WorldWideScience

Sample records for vaccine recombinant hemagglutinin

  1. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process.

    Science.gov (United States)

    Buckland, Barry; Boulanger, Robert; Fino, Mireli; Srivastava, Indresh; Holtz, Kathy; Khramtsov, Nikolai; McPherson, Clifton; Meghrous, Jamal; Kubera, Paul; Cox, Manon M J

    2014-09-22

    Multiple different hemagglutinin (HA) protein antigens have been reproducibly manufactured at the 650L scale by Protein Sciences Corporation (PSC) based on an insect cell culture with baculovirus infection. Significantly, these HA protein antigens were produced by the same Universal Manufacturing process as described in the biological license application (BLA) for the first recombinant influenza vaccine approved by the FDA (Flublok). The technology is uniquely designed so that a change in vaccine composition can be readily accommodated from one HA protein antigen to another one. Here we present a vaccine candidate to combat the recently emerged H7N9 virus as an example starting with the genetic sequence for the required HA, creation of the baculovirus and ending with purified protein antigen (or vaccine component) at the 10L scale accomplished within 38 days under GMP conditions. The same process performance is being achieved at the 2L, 10L, 100L, 650L and 2500L scale. An illustration is given of how the technology was transferred from the benchmark 650L scale facility to a retrofitted microbial facility at the 2500L scale within 100 days which includes the time for facility engineering changes. The successful development, technology transfer and scale-up of the Flublok process has major implications for being ready to make vaccine rapidly on a worldwide scale as a defense against pandemic influenza. The technology described does not have the same vulnerability to mutations in the egg adapted strain, and resulting loss in vaccine efficacy, faced by egg based manufacture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A Viable Recombinant Rhabdovirus Lacking Its Glycoprotein Gene and Expressing Influenza Virus Hemagglutinin and Neuraminidase Is a Potent Influenza Vaccine

    Science.gov (United States)

    Ryder, Alex B.; Buonocore, Linda; Vogel, Leatrice; Nachbagauer, Raffael; Krammer, Florian

    2014-01-01

    ABSTRACT The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. Influenza vaccine development has traditionally focused on producing humoral and/or cell-mediated immunity, often against the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Here, we describe a new vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVΔG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the mouse-adapted H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVΔG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show here that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVΔG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus. IMPORTANCE Preparation for a potentially catastrophic influenza pandemic requires novel influenza vaccines that are safe, can be produced and administered quickly, and are effective, both soon after administration and for a long duration. We have created a new influenza vaccine that utilizes an attenuated vesicular stomatitis virus (VSV) vector, to deliver and express influenza virus proteins against which vaccinated animals develop potent antibody responses. The influenza virus hemagglutinin and neuraminidase proteins, expressed on the surface of VSV particles, allowed this vaccine to grow in cell

  3. A viable recombinant rhabdovirus lacking its glycoprotein gene and expressing influenza virus hemagglutinin and neuraminidase is a potent influenza vaccine.

    Science.gov (United States)

    Ryder, Alex B; Buonocore, Linda; Vogel, Leatrice; Nachbagauer, Raffael; Krammer, Florian; Rose, John K

    2015-03-01

    The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. Influenza vaccine development has traditionally focused on producing humoral and/or cell-mediated immunity, often against the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Here, we describe a new vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVΔG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the mouse-adapted H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVΔG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show here that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVΔG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus. Preparation for a potentially catastrophic influenza pandemic requires novel influenza vaccines that are safe, can be produced and administered quickly, and are effective, both soon after administration and for a long duration. We have created a new influenza vaccine that utilizes an attenuated vesicular stomatitis virus (VSV) vector, to deliver and express influenza virus proteins against which vaccinated animals develop potent antibody responses. The influenza virus hemagglutinin and neuraminidase proteins, expressed on the surface of VSV particles, allowed this vaccine to grow in cell culture and induced a

  4. The Length of N-Glycans of Recombinant H5N1 Hemagglutinin Influences the Oligomerization and Immunogenicity of Vaccine Antigen

    Directory of Open Access Journals (Sweden)

    Edyta Kopera

    2017-04-01

    Full Text Available Hemagglutinin glycoprotein (HA is a principle influenza vaccine antigen. Recombinant HA-based vaccines become a potential alternative for traditional approach. Complexity and variation of HA N-glycosylation are considered as the important factors for the vaccine design. The number and location of glycan moieties in the HA molecule are also crucial. Therefore, we decided to study the effect of N-glycosylation pattern on the H5 antigen structure and its ability to induce immunological response. We also decided to change neither the number nor the position of the HA glycosylation sites but only the glycan length. Two variants of the H5 antigen with high mannose glycosylation (H5hm and with low-mannose glycosylation (H5Man5 were prepared utilizing different Pichia strains. Our structural studies demonstrated that only the highly glycosylated H5 antigen formed high molecular weight oligomers similar to viral particles. Further, the H5hm was much more immunogenic for mice than H5Man5. In summary, our results suggest that high mannose glycosylation of vaccine antigen is superior to the low glycosylation pattern. Our findings have strong implications for the recombinant HA-based influenza vaccine design.

  5. Overcoming maternal antibody interference by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of swine influenza virus.

    Science.gov (United States)

    Wesley, Ronald D; Lager, Kelly M

    2006-11-26

    Sows and gilts lack immunity to human adenovirus 5 (Ad-5) vectored vaccines so immunogens of swine pathogens can be expressed with these vaccines in order to immunize suckling piglets that have interfering, maternally derived antibodies. In this study 7-day-old piglets, that had suckled H3N2 infected gilts, were sham-inoculated with a non-expressing Ad-5 vector or given a primary vaccination with replication-defective Ad-5 viruses expressed the H3 hemagglutinin and the nucleoprotein of swine influenza virus (SIV) subtype H3N2. The hemagglutination inhibition (HI) titer of the sham-inoculated group (n = 12) showed continued antibody decay whereas piglets vaccinated with Ad-5 SIV (n = 23) developed an active immune response by the second week post-vaccination. At 4 weeks-of-age when the HI titer of the sham-inoculated group had decayed to 45, the sham-inoculated group and half of the Ad-5 SIV vaccinated pigs were boosted with a commercial inactivated SIV vaccine. The boosted pigs that had been primed in the presence of maternal interfering antibodies had a strong anamnestic response while sham-inoculated pigs did not respond to the commercial vaccine. Two weeks after the booster vaccination the pigs were challenged with a non-homologous H3N2 virulent SIV. The efficacy of the vaccination protocol was demonstrated by abrogation of clinical signs, by clearance of challenge virus from pulmonary lavage fluids, by markedly reduced virus shedding in nasal secretions, and by the absence of moderate or severe SIV-induced lung lesions. These recombinant Ad-5 SIV vaccines are useful for priming the immune system to override the effects of maternally derived antibodies which interfere with conventional SIV vaccines.

  6. Progress toward a universal H5N1 vaccine: a recombinant modified vaccinia virus Ankara-expressing trivalent hemagglutinin vaccine.

    Directory of Open Access Journals (Sweden)

    Mookkan Prabakaran

    Full Text Available The rapid evolution of new sublineages of H5N1 influenza poses the greatest challenge in control of H5N1 infection by currently existing vaccines. To overcome this, an MVAtor vector expressing three H5HA antigens A/Vietnam/1203/04, A/Indonesia/669/06 and A/Anhui/01/05 (MVAtor-tri-HA vector was developed to elicit broad cross-protection against diverse clades by covering amino acid variations in the major neutralizing epitopes of HA among H5N1 subtypes.BALB/c mice and guinea pigs were immunized i.m. with 8×107 TCID50/animal of MVAtor-tri-HA vector. The immunogenicity and cross-protective immunity of the MVAtor-tri-HA vector was evaluated against diverse clades of H5N1 strains.The results showed that mice immunized with MVAtor-tri-HA vector induced robust cross-neutralizing immunity to diverse H5N1 clades. In addition, the MVAtor-tri-HA vector completely protected against 10 MLD50 of a divergent clade of H5N1 infection (clade 7. Importantly, the serological surveillance of post-vaccinated guinea pig sera demonstrated that MVAtor-tri-HA vector was able to elicit strong cross-clade neutralizing immunity against twenty different H5N1 strains from six clades that emerged between 1997 and 2012.The present findings revealed that incorporation of carefully selected HA genes from divergent H5N1 strains within a single vector could be an effective approach in developing a vaccine with broad coverage to prevent infection during a pandemic situation.

  7. Influenza vaccines: from whole virus preparations to recombinant protein technology.

    Science.gov (United States)

    Huber, Victor C

    2014-01-01

    Vaccination against influenza represents our most effective form of prevention. Historical approaches toward vaccine creation and production have yielded highly effective vaccines that are safe and immunogenic. Despite their effectiveness, these historical approaches do not allow for the incorporation of changes into the vaccine in a timely manner. In 2013, a recombinant protein-based vaccine that induces immunity toward the influenza virus hemagglutinin was approved for use in the USA. This vaccine represents the first approved vaccine formulation that does not require an influenza virus intermediate for production. This review presents a brief history of influenza vaccines, with insight into the potential future application of vaccines generated using recombinant technology.

  8. Yeast expressed recombinant Hemagglutinin protein of Novel H1N1 elicits neutralising antibodies in rabbits and mice

    Directory of Open Access Journals (Sweden)

    Athmaram TN

    2011-11-01

    Full Text Available Abstract Currently available vaccines for the pandemic Influenza A (H1N1 2009 produced in chicken eggs have serious impediments viz limited availability, risk of allergic reactions and the possible selection of sub-populations differing from the naturally occurring virus, whereas the cell culture derived vaccines are time consuming and may not meet the demands of rapid global vaccination required to combat the present/future pandemic. Hemagglutinin (HA based subunit vaccine for H1N1 requires the HA protein in glycosylated form, which is impossible with the commonly used bacterial expression platform. Additionally, bacterial derived protein requires extensive purification and refolding steps for vaccine applications. For these reasons an alternative heterologous system for rapid, easy and economical production of Hemagglutinin protein in its glycosylated form is required. The HA gene of novel H1N1 A/California/04/2009 was engineered for expression in Pichia pastoris as a soluble secreted protein. The full length HA- synthetic gene having α-secretory tag was integrated into P. pastoris genome through homologous recombination. The resultant Pichia clones having multiple copy integrants of the transgene expressed full length HA protein in the culture supernatant. The Recombinant yeast derived H1N1 HA protein elicited neutralising antibodies both in mice and rabbits. The sera from immunised animals also exhibited Hemagglutination Inhibition (HI activity. Considering the safety, reliability and also economic potential of Pichia expression platform, our preliminary data indicates the feasibility of using this system as an alternative for large-scale production of recombinant influenza HA protein in the face of influenza pandemic threat.

  9. Influenza Vaccine, Inactivated or Recombinant

    Science.gov (United States)

    ... die from flu, and many more are hospitalized.Flu vaccine can:keep you from getting flu, make flu ... What is inactivated or recombinant influenza vaccine?A dose of flu vaccine is recommended every flu season. Children 6 months through 8 years of age may need two ...

  10. Improved immunogenicity of Newcastle disease virus inactivated vaccine following DNA vaccination using Newcastle disease virus hemagglutinin-neuraminidase and fusion protein genes.

    Science.gov (United States)

    Firouzamandi, Masoumeh; Moeini, Hassan; Hosseini, Davood; Bejo, Mohd Hair; Omar, Abdul Rahman; Mehrbod, Parvaneh; Ideris, Aini

    2016-03-01

    The present study describes the development of DNA vaccines using the hemagglutinin-neuraminidase (HN) and fusion (F) genes from AF2240 Newcastle disease virus strain, namely pIRES/HN, pIRES/F and pIRES-F/HN. Transient expression analysis of the constructs in Vero cells revealed the successful expression of gene inserts in vitro. Moreover, in vivo experiments showed that single vaccination with the constructed plasmid DNA (pDNA) followed by a boost with inactivated vaccine induced a significant difference in enzyme-linked immunosorbent assay antibody levels (p inactivated vaccine alone. Taken together, these results indicated that recombinant pDNA could be used to increase the efficacy of the inactivated vaccine immunization procedure.

  11. Postmarketing safety surveillance of trivalent recombinant influenza vaccine: Reports to the Vaccine Adverse Event Reporting System.

    Science.gov (United States)

    Woo, Emily Jane; Moro, Pedro L; Cano, Maria; Jankosky, Christopher

    2017-10-09

    On January 16, 2013, the Food and Drug Administration approved recombinant hemagglutinin influenza vaccine (RIV3) (Spodoptera frugiperda cell line; Flublok), which is the first completely egg-free flu vaccine licensed in the United States. To improve our understanding of the safety profile of this vaccine, we reviewed and summarized reports to the Vaccine Adverse Event Reporting System (VAERS) following RIV3. Through June 30, 2016, VAERS received 88 reports. Allergic reactions, including anaphylaxis, were the most common type of adverse event. Based on medical review, 10 cases met the Brighton Collaboration case definition of anaphylaxis, 21 reports described allergic reactions other than anaphylaxis, and 11 reports described signs and symptoms that suggested hypersensitivity. Other adverse events included injection site reactions, fatigue, myalgia, headache, and fever. The occurrence of anaphylaxis and other allergic reactions in some individuals may reflect an underlying predisposition to atopy that may manifest itself after an exposure to any drug or vaccine, and it does not necessarily suggest a causal relationship with the unique constituents that are specific to the vaccine product administered. Further research may elucidate the mechanism of allergic reactions following influenza vaccination: it is possible that egg proteins and influenza hemagglutinin play little or no role. Vaccination remains the single best defense against influenza and its complications. The information summarized here may enable policy makers, health officials, clinicians, and patients to make a more informed decision regarding vaccination strategies. Published by Elsevier Ltd.

  12. Bacterially produced recombinant influenza vaccines based on virus-like particles.

    Directory of Open Access Journals (Sweden)

    Andrea Jegerlehner

    Full Text Available Although current influenza vaccines are effective in general, there is an urgent need for the development of new technologies to improve vaccine production timelines, capacities and immunogenicity. Herein, we describe the development of an influenza vaccine technology which enables recombinant production of highly efficient influenza vaccines in bacterial expression systems. The globular head domain of influenza hemagglutinin, comprising most of the protein's neutralizing epitopes, was expressed in E. coli and covalently conjugated to bacteriophage-derived virus-like particles produced independently in E.coli. Conjugate influenza vaccines produced this way were used to immunize mice and found to elicit immune sera with high antibody titers specific for the native influenza hemagglutinin protein and high hemagglutination-inhibition titers. Moreover vaccination with these vaccines induced full protection against lethal challenges with homologous and highly drifted influenza strains.

  13. Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Donald D.; Bajic, Goran; Ferdman, Jack; Suphaphiphat, Pirada; Settembre, Ethan C.; Moody, M. Anthony; Schmidt, Aaron G.; Harrison, Stephen C. (Duke-MED); (CH-Boston); (Seqirus)

    2017-12-18

    Antigenic variation requires frequent revision of annual influenza vaccines. Next-generation vaccine design strategies aim to elicit a broader immunity by directing the human immune response toward conserved sites on the principal viral surface protein, the hemagglutinin (HA). We describe a group of antibodies that recognize a hitherto unappreciated, conserved site on the HA of H1 subtype influenza viruses. Mutations in that site, which required a change in the H1 component of the 2017 vaccine, had not previously “taken over” among circulating H1 viruses. Our results encourage vaccine design strategies that resurface a protein to focus the immune response on a specific region.

  14. Protection against Multiple Subtypes of Influenza Viruses by Virus-Like Particle Vaccines Based on a Hemagglutinin Conserved Epitope

    Directory of Open Access Journals (Sweden)

    Shaoheng Chen

    2015-01-01

    Full Text Available We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA trimmer, the long alpha helix (LAH, as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR of hepatitis B virus core protein (HBc, and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP. Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB* adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8 (H1N1. In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB* adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections.

  15. Protection against multiple subtypes of influenza viruses by virus-like particle vaccines based on a hemagglutinin conserved epitope.

    Science.gov (United States)

    Chen, Shaoheng; Zheng, Dan; Li, Changgui; Zhang, Wenjie; Xu, Wenting; Liu, Xueying; Fang, Fang; Chen, Ze

    2015-01-01

    We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA) trimmer, the long alpha helix (LAH), as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR) of hepatitis B virus core protein (HBc), and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP). Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB(*)) adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8) (H1N1)). In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB(*) adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections.

  16. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies.

    Science.gov (United States)

    Krammer, Florian; Pica, Natalie; Hai, Rong; Margine, Irina; Palese, Peter

    2013-06-01

    Current influenza virus vaccine strategies stimulate immune responses toward the globular head domain of the hemagglutinin protein in order to inhibit key steps of the virus life cycle. Because this domain is highly variable across strains, new vaccine formulations are required in most years. Here we demonstrate a novel vaccine strategy that generates immunity to the highly conserved stalk domain by using chimeric hemagglutinin constructs that express unique head and stalk combinations. By repeatedly immunizing mice with constructs that expressed the same stalk but an irrelevant head, we specifically stimulated a stalk-directed response that provided broad-based heterologous and heterosubtypic immunity in mice. Notably, our vaccination scheme provides a universal vaccine approach that protects against challenge with an H5 subtype virus. Furthermore, through in vivo studies using passively transferred antibodies or depletion of CD8(+) T cells, we demonstrated the critical role that humoral mechanisms of immunity play in the protection observed. The present data suggest that a vaccine strategy based on the stalk domain of the hemagglutinin protein could be used in humans to broadly protect against a variety of influenza virus subtypes.

  17. Recombinant vaccines against bluetongue virus.

    Science.gov (United States)

    Calvo-Pinilla, Eva; Castillo-Olivares, Javier; Jabbar, Tamara; Ortego, Javier; de la Poza, Francisco; Marín-López, Alejandro

    2014-03-01

    Bluetongue (BT) is a hemorrhagic disease of ruminants caused by bluetongue virus (BTV), the prototype member of the genus Orbivirus within the family Reoviridae and is transmitted via biting midges of the genus Culicoides. BTV can be found on all continents except Antarctica, and up to 26 immunologically distinct BTV serotypes have been identified. Live attenuated and inactivated BTV vaccines have been used over the years with different degrees of success. The multiple outbreaks of BTV in Mediterranean Europe in the last two decades and the incursion of BTV-8 in Northern Europe in 2008 has re-stimulated the interest to develop improved vaccination strategies against BTV. In particular, safer, cross-reactive, more efficacious vaccines with differential diagnostic capability have been pursued by multiple BTV research groups and vaccine manufacturers. A wide variety of recombinant BTV vaccine prototypes have been investigated, ranging from baculovirus-expressed sub-unit vaccines to the use of live viral vectors. This article gives a brief overview of all these modern approaches to develop vaccines against BTV including some recent unpublished data. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Recombinant Human Papillomavirus (HPV) Nonavalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) nonavalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  19. Recombinant Human Papillomavirus (HPV) Quadrivalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) quadrivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  20. Recombinant Human Papillomavirus (HPV) Bivalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) bivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  1. Recombinant viral vaccines for enzootic bovine leucosis

    National Research Council Canada - National Science Library

    Daniel, R C; Gatei, M H; Good, M F; Boyle, D B; Lavin, M F

    1993-01-01

    ...) and part of gp30 of the bovine leukaemia virus (BLV) are described. It has been reported that vaccination of sheep with recombinant VV vaccines containing the complete env gene appears to protect sheep against challenge infection with BLV...

  2. Avian adeno-associated virus-based expression of Newcastle disease virus hemagglutinin-neuraminidase protein for poultry vaccination.

    Science.gov (United States)

    Perozo, F; Villegas, P; Estevez, C; Alvarado, I R; Purvis, L B; Saume, E

    2008-06-01

    The avian adeno-associated virus (AAAV) is a replication-defective nonpathogenic virus member of the family Parvoviridae that has been proved to be useful as a viral vector for gene delivery. The use of AAAV for transgenic expression of Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) protein and its ability to induce immunity in chickens were assessed. Proposed advantages of this system include no interference with maternal antibodies, diminished immune response against the vector, and the ability to accommodate large fragments of genetic information. In this work the generation of recombinant AAAV virions expressing the HN protein (rAAAV-HN) was demonstrated by electron microscopy, immunocytochemistry, and western blot analysis. Serological evidence of HN protein expression after in ovo or intramuscular inoculation of the recombinant virus in specific-pathogen-free chickens was obtained. Serum from rAAAV-HN-vaccinated birds showed a systemic immune response evidenced by NDV-specific enzyme-linked immunosorbent assay and hemagglutination inhibition testing. Positive virus neutralization in embryonated chicken eggs and indirect immunofluorescence detection of NDV infected cells by serum from rAAAV-HN vaccinated birds is also reported. A vaccine-challenge experiment in commercial broiler chickens using a Venezuelan virulent viscerotropic strain of NDV was performed. All unvaccinated controls died within 5 days postchallenge. Protection up to 80% was observed in birds vaccinated in ovo and revaccinated at 7 days of age with the rAAAV-HN. The results demonstrate the feasibility of developing and using an AAAV-based gene delivery system for poultry vaccination.

  3. Infection and transmission of live recombinant Newcastle disease virus vaccines in Rock Pigeons, European House Sparrows, and Japanese Quail

    Science.gov (United States)

    In China and Mexico, engineered recombinant Newcastle disease virus (rNDV) strains are used as live vaccines for the control of Newcastle disease and as vectors to express the avian influenza virus hemagglutinin (HA) gene to control avian influenza in poultry. In this study, non-target species wer...

  4. Different immunity elicited by recombinant H5N1 hemagglutinin proteins containing pauci-mannose, high-mannose, or complex type N-glycans.

    Directory of Open Access Journals (Sweden)

    Shih-Chang Lin

    Full Text Available Highly pathogenic avian influenza H5N1 viruses can result in poultry and occasionally in human mortality. A safe and effective H5N1 vaccine is urgently needed to reduce the pandemic potential. Hemagglutinin (HA, a major envelope protein accounting for approximately 80% of spikes in influenza virus, is often used as a major antigen for subunit vaccine development. In this study, we conducted a systematic study of the immune response against influenza virus infection following immunization with recombinant HA proteins expressed in insect (Sf9 cells, insect cells that contain exogenous genes for elaborating N-linked glycans (Mimic and mammalian cells (CHO. While the antibody titers are higher with the insect cell derived HA proteins, the neutralization and HA inhibition titers are much higher with the mammalian cell produced HA proteins. Recombinant HA proteins containing tri- or tetra-antennary complex, terminally sialylated and asialyated-galactose type N-glycans induced better protective immunity in mice to lethal challenge. The results are highly relevant to issues that should be considered in the production of fragment vaccines.

  5. Bordetella filamentous hemagglutinin and fimbriae: critical adhesins with unrealized vaccine potential.

    Science.gov (United States)

    Scheller, Erich V; Cotter, Peggy A

    2015-11-01

    Pertussis, or whooping cough, is a highly contagious respiratory disease that is caused by the Gram-negative bacterium Bordetella pertussis, which is transmitted exclusively from human to human. While vaccination against B. pertussis has been successful, replacement of the whole cell vaccine with an acellular component vaccine has correlated with reemergence of the disease, especially in adolescents and infants. Based on their presumed importance in mediating adherence to host tissues, filamentous hemagglutinin (FHA) and fimbria (FIM) were selected as components of most acellular pertussis vaccines. In this review, we describe the biogenesis of FHA and FIM, recent data that show that these factors do, in fact, play critical roles in adherence to respiratory epithelium, and evidence that they also contribute to persistence in the lower respiratory tract by modulating the host immune response. We also discuss shortcomings of whole cell and acellular pertussis vaccines and the possibility that FHA and FIM could serve as effective protective antigens in next-generation vaccines. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies.

    Science.gov (United States)

    Ricklin, Meret E; Vielle, Nathalie J; Python, Sylvie; Brechbühl, Daniel; Zumkehr, Beatrice; Posthaus, Horst; Zimmer, Gert; Summerfield, Artur

    2016-01-01

    This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4(+) T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value.

  7. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  8. Algae-based oral recombinant vaccines

    Science.gov (United States)

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  9. Enhanced protective efficacy of H5 subtype influenza vaccine with modification of the multibasic cleavage site of hemagglutinin in retroviral pseudotypes.

    Science.gov (United States)

    Tao, Ling; Chen, Jianjun; Meng, Jin; Chen, Yao; Li, Hongxia; Liu, Yan; Zheng, Zhenhua; Wang, Hanzhong

    2013-06-01

    Traditionally, the multibasic cleavage site (MBCS) of surface protein H5-hemagglutinin (HA) is converted to a monobasic one so as to weaken the virulence of recombinant H5N1 influenza viruses and to produce inactivated and live attenuated vaccines. Whether such modification benefits new candidate vaccines has not been adequately investigated. We previously used retroviral vectors to generate wtH5N1 pseudotypes containing the wild-type HA (wtH5) from A/swine/Anhui/ca/2004 (H5N1) virus. Here, we generated mtH5N1 pseudotypes, which contained a mutant-type HA (mtH5) with a modified monobasic cleavage site. Groups of mice were subcutaneously injected with the two types of influenza pseudotypes. Compared to the group immunized with wtH5N1 pseudotypes, the inoculation of mtH5N1 pseudotypes induced significantly higher levels of HA specific IgG and IFN-γ in immunized mice, and enhanced protection against the challenge of mouse-adapted avian influenza virus A/Chicken/Henan/12/2004 (H5N1). This study suggests modification of the H5-hemagglutinin MBCS in retroviral pseudotypes enhances protection efficacy in mice and this information may be helpful for development of vaccines from mammalian cells to fight against H5N1 influenza viruses.

  10. Single Dose of Consensus Hemagglutinin-Based Virus-Like Particles Vaccine Protects Chickens against Divergent H5 Subtype Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Peipei Wu

    2017-11-01

    Full Text Available The H5 subtype highly pathogenic avian influenza (HPAI virus is one of the greatest threats to global poultry industry. To develop broadly protective H5 subunit vaccine, a recombinant consensus HA sequence (rHA was constructed and expressed in virus-like particles (rHA VLPs in the baculovirus-insect cell system. The efficacy of the rHA VLPs vaccine with or without immunopotentiator (CVCVA5 was assessed in chickens. Compared to the commercial Re6 or Re6-CVCVA5 vaccines, single dose immunization of chickens with rHA VLPs or rHA-CVCVA5 vaccines induced higher levels of serum hemagglutinin inhibition titers and neutralization titers, mucosal antibodies, IFN-γ and IL-4 cytokines in sera, and cytotoxic T lymphocyte responses. The rHA VLPs vaccine was superior to the commercial Re6 vaccine in conferring cross-protection against different clades of H5 subtype viruses. This study reports that H5 subtype consensus HA VLP single dose vaccination provides broad protection against HPAI virus in chickens.

  11. Single-dose monomeric HA subunit vaccine generates full protection from influenza challenge

    CSIR Research Space (South Africa)

    Mallajosyula, JK

    2014-03-01

    Full Text Available Recombinant subunit vaccines are an efficient strategy to meet the demands of a possible influenza pandemic, because of rapid and scalable production. However, vaccines made from recombinant hemagglutinin (HA) subunit protein are often of low...

  12. Diagnostic potential of recombinant scFv antibodies generated against hemagglutinin protein of influenza A virus

    Directory of Open Access Journals (Sweden)

    Roopali eRajput

    2015-09-01

    Full Text Available Human influenza A viruses have been the cause of enormous socio-economic losses worldwide. In order to combat such a notorious pathogen, hemagglutinin protein (HA has been a preferred target for generation of neutralizing-antibodies, as potent therapeutic/ diagnostic agents. In the present study, recombinant anti-HA single chain variable fragment (scFv antibodies were constructed using the phage display technology to aid in diagnosis and treatment of human influenza A virus infections. Spleen cells of mice hyper-immunized with A/New Caledonia/20/99 (H1N1 virus were used as the source for recombinant antibody (rAb production. The antigen-binding phages were quantified after 6 rounds of bio-panning against A/New Caledonia/20/99 (H1N1, A/California/07/2009 (H1N1-like, or A/Udorn/307/72(H3N2 viruses. The phage yield was maximum for the A/New Caledonia/20/99 (H1N1, however, considerable cross-reactivity was observed for the other virus strains as well. The HA-specific polyclonal rAb preparation was subjected to selection of single clones for identification of high reactive relatively conserved epitopes. The high affinity rAbs were tested against certain known conserved HA epitopes by peptide ELISA. Three recombinant mAbs showed reactivity with both the H1N1 strains and one (C5 showed binding with all the three viral strains. The C5 antibody was thus used for development of an ELISA test for diagnosis of influenza virus infection. Based on the sample size in the current analysis, the ELISA test demonstrated 83.9% sensitivity and 100% specificity. Thus, the ELISA, developed in our study, may prove as a cheaper alternative to the presently used real time RT-PCR test for detection of human influenza A viruses in clinical specimens, which will be beneficial, especially in the developing countries. Since, the two antibodies identified in this study are reactive to conserved HA epitopes; these may prove as potential therapeutic agents as well.

  13. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Jae [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Jang, Yo Han [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Kim, Paul; Lee, Yun Ha; Lee, Young Jae [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Byun, Young Ho; Lee, Kwang-Hee; Kim, Kyusik [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Seong, Baik Lin, E-mail: blseong@yonsei.ac.kr [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of)

    2016-04-15

    In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response. - Highlights: • Cold-adaptation process induced four amino acid mutations in the HA of X-31 virus. • The four mutations in the HA also contributed to attenuation of the X-31ca virus • N81K mutation was the most significant marker for the attenuation of X-31ca virus. • Introduction of N81K mutation into H3N2 LAIV further attenuated the vaccine. • This approach provides a useful guideline for enhancing the safety of the LAIVs.

  14. A rapid Flp-In system for expression of secreted H5N1 influenza hemagglutinin vaccine immunogen in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Hanxin Lu

    2011-02-01

    Full Text Available Continuing transmissions of highly pathogenic H5N1 viruses in poultry and humans underscores the need for a rapid response to potential pandemic in the form of vaccine. Recombinant technologies for production of immunogenic hemagglutinin (HA could provide an advantage over the traditional inactivated vaccine manufacturing process. Generation of stably transfected mammalian cells secreting properly folded HA proteins is important for scalable controlled manufacturing.We have developed a Flp-In based 293 stable cell lines through targeted site-specific recombination for expression of secreted hemagglutinin (HA proteins and evaluated their immunogenicity. H5N1 globular domain HA1(1-330 and HA0(1-500 proteins were purified from the supernatants of 293 Flp-In stable cell lines. Both proteins were properly folded as confirmed by binding to H5N1-neutralizing conformation-dependent human monoclonal antibodies. The HA0 (with unmodified cleavage site was monomeric, while the HA1 contained oligomeric forms. Upon rabbit immunization, both HA proteins elicited neutralizing antibodies against the homologous virus (A/Vietnam/1203/2004, clade 1 as well as cross-neutralizing antibodies against heterologous H5N1 clade 2 strains, including A/Indonesia/5/2005. These results exceeded the human antibody responses against the inactivated sub-virion H5N1 vaccine.Our data suggest that the 293 Flp-In system could serve as a platform for rapid expression of HA immunogens in mammalian cells from emerging influenza strains.

  15. Recombinant viral vaccines for enzootic bovine leucosis.

    Science.gov (United States)

    Daniel, R C; Gatei, M H; Good, M F; Boyle, D B; Lavin, M F

    1993-10-01

    Recently published studies on the development and use of recombinant vaccinia virus (VV) vaccines incorporating either the complete envelope (env) gene or only a fragment of the env gene consisting of the coding sequence for the env glycoprotein 51 (gp51) and part of gp30 of the bovine leukaemia virus (BLV) are described. It has been reported that vaccination of sheep with recombinant VV vaccines containing the complete env gene appears to protect sheep against challenge infection with BLV. The evidence for this protection is based on the lack of persistence of high titres of anti-gp51 antibodies compared with unvaccinated BLV infected controls, on the enhanced CD4 proliferative responses to specific BLV gp51 synthetic peptides in the vaccinated sheep, and on the inability to detect BLV pro-virus by polymerase chain reaction in the vaccinated sheep after 4 months following challenge infection compared with continual detection in unvaccinated sheep over a 16 month trial period. It has been suggested that cell-mediated immune responses may be an important aspect of protective immunity against BLV infection and it has been reported that large tracts of amino acid sequences within the env and pol genes are highly conserved in different isolates from different countries which is of importance in designing peptide derived vaccines.

