurized promastigotes was evaluated by gel electrophoresis. Complete remission of lesions occurred after 5-9 injections in patients with MCL or 7-10 injections in patients with early DCL. DCL patients developed positive skin reactions, average size 18.7 mm. All have been free of active lesions for at least 10 months. Adverse effects of the vaccine were limited to local reactivity to BCG at the injection sites and fever in 2 patients. Extracts of pasteurized and fresh promastigotes did not reveal differences in the integrity of protein components detectable by gel electrophoresis. Immunotherapy with this modified vaccine offers an effective, safe option for the treatment of patients who do not respond to immunotherapy with vaccine containing autoclaved parasites or to chemotherapy .

  8. Vaccine Therapy for HIV: A Historical Review of the Treatment of Infectious Diseases by Active Specific Immunization with Microbe-Derived Agents

    Science.gov (United States)

    1993-01-01

    chancres could be used as a therapy for Franco-Prussian War) in Berlin patiently laboured to syphilis t Ŕ . Since soft chancres were associated with...growth of different aetiologies of soft chancres (Haemtophilus ducrei liaeyfud usacsta ale h rwhodi hard chancres (Treponema p hllidum), Auzias...was lauded for his success with rabies Auzias-Turenne proposed that inoculations with matter vaccines in Paris, Robert Koch (a veteran of the from soft

  9. Current and potential immune therapies and vaccines in the management of psoriasis

    Science.gov (United States)

    Kaffenberger, Benjamin H; Lee, Grace L; Tyler, Kelly; Chan, Derek V; Jarjour, Wael; Ariza, Maria E; Williams, Marshall V; Wong, Henry K

    2014-01-01

    Psoriasis is a chronic, immune skin disease associated with significant morbidity. Development of psoriasis is influenced by numerous genes, one allele is HLA-CW*0602. Other genes and single nucleotide polymorphisms affect immunologic pathways and antimicrobial peptide synthesis. Dendritic cells initiate psoriasis by activating T-cells toward a Th1 and Th17 response, with increased cytokines including TNF-α, IL-6, -12, -17, -22, and -23. IL-22 appears to promote keratinocyte dedifferentiation and increased antimicrobial peptide synthesis while TNF-α and IL-17 induce leukocyte localization within the psoriatic plaque. These recent insights identifying key cytokine pathways have led to the development of inhibitors with significant efficacy in the treatment of psoriasis. While a strategy for vaccine modulation of the immune response in psoriasis is in progress, with new technology they may provide a cost-effective long-term treatment that may induce tolerance or targeted self-inhibition for patients with autoimmune disorders, such as psoriasis. PMID:24492530

  10. A national multicenter phase 2 study of prostate-specific antigen (PSA) pox virus vaccine with sequential androgen ablation therapy in patients with PSA progression: ECOG 9802.

    Science.gov (United States)

    DiPaola, Robert S; Chen, Yu-Hui; Bubley, Glenn J; Stein, Mark N; Hahn, Noah M; Carducci, Michael A; Lattime, Edmund C; Gulley, James L; Arlen, Philip M; Butterfield, Lisa H; Wilding, George

    2015-09-01

    E9802 was a phase 2 multi-institution study conducted to evaluate the safety and effectiveness of vaccinia and fowlpox prostate-specific antigen (PSA) vaccine (step 1) followed by combination with androgen ablation therapy (step 2) in patients with PSA progression without visible metastasis. To test the hypothesis that vaccine therapy in this early disease setting will be safe and have a biochemical effect that would support future studies of immunotherapy in patients with minimal disease burden. Patients who had PSA progression following local therapy were treated with PROSTVAC-V (vaccinia)/TRICOM on cycle 1 followed by PROSTVAC-F (fowlpox)/TRICOM for subsequent cycles in combination with granulocyte-macrophage colony-stimulating factor (step 1). Androgen ablation was added on progression (step 2). Step 1 primary end points included progression at 6 mo and characterization of change in PSA velocity pretreatment to post-treatment. Step 2 end points included PSA response with combined vaccine and androgen ablation. In step 1, 25 of 40 eligible patients (63%) were progression free at 6 mo after registration (90% confidence interval [CI], 48-75). The median pretreatment PSA velocity was 0.13 log(PSA)/mo, in contrast to median postregistration velocity of 0.09 log(PSA)/mo (p=0.02), which is an increase in median PSA doubling time from 5.3 mo to 7.7 mo. No grade ≥4 treatment-related toxicity was observed. In the 27 patients eligible and treated for step 2, 20 patients achieved a complete response (CR) at 7 mo (CR rate: 74%; 90% CI, 57-87). Although supportive of larger studies in the cooperative group setting, this study is limited by the small number of patients and the absence of a control group as in a phase 3 study. A viral PSA vaccine can be administered safely in the multi-institutional cooperative group setting to patients with minimal disease volume alone and combined with androgen ablation, supporting the feasibility of future phase 3 studies in this

  11. Improvement of Antitumor Therapies Based on Vaccines and Immune-Checkpoint Inhibitors by Counteracting Tumor-Immunostimulation

    Directory of Open Access Journals (Sweden)

    Paula Chiarella

    2018-01-01

    Full Text Available Immune-checkpoint inhibitors and antitumor vaccines may produce both tumor-inhibitory and tumor-stimulatory effects on growing tumors depending on the stage of tumor growth at which treatment is initiated. These paradoxical results are not necessarily incompatible with current tumor immunology but they might better be explained assuming the involvement of the phenomenon of tumor immunostimulation. This phenomenon was originally postulated on the basis that the immune response (IR evoked in Winn tests by strong chemical murine tumors was not linear but biphasic, with strong IR producing inhibition and weak IR inducing stimulation of tumor growth. Herein, we extended those former observations to weak spontaneous murine tumors growing in pre-immunized, immune-competent and immune-depressed mice. Furthermore, we demonstrated that the interaction of specifical T cells and target tumor cells at low stimulatory ratios enhanced the production of chemokines aimed to recruit macrophages at the tumor site, which, upon activation of toll-like receptor 4 and p38 signaling pathways, would recruit and activate more macrophages and other inflammatory cells which would produce growth-stimulating signals leading to an accelerated tumor growth. On this basis, the paradoxical effects achieved by immunological therapies on growing tumors could be explained depending upon where the therapy-induced IR stands on the biphasic IR curve at each stage of tumor growth. At stages where tumor growth was enhanced (medium and large-sized tumors, counteraction of the tumor-immunostimulatory effect with anti-inflammatory strategies or, more efficiently, with selective inhibitors of p38 signaling pathways enabled the otherwise tumor-promoting immunological strategies to produce significant inhibition of tumor growth.

  12. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications

    Science.gov (United States)

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-06-01

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications.

  13. The Impact of Breakthrough Therapy Designation on Development Strategies and Timelines for Nononcology Drugs and Vaccines.

    Science.gov (United States)

    Poirier, A F; Murphy, W R

    2016-12-01

    The US Food and Drug Administration (FDA) Safety and Innovation Act (FDASIA, 2012) introduced the Breakthrough Therapy Designation (BTD), a new tool to expedite development of medicines to treat serious or life-threatening diseases. The majority of BTDs have gone to oncology drugs, and a recent publication by Shea et al. 1 reviewed the impact of BTD on oncology drug development. This article reviews the impact of BTD on development strategies and timelines for nononcology drugs. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  14. Partial budget analysis of prepartum antimicrobial therapy and Escherichia coli J5 vaccination of dairy heifers and their effect on milk production and milk quality parameters

    Directory of Open Access Journals (Sweden)

    Renison T. Vargas

    2016-02-01

    Full Text Available Abstract: This study aimed to determine whether prepartum antimicrobial and/or Escherichia coli J5 vaccination in dairy heifers influence the milk production, milk quality, and estimate their economic benefit. Thus, 33 dairy heifers were enrolled in four groups using a split-splot design. Groups were: (G1 prepartum antimicrobial infusion and vaccination with an E. coli J5 bacterin, (G2 prepartum antimicrobial infusion, (G3 vaccination with an E. coli J5 bacterin, and (G4 control heifers. Composite milk samples for somatic cell count, total bacteria count and milk composition were collected 15 days after calving and every 15 days until the end of the experiment. Bacteriological analysis was carried out at the end of study. The milk production and the incidence of clinical cases of mastitis, as well as the costs associated with them were recorded. The results demonstrate a reduction on clinical mastitis rates by preventive strategies, which implicated in lower volume of discarded milk (0.99, 1.01, 1.04 and 3.98% for G1, G2, G3 and G4, respectively and higher economic benefit. Thus, in well-managed dairy herds the prevention of heifer mastitis by vaccination or antimicrobial therapy can reduce the amount of antimicrobials needed to treat clinical mastitis cases and the days of discarded milk.

  15. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2010-01-01

    Full Text Available Abstract Background Dendritic cells (DCs are often produced by granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-4 (IL-4 stimulation of monocytes. To improve the effectiveness of DC adoptive immune cancer therapy, many different agents have been used to mature DCs. We analyzed the kinetics of DC maturation by lipopolysaccharide (LPS and interferon-γ (IFN-γ induction in order to characterize the usefulness of mature DCs (mDCs for immune therapy and to identify biomarkers for assessing the quality of mDCs. Methods Peripheral blood mononuclear cells were collected from 6 healthy subjects by apheresis, monocytes were isolated by elutriation, and immature DCs (iDCs were produced by 3 days of culture with GM-CSF and IL-4. The iDCs were sampled after 4, 8 and 24 hours in culture with LPS and IFN-γ and were then assessed by flow cytometry, ELISA, and global gene and microRNA (miRNA expression analysis. Results After 24 hours of LPS and IFN-γ stimulation, DC surface expression of CD80, CD83, CD86, and HLA Class II antigens were up-regulated. Th1 attractant genes such as CXCL9, CXCL10, CXCL11 and CCL5 were up-regulated during maturation but not Treg attractants such as CCL22 and CXCL12. The expression of classical mDC biomarker genes CD83, CCR7, CCL5, CCL8, SOD2, MT2A, OASL, GBP1 and HES4 were up-regulated throughout maturation while MTIB, MTIE, MTIG, MTIH, GADD45A and LAMP3 were only up-regulated late in maturation. The expression of miR-155 was up-regulated 8-fold in mDCs. Conclusion DCs, matured with LPS and IFN-γ, were characterized by increased levels of Th1 attractants as opposed to Treg attractants and may be particularly effective for adoptive immune cancer therapy.

  16. Eradication of breast cancer with bone metastasis by autologous formalin-fixed tumor vaccine (AFTV) combined with palliative radiation therapy and adjuvant chemotherapy: a case report.

    Science.gov (United States)

    Kuranishi, Fumito; Ohno, Tadao

    2013-06-04

    Skeletal metastasis of breast carcinoma is refractory to intensive chemo-radiation therapy and therefore is assumed impossible to cure. Here, we report an advanced case of breast cancer with vertebra-Th7 metastasis that showed complete response to combined treatments with formalin-fixed autologous tumor vaccine (AFTV), palliative radiation therapy with 36 Gy, and adjuvant chemotherapy with standardized CEF (cyclophosphamide, epirubicin, and 5FU), zoledronic acid, and aromatase inhibitors following mastectomy for the breast tumor. The patient has been disease-free for more than 4 years after the mammary surgery and remains well with no evidence of metastasis or local recurrence. Thus, a combination of AFTV, palliative radiation therapy, and adjuvant chemotherapy may be an effective treatment for this devastating disease.

  17. Action of granulopoiesis-stimulating cytokines rhG-CSF, rhGM-CSF, and rmGM-CSF on murine hematopoietic progenitor cells for granulocytes and macrophages (GM-CFC)

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Vacek, Antonín; Weiterová, Lenka

    2005-01-01

    Roč. 54, - (2005), s. 207-213 ISSN 0862-8408 R&D Projects: GA AV ČR(CZ) IBS5004009; GA AV ČR(CZ) KSK5011112; GA ČR(CZ) GP305/03/D050 Institutional research plan: CEZ:AV0Z50040507 Keywords : murine hematopoiesis * GM-CFC * rhG- CSF Subject RIV: BO - Biophysics Impact factor: 1.806, year: 2005

  18. An Optimized Method for Manufacturing a Clinical Scale Dendritic Cell-Based Vaccine for the Treatment of Glioblastoma

    Science.gov (United States)

    Pogliani, Simona; Pellegatta, Serena; Antozzi, Carlo; Baggi, Fulvio; Gellera, Cinzia; Pollo, Bianca; Parati, Eugenio A.; Finocchiaro, Gaetano; Frigerio, Simona

    2012-01-01

    Immune-based treatments represent a promising new class of therapy designed to boost the immune system to specifically eradicate malignant cells. Immunotherapy may generate specific anti-tumor immune responses, and dendritic cells (DC), professional antigen-presenting cells, are widely used in experimental cancer immunotherapy. Several reports describe methods for the generation of mature, antigen-pulsed DC for clinical use. Improved quality and standardization are desirable to obtain GMP-compliant protocols. In this study we describe the generation of DC from 31 Glioblastoma (GB) patients starting from their monocytes isolated by immunomagnetic CD14 selection using the CliniMACS® device. Upon differentiation of CD14+ with IL-4 and GM-CSF, DC were induced to maturation with TNF-α, PGE2, IL-1β, and IL-6. Whole tumor lysate was obtained, for the first time, in a closed system using the semi-automated dissociator GentleMACS®. The yield of proteins improved by 130% compared to the manual dissociation method. Interestingly the Mean Fluorescence Intensity for CD83 increased significantly in DC pulsed with “new method” lysate compared to DC pulsed with “classical method” lysate. Our results indicate that immunomagnetic isolation of CD14+ monocytes using the CliniMACS® device and their pulsing with whole tumor lysate proteins is a suitable method for clinical-scale generation of high quality, functional DC under GMP-grade conditions. PMID:23284979

  19. Cuscuta chinensis Ameliorates Immunosuppression and Urotoxic Effect of Cyclophosphamide by Regulating Cytokines - GM-CSF and TNF-Alpha.

    Science.gov (United States)

    Raju, Nidhi; Sakthivel, Kunnathur Murugesan; Kannan, Narayanan; Vinod Prabhu, Venugopal; Guruvayoorappan, Chandrasekaran

    2015-06-01

    Cancer is the leading cause of death worldwide. Cyclophosphamide (CTX) is commonly used as anticancer drug which causes toxicity by its reactive metabolites such as acroline and phosphoramide mustard. In this study, Cuscuta chinensis (C. chinensis) (family: Convolvulaceae) was assessed for ability to restore mice against CTX-induced toxicity. Coadministration of C. chinensis extract (10 mg/kg BW, IP, daily) for ten consecutive days reduced CTX-induced (25 mg/kg BW, IP, daily) toxicity. Treatment with C. chinensis extract significantly (p < 0.01) increased the relative organ weight and body weight. Moreover, administration of C. chinensis extract significantly increased bone marrow cellulatity and α-esterase activity in CTX-treated mice which suggested its protective role on the hematopoietic system. The GSH content was drastically reduced by CTX administration in urinary bladder which was enhanced by treatment with C. chinensis extract, indicating that preventing acroline-mediated tissue damage or cell toxicity and also the extract decreased the urinary bladder nitric oxide (NO) level which proves recovery over urinary tract injury associated with CTX treatment. The administration of C. chinensis extract decreased serum urea, creatinine, and bilirubin levels when compared to CTX-alone-treated group. Histopathological analysis of the urinary bladder of CTX-alone-treated group showed necrotic damage whereas the C. chinensis-treated group showed normal bladder architecture. The above data clearly demonstrates chemoprotective role of C. chinensis against CTX-induced toxicities by regulating antioxidant and inflammatory mediators.

  20. Immunization With AFP + GM CSF Plasmid Prime and AFP Adenoviral Vector Boost in Patients With Hepatocellular Carcinoma

    Science.gov (United States)

    2015-12-01

    Hepatocellular Carcinoma; Hepatoma; Liver Cancer, Adult; Liver Cell Carcinoma; Liver Cell Carcinoma, Adult; Cancer of Liver; Cancer of the Liver; Cancer, Hepatocellular; Hepatic Cancer; Hepatic Neoplasms; Hepatocellular Cancer; Liver Cancer; Neoplasms, Hepatic; Neoplasms, Liver

  1. Growth factors G-CSF and GM-CSF differentially preserve chemotaxis of neutrophils aging in vitro

    NARCIS (Netherlands)

    Wolach, Baruch; van der Laan, Luc J. W.; Maianski, Nikolai A.; Tool, Anton T. J.; van Bruggen, Robin; Roos, Dirk; Kuijpers, Taco W.

    2007-01-01

    OBJECTIVE: The ability of human neutrophils to migrate was studied during culture in vitro. METHODS: Neutrophils were isolated from human blood and cultured at 37 degrees C. Apoptosis was determined by Annexin-V fluorescein isothiocyanate binding. Receptor expression was measured by fluorescence in

  2. Effective immunotherapy of weakly immunogenic solid tumours using a combined immunogene therapy and regulatory T-cell inactivation.

    LENUS (Irish Health Repository)

    Whelan, M C

    2012-01-31

    Obstacles to effective immunotherapeutic anti-cancer approaches include poor immunogenicity of the tumour cells and the presence of tolerogenic mechanisms in the tumour microenvironment. We report an effective immune-based treatment of weakly immunogenic, growing solid tumours using a locally delivered immunogene therapy to promote development of immune effector responses in the tumour microenvironment and a systemic based T regulatory cell (Treg) inactivation strategy to potentiate these responses by elimination of tolerogenic or immune suppressor influences. As the JBS fibrosarcoma is weakly immunogenic and accumulates Treg in its microenvironment with progressive growth, we used this tumour model to test our combined immunotherapies. Plasmids encoding GM-CSF and B7-1 were electrically delivered into 100 mm(3) tumours; Treg inactivation was accomplished by systemic administration of anti-CD25 antibody (Ab). Using this approach, we found that complete elimination of tumours was achieved at a level of 60% by immunogene therapy, 25% for Treg inactivation and 90% for combined therapies. Moreover, we found that these responses were immune transferable, systemic, tumour specific and durable. Combined gene-based immune effector therapy and Treg inactivation represents an effective treatment for weakly antigenic solid growing tumours and that could be considered for clinical development.

  3. Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Lourena Emanuele Costa

    Full Text Available BACKGROUND: The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL. Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. METHODOLOGY/MAIN FINDINGS: Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin, showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. CONCLUSIONS/SIGNIFICANCE: This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the

  4. Vaccines and Kawasaki disease.

    Science.gov (United States)

    Esposito, Susanna; Bianchini, Sonia; Dellepiane, Rosa Maria; Principi, Nicola

    2016-01-01

    The distinctive immune system characteristics of children with Kawasaki disease (KD) could suggest that they respond in a particular way to all antigenic stimulations, including those due to vaccines. Moreover, treatment of KD is mainly based on immunomodulatory therapy. These factors suggest that vaccines and KD may interact in several ways. These interactions could be of clinical relevance because KD is a disease of younger children who receive most of the vaccines recommended for infectious disease prevention. This paper shows that available evidence does not support an association between KD development and vaccine administration. Moreover, it highlights that administration of routine vaccines is mandatory even in children with KD and all efforts must be made to ensure the highest degree of protection against vaccine-preventable diseases for these patients. However, studies are needed to clarify currently unsolved issues, especially issues related to immunologic interference induced by intravenous immunoglobulin and biological drugs.

  5. Vaccines (immunizations) - overview

    Science.gov (United States)

    Vaccinations; Immunizations; Immunize; Vaccine shots; Prevention - vaccine ... of the vaccine. VACCINE SCHEDULE The recommended vaccination (immunization) schedule is updated every 12 months by the ...

  6. Chemokines as Cancer Vaccine Adjuvants

    Directory of Open Access Journals (Sweden)

    Agne Petrosiute

    2013-10-01

    Full Text Available We are witnessing a new era of immune-mediated cancer therapies and vaccine development. As the field of cancer vaccines advances into clinical trials, overcoming low immunogenicity is a limiting step in achieving full success of this therapeutic approach. Recent discoveries in the many biological roles of chemokines in tumor immunology allow their exploitation in enhancing recruitment of antigen presenting cells (APCs and effector cells to appropriate anatomical sites. This knowledge, combined with advances in gene therapy and virology, allows researchers to employ chemokines as potential vaccine adjuvants. This review will focus on recent murine and human studies that use chemokines as therapeutic anti-cancer vaccine adjuvants.

  7. DNA/MVA Vaccination of HIV-1 Infected Participants with Viral Suppression on Antiretroviral Therapy, followed by Treatment Interruption: Elicitation of Immune Responses without Control of Re-Emergent Virus.

    Science.gov (United States)

    Thompson, Melanie; Heath, Sonya L; Sweeton, Bentley; Williams, Kathy; Cunningham, Pamela; Keele, Brandon F; Sen, Sharon; Palmer, Brent E; Chomont, Nicolas; Xu, Yongxian; Basu, Rahul; Hellerstein, Michael S; Kwa, Suefen; Robinson, Harriet L

    2016-01-01

    GV-TH-01, a Phase 1 open-label trial of a DNA prime—Modified Vaccinia Ankara (MVA) boost vaccine (GOVX-B11), was undertaken in HIV infected participants on antiretroviral treatment (ART) to evaluate safety and vaccine-elicited T cell responses, and explore the ability of elicited CD8+ T cells to control viral rebound during analytical treatment interruption (TI). Nine men who began antiretroviral therapy (ART) within 18 months of seroconversion and had sustained plasma HIV-1 RNA HIV-1 RNA was 140,000 copies/ml and mean baseline CD4 count was 755/μl. Two DNA, followed by 2 MVA, inoculations were given 8 weeks apart. Eight subjects completed all vaccinations and TI. Clinical and laboratory adverse events were generally mild, with no serious or grade 4 events. Only reactogenicity events were considered related to study drug. No treatment emergent viral resistance was seen. The vaccinations did not reduce viral reservoirs and virus re-emerged in all participants during TI, with a median time to re-emergence of 4 weeks. Eight of 9 participants had CD8+ T cells that could be stimulated by vaccine-matched Gag peptides prior to vaccination. Vaccinations boosted these responses as well as eliciting previously undetected CD8+ responses. Elicited T cells did not display signs of exhaustion. During TI, temporal patterns of viral re-emergence and Gag-specific CD8+ T cell expansion suggested that vaccine-specific CD8+ T cells had been stimulated by re-emergent virus in only 2 of 8 participants. In these 2, transient decreases in viremia were associated with Gag selection in known CD8+ T cell epitopes. We hypothesize that escape mutations, already archived in the viral reservoir, plus a poor ability of CD8+ T cells to traffic to and control virus at sites of re-emergence, limited the therapeutic efficacy of the DNA/MVA vaccine. clinicaltrials.gov NCT01378156.

  8. Green revolution vaccines, edible vaccines

    African Journals Online (AJOL)

    Admin

    of development. Food vaccines may also help to suppress autoimmunity disorders such as Type-1. Diabetes. Key words: Edible vaccines, oral vaccines, antigen expression, food vaccines. INTRODUCTION. Vaccination involves the stimulation of the immune system to prepare it for the event of an invasion from a particular ...

  9. Changes in some pro-and anti-inflammatory cytokines produced by bovine peripheral blood mononuclear cells following foot and mouth disease vaccination

    Directory of Open Access Journals (Sweden)

    N. Delirezh

    2016-09-01

    Full Text Available Interleukin (IL-17 is exclusively produced by CD4 helper T-cells upon activation. It most often acts as a pro-inflammatory cytokine, which stimulates the release of pro-inflammatory cytokines IL-6, IL-8, TNF-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF. In this study, we studied the in-vitro IL-17 response to specific antigens and a variety of mitogens and compared the IL-17 response to IL-2, IL-4, IL-5, IL-6, IL-10, and IFN-γ responses. We used a foot and mouth disease (FMD vaccine as specific antigens and mitogens (phytohemagglutinin [PHA], pokeweed mitogen [PWM], and concanavalin A [Con A] to stimulate peripheral blood mononuclear cells (PBMCs of vaccinated calves. Cell culture supernatant was harvested and analyzed for cytokines, using commercially available bovine ELISA kits. The mitogens induced a significant increase in IL-17 production. IL-17 was produced at high levels in response to the T cell-stimulated mitogens, PHA, and Con A, and at low levels in response to PWM mitogens. In contrast, level of the produced IL-17 cytokines in response to the FMDV antigens was lower as compared to those produced by mitogens. The FMDV antigens and mitogens significantly increased IL-17 production. There was not a correlation between IL-17 production and type-1 cytokine, IFN-γ, and IL-2, while there was a correlation between type-2 cytokine, IL-4, and IL-5 at either cytokine level produced by PBMCs stimulated by FMDV antigens. Moreover, there was an interaction between IL-17 and IL-6, that is, as IL-6 cytokine level elevated or diminished, IL-17 cytokine level increased or decreased, as well.

  10. Exosomes derived from tumor cells genetically modified to express Mycobacterium tuberculosis antigen: a novel vaccine for cancer therapy.

    Science.gov (United States)

    Koyama, Yoshiyuki; Ito, Tomoko; Hasegawa, Aya; Eriguchi, Masazumi; Inaba, Toshio; Ushigusa, Takahiro; Sugiura, Kikuya

    2016-11-01

    To examine the potential of exosomes derived from the tumor cells, which had been genetically modified to express a Mycobacterium tuberculosis antigen, as a cancer vaccine aimed at overcoming the weak immunogenicity of tumor antigens. We transfected B16 melanoma cells with a plasmid encoding the M. tuberculosis antigen, early secretory antigenic target-6 (ESAT-6). The secreted exosomes bearing both tumor-associated antigens and the pathogenic antigen (or their epitopes) were collected. When the exosomes were injected into foot pads of mice, they significantly (p exosomes significantly suppressed (p exosomes derived from the non-transfected B16 cells showed no effect on tumor growth, although both exosomes should have similar tumor antigens. Exosomes bearing both tumor antigens and the M. tuberculosis antigen (or their epitopes) have a high potential as a candidate for cancer vaccine to overcome the immune escape by tumor cells.

  11. Vaccine Safety

    Science.gov (United States)

    ... During Pregnancy Frequently Asked Questions about Vaccine Recalls Historical Vaccine Safety Concerns FAQs about GBS and Menactra ... CISA Resources for Healthcare Professionals Evaluation Current Studies Historical Background 2001-12 Publications Technical Reports Vaccine Safety ...

  12. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  13. Cellular based cancer vaccines

    DEFF Research Database (Denmark)

    Hansen, M; Met, Ö; Svane, I M

    2012-01-01

    Cancer vaccines designed to re-calibrate the existing host-tumour interaction, tipping the balance from tumor acceptance towards tumor control holds huge potential to complement traditional cancer therapies. In general, limited success has been achieved with vaccines composed of tumor...... to transiently affect in vitro migration via autocrine receptor-mediated endocytosis of CCR7. In the current review, we discuss optimal design of DC maturation focused on pre-clinical as well as clinical results from standard and polarized dendritic cell based cancer vaccines....

  14. Materials to Engineer the Immune System

    Science.gov (United States)

    2011-04-01

    alone (Lysate), or with GM-CSF and lysate (GM+Lys), and 14 days later 200,000 NT1 cells were injected into the mammary pad. Mice survival was...followed over time. Fig. 2. Therapeutic vaccination against NT1 transplantable tumors. NT1 cells (200,000) were injected into the mammary...Engineer the Immune System David Mooney Harvard College Cambridge, MA 02136 Dendritic cells , GM-CSF, CpG, poly(lactide-co-glycolide) The

  15. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self-antigens in cancer patients.

    Science.gov (United States)

    Morse, Michael A; Chapman, Robert; Powderly, John; Blackwell, Kimberly; Keler, Tibor; Green, Jennifer; Riggs, Renee; He, Li-Zhen; Ramakrishna, Venky; Vitale, Laura; Zhao, Biwei; Butler, Stephen A; Hobeika, Amy; Osada, Takuya; Davis, Thomas; Clay, Timothy; Lyerly, H Kim

    2011-07-15

    The use of tumor-derived proteins as cancer vaccines is complicated by tolerance to these self-antigens. Tolerance may be broken by immunization with activated, autologous, ex vivo generated and antigen-loaded, antigen-presenting cells (APC); however, targeting tumor antigen directly to APC in vivo would be a less complicated strategy. We wished to test whether targeted delivery of an otherwise poorly immunogenic, soluble antigen to APC through their mannose receptors (MR) would induce clinically relevant immunity. Two phase I studies were conducted with CDX-1307, a vaccine composed of human chorionic gonadotropin beta-chain (hCG-β) fused to an MR-specific monoclonal antibody, administered either locally (intradermally) or systemically (intravenously) in patients with advanced epithelial malignancies. An initial dose escalation of single-agent CDX-1307 was followed by additional cohorts of CDX-1307 combined with granulocyte-macrophage colony-stimulating factor (GM-CSF) and the Toll-like receptor (TLR) 3 agonist polyinosinic-polycytidylic acid (poly-ICLC) and TLR7/8 agonist resiquimod to activate the APC. CDX-1307 induced consistent humoral and T-cell responses to hCG-β when coadministered with TLR agonists. Greater immune responses and clinical benefit, including the longest duration of stable disease, were observed with immunization combined with local TLR agonists. Immune responses were induced equally efficiently in patients with elevated and nonelevated levels of serum hCG-β. Antibodies within the serum of vaccinated participants had tumor suppressive function in vitro. Toxicity consisted chiefly of mild injection site reactions. APC targeting and activation induce adaptive immunity against poorly immunogenic self-antigens which has implications for enhancing the efficacy of cancer immunotherapy.

  16. New approaches in oral rotavirus vaccines.

    Science.gov (United States)

    Kuate Defo, Zenas; Lee, Byong

    2016-05-01

    Rotavirus is the leading cause of severe dehydrating diarrhea worldwide, and affects primarily developing nations, in large part because of the inaccessibility of vaccines and high rates of mortality present therein. At present, there exist two oral rotaviral vaccines, Rotarix™ and RotaTeq™. These vaccines are generally effective in their actions: however, associated costs often stymie their effectiveness, and they continue to be associated with a slight risk of intussusception. While different programs are being implemented worldwide to enhance vaccine distribution and monitor vaccine administration for possible intussusception in light of recent WHO recommendation, another major problem persists: that of the reduced efficacy of the existing rotaviral vaccines in developing countries over time. The development of new oral rotavirus vaccine classes - live-attenuated vaccines, virus-like particles, lactic acid bacteria-containing vaccines, combination therapy with immunoglobulins, and biodegradable polymer-encapsulated vaccines - could potentially circumvent these problems.

  17. Vaccines.gov

    Science.gov (United States)

    ... Vaccine Safety Vaccines Work Vaccine Types Vaccine Ingredients Vaccines by Disease Chickenpox ... Typhoid Fever Whooping Cough (Pertussis) Yellow Fever Who and When Infants, Children, and Teens ...