  16. [History of vaccination: from empiricism towards recombinant vaccines].

    Science.gov (United States)

    Guérin, N

    2007-01-01

    Two hundreds years after the discovery of the smallpox vaccine, immunization remains one of the most powerful tools of preventive medicine. Immunization was born with Jenner, then Pasteur and expanded during the 19th and 20th century. It started with the empirical observation of cross-immunity between two diseases, cowpox and smallpox. It became a real science, with pathogen isolation, culture and attenuation or inactivation, to prepare a vaccine. Together with clinical and biological efficacy studies and adverse events assessments, it constructed the concept of "vaccinology". Protein conjugation of polyosidic vaccines has made possible early immunisation of infants. Nowadays, recombinant, reassortant, or virus-like particles technologies open the road for new vaccines. Ongoing research opens the way for the development of new vaccines that will help to control transmittable diseases for which we are lacking antimicrobial agents.

  17. Recombinant viruses as vaccines against viral diseases

    Directory of Open Access Journals (Sweden)

    A.P.D. Souza

    2005-04-01

    Full Text Available Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.

  18. Glycan analysis in cell culture-based influenza vaccine production: influence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin.

    Science.gov (United States)

    Schwarzer, Jana; Rapp, Erdmann; Hennig, René; Genzel, Yvonne; Jordan, Ingo; Sandig, Volker; Reichl, Udo

    2009-07-09

    Mammalian cell culture processes are commonly used for production of recombinant glycoproteins, antibodies and viral vaccines. Since several years there is an increasing interest in cell culture-based influenza vaccine production to overcome limitations of egg-based production systems, to improve vaccine supply and to increase flexibility in vaccine manufacturing. With the switch of the production system several key questions concerning the possible impact of host cell lines on antigen quality, passage-dependent selection of certain viral phenotypes or changes in hemagglutinin (HA) conformation have to be addressed to guarantee safety and efficiency of vaccines. In contrast to the production of recombinant glycoproteins, comparatively little is known regarding glycosylation of HA, derived from mammalian cell cultures. Within this study, a capillary DNA-sequencer (based on CGE-LIF technology), was utilized for N-glycan analysis of three different influenza virus strains, which were replicated in six different cell lines. Detailed results concerning the influence of the host cell line on complexity and composition of the HA N-glycosylation pattern, are presented. Strong host cell but also virus type and subtype dependence of HA N-glycosylation was found. Clear differences were already observed, by N-glycan fingerprint comparison. Further structural investigations of the N-glycan pools revealed that host cell dependence of HA N-glycosylation was mainly related to minor variations of the (monomeric) constitution of single N-glycans. To some extent, shifts in the N-glycan pool composition regarding the proportion of different N-glycan types were observed. In contrast to this, a principal switch of the N-glycan type attached to HA was observed when comparing different virus types (A and B) and subtypes (H1N1 and H3N2).

  19. Mucosal vaccination with recombinant adenovirus encoding nucleoprotein provides potent protection against influenza virus infection.

    Directory of Open Access Journals (Sweden)

    So-Hee Kim

    Full Text Available Influenza vaccines that target the highly variable surface glycoproteins hemagglutinin and neuraminidase cause inconvenience of having vaccination every year. For this reason, development of universal vaccines targeting conserved viral components is needed. In this study, we generated recombinant adenovirus (rAd vaccine encoding nucleoprotein (NP of A/PR/8/34 influenza virus, designated rAd/NP. BALB/c mice were immunized intranasally or sublingually with rAd/NP vaccine and subsequently challenged with lethal doses of heterologous as well as homologous influenza viruses. We found that intranasal immunization of rAd/NP elicited strong mucosal IgA responses as well as stronger CD8 T-cell responses toward immunodominant K(d-restricted NP147-155 epitope than sublingual immunization. Importantly, only single intranasal but not sublingual immunization of rAd/NP provides potent protection against both homologous and heterologous influenza virus challenges. These results suggest that recombinant rAd/NP could be a universal vaccine candidate for mucosal administration against influenza virus.

  20. Recombinant vaccines and the development of new vaccine strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, I.P.; Leite, L.C.C. [Centro de Biotecnologia, Instituto Butantan, São Paulo, SP (Brazil)

    2012-09-07

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  1. Recombinant vaccines and the development of new vaccine strategies

    Directory of Open Access Journals (Sweden)

    I.P. Nascimento

    2012-12-01

    Full Text Available Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  2. Experimental risk assessment of recombinant Newcastle disease virus vaccines

    Science.gov (United States)

    Recombinant Newcastle disease viruses (NDV) used as live vaccines were assessed for: 1) the potential for recombinant NDV-vectored vaccines (rNDV) containing the Avian Influenza virus (AIV) H5 gene to recombine with low pathogenicity H5, H6 and H9 AIV strains, and originate a virus with increased vi...

  3. A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza.

    Science.gov (United States)

    Andersen, Tor Kristian; Zhou, Fan; Cox, Rebecca; Bogen, Bjarne; Grødeland, Gunnveig

    2017-12-01

    Zoonotic influenza H7 viral infections have a case fatality rate of about 40%. Currently, no or limited human to human spread has occurred, but we may be facing a severe pandemic threat if the virus acquires the ability to transmit between humans. Novel vaccines that can be rapidly produced for global distribution are urgently needed, and DNA vaccines may be the only type of vaccine that allows for the speed necessary to quench an emerging pandemic. Here, we constructed DNA vaccines encoding the hemagglutinin (HA) from influenza A/chicken/Italy/13474/99 (H7N1). In order to increase the efficacy of DNA vaccination, HA was targeted to either major histocompatibility complex class II molecules or chemokine receptors 1, 3, and 5 (CCR1/3/5) that are expressed on antigen-presenting cells (APC). A single DNA vaccination with APC-targeted HA significantly increased antibody levels in sera compared to nontargeted control vaccines. The antibodies were confirmed neutralizing in an H7 pseudotype-based neutralization assay. Furthermore, the APC-targeted vaccines increased the levels of antigen-specific cytotoxic T cells, and a single DNA vaccination could confer protection against a lethal challenge with influenza A/turkey/Italy/3889/1999 (H7N1) in mice. In conclusion, we have developed a vaccine that rapidly could contribute protection against a pandemic threat from avian influenza. IMPORTANCE Highly pathogenic avian influenza H7 constitute a pandemic threat that can cause severe illness and death in infected individuals. Vaccination is the main method of prophylaxis against influenza, but current vaccine strategies fall short in a pandemic situation due to a prolonged production time and insufficient production capabilities. In contrast, a DNA vaccine can be rapidly produced and deployed to prevent the potential escalation of a highly pathogenic influenza pandemic. We here demonstrate that a single DNA delivery of hemagglutinin from an H7 influenza could mediate full

  4. Efficacy of an influenza hemagglutinin-diphtheria toxoid conjugate vaccine in elderly nursing home subjects during an influenza outbreak.

    Science.gov (United States)

    Gravenstein, S; Drinka, P; Duthie, E H; Miller, B A; Brown, C S; Hensley, M; Circo, R; Langer, E; Ershler, W B

    1994-03-01

    To compare the efficacy of an influenza hemagglutinin-diphtheria toxoid conjugate vaccine with the commercially available influenza hemagglutinin-subunit vaccine in preventing influenza in older adults living in a nursing home. A prospective, randomized, double-blind vaccine trial with 5 months of follow-up after vaccination. Fourteen Wisconsin nursing homes. Nursing home residents at least 65 years old who were able to give informed consent and were free of malignancy and not receiving immunosuppressive therapy. Participants received, by intramuscular injection, 0.5 mL of a trivalent influenza vaccine containing 15 micrograms each of A/Leningrad/360/86 (H3N2), A/Taiwan/1/86 (H1N1), and B/Ann Arbor/1/86 (HA) or 0.5 mL of an influenza vaccine containing the same antigens conjugated to diphtheria toxoid (HA-D). Blood was obtained pre- and 1 month post-vaccination to assess for any vaccine-induced antibody titer change. Clinical surveillance for respiratory illness was performed twice weekly for 5 months. A record was kept of all signs and symptoms of new respiratory illness, and a viral culture and acute and convalescent sera were obtained. 204 participants received HA and 204 received HA-D. Both groups had similar baseline antibody levels to all influenza antigens. HA-D recipients seroconverted more frequently based on serum neutralizing activity (P < 0.05), had a greater increase in geometric mean titer (GMT), and sustained the increase in antibody titer longer than HA recipients. Vaccine hemagglutinin recall was greater in a subset of HA-D recipients as measured by lymphocyte proliferative assays (P < 0.05). During an outbreak of influenza A (H3N2 A/Shanghai/11/87-like and A/Victoria/7/87-like), fewer HA-D (29/195) than HA (43/204) recipients had laboratory-confirmed infection (P = 0.053), and, of these, fewer HA-D-treated subjects had lower respiratory tract involvement (5/29 HA-D and 17/43 HA) (P = 0.022). HA-D was more immunogenic in institutionalized elderly

  5. Properly folded bacterially expressed H1N1 hemagglutinin globular head and ectodomain vaccines protect ferrets against H1N1 pandemic influenza virus.

    Directory of Open Access Journals (Sweden)

    Surender Khurana

    2010-07-01

    Full Text Available In the face of impending influenza pandemic, a rapid vaccine production and mass vaccination is the most effective approach to prevent the large scale mortality and morbidity that was associated with the 1918 "Spanish Flu". The traditional process of influenza vaccine production in eggs is time consuming and may not meet the demands of rapid global vaccination required to curtail influenza pandemic.Recombinant technology can be used to express the hemagglutinin (HA of the emerging new influenza strain in a variety of systems including mammalian, insect, and bacterial cells. In this study, two forms of HA proteins derived from the currently circulating novel H1N1 A/California/07/2009 virus, HA1 (1-330 and HA (1-480, were expressed and purified from E. coli under controlled redox refolding conditions that favoured proper protein folding. However, only the recombinant HA1 (1-330 protein formed oligomers, including functional trimers that bound receptor and caused agglutination of human red blood cells. These proteins were used to vaccinate ferrets prior to challenge with the A/California/07/2009 virus. Both proteins induced neutralizing antibodies, and reduced viral loads in nasal washes. However, the HA1 (1-330 protein that had higher content of multimeric forms provided better protection from fever and weight loss at a lower vaccine dose compared with HA (1-480. Protein yield for the HA1 (1-330 ranged around 40 mg/Liter, while the HA (1-480 yield was 0.4-0.8 mg/Liter.This is the first study that describes production in bacterial system of properly folded functional globular HA1 domain trimers, lacking the HA2 transmembrane protein, that elicit potent neutralizing antibody responses following vaccination and protect ferrets from in vivo challenge. The combination of bacterial expression system with established quality control methods could provide a mechanism for rapid large scale production of influenza vaccines in the face of influenza pandemic

  6. Advances in universal influenza virus vaccine design and antibody mediated therapies based on conserved regions of the hemagglutinin.

    Science.gov (United States)

    Krammer, Florian; Palese, Peter; Steel, John

    2015-01-01

    The threat of novel influenza viruses emerging into the human population from animal reservoirs, as well as the short duration of protection conferred by licensed vaccines against human seasonal strains has spurred research efforts to improve upon current vaccines and develop novel therapeutics against influenza viruses. In recent years these efforts have resulted in the identification of novel, highly conserved epitopes for neutralizing antibodies on the influenza virus hemagglutinin protein, which are present in both the stalk and globular head domains of the molecule. The existence of such epitopes may allow for generation of novel therapeutic antibodies, in addition to serving as attractive targets of novel vaccine design. The aims of developing improved vaccines include eliciting broader protection from drifted strains, inducing long-lived immunity against seasonal strains, and allowing for the rational design of vaccines that can be stockpiled for use as pre-pandemic vaccines. In addition, an increased focus on influenza virus vaccine research has prompted an improved understanding of how the immune system responds to influenza virus infection.

  7. Cross-protection by co-immunization with influenza hemagglutinin DNA and inactivated virus vaccine using coated microneedles.

    Science.gov (United States)

    Kim, Yeu-Chun; Yoo, Dae-Goon; Compans, Richard W; Kang, Sang-Moo; Prausnitz, Mark R

    2013-12-10

    The need for annual revaccination against influenza is a burden on the healthcare system, leads to low vaccination rates and makes timely vaccination difficult against pandemic strains, such as during the 2009 H1N1 influenza pandemic. In an effort toward achieving a broadly protective vaccine that provides cross-protection against multiple strains of influenza, this study developed a microneedle patch to co-immunize with A/PR8 influenza hemagglutinin DNA and A/PR8 inactivated virus vaccine. We hypothesize that this dual component vaccination strategy administered to the skin using microneedles will provide cross-protection against other strains of influenza. To test this hypothesis, we developed a novel coating formulation that did not require additional excipients to increase coating solution viscosity by using the DNA vaccine itself to increase viscosity and thereby enable thick coatings of DNA vaccine and inactivated virus vaccine on metal microneedles. Co-immunization in this way not only generated robust antibody responses against A/PR8 influenza but also generated robust heterologous antibody responses against pandemic 2009 H1N1 influenza in mice. Challenge studies showed complete cross-protection against lethal challenge with live pandemic 2009 H1N1 virus. Control experiments using A/PR8 inactivated influenza virus vaccine with placebo DNA coated onto microneedles produced lower antibody titers and provided incomplete protection against challenge. Overall, this is the first study showing DNA solution as a microneedle coating agent and demonstrating cross-protection by co-immunization with inactivated virus and DNA vaccine using coated microneedles. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Recombinant vaccine for canine parvovirus in dogs.

    Science.gov (United States)

    López de Turiso, J A; Cortés, E; Martínez, C; Ruiz de Ybáñez, R; Simarro, I; Vela, C; Casal, I

    1992-01-01

    VP2 is the major component of canine parvovirus (CPV) capsids. The VP2-coding gene was engineered to be expressed by a recombinant baculovirus under the control of the polyhedrin promoter. A transfer vector that contains the lacZ gene under the control of the p10 promoter was used in order to facilitate the selection of recombinants. The expressed VP2 was found to be structurally and immunologically indistinguishable from authentic VP2. The recombinant VP2 shows also the capability to self-assemble, forming viruslike particles similar in size and appearance to CPV virions. These viruslike particles have been used to immunize dogs in different doses and combinations of adjuvants, and the anti-CPV responses have been measured by enzyme-linked immunosorbent assay, monolayer protection assays, and an assay for the inhibition of hemagglutination. A dose of ca. 10 micrograms of VP2 was able to elicit a good protective response, higher than that obtained with a commercially available, inactivated vaccine. The results indicate that these viruslike particles can be used to protect dogs from CPV infection. Images PMID:1313899

  9. Poor immune responses of newborn rhesus macaques to measles virus DNA vaccines expressing the hemagglutinin and fusion glycoproteins.

    Science.gov (United States)

    Polack, Fernando P; Lydy, Shari L; Lee, Sok-Hyong; Rota, Paul A; Bellini, William J; Adams, Robert J; Robinson, Harriet L; Griffin, Diane E

    2013-02-01

    A vaccine that would protect young infants against measles could facilitate elimination efforts and decrease morbidity and mortality in developing countries. However, immaturity of the immune system is an important obstacle to the development of such a vaccine. In this study, DNA vaccines expressing the measles virus (MeV) hemagglutinin (H) protein or H and fusion (F) proteins, previously shown to protect juvenile macaques, were used to immunize groups of 4 newborn rhesus macaques. Monkeys were inoculated intradermally with 200 μg of each DNA at birth and at 10 months of age. As controls, 2 newborn macaques were similarly vaccinated with DNA encoding the influenza virus H5, and 4 received one dose of the current live attenuated MeV vaccine (LAV) intramuscularly. All monkeys were monitored for development of MeV-specific neutralizing and binding IgG antibody and cytotoxic T lymphocyte (CTL) responses. These responses were poor compared to the responses induced by LAV. At 18 months of age, all monkeys were challenged intratracheally with a wild-type strain of MeV. Monkeys that received the DNA vaccine encoding H and F, but not H alone, were primed for an MeV-specific CD8(+) CTL response but not for production of antibody. LAV-vaccinated monkeys were protected from rash and viremia, while DNA-vaccinated monkeys developed rashes, similar to control monkeys, but had 10-fold lower levels of viremia. We conclude that vaccination of infant macaques with DNA encoding MeV H and F provided only partial protection from MeV infection.

  10. Influenza (Flu) Vaccine (Inactivated or Recombinant): What You Need to Know

    Science.gov (United States)

    VACCINE INFORMATION STATEMENT Influenza (Flu) Vaccine (Inactivated or Recombinant): What you need to know Many Vaccine Information Statements are available in Spanish and other languages. See www. immunize. ...

  11. Efforts Towards The Development Of Recombinant Vaccines Against

    African Journals Online (AJOL)

    ABSTRACT. Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida.

  12. Efforts towards the development of recombinant Vaccines against ...

    African Journals Online (AJOL)

    Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida. In this review an ...

  13. A latex agglutination assay to quantify the amount of hemagglutinin protein in adjuvanted low-dose influenza monovalent vaccines.

    Science.gov (United States)

    Buffin, Sophie; Ikhelef, Nabila; Prudent, Julien; Dubayle, Joseline; Nougarede, Nolwenn; Varenne, Marie-Pierre; Moste, Catherine; Legastelois, Isabelle

    2018-01-01

    To formulate inactivated influenza vaccines, the concentration of hemagglutinin (HA) must be accurately determined. The standard test currently used to measure HA in influenza vaccines is the Single Radial Immunodiffusion (SRID) assay. We developed a very rapid, simple and sensitive alternative quantitative HA assay, namely the Latex Agglutination Assay (LAA). The LAA uses the Spherotest® technology, which is based on the agglutination of HA-specific immunoglobulin-coated latex beads. The amount of HA in a sample is calculated from the level of bead agglutination by a simple absorbance measurement at 405nm against a standard curve generated using a monovalent vaccine standard. In less than 2hours, tens of samples could be quantified using the LAA as opposed to 2days for the SRID assay. Ten steps are required to complete an SRID assay as compared to 6 steps for the LAA, from sample preparation through spectrophotometric analysis. Furthermore, the limit of detection of the LAA was found to be approximately 15ng HA/mL, similar to an ELISA, with the quantification of less than 1.8μg HA/mL. The quantification limit of the SRID is usually considered to be approximately 5μg HA/mL. The development of the assay and a comparison of the titers obtained by SRID and LAA for several monovalent vaccines corresponding to various strains were performed. For A/H5N1 and A/H1N1 monovalent vaccines, the LAA was found to be linear and accurate as compared to the SRID. The precision of the LAA was close to that of the standard test, and good reproducibility from one laboratory to another was observed. Moreover, the LAA enabled HA quantification in AlOOH-adjuvanted and in emulsion-adjuvanted low-dose vaccines as well as unadjuvanted vaccines. In conclusion, LAA may be useful to rapidly and accurately measure influenza HA protein in monovalent vaccines, especially in those containing less than 5μg/mL of HA in the presence of an adjuvant. Copyright © 2017 The Authors. Published by

  14. Development of influenza A(H7N9) candidate vaccine viruses with improved hemagglutinin antigen yield in eggs

    Science.gov (United States)

    Ridenour, Callie; Johnson, Adam; Winne, Emily; Hossain, Jaber; Mateu-Petit, Guaniri; Balish, Amanda; Santana, Wanda; Kim, Taejoong; Davis, Charles; Cox, Nancy J; Barr, John R; Donis, Ruben O; Villanueva, Julie; Williams, Tracie L; Chen, Li-Mei

    2015-01-01

    Background The emergence of avian influenza A(H7N9) virus in poultry causing zoonotic human infections was reported on March 31, 2013. Development of A(H7N9) candidate vaccine viruses (CVV) for pandemic preparedness purposes was initiated without delay. Candidate vaccine viruses were derived by reverse genetics using the internal genes of A/Puerto/Rico/8/34 (PR8). The resulting A(H7N9) CVVs needed improvement because they had titers and antigen yields that were suboptimal for vaccine manufacturing in eggs, especially in a pandemic situation. Methods Two CVVs derived by reverse genetics were serially passaged in embryonated eggs to improve the hemagglutinin (HA) antigen yield. The total viral protein and HA antigen yields of six egg-passaged CVVs were determined by the BCA assay and isotope dilution mass spectrometry (IDMS) analysis, respectively. CVVs were antigenically characterized by hemagglutination inhibition (HI) assays with ferret antisera. Results Improvement of total viral protein yield was observed for the six egg-passaged CVVs; HA quantification by IDMS indicated approximately a twofold increase in yield of several egg-passaged viruses as compared to that of the parental CVV. Several different amino acid substitutions were identified in the HA of all viruses after serial passage. However, HI tests indicated that the antigenic properties of two CVVs remained unchanged. Conclusions If influenza A(H7N9) viruses were to acquire sustained human-to-human transmissibility, the improved HA yield of the egg-passaged CVVs generated in this study could expedite vaccine manufacturing for pandemic mitigation. PMID:25962412

  15. Recombinant raccoon pox vaccine protects mice against lethal plague

    Science.gov (United States)

    Osorio, J.E.; Powell, T.D.; Frank, R.S.; Moss, K.; Haanes, E.J.; Smith, S.R.; Rocke, T.E.; Stinchcomb, D.T.

    2003-01-01

    Using a raccoon poxvirus (RCN) expression system, we have developed new recombinant vaccines that can protect mice against lethal plague infection. We tested the effects of a translation enhancer (EMCV-IRES) in combination with a secretory (tPA) signal or secretory (tPA) and membrane anchoring (CHV-gG) signals on in vitro antigen expression of F1 antigen in tissue culture and the induction of antibody responses and protection against Yersinia pestis challenge in mice. The RCN vector successfully expressed the F1 protein of Y. pestis in vitro. In addition, the level of expression was increased by the insertion of the EMCV-IRES and combinations of this and the secretory signal or secretory and anchoring signals. These recombinant viruses generated protective immune responses that resulted in survival of 80% of vaccinated mice upon challenge with Y. pestis. Of the RCN-based vaccines we tested, the RCN-IRES-tPA-YpF1 recombinant construct was the most efficacious. Mice vaccinated with this construct withstood challenge with as many as 1.5 million colony forming units of Y. pestis (7.7??104LD50). Interestingly, vaccination with F1 fused to the anchoring signal (RCN-IRES-tPA-YpF1-gG) elicited significant anti-F1 antibody titers, but failed to protect mice from plague challenge. Our studies demonstrate, in vitro and in vivo, the potential importance of the EMCV-IRES and secretory signals in vaccine design. These molecular tools provide a new approach for improving the efficacy of vaccines. In addition, these novel recombinant vaccines could have human, veterinary, and wildlife applications in the prevention of plague. ?? 2002 Elsevier Science Ltd. All rights reserved.

  16. Characterisation of genotype VII Newcastle disease virus (NDV) isolated from NDV vaccinated chickens, and the efficacy of LaSota and recombinant genotype VII vaccines against challenge with velogenic NDV.

    Science.gov (United States)

    Roohani, Kiarash; Tan, Sheau Wei; Yeap, Swee Keong; Ideris, Aini; Bejo, Mohd Hair; Omar, Abdul Rahman

    2015-01-01

    A Newcastle disease virus (NDV) isolate designated IBS002 was isolated from a commercial broiler farm in Malaysia. The virus was characterised as a virulent strain based on the multiple basic amino acid motif of the fusion (F) cleavage site (112)RRRKGF(117) and length of the C-terminus extension of the hemagglutinin-neuraminidase (HN) gene. Furthermore, IBS002 was classified as a velogenic NDV with mean death time (MDT) of 51.2 h and intracerebral pathogenicity index (ICPI) of 1.76. A genetic distance analysis based on the full-length F and HN genes showed that both velogenic viruses used in this study, genotype VII NDV isolate IBS002 and genotype VIII NDV isolate AF2240-I, had high genetic variations with genotype II LaSota vaccine. In this study, the protection efficacy of the recombinant genotype VII NDV inactivated vaccine was also evaluated when added to an existing commercial vaccination program against challenge with velogenic NDV IBS002 and NDV AF2240-I in commercial broilers. The results indicated that both LaSota and recombinant genotype VII vaccines offered full protection against challenge with AF2240-I. However, the LaSota vaccine only conferred partial protection against IBS002. In addition, significantly reduced viral shedding was observed in the recombinant genotype VII-vaccinated chickens compared to LaSota-vaccinated chickens.

  17. Enhanced effect of BCG vaccine against pulmonary Mycobacterium tuberculosis infection in mice with lung Th17 response to mycobacterial heparin-binding hemagglutinin adhesin antigen.

    Science.gov (United States)

    Fukui, Masayuki; Shinjo, Kikuko; Umemura, Masayuki; Shigeno, Satoko; Harakuni, Tetsuya; Arakawa, Takeshi; Matsuzaki, Goro

    2015-12-01

    Although the BCG vaccine can prevent tuberculosis (TB) in infants, its ability to prevent adult pulmonary TB is reportedly limited. Therefore, development of a novel effective vaccine against pulmonary TB has become an international research priority. We have previously reported that intranasal vaccination of mice with a mycobacterial heparin-binding hemagglutinin adhesin (HBHA) plus mucosal adjuvant cholera toxin (CT) enhances production of IFN-γ and anti-HBHA antibody and suppresses extrapulmonary bacterial dissemination after intranasal infection with BCG. In the present study, the effects of intranasal HBHA + CT vaccine on murine pulmonary Mycobacterium tuberculosis (Mtb) infection were examined. Intranasal HBHA + CT vaccination alone failed to reduce the bacterial burden in the infected lung. However, a combination vaccine consisting of s.c. BCG priming and an intranasal HBHA + CT booster significantly enhanced protective immunity against pulmonary Mtb infection on day 14 compared with BCG vaccine alone. Further, it was found that intranasal HBHA + CT vaccine enhanced not only IFN-γ but also IL-17A production by HBHA-specific T cells in the lung after pulmonary Mtb infection. Therefore, this combination vaccine may be a good candidate for a new vaccine strategy against pulmonary TB. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  18. Vaccine-associated enhanced respiratory disease is influenced by hemagglutinin and neuraminidase in whole inactivated influenza virus vaccines

    Science.gov (United States)

    Multiple subtypes and many antigenic variants of influenza A virus (IAV) co-circulate in swine in the USA, complicating effective use of commercial vaccines to control disease and transmission. Whole inactivated virus (WIV) vaccines may provide partial protection against IAV with substantial antigen...

  19. Recombinant Varicella-Zoster Virus Vaccines as Platforms for Expression of Foreign Antigens

    Directory of Open Access Journals (Sweden)

    Wayne L. Gray

    2013-01-01

    Full Text Available Varicella-zoster virus (VZV vaccines induce immunity against childhood chickenpox and against shingles in older adults. The safety, efficacy, and widespread use of VZV vaccines suggest that they may also be effective as recombinant vaccines against other infectious diseases that affect the young and the elderly. The generation of recombinant VZV vaccines and their evaluation in animal models are reviewed. The potential advantages and limitations of recombinant VZV vaccines are addressed.

  20. Effects of plant density on recombinant hemagglutinin yields in an Agrobacterium-mediated transient gene expression system using Nicotiana benthamiana plants.

    Science.gov (United States)

    Fujiuchi, Naomichi; Matsuda, Ryo; Matoba, Nobuyuki; Fujiwara, Kazuhiro

    2017-08-01

    Agrobacterium-mediated transient expression systems enable plants to rapidly produce a wide range of recombinant proteins. To achieve economically feasible upstream production and downstream processing, it is beneficial to obtain high levels of two yield-related quantities of upstream production: recombinant protein content per fresh mass of harvested biomass (g gFM -1 ) and recombinant protein productivity per unit area-time (g m -2 /month). Here, we report that the density of Nicotiana benthamiana plants during upstream production had significant impacts on the yield-related quantities of recombinant hemagglutinin (HA). The two quantities were smaller at a high plant density of 400 plants m -2 than at a low plant density of 100 plants m -2 . The smaller quantities at the high plant density were attributed to: (i) a lower HA content in young leaves, which usually have high HA accumulation potentials; (ii) a lower biomass allocation to the young leaves; and (iii) a high area-time requirement for plants. Thus, plant density is a key factor for improving upstream production in Agrobacterium-mediated transient expression systems. Biotechnol. Bioeng. 2017;114: 1762-1770. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Effects of anti-tick vaccines, recombinant serine protease inhibitors ...

    African Journals Online (AJOL)

    A preliminary trial of a cocktail of recombinant RAS-1-2 and RIM 36 antigens was conducted in Uganda to assess the effects of ant-tick vaccines against Rhipicephalus appendiculatus tick feeding on Zebu cattle under both experimental and natural conditions. Under experimental conditions, over a period of 28 days, the ...

  2. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States.

    Directory of Open Access Journals (Sweden)

    Angela B Brueggemann

    2007-11-01

    Full Text Available The heptavalent pneumococcal conjugate vaccine (PCV7 was introduced in the United States (US in 2000 and has significantly reduced invasive pneumococcal disease; however, the incidence of nonvaccine serotype invasive disease, particularly due to serotype 19A, has increased. The serotype 19A increase can be explained in part by expansion of a genotype that has been circulating in the US prior to vaccine implementation (and other countries since at least 1990, but also by the emergence of a novel "vaccine escape recombinant" pneumococcal strain. This strain has a genotype that previously was only associated with vaccine serotype 4, but now expresses a nonvaccine serotype 19A capsule. Based on prior evidence for capsular switching by recombination at the capsular locus, the genetic event that resulted in this novel serotype/genotype combination might be identifiable from the DNA sequence of individual pneumococcal strains. Therefore, the aim of this study was to characterise the putative recombinational event(s at the capsular locus that resulted in the change from a vaccine to a nonvaccine capsular type. Sequencing the capsular locus flanking regions of 51 vaccine escape (progeny, recipient, and putative donor pneumococci revealed a 39 kb recombinational fragment, which included the capsular locus, flanking regions, and two adjacent penicillin-binding proteins, and thus resulted in a capsular switch and penicillin nonsusceptibility in a single genetic event. Since 2003, 37 such vaccine escape strains have been detected, some of which had evolved further. Furthermore, two new types of serotype 19A vaccine escape strains emerged in 2005. To our knowledge, this is the first time a single recombinational event has been documented in vivo that resulted in both a change of serotype and penicillin nonsusceptibility. Vaccine escape by genetic recombination at the capsular locus has the potential to reduce PCV7 effectiveness in the longer term.

  3. Recombinant Lipoproteins as Novel Vaccines with Intrinsic Adjuvant.

    Science.gov (United States)

    Chong, Pele; Huang, Jui-Hsin; Leng, Chih-Hsiang; Liu, Shih-Jen; Chen, Hsin-Wei

    2015-01-01

    A core platform technology for high production of recombinant lipoproteins with built-in immunostimulator for novel subunit vaccine development has been established. This platform technology has the following advantages: (1) easily convert antigen into lipidated recombinant protein using a fusion sequence containing lipobox and express high level (50-150mg/L) in Escherichia coli; (2) a robust high-yield up- and downstream bioprocess for lipoprotein production is successfully developed to devoid endotoxin contamination; (3) the lipid moiety of recombinant lipoproteins, which is identical to that of bacterial lipoproteins is recognized as danger signals by the immune system (Toll-like receptor 2 agonist), so both innate and adaptive immune responses can be induced by lipoproteins; and (4) successfully demonstrate the feasibility and safety of this core platform technology in meningococcal group B subunit vaccine, dengue subunit vaccine, novel subunit vaccine against Clostridium difficile-associated diseases, and HPV-based immunotherapeutic vaccines in animal model studies. © 2015 Elsevier Inc. All rights reserved.