  18. Meningococcal B vaccine. An immunogenic vaccine possibly useful during outbreaks.

    Science.gov (United States)

    2014-09-01

    Invasive meningococcal infections can be life-threatening and cause severe sequelae. Antibiotic therapy is only partially effective. Bexsero is the first meningococcal B vaccine to be approved in the European Union. It contains four capsular antigens from various strains of group B meningococci. Clinical trials of this meningococcal B vaccine did not assess clinical protection. Two immunogenicity studies in adults, one in adolescents and six in infants, are available. They established the immunogenicity of the meningococcal B vaccine, determined age-appropriate vaccination schedules, and verified that concomitant administration of other vaccines did not undermine its immunogenicity. In the absence of relevant clinical trials, an in vitro study showed that sera from vaccinated individuals were likely to have bactericidal activity against 85% of 200 invasive meningococcal B strains isolated in France in 2007-2008. The meningococcal B vaccine provoked local adverse effects in most vaccinees, including local erythema, induration and pain. Fever occurred in about half of vaccinated children. Six cases of Kawasaki syndrome have been reported in children who received the vaccine, compared to only one case in control groups. In practice, the harm-benefit balance of this meningococcal B vaccine justify using it during outbreaks, provided the outbreak strain is covered by the vaccine antigens. Vaccinees should be enrolled in studies designed to evaluate clinical efficacy and to better determine the risk of Kawasaki syndrome.

  19. Rotavirus vaccines

    Directory of Open Access Journals (Sweden)

    Kang G

    2006-01-01

    Full Text Available Rotavirus, the most common cause of severe diarrhea and a leading cause of mortality in children, has been a priority target for vaccine development for the past several years. The first rotavirus vaccine licensed in the United States was withdrawn because of an association of the vaccine with intussusception. However, the need for a vaccine is greatest in the developing world, because the benefits of preventing deaths due to rotavirus disease are substantially greater than the risk of intussusception. Early vaccines were based on animal strains. More recently developed and licenced vaccines are either animal-human reassortants or are based on human strains. In India, two candidate vaccines are in the development process, but have not yet reached efficacy trials. Many challenges regarding vaccine efficacy and safety remain. In addition to completing clinical evaluations of vaccines in development in settings with the highest disease burden and virus diversity, there is also a need to consider alternative vaccine development strategies.

  20. Limiting glioma development by photodynamic therapy-generated macrophage vaccine and allo-stimulation: an in vivo histological study in rats

    Science.gov (United States)

    Madsen, Steen J.; Christie, Catherine; Huynh, Khoi; Peng, Qian; Uzal, Francisco A.; Krasieva, Tatiana B.; Hirschberg, Henry

    2018-02-01

    Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage (MaF98) vaccines can be increased by: (1) photodynamic therapy (PDT) of the priming tumor cells and (2) intracranial injection of allogeneic glioma cells directly into the tumor site. Experiments were conducted in an in vivo brain tumor development model using Fischer rats and F98 (syngeneic) and BT4C (allogeneic) glioma cells. The results showed that immunization with Ma (acting as antigen-presenting cells), primed with PDT-treated tumor cells (MaF98), significantly slowed but did not prevent the growth of F98-induced tumors in the brain. Complete suppression of tumor development was obtained via MaF98 inoculation combined with direct intracranial injection of allogeneic glioma cells. No deleterious effects were noted in any of the animals during the 14-day observation period.

  1. Hepatitis Vaccines

    OpenAIRE

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B ...

  2. A role for granulocyte-macrophage colony-stimulating factor in the regulation of CD8{sup +} T cell responses to rabies virus

    Energy Technology Data Exchange (ETDEWEB)

    Wanjalla, Celestine N.; Goldstein, Elizabeth F.; Wirblich, Christoph [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Schnell, Matthias J., E-mail: matthias.schnell@jefferson.edu [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States)

    2012-05-10

    Inflammatory cytokines have a significant role in altering the innate and adaptive arms of immune responses. Here, we analyzed the effect of GM-CSF on a RABV-vaccine vector co-expressing HIV-1 Gag. To this end, we immunized mice with RABV expressing HIV-1 Gag and GM-CSF and analyzed the primary and recall CD8{sup +} T cell responses. We observed a statistically significant increase in antigen presenting cells (APCs) in the spleen and draining lymph nodes in response to GM-CSF. Despite the increase in APCs, the primary and memory anti HIV-1 CD8{sup +} T cell response was significantly lower. This was partly likely due to lower levels of proliferation in the spleen. Animals treated with GM-CSF neutralizing antibodies restored the CD8{sup +} T cell response. These data define a role of GM-CSF expression, in the regulation of the CD8{sup +} T cell immune responses against RABV and has implications in the use of GM-CSF as a molecular adjuvant in vaccine development.

  3. A role for granulocyte–macrophage colony-stimulating factor in the regulation of CD8+ T cell responses to rabies virus

    International Nuclear Information System (INIS)

    Wanjalla, Celestine N.; Goldstein, Elizabeth F.; Wirblich, Christoph; Schnell, Matthias J.

    2012-01-01

    Inflammatory cytokines have a significant role in altering the innate and adaptive arms of immune responses. Here, we analyzed the effect of GM-CSF on a RABV-vaccine vector co-expressing HIV-1 Gag. To this end, we immunized mice with RABV expressing HIV-1 Gag and GM-CSF and analyzed the primary and recall CD8 + T cell responses. We observed a statistically significant increase in antigen presenting cells (APCs) in the spleen and draining lymph nodes in response to GM-CSF. Despite the increase in APCs, the primary and memory anti HIV-1 CD8 + T cell response was significantly lower. This was partly likely due to lower levels of proliferation in the spleen. Animals treated with GM-CSF neutralizing antibodies restored the CD8 + T cell response. These data define a role of GM-CSF expression, in the regulation of the CD8 + T cell immune responses against RABV and has implications in the use of GM-CSF as a molecular adjuvant in vaccine development.

  4. Rotavirus vaccines

    Science.gov (United States)

    Yen, Catherine; Tate, Jacqueline E; Hyde, Terri B; Cortese, Margaret M; Lopman, Benjamin A; Jiang, Baoming; Glass, Roger I; Parashar, Umesh D

    2014-01-01

    Rotavirus is the leading cause of severe diarrhea among children rotavirus vaccines have been efficacious and effective, with many countries reporting substantial declines in diarrheal and rotavirus-specific morbidity and mortality. However, the full public health impact of these vaccines has not been realized. Most countries, including those with the highest disease burden, have not yet introduced rotavirus vaccines into their national immunization programs. Research activities that may help inform vaccine introduction decisions include (1) establishing effectiveness, impact, and safety for rotavirus vaccines in low-income settings; (2) identifying potential strategies to improve performance of oral rotavirus vaccines in developing countries, such as zinc supplementation; and (3) pursuing alternate approaches to oral vaccines, such as parenteral immunization. Policy- and program-level barriers, such as financial implications of new vaccine introductions, should be addressed to ensure that countries are able to make informed decisions regarding rotavirus vaccine introduction. PMID:24755452

  5. Vaccine Hesitancy.

    Science.gov (United States)

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  6. DNA/MVA Vaccination of HIV-1 Infected Participants with Viral Suppression on Antiretroviral Therapy, followed by Treatment Interruption: Elicitation of Immune Responses without Control of Re-Emergent Virus.

    Directory of Open Access Journals (Sweden)

    Melanie Thompson

    Full Text Available GV-TH-01, a Phase 1 open-label trial of a DNA prime—Modified Vaccinia Ankara (MVA boost vaccine (GOVX-B11, was undertaken in HIV infected participants on antiretroviral treatment (ART to evaluate safety and vaccine-elicited T cell responses, and explore the ability of elicited CD8+ T cells to control viral rebound during analytical treatment interruption (TI. Nine men who began antiretroviral therapy (ART within 18 months of seroconversion and had sustained plasma HIV-1 RNA <50 copies/mL for at least 6 months were enrolled. Median age was 38 years, median pre-ART HIV-1 RNA was 140,000 copies/ml and mean baseline CD4 count was 755/μl. Two DNA, followed by 2 MVA, inoculations were given 8 weeks apart. Eight subjects completed all vaccinations and TI. Clinical and laboratory adverse events were generally mild, with no serious or grade 4 events. Only reactogenicity events were considered related to study drug. No treatment emergent viral resistance was seen. The vaccinations did not reduce viral reservoirs and virus re-emerged in all participants during TI, with a median time to re-emergence of 4 weeks. Eight of 9 participants had CD8+ T cells that could be stimulated by vaccine-matched Gag peptides prior to vaccination. Vaccinations boosted these responses as well as eliciting previously undetected CD8+ responses. Elicited T cells did not display signs of exhaustion. During TI, temporal patterns of viral re-emergence and Gag-specific CD8+ T cell expansion suggested that vaccine-specific CD8+ T cells had been stimulated by re-emergent virus in only 2 of 8 participants. In these 2, transient decreases in viremia were associated with Gag selection in known CD8+ T cell epitopes. We hypothesize that escape mutations, already archived in the viral reservoir, plus a poor ability of CD8+ T cells to traffic to and control virus at sites of re-emergence, limited the therapeutic efficacy of the DNA/MVA vaccine.clinicaltrials.gov NCT01378156.

  7. DHEC: Vaccinations

    Science.gov (United States)

    Data, Maps - SC Public Health Diseases and Conditions Flu Tuberculosis STD/HIV and Viral Hepatitis Zika Illnesses E. coli Listeriosis Salmonella Hepatitis A Shellfish Monitoring and Regulation Certified Shippers Vaccines Teen and Preteen Vaccines Vaccines Needed for School Admission Related Topics Perinatal Hepatitis

  8. The optimal use of granulocyte macrophage colony stimulating factor in radiation induced mucositis in head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Patni Nidhi

    2005-01-01

    Full Text Available Objective: Evaluation of response of granulocyte macrophage colony stimulating factor (GM-CSF on acute radiation toxicity profile in head and neck squamous cell carcinoma. Methods and Materials: Thirty three patients with proven stage I or II head & neck carcinoma received conventional external beam radiation therapy. Out of these, six patients received postoperative adjuvant therapy while remaining 27 received definitive RT. Patients were given 100 mcg GM-CSF subcutaneously per day along with radiation after they developed grade 2 mucositis and /or grade 2 dysphagia and / or complained of moderate pain. GM-CSF was administered till there was a subjective relief or objective response. Patients were evaluated for oral ulceration, swallowing status, pain and weight loss. Response to the treatment and patient outcome was assessed. Results: There was a decreased severity of mucositis and dysphagia in the evaluated patients. None of the patients suffered severe pain or required opioids. The mean weight loss was only 1.94%. Minimal side effects were experienced with GM-CSF. Conclusions: GM-CSF reduces the severity of acute side effects of radiation therapy thereby allowing completion of the treatment without interruption. Its remarkable response needs to be evaluated further in large randomized trials. The time of initiation and cessation of GM-CSF during radiation therapy and the required dose needs to be established.

  9. Cytokines in therapy of radiation injury

    International Nuclear Information System (INIS)

    Neta, R.; Oppenheim, J.J.

    1988-01-01

    Repeated injections or infusion of hematopoietic growth factors, such as interleukin-3 (IL-3), granulocyte macrophage-colony stimulating factor (GM-CSF), or granulocyte-colony stimulating factor (G-CSF), accelerate restoration of hematopoiesis in animals compromised by sublethal doses of cytotoxic drugs or irradiation. Previous work by the investigators has shown that IL-1 induced circulating CSF in normal mice and, when used after sublethal irradiation, accelerated the recovery of endogenous splenic colonies. Therefore, IL-1, as well as IFN-gamma, tumor necrosis factor (TNF), G-CSF, and GM-CSF, were evaluated as potential therapeutic agents in irradiated C3H-HeN mice. A single intraperitoneal injection, administered within three hours after a lethal dose (LD)95/30 of irradiation that would kill 95% of mice within 30 days, protected in a dose-dependent manner up to 100% of mice from radiation-induced death due to hematopoietic syndrome. Significant therapeutic effects were also achieved with a single dose of IFN-gamma or of TNF. In contrast, GM-CSF and G-CSF, administered shortly after irradiation, had no effect in the doses used on mice survival

  10. Analysis of SF and plasma cytokines provides insights into the mechanisms of inflammatory arthritis and may predict response to therapy.

    Science.gov (United States)

    Wright, Helen L; Bucknall, Roger C; Moots, Robert J; Edwards, Steven W

    2012-03-01

    Biologic drugs have revolutionized the care of RA, but are expensive and not universally effective. To further understand the inflammatory mechanisms underlying RA and identify potential biomarkers predicting response to therapy, we measured multiple cytokine concentrations in SF of patients with inflammatory arthritides (IAs) and, in a subset of patients with RA, correlated this with response to TNF-α inhibition. SF from 42 RA patients and 19 non-RA IA patients were analysed for 12 cytokines using a multiplex cytokine assay. Cytokines were also measured in the plasma of 16 RA patients before and following treatment with anti-TNF-α. Data were analysed using Mann-Whitney U-test, Spearman's rank correlation and cluster analysis with the Kruskal-Wallis test with Dunn's post-test analysis. RA SF contained significantly elevated levels of IL-1β, IL-1ra, IL-2, IL-4, IL-8, IL-10, IL-17, IFN-γ, G-CSF, GM-CSF and TNF-α compared with other IA SF. RA patients who did not respond to anti-TNF therapy had elevated IL-6 in their SF pre-therapy (P < 0.05), whereas responders had elevated IL-2 and G-CSF (P < 0.05). Plasma cytokine concentrations were not significantly modulated by TNF inhibitors, with the exception of IL-6, which decreased after 12 weeks (P < 0.05). Cytokine profiles in RA SF vary with treatment and response to therapy. Cytokine concentrations are significantly lower in plasma than in SF and relatively unchanged by TNF inhibitor therapy. Concentrations of IL-6, IL-2 and G-CSF in SF may predict response to TNF inhibitors.

  11. FLU VACCINATION

    CERN Multimedia

    2007-01-01

    People working on the CERN site who wish to be vaccinated may go to the Infirmary (ground-floor, bldg. 57), with their vaccine, without a prior appointment. The vaccine can be reimbursed directly by Uniqa providing you attach the receipt and the prescription that you will receive from the Medical Service the day of your injection at the infirmary. Ideally, the vaccination should take place between 1st October and 30th November 2007 (preferably between 14:00 and 16:00). CERN staff aged 50 or over are recommended to have influenza vaccinations. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and those convalescing from serious medical problems or after serious surgical operations. The Medical Service will not administer vaccines for family members or retired staff members, who must contact their normal family doctor. Medical Service

  12. Hepatitis Vaccines

    Directory of Open Access Journals (Sweden)

    Sina Ogholikhan

    2016-03-01

    Full Text Available Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver.

  13. Hepatitis Vaccines

    Science.gov (United States)

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  14. Flu Vaccination

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  15. Flu vaccination

    CERN Multimedia

    CERN Medical Service

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor.CERN Medical Service

  16. FLU VACCINATION

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  17. Flu Vaccination

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical service

  18. Regulation of wound healing by granulocyte-macrophage colony-stimulating factor after vocal fold injury.

    Directory of Open Access Journals (Sweden)

    Jae-Yol Lim

    Full Text Available OBJECTIVES: Vocal fold (VF scarring remains a therapeutic challenge. Granulocyte-macrophage colony-stimulating factor (GM-CSF facilitates epithelial wound healing, and recently, growth factor therapy has been applied to promote tissue repair. This study was undertaken to investigate the effect of GM-CSF on VF wound healing in vivo and in vitro. METHODS: VF scarring was induced in New Zealand white rabbits by direct injury. Immediately thereafter, either GM-CSF or PBS was injected into the VFs of rabbits. Endoscopic, histopathological, immunohistochemical, and biomechanical evaluations of VFs were performed at 3 months post-injury. Human vocal fold fibroblasts (hVFFs were cultured with GM-CSF. Production of type I and III collagen was examined immunocytochemically, and the synthesis of elastin and hyaluronic acids was evaluated by ELISA. The mRNA levels of genes related to ECM components and ECM production-related growth factors, such as HGF and TGF-ß1, were examined by real time RT-PCR. RESULTS: The GM-CSF-treated VFs showed reduced collagen deposition in comparison to the PBS-injected controls (P<0.05. Immunohistochemical staining revealed lower amounts of type I collagen and fibronectin in the GM-CSF-treated VFs (P<0.05 and P<0.01, respectively. Viscous and elastic shear moduli of VF samples were significantly lower in the GM-CSF group than in the PBS-injected group (P<0.001 and P<0.01, respectively. Mucosal waves in the GM-CSF group showed significant improvement when compared to the PBS group (P = 0.0446. GM-CSF inhibited TGF-β1-induced collagen synthesis by hVFFs (P<0.05 and the production of hyaluronic acids increased at 72 hours post-treatment (P<0.05. The expressions of HAS-2, tropoelastin, MMP-1, HGF, and c-Met mRNA were significantly increased by GM-CSF, although at different time points (P<0.05. CONCLUSION: The present study shows that GM-CSF offers therapeutic potential for the remodeling of VF wounds and the promotion of VF

  19. Lentivirus-Induced Dendritic Cells (iDC for Immune-Regenerative Therapies in Cancer and Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Renata Stripecke

    2014-08-01

    Full Text Available Conventional dendritic cells (cDC are ex vivo differentiated professional antigen presenting cells capable of potently stimulating naïve T cells and with vast potential for immunotherapeutic applications. The manufacture of clinical-grade cDC is relatively complex and requires several days for completion. Clinical trials showed poor trafficking of cDC from subcutaneous injection sites to lymph nodes (LN, where DC can optimally stimulate naïve lymphocytes for long-lasting memory responses. We demonstrated in mouse and human systems that a single overnight ex vivo lentiviral (LV gene transfer into DC precursors for production of combination of cytokines and antigens was capable to induce autonomous self-differentiation of antigen-loaded DC in vitro and in vivo. These highly viable induced DC (iDC effectively migrated from the injected skin to LN, where they effectively activated de novo antigen-specific effector memory T cells. Two iDC modalities were validated in relevant animal models and are now in clinical development: Self-differentiated Myeloid-derived Antigen-presenting-cells Reactive against Tumors co-expressing GM-CSF/IL-4/TRP2 for melanoma immunotherapy in the autologous setting (SmartDCtrp2, and Self-differentiated Myeloid-derived Lentivirus-induced against human cytomegalovirus as an allogeneic matched adoptive cell after stem cell transplantation (SmyleDCpp65. The lentiviral vector design and packaging methodology has “evolved” continuously in order to simplify and optimize function and biosafety of in vitro and in vivo genetic reprogramming of iDC. Here, we address the challenges seeking for new creations of genetically programmed iDC and integrase-defective LV vaccines for immune regeneration.

  20. Ebola vaccine and treatment.

    Science.gov (United States)

    Takada, Ayato

    2015-01-01

    Filoviruses (Ebola and Marburg viruses) cause severe hemorrhagic fever in humans and nonhuman primates. No effective prophylaxis or treatment for filovirus diseases is yet commercially available. The recent outbreak of Ebola virus disease in West Africa has accelerated efforts to develop anti-Ebola virus prophylaxis and treatment, and unapproved drugs were indeed used for the treatment of patients during the outbreak. This article reviews previous researches and the latest topics on vaccine and therapy for Ebola virus disease.

  1. Therapy of established B16-F10 melanoma tumors by a single vaccination of CTL/T helper peptides in VacciMax®

    Directory of Open Access Journals (Sweden)

    Korets-Smith Ella

    2007-04-01

    Full Text Available Abstract Background Melanoma tumors are known to express antigens that usually induce weak immune responses of short duration. Expression of both tumor-associated antigens p53 and TRP2 by melanoma cells raises the possibility of simultaneously targeting more than one antigen in a therapeutic vaccine. In this report, we show that VacciMax® (VM, a novel liposome-based vaccine delivery platform, can increase the immunogenicity of melanoma associated antigens, resulting in tumor elimination. Methods C57BL/6 mice bearing B16-F10 melanoma tumors were vaccinated subcutaneously 6 days post tumor implantation with a mixture of synthetic peptides (modified p53: 232–240, TRP-2: 181–188 and PADRE and CpG. Tumor growth was monitored and antigen-specific splenocyte responses were assayed by ELISPOT. Results Vaccine formulated in VM increased the number of both TRP2- and p53-specific IFN-γ producing splenocytes following a single vaccination. Vaccine formulated without VM resulted only in enhanced IFN-γ producing splenocytes to one CTL epitopes (TRP2:180–188, suggesting that VM overcomes antigen dominance and enhances immunogenicity of multiple epitopes. Vaccination of mice bearing 6-day old B16-F10 tumors with both TRP2 and p53-peptides formulated in VM successfully eradicated tumors in all mice. A control vaccine which contained all ingredients except liposomes resulted in eradication of tumors in no more than 20% of mice. Conclusion A single administration of VM is capable of inducing an effective CTL response to multiple tumor-associated antigens. The responses generated were able to reject 6-day old B16-F10 tumors.

  2. Production of a Dendritic Cell-Based Vaccine Containing Inactivated Autologous Virus for Therapy of Patients with Chronic Human Immunodeficiency Virus Type 1 Infection▿

    OpenAIRE

    Whiteside, Theresa L.; Piazza, Paolo; Reiter, Amanda; Stanson, Joanna; Connolly, Nancy C.; Rinaldo, Charles R.; Riddler, Sharon A.

    2008-01-01

    In preparation for a pilot clinical trial in patients with chronic human immunodeficiency virus type 1 (HIV-1) infection, a novel dendritic cell (DC)-based vaccine is being manufactured. The trial will test the hypothesis that isolated endogenous virus presented by DCs serves as a potent immunogen for activation of CD8+ and CD4+ T cells specific for a broad range of autologous HIV-1 antigens. Production of the vaccine under good manufacture practice conditions involves (i) autologous virus is...

  3. DNA Vaccines

    Indian Academy of Sciences (India)

    diseases. Keywords. DNA vaccine, immune response, antibodies, infectious diseases. GENERAL .... tein vaccines require expensive virus/protein purification tech- niques as ... sphere continue to remain major health hazards in developing nations. ... significance since it can be produced at a very low cost and can be stored ...

  4. Vaccination Policies

    NARCIS (Netherlands)

    Verweij, M.F.

    2013-01-01

    Vaccination involves priming the immune system with an antigenic agent that mimics a virus or bacterium, which results in immunity against the “real” microorganism. Collective vaccination policies have played an important role in the control of infectious disease worldwide. They can serve the

  5. TUMOUR VACCINE

    NARCIS (Netherlands)

    Wagner, Ernst; Kircheis, Ralf; Crommelin, D.; Van Slooten, Maaike; Storm, Gert

    1999-01-01

    The invention relates to a tumour vaccine with a tumour antigen base. In addition to a source of tumour antigens, the vaccine contains a release system for the delayed release of the active agent IFN- gamma , the active dose of IFN- gamma being 50 ng to 5 mu g. The IFN- gamma is released over a

  6. Rotavirus Vaccine

    Science.gov (United States)

    Why get vaccinated?Rotavirus is a virus that causes diarrhea, mostly in babies and young children. The diarrhea can be severe, and lead ... and fever are also common in babies with rotavirus.Before rotavirus vaccine, rotavirus disease was a common ...

  7. Diverse manifestations of tumorigenicity and immunogenicity displayed by the poorly immunogenic B16-BL6 melanoma transduced with cytokine genes.

    Science.gov (United States)

    Arca, M J; Krauss, J C; Strome, S E; Cameron, M J; Chang, A E

    1996-05-01

    We evaluated the in vivo response to the poorly immunogenic B16-BL6 (BL6) murine melanoma genetically altered to secrete interleukin-2 (IL-2), IL-4, interferon gamma (IFN gamma) and granulocyte/macrophage-colony-stimulating factor (GM-CSF). Three parameters were evaluated: (1) tumorigenicity, (2) vaccination of naive animals, and (3) assessment of antitumor reactivity of T cells derived from tumor-draining lymph nodes (TDLN). Secretion of IL-2 abrogated the tumorigenicity of BL6, while IFN gamma and IL-4 partially reduced tumorigenicity, and GM-CSF had no effect. Protective immunity to wild-type tumor challenge could not be achieved by vaccination with irradiated cytokine-secreting tumors, although IL-2 and IL-4 secretion appeared to retard the growth of the challenge inoculum significantly. An alternative method to evaluate the immunogenicity of the cytokine-secreting tumors was to measure the ability of T cells obtained from TDLN to mediate regression of wild-type tumor in adoptive immunotherapy. Neither IL-2 nor IFN gamma secretion resulted in the induction of immune T cells. By contrast, GM-CSF and IL-4 secretion were found to induce immune T cells in the TDLN with GM-CSF being superior to IL-4. The combined secretion of GM-CSF and IL-4 did not lead to enhanced induction of immune T cells. GM-CSF secretion was found to upregulate B7-1 expression in TDLN, consistent with an increase in the population of antigen-presenting cells. These studies demonstrated that reduced tumorigenicity by cytokine secretion did not correlate with increased immunogenicity. With the cytokines examined, there was limited capability of developing protective immunity against the BL6 tumor. Nevertheless, GM-CSF and IL-4 secretion significantly enhanced T cell immune reactivity to the poorly immunogenic BL6 tumor.

  8. Effect of cytokine-encoding plasmid delivery on immune response to Japanese encephalitis virus DNA vaccine in mice.

    Science.gov (United States)

    Bharati, Kaushik; Appaiahgari, Mohan Babu; Vrati, Sudhanshu

    2005-01-01

    We have previously shown that immunization of mice with plasmid pMEa synthesizing Japanese encephalitis virus (JEV) envelope protein induced anti-JEV humoral and cellular immune responses. We now show that intra-muscular co-administration of mice with pMEa and pGM-CSF, encoding murine granulocyte-macrophage colony-stimulating factor or pIL-2, encoding murine interleukin-2 given 4 days after pMEa, augmented anti-JEV antibody titers. This did not enhance the level of protection in immunized mice against JEV. However, intra-dermal co-administration of pMEa and pGM-CSF in mice using the gene gun, enhanced anti-JEV antibody titers resulting in an increased level of protection in mice against lethal JEV challenge.

  9. Whither vaccines?

    Science.gov (United States)

    Rodrigues, Charlene M C; Pinto, Marta V; Sadarangani, Manish; Plotkin, Stanley A

    2017-06-01

    Currently used vaccines have had major effects on eliminating common infections, largely by duplicating the immune responses induced by natural infections. Now vaccinology faces more complex problems, such as waning antibody, immunosenescence, evasion of immunity by the pathogen, deviation of immunity by the microbiome, induction of inhibitory responses, and complexity of the antigens required for protection. Fortunately, vaccine development is now incorporating knowledge from immunology, structural biology, systems biology and synthetic chemistry to meet these challenges. In addition, international organisations are developing new funding and licensing pathways for vaccines aimed at pathogens with epidemic potential that emerge from tropical areas. © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  10. A pan-inhibitor of DASH family enzymes induces immune-mediated regression of murine sarcoma and is a potent adjuvant to dendritic cell vaccination and adoptive T-cell therapy.

    Science.gov (United States)

    Duncan, Brynn B; Highfill, Steven L; Qin, Haiying; Bouchkouj, Najat; Larabee, Shannon; Zhao, Peng; Woznica, Iwona; Liu, Yuxin; Li, Youhua; Wu, Wengen; Lai, Jack H; Jones, Barry; Mackall, Crystal L; Bachovchin, William W; Fry, Terry J

    2013-10-01

    Multimodality therapy consisting of surgery, chemotherapy, and radiation will fail in approximately 40% of patients with pediatric sarcomas and result in substantial long-term morbidity in those who are cured. Immunotherapeutic regimens for the treatment of solid tumors typically generate antigen-specific responses too weak to overcome considerable tumor burden and tumor suppressive mechanisms and are in need of adjuvant assistance. Previous work suggests that inhibitors of DASH (dipeptidyl peptidase IV activity and/or structural homologs) enzymes can mediate tumor regression by immune-mediated mechanisms. Herein, we demonstrate that the DASH inhibitor, ARI-4175, can induce regression and eradication of well-established solid tumors, both as a single agent and as an adjuvant to a dendritic cell (DC) vaccine and adoptive cell therapy (ACT) in mice implanted with the M3-9-M rhabdomyosarcoma cell line. Treatment with effective doses of ARI-4175 correlated with recruitment of myeloid (CD11b) cells, particularly myeloid DCs, to secondary lymphoid tissues and with reduced frequency of intratumoral monocytic (CD11bLy6-CLy6-G) myeloid-derived suppressor cells. In immunocompetent mice, combining ARI-4175 with a DC vaccine or ACT with tumor-primed T cells produced significant improvements in tumor responses against well-established M3-9-M tumors. In M3-9-M-bearing immunodeficient (Rag1) mice, ACT combined with ARI-4175 produced greater tumor responses and significantly improved survival compared with either treatment alone. These studies warrant the clinical investigation of ARI-4175 for treatment of sarcomas and other malignancies, particularly as an adjuvant to tumor vaccines and ACT.

  11. VACCINATION OF CHILDREN WITH MALIGNANCIES

    Directory of Open Access Journals (Sweden)

    D.Yu. Kachanov

    2010-01-01

    Full Text Available Children suffering from oncological diseases fall into the group of immunocompromised patients. They are more at risk of severe children’s banal infections. Development of safe and efficient methods for immunological prevention of preventable infections diseases in this group of children is one of priorities for modern medicine. It is also important to properly organise the process of vaccinating the persons surrounding the patient to eliminate the risk of postvaccinal complications in the sick (non-vaccinated child. The article provides a detailed overview of the global experience in vaccinating children with malignant neoplasms. It describes modern principles of immunological prevention in children both being administered the standard anticancer therapy and those have undergone transplantation of hemopoietic stem cells. Key words: children, malignancy, vaccination.(Pediatric Pharmacology. – 2010; 7(3:28-34

  12. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer

    Directory of Open Access Journals (Sweden)

    Minamida Hidetoshi

    2004-06-01

    Full Text Available Abstract Survivin is a member of the inhibitor of apoptosis protein (IAP family containing a single baculovirus IAP repeat domain. It is expressed during fetal development but becomes undetectable in terminally differentiated normal adult tissues. We previously reported that survivin and its splicing variant survivin-2B was expressed abundantly in various types of tumor tissues as well as tumor cell lines and was suitable as a target antigen for active-specific anti-cancer immunization. Subsequently, we identified an HLA-A24-restricted antigenic peptide, survivin-2B80-88 (AYACNTSTL recognized by CD8+ cytotoxic T lymphocytes (CTLs. We, therefore, started a phase I clinical study assessing the efficacy of survivin-2B peptide vaccination in patients with advanced or recurrent colorectal cancer expressing survivin. Vaccinations with survivin-2B peptide were given subcutaneously six times at 14-day intervals. Of 15 patients who finished receiving the vaccination schedule, three suffered slight toxicities, including anemia (grade 2, general malaise (grade 1, and fever (grade 1. No severe adverse events were observed in any patient. In 6 patients, tumor marker levels (CEA and CA19-9 decreased transiently during the period of vaccination. Slight reduction of the tumor volume was observed in one patient, which was considered a minor responder. No changes were noted in three patients while the remaining eleven patients experienced tumor progression. Analysis of peripheral blood lymphocytes of one patient using HLA-A24/peptide tetramers revealed an increase in peptide-specific CTL frequency from 0.09% to 0.35% of CD8+ T cells after 4 vaccinations. This phase I clinical study indicates that survivin-2B peptide-based vaccination is safe and should be further considered for potential immune and clinical efficacy in HLA-A24-expression patients with colorectal cancer.

  13. Activation of adenosine A3 receptors potentiates stimulatory effects of IL-3, SCF, and GM-CSF on mouse granulocyte-macrophage hematopoietic progenitor cells

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Vacek, Antonín; Pospíšil, Milan; Holá, Jiřina; Štreitová, Denisa; Znojil, V.

    2009-01-01

    Roč. 58, č. 2 (2009), s. 247-252 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/06/0015; GA ČR(CZ) GA305/08/0158 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : hematopoiesis * adenosine A3 receptor agonist * hematopoietic growth factors Subject RIV: BO - Biophysics Impact factor: 1.430, year: 2009

  14. Effect on Antibody and T-Cell Responses of Mixing Five GMP-Produced DNA Plasmids and Administration With Plasmid Expressing GM-CSF

    National Research Council Canada - National Science Library

    Sedegah, M; Charoenvit, Y; Aguiar, J; Sacci, J; Hedstrom, R; Kumar, S; Belmonte, A; Lanar, DE; Jones, TR; Abot, E

    2004-01-01

    .... In preparation for a clinical trial, we assessed the immunogenicity of GMP-produced plasmids encoding five Plasmodium falciparum proteins, PfCSP, PfSSP2, PfEXP1, PfLSA1, and PfLSA3, given as a mixture, or alone...

  15. Influenza vaccination

    DEFF Research Database (Denmark)

    Østerhus, Sven Frederick

    2015-01-01

    The Cochrane Library was systematically searched for meta-analyses regarding influenza vaccination of various populations, both healthy and sick. An effect in reducing the number of cases of influenza, influenza-like illness or complications to influenza was found in some studies, but, generally......, the quality of the studies was low, and several studies lacked hard clinical endpoints. Data on adverse effects were scarce. More randomised controlled trials investigating the effects of influenza vaccination are warranted....

  16. Flu Vaccine Safety Information

    Science.gov (United States)

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other Flu Vaccine Safety Information Questions & Answers Language: English (US) ... safety of flu vaccines monitored? Egg Allergy Are flu vaccines safe? Flu vaccines have good safety record. ...

  17. Thimerosal in Flu Vaccine

    Science.gov (United States)

    ... Seasonal Avian Swine Variant Pandemic Other Thimerosal in Flu Vaccine Questions & Answers Language: English (US) Español Recommend ... and/or fungi from contaminating the vaccine. Do flu vaccines contain thimerosal? Flu vaccines in multi-dose ...

  18. Ear Infection and Vaccines

    Science.gov (United States)

    ... an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News ... or may need reinsertion over time. What about vaccines? A vaccine is a preparation administered to stimulate ...

  19. Antipneumococcal vaccination

    Directory of Open Access Journals (Sweden)

    Gian Vincenzo Zuccotti

    2013-06-01

    Full Text Available Streptococcus pneumoniae (SP is a gram-positive bacterium with more than 90 known serotypes causing around 11% of all deaths worldwide in children aged 1-59 months. A new era in prevention of SP-related diseases started in at the beginning of 2000s when a 7-valent pneumococcal conjugate vaccine (PCV7 was recommended as the vaccine of choice in pediatric age. PCV7 dramatically reduced invasive pneumococcal diseases (IPD among children with indirect effects noted among other age groups as well. However, thanks to a strict surveillance network, an increase in non-vaccine serotypes (NVTs causing IPD was noted worldwide and in late 2000s a new second generation vaccine (13-valent pneumococcal conjugate vaccine-PCV13 with an expanded serotype coverage was licensed. Due to the lack of solid effectiveness data, up to know it is difficult to predict how the composition of NVTs will change after the large-scale introduction of PCV13 or whether the characteristics of the serotypes will change. Long-term surveillance of both IPD, pneumonia, acute otitis media and carriage will be crucial to ascertain whether these second generation vaccines are having the desired effect of reducing the incidence of diseases in the long term. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  20. Vaccines and bioterrorism: smallpox and anthrax.

    Science.gov (United States)

    Kimmel, Sanford R; Mahoney, Martin C; Zimmerman, Richard K

    2003-01-01

    Because of the success of vaccination and the ring strategy in eradicating smallpox from the world, smallpox vaccine has not been recommended for the United States civilian populations for decades. Given the low but possible threat of bioterrorism, smallpox vaccination is now recommended for those teams investigating potential smallpox cases and for selected personnel of acute-care hospitals who would be needed to care for victims in the event of a terrorist attack. Treatment and post-exposure prophylaxis for anthrax are ciprofloxacin or doxycycline. Anthrax vaccine alone is not effective for post-exposure prevention of anthrax; vaccination is accompanied by 60 days of antibiotic therapy. In addition to military use, anthrax vaccine is recommended for pre-exposure use in those persons whose work involves repeated exposure to Bacillus anthracis spores.

  1. Therapy of MHC Class I+ and Class I- HPV 16-Associated Tumours with Cytokines, Genetically Modified Tumour Vaccines and Dendritic Cells

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan; Šímová, Jana; Mikyšková, Romana; Vonka, V.

    2004-01-01

    Roč. 27, č. 4 (2004), s. 161D ISSN 0147-958X. [International Congress of Immunology /12./ and Annual Conference of FOCIS /4./. Montreal, 18.07.2004-23.07.2004] Institutional research plan: CEZ:AV0Z5052915 Keywords : HPV 16 * tumour vaccines * dendritic cells Subject RIV: EC - Immunology Impact factor: 1.051, year: 2004

  2. Closing the manufacturing process of dendritic cell vaccines transduced with adenovirus vectors.

    Science.gov (United States)

    Gulen, Dumrul; Abe, Fuminori; Maas, Sarah; Reed, Elizabeth; Cowan, Kenneth; Pirruccello, Samuel; Wisecarver, James; Warkentin, Phyllis; Northam, Matt; Turken, Orhan; Coskun, Ugur; Senesac, Joe; Talmadge, James E

    2008-12-20

    Anticancer immunotherapy using dendritic cell (DC) based vaccines provides an adjuvant therapeutic strategy that is not cross reactive with conventional therapeutics. However, manufacturing of DC vaccines requires stringent adherence to Good Manufacturing Practice (GMP) methods and rigorous standardization. Optimally this includes a closed system for monocyte isolation, in combination with closed culture and washing systems and an effective vector transduction strategy. In this study, we used the Gambro Elutra to enrich monocytes from non-mobilized leukapheresis products collected from healthy donors. This approach enriched monocytes from an average frequency of 13.6+3.2% (mean+SEM), to an average frequency of 79.5+4.3% following enrichment with a yield of 79 to 100%. The monocytes were then cultured in a closed system using gas permeable Vuelife fluoroethylene propylene (FEP) bags and X-vivo-15 media containing 10 ng/ml granulocyte-macrophage colony-stimulation factor (GM-CSF) and 5 ng/ml Interleukin (IL) 4. The cultures were re-fed on days two and four, with a 25% media volume and cytokines. Following culture for seven days, the cells were harvested using a Cobe-2991 and concentrated using a bench centrifuge retrofitted with blocks to allow centrifugation of 72 ml bags and supernatant removed using a plasma extractor. This approach reduced the media volume to an average of 17.4 ml and an average DC concentration of 6.3+1.0x10(7) cells/ml, a viability of 93.8+2.2%, a purity of 88.9+3.3% and a total yield of 8.5+1.4x10(8) DCs. Based on the identification of DR+ cells as DCs we had an average yield of 46+8% using a calculation based on the number of monocytes in the apheresis product and the resulting DCs differentiated from monocytes. The use of DCs as a vaccine, required transduction with an adenovirus (Adv) vector with the tumor suppressor, p53 transgene (Adv5CMV-p53) as the antigen at a DC concentration of 9x10(6) DCs/ml at an Ad5CMV-p53: DC ratio of 20

  3. Randomized Phase II Trial of Adjuvant WT-1 Analog Peptide Vaccine in Patients with Malignant Pleural Mesothelioma after Completion of Multimodality Therapy

    Science.gov (United States)

    2017-11-01

    cellular proliferation, differentiation, apoptosis, organ development, and sex determination , the protein is processed by the proteasome and the derived...peptide). Vaccine:  2/3 CD8+  4/8 CD4+ Control:  0/4 CD8+  1/8 CD4+ Injection site reactions were common, mild, and self -limited...the ASCO Annual Meeting 2016. 3 Abstract Purpose: Determine the 1-year progression-free survival (PFS) among patients with malignant pleural

  4. Progress and controversies in developing cancer vaccines

    Directory of Open Access Journals (Sweden)

    Speiser Daniel E

    2005-04-01

    Full Text Available Abstract Immunotherapy has become a standard approach for cancer management, through the use of cytokines (eg: interleukin-2 and monoclonal antibodies. Cancer vaccines hold promise as another form of immunotherapy, and there has been substantial progress in identifying shared antigens recognized by T cells, in developing vaccine approaches that induce antigen-specific T cell responses in cancer patients, and in developing new technology for monitoring immune responses in various human tissue compartments. Dramatic clinical regressions of human solid tumors have occurred with some cancer vaccines, but the rate of those responses remains low. This article is part of a 2-part point:counterpoint series on peptide vaccines and adoptive therapy approaches for cancer. The current status of cancer vaccination, and associated challenges, are discussed. Emphasis is placed on the need to increase our knowledge of cancer immunobiology, as well as to improve monitoring of cellular immune function after vaccination. Progress in both areas will facilitate development of effective cancer vaccines, as well as of adoptive therapy. Effective cancer vaccines promise to be useful for treatment and prevention of cancer at low cost and with low morbidity.

  5. Green revolution vaccines, edible vaccines | Tripurani | African ...

    African Journals Online (AJOL)

    Edible vaccines are sub-unit vaccines where the selected genes are introduced into the plants and the transgenic plant is then induced to manufacture the encoded protein. Edible vaccines are mucosal-targeted vaccines where stimulation of both systematic and mucosal immune network takes place. Foods under study ...

  6. Valuing vaccination.

    Science.gov (United States)

    Bärnighausen, Till; Bloom, David E; Cafiero-Fonseca, Elizabeth T; O'Brien, Jennifer Carroll

    2014-08-26

    Vaccination has led to remarkable health gains over the last century. However, large coverage gaps remain, which will require significant financial resources and political will to address. In recent years, a compelling line of inquiry has established the economic benefits of health, at both the individual and aggregate levels. Most existing economic evaluations of particular health interventions fail to account for this new research, leading to potentially sizable undervaluation of those interventions. In line with this new research, we set forth a framework for conceptualizing the full benefits of vaccination, including avoided medical care costs, outcome-related productivity gains, behavior-related productivity gains, community health externalities, community economic externalities, and the value of risk reduction and pure health gains. We also review literature highlighting the magnitude of these sources of benefit for different vaccinations. Finally, we outline the steps that need to be taken to implement a broad-approach economic evaluation and discuss the implications of this work for research, policy, and resource allocation for vaccine development and delivery.

  7. Persistent humoral immune defect in highly active antiretroviral therapy-treated children with HIV-1 infection: loss of specific antibodies against attenuated vaccine strains and natural viral infection

    NARCIS (Netherlands)

    Bekker, Vincent; Scherpbier, Henriëtte; Pajkrt, Dasja; Jurriaans, Suzanne; Zaaijer, Hans; Kuijpers, Taco W.

    2006-01-01

    OBJECTIVE: In the pre-highly active antiretroviral therapy era, a loss of specific antibodies was seen. Our objective with this study was to describe the loss of specific antibodies during treatment with highly active antiretroviral therapy. METHODS: In a prospective, single-center, cohort study of

  8. Generation in vivo of peptide-specific cytotoxic T cells and presence of regulatory T cells during vaccination with hTERT (class I and II peptide-pulsed DCs

    Directory of Open Access Journals (Sweden)

    Satthaporn Sukchai

    2009-03-01

    Full Text Available Abstract Background Optimal techniques for DC generation for immunotherapy in cancer are yet to be established. Study aims were to evaluate: (i DC activation/maturation milieu (TNF-α +/- IFN-α and its effects on CD8+ hTERT-specific T cell responses to class I epitopes (p540 or p865, (ii CD8+ hTERT-specific T cell responses elicited by vaccination with class I alone or both class I and II epitope (p766 and p672-pulsed DCs, prepared without IFN-α, (iii association between circulating T regulatory cells (Tregs and clinical responses. Methods Autologous DCs were generated from 10 patients (HLA-0201 with advanced cancer by culturing CD14+ blood monocytes in the presence of GM-CSF and IL-4 supplemented with TNF-α [DCT] or TNF-α and IFN-α [DCTI]. The capacity of the DCs to induce functional CD8+ T cell responses to hTERT HLA-0201 restricted nonapeptides was assessed by MHC tetramer binding and peptide-specific cytotoxicity. Each DC preparation (DCT or DCTI was pulsed with only one type of hTERT peptide (p540 or p865 and both preparations were injected into separate lymph node draining regions every 2–3 weeks. This vaccination design enabled comparison of efficacy between DCT and DCTI in generating hTERT peptide specific CD8+ T cells and comparison of class I hTERT peptide (p540 or p865-loaded DCT with or without class II cognate help (p766 and p672 in 6 patients. T regulatory cells were evaluated in 8 patients. Results (i DCTIs and DCTs, pulsed with hTERT peptides, were comparable (p = 0.45, t-test in inducing peptide-specific CD8+ T cell responses. (ii Class II cognate help, significantly enhanced (p (iii Clinical responders had significantly lower (p Conclusion Addition of IFN-α to ex vivo monocyte-derived DCs, did not significantly enhance peptide-specific T cell responses in vivo, compared with TNF-α alone. Class II cognate help significantly augments peptide-specific T cell responses. Clinically favourable responses were seen in patients

  9. Vaccines and Thimerosal

    Science.gov (United States)

    ... During Pregnancy Frequently Asked Questions about Vaccine Recalls Historical Vaccine Safety Concerns FAQs about GBS and Menactra ... CISA Resources for Healthcare Professionals Evaluation Current Studies Historical Background 2001-12 Publications Technical Reports Vaccine Safety ...

  10. Vaccine Adverse Events

    Science.gov (United States)

    ... for Biologics Evaluation & Research Vaccine Adverse Events Vaccine Adverse Events Share Tweet Linkedin Pin it More sharing ... in the primary immunization series in infants Report Adverse Event Report a Vaccine Adverse Event Contact FDA ( ...

  11. Vaccination in Fish

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar

    vaccines have reduced the need for usage of antibiotics with more than 99 % since the 1980s. Fish can be vaccinated by three different administration routes: injection, immersion and oral vaccination. Injection vaccination (intraperitoneal injection of vaccine) is the most time consuming and labor...... intensive method, which however, provides the best protection of the fish. Immersion vaccination is used for immunization of a high number of small fish is cost-efficient and fast (30 sec immersion into vaccine). Oral vaccination (vaccine in feed) is the least efficient. As in higher vertebrates fish...... respond to vaccination by increasing the specific antibody titer and by activating the cellular responses. My talk will cover vaccination methods in fish, immune responses and some adverse effect of oil-adjuvanted vaccines in fish with reference to our work in rainbow trout, Oncorhynchus mykiss....

  12. Human Papillomavirus (HPV) Vaccine

    Science.gov (United States)

    Why get vaccinated?HPV vaccine prevents infection with human papillomavirus (HPV) types that are associated with cause ... at http://www.cdc.gov/hpv. HPV Vaccine (Human Papillomavirus) Information Statement. U.S. Department of Health and ...

  13. Systematic Information to Health-Care Professionals about Vaccination Guidelines Improves Adherence in Patients With Inflammatory Bowel Disease in Anti-TNFα Therapy

    DEFF Research Database (Denmark)

    Christensen, Katrine R; Steenholdt, Casper; Buhl, Sine S

    2015-01-01

    OBJECTIVES: Implementation of guidelines for prevention of infectious diseases during anti-TNFα therapy in patients with inflammatory bowel disease (IBD) is important but difficult. We investigated whether systematic information to health-care professionals about these guidelines improves patient...

  14. [Poliovirus vaccine].

    Science.gov (United States)

    Shimizu, Hiroyuki

    2012-06-01

    To avoid the risk of vaccine-associated paralytic poliomyelitis (VAPP) and polio outbreaks due to circulating vaccine-derived polioviruses, an inactivated poliovirus vaccine (IPV) was introduced for routine immunization in a number of countries with a low risk of polio outbreaks. Currently, production and marketing of a standalone conventional IPV and two diphtheria-pertussis-tetanus-IPV (Sabin-derived IPV; sIPV) products have been submitted, and it is expected that the IPV products will be introduced in Japan in the autumn of 2012. At the same time, a decline in the OPV immunization rate became apparent in Japan due to serious public concerns about a remaining risk of VAPP and introduction of IPV in the near future. Therefore, the recent development of polio immunity gaps should be carefully monitored, and surveillance of suspected polio cases and laboratory diagnosis of polioviruses have to be intensified for the transition period from OPV to IPV in Japan. The development of sIPV is one of the most realistic options to introduce affordable IPV to developing countries. In this regard, further clinical studies on its efficacy, safety, and interchangeability of sIPV will be needed after the introduction of the sIPV products, which will be licensed in Japan for the first time in the world.

  15. Anti-tumour therapeutic efficacy of OX40L in murine tumour model.

    Science.gov (United States)

    Ali, Selman A; Ahmad, Murrium; Lynam, June; McLean, Cornelia S; Entwisle, Claire; Loudon, Peter; Choolun, Esther; McArdle, Stephanie E B; Li, Geng; Mian, Shahid; Rees, Robert C

    2004-09-09

    OX40 ligand (OX40L), a member of TNF superfamily, is a co-stimulatory molecule involved in T cell activation. Systemic administration of mOX40L fusion protein significantly inhibited the growth of experimental lung metastasis and subcutaneous (s.c.) established colon (CT26) and breast (4T1) carcinomas. Vaccination with OX40L was significantly enhanced by combination treatment with intra-tumour injection of a disabled infectious single cycle-herpes simplex virus (DISC-HSV) vector encoding murine granulocyte macrophage-colony stimulating factor (mGM-CSF). Tumour rejection in response to OX40L therapy required functional CD4+ and CD8+ T cells and correlated with splenocyte cytotoxic T lymphocytes (CTLs) activity against the AH-1 gp70 peptide of the tumour associated antigen expressed by CT26 cells. These results demonstrate the potential role of the OX40L in cancer immunotherapy.

  16. Hepatitis B Vaccine

    Science.gov (United States)

    ... a combination product containing Haemophilus influenzae type b, Hepatitis B Vaccine) ... combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis, Hepatitis B, Polio Vaccine)

  17. Production of a Dendritic Cell-Based Vaccine Containing Inactivated Autologous Virus for Therapy of Patients with Chronic Human Immunodeficiency Virus Type 1 Infection▿

    Science.gov (United States)

    Whiteside, Theresa L.; Piazza, Paolo; Reiter, Amanda; Stanson, Joanna; Connolly, Nancy C.; Rinaldo, Charles R.; Riddler, Sharon A.

    2009-01-01

    In preparation for a pilot clinical trial in patients with chronic human immunodeficiency virus type 1 (HIV-1) infection, a novel dendritic cell (DC)-based vaccine is being manufactured. The trial will test the hypothesis that isolated endogenous virus presented by DCs serves as a potent immunogen for activation of CD8+ and CD4+ T cells specific for a broad range of autologous HIV-1 antigens. Production of the vaccine under good manufacture practice conditions involves (i) autologous virus isolation; (ii) superinfection of CD4+ T cells with the virus; (iii) inactivation of the virus in CD4+ T cells, T-cell apoptosis, and coincubation of T cells with autologous DCs; and (iv) product testing and release. Endogenous virus was isolated from peripheral blood-derived CD4+ T cells of three HIV-1-positive subjects by coincubation with autologous OKT-3-stimulated CD4+ T cells. CD4+ T-cell supernatants were tested for p24 levels by enzyme-linked immunosorbent assay (>25 ng/ml) and for the 50% tissue culture infective doses (TCID50; which ranged from 4,642 to 46,416/ml on day 19 of culture). Autologous CD4+ T cells that were separated on immunobeads (>95% purity) and superinfected with virus-expressed p24 (28 to 54%) had TCID50 of >400/ml on days 5 to 10. Virus inactivation with psoralen (20 μg/ml) and UVB irradiation (312 nm) reduced the TCID50 of the supernatants from 199,986 to 11/ml (>99%). 7-Amino-actinomycin D-positive, annexin V-positive CD4+ T cells were fed to autologous DCs generated by using the Elutra cell separation system and the Aastrom system. Flow analysis showed that DC loading was complete in 24 h. On the basis of these translational results and experience with the generation of DCs from HIV-1-infected patients in a previous clinical trial, the Investigational New Drug application for clinical vaccination was submitted and approved by the FDA (application no. BB-IND-13137). PMID:19038780

  18. Production of a dendritic cell-based vaccine containing inactivated autologous virus for therapy of patients with chronic human immunodeficiency virus type 1 infection.

    Science.gov (United States)

    Whiteside, Theresa L; Piazza, Paolo; Reiter, Amanda; Stanson, Joanna; Connolly, Nancy C; Rinaldo, Charles R; Riddler, Sharon A

    2009-02-01

    In preparation for a pilot clinical trial in patients with chronic human immunodeficiency virus type 1 (HIV-1) infection, a novel dendritic cell (DC)-based vaccine is being manufactured. The trial will test the hypothesis that isolated endogenous virus presented by DCs serves as a potent immunogen for activation of CD8(+) and CD4(+) T cells specific for a broad range of autologous HIV-1 antigens. Production of the vaccine under good manufacture practice conditions involves (i) autologous virus isolation; (ii) superinfection of CD4(+) T cells with the virus; (iii) inactivation of the virus in CD4(+) T cells, T-cell apoptosis, and coincubation of T cells with autologous DCs; and (iv) product testing and release. Endogenous virus was isolated from peripheral blood-derived CD4(+) T cells of three HIV-1-positive subjects by coincubation with autologous OKT-3-stimulated CD4(+) T cells. CD4(+) T-cell supernatants were tested for p24 levels by enzyme-linked immunosorbent assay (>25 ng/ml) and for the 50% tissue culture infective doses (TCID(50); which ranged from 4,642 to 46,416/ml on day 19 of culture). Autologous CD4(+) T cells that were separated on immunobeads (>95% purity) and superinfected with virus-expressed p24 (28 to 54%) had TCID(50) of >400/ml on days 5 to 10. Virus inactivation with psoralen (20 microg/ml) and UVB irradiation (312 nm) reduced the TCID(50) of the supernatants from 199,986 to 11/ml (>99%). 7-Amino-actinomycin D-positive, annexin V-positive CD4(+) T cells were fed to autologous DCs generated by using the Elutra cell separation system and the Aastrom system. Flow analysis showed that DC loading was complete in 24 h. On the basis of these translational results and experience with the generation of DCs from HIV-1-infected patients in a previous clinical trial, the Investigational New Drug application for clinical vaccination was submitted and approved by the FDA (application no. BB-IND-13137).

  19. Important advances in malaria vaccine research

    Directory of Open Access Journals (Sweden)

    Priyanka Jadhav

    2012-01-01

    Full Text Available Malaria is one of the most widespread parasitic infection in Asian countries affecting the poor of the poor. In an effort to develop an effective vaccine for the treatment of malaria, various attempts are being made worldwide. If successful, such a vaccine can be effective for treatment of both Plasmodium vivax and Plasmodium falciparum. This would also be able to avoid complications such as drug resistance, resistance to insecticides, nonadherence to the treatment schedule, and eventually high cost of treatment in the resource-limited settings. In the current compilation, the details from the literature were collected by using PubMed and Medline as search engines and searched for terms such as malaria, vaccine, and malaria treatment. This review collates and provides glimpses of the information on the recent malaria vaccine development. The reader will be taken through the historical perspective followed by the approaches to the malaria vaccine development from pre-erythrocytic stage vaccines, asexual stage vaccines, transmission blocking vaccines, etc. Looking at the current scenario of the malaria and treatment strategies, it is an absolute need of an hour that an effective malaria vaccine should be developed. This would bring a revolutionary breakthrough in the treatment modalities especially when there is increasing emergence of resistance to existing drug therapy. It would be of great purpose to serve those living in malaria endemic region and also for travelers which are nonimmune and coming to malaria endemic region. As infection by P. vivax is more prevalent in India and other Asian subcontinent and is often prominent in areas where elimination is being attempted, special consideration is required of the role of vaccines in blocking transmission, regardless of the stages being targeted. Development of vaccines is feasible but with the support of private sector and government organization in terms of regulatory and most importantly

  20. A phase I study on combined therapy with proton-beam radiotherapy and in situ tumor vaccination for locally advanced recurrent hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Abei, Masato; Mizumoto, Masashi; Sakae, Takeji; Sakurai, Hideyuki; Zenkoh, Junko; Ariungerel, Gerelchuluun; Sogo, Yu; Ito, Atsuo; Ohno, Tadao; Tsuboi, Koji; Okumura, Toshiyuki; Fukuda, Kuniaki; Hashimoto, Takayuki; Araki, Masahiro; Ishige, Kazunori; Hyodo, Ichinosuke; Kanemoto, Ayae; Numajiri, Haruko

    2013-01-01

    Proton-beam radiotherapy (PBT) has been shown to be effective to hepatocellular carcinoma (HCC) as a nonsurgical local treatment option. However, HCC still remains as one of the most difficult cancers to be cured because of frequent recurrences. Thus, methods to inhibit the recurrence need to be explored. To prevent the HCC recurrence, we here report on a prospective phase I study of ‘in situ’ tumor vaccination using CalTUMP, a newly developed immunoadjuvant consisting of BCG extract bound to hydroxyapatite and microparticulated tuberculin, following local PBT for HCC. Patients with locally advanced recurrent HCC, which had been heavily pretreated with various treatments, were enrolled. PBT was performed with the conventional method to the target HCC. Subsequently, CalTUMP was injected into the same irradiated-tumor three times at one-week intervals. Three dose-levels of CalTUMP (1/10, 1/3, and 1/1) were administered to 3 patients each. Vital signs, blood samples, ultrasound, and computed tomographic scans were monitored to evaluate the safety. Three intratumoral injections of CalTUMP following PBT (median dose: 72.6 GyE) were accomplished in 9 patients. Transient low-grade fever and minor laboratory changes were observed in 7 patients after CalTUMP injections. No other treatment-related adverse events were observed. Median progression-free survival was 6.0 months (range: 2.1-14.2) and 4 patients were progression-free for more than 1 year. Intratumoral injection of CalTUMP following PBT was feasible and safe in patients with heavily pre-treated HCC. Further clinical studies to evaluate the efficacy of this in situ tumor vaccination are warranted

  1. Activity of glycated chitosan and other adjuvants to PDT vaccines

    Science.gov (United States)

    Korbelik, Mladen; Banáth, Judit; Čiplys, Evaldas; Szulc, Zdzislaw; Bielawska, Alicja; Chen, Wei R.

    2015-03-01

    Glycated chitosan (GC), a water soluble galactose-conjugated natural polysaccharide, has proven to be an effective immunoadjuvant for treatment of tumors based on laser thermal therapy. It was also shown to act as adjuvant for tumor therapy with high-intensity ultrasound and in situ photodynamic therapy (PDT). In the present study, GC was examined as potential adjuvant to PDT-generated cancer vaccine. Two other agents, pure calreticulin protein and acid ceramidase inhibitor LCL521, were also tested as prospective adjuvants for use in conjunction with PDT vaccines. Single treatment with GC, included with PDT vaccine cells suspension, improved the therapeutic efficacy when compared to vaccine alone. This attractive prospect of GC application remains to be carefully optimized and mechanistically elucidated. Both calreticulin and LCL521 proved also effective adjuvants when combined with PDT vaccine tumor treatment.

  2. Vaccination with Dendritic Cell Myeloma Fusions in Conjuction with Stem Cell Transplantation and PD-1 Blockade

    Science.gov (United States)

    2015-07-01

    Resolved PM19 Arthralgia, hands 11/2012 1 Possible None Resolved PM23 Hypothyroidism 10/9/13 1 Possible None Resolved PM44 Arthralgia 3/1/2014 1...a brief episode of muscle spasms) 7/29/2013 1 Unrelated Probable None Resolved PM32 Injection site reaction 7/29/2013 1 Unrelated Definite...GM- CSF) Ibuprofen Resolved PM32 Pain, joint 8/5/2013 1 Definite Definite None Resolved PM32 Pain, muscle 8/5/2013 1 Definite Definite None

  3. Tumor regression induced by intratumor therapy with a disabled infectious single cycle (DISC) herpes simplex virus (HSV) vector, DISC/HSV/murine granulocyte-macrophage colony-stimulating factor, correlates with antigen-specific adaptive immunity.

    Science.gov (United States)

    Ali, Selman A; Lynam, June; McLean, Cornelia S; Entwisle, Claire; Loudon, Peter; Rojas, José M; McArdle, Stephanie E B; Li, Geng; Mian, Shahid; Rees, Robert C

    2002-04-01

    Direct intratumor injection of a disabled infectious single cycle HSV-2 virus encoding the murine GM-CSF gene (DISC/mGM-CSF) into established murine colon carcinoma CT26 tumors induced a significant delay in tumor growth and complete tumor regression in up to 70% of animals. Pre-existing immunity to HSV did not reduce the therapeutic efficacy of DISC/mGM-CSF, and, when administered in combination with syngeneic dendritic cells, further decreased tumor growth and increased the incidence of complete tumor regression. Direct intratumor injection of DISC/mGM-CSF also inhibited the growth of CT26 tumor cells implanted on the contralateral flank or seeded into the lungs following i.v. injection of tumor cells (experimental lung metastasis). Proliferation of splenocytes in response to Con A was impaired in progressor and tumor-bearer, but not regressor, mice. A potent tumor-specific CTL response was generated from splenocytes of all mice with regressing, but not progressing tumors following in vitro peptide stimulation; this response was specific for the gp70 AH-1 peptide SPSYVYHQF and correlated with IFN-gamma, but not IL-4 cytokine production. Depletion of CD8(+) T cells from regressor splenocytes before in vitro stimulation with the relevant peptide abolished their cytolytic activity, while depletion of CD4(+) T cells only partially inhibited CTL generation. Tumor regression induced by DISC/mGM-CSF virus immunotherapy provides a unique model for evaluating the immune mechanism(s) involved in tumor rejection, upon which tumor immunotherapy regimes may be based.