  4. New technologies in using recombinant attenuated Salmonella vaccine vectors.

    Science.gov (United States)

    Curtiss, Roy; Xin, Wei; Li, Yuhua; Kong, Wei; Wanda, Soo-Young; Gunn, Bronwyn; Wang, Shifeng

    2010-01-01

    Recombinant attenuated Salmonella vaccines (RASVs) have been constructed to deliver antigens from other pathogens to induce immunity to those pathogens in vaccinated hosts. The attenuation means should ensure that the vaccine survives following vaccination to colonize lymphoid tissues without causing disease symptoms. This necessitates that attenuation and synthesis of recombinant gene encoded protective antigens do not diminish the ability of orally administered vaccines to survive stresses encountered in the gastrointestinal tract. We have eliminated these problems by using RASVs with regulated delayed expression of attenuation and regulated delayed synthesis of recombinant antigens. These changes result in RASVs that colonize effector lymphoid tissues efficiently to serve as "factories" to synthesize protective antigens that induce higher protective immune responses than achieved when using previously constructed RASVs. We have devised a biological containment system with regulated delayed lysis to preclude RASV persistence in vivo and survival if excreted. Attributes were added to reduce the mild diarrhea sometimes experienced with oral live RASVs and to ensure complete safety in newborns. These collective technologies have been used to develop a novel, low-cost, RASV-synthesizing, multiple-protective Streptococcus pneumoniae antigens that will be safe for newborns/infants and will induce protective immunity to diverse S. pneumoniae serotypes after oral immunization.

  5. Safety and immunogenicity of a combined Tetanus, Diphtheria, recombinant acellular Pertussis vaccine (TdaP) in healthy Thai adults.

    Science.gov (United States)

    Sirivichayakul, Chukiat; Chanthavanich, Pornthep; Limkittikul, Kriengsak; Siegrist, Claire-Anne; Wijagkanalan, Wassana; Chinwangso, Pailinrut; Petre, Jean; Hong Thai, Pham; Chauhan, Mukesh; Viviani, Simonetta

    2017-01-02

    An acellular Pertussis (aP) vaccine containing recombinant genetically detoxified Pertussis Toxin (PTgen), Filamentous Hemagglutinin (FHA) and Pertactin (PRN) has been developed by BioNet-Asia (BioNet). We present here the results of the first clinical study of this recombinant aP vaccine formulated alone or in combination with tetanus and diphtheria toxoids (TdaP). A phase I/II, observer-blind, randomized controlled trial was conducted at Mahidol University in Bangkok, Thailand in healthy adult volunteers aged 18-35 y. The eligible volunteers were randomized to receive one dose of either BioNet's aP or Tetanus toxoid-reduced Diphtheria toxoid-acellular Pertussis (TdaP) vaccine, or the Tdap Adacel® vaccine in a 1:1:1 ratio. Safety follow-up was performed for one month. Immunogenicity was assessed at baseline, at 7 and 28 d after vaccination. Anti-PT, anti-FHA, anti-PRN, anti-tetanus and anti-diphtheria IgG antibodies were assessed by ELISA. Anti-PT neutralizing antibodies were assessed also by CHO cell assay. A total of 60 subjects (20 per each vaccine group) were enrolled and included in the safety analysis. Safety laboratory parameters, incidence of local and systemic post-immunization reactions during 7 d after vaccination and incidence of adverse events during one month after vaccination were similar in the 3 vaccine groups. One month after vaccination, seroresponse rates of anti-PT, anti-FHA and anti-PRN IgG antibodies exceeded 78% in all vaccine groups. The anti-PT IgG, anti-FHA IgG, and anti-PT neutralizing antibody geometric mean titers (GMTs) were significantly higher following immunization with BioNet's aP and BioNet's TdaP than Adacel® (Pdiphtheria GMTs at one month after immunization were comparable in all vaccine groups. All subjects had seroprotective titers of anti-tetanus and anti-diphtheria antibodies at baseline. In this first clinical study, PTgen-based BioNet's aP and TdaP vaccines showed a similar tolerability and safety profile to Adacel

  6. Randomized Comparison of Immunogenicity and Safety of Quadrivalent Recombinant Versus Inactivated Influenza Vaccine in Healthy Adults 18-49 Years of Age.

    Science.gov (United States)

    Dunkle, Lisa M; Izikson, Ruvim; Patriarca, Peter A; Goldenthal, Karen L; Muse, Derek; Cox, Manon M J

    2017-12-05

    Seasonal influenza vaccines are transitioning to quadrivalent formulations including the hemagglutinins of influenza A subtypes H1N1 and H3N2 and B lineages Yamagata and Victoria. A new quadrivalent recombinant influenza vaccine (RIV4) was compared directly with a standard-dose, egg-grown, quadrivalent-inactivated influenza vaccine (IIV4) for immunogenicity and safety in adults 18-49 years of age. The coprimary endpoints for noninferiority were hemagglutination inhibition seroconversion rates and postvaccination geometric mean titer ratios for each antigen using US regulatory criteria. Reactogenicity solicited for 7 days, other safety events collected for 28 days, and serious or medically attended adverse events collected for 6 months after vaccination comprised the safety evaluation. The immunogenicity of RIV4 was comparable to that of IIV4; the coprimary noninferiority criteria were met for 3 antigens, and the antibody responses to the fourth antigen, influenza B/Brisbane/60/2008, were low in each group, making comparisons uninterpretable. Systemic and injection site reactions were mild, transient, and similar in each group, whereas none of the spontaneously reported adverse events, serious or nonserious, were considered related to study vaccine. This first head-to-head comparison of recombinant versus inactivated quadrivalent influenza vaccines in 18-49 year old adults showed comparable immunogenicity, safety, and tolerability for both vaccines.

  7. Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy.

    Science.gov (United States)

    Kim, Se Mi; Kim, Young-Il; Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-Il; Si, Young-Jae; Lee, In-Won; Song, Min-Suk; Choi, Young Ki

    2017-03-15

    In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5 avian

  8. Subunit Recombinant Vaccine Protects Against Monkeypox

    Science.gov (United States)

    2006-05-27

    smallpox, monkeypox cannot be eradicated. The virus has an unknown animal reservoir and the existence of more virulent strains is plausible. The 2003 U.S...smallpox vaccine Dryvax, a live vaccinia virus (VACV), protects against smallpox and monkeypox , but is contraindicated in immunocompromised individuals...protective Ab response. We immunized rhesus macaques with plasmid DNA encoding the monkeypox orthologs of the VACV L1R, A27L, A33R, and B5R proteins by the

  9. A G-protein-coupled chemokine receptor: A putative insertion site for a multi-pathogen recombinant capripoxvirus vaccine strategy.

    Science.gov (United States)

    Cêtre-Sossah, Catherine; Dickmu, Simon; Kwiatek, Olivier; Albina, Emmanuel

    2017-09-01

    Capripoxviruses (CaPVs) have been shown to be ideal viral vectors for the development of recombinant multivalent vaccines to enable delivery of immunogenic genes from ruminant pathogens. So far, the viral thymidine kinase (TK) gene is the only gene used to generate recombinants. A putative non-essential gene encoding a G-protein-coupled chemokine receptor subfamily homologue (GPCR) was targeted as an additional insertion site. Peste des petits ruminants (PPR) was chosen as a disease model. A new recombinant CaPV expressing the viral attachment hemagglutinin (H) of the PPR virus (PPRV) in the GPCR insertion site (rKS1-HPPR-GPCR) was generated in the backbone North African isolate KS1 strain of lumpy skin disease virus (LSDV). Comparison with the recombinant CaPV expressing the H of PPRV in the TK gene (rKS1-HPPR-TK) shown to induce protection against both PPR and LSD in both sheep and goats was assessed. The suitability of the GPCR gene to be a putative additional insertion site in the CaPV genome is evaluated and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Panblok-H1+advax H1N1/2009pdm vaccine: Insights into rapid development of a delta inulin adjuvanted recombinant pandemic influenza vaccine.

    Science.gov (United States)

    Honda-Okubo, Yoshikazu; Rajapaksha, Harinda; Sajkov, Dimitar; Gordon, David; Cox, Manon M J; Petrovsky, Nikolai

    2017-06-03

    Timely vaccine supply is critical during influenza pandemics but is impeded by current virus-based manufacturing methods. The 2009 H1N1/2009pdm 'swine flu' pandemic reinforced the need for innovation in pandemic vaccine design. We report on insights gained during rapid development of a pandemic vaccine based on recombinant haemagglutinin (rHA) formulated with Advax™ delta inulin adjuvant (Panblok-H1/Advax). Panblok-H1/Advax was designed and manufactured within 1 month of the pandemic declaration by WHO and successfully entered human clinical testing in under 3 months from first isolation and sequencing of the novel pandemic virus, requiring several major challenges to be overcome. Panblok-H1/Advax successfully induced neutralising antibodies against the pandemic strain, but also induced cross-neutralising antibodies in a subset of subjects against an H1N1 strain (A/Puerto Rico/8/34) derived from the 1918 Spanish flu, highlighting the possibility to use Advax to induce more broadly cross-protective antibody responses. Interestingly, the rHA from H1N1/2009pdm exhibited variants in the receptor binding domain that had a major impact on receptor binding and hemagglutination ability. We used an in silico structural modeling approach to better understand the unusual behavior of the novel hemagglutinin, thereby demonstrating the power of computational modeling approaches for rapid characterization of new pandemic viruses. While challenges remain in ensuring ultrafast vaccine access for the entire population in response to future pandemics, the adjuvanted recombinant Panblok-H1/Advax vaccine proved its utility during a real-life pandemic situation.

  11. Expression of recombinant vaccines and antibodies in plants.

    Science.gov (United States)

    Ko, Kisung

    2014-06-01

    Plants are able to perform post-translational maturations of therapeutic proteins required for their functional biological activity and suitable in vivo pharmacokinetics. Plants can be a low-cost, large-scale production platform of recombinant biopharmaceutical proteins such as vaccines and antibodies. Plants, however, lack mechanisms of processing authentic human N-glycosylation, which imposes a major limitation in their use as an expression system for therapeutic glycoproducts. Efforts have been made to circumvent plant-specific N-glycosylation, as well as to supplement the plant's endogenous system with human glycosyltransferases for non-immunogenic and humanized N-glycan production. Herein we review studies on the potential of plants to serve as production systems for therapeutic and prophylactic biopharmaceuticals. We have especially focused on recombinant vaccines and antibodies and new expression strategies to overcome the existing problems associated with their production in plants.

  12. Protective efficacy of a single immunization with capripoxvirus-vectored recombinant peste des petits ruminants vaccines in presence of pre-existing immunity.

    Science.gov (United States)

    Caufour, Philippe; Rufael, Tesfaye; Lamien, Charles Euloge; Lancelot, Renaud; Kidane, Menbere; Awel, Dino; Sertse, Tefera; Kwiatek, Olivier; Libeau, Geneviève; Sahle, Mesfin; Diallo, Adama; Albina, Emmanuel

    2014-06-24

    Sheeppox, goatpox and peste des petits ruminants (PPR) are highly contagious ruminant diseases widely distributed in Africa, the Middle East and Asia. Capripoxvirus (CPV)-vectored recombinant PPR vaccines (rCPV-PPR vaccines), which have been developed and shown to protect against both Capripox (CP) and PPR, would be critical tools in the control of these important diseases. In most parts of the world, these disease distributions overlap each other leaving concerns about the potential impact that pre-existing immunity against either disease may have on the protective efficacy of these bivalent rCPV-PPR vaccines. Currently, this question has not been indisputably addressed. Therefore, we undertook this study, under experimental conditions designed for the context of mass vaccination campaigns of small ruminants, using the two CPV recombinants (Kenya sheep-1 (KS-1) strain-based constructs) developed previously in our laboratory. Pre-existing immunity was first induced by immunization either with an attenuated CPV vaccine strain (KS-1) or the attenuated PPRV vaccine strain (Nigeria 75/1) and animals were thereafter inoculated once subcutaneously with a mixture of CPV recombinants expressing either the hemagglutinin (H) or the fusion (F) protein gene of PPRV (10(3) TCID50/animal of each). Finally, these animals were challenged with a virulent CPV strain followed by a virulent PPRV strain 3 weeks later. Our study demonstrated full protection against CP for vaccinated animals with prior exposure to PPRV and a partial protection against PPR for vaccinated animals with prior exposure to CPV. The latter animals exhibited a mild clinical form of PPR and did not show any post-challenge anamnestic neutralizing antibody response against PPRV. The implications of these results are discussed herein and suggestions made for future research regarding the development of CPV-vectored vaccines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Expression of Recombinant Vaccines and Antibodies in Plants

    OpenAIRE

    Ko, Kisung

    2014-01-01

    Plants are able to perform post-translational maturations of therapeutic proteins required for their functional biological activity and suitable in vivo pharmacokinetics. Plants can be a low-cost, large-scale production platform of recombinant biopharmaceutical proteins such as vaccines and antibodies. Plants, however, lack mechanisms of processing authentic human N-glycosylation, which imposes a major limitation in their use as an expression system for therapeutic glycoproducts. Efforts have...

  14. Removal of bacterial suspension water occupying the intercellular space of detached leaves after agroinfiltration improves the yield of recombinant hemagglutinin in a Nicotiana benthamiana transient gene expression system.

    Science.gov (United States)

    Fujiuchi, Naomichi; Matsuda, Ryo; Matoba, Nobuyuki; Fujiwara, Kazuhiro

    2016-04-01

    The use of detached leaves instead of whole plants provides an alternative means for recombinant protein production based on Agrobacterium tumefaciens-mediated transient gene overexpression. However, the process for high-level protein production in detached leaves has not yet been established. In this study, we focused on leaf handling and maintenance conditions immediately after infiltration with Agrobacterium suspension (agroinfiltration) to improve recombinant protein expression in detached Nicotiana benthamiana leaves. We demonstrated that the residual water of bacterial suspension in detached leaves had significant impact on the yield of recombinant influenza hemagglutinin (HA). Immediately after agroinfiltration, detached leaves were stored in a dehumidified chamber to allow bacterial suspension water occupying intercellular space to be removed by transpiration. We varied the duration of this water removal treatment from 0.7 to 4.4 h, which resulted in leaf fresh weights ranging from 0.94 to 1.28 g g(-1) relative to weights measured just before agroinfiltration. We used these relative fresh weights (RFWs) as an indicator of the amount of residual water. The detached leaves were then incubated in humidified chambers for 6 days. We found that the presence of residual water significantly decreased HA yield, with a clear inverse correlation observed between HA yield and RFW. We next compared HA yields in detached leaves with those obtained from intact leaves by whole-plant expression performed at the same time. The maximum HA yield obtained from a detached leaf with a RFW of approximately 1.0, namely, 800 μg gFW(-1), was comparable to the mean HA yield of 846 μg gFW(-1) generated in intact leaves. Our results indicate the necessity of removing bacterial suspension water from agroinfiltrated detached leaves in transient overexpression systems and point to a critical factor enabling the detached-leaf system as a viable recombinant protein factory.

  15. Successful pseudorabies vaccination in maternally immune piglets using recombinant vaccinia virus vaccines.

    Science.gov (United States)

    Brockmeier, S I; Lager, K M; Mengeling, W L

    1997-01-01

    Three gilts were vaccinated with a NYVAC vaccinia recombinant expressing glycoprotein gD of pseudorabies virus (PRV) (NYVAC/gD). After farrowing, the piglets were allowed to nurse normally to obtain colostral immunity and then were divided into four groups, receiving NYVAC/gD, a NYVAC recombinant expressing glycoprotein gB of PRV (NYVAC/gB), an inactivated PRV vaccine (iPRV), or no vaccine. The piglets were vaccinated twice, three weeks apart beginning at approximately two weeks of age and later challenged with virulent PRV oronasally. Piglets that received NYVAC/gB or iPRV were the best protected based on lack of mortality, lower temperature responses, decreased weight loss and decreased viral shedding after challenge. These results indicate effective strategies for stimulating active immune response while still under the protection of maternal immunity.

  16. Induction of Robust B Cell Responses after Influenza mRNA Vaccination Is Accompanied by Circulating Hemagglutinin-Specific ICOS+ PD-1+ CXCR3+ T Follicular Helper Cells

    Directory of Open Access Journals (Sweden)

    Gustaf Lindgren

    2017-11-01

    Full Text Available Modified mRNA vaccines have developed into an effective and well-tolerated vaccine platform that offers scalable and precise antigen production. Nevertheless, the immunological events leading to strong antibody responses elicited by mRNA vaccines are largely unknown. In this study, we demonstrate that protective levels of antibodies to hemagglutinin were induced after two immunizations of modified non-replicating mRNA encoding influenza H10 encapsulated in lipid nanoparticles (LNP in non-human primates. While both intradermal (ID and intramuscular (IM administration induced protective titers, ID delivery generated this response more rapidly. Circulating H10-specific memory B cells expanded after each immunization, along with a transient appearance of plasmablasts. The memory B cell pool waned over time but remained detectable throughout the 25-week study. Following prime immunization, H10-specific plasma cells were found in the bone marrow and persisted over time. Germinal centers were formed in vaccine-draining lymph nodes along with an increase in circulating H10-specific ICOS+ PD-1+ CXCR3+ T follicular helper cells, a population shown to correlate with high avidity antibody responses after seasonal influenza vaccination in humans. Collectively, this study demonstrates that mRNA/LNP vaccines potently induce an immunological repertoire associated with the generation of high magnitude and quality antibodies.

  17. A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

    Energy Technology Data Exchange (ETDEWEB)

    Boonsathorn, Naphatsawan; Panthong, Sumolrat [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Koksunan, Sarawut [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Chittaganpitch, Malinee; Phuygun, Siripaporn; Waicharoen, Sunthareeya [National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Prachasupap, Apichai [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Sasaki, Tadahiro [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Kubota-Koketsu, Ritsuko [Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa (Japan); Yasugi, Mayo [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka (Japan); Ono, Ken-ichiro [Ina Laboratory, Medical and Biological Laboratories Corporation, Ltd., Ina, Nagano (Japan); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Arai, Yasuha [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); and others

    2014-09-26

    Highlights: • A human monoclonal antibody against influenza virus was produced from a volunteer. • The antibody was generated from the PBMCs of the volunteer using the fusion method. • The antibody neutralized heterosubtypically group 1 influenza A viruses (H1 and H9). • The antibody targeted a novel epitope in globular head region of the hemagglutinin. • Sequences of the identified epitope are highly conserved among H1 and H9 subtypes. - Abstract: Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.

  18. Protection from Hendra virus infection with Canarypox recombinant vaccine.

    Science.gov (United States)

    Guillaume-Vasselin, Vanessa; Lemaitre, Laurent; Dhondt, Kévin P; Tedeschi, Laurence; Poulard, Amelie; Charreyre, Catherine; Horvat, Branka

    2016-01-01

    Hendra virus (HeV) is an emerging zoonotic pathogen, which causes severe respiratory illness and encephalitis in humans and horses. Since its first appearance in 1994, spillovers of HeV from its natural reservoir fruit bats occur on almost an annual basis. The high mortality rate in both humans and horses and the wide-ranging reservoir distribution are making HeV a serious public health problem, especially for people exposed to sick horses. This study has aimed to develop an efficient low-cost HeV vaccine for horses based on Canarypox recombinant vector expressing HeV glycoproteins, attachment glycoprotein (G) and fusion protein (F). This vaccine was used to immunise hamsters and then challenged intraperitoneally with HeV 3 weeks later. The higher tested dose of the vaccine efficiently prevented oropharyngeal virus shedding and protected animals from clinical disease and virus-induced mortality. Vaccine induced generation of seroneutralising antibodies and prevented virus-induced histopathological changes and a production of viral RNA and antigens in animal tissues. Interestingly, some vaccinated animals, including those immunised at a lower dose, were protected in the absence of detectable specific antibodies, suggesting the induction of an efficient virus-specific cellular immunity. Finally, ponies immunised using the same vaccination protocol as hamsters developed strong seroneutralising titres against both HeV and closely related Nipah virus, indicating that this vaccine may have the ability to induce cross-protection against Henipavirus infection. These data suggest that Canarypox-based vectors encoding for HeV glycoproteins present very promising new vaccine candidate to prevent infection and shedding of the highly lethal HeV.

  19. Expression of the hemagglutinin HA1 subunit of the equine influenza virus using a baculovirus expression system.

    Science.gov (United States)

    Sguazza, Guillermo H; Fuentealba, Nadia A; Tizzano, Marco A; Galosi, Cecilia M; Pecoraro, Marcelo R

    2013-01-01

    Equine influenza virus is a leading cause of respiratory disease in horses worldwide. Disease prevention is by vaccination with inactivated whole virus vaccines. Most current influenza vaccines are generated in embryonated hens' eggs. Virions are harvested from allantoic fluid and chemically inactivated. Although this system has served well over the years, the use of eggs as the substrate for vaccine production has several well-recognized disadvantages (cost, egg supply, waste disposal and yield in eggs). The aim of this study was to evaluate a baculovirus system as a potential method for producing recombinant equine influenza hemagglutinin to be used as a vaccine. The hemagglutinin ectodomain (HA1 subunit) was cloned and expressed using a baculovirus expression vector. The expression was determined by SDS-PAGE and immunoblotting. A high yield, 20μg/ml of viral protein, was obtained from recombinant baculovirus-infected cells. The immune response in BALB/c mice was examined following rHA1 inoculation. Preliminary results show that recombinant hemagglutinin expressed from baculovirus elicits a strong antibody response in mice; therefore it could be used as an antigen for subunit vaccines and diagnostic tests. Copyright © 2013 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  20. Identification of Influenza A/PR/8/34 Donor Viruses Imparting High Hemagglutinin Yields to Candidate Vaccine Viruses in Eggs.

    Directory of Open Access Journals (Sweden)

    Adam Johnson

    Full Text Available One of the important lessons learned from the 2009 H1N1 pandemic is that a high yield influenza vaccine virus is essential for efficient and timely production of pandemic vaccines in eggs. The current seasonal and pre-pandemic vaccine viruses are generated either by classical reassortment or reverse genetics. Both approaches utilize a high growth virus, generally A/Puerto Rico/8/1934 (PR8, as the donor of all or most of the internal genes, and the wild type virus recommended for inclusion in the vaccine to contribute the hemagglutinin (HA and neuraminidase (NA genes encoding the surface glycoproteins. As a result of extensive adaptation through sequential egg passaging, PR8 viruses with different gene sequences and high growth properties have been selected at different laboratories in past decades. The effect of these related but distinct internal PR8 genes on the growth of vaccine viruses in eggs has not been examined previously. Here, we use reverse genetics to analyze systematically the growth and HA antigen yield of reassortant viruses with 3 different PR8 backbones. A panel of 9 different HA/NA gene pairs in combination with each of the 3 different lineages of PR8 internal genes (27 reassortant viruses was generated to evaluate their performance. Virus and HA yield assays showed that the PR8 internal genes influence HA yields in most subtypes. Although no single PR8 internal gene set outperformed the others in all candidate vaccine viruses, a combination of specific PR8 backbone with individual HA/NA pairs demonstrated improved HA yield and consequently the speed of vaccine production. These findings may be important both for production of seasonal vaccines and for a rapid global vaccine response during a pandemic.

  1. Identification of Influenza A/PR/8/34 Donor Viruses Imparting High Hemagglutinin Yields to Candidate Vaccine Viruses in Eggs.

    Science.gov (United States)

    Johnson, Adam; Chen, Li-Mei; Winne, Emily; Santana, Wanda; Metcalfe, Maureen G; Mateu-Petit, Guaniri; Ridenour, Callie; Hossain, M Jaber; Villanueva, Julie; Zaki, Sherif R; Williams, Tracie L; Cox, Nancy J; Barr, John R; Donis, Ruben O

    2015-01-01

    One of the important lessons learned from the 2009 H1N1 pandemic is that a high yield influenza vaccine virus is essential for efficient and timely production of pandemic vaccines in eggs. The current seasonal and pre-pandemic vaccine viruses are generated either by classical reassortment or reverse genetics. Both approaches utilize a high growth virus, generally A/Puerto Rico/8/1934 (PR8), as the donor of all or most of the internal genes, and the wild type virus recommended for inclusion in the vaccine to contribute the hemagglutinin (HA) and neuraminidase (NA) genes encoding the surface glycoproteins. As a result of extensive adaptation through sequential egg passaging, PR8 viruses with different gene sequences and high growth properties have been selected at different laboratories in past decades. The effect of these related but distinct internal PR8 genes on the growth of vaccine viruses in eggs has not been examined previously. Here, we use reverse genetics to analyze systematically the growth and HA antigen yield of reassortant viruses with 3 different PR8 backbones. A panel of 9 different HA/NA gene pairs in combination with each of the 3 different lineages of PR8 internal genes (27 reassortant viruses) was generated to evaluate their performance. Virus and HA yield assays showed that the PR8 internal genes influence HA yields in most subtypes. Although no single PR8 internal gene set outperformed the others in all candidate vaccine viruses, a combination of specific PR8 backbone with individual HA/NA pairs demonstrated improved HA yield and consequently the speed of vaccine production. These findings may be important both for production of seasonal vaccines and for a rapid global vaccine response during a pandemic.

  2. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus.

    Science.gov (United States)

    Halbherr, Stefan J; Brostoff, Terza; Tippenhauer, Merve; Locher, Samira; Berger Rentsch, Marianne; Zimmer, Gert

    2013-01-01

    Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV) vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA) was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×10⁸ infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA) by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade). Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.

  3. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Stefan J Halbherr

    Full Text Available Highly pathogenic avian influenza viruses (HPAIV of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×10⁸ infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade. Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.

  4. Pilot study of diagnostic potential of the Mycobacterium tuberculosis recombinant HBHA protein in a vaccinated population in Finland.

    Directory of Open Access Journals (Sweden)

    Laura Savolainen

    Full Text Available BACKGROUND: In recent years T cell based interferon gamma release assays (IGRA have been developed for immunodiagnosis of M. tuberculosis infection. At present these assays do not discriminate between disease and latency. Therefore, more promising antigens and diagnostic tools are continuously being searched for tuberculosis immunodiagnostics. The heparin binding hemagglutinin (HBHA is a surface protein of M. tuberculosis which promotes bacterial aggregation and adhesion to non-phagocytic cells. It has been previously assumed that native, methylated form of this protein would be a promising antigen to discriminate latent from active infection. METHODOLOGY AND PRINCIPAL FINDINGS: We performed a pilot investigation to study humoral and T-cell mediated immunological responses to recombinant HBHA produced in M. smegmatis or to synthetic peptides in patients with recent or past tuberculosis, with atypical mycobacteriosis, or in healthy vaccinated individuals. The T cell reactivities to HBHA were compared to the respective reactivities towards Purified Protein Derivative (PPD and two surface secreted proteins, ie. Early Secretory Antigen Target-6 (ESAT-6 and Culture Filtrate Protein-10 (CFP-10. Our pilot results indicate that methylated recombinant HBHA induced a strong T cell mediated immune response and the production of IgG and IgM-class antibodies in all patient groups, most surprisingly in young Finnish vaccinees, as well. We observed a positive correlation between the reactivities to HBHA and non-specific PPD among all studied subjects. As expected, ESAT-6 and CFP-10 were the most powerful antigens to discriminate disease from immunity caused by vaccination. CONCLUSIONS: On the basis of results of this exploratory investigation we raise concerns that in countries like Finland, where BCG vaccination was routinely used, HBHA utility might not be sufficient for diagnostics because of inability to explicitly discriminate tuberculosis infection from

  5. Construction and Characterization of Human Rotavirus Recombinant VP8* Subunit Parenteral Vaccine Candidates

    OpenAIRE

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W.; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka

    2012-01-01

    Two currently licensed live oral rotavirus vaccines (Rotarix® and RotaTeq®) are highly efficacious against severe rotavirus diarrhea. However, the efficacy of such vaccines in selected low-income African and Asian countries is much lower than that in middle or high-income countries. Additionally, these two vaccines have recently been associated with rare case of intussusception in vaccinated infants. We developed a novel recombinant subunit parenteral rotavirus vaccine which may be more effec...

  6. Pandemic H1N1 influenza infection and vaccination in humans induces cross-protective antibodies that target the hemagglutinin stem

    Directory of Open Access Journals (Sweden)

    Christy Ann Thomson

    2012-05-01

    Full Text Available Most monoclonal antibodies (mAbs generated from humans infected or vaccinated with the 2009 pandemic H1N1 (pdmH1N1 influenza virus targeted the hemagglutinin (HA stem. These anti-HA stem mAbs mostly used IGHV1-69 and bound readily to epitopes on the conventional seasonal influenza and pdmH1N1 vaccines. The anti-HA stem mAbs neutralized pdmH1N1, seasonal influenza H1N1 and avian H5N1 influenza viruses by inhibiting HA-mediated fusion of membranes and protected against and treated heterologous lethal infections in mice with H5N1 influenza virus. This demonstrated that therapeutic mAbs could be generated a few months after the new virus emerged. Human immunization with the pdmH1N1 vaccine induced circulating antibodies that protected mice from lethal, heterologous H5N1 influenza infections. We observed that the dominant heterosubtypic antibody response against the HA stem correlated with the relative absence of memory B cells against the HA head of pdmH1N1, thus enabling the rare heterosubtypic memory B cells induced by seasonal influenza and specific for conserved sites on the HA stem to compete for T-cell help. These results support the notion that broadly protective antibodies against influenza would be induced by successive vaccination with conventional influenza vaccines based on subtypes of HA in viruses not circulating in humans.

  7. Clinical safety and efficacy of first indigenous recombinant hepatitis B vaccine.

    Science.gov (United States)

    Kumar, A; Joshi, N; Sreenivas, D V; Palan, S; Nagarjuna Kumar, Y R

    1998-07-01

    A pilot study was conducted to assess the clinical safety and immunogenicity of an indigenously developed recombinant hepatitis B vaccine (Shanvac B) in 18 healthy adults. 20 microg of vaccine was administered at 0, 1 and 2 months. Protective anti HBs titres developed in 22%, 77% and 100% one month after 1st, 2nd and 3rd dose of vaccination, respectively. The geometric mean titre after the 3rd dose was 1015.29 mIu/ml. The vaccine was well tolerated with minor local and systemic side effects in 28% and 22%, respectively. The indigenously developed recombinant hepatitis B vaccine is safe, well tolerated and highly immunogenic.

  8. Increased immunogenicity of recombinant Ad35-based malaria vaccine through formulation with aluminium phosphate adjuvant

    NARCIS (Netherlands)

    Ophorst, Olga J. A. E.; Radosevic, Katarina; Klap, Jaco M.; Sijtsma, Jeroen; Gillissen, Gert; Mintardjo, Ratna; van Ooij, Mark J. M.; Holterman, Lennart; Companjen, Arjen; Goudsmit, Jaap; Havenga, Menzo J. E.

    2007-01-01

    Previously, we have shown the potency of recombinant Adenovirus serotype 35 viral vaccines (rAd35) to induce strong immune response against the circumsporozoite protein (CS) of the plasmodium parasite. To further optimize immunogenicity of Ad35-based malaria vaccines we formulated rAd35.CS vaccine

  9. Quadrivalent human papillomavirus recombinant vaccine: The first vaccine for cervical cancers

    Directory of Open Access Journals (Sweden)

    Sharma Rashmi

    2007-01-01

    Full Text Available Gardasil ® is the first quadrivalent human papillomavirus (HPV- types 6, 11, 16, 18 recombinant vaccine approved by the FDA on June 8, 2006. It induces genotype-specific virus-neutralizing antibodies and prevents infection with HPV. Various clinical trials demonstrated a reduction in the incidence of vaccine-type-specific persistent infections and of associated moderate- and high-grade cervical dysplasias and carcinomas in situ after its use. Gardasil is currently approved by FDA for prevention of genital warts, cancers and precancerous conditions of cervix and vulva in 9-26 years old females. Three doses of 0.5 ml of gardasil each at 0, 2 and 6 months are given intramuscularly. It is contraindicated in individuals who are hypersensitive to the active substances or to any of the excipients of the vaccine, patients with bleeding abnormalities or patients on anticoagulant therapy and during pregnancy. However, the vaccine, at an estimated $300-500 per course, is too expensive for many women in developing countries. Moreover, question regarding the longevity of the protection by vaccine is still unsolved. Hence, longer studies are required to establish its real status in cancer prevention.

  10. B cell response and hemagglutinin stalk-reactive antibody production in different age cohorts following 2009 H1N1 influenza virus vaccination.