  4. Dengue vaccines: Challenges, development, current status and prospects

    Directory of Open Access Journals (Sweden)

    A Ghosh

    2015-01-01

    Full Text Available Infection with dengue virus (DENV is the most rapidly spreading mosquito-borne viral disease in the world. The clinical spectrum of dengue, caused by any of the four serotypes of DENV, ranges from mild self-limiting dengue fever to severe dengue, in the form dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS. Increased rates of hospitalization due to severe dengue, during outbreaks, result in massive economic losses and strained health services. In the absence of specific antiviral therapy, control of transmission of DENV by vector management is the sole method available for decreasing dengue-associated morbidity. Since vector control strategies alone have not been able to satisfactorily achieve reduction in viral transmission, the implementation of a safe, efficacious and cost-effective dengue vaccine as a supplementary measure is a high public health priority. However, the unique and complex immunopathology of dengue has complicated vaccine development. Dengue vaccines have also been challenged by critical issues like lack of animal models for the disease and absence of suitable markers of protective immunity. Although no licensed dengue vaccine is yet available, several vaccine candidates are under phases of development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, subunit vaccines, DNA vaccines and viral-vectored vaccines. Although some vaccine candidates have progressed from animal trials to phase II and III in humans, a number of issues regarding implementation of dengue vaccine in countries like India still need to be addressed. Despite the current limitations, collaborative effects of regulatory bodies like World Health Organization with vaccine manufacturers and policy makers, to facilitate vaccine development and standardize field trials can make a safe and efficacious dengue vaccine a reality in near future.

  5. Dried influenza vaccines : Over the counter vaccines

    NARCIS (Netherlands)

    Saluja, Vinay; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2010-01-01

    Since last year influenza pandemic has struck again after 40 years, this is the right moment to discuss the different available formulation options for influenza vaccine. Looking back to the last 4 decades, most vaccines are still formulated as liquid solution. These vaccines have shown a poor

  6. Radiation and Anti-Cancer Vaccines: A Winning Combination.

    Science.gov (United States)

    Cadena, Alexandra; Cushman, Taylor R; Anderson, Clark; Barsoumian, Hampartsoum B; Welsh, James W; Cortez, Maria Angelica

    2018-01-30

    The emerging combination of radiation therapy with vaccines is a promising new treatment plan in the fight against cancer. While many cancer vaccines such as MUC1, p53 CpG oligodeoxynucleotide, and SOX2 may be great candidates for antitumor vaccination, there still remain many investigations to be done into possible vaccine combinations. One fruitful partnership that has emerged are anti-tumor vaccines in combination with radiation. Radiation therapy was previously thought to be only a tool for directly or indirectly damaging DNA and therefore causing cancer cell death. Now, with much preclinical and clinical data, radiation has taken on the role of an in situ vaccine. With both cancer vaccines and radiation at our disposal, more and more studies are looking to combining vaccine types such as toll-like receptors, viral components, dendritic-cell-based, and subunit vaccines with radiation. While the outcomes of these combinatory efforts are promising, there is still much work to be covered. This review sheds light on the current state of affairs in cancer vaccines and how radiation will bring its story into the future.

  7. Vaccines and Pregnancy

    Science.gov (United States)

    ... high or when infection would pose a high risk to the mother or baby, vaccination with a live vaccine is discussed. If there ... and benefits. For some diseases the benefit of vaccination outweighs any risks that may be associated with the vaccine. What ...

  8. History of vaccination.

    Science.gov (United States)

    Plotkin, Stanley

    2014-08-26

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  9. History of vaccination

    OpenAIRE

    Plotkin, Stanley

    2014-01-01

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  10. Mexico introduces pentavalent vaccine.

    Science.gov (United States)

    1999-08-01

    Combination vaccines have been introduced in Mexico. The national immunization program has incorporated the measles-mumps-rubella (MMR) vaccines in 1998, and the pentavalent vaccine in 1999. The two categories of antigen composition in combination vaccines are: 1) multiple different antigenic types of a single pathogen, such as the 23 valent pneumococcal polysaccharide vaccine, and 2) antigens from different pathogens causing different diseases, such as the DPT and MMR vaccines. Pentavalent vaccines are included in the second category. The vaccine protects against diphtheria, tetanus, pertussis, hepatitis B, and other diseases produced by Haemophilus influenzae type b (Hib). Combined diphtheria, tetanus, pertussis, hepatitis B, and Haemophilus influenza type b (DTP-HB/Hib) vaccine has been distributed to 87% of Mexican children under 1 year of age. Over 800,000 doses of pentavalent vaccine have been administered.

  11. Vaccines today, vaccines tomorrow: a perspective.

    Science.gov (United States)

    Loucq, Christian

    2013-01-01

    Vaccines are considered as one of the major contributions of the 20th century and one of the most cost effective public health interventions. The International Vaccine Institute has as a mission to discover, develop and deliver new and improved vaccines against infectious diseases that affects developing nations. If Louis Pasteur is known across the globe, vaccinologists like Maurice Hilleman, Jonas Salk and Charles Mérieux are known among experts only despite their contribution to global health. Thanks to a vaccine, smallpox has been eradicated, polio has nearly disappeared, Haemophilus influenzae B, measles and more recently meningitis A are controlled in many countries. While a malaria vaccine is undergoing phase 3, International Vaccine Institute, in collaboration with an Indian manufacturer has brought an oral inactivated cholera vaccine to pre-qualification. The field of vaccinology has undergone major changes thanks to philanthropists such as Bill and Melinda Gates, initiatives like the Decade of Vaccines and public private partnerships. Current researches on vaccines have more challenging targets like the dengue viruses, malaria, human immunodeficiency virus, the respiratory syncytial virus and nosocomial diseases. Exciting research is taking place on new adjuvants, nanoparticles, virus like particles and new route of administration. An overcrowded infant immunization program, anti-vaccine groups, immunizing a growing number of elderlies and delivering vaccines to difficult places are among challenges faced by vaccinologists and global health experts.

  12. Oral vaccination of fish

    OpenAIRE

    Embregts, Carmen W.E.; Forlenza, Maria

    2016-01-01

    The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen breakdown in the harsh gastric environment, but also to the high tolerogenic gut environment and to inadequate vaccine design. In this review we discuss current approaches used to develop oral vaccines fo...

  13. Learning from epidemiological, clinical, and immunological studies on Mycobacterium africanum for improving current understanding of host–pathogen interactions, and for the development and evaluation of diagnostics, host-directed therapies, and vaccines for tuberculosis

    Directory of Open Access Journals (Sweden)

    Alimuddin Zumla

    2017-03-01

    Full Text Available Mycobacterium africanum comprises two phylogenetic lineages within the Mycobacterium tuberculosis complex (MTBC. M. africanum was first described and isolated in 1968 from the sputum of a Senegalese patient with pulmonary tuberculosis (TB and it has been identified increasingly as an important cause of human TB, particularly prevalent in West Africa. The restricted geographical distribution of M. africanum, in contrast to the widespread global distribution of other species of MTBC, requires explanation. Available data indicate that M. africanum may also have important differences in transmission, pathogenesis, and host–pathogen interactions, which could affect the evaluation of new TB intervention tools (diagnostics and vaccines–those currently in use and those under development. The unequal geographical distribution and spread of MTBC species means that individual research findings from one country or region cannot be generalized across the continent. Thus, generalizing data from previous and ongoing research studies on MTBC may be inaccurate and inappropriate. A major rethink is required regarding the design and structure of future clinical trials of new interventions. The West, Central, East, and Southern African EDCTP Networks of Excellence provide opportunities to take forward these pan-Africa studies. More investments into molecular, epidemiological, clinical, diagnostic, and immunological studies across the African continent are required to enable further understanding of host–M. africanum interactions, leading to the development of more specific diagnostics, biomarkers, host-directed therapies, and vaccines for TB.

  14. Interleukin-27 Gene Therapy Prevents the Development of Autoimmune Encephalomyelitis but Fails to Attenuate Established Inflammation due to the Expansion of CD11b+Gr-1+ Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Jianmin Zhu

    2018-04-01

    Full Text Available Interleukin-27 (IL-27 and its subunit P28 (also known as IL-30 have been shown to inhibit autoimmunity and have been suggested as potential immunotherapeutic for autoimmune diseases such as multiple sclerosis (MS. However, the potential of IL-27 and IL-30 as immunotherapeutic, and their mechanisms of action have not been fully understood. In this study, we evaluated the efficacy of adeno-associated viral vector (AAV-delivered IL-27 (AAV-IL-27 and IL-30 (AAV-IL-30 in a murine model of MS. We found that one single administration of AAV-IL-27, but not AAV-IL-30 completely blocked the development of experimental autoimmune encephalomyelitis (EAE. AAV-IL-27 administration reduced the frequencies of Th17, Treg, and GM-CSF-producing CD4+ T cells and induced T cell expression of IFN-γ, IL-10, and PD-L1. However, experiments involving IL-10-deficient mice and PD-1 blockade revealed that AAV-IL-27-induced IL-10 and PD-L1 expression were not required for the prevention of EAE development. Surprisingly, neither AAV-IL-27 nor AAV-IL-30 treatment inhibited EAE development and Th17 responses when given at disease onset. We found that mice with established EAE had significant expansion of CD11b+Gr-1+ cells, and AAV-IL-27 treatment further expanded these cells and induced their expression of Th17-promoting cytokines such as IL-6. Adoptive transfer of AAV-IL-27-expanded CD11b+Gr-1+ cells enhanced EAE development. Thus, expansion of CD11b+Gr-1+ cells provides an explanation for the resistance to IL-27 therapy in mice with established disease.

  15. Typhoid fever vaccination strategies.

    Science.gov (United States)

    Date, Kashmira A; Bentsi-Enchill, Adwoa; Marks, Florian; Fox, Kimberley

    2015-06-19

    Typhoid vaccination is an important component of typhoid fever prevention and control, and is recommended for public health programmatic use in both endemic and outbreak settings. We reviewed experiences with various vaccination strategies using the currently available typhoid vaccines (injectable Vi polysaccharide vaccine [ViPS], oral Ty21a vaccine, and injectable typhoid conjugate vaccine [TCV]). We assessed the rationale, acceptability, effectiveness, impact and implementation lessons of these strategies to inform effective typhoid vaccination strategies for the future. Vaccination strategies were categorized by vaccine disease control strategy (preemptive use for endemic disease or to prevent an outbreak, and reactive use for outbreak control) and vaccine delivery strategy (community-based routine, community-based campaign and school-based). Almost all public health typhoid vaccination programs used ViPS vaccine and have been in countries of Asia, with one example in the Pacific and one experience using the Ty21a vaccine in South America. All vaccination strategies were found to be acceptable, feasible and effective in the settings evaluated; evidence of impact, where available, was strongest in endemic settings and in the short- to medium-term. Vaccination was cost-effective in high-incidence but not low-incidence settings. Experience in disaster and outbreak settings remains limited. TCVs have recently become available and none are WHO-prequalified yet; no program experience with TCVs was found in published literature. Despite the demonstrated success of several typhoid vaccination strategies, typhoid vaccines remain underused. Implementation lessons should be applied to design optimal vaccination strategies using TCVs which have several anticipated advantages, such as potential for use in infant immunization programs and longer duration of protection, over the ViPS and Ty21a vaccines for typhoid prevention and control. Copyright © 2015. Published by

  16. [Types of rabies vaccines which were locally injected to the subjects bitten by animals abroad].

    Science.gov (United States)

    Takayama, N

    1997-08-01

    In recent years there have been a number of subjects who were bitten by supposed rabid animals in foreign rabies-epizootic countries and visited our hospital to received post-exposure therapy after their return to Japan. WHO recommends immediate washing of the wound with soap and water, application of human anti-rabies immunoglobulin and administration of tissue-culture rabies vaccine at 0, 3, 7, 14, 30, and 90 days after exposure. However, tissue-culture vaccines, are expensive and they are not always used in all parts of the world. The author checked whether the victims of animal bite were injected with rabies vaccines abroad or not and investigated the type of rabies vaccine when they were vaccinated. About a half of the consulted victims were locally injected with rabies vaccine. By mean of certificates of inoculation or empty boxes of vaccine, types of rabies vaccines were proved in 40 subjects of which 38 received tissue-culture vaccines. Sample-type vaccine was administered to one subject and suckling mouse vaccine was done to another one. When post-exposure prophylaxis was continued after return to Japan, it is important to know the sort of rabies vaccine injected abroad, because brain-tissue vaccines are less effective in inducing antibody than tissue-culture vaccines. Consequently both physicians and travelers should keep in mind that even now brain-tissue vaccines are used in some areas of the world.

  17. Neurologic complications of vaccinations.

    Science.gov (United States)

    Miravalle, Augusto A; Schreiner, Teri

    2014-01-01

    This chapter reviews the most common neurologic disorders associated with common vaccines, evaluates the data linking the disorder with the vaccine, and discusses the potential mechanism of disease. A literature search was conducted in PubMed using a combination of the following terms: vaccines, vaccination, immunization, and neurologic complications. Data were also gathered from publications of the American Academy of Pediatrics Committee on Infectious Diseases, the World Health Organization, the US Centers for Disease Control and Prevention, and the Vaccine Adverse Event Reporting System. Neurologic complications of vaccination are rare. Many associations have been asserted without objective data to support a causal relationship. Rarely, patients with a neurologic complication will have a poor outcome. However, most patients recover fully from the neurologic complication. Vaccinations have altered the landscape of infectious disease. However, perception of risk associated with vaccinations has limited the success of disease eradication measures. Neurologic complications can be severe, and can provoke fear in potential vaccines. Evaluating whether there is causal link between neurologic disorders and vaccinations, not just temporal association, is critical to addressing public misperception of risk of vaccination. Among the vaccines available today, the cost-benefit analysis of vaccinations and complications strongly argues in favor of vaccination. © 2014 Elsevier B.V. All rights reserved.

  18. Current Vaccine Shortages and Delays

    Science.gov (United States)

    ... Hepatitis A vaccine supply in the US. Updated Mar 2018 Note 2 : Pediatric hepatitis B vaccine: Merck ... Submitted, Licensed, and Recommended Vaccines & Biologics Red Book® Online Influenza Vaccination Recommendations Childhood & Adolescent Immunization Schedules Adult ...

  19. Vaccine-Preventable Disease Photos

    Science.gov (United States)

    ... Work Importance of Vaccines Paying for Vaccines State Immunization Programs Tips for Finding Vaccine Records Trusted Sources of ... efficacy, and use of vaccines within the broad immunization community of patients, parents, healthcare organizations, and government health agencies.

  20. Vaccines against poverty

    Science.gov (United States)

    MacLennan, Calman A.; Saul, Allan

    2014-01-01

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented. PMID:25136089

  1. Granulocyte-Macrophage Colony-Stimulating Factor Amplification of Interleukin-1β and Tumor Necrosis Factor Alpha Production in THP-1 Human Monocytic Cells Stimulated with Lipopolysaccharide of Oral Microorganisms

    OpenAIRE

    Baqui, A. A. M. A.; Meiller, Timothy F.; Chon, Jennifer J.; Turng, Been-Foo; Falkler, William A.

    1998-01-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1β and TNF-α production following GM-CSF suppl...

  2. Understanding vaccination rates and attitudes among patients with rheumatoid arthritis.

    Science.gov (United States)

    Sandler, Diana S; Ruderman, Eric M; Brown, Tiffany; Lee, Ji Young; Mixon, Amanda; Liss, David T; Baker, David W

    2016-03-01

    Appropriate vaccinations are important for patients with rheumatoid arthritis (RA), who are often treated with highly immunosuppressive therapies that increase their risk of infection. However, rates of vaccination among patients with RA are below optimal levels. We conducted a patient survey to assess self-reported vaccination status and to compare that status with electronic health record (EHR) data. We recruited randomly selected patients with RA in an academic practice in 2013. Eligible participants had a diagnosis of RA, at least 1 visit to a rheumatology clinic in each of the previous 2 years, were 18 years or older, and had English listed as their preferred language. The survey included the following domains: a) patient self-reported receipt of influenza, pneumococcal (PNVX), and herpes zoster (HZVX) vaccinations; b) attitudes about these vaccines, including reasons for unvaccinated status, if applicable; and c) provider recommendations about these vaccines. Based on participants' self-report, we found a high vaccination rate for influenza during the previous season (79.4%), a moderate rate of any previous vaccination for pneumococcus (53.9%), and a very low rate of any previous vaccination for herpes zoster (7.8%). If we assume that all self-reports are accurate and we include vaccinations recorded in the EHR that were not reported by patients, the vaccination rates were approximately 8% to 9% higher for PNVX and HZVX. Vaccination rates are low among patients with RA based on self-report data. Further research is needed to investigate system-level barriers to vaccination and the impact of evidence-based, provider-level interventions on vaccination rates.

  3. The F4/AS01B HIV-1 Vaccine Candidate Is Safe and Immunogenic, But Does Not Show Viral Efficacy in Antiretroviral Therapy-Naive, HIV-1-Infected Adults

    Science.gov (United States)

    Dinges, Warren; Girard, Pierre-Marie; Podzamczer, Daniel; Brockmeyer, Norbert H.; García, Felipe.; Harrer, Thomas; Lelievre, Jean-Daniel; Frank, Ian; Colin De Verdière, Nathalie; Yeni, Guy-Patrick; Ortega Gonzalez, Enrique; Rubio, Rafael; Clotet Sala, Bonaventura; DeJesus, Edwin; Pérez-Elias, Maria Jesus; Launay, Odile; Pialoux, Gilles; Slim, Jihad; Weiss, Laurence; Bouchaud, Olivier; Felizarta, Franco; Meurer, Anja; Raffi, François; Esser, Stefan; Katlama, Christine; Koletar, Susan L.; Mounzer, Karam; Swindells, Susan; Baxter, John D.; Schneider, Stefan; Chas, Julie; Molina, Jean-Michel; Koutsoukos, Marguerite; Collard, Alix; Bourguignon, Patricia; Roman, François

    2016-01-01

    Abstract The impact of the investigational human immunodeficiency virus type 1 (HIV-1) F4/AS01B vaccine on HIV-1 viral load (VL) was evaluated in antiretroviral therapy (ART)-naive HIV-1 infected adults. This phase IIb, observer-blind study (NCT01218113), included ART-naive HIV-1 infected adults aged 18 to 55 years. Participants were randomized to receive 2 (F4/AS01B_2 group, N = 64) or 3 (F4/AS01B_3 group, N = 62) doses of F4/AS01B or placebo (control group, N = 64) at weeks 0, 4, and 28. Efficacy (HIV-1 VL, CD4+ T-cell count, ART initiation, and HIV-related clinical events), safety, and immunogenicity (antibody and T-cell responses) were evaluated during 48 weeks. At week 48, based on a mixed model, no statistically significant difference in HIV-1 VL change from baseline was demonstrated between F4/AS01B_2 and control group (0.073 log10 copies/mL [97.5% confidence interval (CI): −0.088; 0.235]), or F4/AS01B_3 and control group (−0.096 log10 copies/mL [97.5% CI: −0.257; 0.065]). No differences between groups were observed in HIV-1 VL change, CD4+ T-cell count, ART initiation, or HIV-related clinical events at intermediate timepoints. Among F4/AS01B recipients, the most frequent solicited symptoms were pain at injection site (252/300 doses), fatigue (137/300 doses), myalgia (105/300 doses), and headache (90/300 doses). Twelve serious adverse events were reported in 6 participants; 1 was considered vaccine-related (F4/AS01B_2 group: angioedema). F4/AS01B induced polyfunctional F4-specific CD4+ T-cells, but had no significant impact on F4-specific CD8+ T-cell and anti-F4 antibody levels. F4/AS01B had a clinically acceptable safety profile, induced F4-specific CD4+ T-cell responses, but did not reduce HIV-1 VL, impact CD4+ T-cells count, delay ART initiation, or prevent HIV-1 related clinical events. PMID:26871794

  4. The F4/AS01B HIV-1 Vaccine Candidate Is Safe and Immunogenic, But Does Not Show Viral Efficacy in Antiretroviral Therapy-Naive, HIV-1-Infected Adults: A Randomized Controlled Trial.

    Science.gov (United States)

    Dinges, Warren; Girard, Pierre-Marie; Podzamczer, Daniel; Brockmeyer, Norbert H; García, Felipe; Harrer, Thomas; Lelievre, Jean-Daniel; Frank, Ian; Colin De Verdière, Nathalie; Yeni, Guy-Patrick; Ortega Gonzalez, Enrique; Rubio, Rafael; Clotet Sala, Bonaventura; DeJesus, Edwin; Pérez-Elias, Maria Jesus; Launay, Odile; Pialoux, Gilles; Slim, Jihad; Weiss, Laurence; Bouchaud, Olivier; Felizarta, Franco; Meurer, Anja; Raffi, François; Esser, Stefan; Katlama, Christine; Koletar, Susan L; Mounzer, Karam; Swindells, Susan; Baxter, John D; Schneider, Stefan; Chas, Julie; Molina, Jean-Michel; Koutsoukos, Marguerite; Collard, Alix; Bourguignon, Patricia; Roman, François

    2016-02-01

    The impact of the investigational human immunodeficiency virus type 1 (HIV-1) F4/AS01B vaccine on HIV-1 viral load (VL) was evaluated in antiretroviral therapy (ART)-naive HIV-1 infected adults.This phase IIb, observer-blind study (NCT01218113), included ART-naive HIV-1 infected adults aged 18 to 55 years. Participants were randomized to receive 2 (F4/AS01B_2 group, N = 64) or 3 (F4/AS01B_3 group, N = 62) doses of F4/AS01B or placebo (control group, N = 64) at weeks 0, 4, and 28. Efficacy (HIV-1 VL, CD4 T-cell count, ART initiation, and HIV-related clinical events), safety, and immunogenicity (antibody and T-cell responses) were evaluated during 48 weeks.At week 48, based on a mixed model, no statistically significant difference in HIV-1 VL change from baseline was demonstrated between F4/AS01B_2 and control group (0.073 log10 copies/mL [97.5% confidence interval (CI): -0.088; 0.235]), or F4/AS01B_3 and control group (-0.096 log10 copies/mL [97.5% CI: -0.257; 0.065]). No differences between groups were observed in HIV-1 VL change, CD4 T-cell count, ART initiation, or HIV-related clinical events at intermediate timepoints. Among F4/AS01B recipients, the most frequent solicited symptoms were pain at injection site (252/300 doses), fatigue (137/300 doses), myalgia (105/300 doses), and headache (90/300 doses). Twelve serious adverse events were reported in 6 participants; 1 was considered vaccine-related (F4/AS01B_2 group: angioedema). F4/AS01B induced polyfunctional F4-specific CD4 T-cells, but had no significant impact on F4-specific CD8 T-cell and anti-F4 antibody levels.F4/AS01B had a clinically acceptable safety profile, induced F4-specific CD4 T-cell responses, but did not reduce HIV-1 VL, impact CD4 T-cells count, delay ART initiation, or prevent HIV-1 related clinical events.

  5. Vaccine Associated Myocarditis

    Directory of Open Access Journals (Sweden)

    Johnson Francis

    2017-04-01

    Full Text Available Most of the cases of vaccine associated myocarditis have been following small pox vaccination. Reports have also been there after streptococcal pneumonia vaccine and influenza vaccine. In some cases, autoimmune/inflammatory syndrome induced by adjuvants (ASIA used in the vaccine have been implicated. Exclusion of other causes is very important in the diagnostic process, especially that of acute coronary syndrome. Management is similar to that of other etiologies of myocarditis. These rare instances of myocarditis should not preclude one from taking necessary immunization for vaccine preventable diseases.

  6. Vaccines and Immunization Practice.

    Science.gov (United States)

    Hogue, Michael D; Meador, Anna E

    2016-03-01

    Vaccines are among most cost-effective public health strategies. Despite effective vaccines for many bacterial and viral illnesses, tens of thousands of adults and hundreds of children die each year in the United States from vaccine-preventable diseases. Underutilization of vaccines requires rethinking the approach to incorporating vaccines into practice. Arguably, immunizations could be a part all health care encounters. Shared responsibility is paramount if deaths are to be reduced. This article reviews the available vaccines in the US market, as well as practice recommendations of the Centers for Disease Control and Prevention's Advisory Committee on Immunization Practices. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Vaccines today, vaccines tomorrow: a perspective

    OpenAIRE

    Loucq, Christian

    2013-01-01

    Vaccines are considered as one of the major contributions of the 20th century and one of the most cost effective public health interventions. The International Vaccine Institute has as a mission to discover, develop and deliver new and improved vaccines against infectious diseases that affects developing nations. If Louis Pasteur is known across the globe, vaccinologists like Maurice Hilleman, Jonas Salk and Charles M?rieux are known among experts only despite their contribution to global hea...

  8. How Can Vaccines Contribute to Solving the Antimicrobial Resistance Problem?

    Directory of Open Access Journals (Sweden)

    Marc Lipsitch

    2016-06-01

    Full Text Available There is a growing appreciation for the role of vaccines in confronting the problem of antimicrobial resistance (AMR. Vaccines can reduce the prevalence of resistance by reducing the need for antimicrobial use and can reduce its impact by reducing the total number of cases. By reducing the number of pathogens that may be responsible for a particular clinical syndrome, vaccines can permit the use of narrower-spectrum antibiotics for empirical therapy. These effects may be amplified by herd immunity, extending protection to unvaccinated persons in the population. Because much selection for resistance is due to selection on bystander members of the normal flora, vaccination can reduce pressure for resistance even in pathogens not included in the vaccine. Some vaccines have had disproportionate effects on drug-resistant lineages within the target species, a benefit that could be more deliberately exploited in vaccine design. We describe the effects of current vaccines in controlling AMR, survey some vaccines in development with the potential to do so further, and discuss strategies to amplify these benefits. We conclude with a discussion of research and policy priorities to more fully enlist vaccines in the battle against AMR.

  9. MMR Vaccine (Measles, Mumps, and Rubella)

    Science.gov (United States)

    Mumpsvax® Mumps Vaccine ... Biavax® II (as a combination product containing Mumps Vaccine, Rubella Vaccine) ... II (as a combination product containing Measles Vaccine, Mumps Vaccine, Rubella Vaccine)

  10. What is a Preventive HIV Vaccine?

    Science.gov (United States)

    ... Entire Series Related Content AIDSource | Vaccine Research HIV Vaccines History of HIV Vaccine Research Need Help? Call 1- ... Entire Series Related Content AIDSource | Vaccine Research HIV Vaccines History of HIV Vaccine Research Need Help? Call 1- ...

  11. Ethical and legal challenges of vaccines and vaccination: Reflections.

    Science.gov (United States)

    Jesani, Amar; Johari, Veena

    2017-01-01

    Vaccines and vaccination have emerged as key medical scientific tools for prevention of certain diseases. Documentation of the history of vaccination shows that the initial popular resistance to universal vaccination was based on false assumptions and eventually gave way to acceptance of vaccines and trust in their ability to save lives. The successes of the global eradication of smallpox, and now of polio, have only strengthened the premier position occupied by vaccines in disease prevention. However, the success of vaccines and public trust in their ability to eradicate disease are now under challenge, as increasing numbers of people refuse vaccination, questioning the effectiveness of vaccines and the need to vaccinate.

  12. Identity of zinc finger nucleases with specificity to herpes simplex virus type II genomic DNA: novel HSV-2 vaccine/therapy precursors

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2011-06-01

    5' and 3' ends of the HSV-2 genome (genomic context coordinates 0.02 and 0.98, respectively were specificity sites of ZFNs suited for the complete excision of over 60% of HSV-2 genomic material from within infected human cells, through the process of non-homologous end joining (NHEJ. Furthermore, a model concerning a recombinant (ICP10-PK mutant replication competent HSV-2 viral vector for delivering and transducing a diploid copy (or pair of the HSV-2-genome-specific ZFN genotype within neuronal tissue, is presented. Conclusion ZFNs with specificity to HSV-2 genomic DNA that are precursors of novel host-genome expressed HSV-2 gene-therapeutics or vaccines were identified.

  13. Laser facilitates vaccination

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-01-01

    Full Text Available Development of novel vaccine deliveries and vaccine adjuvants is of great importance to address the dilemma that the vaccine field faces: to improve vaccine efficacy without compromising safety. Harnessing the specific effects of laser on biological systems, a number of novel concepts have been proposed and proved in recent years to facilitate vaccination in a safer and more efficient way. The key advantage of using laser technology in vaccine delivery and adjuvantation is that all processes are initiated by physical effects with no foreign chemicals administered into the body. Here, we review the recent advances in using laser technology to facilitate vaccine delivery and augment vaccine efficacy as well as the underlying mechanisms.

  14. Vaccine Safety Datalink

    Science.gov (United States)

    The Vaccine Safety Datalink is part of the National Immunization Program within the Centers for Disease Control and Prevention and was started in recognition of gaps in the scientific knowledge of rare vaccine side effects.

  15. The HPV Vaccination Crisis

    Science.gov (United States)

    Following the release of a consensus statement from the NCI-Designated Cancer Centers urging HPV vaccination in the United States, Dr. Noel Brewer discusses the country’s low vaccination rates and how clinicians can help to improve them.

  16. Your child's first vaccines

    Science.gov (United States)

    ... term seizures, coma, lowered consciousness, and permanent brain damage have been reported following DTaP vaccination. These reports are extremely rare. Pneumococcal Vaccine Mild Problems: drowsiness or temporary loss of appetite ( ...

  17. Your Baby's First Vaccines

    Science.gov (United States)

    ... term seizures, coma, lowered consciousness, and permanent brain damage have been reported following DTaP vaccination. These reports are extremely rare. Pneumococcal Vaccine Mild Problems: Drowsiness or temporary loss of appetite ( ...

  18. Vaccines and immunization

    African Journals Online (AJOL)

    Prof Ezechukwu

    vaccines for malaria and HIV infection. Despite the ... decades, effective vaccines against the major causes of ... challenge antibodies, specific helper and effector T lymphocytes ... materials to produced immunity to a disease. It was originally ...

  19. Pneumococcal Vaccines (PCV, PPSV)

    Science.gov (United States)

    ... Educators Search English Español Your Child's Immunizations: Pneumococcal Vaccines (PCV, PPSV) KidsHealth / For Parents / Your Child's Immunizations: ... cochlear implants. Why Are the PCV and PPSV Vaccines Recommended? Children younger than 2 years old, adults ...

  20. A full scale comparative study of methods for generation of functional Dendritic cells for use as cancer vaccines

    OpenAIRE

    Jarnjak-Jankovic, Silvija; Hammerstad, Hege; S?b?e-Larssen, Stein; Kvalheim, Gunnar; Gaudernack, Gustav

    2007-01-01

    Background Dendritic cells (DCs) are professional antigen-presenting cells with the ability to induce primary T-cell responses and are commonly produced by culturing monocytes in the presence of IL-4 and GM-CSF for 5–7 days (Standard DC). Recently, Dauer and co-workers presented a modified protocol for differentiation of human monocytes into mature DCs within 48 hours (Fast DC). Here we report a functional comparison of the two strategies for generation of DCs from human monocytes with adapt...

  1. [Mumps vaccine virus transmission].

    Science.gov (United States)

    Otrashevskaia, E V; Kulak, M V; Otrashevskaia, A V; Karpov, I A; Fisenko, E G; Ignat'ev, G M

    2013-01-01

    In this work we report the mumps vaccine virus shedding based on the laboratory confirmed cases of the mumps virus (MuV) infection. The likely epidemiological sources of the transmitted mumps virus were children who were recently vaccinated with the mumps vaccine containing Leningrad-Zagreb or Leningrad-3 MuV. The etiology of the described cases of the horizontal transmission of both mumps vaccine viruses was confirmed by PCR with the sequential restriction analysis.

  2. Rotavirus vaccines: an overview.

    OpenAIRE

    Midthun, K; Kapikian, A Z

    1996-01-01

    Rotavirus vaccine development has focused on the delivery of live attenuated rotavirus strains by the oral route. The initial "Jennerian" approach involving bovine (RIT4237, WC3) or rhesus (RRV) rotavirus vaccine candidates showed that these vaccines were safe, well tolerated, and immunogenic but induced highly variable rates of protection against rotavirus diarrhea. The goal of a rotavirus vaccine is to prevent severe illness that can lead to dehydration in infants and young children in both...

  3. Vaccine-associated feline sarcoma: current perspectives

    Directory of Open Access Journals (Sweden)

    Saba CF

    2017-01-01

    Full Text Available Corey F Saba Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA Abstract: Feline injection site sarcomas (FISS; also known as vaccine-associated sarcomas have been recognized for >20 years. Although uncommon, these tumors are iatrogenic, and vaccination against rabies and feline leukemia virus is perhaps the most common inciting cause. The exact etiopathogenesis is unknown, but it is widely accepted that inflammation induced by vaccines or other injections likely plays a critical role in tumor development. Injection site sarcomas are extremely locally invasive. Multimodal therapy, incorporating combinations of surgery, radiation therapy, and sometimes chemotherapy or immunotherapy, is recommended. However, tumor recurrences are common even with aggressive treatment, and many cats with FISS ultimately succumb to this devastating disease. While vaccination protocols play an important role in the management and control of infectious disease, veterinarians must be diligent in following established vaccination guidelines to minimize individual patient risk of FISS development. Early tumor detection and client education are also vital in the successful treatment of FISS. Keywords: injection site sarcoma, cat, cancer, oncology

  4. Vaccination: problems and perspectives.

    Directory of Open Access Journals (Sweden)

    S. M. Kharit

    2009-01-01

    Full Text Available Massive vaccination had proved its effective morbidity reduction. Today it is necessary to extend vaccination schedule, creation of selective, regional schedules based on epidemiological, clinical, economical substantiation. Development of vaccination needs the profound scientific research, modernization of adverse reaction observing system, betterment training system and awareness of population.

  5. Oral vaccination of fish

    NARCIS (Netherlands)

    Embregts, Carmen W.E.; Forlenza, Maria

    2016-01-01

    The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen

  6. Meningococcal Vaccine (For Parents)

    Science.gov (United States)

    ... previous dose of meningococcal vaccine, to the DTaP vaccine , or to latex If your child has a history of Guillain-Barré syndrome (a disease of the nervous system that causes progressive weakness), talk to your doctor about whether the vaccines are a good idea. Caring for Your Child ...

  7. Hepatitis A Vaccine

    Science.gov (United States)

    Twinrix® (as a combination product containing Hepatitis A Vaccine, Hepatitis B Vaccine) ... Why get vaccinated against hepatitis A?Hepatitis A is a serious liver disease. It is caused by the hepatitis A virus (HAV). HAV is spread from ...

  8. Sustainable vaccine development: a vaccine manufacturer's perspective.

    Science.gov (United States)

    Rappuoli, Rino; Hanon, Emmanuel

    2018-05-08

    Vaccination remains the most cost-effective public health intervention after clean water, and the benefits impressively outweigh the costs. The efforts needed to fulfill the steadily growing demands for next-generation and novel vaccines designed for emerging pathogens and new indications are only realizable in a sustainable business model. Vaccine development can be fast-tracked through strengthening international collaborations, and the continuous innovation of technologies to accelerate their design, development, and manufacturing. However, these processes should be supported by a balanced project portfolio, and by managing sustainable vaccine procurement strategies for different types of markets. Collectively this will allow a gradual shift to a more streamlined and profitable vaccine production, which can significantly contribute to the worldwide effort to shape global health. Copyright © 2018 GlaxoSmithKine Biologicals SA. Published by Elsevier Ltd.. All rights reserved.

  9. Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial.

    Science.gov (United States)

    Wherrett, Diane K; Bundy, Brian; Becker, Dorothy J; DiMeglio, Linda A; Gitelman, Stephen E; Goland, Robin; Gottlieb, Peter A; Greenbaum, Carla J; Herold, Kevan C; Marks, Jennifer B; Monzavi, Roshanak; Moran, Antoinette; Orban, Tihamer; Palmer, Jerry P; Raskin, Philip; Rodriguez, Henry; Schatz, Desmond; Wilson, Darrell M; Krischer, Jeffrey P; Skyler, Jay S

    2011-07-23

    the occurrence and severity of adverse events did not differ between groups. Antigen-based immunotherapy therapy with two or three doses of subcutaneous GAD-alum across 4-12 weeks does not alter the course of loss of insulin secretion during 1 year in patients with recently diagnosed type 1 diabetes. Although antigen-based therapy is a highly desirable treatment and is effective in animal models, translation to human autoimmune disease remains a challenge. US National Institutes of Health. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Peptide Vaccines for Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Rory C. F. De Brito

    2018-05-01

    Full Text Available Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  11. Peptide Vaccines for Leishmaniasis.

    Science.gov (United States)

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  12. Vaccines as Epidemic Insurance.

    Science.gov (United States)

    Pauly, Mark V

    2017-10-27

    This paper explores the relationship between the research for and development of vaccines against global pandemics and insurance. It shows that development in advance of pandemics of a portfolio of effective and government-approved vaccines does have some insurance properties: it requires incurring costs that are certain (the costs of discovering, developing, and testing vaccines) in return for protection against large losses (if a pandemic treatable with one of the vaccines occurs) but also with the possibility of no benefit (from a vaccine against a disease that never reaches the pandemic stage). It then argues that insurance against the latter event might usefully be offered to organizations developing vaccines, and explores the benefits of insurance payments to or on behalf of countries who suffer from unpredictable pandemics. These ideas are then related to recent government, industry, and philanthropic efforts to develop better policies to make vaccines against pandemics available on a timely basis.

  13. Vaccines as Epidemic Insurance

    Directory of Open Access Journals (Sweden)

    Mark V. Pauly

    2017-10-01

    Full Text Available This paper explores the relationship between the research for and development of vaccines against global pandemics and insurance. It shows that development in advance of pandemics of a portfolio of effective and government-approved vaccines does have some insurance properties: it requires incurring costs that are certain (the costs of discovering, developing, and testing vaccines in return for protection against large losses (if a pandemic treatable with one of the vaccines occurs but also with the possibility of no benefit (from a vaccine against a disease that never reaches the pandemic stage. It then argues that insurance against the latter event might usefully be offered to organizations developing vaccines, and explores the benefits of insurance payments to or on behalf of countries who suffer from unpredictable pandemics. These ideas are then related to recent government, industry, and philanthropic efforts to develop better policies to make vaccines against pandemics available on a timely basis.

  14. Enhanced interleukin-8 production in THP-1 human monocytic cells by lipopolysaccharide from oral microorganisms and granulocyte-macrophage colony-stimulating factor.

    Science.gov (United States)

    Baqui, A A; Meiller, T F; Falkler, W A

    1999-10-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-8 (IL-8) plays an important role in macrophage mediated inflammatory processes including exacerbation of periodontal diseases, one of the most common complications in GM-CSF receiving cancer patients. The effect of GM-CSF supplementation on IL-8 production was investigated in a human monocyte cell line THP-1, stimulated with lipopolysaccharide extracted from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. Resting THP-1 cells were treated with lipopolysaccharide (1 microgram/ml) of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) for varying time periods. The production of IL-8 in THP-1 cells was measured by a solid-phase enzyme-linked immunosorbent assay (ELISA). A very low level of the cytokine IL-8 was produced constitutive in THP-1 cells. Starting from 8 h of treatment and afterwards GM-CSF alone significantly increased IL-8 production in THP-1 cells. Lipopolysaccharide (1 microgram/ml) extracts from either F. nucleatum or P. gingivalis amplified IL-8 production 500-800 times in comparison to resting THP-1 cells. When lipopolysaccharide of F. nucleatum or P. gingivalis was supplemented with 50 IU/ml of GM-CSF, there was a statistically significant enhanced production of IL-8 by THP-1 cells after 1 day to 7 days of treatment as compared with lipopolysaccharide treatment alone. GM-CSF (50 IU/ml) also significantly increased IL-8 production from 2-7 days of treatment of THP-1 cells when supplemented with a positive control, phorbol-12-myristate-13 acetate (PMA), as compared to PMA treatment alone. These investigations using the in vitro THP-1 human monocyte cell model indicate that there may be an increase in the response on a cellular level to oral endotoxin following GM-CSF therapy as evidenced by enhanced production of the tissue-reactive inflammatory cytokine, IL-8.

  15. Breast Cancer Vaccines: New Insights

    Directory of Open Access Journals (Sweden)

    Rosaria Benedetti

    2017-10-01

    Full Text Available Breast cancer (BC is a persistent global challenge for its high frequency in women (although it seldom occurs in men, due to the large diffusion of risk factors and gene mutations, and for its peculiar biology and microenvironment. To date, BC can benefit from different therapeutic strategies involving surgery, ablation, chemotherapy, radiotherapy, and more specific approaches such as hormone therapy and the administration of various substances impairing cancer growth, aggressivity, and recurrence with different modalities. Despite these relatively wide chances, also used in combinatory protocols, relevant mortality and relapse rates, often associated with resistant phenotypes, stress the need for a personalized-medicine based on prompting the patient’s immune system (IS against cancer cells. BC immunogenicity was latterly proven, so the whole immunotherapy field for BC is still at a very early stage. This immunotherapeutic approach exploits both the high specificity of adaptive immune response and the immunological memory. This review is focused on some of the majorly relevant BC vaccines available (NeuVax, AVX901, and INO-1400, providing a description of the more promising clinical trials. The efficacy of cancer vaccines highly depends on the patient’s IS, and a wide optimization is needed in terms of targets’ selection, drug design and combinations, dose finding, protocol structuring, and patients’ recruitment; moreover, new standards are being discussed for the outcome evaluation. However, early-phases excellent results suggest that the manipulation of the IS via specific vaccines is a highly attractive approach for BC.

  16. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Pneumococcal vaccine and flu vaccine. 410.57 Section 410.57 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its...

  17. vaccination with newcastle disease vaccines strain i2 and lasota

    African Journals Online (AJOL)

    UP Employee

    mash feed as vaccine carriers was conducted. Newcastle disease vaccine strain I2 and. NDV La Sota vaccines provided protection to commercial and local chickens vaccinated through i/o, i/m or dw. No significant difference (P≤0.05) was observed in the antibody titre of commercial or local chickens vaccinated with either ...

  18. Current Ebola vaccines

    Science.gov (United States)

    Hoenen, Thomas; Groseth, Allison; Feldmann, Heinz

    2012-01-01

    Introduction Ebolaviruses cause severe viral hemorrhagic fever in humans and non-human primates, with case fatality rates of up to 90%. Currently, neither a specific treatment nor a vaccine licensed for use in humans is available. However, a number of vaccine candidates have been developed in the last decade that are highly protective in non-human primates, the gold standard animal model for Ebola hemorrhagic fever. Areas covered This review analyzes a number of scenarios for the use of ebolavirus vaccines, discusses the requirements for ebolavirus vaccines in these scenarios, and describes current ebolavirus vaccines. Among these vaccines are recombinant Adenoviruses, recombinant Vesicular Stomatitis viruses, recombinant Human Parainfluenza viruses and virus-like particles. Interestingly, one of these vaccine platforms, based on recombinant Vesicular Stomatitis viruses, has also demonstrated post-exposure protection in non-human primates. Expert opinion The most pressing remaining challenge is now to move these vaccine candidates forward into human trials and towards licensure. In order to achieve this, it will be necessary to establish the mechanisms and correlates of protection for these vaccines, and to continue to demonstrate their safety, particularly in potentially immunocompromised populations. However, already now there is sufficient evidence that, from a scientific perspective, a vaccine protective against ebolaviruses is possible. PMID:22559078

  19. Vaccines in a hurry.

    Science.gov (United States)

    Søborg, Christian; Mølbak, Kåre; Doherty, T Mark; Ulleryd, Peter; Brooks, Tim; Coenen, Claudine; van der Zeijst, Ben

    2009-05-26

    Preparing populations for health threats, including threats from new or re-emerging infectious diseases is recognised as an important public health priority. The development, production and application of emergency vaccinations are the important measures against such threats. Vaccines are cost-effective tools to prevent disease, and emergency vaccines may be the only means to prevent a true disaster for global society in the event of a new pandemic with potential to cause morbidity and mortality comparable to the Spanish flu, the polio epidemics in the 1950s, or the SARS outbreak in 2003 if its spread had not been contained in time. Given the early recognition of a new threat, and given the advances of biotechnology, vaccinology and information systems, it is not an unrealistic goal to have promising prototype vaccine candidates available in a short time span following the identification of a new infectious agent; this is based on the assumption that the emerging infection is followed by natural immunity. However, major bottlenecks for the deployment of emergency vaccine are lack of established systems for fast-track regulatory approval of such candidates and limited international vaccine production capacity. In the present discussion paper, we propose mechanisms to facilitate development of emergency vaccines in Europe by focusing on public-private scientific partnerships, fast-track approval of emergency vaccine by regulatory agencies and proposing incentives for emergency vaccine production in private vaccine companies.

  20. Vaccine strategies: Optimising outcomes.

    Science.gov (United States)

    Hardt, Karin; Bonanni, Paolo; King, Susan; Santos, Jose Ignacio; El-Hodhod, Mostafa; Zimet, Gregory D; Preiss, Scott

    2016-12-20

    Successful immunisation programmes generally result from high vaccine effectiveness and adequate uptake of vaccines. In the development of new vaccination strategies, the structure and strength of the local healthcare system is a key consideration. In high income countries, existing infrastructures are usually used, while in less developed countries, the capacity for introducing new vaccines may need to be strengthened, particularly for vaccines administered beyond early childhood, such as the measles or human papillomavirus (HPV) vaccine. Reliable immunisation service funding is another important factor and low income countries often need external supplementary sources of finance. Many regions also obtain support in generating an evidence base for vaccination via initiatives created by organisations including World Health Organization (WHO), the Pan American Health Organization (PAHO), the Agence de Médecine Préventive and the Sabin Vaccine Institute. Strong monitoring and surveillance mechanisms are also required. An example is the efficient and low-cost approaches for measuring the impact of the hepatitis B control initiative and evaluating achievement of goals that have been established in the WHO Western Pacific region. A review of implementation strategies reveals differing degrees of success. For example, in the Americas, PAHO advanced a measles-mumps-rubella vaccine strategy, targeting different population groups in mass, catch-up and follow-up vaccination campaigns. This has had much success but coverage data from some parts of the region suggest that children are still not receiving all appropriate vaccines, highlighting problems with local service infrastructures. Stark differences in coverage levels are also observed among high income countries, as is the case with HPV vaccine implementation in the USA versus the UK and Australia, reflecting differences in delivery settings. Experience and research have shown which vaccine strategies work well and the

  1. The Meningitis Vaccine Project.

    Science.gov (United States)

    LaForce, F Marc; Konde, Kader; Viviani, Simonetta; Préziosi, Marie-Pierre

    2007-09-03

    Epidemic meningococcal meningitis is an important public health problem in sub-Saharan Africa. Current control measures rely on reactive immunizations with polysaccharide (PS) vaccines that do not induce herd immunity and are of limited effectiveness in those under 2 years of age. Conversely, polysaccharide conjugate vaccines are effective in infants and have consistently shown an important effect on decreasing carriage, two characteristics that facilitate disease control. In 2001 the Meningitis Vaccine Project (MVP) was created as a partnership between PATH and the World Health Organization (WHO) with the goal of eliminating meningococcal epidemics in Africa through the development, licensure, introduction, and widespread use of conjugate meningococcal vaccines. Since group A Neisseria meningitidis (N. meningitidis) is the dominant pathogen causing epidemic meningitis in Africa MVP is developing an affordable (US$ 0.40 per dose) meningococcal A (Men A) conjugate vaccine through an innovative international partnership that saw transfer of a conjugation and fermentation technology to a developing country vaccine manufacturer. A Phase 1 study of the vaccine in India has shown that the product is safe and immunogenic. Phase 2 studies have begun in Africa, and a large demonstration study of the conjugate vaccine is envisioned for 2008-2009. After extensive consultations with African public health officials a vaccine introduction plan has been developed that includes introduction of the Men A conjugate vaccine into standard Expanded Programme on Immunization (EPI) schedules but also emphasizes mass vaccination of 1-29 years old to induce herd immunity, a strategy that has been shown to be highly effective when the meningococcal C (Men C) conjugate vaccine was introduced in several European countries. The MVP model is a clear example of the usefulness of a "push mechanism" to finance the development of a needed vaccine for the developing world.

  2. 75 FR 48706 - Proposed Vaccine Information Materials for Rotavirus Vaccine

    Science.gov (United States)

    2010-08-11

    ... Vaccine Information Materials for Rotavirus Vaccine AGENCY: Centers for Disease Control and Prevention... information materials for rotavirus vaccine. DATES: Written comments are invited and must be received on or... (chickenpox), pneumococcal conjugate, rotavirus, hepatitis A, meningococcal, human papillomavirus (HPV), and...

  3. Skin immunization by microneedle patch overcomes statin-induced suppression of immune responses to influenza vaccine.

    Science.gov (United States)

    Vassilieva, Elena V; Wang, Shelly; Li, Song; Prausnitz, Mark R; Compans, Richard W

    2017-12-19

    Recent studies indicated that in elderly individuals, statin therapy is associated with a reduced response to influenza vaccination. The present study was designed to determine effects on the immune response to influenza vaccination induced by statin administration in a mouse model, and investigate potential approaches to improve the outcome of vaccination on the background of statin therapy. We fed middle aged BALB/c mice a high fat "western" diet (WD) alone or supplemented with atorvastatin (AT) for 14 weeks, and control mice were fed with the regular rodent diet. Mice were immunized with a single dose of subunit A/Brisbane/59/07 (H1N1) vaccine, either systemically or with dissolving microneedle patches (MNPs). We observed that a greater age-dependent decline in the hemagglutinin inhibition titers occurred in systemically-immunized mice than in MNP- immunized mice. AT dampened the antibody response in the animals vaccinated by either route of vaccine delivery. However, the MNP-vaccinated AT-treated animals had ~20 times higher total antibody levels to the influenza vaccine than the systemically vaccinated group one month postvaccination. We propose that microneedle vaccination against influenza provides an approach to ameliorate the immunosuppressive effect of statin therapy observed with systemic immunization.

  4. Vaccines against advanced melanoma.

    Science.gov (United States)

    Blanchard, Tatiana; Srivastava, Pramod K; Duan, Fei

    2013-01-01

    Research shows that cancers are recognized by the immune system but that the immune recognition of tumors does not uniformly result in tumor rejection or regression. Quantitating the success or failure of the immune system in tumor elimination is difficult because we do not really know the total numbers of encounters of the immune system with the tumors. Regardless of that important issue, recognition of the tumor by the immune system implicitly contains the idea of the tumor antigen, which is what is actually recognized. We review the molecular identity of all forms of tumor antigens (antigens with specific mutations, cancer-testis antigens, differentiation antigens, over-expressed antigens) and discuss the use of these multiple forms of antigens in experimental immunotherapy of mouse and human melanoma. These efforts have been uniformly unsuccessful; however, the approaches that have not worked or have somewhat worked have been the source of many new insights into melanoma immunology. From a critical review of the various approaches to vaccine therapy we conclude that individual cancer-specific mutations are truly the only sources of cancer-specific antigens, and therefore, the most attractive targets for immunotherapy. Published by Elsevier Inc.

  5. Vaccine process technology.

    Science.gov (United States)

    Josefsberg, Jessica O; Buckland, Barry

    2012-06-01

    The evolution of vaccines (e.g., live attenuated, recombinant) and vaccine production methods (e.g., in ovo, cell culture) are intimately tied to each other. As vaccine technology has advanced, the methods to produce the vaccine have advanced and new vaccine opportunities have been created. These technologies will continue to evolve as we strive for safer and more immunogenic vaccines and as our understanding of biology improves. The evolution of vaccine process technology has occurred in parallel to the remarkable growth in the development of therapeutic proteins as products; therefore, recent vaccine innovations can leverage the progress made in the broader biotechnology industry. Numerous important legacy vaccines are still in use today despite their traditional manufacturing processes, with further development focusing on improving stability (e.g., novel excipients) and updating formulation (e.g., combination vaccines) and delivery methods (e.g., skin patches). Modern vaccine development is currently exploiting a wide array of novel technologies to create safer and more efficacious vaccines including: viral vectors produced in animal cells, virus-like particles produced in yeast or insect cells, polysaccharide conjugation to carrier proteins, DNA plasmids produced in E. coli, and therapeutic cancer vaccines created by in vitro activation of patient leukocytes. Purification advances (e.g., membrane adsorption, precipitation) are increasing efficiency, while innovative analytical methods (e.g., microsphere-based multiplex assays, RNA microarrays) are improving process understanding. Novel adjuvants such as monophosphoryl lipid A, which acts on antigen presenting cell toll-like receptors, are expanding the previously conservative list of widely accepted vaccine adjuvants. As in other areas of biotechnology, process characterization by sophisticated analysis is critical not only to improve yields, but also to determine the final product quality. From a regulatory

  6. Advances in inmune therapy

    International Nuclear Information System (INIS)

    Kvalheim, G.

    2004-01-01

    The use of monoclonal antibodies either alone or combined with isotopes as radio immuno conjugates has proven to be very efficient treatment for cancers such as non-Hodgkin lymphomas or breast cancer. Cellular based immunotherapy treatment modalities are also currently in use. Allogeneic T lymphocytes infused during haematopoietic stem cell transplantation (HTSC) mediate graft-versus-tumour effects, but also initiate graft-versus-host disease (GVHD), which remains the primary complications of allogeneic HTSC. The current clinical need for GVHD prophylaxis, which at a minimum involves single agents immune suppression generally limits the success of allogeneic HTSC immunotherapy to patients with indolent or chemotherapy sensitive malignancy. Therefore the use of allogeneic HTSC as a cancer therapy still needs to augment the anti-tumour effects and improve GVHD control. During the presentation several ongoing studies addressing these questions will be discussed. Since 1996 more than 500 patients have been recruited into >30 clinical trials with dendritic cell vaccines. Most clinical trials used different protocols with variations in D C generation, Dc maturation stage, D C-Ag loading, route of administration, vaccination intervals and vaccination frequency. The overall response rate is 20%(0- >50%) with occasional complete or partial regressions, prolonged stable disease, but no cure. Little or no toxicity has been observed which might suggest that the vaccines do not work as efficient as expected. As will be discussed the reason for these modest clinical effects observed can be many. Therefore, careful study design and use of standardized clinical and immunological criteria are needed. Recently, we have started a process for production of TILs, antigen specific T cells. During our DC vaccine programs tumour specific T-cell clones have been developed and such T-cells might also be useful as therapy in the vaccinated patients. The principal of such therapy and the

  7. Vaccination against seasonal flu

    CERN Multimedia

    2015-01-01

    The Medical Service once again recommends you to get your annual flu vaccination for the year.   Vaccination is the most effective way of avoiding the illness and any serious consequences and protecting those around you. The flu can have especially serious consequences for people with chronic conditions (diabetes, cardio-vascular disease, etc.), pregnant women, infants, and people over 65 years of age. Remember, anyone working on the CERN site who wishes to be vaccinated against seasonal flu should go to the Infirmary (Building 57, ground floor) with their vaccine. The Medical Service will issue a prescription on the day of the vaccination for the purposes of reimbursement by UNIQA. NB: The Medical Service cannot provide this vaccination service for family members or retired members of the personnel. For more information: • The "Seasonal flu" flyer by the Medical Service • Recommendations of the Swiss Federal Office of Public...

  8. Prophylactic Hepatitis E Vaccine.

    Science.gov (United States)

    Zhang, Jun; Zhao, Qinjian; Xia, Ningshao

    2016-01-01

    Hepatitis E has been increasingly recognized as an underestimated global disease burden in recent years. Subpopulations with more serious infection-associated damage or death include pregnant women, patients with basic liver diseases, and elderly persons. Vaccine would be the most effective means for prevention of HEV infection. The lack of an efficient cell culture system for HEV makes the development of classic inactive or attenuated vaccine infeasible. Hence, the recombinant vaccine approaches are explored deeply. The neutralizing sites are located almost exclusively in the capsid protein, pORF2, of the virion. Based on pORF2, many vaccine candidates showed potential of protecting primate animals; two of them were tested in human and evidenced to be well tolerated in adults and highly efficacious in preventing hepatitis E. The world's first hepatitis E vaccine, Hecolin ® (HEV 239 vaccine), was licensed in China and launched in 2012.

  9. Vaccination and neurological disorders

    Directory of Open Access Journals (Sweden)

    Anastasia Gkampeta

    2015-12-01

    Full Text Available Active immunization of children has been proven very effective in elimination of life threatening complications of many infectious diseases in developed countries. However, as vaccination-preventable infectious diseases and their complications have become rare, the interest focuses on immunization-related adverse reactions. Unfortunately, fear of vaccination-related adverse effects can led to decreased vaccination coverage and subsequent epidemics of infectious diseases. This review includes reports about possible side effects following vaccinations in children with neurological disorders and also published recommendations about vaccinating children with neurological disorders. From all international published data anyone can conclude that vaccines are safer than ever before, but the challenge remains to convey this message to society.

  10. Vaccine development for syphilis.

    Science.gov (United States)

    Lithgow, Karen V; Cameron, Caroline E

    2017-01-01

    Syphilis, caused by the spirochete Treponema pallidum subspecies pallidum, continues to be a globally prevalent disease despite remaining susceptible to penicillin treatment. Syphilis vaccine development is a viable preventative approach that will serve to complement public health-oriented syphilis prevention, screening and treatment initiatives to deliver a two-pronged approach to stemming disease spread worldwide. Areas covered: This article provides an overview of the need for development of a syphilis vaccine, summarizes significant information that has been garnered from prior syphilis vaccine studies, discusses the critical aspects of infection that would have to be targeted by a syphilis vaccine, and presents the current understanding within the field of the correlates of protection needed to be achieved through vaccination. Expert commentary: Syphilis vaccine development should be considered a priority by industry, regulatory and funding agencies, and should be appropriately promoted and supported.

  11. The Latest in Vaccine Policies: Selected Issues in School Vaccinations, Healthcare Worker Vaccinations, and Pharmacist Vaccination Authority Laws.

    Science.gov (United States)

    Barraza, Leila; Schmit, Cason; Hoss, Aila

    2017-03-01

    This paper discusses recent changes to state legal frameworks for mandatory vaccination in the context of school and healthcare worker vaccination. It then discusses state laws that allow pharmacists the authority to vaccinate.

  12. Needle-free influenza vaccination

    NARCIS (Netherlands)

    Amorij, Jean-Pierre; Hinrichs, Wouter L.J.; Frijlink, Henderik W.; Wilschut, Jan C.; Huckriede, Anke

    2010-01-01

    Vaccination is the cornerstone of influenza control in epidemic and pandemic situations. Influenza vaccines are typically given by intramuscular injection. However, needle-free vaccinations could offer several distinct advantages over intramuscular injections: they are pain-free, easier to

  13. What Vaccines Do You Need?

    Science.gov (United States)

    ... Recommendations Why Immunize? Vaccines: The Basics The Adult Vaccine Quiz Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir Vaccines are recommended for adults based on age, health ...

  14. Recommended Vaccines for Healthcare Workers

    Science.gov (United States)

    ... Vaccination Resources for Healthcare Professionals Recommended Vaccines for Healthcare Workers Recommend on Facebook Tweet Share Compartir On ... for More Information Resources for Those Vaccinating HCWs Healthcare workers (HCWs) are at risk for exposure to ...

  15. Rotavirus vaccines and vaccination in Latin America

    Directory of Open Access Journals (Sweden)

    Linhares Alexandre C.

    2000-01-01

    Full Text Available Worldwide, rotaviruses account for more than 125 million cases of infantile gastroenteritis and nearly 1 million deaths per year, mainly in developing countries. Rather than other control measures, vaccination is most likely to have a major impact on rotavirus disease incidence. The peak incidence of rotavirus diarrhea occurs between 6 and 24 months of age. In developing countries, however, cases are not uncommon among children younger than 6 months. G serotypes 1 to 4 are responsible for most disease, but there are indications that in Brazil that G type 5 is of emerging epidemiological importance. Both homotypic and heterotypic responses are elicited during natural rotavirus infection, and the immunological response at the intestinal mucosal surface is probably the more consistent predictor of clinical immunity. With the primary objective of protecting children against life-threatening dehydrating diarrhea, many approaches to rotavirus vaccine development have been attempted. One vaccine, the tetravalent rhesus-human reassortant rotavirus vaccine (RRV-TV, was given licensing approval in the United States of America, introduced to the market, and later withdrawn. A number of studies have found better efficacy of RRV-TV in developed countries than in developing ones. Field trials with a 4 X 10(4 plaque-forming units (PFU preparation of RRV-TV have been carried out in two countries in Latin America, Brazil and Peru. Those trials yielded protective efficacy rates against all rotavirus diarrhea ranging from 18% to 35%. Data from a large catchment trial in Venezuela with a higher RRV-TV dose, of 4 X 10(5 PFU/dose, indicated an efficacy rate of 48% against all rotavirus diarrhea and 88% against severe rotavirus diarrhea. It appears that breast-feeding does not compromise the efficacy of RRV-TV if three doses of the vaccine are administered. Similarly, possible interference of oral poliovirus vaccine with the "take" of the rotavirus vaccine can be

  16. Rotavirus vaccines and vaccination in Latin America

    Directory of Open Access Journals (Sweden)

    Alexandre C. Linhares

    2000-11-01

    Full Text Available Worldwide, rotaviruses account for more than 125 million cases of infantile gastroenteritis and nearly 1 million deaths per year, mainly in developing countries. Rather than other control measures, vaccination is most likely to have a major impact on rotavirus disease incidence. The peak incidence of rotavirus diarrhea occurs between 6 and 24 months of age. In developing countries, however, cases are not uncommon among children younger than 6 months. G serotypes 1 to 4 are responsible for most disease, but there are indications that in Brazil that G type 5 is of emerging epidemiological importance. Both homotypic and heterotypic responses are elicited during natural rotavirus infection, and the immunological response at the intestinal mucosal surface is probably the more consistent predictor of clinical immunity. With the primary objective of protecting children against life-threatening dehydrating diarrhea, many approaches to rotavirus vaccine development have been attempted. One vaccine, the tetravalent rhesus-human reassortant rotavirus vaccine (RRV-TV, was given licensing approval in the United States of America, introduced to the market, and later withdrawn. A number of studies have found better efficacy of RRV-TV in developed countries than in developing ones. Field trials with a 4 X 10(4 plaque-forming units (PFU preparation of RRV-TV have been carried out in two countries in Latin America, Brazil and Peru. Those trials yielded protective efficacy rates against all rotavirus diarrhea ranging from 18% to 35%. Data from a large catchment trial in Venezuela with a higher RRV-TV dose, of 4 X 10(5 PFU/dose, indicated an efficacy rate of 48% against all rotavirus diarrhea and 88% against severe rotavirus diarrhea. It appears that breast-feeding does not compromise the efficacy of RRV-TV if three doses of the vaccine are administered. Similarly, possible interference of oral poliovirus vaccine with the "take" of the rotavirus vaccine can be

  17. Combining Immunotherapy with Standard Glioblastoma Therapy

    Science.gov (United States)

    This clinical trial is testing standard therapy (surgery, radiation and temozolomide) plus immunotherapy with pembrolizumab with or without a cancer treatment vaccine for patients with newly diagnosed glioblastoma, a common and deadly type of brain tumor.