    Science.gov (United States)

    Sangster, Mark Y; Baer, Jane; Santiago, Felix W; Fitzgerald, Theresa; Ilyushina, Natalia A; Sundararajan, Aarthi; Henn, Alicia D; Krammer, Florian; Yang, Hongmei; Luke, Catherine J; Zand, Martin S; Wright, Peter F; Treanor, John J; Topham, David J; Subbarao, Kanta

    2013-06-01

    The 2009 pandemic H1N1 (pH1N1) influenza virus carried a swine-origin hemagglutinin (HA) that was closely related to the HAs of pre-1947 H1N1 viruses but highly divergent from the HAs of recently circulating H1N1 strains. Consequently, prior exposure to pH1N1-like viruses was mostly limited to individuals over the age of about 60 years. We related age and associated differences in immune history to the B cell response to an inactivated monovalent pH1N1 vaccine given intramuscularly to subjects in three age cohorts: 18 to 32 years, 60 to 69 years, and ≥70 years. The day 0 pH1N1-specific hemagglutination inhibition (HAI) and microneutralization (MN) titers were generally higher in the older cohorts, consistent with greater prevaccination exposure to pH1N1-like viruses. Most subjects in each cohort responded well to vaccination, with early formation of circulating virus-specific antibody (Ab)-secreting cells and ≥4-fold increases in HAI and MN titers. However, the response was strongest in the 18- to 32-year cohort. Circulating levels of HA stalk-reactive Abs were increased after vaccination, especially in the 18- to 32-year cohort, raising the possibility of elevated levels of cross-reactive neutralizing Abs. In the young cohort, an increase in MN activity against the seasonal influenza virus A/Brisbane/59/07 after vaccination was generally associated with an increase in the anti-Brisbane/59/07 HAI titer, suggesting an effect mediated primarily by HA head-reactive rather than stalk-reactive Abs. Our findings support recent proposals that immunization with a relatively novel HA favors the induction of Abs against conserved epitopes. They also emphasize the need to clarify how the level of circulating stalk-reactive Abs relates to resistance to influenza.

  11. Structure of RiVax: a recombinant ricin vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Legler, Patricia M. [Naval Research Laboratories, 4555 Overlook Avenue, Washington, DC 20375 (United States); Brey, Robert N. [Soligenix Inc., 29 Emmons Drive, Suite C-10, Princeton, NJ 08540 (United States); Smallshaw, Joan E.; Vitetta, Ellen S. [UT Southwestern Medical Center at Dallas, 6000 Harry Hines Boulevard, Dallas, TX 75390-8576 (United States); Millard, Charles B., E-mail: charles.b.millard@us.army.mil [US Army Medical Research and Materiel Command, Frederick, MD 21702-5012 (United States); Naval Research Laboratories, 4555 Overlook Avenue, Washington, DC 20375 (United States)

    2011-09-01

    The X-ray crystal structure (at 2.1 Å resolution) of an immunogen under development as part of a ricin vaccine for humans is presented and structure-based analysis of the results was conducted with respect to related proteins and the known determinants for inducing or suppressing the protective immune response. RiVax is a recombinant protein that is currently under clinical development as part of a human vaccine to protect against ricin poisoning. RiVax includes ricin A-chain (RTA) residues 1–267 with two intentional amino-acid substitutions, V76M and Y80A, aimed at reducing toxicity. Here, the crystal structure of RiVax was solved to 2.1 Å resolution and it was shown that it is superposable with that of the ricin toxin A-chain from Ricinus communis with a root-mean-square deviation of 0.6 Å over 258 C{sup α} atoms. The RiVax structure is also compared with the recently determined structure of another potential ricin-vaccine immunogen, RTA 1–33/44–198 R48C/T77C. Finally, the locations and solvent-exposure of two toxin-neutralizing B-cell epitopes were examined and it was found that these epitopes are within or near regions predicted to be involved in catalysis. The results demonstrate the composition of the RiVax clinical material and will guide ongoing protein-engineering strategies to develop improved immunogens.

  12. Cross protection against fowl cholera disease with the use of recombinant Pasteurella multocida FHAB2 peptides vaccine

    Science.gov (United States)

    It has been demonstrated that fhaB2 (filamentous hemagglutinin) is an important virulence factor for P. multocida in development of fowl cholera disease and that recombinant FHAB2 peptides derived from P. multocida, Pm-1059, protect turkeys against Pm-1059 challenge. To test the hypothesis that rFHA...

  13. Rainbow trout (Oncorhynchus mykiss) immune response towards a recombinant vaccine targeting the parasitic ciliate Ichthyophthirius multifiliis

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Kania, Per Walter; Rasmussen, Karina Juhl

    2017-01-01

    responses of vaccinated trout (subunit vaccine) were raised against one neurohypophysial n-terminal domain protein #10 of three recombinant proteins, whereas the benchmark vaccine group showed specific antibody production against all three recombinant proteins. The immunogenic parasite protein #10 may......The protective effect in rainbow trout (Oncorhynchus mykiss) of an experimental subunit vaccine targeting antigens in the parasite Ichthyophthirius multifiliis has been evaluated and compared to effects elicited by a classical parasite homogenate vaccine. Three recombinant parasite proteins (two...... produced in E. coli and one in insect cells) were combined and injected i.p., and subsequently, protection and antibody responses were analysed. Both the experimental and the benchmark vaccine induced partial but significant protection against I. multifiliis when compared to control fish. Specific antibody...

  14. Hydrophobin fusion of an influenza virus hemagglutinin allows high transient expression in Nicotiana benthamiana, easy purification and immune response with neutralizing activity.

    Directory of Open Access Journals (Sweden)

    Nicolas Jacquet

    Full Text Available The expression of recombinant hemagglutinin in plants is a promising alternative to the current egg-based production system for the influenza vaccines. Protein-stabilizing fusion partners have been developed to overcome the low production yields and the high downstream process costs associated with the plant expression system. In this context, we tested the fusion of hydrophobin I to the hemagglutinin ectodomain of the influenza A (H1N1pdm09 virus controlled by the hybrid En2PMA4 transcriptional promoter to rapidly produce high levels of recombinant antigen by transient expression in agro-infiltrated Nicotiana benthamiana leaves. The fusion increased the expression level by a factor of ∼ 2.5 compared to the unfused protein allowing a high accumulation level of 8.6% of the total soluble proteins. Hemagglutinin was located in ER-derived protein bodies and was successfully purified by combining an aqueous-two phase partition system and a salting out step. Hydrophobin interactions allowed the formation of high molecular weight hemagglutinin structures, while unfused proteins were produced as monomers. Purified protein was shown to be biologically active and to induce neutralizing antibodies after mice immunization. Hydrophobin fusion to influenza hemagglutinin might therefore be a promising approach for rapid, easy, and low cost production of seasonal or pandemic influenza vaccines in plants.

  15. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    Science.gov (United States)

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus.

  16. H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination.

    Directory of Open Access Journals (Sweden)

    M Anthony Moody

    Full Text Available BACKGROUND: During the recent H1N1 influenza pandemic, excess morbidity and mortality was seen in young but not older adults suggesting that prior infection with influenza strains may have protected older subjects. In contrast, a history of recent seasonal trivalent vaccine in younger adults was not associated with protection. METHODS AND FINDINGS: To study hemagglutinin (HA antibody responses in influenza immunization and infection, we have studied the day 7 plasma cell repertoires of subjects immunized with seasonal trivalent inactivated influenza vaccine (TIV and compared them to the plasma cell repertoires of subjects experimentally infected (EI with influenza H3N2 A/Wisconsin/67/2005. The majority of circulating plasma cells after TIV produced influenza-specific antibodies, while most plasma cells after EI produced antibodies that did not react with influenza HA. While anti-HA antibodies from TIV subjects were primarily reactive with single or few HA strains, anti-HA antibodies from EI subjects were isolated that reacted with multiple HA strains. Plasma cell-derived anti-HA antibodies from TIV subjects showed more evidence of clonal expansion compared with antibodies from EI subjects. From an H3N2-infected subject, we isolated a 4-member clonal lineage of broadly cross-reactive antibodies that bound to multiple HA subtypes and neutralized both H1N1 and H3N2 viruses. This broad reactivity was not detected in post-infection plasma suggesting this broadly reactive clonal lineage was not immunodominant in this subject. CONCLUSION: The presence of broadly reactive subdominant antibody responses in some EI subjects suggests that improved vaccine designs that make broadly reactive antibody responses immunodominant could protect against novel influenza strains.

  17. H3N2 Influenza Infection Elicits More Cross-Reactive and Less Clonally Expanded Anti-Hemagglutinin Antibodies Than Influenza Vaccination

    Science.gov (United States)

    Walter, Emmanuel B.; Woods, Christopher W.; Ginsburg, Geoffrey S.; McClain, Micah T.; Denny, Thomas N.; Chen, Xi; Munshaw, Supriya; Marshall, Dawn J.; Whitesides, John F.; Drinker, Mark S.; Amos, Joshua D.; Gurley, Thaddeus C.; Eudailey, Joshua A.; Foulger, Andrew; DeRosa, Katherine R.; Parks, Robert; Meyerhoff, R. Ryan; Yu, Jae-Sung; Kozink, Daniel M.; Barefoot, Brice E.; Ramsburg, Elizabeth A.; Khurana, Surender; Golding, Hana; Vandergrift, Nathan A.; Alam, S. Munir; Tomaras, Georgia D.; Kepler, Thomas B.; Kelsoe, Garnett; Liao, Hua-Xin; Haynes, Barton F.

    2011-01-01

    Background During the recent H1N1 influenza pandemic, excess morbidity and mortality was seen in young but not older adults suggesting that prior infection with influenza strains may have protected older subjects. In contrast, a history of recent seasonal trivalent vaccine in younger adults was not associated with protection. Methods and Findings To study hemagglutinin (HA) antibody responses in influenza immunization and infection, we have studied the day 7 plasma cell repertoires of subjects immunized with seasonal trivalent inactivated influenza vaccine (TIV) and compared them to the plasma cell repertoires of subjects experimentally infected (EI) with influenza H3N2 A/Wisconsin/67/2005. The majority of circulating plasma cells after TIV produced influenza-specific antibodies, while most plasma cells after EI produced antibodies that did not react with influenza HA. While anti-HA antibodies from TIV subjects were primarily reactive with single or few HA strains, anti-HA antibodies from EI subjects were isolated that reacted with multiple HA strains. Plasma cell-derived anti-HA antibodies from TIV subjects showed more evidence of clonal expansion compared with antibodies from EI subjects. From an H3N2-infected subject, we isolated a 4-member clonal lineage of broadly cross-reactive antibodies that bound to multiple HA subtypes and neutralized both H1N1 and H3N2 viruses. This broad reactivity was not detected in post-infection plasma suggesting this broadly reactive clonal lineage was not immunodominant in this subject. Conclusion The presence of broadly reactive subdominant antibody responses in some EI subjects suggests that improved vaccine designs that make broadly reactive antibody responses immunodominant could protect against novel influenza strains. PMID:22039424

  18. DNA vaccine prime and recombinant FPV vaccine boost: an important candidate immunization strategy to control bluetongue virus type 1.

    Science.gov (United States)

    Li, Junping; Yang, Tao; Xu, Qingyuan; Sun, Encheng; Feng, Yufei; Lv, Shuang; Zhang, Qin; Wang, Haixiu; Wu, Donglai

    2015-10-01

    Bluetongue virus (BTV) is the causative agent of bluetongue (BT), an important sheep disease that caused great economic loss to the sheep industry. There are 26 BTV serotypes based on the outer protein VP2. However, the serotypes BTV-1 and BTV-16 are the two most prevalent serotypes in China. Vaccination is the most effective method of preventing viral infections. Therefore, the need for an effective vaccine against BTV is urgent. In this study, DNA vaccines and recombinant fowlpox virus (rFPV) vaccines expressing VP2 alone or VP2 in combination with VP5 or co-expressing the VP2 and VP5 proteins of BTV-1 were evaluated in both mice and sheep. Several strategies were tested in mice, including DNA vaccine prime and boost, rFPV vaccine prime and boost, and DNA vaccine prime and rFPV vaccine boost. We then determined the best vaccine strategy in sheep. Our results indicated that a strategy combining a DNA vaccine prime (co-expressing VP2 and VP5) followed by an rFPV vaccine boost (co-expressing VP2 and VP5) induced a high titer of neutralizing antibodies in sheep. Therefore, our data suggest that a DNA vaccine consisting of a pCAG-(VP2+VP5) prime and an rFPV-(VP2+VP5) boost is an important candidate for the design of a novel vaccine against BTV-1.

  19. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production.

    Science.gov (United States)

    Oyarzún, Patricio; Kobe, Bostjan

    2016-03-03

    Novel vaccination approaches based on rational design of B- and T-cell epitopes - epitope-based vaccines - are making progress in the clinical trial pipeline. The epitope-focused recombinant protein-based malaria vaccine (termed RTS,S) is a next-generation approach that successfully reached phase-III trials, and will potentially become the first commercial vaccine against a human parasitic disease. Progress made on methods such as recombinant DNA technology, advanced cell-culture techniques, immunoinformatics and rational design of immunogens are driving the development of these novel concepts. Synthetic recombinant proteins comprising both B- and T-cell epitopes can be efficiently produced through modern biotechnology and bioprocessing methods, and can enable the induction of large repertoires of immune specificities. In particular, the inclusion of appropriate CD4+ T-cell epitopes is increasingly considered a key vaccine component to elicit robust immune responses, as suggested by results coming from HIV-1 clinical trials. In silico strategies for vaccine design are under active development to address genetic variation in pathogens and several broadly protective "universal" influenza and HIV-1 vaccines are currently at different stages of clinical trials. Other methods focus on improving population coverage in target populations by rationally considering specificity and prevalence of the HLA proteins, though a proof-of-concept in humans has not been demonstrated yet. Overall, we expect immunoinformatics and bioprocessing methods to become a central part of the next-generation epitope-based vaccine development and production process.

  20. New USDA licensed avian influenza vaccine (rHVT-AI) for protection against H5 avian influenza and usage discussion

    Science.gov (United States)

    Recently, a new avian influenza vaccine was licensed by USDA for use in the United States for protection of commercial poultry. The vaccine is a recombinant herpes virus of turkeys expressing the hemagglutinin gene of an H5 subtype avian influenza virus belonging to the 2.2 clade of the H5N1 highly ...

  1. Comparative Immunogenicity of the Tetanus Toxoid and Recombinant Tetanus Vaccines in Mice, Rats, and Cynomolgus Monkeys

    Directory of Open Access Journals (Sweden)

    Rui Yu

    2016-06-01

    Full Text Available Tetanus is caused by the tetanus neurotoxin (TeNT and is one of the most dreaded diseases especially in the developing countries. The current vaccine against tetanus is based on an inactivated tetanus toxin, which is effective but has many drawbacks. In our previous study, we developed a recombinant tetanus vaccine based on protein TeNT-Hc, with clear advantages over the toxoid vaccine in terms of production, characterization, and homogeneity. In this study, the titers, growth extinction, and persistence of specific antibodies induced by the two types of vaccine in mice, rats, and cynomolgus monkeys were compared. The booster vaccination efficacy of the two types of vaccines at different time points and protection mechanism in animals were also compared. The recombinant tetanus vaccine induced persistent and better antibody titers and strengthened the immunity compared with the commercially available toxoid vaccine in animals. Our results provide a theoretical basis for the development of a safe and effective recombinant tetanus vaccine to enhance the immunity of adolescents and adults as a substitute for the current toxoid vaccine.

  2. Recombinant influenza virus expressing a fusion protein neutralizing epitope of respiratory syncytial virus (RSV) confers protection without vaccine-enhanced RSV disease.

    Science.gov (United States)

    Lee, Yu-Na; Hwang, Hye Suk; Kim, Min-Chul; Lee, Young-Tae; Lee, Jong Seok; Moore, Martin L; Kang, Sang-Moo

    2015-03-01

    Respiratory syncytial virus (RSV) is the leading cause of viral bronchiolitis in both children and the elderly. There is no vaccine available for the prevention of RSV infection. Here, we generated recombinant influenza virus (PR8/RSV.HA-F) expressing an RSV F243-294 neutralizing epitope in the hemagglutinin (HA) as a chimeric protein. Neutralizing antibodies specific for both RSV and influenza virus were induced by a single intranasal immunization of mice with PR8/RSV.HA-F. Mice that were immunized with PR8/RSV.HA-F were protected against RSV infection comparable with live RSV as evidenced by significant reduction of RSV lung viral loads, as well as the absence of lung eosinophilia and RSV-specific cellular immune responses. In contrast, formalin-inactivated RSV-immunized mice showed severe disease and high cellular immune responses in lungs after RSV infection. These findings support a concept that recombinant influenza virus carrying the RSV F243-294 neutralizing epitope can be developed as a promising RSV vaccine candidate which induces protective neutralizing antibodies but avoids lung immunopathology. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Recombinant Glycoprotein Vaccines for Human Immunodeficiency Virus-Infected Children and Their Effects on Viral Quasispecies

    OpenAIRE

    Essajee, Shaffiq M; Yogev, Ram; Pollack, Henry; Greenhouse, Bryan; Krasinski, Keith; Borkowsky, William

    2002-01-01

    In individuals infected with human immunodeficiency virus type 1 (HIV-1), specific immunity is associated with a more diverse viral repertoire and slower disease progression. Attempts to enhance antiviral immunity with therapeutic vaccination have shown that recombinant glycoprotein (RGP) vaccines are safe, well tolerated, and immunogenic, but the effect of RGP vaccines on the viral repertoire is unknown. We evaluated diversification of the viral envelope in 12 HIV-infected children who recei...

  4. Protection of sheep against Rift Valley fever virus and sheep poxvirus with a recombinant capripoxvirus vaccine.

    Science.gov (United States)

    Soi, Reuben K; Rurangirwa, Fred R; McGuire, Travis C; Rwambo, Paul M; DeMartini, James C; Crawford, Timothy B

    2010-12-01

    Rift Valley fever (RVF) is an epizootic viral disease of sheep that can be transmitted from sheep to humans, particularly by contact with aborted fetuses. A capripoxvirus (CPV) recombinant virus (rKS1/RVFV) was developed, which expressed the Rift Valley fever virus (RVFV) Gn and Gc glycoproteins. These expressed glycoproteins had the correct size and reacted with monoclonal antibodies (MAb) to native glycoproteins. Mice vaccinated with rKS1/RVFV were protected against RVFV challenge. Sheep vaccinated with rKS1/RVFV twice developed neutralizing antibodies and were significantly protected against RVFV and sheep poxvirus challenge. These findings further document the value of CPV recombinants as ruminant vaccine vectors and support the inclusion of RVFV genes encoding glycoproteins in multivalent recombinant vaccines to be used where RVF occurs.

  5. First field trial of a transmissible recombinant vaccine against myxomatosis and rabbit hemorrhagic disease.

    Science.gov (United States)

    Torres, J M; Sánchez, C; Ramírez, M A; Morales, M; Bárcena, J; Ferrer, J; Espuña, E; Pagès-Manté, A; Sánchez-Vizcaíno, J M

    2001-08-14

    As a novel approach for immunisation of wild rabbits, we have recently developed a transmissible vaccine against myxomatosis and rabbit hemorrhagic disease (RHD) based on a recombinant myxoma virus (MV) expressing the RHDV capsid protein [J. Virol. 74 (2000) 1114]. The efficacy and safety of the vaccine have been extensively evaluated under laboratory conditions. In this study, we report the first limited field trial of the candidate vaccine that was undertaken in an island of 34 Has containing a population of around 300 rabbits. Following administration by the subcutaneous route to 76 rabbits, the vaccine induced specific antibody responses against both myxomatosis and RHDV in all the inoculated rabbits. Furthermore, the recombinant virus exhibited a limited horizontal transmission capacity, promoting seroconversion of around 50% of the uninoculated rabbit population. No evidence of undesirable effects due to the recombinant virus field release was detected.

  6. Efficacy of recombinant birch pollen vaccine for the treatment of birch-allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Pauli, Gabrielle; Larsen, Tina H; Rak, Sabina

    2008-01-01

    BACKGROUND: Recombinant DNA technology has the potential to produce allergen-specific immunotherapy vaccines with defined composition. OBJECTIVE: To evaluate the effectiveness of a new recombinant birch pollen allergen vaccine in patients with birch pollen allergy. METHODS: A multicenter......, randomized, double-blind, placebo-controlled trial was undertaken to compare the following 3 vaccines in 134 adults with birch pollen allergy: recombinant birch pollen allergen vaccine (rBet v 1a), licensed birch pollen extract, natural purified birch pollen allergen (nBet v 1), and placebo. Patients...... = .0011; nBet v 1, P = .0025; birch extract, P = .0063), and skin sensitivities (P pollen seasons. Clinical improvement was accompanied by marked increases in Bet v 1-specific IgG levels, which were higher...

  7. Intranasal vaccination of recombinant H5N1 HA1 proteins fused with foldon and Fc induces strong mucosal immune responses with neutralizing activity: Implication for developing novel mucosal influenza vaccines.

    Science.gov (United States)

    Yu, Fei; Li, Ye; Guo, Yan; Wang, Lili; Yang, Jie; Zhao, Guangyu; Zhou, Yusen; Du, Lanying; Jiang, Shibo

    2015-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus remains a threat to public health because of its continued spread in poultry in some countries and its ability to infect humans with high mortality rate, calling for the development of effective and safe vaccines against H5N1 infection. Here, we constructed 4 candidate vaccines by fusing H5N1 hemagglutinin 1 (HA1) with foldon (HA1-Fd), human IgG Fc (HA1-Fc), foldon and Fc (HA1-FdFc) or His-tag (HA1-His). We then compared their ability to induce mucosal immune responses and neutralizing antibodies in the presence or absence of Poly(I:C) and CpG adjuvants via the intranasal route. Without an adjuvant, HA1-FdFc could elicit appreciable humoral immune responses and local mucosal IgA antibodies in immunized mice, while other vaccine candidates only induced background immune responses. In the presence of Poly(I:C) and CpG, both HA1-Fd and HA1-Fc elicited much higher levels of serum IgG and local mucosal IgA antibodies than HA1-His. Poly(I:C) and CpG could also augment the neutralizing antibody responses induced by these 4 vaccine candidates in the order of HA1-FdFc > HA1-Fc > HA1-Fd > HA1-His. These results suggest that both Fd and Fc potentiate the immunogenicity of the recombinant HA1 protein and that Poly(I:C) and CpG serve as efficient mucosal adjuvants in promoting efficacy of these vaccine candidates to induce strong systemic and local antibody responses and potent neutralizing antibodies, providing a useful strategy to develop effective and safe mucosal H5N1 vaccines.

  8. Recombinant Salmonella enterica Serovar Typhimurium as a Vaccine Vector for HIV-1 Gag

    Directory of Open Access Journals (Sweden)

    Nyasha Chin'ombe

    2013-08-01

    Full Text Available The HIV/AIDS epidemic remains a global health problem, especially in Sub-Saharan Africa. An effective HIV-1 vaccine is therefore badly required to mitigate this ever-expanding problem. Since HIV-1 infects its host through the mucosal surface, a vaccine for the virus needs to trigger mucosal as well as systemic immune responses. Oral, attenuated recombinant Salmonella vaccines offer this potential of delivering HIV-1 antigens to both the mucosal and systemic compartments of the immune system. So far, a number of pre-clinical studies have been performed, in which HIV-1 Gag, a highly conserved viral antigen possessing both T- and B-cell epitopes, was successfully delivered by recombinant Salmonella vaccines and, in most cases, induced HIV-specific immune responses. In this review, the potential use of Salmonella enterica serovar Typhimurium as a live vaccine vector for HIV-1 Gag is explored.

  9. Vaccination with recombinant aspartic hemoglobinase reduces parasite load and blood loss after hookworm infection in dogs.

    Directory of Open Access Journals (Sweden)

    Alex Loukas

    2005-10-01

    Full Text Available Hookworms infect 730 million people in developing countries where they are a leading cause of intestinal blood loss and iron-deficiency anemia. At the site of attachment to the host, adult hookworms ingest blood and lyse the erythrocytes to release hemoglobin. The parasites subsequently digest hemoglobin in their intestines using a cascade of proteolysis that begins with the Ancylostoma caninum aspartic protease 1, APR-1.We show that vaccination of dogs with recombinant Ac-APR-1 induced antibody and cellular responses and resulted in significantly reduced hookworm burdens (p = 0.056 and fecal egg counts (p = 0.018 in vaccinated dogs compared to control dogs after challenge with infective larvae of A. caninum. Most importantly, vaccinated dogs were protected against blood loss (p = 0.049 and most did not develop anemia, the major pathologic sequela of hookworm disease. IgG from vaccinated animals decreased the catalytic activity of the recombinant enzyme in vitro and the antibody bound in situ to the intestines of worms recovered from vaccinated dogs, implying that the vaccine interferes with the parasite's ability to digest blood.To the best of our knowledge, this is the first report of a recombinant vaccine from a hematophagous parasite that significantly reduces both parasite load and blood loss, and it supports the development of APR-1 as a human hookworm vaccine.

  10. A Novel Rabies Vaccine Based on a Recombinant Parainfluenza Virus 5 Expressing Rabies Virus Glycoprotein

    Science.gov (United States)

    Chen, Zhenhai; Zhou, Ming; Gao, Xiudan; Zhang, Guoqing; Ren, Guiping; Gnanadurai, Clement W.

    2013-01-01

    Untreated rabies virus (RABV) infection leads to death. Vaccine and postexposure treatment have been effective in preventing RABV infection. However, due to cost, rabies vaccination and treatment have not been widely used in developing countries. There are 55,000 human death caused by rabies annually. An efficacious and cost-effective rabies vaccine is needed. Parainfluenza virus 5 (PIV5) is thought to contribute to kennel cough, and kennel cough vaccines containing live PIV5 have been used in dogs for many years. In this work, a PIV5-vectored rabies vaccine was tested in mice. A recombinant PIV5 encoding RABV glycoprotein (G) (rPIV5-RV-G) was administered to mice via intranasal (i.n.), intramuscular (i.m.), and oral inoculation. The vaccinated mice were challenged with a 50% lethal challenge dose (LD50) of RABV challenge virus standard 24 (CVS-24) intracerebrally. A single dose of 106 PFU of rPIV5-RV-G was sufficient for 100% protection when administered via the i.n. route. The mice vaccinated with a single dose of 108 PFU of rPIV5-RV-G via the i.m. route showed very robust protection (90% to 100%). Intriguingly, the mice vaccinated orally with a single dose of 108 PFU of rPIV5-RV-G showed a 50% survival rate, which is comparable to the 60% survival rate among mice inoculated with an attenuated rabies vaccine strain, recombinant LBNSE. This is first report of an orally effective rabies vaccine candidate in animals based on PIV5 as a vector. These results indicate that rPIV5-RV-G is an excellent candidate for a new generation of recombinant rabies vaccine for humans and animals and PIV5 is a potential vector for oral vaccines. PMID:23269806

  11. A novel rabies vaccine based on a recombinant parainfluenza virus 5 expressing rabies virus glycoprotein.

    Science.gov (United States)

    Chen, Zhenhai; Zhou, Ming; Gao, Xiudan; Zhang, Guoqing; Ren, Guiping; Gnanadurai, Clement W; Fu, Zhen F; He, Biao

    2013-03-01

    Untreated rabies virus (RABV) infection leads to death. Vaccine and postexposure treatment have been effective in preventing RABV infection. However, due to cost, rabies vaccination and treatment have not been widely used in developing countries. There are 55,000 human death caused by rabies annually. An efficacious and cost-effective rabies vaccine is needed. Parainfluenza virus 5 (PIV5) is thought to contribute to kennel cough, and kennel cough vaccines containing live PIV5 have been used in dogs for many years. In this work, a PIV5-vectored rabies vaccine was tested in mice. A recombinant PIV5 encoding RABV glycoprotein (G) (rPIV5-RV-G) was administered to mice via intranasal (i.n.), intramuscular (i.m.), and oral inoculation. The vaccinated mice were challenged with a 50% lethal challenge dose (LD(50)) of RABV challenge virus standard 24 (CVS-24) intracerebrally. A single dose of 10(6) PFU of rPIV5-RV-G was sufficient for 100% protection when administered via the i.n. route. The mice vaccinated with a single dose of 10(8) PFU of rPIV5-RV-G via the i.m. route showed very robust protection (90% to 100%). Intriguingly, the mice vaccinated orally with a single dose of 10(8) PFU of rPIV5-RV-G showed a 50% survival rate, which is comparable to the 60% survival rate among mice inoculated with an attenuated rabies vaccine strain, recombinant LBNSE. This is first report of an orally effective rabies vaccine candidate in animals based on PIV5 as a vector. These results indicate that rPIV5-RV-G is an excellent candidate for a new generation of recombinant rabies vaccine for humans and animals and PIV5 is a potential vector for oral vaccines.

  12. Composition of hemagglutinin and neuraminidase affects the antigen yield of influenza A(H1N1)pdm09 candidate vaccine viruses.

    Science.gov (United States)

    Shirakura, Masayuki; Kawaguchi, Akira; Tashiro, Masato; Nobusawa, Eri

    2013-01-01

    To improve the hemagglutinin (HA) antigen yield of influenza A(H1N1)pdm09 candidate vaccine viruses, we generated 7:1, 6:2, and 5:3 genetic reassortant viruses between wild-type (H1N1)pdm09 (A/California/7/2009) (Cal7) and a high-yielding master virus, A/Puerto Rico/8/34 (PR8). These viruses contained the HA; HA and neuraminidase (NA); and HA, NA, and M genes, respectively, derived from Cal7, on a PR8 backbone. The influence of the amino acid residue at position 223 in Cal7 HA on virus growth and HA antigen yield differed between these reassortant viruses. NIIDRG-7, a 7:1 virus possessing arginine at position 223, exhibited a 10-fold higher 50% egg infectious dose (EID(50)) (10.0 log(10)EID(50)/ml) than the 5:3 and 6:2 viruses. It also had 1.5- to 3-fold higher protein (13.8 μg/ml of allantoic fluids) and HA antigen (4.1 μg/ml of allantoic fluids) yields than the 5:3 and 6:2 viruses, which possessed identical Cal7 HA proteins. However, the HA antigen yield of the other 7:1 virus, which possessed glutamine at position 223 was 60% of that of NIIDRG-7. In addition, a novel 6:2 virus possessing Cal7 HA and the NA of A/Wisconsin/10/98 (a triple reassortant swine-like H1N1 virus), produced 107% of the HA yield of NIIDRG-7. In this study, we showed that the balance between HA and NA in the influenza A(H1N1)pdm09 virus affects its protein and antigen yield.

  13. Immunization against Rumen Methanogenesis by Vaccination with a New Recombinant Protein.

    Directory of Open Access Journals (Sweden)

    Litai Zhang

    Full Text Available Vaccination through recombinant proteins against rumen methanogenesis provides a mitigation approach to reduce enteric methane (CH4 emissions in ruminants. The objective of present study was to evaluate the in vivo efficacy of a new vaccine candidate protein (EhaF on methanogenesis and microbial population in the rumen of goats. We amplified the gene mru 1407 encoding protein EhaF using fresh rumen fluid samples of mature goats and successfully expressed recombinant protein (EhaF in Escherichia coli Rosetta. This product was evaluated using 12 mature goats with half for control and other half injected with 400ug/goat the purified recombinant protein in day 1 and two subsequent booster immunizations in day 35 and 49. All measurements were undertaken from 63 to 68 days after the initial vaccination, with CH4 emissions determined using respiration calorimeter chambers. The results showed that the vaccination caused intensive immune responses in serum and saliva, although it had no significant effect on total enteric CH4 emissions and methanogen population in the rumen, when compared with the control goats. However, the vaccination altered the composition of rumen bacteria, especially the abundance of main phylum Firmicutes and genus Prevotella. The results indicate that protein EhaF might not be an effective vaccine to reduce enteric CH4 emissions but our vaccine have potential to influence the rumen ecosystem of goats.

  14. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    Science.gov (United States)

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-07

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Comparison of oral and intramuscular recombinant canine distemper vaccination in African wild dogs (Lycaon pictus).