  18. Pricing of new vaccines

    OpenAIRE

    Lee, Bruce Y; McGlone, Sarah M

    2010-01-01

    New vaccine pricing is a complicated process that could have substantial long-standing scientific, medical and public health ramifications. Pricing can have a considerable impact on new vaccine adoption and, thereby, either culminate or thwart years of research and development and public health efforts. Typically, pricing strategy consists of the following eleven components: (1) Conduct a target population analysis; (2) Map potential competitors and alternatives; (3) Construct a vaccine targe...

  19. Underutilization of Influenza Vaccine

    Directory of Open Access Journals (Sweden)

    Marshall K. Cheney

    2013-04-01

    Full Text Available Yearly influenza vaccination continues to be underutilized by those who would most benefit from it. The Health Belief Model was used to explain differences in beliefs about influenza vaccination among at-risk individuals resistant to influenza vaccination. Survey data were collected from 74 members of at-risk groups who were not vaccinated for influenza during the previous flu season. Accepting individuals were more likely to perceive flu as a threat to health and perceive access barriers, and cues to action were the most important influence on whether they plan to get vaccinated. In comparison, resistant individuals did not feel threatened by the flu, access barriers were not a problem, and they did not respond favorably to cues to action. Perceived threat, perceived access barriers, and cues to action were significantly associated with plans to be vaccinated for influenza in the next flu season. Participants who saw influenza as a threat to their health had 5.4 times the odds of planning to be vaccinated than those who did not. Participants reporting barriers to accessing influenza vaccination had 7.5 times the odds of reporting plans to be vaccinated. Those responding positively to cues to action had 12.2 times the odds of planning to be vaccinated in the next flu season than those who did not. Accepting and resistant individuals have significant differences in their beliefs, which require different intervention strategies to increase vaccination rates. These findings provide important information to researchers and practitioners working to increase influenza vaccination rates.

  20. Respiratory Syncytial Virus Vaccines

    OpenAIRE

    Dudas, Robert A.; Karron, Ruth A.

    1998-01-01

    Respiratory syncytial virus (RSV) is the most important cause of viral lower respiratory tract illness (LRI) in infants and children worldwide and causes significant LRI in the elderly and in immunocompromised patients. The goal of RSV vaccination is to prevent serious RSV-associated LRI. There are several obstacles to the development of successful RSV vaccines, including the need to immunize very young infants, who may respond inadequately to vaccination; the existence of two antigenically d...

  1. Research progress of therapeutic vaccines for treating chronic hepatitis B.

    Science.gov (United States)

    Li, Jianqiang; Bao, Mengru; Ge, Jun; Ren, Sulin; Zhou, Tong; Qi, Fengchun; Pu, Xiuying; Dou, Jia

    2017-05-04

    Hepatitis B virus (HBV) is a member of Hepadnavirus family, which leads to chronic infection in around 5% of patients with a high risk of developing liver cirrhosis, liver failure, and hepatocellular carcinoma. 1 Despite the availability of prophylactic vaccines against hepatitis B for over 3 decades, there are still more than 2 billion people have been infected and 240 million of them were chronic. Antiviral therapies currently used in the treatment of CHB (chronic hepatitis B) infection include peg-interferon, standard α-interferon and nucleos/tide analogs (NAs), but none of them can provide sustained control of viral replication. As an alternative strategy, therapeutic vaccines for CHB patients have been widely studied and showed some promising efficacies in dozens of preclinical and clinical trials. In this article, we review current research progress in several types of therapeutic vaccines for CHB treatment, including protein-based vaccines, DNA-based vaccines, live vector-based vaccines, peptide-based vaccines and cell-based therapies. These researches may provide some clues for developing new treatments in CHB infection.

  2. ADVERSE REACTIONS TO VACCINES AND WAYS OF ITS PREVENTION

    Directory of Open Access Journals (Sweden)

    Yelyseyeva I. V

    2011-04-01

    Full Text Available The overview concerns allergic reaction on vaccines and possible ways of increasing safety of immunization on basis of use of local specific immunotherapies (SIT experience, particularly the sublingual route. The use of chemically altered allergens, allergoids; alternative routes of administration, particularly the sublingual route; use of novel adjuvants, such as CpG oligonucleotides and mycobacterial vaccines; other approaches, such as allergenic peptides, relevant T-cell epitope peptide immunotherapy; DNA vaccination, recombinant and engineered allergens, chimeric molecules and combined therapy are all approaches that have yielded positive results to increase safety of SIT and improve its efficacy.

  3. Vaccines for HIV | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The development of an effective HIV vaccine has been an ongoing area of research. The high variability in HIV-1 virus strains has represented a major challenge in successful development. Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV. Two major hurdles to overcome are immunodominance and sequence diversity. This vaccine utilizes a strategy for overcoming these two issues by identifying the conserved regions of the virus and exploiting them for use in a targeted therapy. NCI seeks licensees and/or research collaborators to commercialize this technology, which has been validated in macaque models.

  4. Edible vaccines: Current status and future

    Directory of Open Access Journals (Sweden)

    Lal P

    2007-01-01

    Full Text Available Edible vaccines hold great promise as a cost-effective, easy-to-administer, easy-to-store, fail-safe and socioculturally readily acceptable vaccine delivery system, especially for the poor developing countries. It involves introduction of selected desired genes into plants and then inducing these altered plants to manufacture the encoded proteins. Introduced as a concept about a decade ago, it has become a reality today. A variety of delivery systems have been developed. Initially thought to be useful only for preventing infectious diseases, it has also found application in prevention of autoimmune diseases, birth control, cancer therapy, etc. Edible vaccines are currently being developed for a number of human and animal diseases. There is growing acceptance of transgenic crops in both industrial and developing countries. Resistance to genetically modified foods may affect the future of edible vaccines. They have passed the major hurdles in the path of an emerging vaccine technology. Various technical obstacles, regulatory and non-scientific challenges, though all seem surmountable, need to be overcome. This review attempts to discuss the current status and future of this new preventive modality.

  5. Status of vaccine research and development of vaccines for herpes simplex virus.

    Science.gov (United States)

    Johnston, Christine; Gottlieb, Sami L; Wald, Anna

    2016-06-03

    Herpes simplex virus type-1 (HSV-1) and -2 (HSV-2) are highly prevalent global pathogens which commonly cause recurrent oral and genital ulcerations. Less common but more serious complications include meningitis, encephalitis, neonatal infection, and keratitis. HSV-2 infection is a significant driver of the HIV epidemic, increasing the risk of HIV acquisition 3 fold. As current control strategies for genital HSV-2 infection, including antiviral therapy and condom use, are only partially effective, vaccines will be required to reduce infection. Both preventive and therapeutic vaccines for HSV-2 are being pursued and are in various stages of development. We will provide an overview of efforts to develop HSV-2 vaccines, including a discussion of the clinical need for an HSV vaccine, and status of research and development with an emphasis on recent insights from trials of vaccine candidates in clinical testing. In addition, we will touch upon aspects of HSV vaccine development relevant to low and middle income countries. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  6. Vaccines, our shared responsibility.

    Science.gov (United States)

    Pagliusi, Sonia; Jain, Rishabh; Suri, Rajinder Kumar

    2015-05-05

    The Developing Countries Vaccine Manufacturers' Network (DCVMN) held its fifteenth annual meeting from October 27-29, 2014, New Delhi, India. The DCVMN, together with the co-organizing institution Panacea Biotec, welcomed over 240 delegates representing high-profile governmental and nongovernmental global health organizations from 36 countries. Over the three-day meeting, attendees exchanged information about their efforts to achieve their shared goal of preventing death and disability from known and emerging infectious diseases. Special praise was extended to all stakeholders involved in the success of polio eradication in South East Asia and highlighted challenges in vaccine supply for measles-rubella immunization over the coming decades. Innovative vaccines and vaccine delivery technologies indicated creative solutions for achieving global immunization goals. Discussions were focused on three major themes including regulatory challenges for developing countries that may be overcome with better communication; global collaborations and partnerships for leveraging investments and enable uninterrupted supply of affordable and suitable vaccines; and leading innovation in vaccines difficult to develop, such as dengue, Chikungunya, typhoid-conjugated and EV71, and needle-free technologies that may speed up vaccine delivery. Moving further into the Decade of Vaccines, participants renewed their commitment to shared responsibility toward a world free of vaccine-preventable diseases. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Vaccines: Shaping global health.

    Science.gov (United States)

    Pagliusi, Sonia; Ting, Ching-Chia; Lobos, Fernando

    2017-03-14

    The Developing Countries Vaccine Manufacturers' Network (DCVMN) gathered leaders in immunization programs, vaccine manufacturing, representatives of the Argentinean Health Authorities and Pan American Health Organization, among other global health stakeholders, for its 17th Annual General Meeting in Buenos Aires, to reflect on how vaccines are shaping global health. Polio eradication and elimination of measles and rubella from the Americas is a result of successful collaboration, made possible by timely supply of affordable vaccines. After decades of intense competition for high-value markets, collaboration with developing countries has become critical, and involvement of multiple manufacturers as well as public- and private-sector investments are essential, for developing new vaccines against emerging infectious diseases. The recent Zika virus outbreak and the accelerated Ebola vaccine development exemplify the need for international partnerships to combat infectious diseases. A new player, Coalition for Epidemic Preparedness Innovations (CEPI) has made its entrance in the global health community, aiming to stimulate research preparedness against emerging infections. Face-to-face panel discussions facilitated the dialogue around challenges, such as risks of viability to vaccine development and regulatory convergence, to improve access to sustainable vaccine supply. It was discussed that joint efforts to optimizing regulatory pathways in developing countries, reducing registration time by up to 50%, are required. Outbreaks of emerging infections and the global Polio eradication and containment challenges are reminders of the importance of vaccines' access, and of the importance of new public-private partnerships. Copyright © 2017.

  8. Tetanus, Diphtheria, Pertussis (Tdap) Vaccine

    Science.gov (United States)

    Adacel® (as a combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis Vaccine) ... Boostrix® (as a combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis Vaccine)

  9. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    International Nuclear Information System (INIS)

    Aurisicchio, Luigi; Ciliberto, Gennaro

    2011-01-01

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost

  10. Deep insight into white spot syndrome virus vaccines: A review

    Directory of Open Access Journals (Sweden)

    MA Badhul Haq

    2012-02-01

    Full Text Available White spot syndrome virus (WSSV, the causative virus of the disease, is found in most shrimp farming areas of the world, where it causes large economic losses to the shrimp farming industry. The potentially fatal virus has been found to be a threat not only to all shrimp species, but also to other marine and freshwater crustaceans, such as crab and crayfish. To date, no effective prophylactic treatment measures are available for viral infections in shrimp and other crustaceans. Due to current aquaculture practices and the broad host range of WSSV, intervention strategies including vaccination against this virus would be pivotal to save and protect shrimp farming. Several achievements have been attained in the search of novel vaccines for WSSV. DNA vaccination, recombinant vaccines, oral vaccination techniques and gene therapy are some of the thrust areas of focus for scientists and researchers. This review article highlights the recent trends in the development of WSSV vaccines either as DNA vaccines or recombinant vaccines and their functioning strategies as suggested by the researchers worldwide.

  11. Human papilloma virus vaccination in Nepal: an initial experience in Nepal.

    Science.gov (United States)

    Singh, Yogendra; Shah, Aarti; Singh, Meeta; Verma, Sheela; Shrestha, Bhakta Man; Vaidya, Prabhu; Nakarmi, Radha Pyari; Shrestha, Surendra Bb

    2010-01-01

    Cervical cancer is the most common cancer among women in Nepal. Human papilloma virus (HPV) infection, a recognized cause of cervical cancer, is very common in sexually active women and HPV vaccination has been recommended as a prophylactic therapy. If HPV infection is prevented by the HPV vaccination to the adolescent girls, cervical cancer is also prevented. We received 3,300 vials of quadrivalent human papilloma virus (types 6, 11, 16, 18) recombinant vaccine (Gardasil; Merck and Co.) as a gift from the Australian Cervical Cancer Foundation (ACCF) which has a mission to provide life-saving HPV cervical cancer vaccines for women in developing countries, who cannot otherwise afford vaccination. HPV vaccine was offered to 1,096 of 10 to 26 year aged girls attending 17 secondary schools. In total, 1,091 (99.5%) received the second dose and 1,089 (99.3%) received the third dose of the vaccine. The remaining 5 girls at second dose and 2 girls at third dose remained unvaccinated. No serious vaccine related adverse events were reported except mild pain at the injection site in 7.8% of the vaccine recipients. High cost and low public awareness are the key barriers for successful implementation of the vaccination program in resource limited developing countries. In conclusion, HPV vaccine is safe with high acceptability in Nepalese school girls. However a large population study for longer follow up is warranted to validate the findings of this vaccination program.

  12. Lymphoma immunotherapy: vaccines, adoptive cell transfer and immunotransplant

    Science.gov (United States)

    Brody, Joshua; Levy, Ronald

    2017-01-01

    Therapy for non-Hodgkin lymphoma has benefited greatly from basic science and clinical research such that chemotherapy and monoclonal antibody therapy have changed some lymphoma subtypes from uniformly lethal to curable, but the majority of lymphoma patients remain incurable. Novel therapies with less toxicity and more specific targeting of tumor cells are needed and immunotherapy is among the most promising of these. Recently completed randomized trials of idiotype vaccines and earlier-phase trials of other vaccine types have shown the ability to induce antitumor T cells and some clinical responses. More recently, trials of adoptive transfer of antitumor T cells have demonstrated techniques to increase the persistence and antitumor effect of these cells. Herein, we discuss lymphoma immunotherapy clinical trial results and what lessons can be taken to improve their effect, including the combination of vaccination and adoptive transfer in an approach we have dubbed ‘immunotransplant’. PMID:20636025

  13. Clinical development of Ebola vaccines

    Science.gov (United States)

    Sridhar, Saranya

    2015-01-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  14. The Human Hookworm Vaccine.

    Science.gov (United States)

    Hotez, Peter J; Diemert, David; Bacon, Kristina M; Beaumier, Coreen; Bethony, Jeffrey M; Bottazzi, Maria Elena; Brooker, Simon; Couto, Artur Roberto; Freire, Marcos da Silva; Homma, Akira; Lee, Bruce Y; Loukas, Alex; Loblack, Marva; Morel, Carlos Medicis; Oliveira, Rodrigo Correa; Russell, Philip K

    2013-04-18

    Hookworm infection is one of the world's most common neglected tropical diseases and a leading cause of iron deficiency anemia in low- and middle-income countries. A Human Hookworm Vaccine is currently being developed by the Sabin Vaccine Institute and is in phase 1 clinical testing. The candidate vaccine is comprised of two recombinant antigens known as Na-GST-1 and Na-APR-1, each of which is an important parasite enzyme required for hookworms to successfully utilize host blood as a source of energy. The recombinant proteins are formulated on Alhydrogel(®) and are being tested in combination with a synthetic Toll-like receptor 4 agonist. The aim of the vaccine is to induce anti-enzyme antibodies that will reduce both host blood loss and the number of hookworms attached to the gut. Transfer of the manufacturing technology to the Oswaldo Cruz Foundation (FIOCRUZ)/Bio-Manguinhos (a Brazilian public sector developing country vaccine manufacturer) is planned, with a clinical development plan that could lead to registration of the vaccine in Brazil. The vaccine would also need to be introduced in the poorest regions of Africa and Asia, where hookworm infection is highly endemic. Ultimately, the vaccine could become an essential tool for achieving hookworm control and elimination, a key target in the 2012 London Declaration on Neglected Tropical Diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Pricing of new vaccines.

    Science.gov (United States)

    Lee, Bruce Y; McGlone, Sarah M

    2010-08-01

    New vaccine pricing is a complicated process that could have substantial long-standing scientific, medical, and public health ramifications. Pricing can have a considerable impact on new vaccine adoption and, thereby, either culminate or thwart years of research and development and public health efforts. Typically, pricing strategy consists of the following ten components: 1. Conduct a target population analysis; 2. Map potential competitors and alternatives; 3. Construct a vaccine target product profile (TPP) and compare it to projected or actual TPPs of competing vaccines; 4. Quantify the incremental value of the new vaccine's characteristics; 5. Determine vaccine positioning in the marketplace; 6. Estimate the vaccine price-demand curve; 7. Calculate vaccine costs (including those of manufacturing, distribution, and research and development); 8. Account for various legal, regulatory, third party payer, and competitor factors; 9. Consider the overall product portfolio; 10. Set pricing objectives; 11. Select pricing and pricing structure. While the biomedical literature contains some studies that have addressed these components, there is still considerable room for more extensive evaluation of this important area.

  16. Pricing of new vaccines

    Science.gov (United States)

    McGlone, Sarah M

    2010-01-01

    New vaccine pricing is a complicated process that could have substantial long-standing scientific, medical and public health ramifications. Pricing can have a considerable impact on new vaccine adoption and, thereby, either culminate or thwart years of research and development and public health efforts. Typically, pricing strategy consists of the following eleven components: (1) Conduct a target population analysis; (2) Map potential competitors and alternatives; (3) Construct a vaccine target product profile (TPP) and compare it to projected or actual TPPs of competing vaccines; (4) Quantify the incremental value of the new vaccine's characteristics; (5) Determine vaccine positioning in the marketplace; (6) Estimate the vaccine price-demand curve; (7) Calculate vaccine costs (including those of manufacturing, distribution, and research and development); (8) Account for various legal, regulatory, third party payer and competitor factors; (9) Consider the overall product portfolio; (10) Set pricing objectives; (11) Select pricing and pricing structure. While the biomedical literature contains some studies that have addressed these components, there is still considerable room for more extensive evaluation of this important area. PMID:20861678

  17. Acceptance of vaccination

    NARCIS (Netherlands)

    Lehmann, B.; Eilers, R.; Donken, R.; Barug, D.; Swillens, J.; Vriend, C. de; Weerdenburg, S.; Pot, M.; Keulen, H. van; Paulussen, T.; Vermey, K.; Alberts, N.; Marra, E.; Melker, H.E. de; Mollema, L.

    2016-01-01

    Both in 2013 and 2015 the mean intention of parents to vaccinate their child was high. Only 21% of parents reported making an informed decision about childhood vaccinations included in the NIP. Mass media attention on the use of allegedly inferior needles, which was later refuted, appeared to have a

  18. Vaccines Stop Illness

    Science.gov (United States)

    ... the disease no longer exists. If we keep vaccinating now, parents in the future may be able to trust that diseases like polio and meningitis won't infect, cripple, or kill children. Vaccine Safety In light of recent questions about ...

  19. Chimeric Pestivirus Experimental Vaccines.

    Science.gov (United States)

    Reimann, Ilona; Blome, Sandra; Beer, Martin

    2016-01-01

    Chimeric pestiviruses have shown great potential as marker vaccine candidates against pestiviral infections. Exemplarily, we describe here the construction and testing of the most promising classical swine fever vaccine candidate "CP7_E2alf" in detail. The description is focused on classical cloning technologies in combination with reverse genetics.

  20. Vaccination Perceptions of College Students: With and without Vaccination Waiver.

    Science.gov (United States)

    Jadhav, Emmanuel D; Winkler, Danielle L; Anderson, Billie S

    2018-01-01

    The resurgence of vaccine preventable diseases occurs more often among intentionally unvaccinated individuals, placing at direct risk young adults not caught up on vaccinations. The objectives of this study were to characterize the sociodemographic characteristics of young adults with and without vaccination waivers and identify their perceived benefits, barriers, and influencers of vaccination. Young adults ( n  = 964) from a Midwestern rural university responded to a survey (fall 2015-spring 2016) designed to identify their perception toward vaccination. Instrument consistency was measured using the Cronbach α-scores. The Chi-square test was used to test any sociodemographic differences and Mann-Whitney U -tests results for differences between exempt and non-exempt students. Analysis occurred in spring 2017. A little over one-third of young adults with a vaccination waiver were not up to date on their vaccinations, and think that vaccinations can cause autism. The biggest identifiable benefit was effective control against disease. The surveyed young adults ranked the out of pocket cost associated with vaccination as the most important barrier and safe and easy to use vaccines as the most important influencer of vaccination. Young adults who have had a vaccination waiver appear to not be up to date on their vaccinations. Vaccine administration programs, such as university campus clinics, would benefit from addressing perceptions unique to young adults with and without a vaccine waiver. This would subsequently better provide young adults a second shot for getting appropriately caught up on vaccinations.

  1. Influenza and pneumococcal vaccination and varicella status in inflammatory arthritis patients.

    LENUS (Irish Health Repository)

    McCarthy, E M

    2011-11-15

    Patients with inflammatory arthritis are at increased risk of vaccine preventable infections. This risk is increased by immunomodulatory therapies. Vaccination for influenza and pneumococcal disease reduces the risk. Severe cases of varicella infection have occurred in patients on biologic therapies. We sought to identify vaccination rates for commonly acquired infections and to ascertain varicella immune status in patients with inflammatory arthritis. 100 patients with inflammatory arthritis were administered a standardised questionnaire. Data collected included age, diagnosis, vaccination history, history of varicella, treatment and the presence of other indications for vaccination. 58 patients (58%) had not received the influenza vaccine in the past year. Only 19 patients (19%) had ever received pneumococcal vaccine. Anti TNF use did not predict vaccination (p = .46). An increasing number of co morbid conditions predicted both pneumococcal (p < 0.003) and influenza vaccine (p < 0.03) administration. Nineteen patients (19%) gave no history of varicella infection, none having had varicella titres checked pre treatment. Immunisation rates in patients with inflammatory arthritis on immunosuppressive therapies are low. Immunisation schedules should be available for each patient during rheumatology and general practice consultations.

  2. Medical Management of Acute Radiation Syndromes : Immunoprophylaxis by Antiradiation Vaccine

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey; Casey, Rachael; Kedar, Prasad

    Introduction: Traditionally, the treatment of Acute Radiation Syndrome (ARS) includes supportive therapy, cytokine therapy, blood component transfusions and even stem cell transplantation. Recommendations for ARS treatment are based on clinical symptoms, laboratory results, radiation exposure doses and information received from medical examinations. However, the current medical management of ARS does not include immune prophylaxis based on antiradiation vaccines or immune therapy with hyperimmune antiradiation serum. Immuneprophylaxis of ARS could result from stimulating the immune system via immunization with small doses of radiation toxins (Specific Radiation Determinants-SRD) that possess significant immuno-stimulatory properties. Methods: Principles of immuno-toxicology were used to derive this method of immune prophylaxis. An antiradiation vaccine containing a mixture of Hematotoxic, Neurotoxic and Non-bacterial (GI) radiation toxins, underwent modification into a toxoid forms of the original SRD radiation toxins. The vaccine was administered to animals at different times prior to irradiation. The animals were subjected to lethal doses of radiation that induced different forms of ARS at LD 100/30. Survival rates and clinical symptoms were observed in both control and vaccine-treated animals. Results: Vaccination with non-toxic doses of Radiation toxoids induced immunity from the elaborated Specific Radiation Determinant (SRD) toxins. Neutralization of radiation toxins by specific antiradiation antibodies resulted in significantly improved clinical symptoms in the severe forms of ARS and observed survival rates of 60-80% in animals subjected to lethal doses of radiation expected to induce different forms of ARS at LD 100/30. The most effective vaccination schedule for the antiradiation vaccine consisted of repeated injections 24 and 34 days before irradiation. The vaccine remained effective for the next two years, although the specific immune memory probably

  3. DNA fusion gene vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Bassi, Maria Rosaria; Thomsen, Allan Randrup

    2010-01-01

    DNA vaccines are versatile and safe, but limited immunogenicity has prevented their use in the clinical setting. Experimentally, immunogenicity may be enhanced by the use of new delivery technologies, by coadministration of cytokines and pathogen-associated molecular patterns, or by fusion...... of antigens into molecular domains that enhance antigen presentation. More specifically, the immunogenicity of DNA vaccines may benefit from increased protein synthesis, increased T-cell help and MHC class I presentation, and the addition of a range of specific cytokines and pathogen-associated molecular...... with viral-vectored vaccines, various synergistic components may need to be incorporated into DNA vaccines. From the perspective of the future clinical use of DNA vaccines, it has been suggested that antigen presentation should be improved and cytokine coadministration attempted. However, even...

  4. Financing children's vaccines.

    Science.gov (United States)

    Nelson, E Anthony S; Sack, David; Wolfson, Lara; Walker, Damian G; Seng, Lim Fong; Steele, Duncan

    2009-11-20

    A 2006 Commonwealth Association of Paediatric Gastroenterology and Nutrition workshop on financing children's vaccines highlighted the potential for vaccines to control diarrhoea and other diseases as well as spur economic development through better health. Clear communication of vaccination value to decision-makers is required, together with sustainable funding mechanisms. GAVI and partners have made great progress providing funding for vaccines for children in the poorest countries but other solutions may be required to achieve the same gains in middle- and high-income countries. World Health Organization has a wealth of freely available country-level data on immunisation that academics and advocates can use to communicate the economic and health benefits of vaccines to decision-makers.

  5. Next generation vaccines.

    Science.gov (United States)

    Riedmann, Eva M

    2011-07-01

    In February this year, about 100 delegates gathered for three days in Vienna (Austria) for the Next Generation Vaccines conference. The meeting held in the Vienna Hilton Hotel from 23rd-25th February 2011 had a strong focus on biotech and industry. The conference organizer Jacob Fleming managed to put together a versatile program ranging from the future generation of vaccines to manufacturing, vaccine distribution and delivery, to regulatory and public health issues. Carefully selected top industry experts presented first-hand experience and shared solutions for overcoming the latest challenges in the field of vaccinology. The program also included several case study presentations on novel vaccine candidates in different stages of development. An interactive pre-conference workshop as well as interactive panel discussions during the meeting allowed all delegates to gain new knowledge and become involved in lively discussions on timely, interesting and sometimes controversial topics related to vaccines.

  6. HIV vaccines: new frontiers in vaccine development.

    Science.gov (United States)

    Duerr, Ann; Wasserheit, Judith N; Corey, Lawrence

    2006-08-15

    A human immunodeficiency virus (HIV) vaccine is the most promising and feasible strategy to prevent the events during acute infection that simultaneously set the course of the epidemic in the community and the course of the disease for the individual. Because safety concerns limit the use of live, attenuated HIV and inactivated HIV, a variety of alternate approaches is being investigated. Traditional antibody-mediated approaches using recombinant HIV envelope proteins have shown no efficacy in 2 phase III trials. Current HIV vaccine trials are focusing primarily on cytotoxic T lymphocyte-mediated products that use viral vectors, either alone or as boosts to DNA plasmids that contain viral genes. The most immunogenic of these products appear to be the recombinant adenovirus vector vaccines, 2 of which are now in advanced clinical development.

  7. Laser vaccine adjuvants

    Science.gov (United States)

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines. PMID:25424797

  8. Vaccines for canine leishmaniasis

    Directory of Open Access Journals (Sweden)

    Clarisa B. Palatnik-De-Sousa

    2012-04-01

    Full Text Available Leishmaniasis is the third most important vector-borne disease worldwide. Visceral leishmaniasis (VL is a severe and frequently lethal protozoan disease of increasing incidence and severity due to infected human and dog migration, new geographical distribution of the insect due to global-warming, co-infection with immunosuppressive diseases and poverty. The disease is an anthroponosis in India and Central Africa and a canid zoonosis (ZVL in the Americas, the Middle East, Central Asia, China and the Mediterranean. The ZVL epidemic has been controlled by one or more measures including the culling of infected dogs, treatment of human cases and insecticidal treatment of homes and dogs. However, the use of vaccines is considered the most cost-effective control tool for human and canine disease. Since the severity of the disease is related to the generation of T-cell immunosuppression, effective vaccines should be capable of sustaining or enhancing the T-cell immunity. In this review we summarize the clinical and parasitological characteristics of ZVL with special focus on the cellular and humoral canine immune response and review state-of-the-art vaccine development against human and canine visceral leishmaniasis. Experimental vaccination against leishmaniasis has evolved from the practice of leishmanization with living parasites to vaccination with crude lysates, native parasite extracts to recombinant and DNA vaccination. Although more than 30 defined vaccines have been studied in laboratory models no human formulation has been licensed so far; however three second-generation canine vaccines have already been registered. As expected for a zoonotic disease, the recent preventive vaccination of dogs in Brazil has led to a reduction in the incidence of canine and human disease. The recent identification of several Leishmania proteins with T-cell epitopes anticipates development of a multiprotein vaccine that will be capable of protecting both humans

  9. Safety and efficacy of meningococcal c vaccination in juvenile idiopathic arthritis

    NARCIS (Netherlands)

    Zonneveld-Huijssoon, Evelien; Ronaghy, Arash; van Rossum, Marion A. J.; Rijkers, Ger T.; van der Klis, Fiona R. M.; Sanders, Elisabeth A. M.; Vermeer-de Bondt, Patricia E.; Hoes, Arno W.; van der Net, Jan Jaap; Engels, Carla; Kuis, Wietse; Prakken, Berent J.; van Tol, Maarten J. D.; Wulffraat, Nico M.

    2007-01-01

    To determine whether vaccinations aggravate the course of autoimmune diseases such as juvenile idiopathic arthritis (JIA) and whether the immune response to vaccinations may be hampered by immunosuppressive therapy for the underlying disease. In this multicenter cohort study, 234 patients with JIA

  10. Vaccination against Alzheimer disease: an update on future strategies.

    Science.gov (United States)

    Fettelschoss, Antonia; Zabel, Franziska; Bachmann, Martin F

    2014-01-01

    Alzheimer disease is a devastating chronic disease without adequate therapy. More than 10 years ago, it was demonstrated in transgenic mouse models that vaccination may be a novel, disease-modifying therapy for Alzheimer. Subsequent clinical development has been a roller-coaster with some positive and many negative news. Here, we would like to summarize evidence that next generation vaccines optimized for old people and focusing on patients with mild disease stand a good chance to proof efficacious for the treatment of Alzheimer.