    Science.gov (United States)

    Connolly, Maren; Thomas, Patrick; Woodroffe, Rosie; Raphael, Bonnie L

    2013-12-01

    A series of three doses of recombinant canary-pox-vectored canine distemper virus vaccine was administered at 1-mo intervals, orally (n = 8) or intramuscularly (n = 13), to 21 previously unvaccinated juvenile African wild dogs (Lycaon pictus) at the Wildlife Conservation Society's Bronx Zoo. Titers were measured by serum neutralization at each vaccination and at intervals over a period of 3.5-21.5 mo after the initial vaccination. All postvaccination titers were negative for orally vaccinated animals at all sampling time points. Of the animals that received intramuscular vaccinations, 100% had presumed protective titers by the end of the course of vaccination, but only 50% of those sampled at 6.5 mo postvaccination had positive titers. None of the three animals sampled at 21.5 mo postvaccination had positive titers.

  16. Increased immunogenicity of recombinant Ad35-based malaria vaccine through formulation with aluminium phosphate adjuvant.

    Science.gov (United States)

    Ophorst, Olga J A E; Radosević, Katarina; Klap, Jaco M; Sijtsma, Jeroen; Gillissen, Gert; Mintardjo, Ratna; van Ooij, Mark J M; Holterman, Lennart; Companjen, Arjen; Goudsmit, Jaap; Havenga, Menzo J E

    2007-08-29

    Previously, we have shown the potency of recombinant Adenovirus serotype 35 viral vaccines (rAd35) to induce strong immune response against the circumsporozoite protein (CS) of the plasmodium parasite. To further optimize immunogenicity of Ad35-based malaria vaccines we formulated rAd35.CS vaccine with aluminium phosphate adjuvant (AlPO(4)). In contrast to the conventional protein based vaccines no absorption to aluminium adjuvant was observed and rAd35 viral in vitro infectivity in mammalian cells was preserved. Immunization with Ad35.CS formulated with AlPO(4) resulted in significantly higher CS specific T and B cell responses in mice upon either single or prime-boost vaccination regimens as compared to rAd35.CS alone. With these results we report for the first time the feasibility of using an AlPO(4) adjuvant to increase the potency of a live adenovirus serotype 35-based vaccine.

  17. Recent advances in recombinant protein-based malaria vaccines

    DEFF Research Database (Denmark)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito...... vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard......, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite...

  18. Bivalent inactivated hepatitis A and recombinant hepatitis B vaccine.

    Science.gov (United States)

    Beran, Jiri

    2007-12-01

    Hepatitis A and B remain serious global public health problems. Monovalent vaccines against hepatitis A and B have been available for many years. Since 1996, licenses have been gradually introduced for different formulations and immunization schedules of the first combined vaccines against both diseases. Twinrix Adult (with conventional and accelerated schedules) is available for the immunization of individuals aged 16 years or older in Europe and 18 years or older the USA. Twinrix Pediatric, with its three-dose schedule, and AmBirix, with its two-dose schedule, are licensed in Europe for ages 1-15 years. These vaccines offer a single injection for satisfactory protection against hepatitis A and B and an excellent safety and reactogenicity profile in comparison with monovalent vaccines. This article focuses on immunogenicity of the vaccines and proposes expert opinion and future directions in this field.

  19. Use of a Recombinant Gamma-2 Herpesvirus Vaccine Vector against Dengue Virus in Rhesus Monkeys.

    Science.gov (United States)

    Bischof, Georg F; Magnani, Diogo M; Ricciardi, Michael; Shin, Young C; Domingues, Aline; Bailey, Varian K; Gonzalez-Nieto, Lucas; Rakasz, Eva G; Watkins, David I; Desrosiers, Ronald C

    2017-08-15

    Research on vaccine approaches that can provide long-term protection against dengue virus infection is needed. Here we describe the construction, immunogenicity, and preliminary information on the protective capacity of recombinant, replication-competent rhesus monkey rhadinovirus (RRV), a persisting herpesvirus. One RRV construct expressed nonstructural protein 5 (NS5), while a second recombinant expressed a soluble variant of the E protein (E85) of dengue virus 2 (DENV2). Four rhesus macaques received a single vaccination with a mixture of both recombinant RRVs and were subsequently challenged 19 weeks later with 1 × 10 5 PFU of DENV2. During the vaccine phase, plasma of all vaccinated monkeys showed neutralizing activity against DENV2. Cellular immune responses against NS5 were also elicited, as evidenced by major histocompatibility complex class I (MHC-I) tetramer staining in the one vaccinated monkey that was Mamu-A*01 positive. Unlike two of two unvaccinated controls, two of the four vaccinated monkeys showed no detectable viral RNA sequences in plasma after challenge. One of these two monkeys also showed no anamnestic increases in antibody levels following challenge and thus appeared to be protected against the acquisition of DENV2 following high-dose challenge. Continued study will be needed to evaluate the performance of herpesviral and other persisting vectors for achieving long-term protection against dengue virus infection. IMPORTANCE Continuing studies of vaccine approaches against dengue virus (DENV) infection are warranted, particularly ones that may provide long-term immunity against all four serotypes. Here we investigated whether recombinant rhesus monkey rhadinovirus (RRV) could be used as a vaccine against DENV2 infection in rhesus monkeys. Upon vaccination, all animals generated antibodies capable of neutralizing DENV2. Two of four vaccinated monkeys showed no detectable viral RNA after subsequent high-dose DENV2 challenge at 19 weeks

  20. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs.

    Science.gov (United States)

    Zhou, Ming; Wang, Lei; Zhou, Songqin; Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F

    2015-11-17

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs.

  1. Different Levels of Immunogenicity of Two Strains of Fowlpox Virus as Recombinant Vaccine Vectors Eliciting T-Cell Responses in Heterologous Prime-Boost Vaccination Strategies

    OpenAIRE

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T.; Richard J Anderson; Howard, M. Keith; Schneider, Jörg; Skinner, Michael A.

    2006-01-01

    The FP9 strain of Fowlpox virus has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recom...

  2. Comparative evaluation of three capripoxvirus-vectored peste des petits ruminants vaccines.

    Science.gov (United States)

    Fakri, F; Bamouh, Z; Ghzal, F; Baha, W; Tadlaoui, K; Fihri, O Fassi; Chen, W; Bu, Z; Elharrak, M

    2017-11-30

    Sheep and goat pox (SGP) with peste des petits ruminants (PPR) are transboundary viral diseases of small ruminants that cause huge economic losses. Recombinant vaccines that can protect from both infections have been reported as a promising solution for the future. SGP was used as a vector to express two structural proteins hemagglutinin or the fusion protein of PPRV. We compared immunity conferred by recombinant capripoxvirus vaccines expressing H or F or both HF. Safety and efficacy were evaluated in goats and sheep. Two vaccine doses were tested in sheep, 104.5TCDI50 in 1ml dose was retained for the further experiment. Results showed that the recombinant HF confers an earlier and stronger immunity against both SGP and PPR. This recombinant vaccine protect also against the disease in exposed and unexposed sheep. The potential Differentiating Infected from Vaccinated Animals of recombinant vaccines is of great advantage in any eradication program. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A recombinant Hendra virus G glycoprotein subunit vaccine protects nonhuman primates against Hendra virus challenge.

    Science.gov (United States)

    Mire, Chad E; Geisbert, Joan B; Agans, Krystle N; Feng, Yan-Ru; Fenton, Karla A; Bossart, Katharine N; Yan, Lianying; Chan, Yee-Peng; Broder, Christopher C; Geisbert, Thomas W

    2014-05-01

    Hendra virus (HeV) is a zoonotic emerging virus belonging to the family Paramyxoviridae. HeV causes severe and often fatal respiratory and/or neurologic disease in both animals and humans. Currently, there are no licensed vaccines or antiviral drugs approved for human use. A number of animal models have been developed for studying HeV infection, with the African green monkey (AGM) appearing to most faithfully reproduce the human disease. Here, we assessed the utility of a newly developed recombinant subunit vaccine based on the HeV attachment (G) glycoprotein in the AGM model. Four AGMs were vaccinated with two doses of the HeV vaccine (sGHeV) containing Alhydrogel, four AGMs received the sGHeV with Alhydrogel and CpG, and four control animals did not receive the sGHeV vaccine. Animals were challenged with a high dose of infectious HeV 21 days after the boost vaccination. None of the eight specifically vaccinated animals showed any evidence of clinical illness and survived the challenge. All four controls became severely ill with symptoms consistent with HeV infection, and three of the four animals succumbed 8 days after exposure. Success of the recombinant subunit vaccine in AGMs provides pivotal data in supporting its further preclinical development for potential human use. A Hendra virus attachment (G) glycoprotein subunit vaccine was tested in nonhuman primates to assess its ability to protect them from a lethal infection with Hendra virus. It was found that all vaccinated African green monkeys were completely protected against subsequent Hendra virus infection and disease. The success of this new subunit vaccine in nonhuman primates provides critical data in support of its further development for future human use.

  4. Enteric Immunization of Mice Against Influenza with Recombinant Vaccinia

    Science.gov (United States)

    Meitin, Catherine A.; Bender, Bradley S.; Small, Parker A., Jr.

    1994-11-01

    Intrajejunal administration to mice of a recombinant vaccinia virus containing the influenza virus hemagglutinin gene induced IgA antibody in nasal, gut, and vaginal secretions. It also induced IgG antibody in serum and cell-mediated immunity. The immunization provided significant protection against an influenza virus challenge. This work suggests that enteric-coated recombinant vaccinia could be an orally administered, inexpensive, multivalent, temperature-stable, safe, and effective vaccine for children that could be particularly useful in developing nations, where multiple injections are not easily administered. Oral administration of vaccines should also reduce children's fear of shots at the doctor's office.

  5. Vectors based on modified vaccinia Ankara expressing influenza H5N1 hemagglutinin induce substantial cross-clade protective immunity.

    Directory of Open Access Journals (Sweden)

    Annett Hessel

    Full Text Available BACKGROUND: New highly pathogenic H5N1 influenza viruses are continuing to evolve with a potential threat for an influenza pandemic. So far, the H5N1 influenza viruses have not widely circulated in humans and therefore constitute a high risk for the non immune population. The aim of this study was to evaluate the cross-protective potential of the hemagglutinins of five H5N1 strains of divergent clades using a live attenuated modified vaccinia Ankara (MVA vector vaccine. METHODOLOGY/PRINCIPAL FINDINGS: The replication-deficient MVA virus was used to express influenza hemagglutinin (HA proteins. Specifically, recombinant MVA viruses expressing the HA genes of the clade 1 virus A/Vietnam/1203/2004 (VN/1203, the clade 2.1.3 virus A/Indonesia/5/2005 (IN5/05, the clade 2.2 viruses A/turkey/Turkey/1/2005 (TT01/05 and A/chicken/Egypt/3/2006 (CE/06, and the clade 2.3.4 virus A/Anhui/1/2005 (AH1/05 were constructed. These experimental live vaccines were assessed in a lethal mouse model. Mice vaccinated with the VN/1203 hemagglutinin-expressing MVA induced excellent protection against all the above mentioned clades. Also mice vaccinated with the IN5/05 HA expressing MVA induced substantial protection against homologous and heterologous AH1/05 challenge. After vaccination with the CE/06 HA expressing MVA, mice were fully protected against clade 2.2 challenge and partially protected against challenge of other clades. Mice vaccinated with AH1/05 HA expressing MVA vectors were only partially protected against homologous and heterologous challenge. The live vaccines induced substantial amounts of neutralizing antibodies, mainly directed against the homologous challenge virus, and high levels of HA-specific IFN-γ secreting CD4 and CD8 T-cells against epitopes conserved among the H5 clades and subclades. CONCLUSIONS/SIGNIFICANCE: The highest level of cross-protection was induced by the HA derived from the VN/1203 strain, suggesting that pandemic H5 vaccines

  6. Recent advances in recombinant protein-based malaria vaccines.

    Science.gov (United States)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Development of a dual recombinant vaccine to protect small ruminants against peste-des-petits-ruminants virus and capripoxvirus infections.

    Science.gov (United States)

    Berhe, G; Minet, C; Le Goff, C; Barrett, T; Ngangnou, A; Grillet, C; Libeau, G; Fleming, M; Black, D N; Diallo, A

    2003-01-01

    A recombinant capripoxvirus vaccine containing a cDNA of the peste-des-petits-ruminants virus (PPRV) fusion protein gene was constructed. A quick and efficient method was used to select a highly purified recombinant virus clone. A trial showed that a dose of this recombinant as low as 0.1 PFU protected goats against challenge with a virulent PPRV strain.

  8. Development of a Dual Recombinant Vaccine To Protect Small Ruminants against Peste-des-Petits-Ruminants Virus and Capripoxvirus Infections

    OpenAIRE

    Berhe, G.; Minet, C.; Le Goff, C.; Barrett, T; Ngangnou, A.; Grillet, C.; Libeau, G.; Fleming, M; Black, D. N.; Diallo, A.

    2003-01-01

    A recombinant capripoxvirus vaccine containing a cDNA of the peste-des-petits-ruminants virus (PPRV) fusion protein gene was constructed. A quick and efficient method was used to select a highly purified recombinant virus clone. A trial showed that a dose of this recombinant as low as 0.1 PFU protected goats against challenge with a virulent PPRV strain.

  9. Mucosal immune response in broilers following vaccination with inactivated influenza and recombinant Bacillus subtilis

    Science.gov (United States)

    Mucosal and systemic immunity were observed in broilers vaccinated with mannosylated chitosan adjuvated (MCA) inactivated A/Turkey/Virginia/158512/2002 (H7N2) and administered with and without recombinant Bacillus subtilis to elicit heterologous influenza strain protection. Previously, mucosal immu...

  10. Recombinant canine distemper virus serves as bivalent live vaccine against rabies and canine distemper.

    Science.gov (United States)

    Wang, Xijun; Feng, Na; Ge, Jinying; Shuai, Lei; Peng, Liyan; Gao, Yuwei; Yang, Songtao; Xia, Xianzhu; Bu, Zhigao

    2012-07-20

    Effective, safe, and affordable rabies vaccines are still being sought. Attenuated live vaccine has been widely used to protect carnivores from canine distemper. In this study, we generated a recombinant canine distemper virus (CDV) vaccine strain, rCDV-RVG, expressing the rabies virus glycoprotein (RVG) by using reverse genetics. The recombinant virus rCDV-RVG retained growth properties similar to those of vector CDV in Vero cell culture. Animal studies demonstrated that rCDV-RVG was safe in mice and dogs. Mice inoculated intracerebrally or intramuscularly with rCDV-RVG showed no apparent signs of disease and developed a strong rabies virus (RABV) neutralizing antibody response, which completely protected mice from challenge with a lethal dose of street virus. Canine studies showed that vaccination with rCDV-RVG induced strong and long-lasting virus neutralizing antibody responses to RABV and CDV. This is the first study demonstrating that recombinant CDV has the potential to serve as bivalent live vaccine against rabies and canine distemper in animals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Comparison of Immunoprotection of Leptospira Recombinant Proteins with conventional vaccine in experimental animals.

    Science.gov (United States)

    Parthiban, M; Kumar, S Senthil; Balachandran, C; Kumanan, K; Aarthi, K S; Nireesha, G

    2015-12-01

    Leptospirosis is a bacterial disease caused by bacteria of the genus Leptospira affecting humans and animals. Untreated leptospirosis may result in severe kidney damage, meningitis, liver failure, respiratory distress, and even death. Virulent leptospirosis can rapidly enter kidney fibroblasts and induce a programmed cell death. Thus, it is a challenge for immunologists to develop an effective and safe leptospirosis vaccine. Here, we compared the commercial canine leptospira vaccine and recombinant proteins (OmpL1 and LipL41) with and without adjuvant in terms of immune response and challenge studies in hamsters and immune response studies alone in experimental dogs. The outer membrane proteins viz., lipL41 and OmpL1 of leptospira interrogans serovars icterohaemorrhagiae were amplified. The primers were designed in such a way that amplified products of OmpL1 and lipL41 were ligated and cloned simultaneously into a single vector. The cloned products were expressed in E. coli BL21 cells. The immunoprotection studies were conducted for both recombinant proteins and commercial vaccine. The challenge experiment studies revealed that combination of both rLip41 and rOmpL1 and commercial vaccine gave 83% and 87% protection, respectively. Histopathological investigation revealed mild sub lethal changes were noticed in liver and kidney in commercially vaccinated group alone. The immune responses against recombinant leptospiral proteins were also demonstrated in dogs.

  12. Long-term persistence of immunity after vaccination of pre-adolescents with low doses of a recombinant hepatitis B vaccine

    OpenAIRE

    Gilca, Vladimir; De Serres, Gaston; Boulianne, Nicole; Murphy, Donald; Ouakki, Manale; De Wals, Phillipe; Trudeau, Gisele; Massé, Richard; Dionne, Marc

    2013-01-01

    Background and aims: Recent studies have shown no detectable antibodies and no response to a challenge dose of vaccine 10–20 y after receiving low doses (2.5–5 µg) of recombinant hepatitis B vaccine during first months of life. Little information is available on long-term persistence of immunity after vaccinating pre-adolescents with low doses of hepatitis B vaccine.

  13. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens

    Science.gov (United States)

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on specific pathogen free (SPF) birds immunized with 0.2 ...

  14. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines

    Science.gov (United States)

    Ferreira, Marcos Roberto A.; Moreira, Gustavo Marçal S. G.; da Cunha, Carlos Eduardo P.; Mendonça, Marcelo; Salvarani, Felipe M.; Moreira, Ângela N.; Conceição, Fabricio R.

    2016-01-01

    Clostridium perfringens is a spore-forming, commensal, ubiquitous bacterium that is present in the gastrointestinal tract of healthy humans and animals. This bacterium produces up to 18 toxins. The species is classified into five toxinotypes (A–E) according to the toxins that the bacterium produces: alpha, beta, epsilon, or iota. Each of these toxinotypes is associated with myriad different, frequently fatal, illnesses that affect a range of farm animals and humans. Alpha, beta, and epsilon toxins are the main causes of disease. Vaccinations that generate neutralizing antibodies are the most common prophylactic measures that are currently in use. These vaccines consist of toxoids that are obtained from C. perfringens cultures. Recombinant vaccines offer several advantages over conventional toxoids, especially in terms of the production process. As such, they are steadily gaining ground as a promising vaccination solution. This review discusses the main strategies that are currently used to produce recombinant vaccines containing alpha, beta, and epsilon toxins of C. perfringens, as well as the potential application of these molecules as vaccines for mammalian livestock animals. PMID:27879630

  15. Construction and Characterization of Human Rotavirus Recombinant VP8* Subunit Parenteral Vaccine Candidates

    Science.gov (United States)

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W.; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka

    2012-01-01

    Two currently licensed live oral rotavirus vaccines (Rotarix® and RotaTeq®) are highly efficacious against severe rotavirus diarrhea. However, the efficacy of such vaccines in selected low-income African and Asian countries is much lower than that in middle or high-income countries. Additionally, these two vaccines have recently been associated with rare case of intussusception in vaccinated infants. We developed a novel recombinant subunit parenteral rotavirus vaccine which may be more effective in low-income countries and also avert the potential problem of intussusception. Truncated recombinant VP8* (ΔVP8*) protein of human rotavirus strain Wa P[8], DS-1 P[4] or 1076 P[6] expressed in E. coli was highly soluble and was generated in high yield. Guinea pigs hyperimmunized intramuscularly with each of the ΔVP8* proteins (i.e., (P[8], P[4] or P[6]) developed high levels of homotypic as well as variable levels of heterotypic neutralizing antibodies. Moreover, the selected ΔVP8* proteins when administered to mice at a clinically relevant dosage, route and schedule, elicited high levels of serum anti-VP8* IgG and/or neutralizing antibodies. Our data indicated that the ΔVP8* proteins may be a plausible additional candidate as new parenteral rotavirus vaccines. PMID:22885016

  16. Peptide-based synthetic recombinant vaccines with anti-viral efficacy.

    Science.gov (United States)

    Arnon, R; Tarrab-Hazdai, R; Ben-Yedidia, T

    2001-01-01

    Synthetic recombinant vaccines are constructs in which a synthetic oligonucleotide coding for a protective epitope is inserted into an adequate gene for expression of the epitope. We report the results obtained using recombinant flagella of Salmonella vaccine strain expressing epitopes of influenza virus or of the parasite Schistosoma mansoni. In the case of influenza virus, three conserved epitopes of the haemagglutinin and the nucleoprotein of the virus inducing B- and T-cell immune response, were expressed and the flagella were used for intranasal immunization without any adjuvant. Both humoral and cellular immune responses specific to the virus induced in mice cross-strain long-term protection against challenge infection. Aged mice were also able to resist infection. For the design of a human influenza vaccine, epitopes recognized by the HLAs prevalent in Caucasian populations were used, and the resulting vaccine was evaluated in human/mouse radiation chimaera in which human PBMC are functionally engrafted. The vaccinated mice demonstrated efficient clearance of the virus after challenge and resistance to lethal infection. In the case of the parasitic disease schistosomiasis, a 14-residue peptide denoted 9B peptide 1 was expressed in the flagella. Intranasal vaccination of mice with this construct, without the use of adjuvant, resulted in 40% protection against challenge infection. Copyright 2001 The International Association for Biologicals.

  17. The Last Ten Years of Advancements in Plant-Derived Recombinant Vaccines against Hepatitis B

    Directory of Open Access Journals (Sweden)

    Young Hee Joung

    2016-10-01

    Full Text Available Disease prevention through vaccination is considered to be the greatest contribution to public health over the past century. Every year more than 100 million children are vaccinated with the standard World Health Organization (WHO-recommended vaccines including hepatitis B (HepB. HepB is the most serious type of liver infection caused by the hepatitis B virus (HBV, however, it can be prevented by currently available recombinant vaccine, which has an excellent record of safety and effectiveness. To date, recombinant vaccines are produced in many systems of bacteria, yeast, insect, and mammalian and plant cells. Among these platforms, the use of plant cells has received considerable attention in terms of intrinsic safety, scalability, and appropriate modification of target proteins. Research groups worldwide have attempted to develop more efficacious plant-derived vaccines for over 30 diseases, most frequently HepB and influenza. More inspiring, approximately 12 plant-made antigens have already been tested in clinical trials, with successful outcomes. In this study, the latest information from the last 10 years on plant-derived antigens, especially hepatitis B surface antigen, approaches are reviewed and breakthroughs regarding the weak points are also discussed.

  18. Construction and characterization of human rotavirus recombinant VP8* subunit parenteral vaccine candidates.

    Science.gov (United States)

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka

    2012-09-21

    Two currently licensed live oral rotavirus vaccines (Rotarix® and RotaTeq®) are highly efficacious against severe rotavirus diarrhea. However, the efficacy of such vaccines in selected low-income African and Asian countries is much lower than that in middle or high-income countries. Additionally, these two vaccines have recently been associated with rare case of intussusception in vaccinated infants. We developed a novel recombinant subunit parenteral rotavirus vaccine which may be more effective in low-income countries and also avert the potential problem of intussusception. Truncated recombinant VP8* (ΔVP8*) protein of human rotavirus strain Wa P[8], DS-1 P[4] or 1076 P[6] expressed in Escherichia coli was highly soluble and was generated in high yield. Guinea pigs hyperimmunized intramuscularly with each of the ΔVP8* proteins (i.e., P[8], P[4] or P[6]) developed high levels of homotypic as well as variable levels of heterotypic neutralizing antibodies. Moreover, the selected ΔVP8* proteins when administered to mice at a clinically relevant dosage, route and schedule, elicited high levels of serum anti-VP8* IgG and/or neutralizing antibodies. Our data indicated that the ΔVP8* proteins may be a plausible additional candidate as new parenteral rotavirus vaccines. Published by Elsevier Ltd.

  19. Safety and immunogenicity of indigenous recombinant hepatitis B vaccine (Shanvac-B) in comparison with commercially available vaccine.

    Science.gov (United States)

    Joshi, N; Kumar, A; Sreenivas, D V; Palan, S; Nagarjuna Kumar, Y R

    2000-01-01

    To assess the clinical safety, reactogenicity and immunogenicity of an indigenously developed recombinant hepatitis B vaccine (Shanvac-B; Shantha Biotechnics) and to compare it with another commercially available vaccine (Engerix-B, SmithKline Beecham) in healthy adults. 120 healthy adults randomLy received 20 micrograms of either Engerix-B (Group A; n = 61) or Shanvac-B (Group B; n = 59) in 0, 1, 2 months schedule. Anti HBs was assessed using commercially available AUSAB kits (Abbott Laboratories) one month after each dose. Protective seroconversion rates after first, second and third dose were 10%, 62.7% and 91.4%, respectively in Group A and 22.4%, 68.9% and 96.4% in Group B, respectively. The geometric mean titer (GMT) after the third dose was significantly high in Group B (419 mIU/mL) than in Group A (140 mIU/mL; p < 0.001). The GMT was significantly higher in women in both the groups. The indigenous vaccine was found to be clinically safe and well tolerated without significant side effects. The recombinant hepatitis B vaccine (Shanvac-B) developed in India is safe, well tolerated, and highly immunogenic, with high seroconversion and GMT response.

  20. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Z.Q. [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Greenberg, L. [Centers for Disease Control and Prevention, Atlanta, GA (United States); Ertl, H.C., E-mail: ertl@wistar.upenn.edu [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Rupprecht, C.E. [The Global Alliance for Rabies Control, Manhattan, KS (United States); Ross University School of Veterinary Medicine, Basseterre (Saint Kitts and Nevis)

    2014-02-15

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.

  1. Oral vaccination and protection of red foxes (Vulpes vulpes) against rabies using ONRAB, an adenovirus-rabies recombinant vaccine.

    Science.gov (United States)

    Brown, L J; Rosatte, R C; Fehlner-Gardiner, C; Bachmann, P; Ellison, J A; Jackson, F R; Taylor, J S; Davies, C; Donovan, D

    2014-02-12

    Twenty-seven red foxes (Vulpes vulpes) were each offered a bait containing ONRAB, a recombinant oral rabies vaccine that uses a human adenovirus vector to express the immunogenic rabies virus glycoprotein; 10 controls received no vaccine baits. Serum samples collected from all foxes before treatment, and each week post-treatment for 16 weeks, were tested for the presence of rabies virus neutralizing antibody (RVNA). In the bait group, a fox was considered a responder to vaccination if serum samples from 3 or more consecutive weeks had RVNA ≥0.5 IU/ml. Using this criterion, 79% of adult foxes (11/14) and 46% of juveniles (6/13) responded to vaccination with ONRAB. Serum RVNA of adults first tested positive (≥0.5 IU/ml) between weeks 1 and 3, about 4 weeks earlier than in juveniles. Adults also responded with higher levels of RVNA and these levels were maintained longer. Serum samples from juveniles tested positive for 1-4 consecutive weeks; in adults the range was 2-15 weeks, with almost half of adults maintaining titres above 0.5 IU/ml for 9 or more consecutive weeks. Based on the kinetics of the antibody response to ONRAB, the best time to sample sera of wild adult foxes for evidence of vaccination is 7-11 weeks following bait distribution. Thirty-four foxes (25 ONRAB, 9 controls) were challenged with vulpine street virus 547 days post-vaccination. All controls developed rabies whereas eight of 13 adult vaccinates (62%) and four of 12 juvenile vaccinates (33%) survived. All foxes classed as non-responders to vaccination developed rabies. Of foxes considered responders to vaccination, 80% of adults (8/10) and 67% of juveniles (4/6) survived challenge. The duration of immunity conferred to foxes would appear adequate for bi-annual and annual bait distribution schedules as vaccinates were challenged 1.5 years post-vaccination. Copyright © 2014. Published by Elsevier Ltd.

  2. A recombinant varicella vaccine harboring a respiratory syncytial virus gene induces humoral immunity.

    Science.gov (United States)

    Murakami, Kouki; Matsuura, Masaaki; Ota, Megumi; Gomi, Yasuyuki; Yamanishi, Koichi; Mori, Yasuko

    2015-11-09

    The varicella-zoster virus (VZV) Oka vaccine strain (vOka) is highly efficient and causes few adverse events; therefore, it is used worldwide. We previously constructed recombinant vOka (rvOka) harboring the mumps virus gene. Immunizing guinea pigs with rvOka induced the production of neutralizing antibodies against the mumps virus and VZV. Here, we constructed recombinant vOka viruses containing either the respiratory syncytial virus (RSV) subgroup A fusion glycoprotein (RSV A-F) gene or RSV subgroup B fusion glycoprotein (RSV B-F) gene (rvOka-RSV A-F or rvOka-RSV B-F). Indirect immunofluorescence and Western blot analyses confirmed the expression of each recombinant RSV protein in virus-infected cells. Immunizing guinea pigs with rvOka-RSV A-F or rvOka-RSV B-F led to the induction of antibodies against RSV proteins. These results suggest that the current varicella vaccine genome can be used to generate custom-made vaccine vectors to develop the next generation of live vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Directory of Open Access Journals (Sweden)

    Camila Figueiredo Pinzan

    Full Text Available Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6 or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6 to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  4. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Science.gov (United States)

    Pinzan, Camila Figueiredo; Sardinha-Silva, Aline; Almeida, Fausto; Lai, Livia; Lopes, Carla Duque; Lourenço, Elaine Vicente; Panunto-Castelo, Ademilson; Matthews, Stephen; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  5. Experimental studies of a vaccine formulation of recombinant human VEGF antigen with aluminum phosphate.

    Science.gov (United States)

    Pérez Sánchez, Lincidio; Morera Díaz, Yanelys; Bequet-Romero, Mónica; Ramses Hernández, Gerardo; Rodríguez, Yadira; Castro Velazco, Jorge; Puente Pérez, Pedro; Ayala Avila, Marta; Gavilondo, Jorge V

    2015-01-01

    CIGB-247 is a cancer vaccine that is a formulation of a recombinant protein antigen representative of the human vascular endothelial growth factor (VEGF) with a bacterially-derived adjuvant (VSSP). The vaccine has shown an excellent safety profile in mice, rats, rabbits, not-human primates and in recent clinical trials in cancer patients. Response to the vaccine is characterized by specific antibody titers that neutralize VEGF/VEGFR2 binding and a cytotoxic tumor-specific response. To expand our present anti-VEGF active immunotherapy strategies, we have now studied in mice and non-human primates the effects of vaccination with a formulation of our recombinant VEGF antigen and aluminum phosphate adjuvant (hereafter denominated CIGB-247-A). Administered bi-weekly, CIGB-247-A produces high titers of anti-VEGF IgG blocking antibodies in 2 mice strains. Particularly in BALB/c, the treatment impaired subcutaneous F3II mammary tumor growth and reduced the number of spontaneous lung macro metastases, increasing animals' survival. Spleen cells from specifically immunized mice directly killed F3II tumor cells in vitro. CIGB-247-A also showed to be immunogenic in non-human primates, which developed anti-VEGF blocking antibodies and the ability for specific direct cell cytotoxic responses, all without impairing the healing of deep skin wounds or other side effect. Our results support consideration of aluminum phosphate as a suitable adjuvant for the development of new vaccine formulations using VEGF as antigen.

  6. Oral vaccination of wildlife using a vaccinia-rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): a global review.

    Science.gov (United States)

    Maki, Joanne; Guiot, Anne-Laure; Aubert, Michel; Brochier, Bernard; Cliquet, Florence; Hanlon, Cathleen A; King, Roni; Oertli, Ernest H; Rupprecht, Charles E; Schumacher, Caroline; Slate, Dennis; Yakobson, Boris; Wohlers, Anne; Lankau, Emily W

    2017-09-22

    RABORAL V-RG® is an oral rabies vaccine bait that contains an attenuated ("modified-live") recombinant vaccinia virus vector vaccine expressing the rabies virus glycoprotein gene (V-RG). Approximately 250 million doses have been distributed globally since 1987 without any reports of adverse reactions in wildlife or domestic animals since the first licensed recombinant oral rabies vaccine (ORV) was released into the environment to immunize wildlife populations against rabies. V-RG is genetically stable, is not detected in the oral cavity beyond 48 h after ingestion, is not shed by vaccinates into the environment, and has been tested for thermostability under a range of laboratory and field conditions. Safety of V-RG has been evaluated in over 50 vertebrate species, including non-human primates, with no adverse effects observed regardless of route or dose. Immunogenicity and efficacy have been demonstrated under laboratory and field conditions in multiple target species (including fox, raccoon, coyote, skunk, raccoon dog, and jackal). The liquid vaccine is packaged inside edible baits (i.e., RABORAL V-RG, the vaccine-bait product) which are distributed into wildlife habitats for consumption by target species. Field application of RABORAL V-RG has contributed to the elimination of wildlife rabies from three European countries (Belgium, France and Luxembourg) and of the dog/coyote rabies virus variant from the United States of America (USA). An oral rabies vaccination program in west-central Texas has essentially eliminated the gray fox rabies virus variant from Texas with the last case reported in a cow during 2009. A long-term ORV barrier program in the USA using RABORAL V-RG is preventing substantial geographic expansion of the raccoon rabies virus variant. RABORAL V-RG has also been used to control wildlife rabies in Israel for more than a decade. This paper: (1) reviews the development and historical use of RABORAL V-RG; (2) highlights wildlife rabies control

  7. Genetic Vaccines for Anthrax Based on Recombinant Adeno-associated Virus Vectors

    OpenAIRE

    Liu, Te-Hui; Oscherwitz, Jon; Schnepp, Bruce; Jacobs, Jana; Yu, Fen; Cease, Kemp B; Johnson, Philip R.

    2008-01-01

    Bacillus anthracis represents a formidable bioterrorism and biowarfare threat for which new vaccines are needed with improved safety and efficacy over current options. Toward this end, we created recombinant adeno-associated virus type 1 (rAAV1) vectors containing synthetic genes derived from the protective antigen (PA) or lethal factor (LF) of anthrax lethal toxin (LeTx) and tested them for immunogenicity and induction of toxin-neutralizing antibodies in rabbits. Codon-optimized segments enc...

  8. Recombinant Mip-PilE-FlaA dominant epitopes vaccine candidate against Legionella pneumophila.

    Science.gov (United States)

    He, Jinlei; Huang, Fan; Chen, Han; Chen, Qiwei; Zhang, Junrong; Li, Jiao; Chen, Dali; Chen, Jianping

    2017-06-01

    Legionella pneumophila is the main causative agent of Legionnaires' disease, which is a severe multi-system disease with pneumonia as the primary manifestation. We designed a recombinant Mip-PilE-FlaA dominant epitopes vaccine against Legionella pneumophila to prevent the disease and evaluated its immunogenicity and protective immunity. The protein structures of Mip, PilE and FlaA were analyzed using a computer, and the gene sequences of the dominant epitopes of the three proteins were selected to construct and optimize the vaccine. The optimized mip, pilE, flaA and recombinant mip-pilE-flaA gene sequences were cloned, expressed and purified. The purified proteins were used as dominant epitopes vaccines to immunize BALB/c mice and determine the protective immunity and immunogenicity of these purified proteins. The identification confirmed that the recombinant mip-pilE-flaA was successfully cloned and expressed. ELISA revealed that the Mip-PilE-FlaA group produced the highest IgG response, and this protein may considerably improve the production of some cytokines in BALB/c mice. Histopathology analyses of lungs from mice immunized with Mip-PilE-FlaA revealed a certain protective effect. Our work demonstrated that the recombinant dominant epitopes of Mip-PilE-FlaA exhibited strong immunogenicity and immune protection, and this protein may be an efficient epitopes vaccine candidate against Legionella pneumophila. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  9. A recombinant multi-antigen vaccine with broad protection potential against avian pathogenic Escherichia coli.

    Science.gov (United States)

    Van Goor, Angelica; Stromberg, Zachary R; Mellata, Melha

    2017-01-01

    Chickens are a major source of protein worldwide, yet infectious diseases continue to threaten the poultry industry. Avian pathogenic Escherichia coli (APEC), a subgroup of extraintestinal pathogenic E. coli (ExPEC), causes colibacillosis in chickens resulting in economic loss because of treatment, condemnation of products, and death. In this study, we evaluated a recombinant antigens (rAg) vaccine combining common ExPEC surface proteins EtsC, OmpA, OmpT, and TraT for broad protective potential against APEC infections in chickens. The specific objectives were to evaluate antibody (serum) and cytokines (lymphoid organs) responses to vaccination; in vitro bactericidal ability of serum and splenocytes against multiple APEC serotypes; and in vivo protection against APEC challenge in chickens. Groups of four-day old chickens (N = 10) were vaccinated twice (two-week interval) subcutaneously with rAgs alone or in combination and CpG adjuvant or PBS (control). IgY antibody in the serum and mRNA expression of IL-1β, IL-6, IL-18, IFN-γ, IL-4, IFN-β, and IL-8 in bursa, spleen, and thymus were measured using ELISA and RT-qPCR, respectively. Serum and splenocytes were tested for their bactericidal ability in vitro against multiple APEC isolates. Vaccinated and non-vaccinated chickens were challenged with 108 CFU of APEC-O2 via air sac at 31 days post first vaccination. Vaccine protection was determined by the decrease of bacterial loads in blood and organs (lung, heart, spleen, and liver), as well as gross colibacillosis lesion scores in air sac, heart, and liver. Vaccination significantly (P APEC serotypes, and decreased bacterial loads in the heart and spleen, and gross lesion scores of the air sac, heart and liver in chickens. The vaccine reported may be used to provide broad protection against APEC strains, increasing animal welfare and food production.

  10. A recombinant multi-antigen vaccine with broad protection potential against avian pathogenic Escherichia coli

    Science.gov (United States)

    Stromberg, Zachary R.; Mellata, Melha

    2017-01-01

    Chickens are a major source of protein worldwide, yet infectious diseases continue to threaten the poultry industry. Avian pathogenic Escherichia coli (APEC), a subgroup of extraintestinal pathogenic E. coli (ExPEC), causes colibacillosis in chickens resulting in economic loss because of treatment, condemnation of products, and death. In this study, we evaluated a recombinant antigens (rAg) vaccine combining common ExPEC surface proteins EtsC, OmpA, OmpT, and TraT for broad protective potential against APEC infections in chickens. The specific objectives were to evaluate antibody (serum) and cytokines (lymphoid organs) responses to vaccination; in vitro bactericidal ability of serum and splenocytes against multiple APEC serotypes; and in vivo protection against APEC challenge in chickens. Groups of four-day old chickens (N = 10) were vaccinated twice (two-week interval) subcutaneously with rAgs alone or in combination and CpG adjuvant or PBS (control). IgY antibody in the serum and mRNA expression of IL-1β, IL-6, IL-18, IFN-γ, IL-4, IFN-β, and IL-8 in bursa, spleen, and thymus were measured using ELISA and RT-qPCR, respectively. Serum and splenocytes were tested for their bactericidal ability in vitro against multiple APEC isolates. Vaccinated and non-vaccinated chickens were challenged with 108 CFU of APEC-O2 via air sac at 31 days post first vaccination. Vaccine protection was determined by the decrease of bacterial loads in blood and organs (lung, heart, spleen, and liver), as well as gross colibacillosis lesion scores in air sac, heart, and liver. Vaccination significantly (P chickens. The vaccine reported may be used to provide broad protection against APEC strains, increasing animal welfare and food production. PMID:28837660

  11. Comparison of immunogenicity of Aluminum salts as adjuvant for recombinant Hepatitis-B vaccine

    Directory of Open Access Journals (Sweden)

    Fazeli MR

    2007-05-01

    Full Text Available Background: Aluminum salts are common adjuvants in human and animal vaccine preparations. The two adjuvants aluminum phosphate and aluminum hydroxide show acceptable immunoadjuvant properties with many antigens. These two salts have different physicochemical characteristics that make each one suitable for certain antigens. The surface antigen of Hepatitis B (HBsAg has several antigenic epitopes that bind to aluminum adjuvants by a ligand exchange mechanism. Although HBV vaccines using an aluminum hydroxide adjuvant are available, higher antigenicity is needed for the subgroup of people who do not respond sufficiently to the currently available vaccines. Methods: A solution of recombinant HBsAg for making different formulations of vaccines with aluminum phosphate (Adju-Phos® and aluminum hydroxide (Alhydrogel® adjuvants was obtained from Darupakhsh Pharmaceutical Company. The total protein content, antigenicity, and purity of HBsAg solution were determined using BCA, ELISA, and SDS-PAGE methods, respectively. The different formulations were prepared in the lab and administered i.p. to two test groups of Balb/C mice and a third test group received the Engerix vaccine, which is currently available on the market and uses an aluminum hydroxide adjuvant. The control group of animals received the solution without antigen. After 28 days, heart blood samples were collected and serum was separated to determine the antibody titer against HBsAg using an ELISA kit. Results: This study shows that the vaccine formulated with aluminum phosphate exerted more immunogenicity than both the aluminum hydroxide laboratory formulation and the Engerix vaccines. Conclusion: Although the results of our study indicate higher immunogenic properties of the vaccine formulated with the aluminum phosphate adjuvant, complementary experiments are needed to further evaluate the biological properties with respect to effectiveness, adverse effects, product stability and finally

  12. Defining Influenza A Virus Hemagglutinin Antigenic Drift by Sequential Monoclonal Antibody Selection

    OpenAIRE

    Das, Suman R.; Hensley, Scott E.; Ince, William L.; Brooke, Christopher B.; Subba, Anju; Delboy, Mark G.; Russ, Gustav; Gibbs, James S.; Bennink, Jack R.; Yewdell, Jonathan W.

    2013-01-01

    Human influenza A virus (IAV) vaccination is limited by “antigenic drift,” rapid antibody-driven escape reflecting amino acid substitutions in the globular domain of hemagglutinin (HA), the viral attachment protein. To better understand drift, we used anti-hemagglutinin monoclonal Abs (mAbs) to sequentially select IAV escape mutants. Twelve selection steps, each resulting in a single amino acid substitution in the hemagglutinin globular domain, were required to eliminate antigenicity defined ...

  13. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses.

    Directory of Open Access Journals (Sweden)

    Kara McCormick

    Full Text Available Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling technology to create a panel of chimeric HA genes.Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129 was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129 and a A/swine/Texas/4199-2/98 backbone (TX98-129. When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates.This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines.

  14. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses.

    Science.gov (United States)

    McCormick, Kara; Jiang, Zhiyong; Zhu, Longchao; Lawson, Steven R; Langenhorst, Robert; Ransburgh, Russell; Brunick, Colin; Tracy, Miranda C; Hurtig, Heather R; Mabee, Leah M; Mingo, Mark; Li, Yanhua; Webby, Richard J; Huber, Victor C; Fang, Ying

    2015-01-01

    Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling) technology to create a panel of chimeric HA genes. Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129) was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129) and a A/swine/Texas/4199-2/98 backbone (TX98-129). When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates. This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines.

  15. Development of oral cancer vaccine using recombinant Bifidobacterium displaying Wilms' tumor 1 protein.

    Science.gov (United States)

    Kitagawa, Koichi; Oda, Tsugumi; Saito, Hiroki; Araki, Ayame; Gonoi, Reina; Shigemura, Katsumi; Hashii, Yoshiko; Katayama, Takane; Fujisawa, Masato; Shirakawa, Toshiro

    2017-06-01

    Several types of vaccine-delivering tumor-associated antigens (TAAs) have been developed in basic and clinical research. Wilms' tumor 1 (WT1), identified as a gene responsible for pediatric renal neoplasm, is one of the most promising TAA for cancer immunotherapy. Peptide and dendritic cell-based WT1 cancer vaccines showed some therapeutic efficacy in clinical and pre-clinical studies but as yet no oral WT1 vaccine can be administrated in a simple and easy way. In the present study, we constructed a novel oral cancer vaccine using a recombinant Bifidobacterium longum displaying WT1 protein. B. longum 420 was orally administered into mice inoculated with WT1-expressing tumor cells for 4 weeks to examine anti-tumor effects. To analyze the WT1-specific cellular immune responses to oral B. longum 420, mice splenocytes were isolated and cytokine production and cytotoxic activities were determined. Oral administrations of B. longum 420 significantly inhibited WT1-expressing tumor growth and prolonged survival in mice. Immunohistochemical study and immunological assays revealed that B. longum 420 substantially induced tumor infiltration of CD4 + T and CD8 + T cells, systemic WT1-specific cytokine production, and cytotoxic activity mediated by WT1-epitope specific cytotoxic T lymphocytes, with no apparent adverse effects. Our novel oral cancer vaccine safely induced WT1-specific cellular immunity via activation of the gut mucosal immune system and achieved therapeutic efficacy with several practical advantages over existing non-oral vaccines.

  16. Preclinical safety study of a recombinant Streptococcus pyogenes vaccine formulated with aluminum adjuvant.

    Science.gov (United States)

    HogenEsch, Harm; Dunham, Anisa; Burlet, Elodie; Lu, Fangjia; Mosley, Yung-Yi C; Morefield, Garry

    2017-02-01

    A recombinant vaccine composed of a fusion protein formulated with aluminum hydroxide adjuvant is under development for protection against diseases caused by Streptococcus pyogenes. The safety and local reactogenicity of the vaccine was assessed by a comprehensive series of clinical, pathologic and immunologic tests in preclinical experiments. Outbred mice received three intramuscular injections of 1/5th of the human dose (0.1 ml) and rabbits received two injections of the full human dose. Control groups received adjuvant or protein antigen. The vaccine did not cause clinical evidence of systemic toxicity in mice or rabbits. There was a transient increase of peripheral blood neutrophils after the third vaccination of mice. In addition, the concentration of acute phase proteins serum amyloid A and haptoglobin was significantly increased 1 day after injection of the vaccine in mice. There was mild transient swelling and erythema of the injection site in both mice and rabbits. Treatment-related pathology was limited to inflammation at the injection site and accumulation of adjuvant-containing macrophages in the draining lymph nodes. In conclusion, the absence of clinical toxicity in two animal species suggest that the vaccine is safe for use in a phase I human clinical trial. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Stabilization of a recombinant ricin toxin A subunit vaccine through lyophilization.

    Science.gov (United States)

    Hassett, Kimberly J; Cousins, Megan C; Rabia, Lilia A; Chadwick, Chrystal M; O'Hara, Joanne M; Nandi, Pradyot; Brey, Robert N; Mantis, Nicholas J; Carpenter, John F; Randolph, Theodore W

    2013-10-01

    Lyophilization was used to prepare dry, glassy solid vaccine formulations of recombinant ricin toxin A-chain containing suspensions of colloidal aluminum hydroxide adjuvant. Four lyophilized formulations were prepared by using combinations of rapid or slow cooling during lyophilization and one of two buffers, histidine or ammonium acetate. Trehalose was used as the stabilizing excipient. Aggregation of the colloidal aluminum hydroxide suspension was reduced in formulations processed with a rapid cooling rate. Aluminum hydroxide particle size distributions, glass transition temperatures, water contents, and immunogenicities of lyophilized vaccines were independent of incubation time at 40 °C for up to 15 weeks. Mice immunized with reconstituted ricin toxin subunit A (RTA) vaccines produced RTA-specific antibodies and toxin-neutralizing antibodies (TNAs) regardless of the length of high temperature vaccine storage or the degree of aluminum adjuvant aggregation that occurred during lyophilization. In murine studies, lyophilized formulations of vaccines conferred protection against exposure to lethal doses of ricin, even after the lyophilized formulations had been stored at 40 °C for 4 weeks. A corresponding liquid formulation of vaccine stored at 40 °C elicited RTA-specific antibody titers but failed to confer immunity during a ricin challenge. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV that expresses an individual filovirus glycoprotein (GP in place of the VSV glycoprotein (G. The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV GP; three animals received rVSV-wild type (wt vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.

  19. Protective immunity induced by a recombinant BCG vaccine encoding the cyclophilin gene of Toxoplasma gondii.

    Science.gov (United States)

    Yu, Qinlei; Huang, Xiangsheng; Gong, Pengtao; Zhang, Qian; Li, Jianhua; Zhang, Guocai; Yang, Ju; Li, He; Wang, Nan; Zhang, Xichen

    2013-12-09

    The investigation of Toxoplasma gondii virulence factors can elucidate the immunopathology of T. gondii infection and identify potential candidates for effective human vaccines. The adjuvant is an important component of an effective vaccine. In this study, attenuated Mycobacterium bovis was used as a live vaccine vector with both antigen and adjuvant characteristics. Following amplification of the T. gondii cyclophilin gene, the shuttle expression plasmid pMV261-TgCyP and integrative expression plasmid pMV361-TgCyP were constructed, and their expression was stimulated after transfection into BCG. Both recombinant plasmids were highly immunogenic. Greater proliferation of CD4(+) and CD8(+) T cells was observed in the rBCG-vaccinated groups compared to the control groups. The levels of Th1-type IFN-γ, IL-2 and IL-12 were significantly increased following immunisation with the rBCG vaccines via the i.v. or oral route, which indicated that catalytic activity against T. gondii infection was generated in the mice. rBCGpMV361-TgCyP i.v. inoculation resulted in a higher protection efficiency, as demonstrated by the increased survival time and survival rate (17%) of BALB/c mice. The present study demonstrates that a BCG vector expressing a target antigen, TgCyP, represent an alternative system for the production of effective vaccines to prevent toxoplasmosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Comparison of antibody response to a non-adjuvanted, live canarypox-vectored recombinant rabies vaccine and a killed, adjuvanted rabies vaccine in Eld's deer (Rucervus eldi thamin).

    Science.gov (United States)

    Marrow, Judilee C; Padilla, Luis R; Hayek, Lee-Ann C; Bush, Mitch; Murray, Suzan

    2014-06-01

    Captive Eld's deer (Rucervus eldi thamin) were evaluated for the presence of rabies virus-neutralizing antibodies using a rapid fluorescent focus inhibition after vaccination with either a live canarypox-vectored recombinant rabies vaccine or a killed monovalent rabies vaccine. Twelve deer were vaccinated with 1.0 ml of killed, adjuvanted, monovalent rabies vaccine at 5-33 mo of age then annually thereafter, and 14 deer were vaccinated with 1.0 ml nonadjuvanted, live canarypox-vectored rabies vaccine at 3-15 mo of age then annually thereafter. Banked serum was available or collected prospectively from deer at 6 mo and 1 yr after initial vaccination, then collected annually. Rabies virus-neutralizing antibodies considered adequate (>0.5 IU/ml) were present in 20/34 samples vaccinated with canarypox-vectored rabies vaccine and in 12/14 samples vaccinated with killed adjuvanted rabies vaccine. Poor seroconversion was noted in deer less than 6 mo of age vaccinated with the canarypox-vectored rabies vaccine.

  1. Recombinant BCG vaccines: molecular features and their influence in the expression of foreign genes.

    Science.gov (United States)

    Oliveira, Thaís Larré; Rizzi, Caroline; Dellagostin, Odir Antônio

    2017-09-01

    Recombinant Mycobacterium bovis BCG vaccines (rBCG) were first developed in the 1990s as a means of expressing antigens from multiple pathogens. This review examines the key structural factors of recombinant M. bovis that influence the expression of the heterologous antigens and the generation of genetic and functional stability in rBCG, which are crucial for inducing strong and lasting immune responses. The fundamental aim of this paper is to provide an overview of factors that affect the expression of recombinant proteins in BCG and the generation of the immune response against the target antigens, including mycobacterial promoters, location of foreign antigens, and stability of the vectors. The reporter systems that have been employed for evaluation of these molecular features in BCG are also reviewed here.

  2. Mucosal Vaccination Overcomes the Barrier to Recombinant Vaccinia Immunization Caused by Preexisting Poxvirus Immunity

    Science.gov (United States)

    Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.

    1999-04-01

    Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.

  3. Recombinant plants provide a new approach to the production of bacterial polysaccharide for vaccines.

    Directory of Open Access Journals (Sweden)

    Claire M Smith

    Full Text Available Bacterial polysaccharides have numerous clinical or industrial uses. Recombinant plants could offer the possibility of producing bacterial polysaccharides on a large scale and free of contaminating bacterial toxins and antigens. We investigated the feasibility of this proposal by cloning and expressing the gene for the type 3 synthase (cps3S of Streptococcus pneumoniae in Nicotinia tabacum, using the pCambia2301 vector and Agrobacterium tumefaciens-mediated gene transfer. In planta the recombinant synthase polymerised plant-derived UDP-glucose and UDP-glucuronic acid to form type 3 polysaccharide. Expression of the cps3S gene was detected by RT-PCR and production of the pneumococcal polysaccharide was detected in tobacco leaf extracts by double immunodiffusion, Western blotting and high-voltage paper electrophoresis. Because it is used a component of anti-pneumococcal vaccines, the immunogenicity of the plant-derived type 3 polysaccharide was tested. Mice immunised with extracts from recombinant plants were protected from challenge with a lethal dose of pneumococci in a model of pneumonia and the immunised mice had significantly elevated levels of serum anti-pneumococcal polysaccharide antibodies. This study provides the proof of the principle that bacterial polysaccharide can be successfully synthesised in plants and that these recombinant polysaccharides could be used as vaccines to protect against life-threatening infections.

  4. Recombinant plants provide a new approach to the production of bacterial polysaccharide for vaccines.

    Science.gov (United States)

    Smith, Claire M; Fry, Stephen C; Gough, Kevin C; Patel, Alexandra J F; Glenn, Sarah; Goldrick, Marie; Roberts, Ian S; Whitelam, Garry C; Andrew, Peter W

    2014-01-01

    Bacterial polysaccharides have numerous clinical or industrial uses. Recombinant plants could offer the possibility of producing bacterial polysaccharides on a large scale and free of contaminating bacterial toxins and antigens. We investigated the feasibility of this proposal by cloning and expressing the gene for the type 3 synthase (cps3S) of Streptococcus pneumoniae in Nicotinia tabacum, using the pCambia2301 vector and Agrobacterium tumefaciens-mediated gene transfer. In planta the recombinant synthase polymerised plant-derived UDP-glucose and UDP-glucuronic acid to form type 3 polysaccharide. Expression of the cps3S gene was detected by RT-PCR and production of the pneumococcal polysaccharide was detected in tobacco leaf extracts by double immunodiffusion, Western blotting and high-voltage paper electrophoresis. Because it is used a component of anti-pneumococcal vaccines, the immunogenicity of the plant-derived type 3 polysaccharide was tested. Mice immunised with extracts from recombinant plants were protected from challenge with a lethal dose of pneumococci in a model of pneumonia and the immunised mice had significantly elevated levels of serum anti-pneumococcal polysaccharide antibodies. This study provides the proof of the principle that bacterial polysaccharide can be successfully synthesised in plants and that these recombinant polysaccharides could be used as vaccines to protect against life-threatening infections.

  5. Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond.

    Science.gov (United States)

    Yusibov, Vidadi; Streatfield, Stephen J; Kushnir, Natasha

    2011-03-01

    In the last few years, plants have become an increasingly attractive platform for recombinant protein production. This builds on two decades of research, starting with transgenic approaches to develop oral vaccines in which antigens or therapeutics can be delivered in processed plant biomass, and progressing to transient expression approaches whereby high yields of purified targets are administered parenterally. The advantages of plant-based expression systems include high scalability, low upstream costs, biocontainment, lack of human or animal pathogens, and ability to produce target proteins with desired structures and biological functions. Using transgenic and transient expression in whole plants or plant cell culture, a variety of recombinant subunit vaccine candidates, therapeutic proteins, including monoclonal antibodies, and dietary proteins have been produced. Some of these products have been tested in early phase clinical trials, and show safety and efficacy. Among those are mucosal vaccines for diarrheal diseases, hepatitis B and rabies; injectable vaccines for non-Hodgkin's lymphoma, H1N1 and H5N1 strains of influenza A virus, and Newcastle disease in poultry; and topical antibodies for the treatment of dental caries and HIV. As lead plant-based products have entered clinical trials, there has been increased emphasis on manufacturing under current Good Manufacturing Practice (cGMP) guidelines, and the preparation and presentation to the relevant government agencies of regulatory packages.

  6. Immunogenicity of two different dosages (10 and 5 μg) of recombinant DNA hepatitis B vaccine in healthy neonates

    NARCIS (Netherlands)

    R. Del Cancho (R.); P.M. Grosheie (P.); M. Voogd-Schotanus (M.); W. Huisman (Willem); R.A. Heijtink; S.W. Schalm (Solko)

    1994-01-01

    textabstractThe immunogenicity of a half (5 μg) and a full (10 μg) dosage of recombinant DNA yeast-derived hepatitis B vaccine (HB-Vax-DNA) in healthy neonates was assessed in order to compare two candidate dosages of vaccine. After randomization 174 newborns of HBsAg-negative mothers entered the

  7. Enhanced efficacy of recombinant Brucella abortus RB51 vaccines against B. melitensis infection in mice.

    Science.gov (United States)

    Vemulapalli, Ramesh; Contreras, Andrea; Sanakkayala, Neelima; Sriranganathan, Nammalwar; Boyle, Stephen M; Schurig, Gerhardt G

    2004-09-08

    Brucella abortus strain RB51 is an attenuated rough strain, currently being used as the official live vaccine for bovine brucellosis in the USA and several other countries. In strain RB51, the wboA gene, encoding a glycosyltransferase required for the O-side chain synthesis, is disrupted by an IS711 element. Recently, we have demonstrated that strain RB51WboA, RB51 complemented with a functional wboA gene, remains rough but expresses low quantities of O-side chain in the cytoplasm. Mice vaccinated with strain RB51WboA develop greatly enhanced resistance against challenge with B. abortus virulent strain 2308. We have also demonstrated that overexpression of Cu/Zn superoxide dismutase (SOD) in strain RB51 (RB51SOD) significantly increases its vaccine efficacy against strain 2308 challenge. In this study, we constructed a new recombinant strain, RB51SOD/WboA, that over expresses SOD with simultaneous expression of O-side chain in the cytoplasm. We tested the vaccine potential of strains RB51SOD, RB51WboA, RB51SOD/WboA against challenge with virulent Brucella melitensis 16M and B. abortus 2308 in mice. In comparison with strain RB51, strain RB51SOD induced better protection against strain 2308, but not strain 16M, challenge. Similar to strain RB51WboA, vaccination with strain RB51SOD/WboA resulted in complete protection of the mice from infection with strain 2308. When challenged with strain 16M, mice vaccinated with either strain RB51WboA or strain RB51SOD/WboA were significantly better protected than those vaccinated with strain RB51 or RB51SOD. These results suggest that strains RB51WboA and RB51SOD/WboA are good vaccine candidates for inducing enhanced protection against B. melitensis infection.

  8. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  9. Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy.

    Science.gov (United States)

    Focke-Tejkl, Margarete; Weber, Milena; Niespodziana, Katarzyna; Neubauer, Angela; Huber, Hans; Henning, Rainer; Stegfellner, Gottfried; Maderegger, Bernhard; Hauer, Martina; Stolz, Frank; Niederberger, Verena; Marth, Katharina; Eckl-Dorna, Julia; Weiss, Richard; Thalhamer, Josef; Blatt, Katharina; Valent, Peter; Valenta, Rudolf

    2015-05-01

    Grass pollen is one of the most important sources of respiratory allergies worldwide. This study describes the development of a grass pollen allergy vaccine based on recombinant hypoallergenic derivatives of the major timothy grass pollen allergens Phl p 1, Phl p 2, Phl p 5, and Phl p 6 by using a peptide-carrier approach. Fusion proteins consisting of nonallergenic peptides from the 4 major timothy grass pollen allergens and the PreS protein from hepatitis B virus as a carrier were expressed in Escherichia coli and purified by means of chromatography. Recombinant PreS fusion proteins were tested for allergenic activity and T-cell activation by means of IgE serology, basophil activation testing, T-cell proliferation assays, and xMAP Luminex technology in patients with grass pollen allergy. Rabbits were immunized with PreS fusion proteins to characterize their immunogenicity. Ten hypoallergenic PreS fusion proteins were constructed, expressed, and purified. According to immunogenicity and induction of allergen-specific blocking IgG antibodies, 4 hypoallergenic fusion proteins (BM321, BM322, BM325, and BM326) representing Phl p 1, Phl p 2, Phl p 5, and Phl p 6 were included as components in the vaccine termed BM32. BM321, BM322, BM325, and BM326 showed almost completely abolished allergenic activity and induced significantly reduced T-cell proliferation and release of proinflammatory cytokines in patients' PBMCs compared with grass pollen allergens. On immunization, they induced allergen-specific IgG antibodies, which inhibited patients' IgE binding to all 4 major allergens of grass pollen, as well as allergen-induced basophil activation. A recombinant hypoallergenic grass pollen allergy vaccine (BM32) consisting of 4 recombinant PreS-fused grass pollen allergen peptides was developed for safe immunotherapy of grass pollen allergy. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Transgenic crops for the production of recombinant vaccines and anti-microbial antibodies.

    Science.gov (United States)

    Peters, Jenny; Stoger, Eva

    2011-03-01

    Plants can be used to produce inexpensive and highly immunogenic vaccines, particularly those aimed against mucosal pathogens. Several plant-derived vaccines have already completed early-phase clinical trials and many more are in the pipeline. The number of products in development has increased as the production technology itself has evolved, reflecting a better understanding of plant molecular biology, more sophisticated genetic engineering techniques, and more recently the development of tools and strategies to increase yields and engineer specific glycan groups on plant-derived glycoproteins. There are many different platforms including whole-plant transient expression systems based on Agrobacterium and/or plant viruses, contained systems based on cultured plant cells or aquatic plants, and stable transgenic plants expressing recombinant proteins in leaves, seeds, fruits or tubers/roots. Although the transient systems are rapid and high-yielding, stable transgenic plants are more scalable and may ultimately provide for more economical large-scale production, which was the original vision of 'molecular farming'. Grain crops such as cereals and legumes are particularly valuable because recombinant proteins expressed in seeds are stable at ambient temperatures and any bioload can be reduced by surface sterilization. Seeds also present interesting formulation options, e.g. the use of seed-specific storage organelles for encapsulation and the slow release of mucosal vaccines. In this article, we review the current status and recent developments in the area of molecular farming in crop plants, focusing particularly on engineered seeds as production and delivery vehicles for recombinant vaccines and antibodies.

  11. [Modified vaccinia virus ankara (MVA)--development as recombinant vaccine and prospects for use in veterinary medicine].

    Science.gov (United States)

    Volz, Asisa; Fux, Robert; Langenmayer, Martin C; Sutter, Gerd

    2015-01-01

    Poxviruses as expression vectors are widely used in medical research for the development of recombinant vaccines and molecular therapies. Here we review recent accomplishments in vaccine research using recombinant modified vaccinia virus ankara (MVA). MVA is a highly attenuated vaccinia virus strain that originated from serial tissue culture passage in chicken embryo fibroblasts more than 40 years ago. Growth adaptation to avian host cells caused deletions and mutations in the viral genome affecting about 15% of the original genetic information. In consequence, MVA is replication-deficient in cells of mammalian origin and fails to produce many of the virulence factors encoded by conventional vaccinia virus. Because of its safety for the general environment MVA can be handled under conditions of biosafety level one. Non-replicating MVA can enter any target cell and activate its molecular life cycle to express all classes of viral and recombinant genes. Therefore, recombinant MVA have been established as an extremely safe and efficient vector system for vaccine development in medical research. By now, various recombinant MVA vaccines have been found safe and immunogenic when used for phase I/II clinical testing in humans, and suitable for industrial scale production following good practice of manufacturing. Thus, there is an obvious usefulness of recombinant MVA vaccines for novel prophylactic and therapeutic approaches also in veterinary medicine. Results from first studies in companion and farm animals are highly promising.

  12. Generation of Recombinant Capripoxvirus Vectors for Vaccines and Gene Knockout Function Studies.

    Science.gov (United States)

    Boshra, Hani; Cao, Jingxin; Babiuk, Shawn

    2016-01-01

    The ability to manipulate capripoxvirus through gene knockouts and gene insertions has become an increasingly valuable research tool in elucidating the function of individual genes of capripoxvirus, as well as in the development of capripoxvirus-based recombinant vaccines. The homologous recombination technique is used to generate capripoxvirus knockout viruses (KO), and is based on the targeting a particular viral gene of interest. This technique can also be used to insert a gene of interest. A protocol for the generation of a viral gene knockout is described. This technique involves the use of a plasmid which encodes the flanking sequences of the regions where the homologous recombination will occur, and will result in the insertion of an EGFP reporter gene for visualization of recombinant virus, as well as the E. coli gpt gene as a positive selection marker. If an additional gene is to be incorporated, this can be achieved by inserting a gene of interest for expression under a poxvirus promoter into the plasmid between the flanking regions for insertion. This chapter describes a protocol for generating such recombinant capripoxviruses.