  11. Vaccination in food allergic patients

    African Journals Online (AJOL)

    Most people do not react to vaccination and the incidence of vaccine anaphylaxis is estimated to be <1/million for all vaccines.[1] Most anaphylactic reactions occur in non-food allergic children. It is strongly recommended that anyone admin- istering vaccines has resuscitation equipment available to manage potential ...

  12. Parental knowledge of paediatric vaccination

    Directory of Open Access Journals (Sweden)

    Borràs Eva

    2009-05-01

    Full Text Available Abstract Background Although routine vaccination is a major tool in the primary prevention of some infectious diseases, there is some reluctance in a proportion of the population. Negative parental perceptions of vaccination are an important barrier to paediatric vaccination. The aim of this study was to investigate parental knowledge of paediatric vaccines and vaccination in Catalonia. Methods A retrospective, cross-sectional study was carried out in children aged Results An association was observed between greater vaccination coverage of the 4:4:4:3:1 schedule (defined as: 4 DTPa/w doses, 4 Hib doses, 4 OPV doses, 3 MenC doses and 1 MMR dose and maternal age >30 years (OR: 2.30; 95% CI: 1.20–4.43 and with a knowledge of vaccination score greater than the mean (OR: 0.45; 95% CI: 0.28–0.72. The score increased with maternal educational level and in parents of vaccinated children. A total of 20.47% of parents stated that vaccines could have undesirable consequences for their children. Of these, 23.26% had no specific information and 17.83% stated that vaccines can cause adverse reactions and the same percentage stated that vaccines cause allergies and asthma. Conclusion Higher vaccination coverage is associated with older maternal age and greater knowledge of vaccination. Vaccination coverage could be raised by improving information on vaccines and vaccination.

  13. Bioinformatics analysis of Brucella vaccines and vaccine targets using VIOLIN.

    Science.gov (United States)

    He, Yongqun; Xiang, Zuoshuang

    2010-09-27

    Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis, one of the commonest zoonotic diseases found worldwide in humans and a variety of animal species. While several animal vaccines are available, there is no effective and safe vaccine for prevention of brucellosis in humans. VIOLIN (http://www.violinet.org) is a web-based vaccine database and analysis system that curates, stores, and analyzes published data of commercialized vaccines, and vaccines in clinical trials or in research. VIOLIN contains information for 454 vaccines or vaccine candidates for 73 pathogens. VIOLIN also contains many bioinformatics tools for vaccine data analysis, data integration, and vaccine target prediction. To demonstrate the applicability of VIOLIN for vaccine research, VIOLIN was used for bioinformatics analysis of existing Brucella vaccines and prediction of new Brucella vaccine targets. VIOLIN contains many literature mining programs (e.g., Vaxmesh) that provide in-depth analysis of Brucella vaccine literature. As a result of manual literature curation, VIOLIN contains information for 38 Brucella vaccines or vaccine candidates, 14 protective Brucella antigens, and 68 host response studies to Brucella vaccines from 97 peer-reviewed articles. These Brucella vaccines are classified in the Vaccine Ontology (VO) system and used for different ontological applications. The web-based VIOLIN vaccine target prediction program Vaxign was used to predict new Brucella vaccine targets. Vaxign identified 14 outer membrane proteins that are conserved in six virulent strains from B. abortus, B. melitensis, and B. suis that are pathogenic in humans. Of the 14 membrane proteins, two proteins (Omp2b and Omp31-1) are not present in B. ovis, a Brucella species that is not pathogenic in humans. Brucella vaccine data stored in VIOLIN were compared and analyzed using the VIOLIN query system. Bioinformatics curation and ontological representation of Brucella vaccines

  14. [Current events in vaccination].

    Science.gov (United States)

    Aubert, M; Aumaître, H; Beytout, J; Bloch, K; Bouhour, D; Callamand, P; Chave, C; Cheymol, J; Combadière, B; Dahlab, A; Denis, F; De Pontual, L; Dodet, B; Dommergues, M-A; Dufour, V; Gagneur, A; Gaillat, J; Gaudelus, J; Gavazzi, G; Gillet, Y; Gras-le-Guen, C; Haas, H; Hanslik, T; Hau-Rainsard, I; Larnaudie, S; Launay, O; Lorrot, M; Loulergue, P; Malvy, D; Marchand, S; Picherot, G; Pinquier, D; Pulcini, C; Rabaud, C; Regnier, F; Reinert, P; Sana, C; Savagner, C; Soubeyrand, B; Stephan, J-L; Strady, C

    2011-11-01

    The annual meeting of the Infectious Disease Society of America (IDSA) ; which brought together nearly 5000 participants from over 80 countries in Vancouver, Canada, October 21 to 24, 2010 ; provided a review of the influenza (H1N1) 2009 pandemic, evaluated vaccination programmes and presented new vaccines under development. With 12,500 deaths in the United States in 2009-2010, the influenza (H1N1) 2009 pandemic was actually less deadly than the seasonal flu. But it essentially hit the young, and the toll calculated in years of life lost is high. The monovalent vaccines, whether live attenuated or inactivated with or without adjuvants, were well tolerated in toddlers, children, adults and pregnant women. In order to protect infants against pertussis, family members are urged to get their booster shots. The introduction of the 13-valent Pneumococcal conjugated vaccine in the beginning of 2010 may solve - but for how long ? - the problem of serotype replacement, responsible for the re-increasing incidence of invasive Pneumococcal infections observed in countries that had introduced the 7-valent vaccine. The efficacy of a rotavirus vaccine has been confirmed, with a reduction in hospitalization in the United States and a reduction in gastroenteritis-related deaths in Mexico. In the United States, vaccination of pre-adolescents against human papillomavirus (HPV) has not resulted in any specific undesirable effects. Routine vaccination against chicken pox, recommended since 1995, has not had an impact on the evolution of the incidence of shingles. Vaccination against shingles, recommended in the United States for subjects 60 years and over, shows an effectiveness of 55 %, according to a cohort study (Kaiser Permanente, Southern California). Although some propose the development of personalized vaccines according to individual genetic characteristics, the priority remains with increasing vaccine coverage, not only in infants but also in adults and the elderly. Vaccine

  15. Future of anti-addiction vaccines.

    Science.gov (United States)

    Kosten, Thomas R

    2005-01-01

    The medical rational for using anti-drug antibodies in the serum as a treatment is to reduce drug levels in the brain and to bind drug before it enters the brain. Drugs of abuse are small molecules that can readily cross the blood brain barrier, while antibodies are larger molecules that cannot get into the brain. Thus, any drug that is bound to antibody also cannot cross the blood brain barrier and cannot enter the brain. Active anti-drug vaccines stimulate the body to makes its own antibodies, but the small size of abused drugs prevents them from stimulating an immune response. Thus, individuals do not ordinarily produce antibodies to abused drugs, and vaccines to stimulate antibodies are made by chemically linking these abused drugs to toxins such as cholera toxin. Alternatively, passive immunotherapy uses monoclonal antibodies that are generated in a laboratory and then administered via intravenous injection. Antibodies can be used to treat drug overdose; to reduce drug use relapse; or to protect certain at risk populations who have not yet become drug dependent. The advantages of anti-addiction vaccines are that antibodies target the drug, not the drug's sites of action in the brain and antibody binding inactivates the drug. These vaccines can complement behavioral and other medical therapies with minimal side effects and are not addictive like some chemical agonists. Technology advances in manufacturing and delivery systems will improve future anti-addiction vaccines, but social acceptance of anti-addiction vaccines will depend on substance abuse program staff and the families of substance abusers, who have some values that oppose medical solutions to addictive diseases and view addictions as moral problems.

  16. Technical Transformation of Biodefense Vaccines

    Science.gov (United States)

    Lu, Shan; Wang, Shixia

    2013-01-01

    Biodefense vaccines are developed against a diverse group of pathogens. Vaccines were developed for some of these pathogens a long time ago but they are facing new challenges to move beyond the old manufacturing technologies. New vaccines to be developed against other pathogens have to determine whether to follow traditional vaccination strategies or to seek new approaches. Advances in basic immunology and recombinant DNA technology have fundamentally transformed the process of formulating a vaccine concept, optimizing protective antigens, and selecting the most effective vaccine delivery approach for candidate biodefense vaccines. PMID:19837293

  17. Progress towards a Leishmania vaccine.

    Science.gov (United States)

    Tabbara, Khaled S

    2006-07-01

    Leishmaniasis is a vector-born protozoan disease. Approximately 12 million individuals are affected worldwide with an estimated annual incidence of 1.5-2 million. Two clinical manifestations are recognized, cutaneous, and visceral, both of which are common in the Middle East. In both forms, infection is chronic, with potential deformities, persistence following cure, and lifelong risk of reactivation. Attempts to develop an effective human Leishmania vaccine have not yet succeeded. Leishmanization, a crude form of live vaccination historically originated in this part of the world. Experimental vaccination has been extensively studied in model animals in the past 2 decades. In this review, major human killed vaccine trials are surveyed, and modern trends in Leishmania vaccine development, including subunit vaccines, naked DNA vaccines, and transmission blocking vaccines are explored. Recent findings of a link between persistence of live parasites, and maintenance of long-term immunity suggest live vaccination with attenuated strains, as a future vaccination strategy.

  18. Live Attenuated Recombinant Vaccine Protects Nonhuman Primates Against Ebola and Marburg Viruses

    National Research Council Canada - National Science Library

    Jones, Steven M; Feldmann, Heinz; Stroher, Ute; Geisbert, Joan B; Fernando, Lisa; Grolla, Allen; Klenk, Hans-Dieter; Sullivan, Nancy J; Volchkov, Viktor E; Fritz, Elizabeth A; Daddario, Kathleen M; Hensley, Lisa E; Jahrling, Peter B; Geisbert, Thomas W

    2005-01-01

    Vaccines and therapies are urgently needed to address public health needs stemming from emerging pathogens and biological threat agents such as the filoviruses Ebola virus (EBOV) and Marburg virus (MARV...

  19. FNL Scientists Introduce Concept That Could Help the Immune System Respond to Vaccines | FNLCR Staging

    Science.gov (United States)

    Scientists have discovered an efficient and straightforward model to manipulate RNA nanoparticles, a new concept that could help trigger desirable activation of the immune system with vaccines and therapies. A multi-institutional team of researchers

  20. [Development of current smallpox vaccines].

    Science.gov (United States)

    Maksiutov, R A; Gavrilova, E V; Shchelkunov, S N

    2011-01-01

    The review gives data on the history of smallpox vaccination and shows the high topicality of designing the current safe vaccines against orthopoxviruses. Four generations of live smallpox, protein subunit, and DNA vaccines are considered. Analysis of the data published leads to the conclusion that it is promising to use the up-to-date generations of safe smallpox subunit or DNA vaccines for mass primary immunization with possible further revaccination with classical live vaccine.

  1. The Regulatory Evaluation of Vaccines for Human Use.

    Science.gov (United States)

    Baylor, Norman W

    2016-01-01

    A vaccine is an immunogen, the administration of which is intended to stimulate the immune system to result in the prevention, amelioration, or therapy of any disease or infection (US Food and Drug Administration. Guidance for Industry: content and format of chemistry, manufacturing, and controls information and establishment description information for a vaccine or related product). A vaccine may be a live attenuated preparation of microorganisms, inactivated (killed) whole organisms, living irradiated cells, crude fractions, or purified immunogens, including those derived from recombinant DNA in a host cell, conjugates formed by covalent linkage of components, synthetic antigens, polynucleotides (such as the plasmid DNA vaccines), living vectored cells expressing specific heterologous immunogens, or cells pulsed with immunogen. Vaccines are highly complex products that differ from small molecule drugs because of the biological nature of the source materials such as those derived from microorganisms as well as the various cell substrates from which some are derived. Regardless of the technology used, because of their complexities, vaccines must undergo extensive characterization and testing. Special expertise and procedures are needed for their manufacture, control, and regulation. The Food and Drug Administration (FDA) is the National Regulatory Authority (NRA) in the United States responsible for assuring quality, safety, and effectiveness of all human medical products, including vaccines for human use.The Center for Biologics Evaluation and Research (CBER) within the US FDA is responsible for overseeing the regulation of therapeutic and preventative vaccines against infectious diseases. Authority for the regulation of vaccines resides in Section 351 of the Public Health Service Act and specific sections of the Federal Food, Drug, and Cosmetic Act (FD&C). Vaccines are regulated as biologics and licensed based on the demonstration of safety and effectiveness. The

  2. Granulocyte-macrophage colony-stimulating factor amplification of interleukin-1beta and tumor necrosis factor alpha production in THP-1 human monocytic cells stimulated with lipopolysaccharide of oral microorganisms.

    Science.gov (United States)

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-05-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1beta and TNF-alpha production following GM-CSF supplementation with lipopolysaccharide (LPS) from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. LPS of P. gingivalis or F. nucleatum was prepared by a phenol-water extraction method and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determination of total protein and endotoxin contents. Resting THP-1 cells were treated with LPS of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) by using different concentrations for various time periods. Production of IL-1beta and TNF-alpha in THP-1 cells was measured by solid-phase enzyme-linked immunosorbent assay. Reverse transcription (RT)-PCR was used to evaluate the gene expression of resting and treated THP-1 cells. IL-1beta was not detected in untreated THP-1 cells. IL-1beta production was, however, stimulated sharply at 4 h. GM-CSF amplified IL-1beta production in THP-1 cells treated with LPS from both oral anaerobes. No IL-1beta-specific mRNA transcript was detected in untreated THP-1 cells. However, IL-1beta mRNA was detected by RT-PCR 2 h after stimulation of THP-1 cells with LPS from both organisms. GM-CSF did not shorten the IL-1beta transcriptional activation time. GM-CSF plus F. nucleatum or P. gingivalis LPS activated THP-1 cells to produce a 1.6-fold increase in TNF-alpha production at 4 h over LPS stimulation alone. These investigations with the in vitro THP-1 model indicate that there may be an increase in the cellular immune response to oral

  3. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Debbie Liao

    2009-11-01

    Full Text Available Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  4. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Science.gov (United States)

    Liao, Debbie; Luo, Yunping; Markowitz, Dorothy; Xiang, Rong; Reisfeld, Ralph A

    2009-11-23

    Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer. We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+) T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression. Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  5. ADE and dengue vaccination.

    Science.gov (United States)

    Martínez-Vega, Ruth Aralí; Carrasquila, Gabriel; Luna, Expedito; Ramos-Castañeda, José

    2017-07-13

    The vaccine against Dengue virus (DENV), Dengvaxia® (CYD), produced by Sanofi-Pasteur, has been registered by several national regulatory agencies; nevertheless, the performance and security of this vaccine have been challenged in a series of recent papers. In this work, we intend to contribute to the debate by analyzing the concept of an enhancing vaccine, presenting objections to the epidemiological model base of the concept and, likewise, presenting data that contradict that concept. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Quadrivalent human papillomavirus recombinant vaccine: The first vaccine for cervical cancers

    Directory of Open Access Journals (Sweden)

    Sharma Rashmi

    2007-01-01

    Full Text Available Gardasil ® is the first quadrivalent human papillomavirus (HPV- types 6, 11, 16, 18 recombinant vaccine approved by the FDA on June 8, 2006. It induces genotype-specific virus-neutralizing antibodies and prevents infection with HPV. Various clinical trials demonstrated a reduction in the incidence of vaccine-type-specific persistent infections and of associated moderate- and high-grade cervical dysplasias and carcinomas in situ after its use. Gardasil is currently approved by FDA for prevention of genital warts, cancers and precancerous conditions of cervix and vulva in 9-26 years old females. Three doses of 0.5 ml of gardasil each at 0, 2 and 6 months are given intramuscularly. It is contraindicated in individuals who are hypersensitive to the active substances or to any of the excipients of the vaccine, patients with bleeding abnormalities or patients on anticoagulant therapy and during pregnancy. However, the vaccine, at an estimated $300-500 per course, is too expensive for many women in developing countries. Moreover, question regarding the longevity of the protection by vaccine is still unsolved. Hence, longer studies are required to establish its real status in cancer prevention.

  7. Increased Frequency of Peripheral B and T Cells Expressing Granulocyte Monocyte Colony-Stimulating Factor in Rheumatoid Arthritis Patients

    Directory of Open Access Journals (Sweden)

    Anastasia Makris

    2018-01-01

    Full Text Available ObjectivesGranulocyte monocyte colony-stimulating factor (GM-CSF is currently considered a crucial inflammatory mediator and a novel therapeutic target in rheumatoid arthritis (RA, despite the fact that its precise cellular sources remain uncertain. We studied the expression of GM-CSF in peripheral lymphocytes from RA patients and its change with antirheumatic therapies.MethodsIntracellular GM-CSF expression was assessed by flow cytometry in stimulated peripheral B (CD19+ and T (CD3+ cells from RA patients (n = 40, disease (n = 31 including osteoarthritis n = 15, psoriatic arthritis n = 10, and systemic rheumatic diseases n = 6 and healthy (n = 16 controls. The phenotype of GM-CSF+ B cells was assessed as well as longitudinal changes in GM-CSF+ lymphocytes during methotrexate (MTX, n = 10 or anti-tumor necrosis factor (anti-TNF, n = 10 therapy.ResultsAmong untreated RA patients with active disease (Disease Activity Score 28-C-reactive protein = 5.6 ± 0.89 an expanded population of peripheral GM-CSF+ B (4.1 ± 2.2% and T (3.4 ± 1.6% cells was detected compared with both disease (1.7 ± 0.9%, p < 0.0001 and 1.7 ± 1.3%, p < 0.0001, respectively and healthy (0.3 ± 0.2%, p < 0.0001 and 0.6 ± 0.6%, p < 0.0001 controls. RA GM-CSF+ B cells displayed more commonly a plasmablast or transitional phenotype (37.12 ± 18.34% vs. 14.26 ± 9.46%, p = 0.001 and 30.49 ± 15.04% vs. 2.45 ± 1.84%, p < 0.0001, respectively and less a memory phenotype (21.46 ± 20.71% vs. 66.99 ± 16.63%, p < 0.0001 compared to GM-CSF− cells. GM-CSF expression in RA patients did not correlate to disease duration, activity or serological status. Anti-TNF treatment led to a statistically significant decrease in GM-CSF+ B and T cells while MTX had no significant effect.DiscussionThis is the first study showing an expanded population of GM-CSF+ B and T lymphocytes

  8. Dengue, zika, chikungunya and the development of vaccines

    Directory of Open Access Journals (Sweden)

    Isabel N. Kantor

    2018-01-01

    Full Text Available Dengue (DENV, zika (ZIKV and chikungunya (CHIKV, three arbovirosis transmitted by Aedes mosquitoes, have spread in recent decades in humid tropical and subtropical zones. Dengue is epidemic in subtropical areas of Argentina. DENV infection confers lasting immunity against the infecting serotype but increases the risk of serious disease upon reinfection by any of the other three. The recombinant tetravalent vaccine Dengvaxia® prevents severe dengue and hospitalization in seropositive subjects. In 2017, Dengvaxia was approved in Argentina, for ages 9 to 45, but is not included in the national vaccination calendar. Two other vaccines are in Phase III evaluation: one developed by NIAID / Instituto Butantan and the other by Takeda. ZIKV, a virus associated with microcephaly in newborns in Brazil, circulates since 2016 in Argentina. There is still not effective treatment nor vaccine with proven activity against ZIKV. There has been no active circulation of CHIKV in Argentina in 2017. Outbreaks of CHIKV fever have a complication: the development of chronic post-disease rheumatism. There are not approved vaccines for humans nor effective antiviral therapies. The seriousness of these virosis has contributed to a rapid progress in the knowledge of the infection processes and the immune response. For now, Aedes aegypti and A. albopictus vectors continue to expand, suggesting that the vaccine will be the most effective means of controlling these viruses. Here we summarize information about these arbovirosis in Argentina and Brazil and describe advances in the development and evaluation of vaccines.

  9. [Dengue, zika, chikungunya and the development of vaccines].

    Science.gov (United States)

    Kantor, Isabel N

    2018-01-01

    Dengue (DENV), zika (ZIKV) and chikungunya (CHIKV), three arbovirosis transmitted by Aedes mosquitoes, have spread in recent decades in humid tropical and subtropical zones. Dengue is epidemic in subtropical areas of Argentina. DENV infection confers lasting immunity against the infecting serotype but increases the risk of serious disease upon reinfection by any of the other three. The recombinant tetravalent vaccine Dengvaxia® prevents severe dengue and hospitalization in seropositive subjects. In 2017, Dengvaxia was approved in Argentina, for ages 9 to 45, but is not included in the national vaccination calendar. Two other vaccines are in Phase III evaluation: one developed by NIAID / Instituto Butantan and the other by Takeda. ZIKV, a virus associated with microcephaly in newborns in Brazil, circulates since 2016 in Argentina. There is still not effective treatment nor vaccine with proven activity against ZIKV. There has been no active circulation of CHIKV in Argentina in 2017. Outbreaks of CHIKV fever have a complication: the development of chronic post-disease rheumatism. There are not approved vaccines for humans nor effective antiviral therapies. The seriousness of these virosis has contributed to a rapid progress in the knowledge of the infection processes and the immune response. For now, Aedes aegypti and A. albopictus vectors continue to expand, suggesting that the vaccine will be the most effective means of controlling these viruses. Here we summarize information about these arbovirosis in Argentina and Brazil and describe advances in the development and evaluation of vaccines.

  10. The European Regulatory Environment of RNA-Based Vaccines.

    Science.gov (United States)

    Hinz, Thomas; Kallen, Kajo; Britten, Cedrik M; Flamion, Bruno; Granzer, Ulrich; Hoos, Axel; Huber, Christoph; Khleif, Samir; Kreiter, Sebastian; Rammensee, Hans-Georg; Sahin, Ugur; Singh-Jasuja, Harpreet; Türeci, Özlem; Kalinke, Ulrich

    2017-01-01

    A variety of different mRNA-based drugs are currently in development. This became possible, since major breakthroughs in RNA research during the last decades allowed impressive improvements of translation, stability and delivery of mRNA. This article focuses on antigen-encoding RNA-based vaccines that are either directed against tumors or pathogens. mRNA-encoded vaccines are developed both for preventive or therapeutic purposes. Most mRNA-based vaccines are directly administered to patients. Alternatively, primary autologous cells from cancer patients are modified ex vivo by the use of mRNA and then are adoptively transferred to patients. In the EU no regulatory guidelines presently exist that specifically address mRNA-based vaccines. The existing regulatory framework, however, clearly defines that mRNA-based vaccines in most cases have to be centrally approved. Interestingly, depending on whether RNA-based vaccines are directed against tumors or infectious disease, they are formally considered gene therapy products or not, respectively. Besides an overview on the current clinical use of mRNA vaccines in various therapeutic areas a detailed discussion of the current regulatory situation is provided and regulatory perspectives are discussed.

  11. Burkholderia Vaccines: Are We Moving Forward?

    Directory of Open Access Journals (Sweden)

    Leang-Chung eChoh

    2013-02-01

    Full Text Available The genus Burkholderia consists of diverse species which includes both ‘friends’ and ‘foes’. Some of the ‘friendly’ Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines.

  12. Microneedles for drug and vaccine delivery

    Science.gov (United States)

    Kim, Yeu-Chun; Park, Jung-Hwan; Prausnitz, Mark R.

    2012-01-01

    Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990’s when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications. PMID:22575858

  13. Burkholderia vaccines: are we moving forward?

    Science.gov (United States)

    Choh, Leang-Chung; Ong, Guang-Han; Vellasamy, Kumutha M.; Kalaiselvam, Kaveena; Kang, Wen-Tyng; Al-Maleki, Anis R.; Mariappan, Vanitha; Vadivelu, Jamuna

    2013-01-01

    The genus Burkholderia consists of diverse species which includes both “friends” and “foes.” Some of the “friendly” Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei, and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis (CF) patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei, and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines. PMID:23386999

  14. Vaccine decision-making begins in pregnancy: Correlation between vaccine concerns, intentions and maternal vaccination with subsequent childhood vaccine uptake.

    Science.gov (United States)

    Danchin, M H; Costa-Pinto, J; Attwell, K; Willaby, H; Wiley, K; Hoq, M; Leask, J; Perrett, K P; O'Keefe, Jacinta; Giles, M L; Marshall, H

    2017-08-12

    Maternal and childhood vaccine decision-making begins prenatally. Amongst pregnant Australian women we aimed to ascertain vaccine information received, maternal immunisation uptake and attitudes and concerns regarding childhood vaccination. We also aimed to determine any correlation between a) intentions and concerns regarding childhood vaccination, (b) concerns about pregnancy vaccination, (c) socioeconomic status (SES) and (d) uptake of influenza and pertussis vaccines during pregnancy and routine vaccines during childhood. Women attending public antenatal clinics were recruited in three Australian states. Surveys were completed on iPads. Follow-up phone surveys were done three to six months post delivery, and infant vaccination status obtained via the Australian Childhood Immunisation Register (ACIR). Between October 2015 and March 2016, 975 (82%) of 1184 mothers consented and 406 (42%) agreed to a follow up survey, post delivery. First-time mothers (445; 49%) had significantly more vaccine concerns in pregnancy and only 73% had made a decision about childhood vaccination compared to 89% of mothers with existing children (p-valuepost delivery survey, 46% and 82% of mothers reported receiving pregnancy influenza and pertussis vaccines respectively. The mother's degree of vaccine hesitancy and two attitudinal factors were correlated with vaccine uptake post delivery. There was no association between reported maternal vaccine uptake or SES and childhood vaccine uptake. First time mothers are more vaccine hesitant and undecided about childhood vaccination, and only two thirds of all mothers believed they received enough information during pregnancy. New interventions to improve both education and communication on childhood and maternal vaccines, delivered by midwives and obstetricians in the Australian public hospital system, may reduce vaccine hesitancy for all mothers in pregnancy and post delivery, particularly first-time mothers. Copyright © 2017 Elsevier Ltd

  15. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines.

    Science.gov (United States)

    Surenaud, Mathieu; Lacabaratz, Christine; Zurawski, Gérard; Lévy, Yves; Lelièvre, Jean-Daniel

    2017-10-01

    Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.

  16. Human Papillomavirus (HPV) Vaccines

    Science.gov (United States)

    ... factors for developing them, such as taking oral contraceptives . A safety review of Gardasil in Denmark and ... and venous thromboembolic adverse events after immunisation of adolescent girls with quadrivalent human papillomavirus vaccine in Denmark ...

  17. [Development of new vaccines].

    Science.gov (United States)

    González-Romo, Fernando; Picazo, Juan J

    2015-10-01

    Recent and important advances in the fields of immunology, genomics, functional genomics, immunogenetics, immunogenomics, bioinformatics, microbiology, genetic engineering, systems biology, synthetic biochemistry, proteomics, metabolomics and nanotechnology, among others, have led to new approaches in the development of vaccines. The better identification of ideal epitopes, the strengthening of the immune response due to new adjuvants, and the search of new routes of vaccine administration, are good examples of advances that are already a reality and that will favour the development of more vaccines, their use in indicated population groups, or its production at a lower cost. There are currently more than 130 vaccines are under development against the more wished (malaria or HIV), difficult to get (CMV or RSV), severe re-emerging (Dengue or Ebola), increasing importance (Chagas disease or Leishmania), and nosocomial emerging (Clostridium difficile or Staphylococcus aureus) infectious diseases. Copyright © 2015. Published by Elsevier España, S.L.U.

  18. Ingredients of Vaccines

    Science.gov (United States)

    ... containing preservative that is added to vials of vaccine that contain more than one dose to prevent contamination and growth of potentially harmful bacteria. For children with a prior history of allergic reactions to any of these substances ...

  19. Design of clinical trials for therapeutic cancer vaccines development.

    Science.gov (United States)

    Mackiewicz, Jacek; Mackiewicz, Andrzej

    2009-12-25

    Advances in molecular and cellular biology as well as biotechnology led to definition of a group of drugs referred to as medicinal products of advanced technologies. It includes gene therapy products, somatic cell therapeutics and tissue engineering. Therapeutic cancer vaccines including whole cell tumor cells vaccines or gene modified whole cells belong to somatic therapeutics and/or gene therapy products category. The drug development is a multistep complex process. It comprises of two phases: preclinical and clinical. Guidelines on preclinical testing of cell based immunotherapy medicinal products have been defined by regulatory agencies and are available. However, clinical testing of therapeutic cancer vaccines is still under debate. It presents a serious problem since recently clinical efficacy of the number of cancer vaccines has been demonstrated that focused a lot of public attention. In general clinical testing in the current form is very expensive, time consuming and poorly designed what may lead to overlooking of products clinically beneficial for patients. Accordingly regulatory authorities and researches including Cancer Vaccine Clinical Trial Working Group proposed three regulatory solutions to facilitate clinical development of cancer vaccines: cost-recovery program, conditional marketing authorization, and a new development paradigm. Paradigm includes a model in which cancer vaccines are investigated in two types of clinical trials: proof-of-principle and efficacy. The proof-of-principle trial objectives are: safety; dose selection and schedule of vaccination; and demonstration of proof-of-principle. Efficacy trials are randomized clinical trials with objectives of demonstrating clinical benefit either directly or through a surrogate. The clinical end points are still under debate.

  20. Adenosine potentiates stimulatory effects on granulocyte-macrophage hematopoietic progenitor cells in vitro of IL-3 and SCF, but not those of G-CSF, GM-CSF and IL-11

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Vacek, Antonín; Pospíšil, Milan; Weiterová, Lenka; Holá, Jiřina; Štreitová, Denisa; Znojil, V.

    2006-01-01

    Roč. 55, č. 5 (2006), s. 591-596 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/06/0015 Institutional research plan: CEZ:AV0Z50040507 Keywords : hematopoiesis * adenosine * cytokines Subject RIV: BO - Biophysics Impact factor: 2.093, year: 2006

  1. Current status of rotavirus vaccines.

    Science.gov (United States)

    Wang, Ching-Min; Chen, Shou-Chien; Chen, Kow-Tong

    2015-11-01

    Rotaviruses remain the major cause of childhood diarrheal disease worldwide and of diarrheal deaths of infants and children in developing countries. The huge burden of childhood rotavirus-related diarrhea in the world continues to drive the remarkable pace of vaccine development. Research articles were searched using terms "rotavirus" and "rotavirus vaccine" in MEDLINE and PubMed. Articles not published in the English language, articles without abstracts, and opinion articles were excluded from the review. After preliminary screening, all articles were reviewed and synthesized to provide an overview of current vaccines and vaccination programs. In this review of the global rotavirus vaccines and vaccination programs, the principles of rotavirus vaccine development and the efficacy of the currently licensed vaccines from both developed and developing countries were summarized. Rotavirus is a common cause of diarrhea in children in both developed and developing countries. Rotavirus vaccination is a cost-effective measure to prevent rotavirus diarrhea.