  13. Development of Recombinant Vaccine Using Herpesvirus of Turkey (Hvt as Vector for Several Viral Diseases in Poultry Industry

    Directory of Open Access Journals (Sweden)

    Risza Hartawan

    2011-03-01

    Full Text Available Herpesvirus of turkey (HVT has been utilised as live vaccine against Marek’s disease in poultry industry world-wide for many years. However, the potency of HVT is not limited on the Marek’s disease only. Along with rapid development of recombinant technique, the potency of HVT can be broaden for other diseases. As naturally apathogenic virus, HVT is a suitable candidate as vector vaccine to express important antigens of viral pathogens. Several researches have been dedicated to design HVT recombinant vaccine by inserting gene of important virus, such as Marek’s disease virus (MDV, immuno bursal disease virus (IBDV, Newcastle disease virus (NDV and Avian Influenza virus (AIV. Therefore, the future recombinant of HVT has been expected to be better in performance along with the improvement of recombinant technique.

  14. Yeast-recombinant hepatitis B vaccine: efficacy with hepatitis B immune globulin in prevention of perinatal hepatitis B virus transmission

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, C.E.; Taylor, P.E.; Tong, M.J.; Toy, P.T.; Vyas, G.N.; Nair, P.V.; Weissman, J.Y.; Krugman, S.

    1987-05-15

    A yeast-recombinant hepatitis B vaccine was licensed recently by the Food and Drug administration and is now available. To assess the efficacy of the yeast-recombinant vaccine, the authors administered the vaccine in combination with hepatitis B immune globulin to high-risk newborns. If infants whose mothers were positive for both hepatitis B surface antigen and the e antigen receive no immunoprophylaxis, 70% to 90% become infected with the virus, and almost all become chronic carriers. Among infants in this study who received hepatitis B immune globulin at birth and three 5-/sup +/g doses of yeast-recombinant hepatitis B vaccine, only 4.8% became chronic carriers, a better than 90% level of protection and a rate that is comparable with that seen with immune globulin and plasma-derived hepatitis B vaccine. Hepatitis surface antigen and antibodies were detected by radioimmunoassay. These data suggest that, in this high-risk setting, the yeast-recombinant vaccine is as effective as the plasma-derived vaccine in preventing hepatitis B virus infection and the chronic carrier state.

  15. Production and evaluation of a recombinant chimeric vaccine against clostridium botulinum neurotoxin types C and D.

    Science.gov (United States)

    Gil, Luciana A F; da Cunha, Carlos Eduardo P; Moreira, Gustavo M S G; Salvarani, Felipe M; Assis, Ronnie A; Lobato, Francisco Carlos F; Mendonça, Marcelo; Dellagostin, Odir A; Conceição, Fabricio R

    2013-01-01

    Bovine botulism is a fatal disease that is caused by botulinum neurotoxins (BoNTs) produced by Clostridium botulinum serotypes C and D and that causes great economic losses, with nearly 100% lethality during outbreaks. It has also been considered a potential source of human food-borne illness in many countries. Vaccination has been reported to be the most effective way to control bovine botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. Neutralizing antibodies targeted against the C-terminal fragment of the BoNT heavy chain (HC) are known to confer efficient protection against lethal doses of BoNTs. In this study, a novel recombinant chimera, consisting of Escherichia coli heat-labile enterotoxin B subunit (LTB), a strong adjuvant of the humoral immune response, fused to the HC of BoNT serotypes C and D, was produced in E. coli. Mice vaccinated with the chimera containing LTB and an equivalent molar ratio of the chimera without LTB plus aluminum hydroxide (Al(OH)3) developed 2 IU/mL of antitoxins for both serotypes. Guinea pigs immunized with the recombinant chimera with LTB plus Al(OH)3 developed a protective immune response against both BoNT/C (5 IU/mL) and BoNT/D (10 IU/mL), as determined by a mouse neutralization bioassay with pooled sera. The results achieved with guinea pig sera fulfilled the requirements of commercial vaccines for prevention of botulism, as determined by the Brazilian Ministry of Agriculture, Livestock and Food, Supply. The presence of LTB was essential for the development of a strong humoral immune response, as it acted in synergism with Al(OH)3. Thus, the vaccine described in this study is a strong candidate for the control of botulism in cattle.

  16. Production and evaluation of a recombinant chimeric vaccine against clostridium botulinum neurotoxin types C and D.

    Directory of Open Access Journals (Sweden)

    Luciana A F Gil

    Full Text Available Bovine botulism is a fatal disease that is caused by botulinum neurotoxins (BoNTs produced by Clostridium botulinum serotypes C and D and that causes great economic losses, with nearly 100% lethality during outbreaks. It has also been considered a potential source of human food-borne illness in many countries. Vaccination has been reported to be the most effective way to control bovine botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. Neutralizing antibodies targeted against the C-terminal fragment of the BoNT heavy chain (HC are known to confer efficient protection against lethal doses of BoNTs. In this study, a novel recombinant chimera, consisting of Escherichia coli heat-labile enterotoxin B subunit (LTB, a strong adjuvant of the humoral immune response, fused to the HC of BoNT serotypes C and D, was produced in E. coli. Mice vaccinated with the chimera containing LTB and an equivalent molar ratio of the chimera without LTB plus aluminum hydroxide (Al(OH3 developed 2 IU/mL of antitoxins for both serotypes. Guinea pigs immunized with the recombinant chimera with LTB plus Al(OH3 developed a protective immune response against both BoNT/C (5 IU/mL and BoNT/D (10 IU/mL, as determined by a mouse neutralization bioassay with pooled sera. The results achieved with guinea pig sera fulfilled the requirements of commercial vaccines for prevention of botulism, as determined by the Brazilian Ministry of Agriculture, Livestock and Food, Supply. The presence of LTB was essential for the development of a strong humoral immune response, as it acted in synergism with Al(OH3. Thus, the vaccine described in this study is a strong candidate for the control of botulism in cattle.

  17. Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge.

    Directory of Open Access Journals (Sweden)

    Misako Yoneda

    Full Text Available Nipah virus (NiV is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G. Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi. Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans.

  18. Clinical development of a recombinant Ebola vaccine in the midst of an unprecedented epidemic.

    Science.gov (United States)

    Coller, Beth-Ann G; Blue, Jeffrey; Das, Rituparna; Dubey, Sheri; Finelli, Lynn; Gupta, Swati; Helmond, Frans; Grant-Klein, Rebecca J; Liu, Kenneth; Simon, Jakub; Troth, Sean; VanRheenen, Susan; Waterbury, Julie; Wivel, Ashley; Wolf, Jayanthi; Heppner, D Gray; Kemp, Tracy; Nichols, Rick; Monath, Thomas P

    2017-08-16

    The 2014-2016 Ebola outbreak caused over 28,000 cases and 11,000 deaths. Merck & Co. Inc., Kenilworth, NJ USA and NewLink Genetics are working with private and public partners to develop and license an Ebola vaccine that was evaluated extensively during the outbreak. The vaccine referred to as V920 is a recombinant vesicular stomatitis virus (rVSV) in which the VSV-G envelope glycoprotein (GP) is completely replaced by the Zaire ebolavirus GP (rVSVΔG-ZEBOV-GP). Eight Phase I and four Phase II/III clinical trials enrolling approximately 17,000 subjects were conducted in parallel to the outbreak to assess the safety, immunogenicity, and/or efficacy of V920. Immunogenicity data demonstrate that anti-GP antibodies are generally detectable by ELISA by 14days postvaccination with up to 100% seroconversion observed by 28days post dose. In addition, the results of a ring vaccination trial conducted by the WHO and their partners in Guinea suggest robust vaccine efficacy within 10days of receipt of a single dose of vaccine. The vaccine is generally well-tolerated when administered to healthy, non-pregnant adults. The development of this vaccine candidate in the context of this unprecedented epidemic has involved the close cooperation of large number of international partners and highlights what we as a public health community can accomplish when working together towards a common goal. Study identification: V920-001 to V920-012. CLINICALTRIALS.GOV identifiers: NCT02269423; NCT02280408; NCT02374385; NCT02314923; NCT02287480; NCT02283099; NCT02296983; NCT02344407; NCT02378753; NCT02503202. Copyright © 2017. Published by Elsevier Ltd.

  19. Recombinant baculovirus associated with bilosomes as an oral vaccine candidate against HEV71 infection in mice.

    Directory of Open Access Journals (Sweden)

    Balraj Premanand

    Full Text Available BACKGROUND: Human enterovirus 71 (HEV71 is one of the major pathogen responsible for hand, foot and mouth disease (HFMD. Currently no effective vaccine or antiviral drugs are available. Like poliovirus, EV71 is transmitted mainly by the feco-oral route. To date the majority of the studied EV71 vaccine candidates are administered parenterally. Injectable vaccines induce good systemic immunity but mucosal responses are often unsatisfactory, whereas mucosal vaccines provide both systemic and mucosal immunity. Therefore, oral immunization appears to be an attractive alternative to parenteral immunization. METHODOLOGY/PRINCIPAL FINDINGS: In this report, we studied the efficacy of an orally administered vaccine candidate developed using recombinant baculovirus displaying VP1 (Bac-VP1 in a murine model. Gastrointestinal delivery of Bac-VP1 significantly induced VP1-specific humoral (IgG and mucosal (IgA immune responses. Further, we studied the efficacy of the Bac-VP1 associated with bilosomes and observed that the Bac-VP1 associated with bilosomes elicited significantly higher immune responses compared to bilosomes non-associated with Bac-VP1. However, mice immunized subcutaneously with live Bac-VP1 had significantly enhanced VP1 specific serum IgG levels and higher neutralizing antibody titers compared with mice orally immunized with live Bac-VP1 alone or associated with bilosomes. CONCLUSION: Bilosomes have been shown to possess inherent adjuvant properties when associated with antigen. Therefore Bac-VP1 with bilosomes could be a promising oral vaccine candidate against EV71 infections. Thus, Bac-VP1 loaded bilosomes may provide a needle free, painless approach for immunization against EV71, thereby increasing patient compliance and consequently increasing vaccination coverage.

  20. Protective Effector Cells of the Recombinant Asp f3 Anti-Aspergillosis Vaccine.

    Science.gov (United States)

    Diaz-Arevalo, Diana; Ito, James I; Kalkum, Markus

    2012-01-01

    An Aspergillus fumigatus vaccine based on recombinant Asp f3-protein has the potential to prevent aspergillosis in humans, a devastating fungal disease that is the prime obstacle to the success of hematopoietic cell transplantation. This vaccine protects cortisone acetate (CA)-immunosuppressed mice from invasive pulmonary aspergillosis via CD4(+) T cell mediators. Aside from these mediators, the nature of downstream fungicidal effectors is not well understood. Neutrophils and macrophages protect immunocompetent individuals from invasive fungal infections, and selective neutrophil depletion rendered mice susceptible to aspergillosis whereas macrophage depletion failed to increase fungal susceptibility. We investigated the effect of neutrophil depletion on rAsp f3-vaccine protection, and explored differences in pathophysiology and susceptibility between CA-immunosuppression and neutrophil depletion. In addition to being protective under CA-immunosuppression, the vaccine also had a protective effect in neutrophil-depleted mice. However, in non-immunized mice, a 10-fold higher conidial dose was required to induce similar susceptibility to infection with neutrophil depletion than with CA-immunosuppression. The lungs of non-immunized neutrophil-depleted mice became invaded by a patchy dense mycelium with highly branched hyphae, and the peribronchial inflammatory infiltrate consisted mainly of CD3(+) T cells and largely lacked macrophages. In contrast, lungs of non-immunized CA-immunosuppressed mice were more evenly scattered with short hyphal elements. With rAsp f3-vaccination, the lungs were largely clear of fungal burden under either immunosuppressive condition. We conclude that neutrophils, although important for innate antifungal protection of immunocompetent hosts, are not the relevant effectors for rAsp f3-vaccine derived protection of immunosuppressed hosts. It is therefore more likely that macrophages represent the crucial effectors of the rAsp f3-based vaccine.

  1. Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge.

    Science.gov (United States)

    Yoneda, Misako; Georges-Courbot, Marie-Claude; Ikeda, Fusako; Ishii, Miho; Nagata, Noriyo; Jacquot, Frederic; Raoul, Hervé; Sato, Hiroki; Kai, Chieko

    2013-01-01

    Nipah virus (NiV) is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G). Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi). Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans.

  2. Crucial requirement for standardization during the development of novel recombinant BCG vaccines: Does the corresponding substrain background matter?

    Science.gov (United States)

    Antas, P R Z

    2016-12-01

    The Bacillus Calmette-Guerin (BCG) vaccine is not a single organism, but consists of substrains that vary in genotypes and phenotypes. Actually, BCG is the common name given to a family of vaccines created in 1921 by the in vitro attenuation of a virulent Mycobacterium bovis in France. Even nearly a century of use, the BCG vaccine lingers generating confusion and debate due to its diversity and failure to protect against tuberculosis (TB). That is probably owing to the enduring lack of standardization during production, distribution and administration procedures. Since the 1940s, substantial sequence modifications among the BCG substrains have been described. To increase the level of complexity, even though that the prolific generation of recombinant BCG vaccines has been promising, the relationships between those candidates used in current clinical trials and their parental substrains are either unsatisfactorily connected or have been never fully delineated. Consequently, the use of the most protective BCG substrain as the background or platform in the development of all recombinant BCG vaccine candidates has not been standardized. In order to schematize and to clarify the subject regarding substrains commonly used to generate those novel vaccines, a sequential emergence of the parental BCG vaccine substrains and their matching recombinant ones, if any, was built. Hence, for a total of 24 BCG substrains currently in circulation worldwide, 9 have been used to sustain one or more genetic modifications, resulting in around 21 novel recombinant BCG vaccines. Although this is a remarkable success, only 2 out of the 21 recombinant BCG substrains harbor a background representative of the most immunogenic group. Systematizing the novel BCG vaccines and their parental strains may facilitate our understanding of protection provided by BCG immunizations.

  3. Dendritic cell targeted HIV-1 gag protein vaccine provides help to a recombinant Newcastle disease virus vectored vaccine including mobilization of protective CD8+T cells.

    Science.gov (United States)

    Ngu, Loveline N; Nji, Nadesh N; Ambada, Georgia; Ngoh, Apeh A; Njambe Priso, Ghislain D; Tchadji, Jules C; Lissom, Abel; Magagoum, Suzanne H; Sake, Carol N; Tchouangueu, Thibau F; Chukwuma, George O; Okoli, Arinze S; Sagnia, Bertrand; Chukwuanukwu, Rebecca; Tebit, Denis M; Esimone, Charles O; Waffo, Alain B; Park, Chae G; Überla, Klaus; Nchinda, Godwin W

    2018-03-01

    Recombinant Newcastle Disease virus (rNDV) vectored vaccines are safe mucosal applicable vaccines with intrinsic immune-modulatory properties for the induction of efficient immunity. Like all viral vectored vaccines repeated inoculation via mucosal routes invariably results to immunity against viral vaccine vectors. To obviate immunity against viral vaccine vectors and improve the ability of rNDV vectored vaccines in inducing T cell immunity in murine air way we have directed dendritic cell targeted HIV-1 gag protein (DEC-Gag) vaccine; for the induction of helper CD4 + T cells to a Recombinant Newcastle disease virus expressing codon optimized HIV-1 Gag P55 (rNDV-L-Gag) vaccine. We do so through successive administration of anti-DEC205-gagP24 protein plus polyICLC (DEC-Gag) vaccine and rNDV-L-Gag. First strong gag specific helper CD4 + T cells are induced in mice by selected targeting of anti-DEC205-gagP24 protein vaccine to dendritic cells (DC) in situ together with polyICLC as adjuvant. This targeting helped T cell immunity develop to a subsequent rNDV-L-Gag vaccine and improved both systemic and mucosal gag specific immunity. This sequential DEC-Gag vaccine prime followed by an rNDV-L-gag boost results to improved viral vectored immunization in murine airway, including mobilization of protective CD8 + T cells to a pathogenic virus infection site. Thus, complementary prime boost vaccination, in which prime and boost favor distinct types of T cell immunity, improves viral vectored immunization, including mobilization of protective CD8 + T cells to a pathogenic virus infection site such as the murine airway. © 2017 The Authors. Immunity, Inflammation and DiseasePublished by John Wiley & Sons Ltd.

  4. Recombinant Hepatitis B Vaccine Adjuvanted With AS04 in Dialysis Patients: A Prospective Cohort Study

    Directory of Open Access Journals (Sweden)

    Fabrizio Fabrizi

    2015-11-01

    Full Text Available Background/Aims: Patients undergoing maintenance dialysis have an unsatisfactory response to vaccination, including to hepatitis B vaccine. A recombinant HB vaccine containing a new adjuvant system AS04 (HBV-AS04 has been recently developed; a few data exist on the immunogenicity and safety of HBV-AS04 among patients undergoing regular dialysis. All hepatitis B virus-seronegative patients with undetectable antibody against HBsAg undergoing maintenance dialysis at two units were prospectively included. Methods: Patients received four 20-mcg doses of HBV-AS04 by intramuscular route (deltoid muscle at months 0,1,2, and 3. Anti-HB surface antibody concentrations were measured at intervals of 1, 2, 3, 4, and 12 months. Univariate and multivariate analyses determined which parameters predicted immunologic response to HBV-AS04 vaccine. Results: 102 patients were enrolled and 91 completed the study. At completion of the vaccination schedule, using per-protocol analysis, 76 of 91 (84% had antibody titers ≥10 mIU/mL with anti-HBs geometric antibody concentrations (GMCs of 385.25 mIU/mL. The sero-protection rate at month 12 was 84% (48/57 with lower GMCs (62.74 mIU/mL, PPConclusions: HBV-AS04 vaccine was highly immunogenic in our cohort of patients on maintenance dialysis even if a significant number of non-responders is still present. Prospective studies with HBV-AS04 on larger study groups and with longer follow-ups are under way.

  5. Vaccination of mice against schistosoma bovis with a recombinant fatty acid binding protein from Fasciola hepatica.

    Science.gov (United States)

    Abáné, J L; Oleaga, A; Ramajo, V; Casanueva, P; Arellano, J L; Hillyer, G V; Muro, A

    2000-07-24

    Two strains of mice (NMRI and C57/BL) were each immunized with a 15kDa recombinant Fasciola hepatica fatty acid binding protein (FABP) (Fh15) and challenged percutaneously with Schistosoma bovis cercariae. C57/BL mice immunized with Fh15 had significant reductions in S. bovis worm burden recoveries (72% reductions over controls). When using NMRI mice, Fh15 in Freund's adjuvant failed to induce significant protection against S. bovis. In C57/BL mice, only antibodies to the IgG2a isotype increased after the second immunization and remained high through 8 weeks of S. bovis infection. This is the first time that a heterologous recombinant molecule from F. hepatica has been used in vaccination against S. bovis, obtaining a significant reduction in the number of worms in C57/BL mice.

  6. Immunogenicity of a new recombinant IpaC from Shigella dysenteriae type I in guinea pig as a vaccine candidate.

    Science.gov (United States)

    Malaei, Fatemeh; Hesaraki, Mahdi; Saadati, Mojtaba; Ahdi, Ali Mohammad; Sadraeian, Mohammad; Honari, Hussein; Nazarian, Shahram

    2013-06-01

    Recombinant vaccine technology is one of the most developed means in controlling infectious diseases. However, an effective vaccine against Shigella is still missing. To evaluate recombinant IpaC protein of Shigella as a vaccine candidate. In this study we cloned IpaC gene into an expression vector in prokaryotic system. The protein expression was evaluated by SDS-PAGE and Western-Blotting analysis. The recombinant protein was purified using Ni-NTA affinity chromatography. Guinea pigs were immunized with the recombinant protein and the level of immunogenicity was examined by ELISA and Western blotting of IpaC. Challenge test was done through the intraoculary injection of Shigella dysenteriae (6×108 CFU/eye) and after 48 hours was scored for keratoconjunctivitis. The results showed a remarkable level of immunogenicity in terms of antibody response and protection against keratoconjunctivitis in tested animals. The recombinant IpaC protein provided a protective system against Shigella dysenteriae type I during the challenge test. The results showed the potential of using recombinant IpaC in preparation of vaccine in perspective studies.

  7. Protection of non-human primates against rabies with an adenovirus recombinant vaccine.

    Science.gov (United States)

    Xiang, Z Q; Greenberg, L; Ertl, H C; Rupprecht, C E

    2014-02-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Protection of Non-Human Primates against Rabies with an Adenovirus Recombinant Vaccine

    Science.gov (United States)

    Xiang, Z.Q.; Greenberg, L.; Ertl, H. C.; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. PMID:24503087

  9. MHC-restricted antigen presentation and recognition: constraints on gene, recombinant and peptide vaccines in humans

    Directory of Open Access Journals (Sweden)

    Cunha-Neto E.

    1999-01-01

    Full Text Available The target of any immunization is to activate and expand lymphocyte clones with the desired recognition specificity and the necessary effector functions. In gene, recombinant and peptide vaccines, the immunogen is a single protein or a small assembly of epitopes from antigenic proteins. Since most immune responses against protein and peptide antigens are T-cell dependent, the molecular target of such vaccines is to generate at least 50-100 complexes between MHC molecule and the antigenic peptide per antigen-presenting cell, sensitizing a T cell population of appropriate clonal size and effector characteristics. Thus, the immunobiology of antigen recognition by T cells must be taken into account when designing new generation peptide- or gene-based vaccines. Since T cell recognition is MHC-restricted, and given the wide polymorphism of the different MHC molecules, distinct epitopes may be recognized by different individuals in the population. Therefore, the issue of whether immunization will be effective in inducing a protective immune response, covering the entire target population, becomes an important question. Many pathogens have evolved molecular mechanisms to escape recognition by the immune system by variation of antigenic protein sequences. In this short review, we will discuss the several concepts related to selection of amino acid sequences to be included in DNA and peptide vaccines.

  10. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies.

    Science.gov (United States)

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A

    2006-07-01

    The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector.

  11. Potential of recombinant inorganic pyrophosphatase antigen as a new vaccine candidate against Baylisascaris schroederi in mice

    Science.gov (United States)

    2013-01-01

    The intestinal nematode Baylisascaris schroederi is an important cause of death for wild and captive giant pandas. Inorganic pyrophosphatases (PPases) are critical for development and molting in nematode parasites and represent potential targets for vaccination. Here, a new PPase homologue, Bsc-PYP-1, from B. schroederi was identified and characterized, and its potential as a vaccine candidate was evaluated in a mouse challenge model. Sequence alignment of PPases from nematode parasites and other organisms show that Bsc-PYP-1 is a nematode-specific member of the family I soluble PPases. Immunohistochemistry revealed strong localization of native Bsc-PYP-1 to the body wall, gut epithelium, ovary and uterus of adult female worms. Additionally, Bsc-PYP-1 homologues were found in roundworms infecting humans (Ascaris lumbricoides), swine (Ascaris suum) and dogs (Toxocara canis). In two vaccine trials, recombinant Bsc-PYP-1 (rBsc-PYP-1) formulated with Freund complete adjuvant induced significantly high antigen-specific immunoglobulin (Ig)G but no IgE or IgM responses. Analysis of IgG-subclass profiles revealed a greater increase of IgG1 than IgG2a. Splenocytes from rBsc-PYP-1/FCA-immunized mice secreted low levels of T helper (Th)1-type cytokines, interferon-γ and interleukin (IL)-2, while producing significantly high levels of IL-10 and significantly elevated levels of IL-4 (Th2 cytokines) after stimulation with rBsc-PYP-1 in vitro. Finally, vaccinated mice had 69.02–71.15% reductions (in 2 experiments) in larval recovery 7 days post-challenge (dpc) and 80% survival at 80 dpc. These results suggest that Th2-mediated immunity elicited by rBsc-PYP-1 provides protection against B. schroederi, and the findings should contribute to further development of Bsc-PYP-1 as a candidate vaccine against baylisascariasis. PMID:24090087

  12. Oral therapeutic vaccination with Streptococcus sobrinus recombinant enolase confers protection against dental caries in rats.

    Science.gov (United States)

    Dinis, Márcia; Tavares, Delfina; Veiga-Malta, Isabel; Fonseca, António J M M; Andrade, Elva Bonifácio; Trigo, Gabriela; Ribeiro, Adília; Videira, Arnaldo; Cabrita, António M Silvério; Ferreira, Paula

    2009-01-01

    Dental caries is among the more prevalent chronic human infections for which an effective human vaccine has not yet been achieved. Enolase from Streptococcus sobrinus has been identified as an immunomodulatory protein. In the present study, we used S. sobrinus recombinant enolase (rEnolase) as a target antigen and assessed its therapeutic effect in a rat model of dental caries. Wistar rats that were fed a cariogenic solid diet on day 18 after birth were orally infected with S. sobrinus on day 19 after birth and for 5 consecutive days thereafter. Five days after infection and, again, 3 weeks later, rEnolase plus alum adjuvant was delivered into the oral cavity of the rats. A sham-immunized group of rats was contemporarily treated with adjuvant alone. In the rEnolase-immunized rats, increased levels of salivary IgA and IgG antibodies specific for this recombinant protein were detected. A significant decrease in sulcal, proximal enamel, and dentin caries scores was observed in these animals, compared with sham-immunized control animals. No detectable histopathologic alterations were observed in all immunized animals. Furthermore, the antibodies produced against bacterial enolase did not react with human enolase. Overall, these results indicate that rEnolase could be a promising and safe candidate for testing in trials of vaccines against dental caries in humans.

  13. Immunity Elicited by an Experimental Vaccine Based on Recombinant Flagellin-Porcine Circovirus Type 2 Cap Fusion Protein in Piglets.

    Directory of Open Access Journals (Sweden)

    Shanshan Zhu

    Full Text Available In a recent study, we reported that a recombinant protein from fusion expression of flagellin to porcine circovirus type 2 (PCV2 Cap induced robust humoral and cell-mediated immunity that afforded full protection for PCV2 infection using BALB/c mice. Here, we further evaluated the immunogenicity and protection of the recombinant protein using specific pathogen free (SPF pigs. Twenty-five 3-week-old piglets without passively acquired immunity were divided into 5 groups. All piglets except negative controls were challenged with a virulent PCV2 at 21 days after booster vaccination and necropsied at 21 days post-challenge. Vaccination of piglets with the recombinant protein without adjuvant induced strong humoral and cellular immune responses as observed by high levels of PCV2-specific IgG antibodies and neutralizing antibodies, as well as frequencies of PCV2-specific IFN-γ-secreting cells that conferred good protection against PCV2 challenge, with significant reduced PCV2 viremia, mild lesions, low PCV2 antigen-positive cells, as well as improved body weight gain, comparable to piglets vaccinated with a commercial PCV2 subunit vaccine. These results further demonstrated that the recombinant flagellin-Cap fusion protein is capable of inducing solid protective humoral and cellular immunity when administered to pigs, thereby becoming an effective PCV2 vaccine candidate for control of PCV2 infection.

  14. Plant-made virus-like particle vaccines bearing the hemagglutinin of either seasonal (H1) or avian (H5) influenza have distinct patterns of interaction with human immune cells in vitro.

    Science.gov (United States)

    Hendin, Hilary E; Pillet, Stéphane; Lara, Amanda N; Wu, Cheng-Ying; Charland, Nathalie; Landry, Nathalie; Ward, Brian J

    2017-05-02

    The recent emergence of avian influenza strains has fuelled concern about pandemic preparedness since vaccines targeting these viruses are often poorly immunogenic. Weak antibody responses to vaccines have been seen across multiple platforms including plant-made VLPs. To better understand these differences, we compared the in vitro responses of human immune cells exposed to plant-made virus-like particle (VLP) vaccines targeting H1N1 (H1-VLP) and H5N1 (H5-VLP). Peripheral blood mononuclear cells (PBMC) from healthy adults were stimulated ex vivo with 2-5µg/mL VLPs bearing the hemagglutinin (HA) of either H1N1 (A/California/7/2009) or H5N1 (A/Indonesia/5/05). VLP-immune cell interactions were characterized by confocal microscopy and flow cytometry 30min after stimulation with dialkylaminostyryl dye-labeled (DiD) VLP. Expression of CD69 and pro-inflammatory cytokines were used to assess innate immune activation 6h after stimulation. H1- and H5-VLPs rapidly associated with all subsets of human PBMC but exhibited unique binding preferences and frequencies. The H1-VLP bound to 88.7±1.6% of the CD19 + B cells compared to only 21.9±1.8% bound by the H5-VLP. At 6h in culture, CD69 expression on B cells was increased in response to H1-VLP but not H5-VLP (22.79±3.42% vs. 6.15±0.82% respectively: pvaccines. Plant-made VLP vaccines bearing H1 or H5 rapidly elicit immune activation and cytokine production in human PBMC. Differences in the VLP-immune cell interactions suggest that features of the HA proteins themselves, such as receptor specificity, influence innate immune responses. Although not generally considered for inactivated vaccines, the distribution and characteristics of influenza receptor(s) on the immune cells themselves may contribute to both the strength and pattern of the immune response generated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. NLRC4 Inflammasome-Driven Immunogenicity of a Recombinant MVA Mucosal Vaccine Encoding Flagellin

    Directory of Open Access Journals (Sweden)

    Stephanie L. Sanos

    2018-01-01

    Full Text Available Bacterial flagellin enhances innate and adaptive immune responses and is considered a promising adjuvant for the development of vaccines against infectious diseases and cancer. Antigen-presenting cells recognize flagellin with the extracellular TLR5 and the intracellular NLRC4 inflammasome-mediated pathway. The detailed cooperation of these innate pathways in the induction of the adaptive immune response following intranasal (i.n. administration of a recombinant modified vaccinia virus Ankara (rMVA vaccine encoding flagellin (rMVA-flagellin is not known. rMVA-flagellin induced enhanced secretion of mucosal IL-1β and TNF-α resulting in elevated CTL and IgG2c antibody responses. Importantly, mucosal IgA responses were also significantly enhanced in both bronchoalveolar (BAL and intestinal lavages accompanied by the increased migration of CD8+ T cells to the mesenteric lymph nodes (MLN. Nlrc4−/− rMVA-flagellin-immunized mice failed to enhance pulmonary CTL responses, IgG2c was lower, and IgA levels in the BAL or intestinal lavages were similar as those of control mice. Our results show the favorable adjuvant effect of rMVA-flagellin in the lung as well as the intestinal mucosa following i.n. administration with NLRC4 as the essential driver of this promising mucosal vaccine concept.