  2. Vaccines for Older Adults.

    Science.gov (United States)

    Worz, Chad; Martin, Caren McHenry; Travis, Catherine

    2017-09-01

    Several vaccine-preventable diseases-influenza, pneumonia, herpes zoster, and pertussis-threaten the health of older adults in the United States. Both the costs associated with treating these diseases and the potential to increase morbidity and mortality are high for this patient population. Pharmacists and other health care professionals play a significant role in ensuring the elderly patient receives the recommended vaccines at the recommended intervals.

  3. Beninese vaccination clinic

    OpenAIRE

    Linda Sun

    2017-01-01

    This photo was taken in the village of Ladji, which is on the outskirts of Cotonou, the capital of Benin. At the time, I was a second year medical student volunteering at a local medical clinic. On every Wednesday morning, many Beninese babies, like this one, cry out of discomfort while receiving their monthly vaccinations. The photo shows a local clinic nurse administering the vaccination.

  4. Beninese vaccination clinic

    Directory of Open Access Journals (Sweden)

    Linda Sun

    2017-04-01

    Full Text Available This photo was taken in the village of Ladji, which is on the outskirts of Cotonou, the capital of Benin. At the time, I was a second year medical student volunteering at a local medical clinic. On every Wednesday morning, many Beninese babies, like this one, cry out of discomfort while receiving their monthly vaccinations. The photo shows a local clinic nurse administering the vaccination.

  5. HPV vaccines: a controversial issue?

    Science.gov (United States)

    Nicol, A F; Andrade, C V; Russomano, F B; Rodrigues, L L S; Oliveira, N S; Provance, D W

    2016-01-01

    Controversy still exists over whether the benefits of the available HPV vaccines outweigh the risks and this has suppressed uptake of the HPV vaccines in comparison to other vaccines. Concerns about HPV vaccine safety have led some physicians, healthcare officials and parents to withhold the recommended vaccination from the target population. The most common reason for not administering the prophylactic HPV vaccines are concerns over adverse effects. The aim of this review is the assessment of peer-reviewed scientific data related to measurable outcomes from the use of HPV vaccines throughout the world with focused attention on the potential adverse effects. We found that the majority of studies continue to suggest a positive risk-benefit from vaccination against HPV, with minimal documented adverse effects, which is consistent with other vaccines. However, much of the published scientific data regarding the safety of HPV vaccines appears to originate from within the financially competitive HPV vaccine market. We advocate a more independent monitoring system for vaccine immunogenicity and adverse effects to address potential conflicts of interest with regular systematic literature reviews by qualified individuals to vigilantly assess and communicate adverse effects associated with HPV vaccination. Finally, our evaluation suggests that an expanded use of HPV vaccine into more diverse populations, particularly those living in low-resource settings, would provide numerous health and social benefits.

  6. Epilepsy and vaccinations: Italian guidelines.

    Science.gov (United States)

    Pruna, Dario; Balestri, Paolo; Zamponi, Nelia; Grosso, Salvatore; Gobbi, Giuseppe; Romeo, Antonino; Franzoni, Emilio; Osti, Maria; Capovilla, Giuseppe; Longhi, Riccardo; Verrotti, Alberto

    2013-10-01

    Reports of childhood epilepsies in temporal association with vaccination have had a great impact on the acceptance of vaccination programs by health care providers, but little is known about this possible temporal association and about the types of seizures following vaccinations. For these reasons the Italian League Against Epilepsy (LICE), in collaboration with other Italian scientific societies, has decided to generate Guidelines on Vaccinations and Epilepsy. The aim of Guidelines on Vaccinations and Epilepsy is to present recent unequivocal evidence from published reports on the possible relationship between vaccines and epilepsy in order to provide information about contraindications and risks of vaccinations in patients with epilepsy. The following main issues have been addressed: (1) whether contraindications to vaccinations exist in patients with febrile convulsions, epilepsy, and/or epileptic encephalopathies; and (2) whether any vaccinations can cause febrile seizures, epilepsy, and/or epileptic encephalopathies. Diphtheria-tetanus-pertussis (DTP) vaccination and measles, mumps, and rubella vaccination (MMR) increase significantly the risk of febrile seizures. Recent observations and data about the relationships between vaccination and epileptic encephalopathy show that some cases of apparent vaccine-induced encephalopathy could in fact be caused by an inherent genetic defect with no causal relationship with vaccination. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  7. HPV vaccines: a controversial issue?

    Directory of Open Access Journals (Sweden)

    A.F. Nicol

    2016-01-01

    Full Text Available Controversy still exists over whether the benefits of the available HPV vaccines outweigh the risks and this has suppressed uptake of the HPV vaccines in comparison to other vaccines. Concerns about HPV vaccine safety have led some physicians, healthcare officials and parents to withhold the recommended vaccination from the target population. The most common reason for not administering the prophylactic HPV vaccines are concerns over adverse effects. The aim of this review is the assessment of peer-reviewed scientific data related to measurable outcomes from the use of HPV vaccines throughout the world with focused attention on the potential adverse effects. We found that the majority of studies continue to suggest a positive risk-benefit from vaccination against HPV, with minimal documented adverse effects, which is consistent with other vaccines. However, much of the published scientific data regarding the safety of HPV vaccines appears to originate from within the financially competitive HPV vaccine market. We advocate a more independent monitoring system for vaccine immunogenicity and adverse effects to address potential conflicts of interest with regular systematic literature reviews by qualified individuals to vigilantly assess and communicate adverse effects associated with HPV vaccination. Finally, our evaluation suggests that an expanded use of HPV vaccine into more diverse populations, particularly those living in low-resource settings, would provide numerous health and social benefits.

  8. Vaccination status of people living with HIV/AIDS in outpatient care in Fortaleza, Ceará, Brazil

    Directory of Open Access Journals (Sweden)

    Gilmara Holanda da Cunha

    2016-09-01

    Full Text Available Antiretroviral therapy has increased the survival of patients with HIV/AIDS, thus necessitating health promotion practice with immunization. Vaccines are critical components for protecting people living with HIV/AIDS (PLWHA. The purpose of study was to analyze the vaccination status of PLWHA in outpatient care in Fortaleza, Ceará, Brazil. Cross-sectional study performed from June 2014 to June 2015. The screening was done with patients in antiretroviral therapy, 420 patients underwent screening, but only 99 met the inclusion criteria. Data were collected for interviews using forms to characterize sociodemographic, clinical and vaccination situations. Only 14 patients had complete vaccination schedules. The most used vaccines were hepatitis B, influenza vaccine and 23-valent pneumococcal. There was no difference between men and women regarding the proportion of PLWHA with full vaccination schedule or between sex, skin color, marital status, sexual orientation, religion or occupational status. There was no difference between having or not having a complete vaccination schedule and age, years of education, family income or number of hospitalizations. CD4+ T-cells count of patients with incomplete immunization was lower than patients with complete immunization. Health education strategies can be done individually or in groups to explain the importance of vaccination and to remind about doses to be administered. Most patients did not have proper adherence to vaccination schedules, especially due to lack of guidance. Results implied that education in health is important for vaccination adhesion, knowledge of adverse events and continuation of schemes.

  9. Key Facts about Seasonal Flu Vaccine

    Science.gov (United States)

    ... Swine Variant Pandemic Other Key Facts About Seasonal Flu Vaccine Language: English (US) Español Recommend on Facebook ... the flu is to get vaccinated each year. Flu Vaccination Why should people get vaccinated against the ...

  10. Meningococcal group B vaccines.

    Science.gov (United States)

    Findlow, Jamie

    2013-06-01

    Meningococcal disease remains a devastating and feared infection with a significant morbidity and mortality profile. The successful impact of meningococcal capsular group C glyconconjugate vaccines introduced into the UK infant immunization schedule in 1999, has resulted in >80% of disease now being attributable to meningococcal capsular group B (MenB). MenB glyconconjugate vaccines are not immunogenic and hence, vaccine design has focused on sub-capsular antigens. Recently, a four component vaccine to combat MenB disease (4CMenB) has progressed through clinical development and was approved by the European Medicines Agency at the end of 2012. This vaccine has proven safe and immunogenic and has been predicted to provide protection against ~73% of the MenB disease from England and Wales. Recommendation/implementation of the vaccine into the UK infant schedule is currently being evaluated. 4CMenB has the potential to provide protection against a significant proportion of MenB disease in the UK which is currently unpreventable.

  11. Genome-derived vaccines.

    Science.gov (United States)

    De Groot, Anne S; Rappuoli, Rino

    2004-02-01

    Vaccine research entered a new era when the complete genome of a pathogenic bacterium was published in 1995. Since then, more than 97 bacterial pathogens have been sequenced and at least 110 additional projects are now in progress. Genome sequencing has also dramatically accelerated: high-throughput facilities can draft the sequence of an entire microbe (two to four megabases) in 1 to 2 days. Vaccine developers are using microarrays, immunoinformatics, proteomics and high-throughput immunology assays to reduce the truly unmanageable volume of information available in genome databases to a manageable size. Vaccines composed by novel antigens discovered from genome mining are already in clinical trials. Within 5 years we can expect to see a novel class of vaccines composed by genome-predicted, assembled and engineered T- and Bcell epitopes. This article addresses the convergence of three forces--microbial genome sequencing, computational immunology and new vaccine technologies--that are shifting genome mining for vaccines onto the forefront of immunology research.

  12. Terapeutiske vacciner er et nyt behandlings-princip ved kastrationsresistent prostatacancer

    DEFF Research Database (Denmark)

    Djurhuus, Sissal Sigmundsdòttir; Brasso, Klaus; Berg, Kasper Drimer

    2015-01-01

    Therapeutic vaccines is a novel approach in castration-resistant prostate cancer treatment Castration-resistant prostate cancer (CRPC) is defined as tumour progression despite castrate levels of serum testosterone. During the past decade a number of new therapies, including chemo­therapy and novel...... endocrine agents have been approved for CRPC treatment. The continued need for new effective drugs in CRPC has led to development of a novel therapeutic approach in CRPC treatment. Therapeutic vaccines activate the immune system to kill prostate cancer cells. This review describes recent pivotal phase 2...... and 3 trials of CRPC vaccines and discusses the impact on future CRPC management....

  13. How influenza vaccination policy may affect vaccine logistics.

    Science.gov (United States)

    Assi, Tina-Marie; Rookkapan, Korngamon; Rajgopal, Jayant; Sornsrivichai, Vorasith; Brown, Shawn T; Welling, Joel S; Norman, Bryan A; Connor, Diana L; Chen, Sheng-I; Slayton, Rachel B; Laosiritaworn, Yongjua; Wateska, Angela R; Wisniewski, Stephen R; Lee, Bruce Y

    2012-06-22

    When policymakers make decision about the target populations and timing of influenza vaccination, they may not consider the impact on the vaccine supply chains, which may in turn affect vaccine availability. Our goal is to explore the effects on the Thailand vaccine supply chain of introducing influenza vaccines and varying the target populations and immunization time-frames. We Utilized our custom-designed software HERMES (Highly Extensible Resource for Modeling Supply Chains), we developed a detailed, computational discrete-event simulation model of the Thailand's National Immunization Program (NIP) supply chain in Trang Province, Thailand. A suite of experiments simulated introducing influenza vaccines for different target populations and over different time-frames prior to and during the annual influenza season. Introducing influenza vaccines creates bottlenecks that reduce the availability of both influenza vaccines as well as the other NIP vaccines, with provincial to district transport capacity being the primary constraint. Even covering only 25% of the Advisory Committee on Immunization Practice-recommended population while administering the vaccine over six months hinders overall vaccine availability so that only 62% of arriving patients can receive vaccines. Increasing the target population from 25% to 100% progressively worsens these bottlenecks, while increasing influenza vaccination time-frame from 1 to 6 months decreases these bottlenecks. Since the choice of target populations for influenza vaccination and the time-frame to deliver this vaccine can substantially affect the flow of all vaccines, policy-makers may want to consider supply chain effects when choosing target populations for a vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Epidemiological impact of a genital herpes type 2 vaccine for young females.

    Directory of Open Access Journals (Sweden)

    Yijun Lou

    Full Text Available Genital Herpes, which is caused by Herpes Simplex Virus-1 or -2 (HSV-1, -2, predominantly HSV-2 is a sexually transmitted infection (STI that causes a chronic latent infection with outbreak episodes linked to transmission. Antiviral therapies are effective in reducing viral shedding during these episodes, but are ineffective as a whole since many outbreaks are asymptomatic or have mild symptoms. Thus, the development of a vaccine for genital herpes is needed to control this disease. The question of how to implement such a vaccine program is an important one, and may be similar to the vaccination program for Human Papilloma Virus (HPV for young females. We have developed a mathematical model to describe the epidemiology of vaccination targeting young females against HSV-2. The model population is delineated with respect to age group, sexual activity and infection status including oral infection of HSV-1, which may affect vaccine efficacy. A threshold parameter R(C, which determines the level of vaccine uptake needed to eradicate HSV-2, is found. Computer simulation shows that an adolescent-only vaccination program may be effective in eliminating HSV-2 disease, however, the success of extinction greatly depends on the level of vaccine uptake, the vaccine efficacy, the age of sexual maturity and safe sex practices. However, the time course of eradication would take many years. We also investigate the prevalence of infection in the total population and in women between 16-30 years of age before and after vaccination has been introduced, and show that the adolescent-only vaccination program can be effective in reducing disease prevalence in these populations depending on the level of vaccine uptake and vaccine efficacy. This will also result in a decrease of maternal-fetal transmission of HSV-2 infection. Another important, if commonsense, conclusion is that vaccination of some females reduces infection in men, which then reduces infection in women.

  15. [Severe Yellow fever vaccine-associated disease: a case report and current overview].

    Science.gov (United States)

    Slesak, Günther; Gabriel, Martin; Domingo, Cristina; Schäfer, Johannes

    2017-08-01

    History and physical examination  A 56-year-old man developed high fever with severe headaches, fatigue, impaired concentration skills, and an exanthema 5 days after a yellow fever (YF) vaccination. Laboratory tests  Liver enzymes and YF antibody titers were remarkably elevated. YF vaccine virus was detected in urine by PCR. Diagnosis and therapy  Initially, severe YF vaccine-associated visceral disease was suspected and treated symptomatically. Clinical Course  His fever ceased after 10 days in total, no organ failure developed. However, postencephalitic symptoms persisted with fatigue and impaired concentration, memory, and reading skills and partly incapability to work for over 3 months. A diagnosis was made of suspected YF vaccine-associated neurotropic disease. Conclusion  Severe vaccine-derived adverse effects need to be considered in the indication process for YF vaccination. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Inadvertent yellow fever vaccination of a patient with Crohn's disease treated with infliximab and methotrexate

    DEFF Research Database (Denmark)

    Ekenberg, C.; Friis-Møller, N.; Ulstrup, Thomas

    2016-01-01

    We present a case of a 56-year-old woman with Crohn's disease, treated with methotrexate and infliximab, who inadvertently received yellow fever vaccination (YFV) prior to a journey to Tanzania. She was not previously vaccinated against YF. YFV contains live-attenuated virus, and is contraindicated...... in patients treated with immunosuppressive drugs. Following vaccination, the patient fell ill with influenza-like illness. Elevated transaminase levels and YF viremia were detected. Despite being immunocompromised, the patient did not develop more severe adverse effects. Neutralising antibodies to YF virus...... were detected on day 14 following vaccination and remained protective at least 10 months after vaccination. Limited data is available on outcomes of YFV in patients receiving immunosuppressive therapy, including biologics, and we report this case as a reminder of vigilance of vaccine recommendations...

  17. Glycoconjugate Vaccines: The Regulatory Framework.

    Science.gov (United States)

    Jones, Christopher

    2015-01-01

    Most vaccines, including the currently available glycoconjugate vaccines, are administered to healthy infants, to prevent future disease. The safety of a prospective vaccine is a key prerequisite for approval. Undesired side effects would not only have the potential to damage the individual infant but also lead to a loss of confidence in the respective vaccine-or vaccines in general-on a population level. Thus, regulatory requirements, particularly with regard to safety, are extremely rigorous. This chapter highlights regulatory aspects on carbohydrate-based vaccines with an emphasis on analytical approaches to ensure the consistent quality of successive manufacturing lots.

  18. Mesenchymal stem cells as a novel vaccine platform

    Directory of Open Access Journals (Sweden)

    Suzanne L. Tomchuck

    2012-11-01

    Full Text Available Vaccines are the most efficient and cost-effective means of preventing infectious disease. However, traditional vaccine approaches have thus far failed to provide protection against human immunodeficiency virus (HIV, tuberculosis, malaria and many other diseases. New approaches to vaccine development are needed to address some of these intractable problems. In this report, we review the literature identifying stimulatory effects of mesenchymal stem cells (MSC on immune responses and explore the potential for MSC as a novel, universal vaccination platform. MSC are unique bone marrow-derived multipotent progenitor cells that are presently being exploited as gene therapy vectors for a variety of conditions, including cancer and autoimmune diseases. Although MSC are predominantly known for anti-inflammatory properties during allogeneic MSC transplant, there is evidence that MSC can actually promote adaptive immunity under certain settings. MSC have also demonstrated some success in anti-cancer therapeutic vaccines and anti-microbial prophylactic vaccines, as we report, for the first time, the ability of modified MSC to express and secrete a viral antigen that stimulates antigen-specific antibody production in vivo. We hypothesize that the unique properties of modified MSC may enable MSC to serve as an unconventional but innovative, vaccine platform. Such a platform would be capable of expressing hundreds of proteins, thereby generating a broad array of epitopes with correct post-translational processing, mimicking natural infection. By stimulating immunity to a combination of epitopes, it may be possible to develop prophylactic and even therapeutic vaccines to tackle major health problems including those of non-microbial and microbial origin, including cancer, or an infectious disease like HIV, where traditional vaccination approaches have failed.

  19. Protective antitumor activity induced by a fusion vaccine with murine ...

    African Journals Online (AJOL)

    Targeting angiogenesis is an effective strategy for anticancer therapy. The vascular endothelialcadherin (VE-cad) regulated angiogenesis is a potential target for anti-angiogenesis. Here, we develop a fusion vaccine plasmid DNA pSec-MBD2-VE-cad from VE-cad and murine beta defensin2 (MBD2) to induce immunity for ...

  20. Optimised electroporation mediated DNA vaccination for treatment of prostate cancer.

    LENUS (Irish Health Repository)

    Ahmad, Sarfraz

    2010-01-01

    ABSTRACT: BACKGROUND: Immunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms. DNA vaccines have potential to activate the immune system against specific antigens, with accompanying potent immunological adjuvant effects from unmethylated CpG motifs as on prokaryotic DNA. We investigated an electroporation driven plasmid DNA vaccination strategy in animal models for treatment of prostate cancer. METHODS: Plasmid expressing human PSA gene (phPSA) was delivered in vivo by intra-muscular electroporation, to induce effective anti-tumour immune responses against prostate antigen expressing tumours. Groups of male C57 BL\\/6 mice received intra-muscular injections of phPSA plasmid. For phPSA delivery, quadriceps muscle was injected with 50 mug plasmid. After 80 seconds, square-wave pulses were administered in sequence using a custom designed pulse generator and acustom-designed applicator with 2 needles placed through the skin central to the muscle. To determine an optimum treatment regimen, three different vaccination schedules were investigated. In a separate experiment, the immune potential of the phPSA vaccine was further enhanced with co- administration of synthetic CpG rich oligonucleotides. One week after last vaccination, the mice were challenged subcutaneously with TRAMPC1\\/hPSA (prostate cancer cell line stably expressing human PSA) and tumour growth was monitored. Serum from animals was examined by ELISA for anti-hPSA antibodies and for IFNgamma. Histological assessment of the tumours was also carried out. In vivo and in vitro cytotoxicity assays were performed with splenocytes from treated mice. RESULTS: The phPSA vaccine therapy significantly delayed the appearance of tumours and resulted in prolonged survival of the animals. Four-dose vaccination regimen provided optimal immunological effects. Co - administration of the synthetic CpG with phPSA increased anti-tumour responses

  1. Efficacy of postexposure therapy against glanders in mice.

    Science.gov (United States)

    Waag, David M

    2015-04-01

    Burkholderia mallei, the causative agent of glanders, is a CDC Tier 1 Select Agent for which there is no preventive vaccine and antibiotic therapy is difficult. In this study, we show that a combination of vaccination using killed cellular vaccine and therapy using moxifloxacin, azithromycin, or sulfamethoxazole-trimethoprim can protect BALB/c mice from lethal infection even when given 5 days after infectious challenge. Vaccination only, or antibiotic therapy only, was not efficacious. Although antibiotics evaluated experimentally can protect when given before or 1 day after challenge, this time course is not realistic in the cases of natural infection or biological attack, when the patient seeks treatment after symptoms develop or after a biological attack has been confirmed and the agent has been identified. Antibiotics can be efficacious after a prolonged interval between exposure and treatment, but only if the animals were previously vaccinated. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Vaccination Perceptions of College Students: With and without Vaccination Waiver

    Directory of Open Access Journals (Sweden)

    Emmanuel D. Jadhav

    2018-02-01

    Full Text Available IntroductionThe resurgence of vaccine preventable diseases occurs more often among intentionally unvaccinated individuals, placing at direct risk young adults not caught up on vaccinations. The objectives of this study were to characterize the sociodemographic characteristics of young adults with and without vaccination waivers and identify their perceived benefits, barriers, and influencers of vaccination.MethodsYoung adults (n = 964 from a Midwestern rural university responded to a survey (fall 2015—spring 2016 designed to identify their perception toward vaccination. Instrument consistency was measured using the Cronbach α-scores. The Chi-square test was used to test any sociodemographic differences and Mann–Whitney U-tests results for differences between exempt and non-exempt students. Analysis occurred in spring 2017.ResultsA little over one-third of young adults with a vaccination waiver were not up to date on their vaccinations, and think that vaccinations can cause autism. The biggest identifiable benefit was effective control against disease. The surveyed young adults ranked the out of pocket cost associated with vaccination as the most important barrier and safe and easy to use vaccines as the most important influencer of vaccination.ConclusionYoung adults who have had a vaccination waiver appear to not be up to date on their vaccinations. Vaccine administration programs, such as university campus clinics, would benefit from addressing perceptions unique to young adults with and without a vaccine waiver. This would subsequently better provide young adults a second shot for getting appropriately caught up on vaccinations.

  3. Vaccines, adjuvants and autoimmunity.

    Science.gov (United States)

    Guimarães, Luísa Eça; Baker, Britain; Perricone, Carlo; Shoenfeld, Yehuda

    2015-10-01

    Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Community vaccine perceptions and its role on vaccination uptake ...

    African Journals Online (AJOL)

    Introduction: Underutilization of vaccines still remains a challenge in many regions across the world. Ileje district is one of the districts in Tanzania with consistently low pentavalent vaccine uptake (69%) and with drop out of 15%. We determined the vaccination completion with regard to Oral Polio virus, Measles, Bacillus ...

  5. Evaluation of vaccine competition using HVT vector vaccines

    Science.gov (United States)

    Turkey herpesvirus (HVT) has been widely used as a vaccine for Marek’s disease (MD) since the 1970s. Because HVT is a safe vaccine that is poorly sensitive to interference from maternally derived antibodies, it has seen rising use as a vector for vaccines developed for protection against other comm...

  6. A New Wave of Vaccines for Non-Communicable Diseases: What Are the Regulatory Challenges?

    Science.gov (United States)

    Darrow, Jonathan J; Kesselheim, Aaron S

    2015-01-01

    Vaccines represent one of the greatest achievements of medicine, dramatically reducing the incidence of serious or life-threatening infectious diseases and allowing people to live longer, healthier lives. As life expectancy has increased, however, the burden of non-communicable diseases (NCDs) such as cancer, hypertension, atherosclerosis, and diabetes has increased. This shifting burden of disease has heightened the already urgent need for therapies that treat or prevent NCDs, a need that is now being met with increased efforts to develop NCD vaccines. Like traditional vaccines, NCD vaccines work by modulating the human immune system, but target cells, proteins or other molecules that are associated with the NCD in question rather than pathogens or pathogen-infected cells. Efforts are underway to develop NCD vaccines to address not only cancer and hypertension, but also addiction, obesity, asthma, arthritis, psoriasis, multiple sclerosis, and Crohn's disease, among others. NCD vaccines present an interesting challenge for the U.S. Food and Drug Administration (FDA), which is tasked with approving new treatments on the basis of efficacy and safety. Should NCD vaccines be evaluated under the same analytic frame as traditional vaccines, or that of biologic drugs? Despite the borrowed nomenclature, NCD vaccines differ in important ways from infectious disease vaccines. Because infectious disease vaccines are generally administered to healthy individuals, often children, tolerance for adverse events is low and willingness to pay is limited. It is important to have infectious disease vaccines even for rare or eradicated disease (e.g., smallpox), in the event of an outbreak. The efficacy of infectious disease vaccines is generally high, and the vaccines convey population level benefits associated with herd immunity and potential eradication. The combination of substantial population-level benefits, low willingness to pay, and low tolerance for adverse events explains the

  7. Flu Vaccine Safety and Pregnancy

    Science.gov (United States)

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other Flu Vaccine Safety and Pregnancy Questions & Answers Language: English ( ... flu vaccine? Why should pregnant women get a flu shot? Flu is more likely to cause severe ...

  8. New Vaccines Help Protect You

    Science.gov (United States)

    ... Bar Home Current Issue Past Issues New Vaccines Help Protect You Past Issues / Fall 2006 Table of ... with a few deaths. Therefore, this vaccine will help reduce one of our most common and potentially ...

  9. Macromolecular systems for vaccine delivery.

    Science.gov (United States)

    MuŽíková, G; Laga, R

    2016-10-20

    Vaccines have helped considerably in eliminating some life-threatening infectious diseases in past two hundred years. Recently, human medicine has focused on vaccination against some of the world's most common infectious diseases (AIDS, malaria, tuberculosis, etc.), and vaccination is also gaining popularity in the treatment of cancer or autoimmune diseases. The major limitation of current vaccines lies in their poor ability to generate a sufficient level of protective antibodies and T cell responses against diseases such as HIV, malaria, tuberculosis and cancers. Among the promising vaccination systems that could improve the potency of weakly immunogenic vaccines belong macromolecular carriers (water soluble polymers, polymer particels, micelles, gels etc.) conjugated with antigens and immunistumulatory molecules. The size, architecture, and the composition of the high molecular-weight carrier can significantly improve the vaccine efficiency. This review includes the most recently developed (bio)polymer-based vaccines reported in the literature.

  10. Liver Disease and Adult Vaccination

    Science.gov (United States)

    ... The Basics Adult Vaccination Resources for Healthcare Professionals Liver Disease and Adult Vaccination Recommend on Facebook Tweet ... critical for people with health conditions such as liver disease. If you have chronic liver disease, talk ...

  11. HPV Vaccine - Questions and Answers

    Science.gov (United States)

    ... United States currently has the safest, most effective vaccine supply in history. Years of testing are required by law to ensure the safety of vaccines before they are made available for use in ...

  12. Therapy of HPV 16-associated carcinoma with dendritic cell-based vaccines: In vitro priming of the effector cell responses by DC pulsed with tumour lysates and synthetic RAHYNIVTF peptide

    Czech Academy of Sciences Publication Activity Database

    Indrová, Marie; Bubeník, Jan; Šímová, Jana; Vonka, V.; Němečková, Š.; Mendoza, Luis; Reiniš, Milan

    2001-01-01

    Roč. 7, č. 1 (2001), s. 97-100 ISSN 1107-3756 R&D Projects: GA MZd NC5526; GA MZd NC45011; GA ČR GA312/98/0826; GA ČR GA312/99/0542; GA ČR GA301/00/0114; GA AV ČR IAA7052002 Institutional research plan: CEZ:AV0Z5052915 Keywords : tumour vaccines * HPV 16 * dendritic cells Subject RIV: FD - Oncology ; Hematology Impact factor: 1.689, year: 2001

  13. HIV-1 vaccines

    Science.gov (United States)

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  14. [Vaccination against rubella].

    Science.gov (United States)

    Rossolini, A; Barberi, A

    1984-01-01

    The infection caused by the rubella virus is a mild disease usually with no or rare complications in children and adults. On the contrary, intrauterine fetal infection may result in defects of the child, which may either be present at birth or become apparent later in life. Such a risk led to the preparation and use of active immunoprophylaxis against rubella in females of child-bearing age, in order to prevent congenital rubella. Three rubella viruses are employed to prepare the vaccine, all derived from the same viral strain. Doubts however, exist about vaccination, in particular about (1) its teratogenic potential in pregnancy; (2) the duration of protection. As a matter of fact, congenital malformations in the fetus exposed to vaccine virus through the mother have been reported in 3% of cases. As to the second point, the data on the protective immunity in time of the vaccine are very controversial. It is clear, anyhow, that protection against infection is associated not only with persistence of adequate serum levels of antibody, but also with other immunological parameters which are still unknown. These considerations, together with the observation that a relative high percentage of vaccine recipients do not respond, lead us to suggest modifications in the present scheduling of immunization against rubella.

  15. Economics of vaccines revisited.

    Science.gov (United States)

    Postma, Maarten J; Standaert, Baudouin A

    2013-05-01

    Performing a total health economic analysis of a vaccine newly introduced into the market today is a challenge when using the conventional cost-effectiveness analysis we normally apply on pharmaceutical products. There are many reasons for that, such as: the uncertainty in the total benefit (direct and indirect) to be measured in a population when using a cohort model; (1) appropriate rules about discounting the long-term impact of vaccines are absent jeopardizing therefore their value at the initial investment; (2) the presence of opposite contexts when introducing the vaccine in developed vs. the developing world with high benefits, low initial health care investment for the latter vs. marginal benefit and high cost for the former; with a corresponding paradox for the vaccine becoming very cost-effective in low income countries but rather medium in middle low to high middle income countries; (3) and the type of trial assessment for the newer vaccines is now often performed with immunogenicity reaction instead of clinical endpoints which still leaves questions on their real impact and their head-to-head comparison. (4.)

  16. Vaccines for the elderly.

    Science.gov (United States)

    Del Giudice, Giuseppe; Weinberger, Birgit; Grubeck-Loebenstein, Beatrix

    2015-01-01

    The aging of the human population is posing serious challenges to research and to public health authorities in order to prevent diseases that more frequently affect the elderly, a portion of the population that will increase more and more in the coming years. While some vaccines exist and are used in the elderly to effectively fight against some infections (e.g. influenza, pneumococci, varicella-zoster virus, diphtheria, and tetanus), still a lot of work remains to be done to better adapt these vaccines and to develop new ones for this age group. The prevention of infectious diseases affecting the elderly can be successful only through a holistic approach. This approach will aim at the following: (1) a deeper understanding of the mechanisms leading to the senescence of the immune system, (2) a better and broader use of vaccines recommended for the elderly, (3) the use of vaccines currently considered only for other age groups and (4) actively priming the population when