  16. PROTECTIVE ACTIVITY STUDY OF A CANDIDATE VACCINE AGAINST ROTAVIRUS INFECTION BASED ON RECOMBINANT PROTEIN FliCVP6VP8

    Directory of Open Access Journals (Sweden)

    I. V. Dukhovlinov

    2016-01-01

    Full Text Available Rotavirus infection is among leading causes of severe diarrhea which often leads to severe dehydration, especially, in children under 5 years old. In Russia, the incidence of rotavirus infection is constantly increased, due to higher rates of actual rotavirus infection cases and improved diagnostics of the disease. Immunity to rotavirus is unstable, thus causing repeated infections intra vitam. Anti-infectious resistance in reconvalescents is explained by induction of specific IgM, IgG, and, notably, IgA antibodies. Due to absence of market drugs with direct action against rotavirus, a rational vaccination is considered the most effective way to control the disease. Currently available vaccines for prevention of rotavirus infection are based on live attenuated rotavirus strains, human and/or animal origin, which replicate in human gut. Their implementation may result into different complications. Meanwhile, usage of vaccines based on recombinant proteins is aimed to avoid risks associated with introduction of a complete virus into humans. In this paper, we studied protective activity of candidate vaccines against rotavirus.In this work we studied protective activity of a candidate vaccine against rotavirus infection based on recombinant FliCVP6VP8 protein which includes VP6 and VP8, as well as components of Salmonella typhimurium flagellin (FliC as an adjuvant. Different components are joined by flexible bridges. Efficiency of the candidate vaccine was studied in animal model using Balb/c mice. We have shown high level of protection which occurs when the candidate vaccine is administered twice intramuscularly. Complete protection of animals against mouse rotavirus EDC after intramuscular immunization with a candidate vaccine was associated with arising rotavirus-specific IgA and IgG antibodies in serum and intestine of immunized animals. The efficacy of candidate vaccine based on recombinant protein FliCVP6VP8 against rotavirus infection was

  17. Evaluation of oral and subcutaneous delivery of an experimental canarypox recombinant canine distemper vaccine in the Siberian polecate (Mustela eversmanni)

    Science.gov (United States)

    Wimsatt, Jeffrey; Biggins, Dean E.; Innes, Kim; Taylor, Bobbi; Garell, Della

    2003-01-01

    We assessed the safety and efficacy of an experimental canarypox-vectored recombinant canine distemper virus (CDV) subunit vaccine in the Siberian polecat (Mustela eversmanni), a close relative of the black-footed ferret, (M. nigripes), an endangered species that is highly susceptible to the virus. Siberian polecats were randomized into six treatment groups. Recombinant canine distemper vaccine was administered s.c. at three dose levels (104.5, 105.0, and 105.5 plaque-forming units [PFU] per dose) and was administered orally by spraying the vaccine into the oropharnyx at two dose levels (105.5, 108.0 PFU per dose). The sixth group of control animals was not vaccinated. For both routes of administration, two 1-ml doses of reconstituted vaccine were delivered 4 wk apart, followed by live virus challenge 3 wk after the second vaccination. During the challenge, Synder Hill test strain CDV obtained from the National Veterinary Services Laboratory in Ames, Iowa, was administered i.p. Serial blood samples for CDV serology were collected immediately before vaccination and challenge, and 10, 15, and 20 days after challenge. Clinical signs and body weights were recorded up to 32 days after challenge. The survival rate in animals receiving vaccine at the highest oral dose (108.0 PFU per dose) was 83.3%. Survival rate was 50.0% in the high s.c. and 60.0% in the medium s.c. groups. All animals in the low–s.c. dose, low–oral dose, and control groups died after exposure. Vaccine dose overall (oral and s.c.) and dose in response to s.c. administration when considered alone were significant predictors of survival (P = 0.006 and P = 0.04, respectively). Among the polecats challenged with virulent virus, those that died became sick sooner than those that survived. Animals that died lost significantly more weight during the 10 days after challenge than did animals that survived (P = 0.02). Survival rates did not differ by sex, founder female status, or breeding pedigree in any of

  18. A pilot study on developing mucosal vaccine against alveolar echinococcosis (AE using recombinant tetraspanin 3: Vaccine efficacy and immunology.

    Directory of Open Access Journals (Sweden)

    Zhisheng Dang

    Full Text Available BACKGROUND: We have previously evaluated the vaccine efficacies of seven tetraspanins of Echinococcus multilocularis (Em-TSP1-7 against alveolar echinococcosis (AE by subcutaneous (s.c. administration with Freund's adjuvant. Over 85% of liver cyst lesion number reductions (CLNR were achieved by recombinant Em-TSP1 (rEm-TSP1 and -TSP3 (rEm-TSP3. However, to develop an efficient and safe human vaccine, the efficacy of TSP mucosal vaccines must be thoroughly evaluated. METHODOLOGY/PRINCIPAL FINDINGS: rEm-TSP1 and -TSP3 along with nontoxic CpG ODN (CpG oligodeoxynucleotides adjuvant were intranasally (i.n. immunized to BALB/c mice and their vaccine efficacies were evaluated by counting liver CLNR (experiment I. 37.1% (p < 0.05 and 62.1% (p < 0.001 of CLNR were achieved by these two proteins, respectively. To study the protection-associated immune responses induced by rEm-TSP3 via different immunization routes (i.n. administration with CpG or s.c. immunization with Freund's adjuvant, the systemic and mucosal antibody responses were detected by ELISA (experiment II. S.c. and i.n. administration of rEm-TSP3 achieved 81.9% (p < 0.001 and 62.8% (p < 0.01 CLNR in the liver, respectively. Both the immunization routes evoked strong serum IgG, IgG1 and IgG2α responses; i.n. immunization induced significantly higher IgA responses in nasal cavity and intestine compared with s.c. immunization (p < 0.001. Both immunization routes induced extremely strong liver IgA antibody responses (p < 0.001. The Th1 and Th2 cell responses were assessed by examining the IgG1/IgG2α ratio at two and three weeks post-immunization. S.c. immunization resulted in a reduction in the IgG1/IgG2α ratio (Th1 tendency, whereas i.n. immunization caused a shift from Th1 to Th2. Moreover, immunohistochemistry showed that Em-TSP1 and -TSP3 were extensively located on the surface of E. multilocularis cysts, protoscoleces and adult worms with additional expression of Em-TSP3 in the inner

  19. Recombinant Adenoviruses Displaying Matrix 2 Ectodomain Epitopes on Their Fiber Proteins as Universal Influenza Vaccines.

    Science.gov (United States)

    Tang, Xinying; Yang, Yong; Xia, Xiaoli; Zhang, Chao; Yang, Xi; Song, Yufeng; Dai, Xinyi; Wang, Min; Zhou, Dongming

    2017-04-01

    Influenza is a zoonotic disease that poses severe threats to public health and the global economy. Reemerging influenza pandemics highlight the demand for universal influenza vaccines. We developed a novel virus platform using extracellular domain IV of the matrix 2 protein (M2e), AdC68-F3M2e, by introducing three conserved M2e epitopes into the HI loop of the chimpanzee adenovirus (AdV) fiber protein. The M2e epitopes were expressed sufficiently on the AdV virion surface without affecting fiber trimerization. Additionally, one recombinant adenovirus, AdC68-F3M2e(H1-H5-H7), induced robust M2e-specific antibody responses in BALB/c mice after two sequential vaccinations and conferred efficient protection against homologous and heterologous influenza virus (IV) challenges. We found that the use of AdV with tandem M2e epitopes in fiber is a potential strategy for influenza prevention. IMPORTANCE Influenza epidemics and pandemics severely threaten public health. Universal influenza vaccines have increasingly attracted interest in recent years. Here, we describe a new strategy that incorporates triple M2e epitopes into the fiber protein of chimpanzee adenovirus 68. We optimized the process of inserting foreign genes into the AdC68 structural protein by one-step isothermal assembly and demonstrated that this 225-bp HI loop insertion could be well tolerated. Furthermore, two doses of adjuvant-free fiber-modified AdC68 could confer sufficient protection against homologous and heterologous influenza virus infections in mice. Our results show that AdC68-F3M2e could be pursued as a novel universal influenza vaccine. Copyright © 2017 American Society for Microbiology.

  20. Improvement of H5N1 influenza vaccine viruses: influence of internal gene segments of avian and human origin on production and hemagglutinin content.

    Science.gov (United States)

    Abt, Marion; de Jonge, Jørgen; Laue, Michael; Wolff, Thorsten

    2011-07-18

    The H5N1-clade 1 influenza vaccine strain NIBRG-14 produces exceptionally low amounts of antigen, a problem recently encountered also for initial pandemic H1N1-2009 vaccine seeds. Here, we report on a strategy that may contribute to overcome this obstacle. Influenza vaccine viruses usually consist of two segments coding for the antigenic HA and NA proteins of a wild-type strain and the six residual internal gene segments of the vaccine donor strain A/PR/8/34 (PR8). To enhance the antigen yield from H5N1 vaccine virus we generated by reverse genetics a set of PR8-based reassortant viruses expressing the HA and NA segments of the prototypic strain A/Vietnam/1203/2004 and additional replacements of the internal M or PB1 genes of PR8. The reassortants were compared to the parental PR8 and H5N1 viruses in terms of growth in embryonated chicken eggs and the amount of incorporated antigenic HA protein. Compared to NIBRG-14, three out of six viruses displayed an increased replication in embryonated chicken eggs and higher HA content that was also maintained after ether/detergent extraction of virions. Electron microscopic analysis showed that the reassortment hardly affected particle shape and size. Two selected H5N1 reassortant viruses were investigated concerning their pathogenicity in ferrets and found to behave as low pathogenic as the PR8 donor strain. In conclusion, this study shows that replication and antigen content of PR8-derived H5N1 influenza vaccine viruses can be improved by incorporation of heterologous internal gene segments without compromising their attenuated character. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. A novel recombinant virus-like particle vaccine for prevention of porcine parvovirus-induced reproductive failure

    NARCIS (Netherlands)

    Antonis, A.F.G.; Bruschke, C.J.M.; Rueda, P.; Maranga, L.; Casal, J.; Vela, C.; Hilgers, L.A.T.; Belt, P.B.G.M.; Weerdmeester, K.; Carrondo, M.J.; Langeveld, J.P.M.

    2006-01-01

    A novel vaccine against porcine parvovirus (PPV), composed of recombinant virus-like particles (PPV-VLPs) produced with the baculovirus expression vector system (BEVS) at industrial scale, was tested for its immunogenicity and protective potency. A formulation of submicrogram amounts of PPV-VLPs in

  2. Immunogenicity and protective efficacy of recombinant Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope antigens

    NARCIS (Netherlands)

    Volz, Asisa; Lim, Stephanie; Kaserer, Martina; Pijlman, Gorben P.

    2016-01-01

    West Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious

  3. Evaluation of Factors Affecting Vaccine Efficacy of Recombinant Marek's Disease Virus Lacking the Meq Oncogene in Chickens

    Science.gov (United States)

    We have previously reported that deletion of Meq gene from oncogenic rMd5 virus rendered it apathogenic for chickens. Here we examined multiple factors affecting Marek’s disease (MD) vaccine efficacy of this non-pathogenic recombinant Meq null rMd5 virus (rMd5deltaMeq). These factors included host g...

  4. A recombinant rabies vaccine expressing the trimeric form of the glycoprotein confers enhanced immunogenicity and protection in outbred mice.

    Science.gov (United States)

    Koraka, Penelope; Bosch, Berend-Jan; Cox, Manon; Chubet, Rick; Amerongen, Geert van; Lövgren-Bengtsson, Karen; Martina, Byron E E; Roose, Jouke; Rottier, Peter J M; Osterhaus, Albert D M E

    2014-08-06

    Rabies is a disease characterized by an invariably lethal encephalitis of viral origin that can be controlled by preventive vaccination programs of wildlife, domestic animals and humans in areas with a high risk of exposure. Currently available vaccines are expensive, cumbersome to produce and require intensive immunization and booster schemes to induce and maintain protective immunity. In the present study, we describe the development of candidate recombinant subunit rabies vaccines based on the glycoprotein G of the prototype rabies virus (RABV-G) expressed either as a monomer (RABV-mG) or in its native trimeric configuration (RABV-tG), with or without Matrix-M™ adjuvant. Immunogenicity and protective efficacy of the respective candidate vaccines were tested in outbred NIH Swiss albino mice. The RABV-tG candidate vaccine proved to be superior to the RABV-mG vaccine candidate both in terms of immunogenicity and efficacy. The relatively poor immunogenicity of the RABV-mG vaccine candidate was greatly improved by the addition of the adjuvant. A single, low dose of RABV-tG in combination with Matrix-M™ induced high levels of high avidity neutralizing antibodies and protected all mice against challenge with a lethal dose of RABV. Consequently RABV-tG used in combination with Matrix-M™ is a promising vaccine candidate that overcomes the limitations of currently used vaccines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Vaccination of dogs with six different candidate leishmaniasis vaccines composed of a chimerical recombinant protein containing ribosomal and histone protein epitopes in combination with different adjuvants.

    Science.gov (United States)

    Poot, J; Janssen, L H M; van Kasteren-Westerneng, T J; van der Heijden-Liefkens, K H A; Schijns, V E J C; Heckeroth, A

    2009-07-16

    Chimerical protein "Q", composed of antigenic ribosomal and histone sequences, in combination with live BCG is a promising canine leishmaniasis vaccine candidate; one of the few vaccine candidates that have been tested successfully in dogs. Unfortunately, live BCG is not an appropriate adjuvant for commercial application due to safety problems in dogs. In order to find a safe adjuvant with similar efficacy to live BCG, muramyl dipeptide, aluminium hydroxide, Matrix C and killed Propionibacterium acnes in combination with either E. coli- or baculovirus-produced recombinant JPCM5_Q protein were tested. Groups of five or seven dogs were vaccinated with six different adjuvant-antigen combinations and challenged with a high dose intravenous injection of Leishmania infantum JPC strain promastigotes. All candidate vaccines proved to be safe, and both humoral and cellular responses to the recombinant proteins were detected at the end of the prime-boost vaccination scheme. However, clinical and parasitological data obtained during the 10 month follow-up period indicated that protection was not induced by either of the six candidate vaccines. Although no direct evidence was obtained, our data suggest that live BCG may have a significant protective effect against challenge with L. infantum in dogs.

  6. Sublingual administration of bacteria-expressed influenza virus hemagglutinin 1 (HA1) induces protection against infection with 2009 pandemic H1N1 influenza virus.

    Science.gov (United States)

    Shim, Byoung-Shik; Choi, Jung-Ah; Song, Ho-Hyun; Park, Sung-Moo; Cheon, In Su; Jang, Ji-Eun; Woo, Sun Je; Cho, Chung Hwan; Song, Min-Suk; Kim, Hyemi; Song, Kyung Joo; Lee, Jae Myun; Kim, Suhng Wook; Song, Dae Sub; Choi, Young Ki; Kim, Jae-Ouk; Nguyen, Huan Huu; Kim, Dong Wook; Bahk, Young Yil; Yun, Cheol-Heui; Song, Man Ki

    2013-02-01

    Influenza viruses are respiratory pathogens that continue to pose a significantly high risk of morbidity and mortality of humans worldwide. Vaccination is one of the most effective strategies for minimizing damages by influenza outbreaks. In addition, rapid development and production of efficient vaccine with convenient administration is required in case of influenza pandemic. In this study, we generated recombinant influenza virus hemagglutinin protein 1 (sHA1) of 2009 pandemic influenza virus as a vaccine candidate using a well-established bacterial expression system and administered it into mice via sublingual (s.l.) route. We found that s.l. immunization with the recombinant sHA1 plus cholera toxin (CT) induced mucosal antibodies as well as systemic antibodies including neutralizing Abs and provided complete protection against infection with pandemic influenza virus A/CA/04/09 (H1N1) in mice. Indeed, the protection efficacy was comparable with that induced by intramuscular (i.m.) immunization route utilized as general administration route of influenza vaccine. These results suggest that s.l. vaccination with the recombinant non-glycosylated HA1 protein offers an alternative strategy to control influenza outbreaks including pandemics.

  7. Comparative analysis of the immune responses induced by native versus recombinant versions of the ASP-based vaccine against the bovine intestinal parasite Cooperia oncophora.

    Science.gov (United States)

    González-Hernández, Ana; Borloo, Jimmy; Peelaers, Iris; Casaert, Stijn; Leclercq, Georges; Claerebout, Edwin; Geldhof, Peter

    2018-01-01

    The protective capacities of a native double-domain activation-associated secreted protein (ndd-ASP)-based vaccine against the cattle intestinal nematode Cooperia oncophora has previously been demonstrated. However, protection analysis upon vaccination with a recombinantly produced antigen has never been performed. Therefore, the aim of the current study was to test the protective potential of a Pichia-produced double-domain ASP (pdd-ASP)-based vaccine against C. oncophora. Additionally, we aimed to compare the cellular and humoral mechanisms underlying the vaccine-induced responses by the native (ndd-ASP) and recombinant vaccines. Immunisation of cattle with the native C. oncophora vaccine conferred significant levels of protection after an experimental challenge infection, whereas the recombinant vaccine did not. Moreover, vaccination with ndd-ASP resulted in a higher proliferation of CD4-T cells both systemically and in the small intestinal mucosa when compared with animals vaccinated with the recombinant antigen. In terms of humoral response, although both native and recombinant vaccines induced similar levels of antibodies, animals vaccinated with the native vaccine were able to raise antibodies with greater specificity towards ndd-ASP in comparison with antibodies raised by vaccination with the recombinant vaccine, suggesting a differential immune recognition towards the ndd-ASP and pdd-ASP. Finally, the observation that animals displaying antibodies with higher percentages of recognition towards ndd-ASP also exhibited the lowest egg counts suggests a potential relationship between antibody specificity and protection. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Single-walled carbon nanotubes as delivery vehicles enhance the immunoprotective effects of a recombinant vaccine against Aeromonas hydrophila.

    Science.gov (United States)

    Gong, Yu-Xin; Zhu, Bin; Liu, Guang-Lu; Liu, Lei; Ling, Fei; Wang, Gao-Xue; Xu, Xin-Gang

    2015-01-01

    To reduce the economic losses caused by diseases in aquaculture industry, more efficient and economic prophylactic measures should be urgently investigated. In this research, the effects of a novel functionalized single-walled carbon nanotubes (SWCNTs) applied as a delivery vehicle for recombinant Aeromonas hydrophila vaccine administration via bath or injection in juvenile grass carp were studied. The results showed that SWCNT as a vector for the recombinant protein aerA, augmented the production of specific antibodies, apparently stimulated the induction of immune-related genes, and induced higher level of survival rate compared with free aerA subunit vaccine. Furthermore, we compared the routes of bath and intramuscular injection immunization by SWCNTs-aerA vaccine, and found that similar antibody levels induced by SWCNTs-aerA were observed in both immunization routes. Meanwhile, a similar relative percentage survival (approximately 80%) was found in both a 40 mg/L bath immunization group, and a 20 μg injection group. The results indicate that functionalized SWCNTs could be a promising delivery vehicle to potentiate the immune response of recombinant vaccines, and might be used to vaccinate juvenile fish by bath administration method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Integrated analysis of recombinant BPV-1 L1 protein for the production of a bovine papillomavirus VLP vaccine.

    Science.gov (United States)

    Módolo, Diego Grando; Araldi, Rodrigo Pinheiro; Mazzuchelli-de-Souza, Jacqueline; Pereira, Alexandre; Pimenta, Daniel Carvalho; Zanphorlin, Letícia Maria; Beçak, Willy; Menossi, Marcelo; de Cassia Stocco, Rita; de Carvalho, Rodrigo Franco

    2017-03-14

    Bovine papillomatosis is an infectious disease that is caused by bovine papillomavirus (BPV), which results in important economic losses. However, no BPV vaccines or effective treatment methods are commercially available to date. Moreover, the absence of papillomavirus replication in vitro makes the use of recombinant protein a promising candidate for vaccine formulations. Hence, we developed an integrated study on the L1 capsid protein of BPV-1, obtained from a bacterial expression system, regarding its purification, biosafety, thermostability and immunogenicity. The results indicated an absence of genotoxicity of the purified recombinant L1 protein, β-sheet prevalence of secondary structure folding, protein stability under high temperatures as well as the presence of capsomeres and VLPs. In addition, preliminary experimental vaccination of calves showed the production of specific antibodies against BPV-1 L1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses.

    Science.gov (United States)

    Xu, Jiarong; Yang, Deji; Huang, Dongyan; Xu, Jiaping; Liu, Shichao; Lin, Huixing; Zhu, Haodan; Liu, Bao; Lu, Chengping

    2013-03-01

    Swine influenza (SI) is an acute respiratory infectious disease of swine caused by swine influenza virus (SIV). SIV is not only an important respiratory pathogen in pigs but also a potent threat to human health. Here, we report the construction of a recombinant swinepox virus (rSPV/H3-2A-H1) co-expressing hemagglutinin (HA1) of SIV subtypes H1N1 and H3N2. Immune responses and protection efficacy of the rSPV/H3-2A-H1 were evaluated in guinea pigs. Inoculation of rSPV/H3-2A-H1 yielded neutralizing antibodies against SIV H1N1 and H3N2. The IFN-γ and IL-4 concentrations in the supernatant of lymphocytes stimulated with purified SIV HA1 antigen were significantly higher (P guinea pigs against SIV H1N1 or H3N2 challenge was observed. No SIV shedding was detected from guinea pigs vaccinated with rSPV/H3-2A-H1 after challenge. Most importantly, the guinea pigs immunized with rSPV/H3-2A-H1 did not show gross and micrographic lung lesions. However, the control guinea pigs experienced distinct gross and micrographic lung lesions at 7 days post-challenge. Our data suggest that the recombinant swinepox virus encoding HA1 of SIV H1N1 and H3N2 might serve as a promising candidate vaccine for protection against SIV H1N1 and H3N2 infections.

  11. Preclinical development of a dengue tetravalent recombinant subunit vaccine: Immunogenicity and protective efficacy in nonhuman primates.

    Science.gov (United States)

    Govindarajan, Dhanasekaran; Meschino, Steven; Guan, Liming; Clements, David E; ter Meulen, Jan H; Casimiro, Danilo R; Coller, Beth-Ann G; Bett, Andrew J

    2015-08-07

    We describe here the preclinical development of a dengue vaccine composed of recombinant subunit carboxy-truncated envelope (E) proteins (DEN-80E) for each of the four dengue serotypes. Immunogenicity and protective efficacy studies in Rhesus monkeys were conducted to evaluate monovalent and tetravalent DEN-80E vaccines formulated with ISCOMATRIX™ adjuvant. Three different doses and two dosing regimens (0, 1, 2 months and 0, 1, 2, and 6 months) were evaluated in these studies. We first evaluated monomeric (DEN4-80E) and dimeric (DEN4-80EZip) versions of DEN4-80E, the latter generated in an attempt to improve immunogenicity. The two antigens, evaluated at 6, 20 and 100 μg/dose formulated with ISCOMATRIX™ adjuvant, were equally immunogenic. A group immunized with 20 μg DEN4-80E and Alhydrogel™ induced much weaker responses. When challenged with wild-type dengue type 4 virus, all animals in the 6 and 20 μg groups and all but one in the DEN4-80EZip 100 μg group were protected from viremia. Two out of three monkeys in the Alhydrogel™ group had breakthrough viremia. A similar study was conducted to evaluate tetravalent formulations at low (3, 3, 3, 6 μg of DEN1-80E, DEN2-80E, DEN3-80E and DEN4-80E respectively), medium (10, 10, 10, 20 μg) and high (50, 50, 50, 100 μg) doses. All doses were comparably immunogenic and induced high titer, balanced neutralizing antibodies against all four DENV. Upon challenge with the four wild-type DENV, all animals in the low and medium dose groups were protected against viremia while two animals in the high-dose group exhibited breakthrough viremia. Our studies also indicated that a 0, 1, 2 and 6 month vaccination schedule is superior to the 0, 1, and 2 month schedule in terms of durability. Overall, the subunit vaccine was demonstrated to induce strong neutralization titers resulting in protection against viremia following challenge even 8-12 months after the last vaccine dose. Copyright © 2015 Elsevier Ltd. All rights

  12. Evaluation of Recombinant Attenuated Salmonella Vaccine Strains for Broad Protection against Extraintestinal Pathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jacob T. Maddux

    2017-10-01

    Full Text Available Antibiotic-resistant bacterial infections are difficult to treat, producing a burden on healthcare and the economy. Extraintestinal pathogenic Escherichia coli (ExPEC strains frequently carry antibiotic resistance genes, cause infections outside of the intestine, and are causative agents of hospital-acquired infections. Developing a prevention strategy against this pathogen is challenging due to its antibiotic resistance and antigenic diversity. E. coli common pilus (ECP is frequently found in ExPEC strains and may serve as a common antigen to induce protection against several ExPEC serotypes. In addition, live recombinant attenuated Salmonella vaccine (RASV strains have been used to prevent Salmonella infection and can also be modified to deliver foreign antigens. Thus, the objective of this study was to design a RASV to produce ECP on its surface and assess its ability to provide protection against ExPEC infections. To constitutively display ECP in a RASV strain, we genetically engineered a vector (pYA4428 containing aspartate-β-semialdehyde dehydrogenase and E. coli ecp genes and introduced it into RASV χ9558. RASV χ9558 containing an empty vector (pYA3337 was used as a control to assess protection conferred by the RASV strain without ECP. We assessed vaccine efficacy in in vitro bacterial inhibition assays and mouse models of ExPEC-associated human infections. We found that RASV χ9558(pYA4428 synthesized the major pilin (EcpA and tip pilus adhesin (EcpD on the bacterial surface. Mice orally vaccinated with RASV χ9558(pYA3337 without ECP or χ9558(pYA4428 with ECP, produced anti-Salmonella LPS and anti-E. coli EcpA and EcpD IgG and IgA antibodies. RASV strains showed protective potential against some E. coli and Salmonella strains as assessed using in vitro assays. In mouse sepsis and urinary tract infection challenge models, both vaccines had significant protection in some internal organs. Overall, this work showed that RASVs can elicit

  13. Protective immunity induced by the vaccination of recombinant Proteus mirabilis OmpA expressed in Pichia pastoris.

    Science.gov (United States)

    Zhang, Yongbing; Yang, Shifa; Dai, Xiumei; Liu, Liping; Jiang, Xiaodong; Shao, Mingxu; Chi, Shanshan; Wang, Chuanwen; Yu, Cuilian; Wei, Kai; Zhu, Ruiliang

    2015-01-01

    Proteus mirabilis (P. mirabilis) is a zoonotic pathogen that has recently presented a rising infection rate in the poultry industry. To develop an effective vaccine to protect chickens against P. mirabilis infection, OmpA, one of the major outer membrane proteins of P. mirabilis, was expressed in Pichia pastoris. The concentration of the expressed recombinant OmpA protein reached 8.0μg/mL after induction for 96h with 1.0% methanol in the culture. In addition, OmpA protein was confirmed by SDS-PAGE and Western blot analysis using the antibody against Escherichia coli-expressed OmpA protein. Taishan Pinus massoniana pollen polysaccharide, a known plant-derived adjuvant, was mixed into the recombinant OmpA protein to prepare the OmpA subunit vaccine. We then subcutaneously inoculated this vaccine into chickens to examine the immunoprotective effects. ELISA analysis indicated that an excellent antibody response against OmpA was elicited in the vaccinated chickens. Moreover, a high protection rate of 80.0% was observed in the vaccinated group, which was subsequently challenged with P. mirabilis. The results suggest that the eukaryotic P. mirabilis OmpA was an ideal candidate protein for developing an effective subunit vaccine against P. mirabilis infection. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Membrane Fusion and Infection of the Influenza Hemagglutinin.

    Science.gov (United States)

    Smrt, Sean T; Lorieau, Justin L

    2017-01-01

    The influenza virus is a major health concern associated with an estimated 5000 to 30,000 deaths every year (Reed et al. 2015) and a significant economic impact with the development of treatments, vaccinations and research (Molinari et al. 2007). The entirety of the influenza genome is comprised of only eleven coding genes. An enormous degree of variation in non-conserved regions leads to significant challenges in the development of inclusive inhibitors for treatment. The fusion peptide domain of the influenza A hemagglutinin (HA) is a promising candidate for treatment since it is one of the most highly conserved sequences in the influenza genome (Heiny et al. 2007), and it is vital to the viral life cycle. Hemagglutinin is a class I viral fusion protein that catalyzes the membrane fusion process during cellular entry and infection. Impediment of the hemagglutinin's function, either through incomplete post-translational processing (Klenk et al. 1975; Lazarowitz and Choppin 1975) or through mutations (Cross et al. 2001), leads to non-infective virus particles. This review will investigate current research on the role of hemagglutinin in the virus life cycle, its structural biology and mechanism as well as the central role of the hemagglutinin fusion peptide (HAfp) to influenza membrane fusion and infection.

  15. Safety and immunogenicity of novel recombinant BCG and modified vaccinia virus Ankara vaccines in neonate rhesus macaques.

    Science.gov (United States)

    Rosario, Maximillian; Fulkerson, John; Soneji, Shamit; Parker, Joe; Im, Eung-Jun; Borthwick, Nicola; Bridgeman, Anne; Bourne, Charles; Joseph, Joan; Sadoff, Jerald C; Hanke, Tomás

    2010-08-01

    Although major inroads into making antiretroviral therapy available in resource-poor countries have been made, there is an urgent need for an effective vaccine administered shortly after birth, which would protect infants from acquiring human immunodeficiency virus type 1 (HIV-1) through breast-feeding. Bacillus Calmette-Guérin (BCG) is given to most infants at birth, and its recombinant form could be used to prime HIV-1-specific responses for a later boost by heterologous vectors delivering the same HIV-1-derived immunogen. Here, two groups of neonate Indian rhesus macaques were immunized with either novel candidate vaccine BCG.HIVA(401) or its parental strain AERAS-401, followed by two doses of recombinant modified vaccinia virus Ankara MVA.HIVA. The HIVA immunogen is derived from African clade A HIV-1. All vaccines were safe, giving local reactions consistent with the expected response at the injection site. No systemic adverse events or gross abnormality was seen at necropsy. Both AERAS-401 and BCG.HIVA(401) induced high frequencies of BCG-specific IFN-gamma-secreting lymphocytes that declined over 23 weeks, but the latter failed to induce detectable HIV-1-specific IFN-gamma responses. MVA.HIVA elicited HIV-1-specific IFN-gamma responses in all eight animals, but, except for one animal, these responses were weak. The HIV-1-specific responses induced in infants were lower compared to historic data generated by the two HIVA vaccines in adult animals but similar to other recombinant poxviruses tested in this model. This is the first time these vaccines were tested in newborn monkeys. These results inform further infant vaccine development and provide comparative data for two human infant vaccine trials of MVA.HIVA.

  16. Toolbox for non-intrusive structural and functional analysis of recombinant VLP based vaccines: a case study with hepatitis B vaccine.

    Directory of Open Access Journals (Sweden)

    Anke M Mulder

    Full Text Available BACKGROUND: Fundamental to vaccine development, manufacturing consistency, and product stability is an understanding of the vaccine structure-activity relationship. With the virus-like particle (VLP approach for recombinant vaccines gaining popularity, there is growing demand for tools that define their key characteristics. We assessed a suite of non-intrusive VLP epitope structure and function characterization tools by application to the Hepatitis B surface antigen (rHBsAg VLP-based vaccine. METHODOLOGY: The epitope-specific immune reactivity of rHBsAg epitopes to a given monoclonal antibody was monitored by surface plasmon resonance (SPR and quantitatively analyzed on rHBsAg VLPs in-solution or bound to adjuvant with a competitive enzyme-linked immunosorbent assay (ELISA. The structure of recombinant rHBsAg particles was examined by cryo transmission electron microscopy (cryoTEM and in-solution atomic force microscopy (AFM. PRINCIPAL FINDINGS: SPR and competitive ELISA determined relative antigenicity in solution, in real time, with rapid turn-around, and without the need of dissolving the particulate aluminum based adjuvant. These methods demonstrated the nature of the clinically relevant epitopes of HBsAg as being responsive to heat and/or redox treatment. In-solution AFM and cryoTEM determined vaccine particle size distribution, shape, and morphology. Redox-treated rHBsAg enabled 3D reconstruction from CryoTEM images--confirming the previously proposed octahedral structure and the established lipid-to-protein ratio of HBsAg particles. Results from these non-intrusive biophysical and immunochemical analyses coalesced into a comprehensive understanding of rHBsAg vaccine epitope structure and function that was important for assuring the desired epitope formation, determinants for vaccine potency, and particle stability during vaccine design, development, and manufacturing. SIGNIFICANCE: Together, the methods presented here comprise a novel

  17. Toolbox for non-intrusive structural and functional analysis of recombinant VLP based vaccines: a case study with hepatitis B vaccine.

    Science.gov (United States)

    Mulder, Anke M; Carragher, Bridget; Towne, Victoria; Meng, Yuan; Wang, Yang; Dieter, Lance; Potter, Clinton S; Washabaugh, Michael W; Sitrin, Robert D; Zhao, Qinjian

    2012-01-01

    Fundamental to vaccine development, manufacturing consistency, and product stability is an understanding of the vaccine structure-activity relationship. With the virus-like particle (VLP) approach for recombinant vaccines gaining popularity, there is growing demand for tools that define their key characteristics. We assessed a suite of non-intrusive VLP epitope structure and function characterization tools by application to the Hepatitis B surface antigen (rHBsAg) VLP-based vaccine. The epitope-specific immune reactivity of rHBsAg epitopes to a given monoclonal antibody was monitored by surface plasmon resonance (SPR) and quantitatively analyzed on rHBsAg VLPs in-solution or bound to adjuvant with a competitive enzyme-linked immunosorbent assay (ELISA). The structure of recombinant rHBsAg particles was examined by cryo transmission electron microscopy (cryoTEM) and in-solution atomic force microscopy (AFM). SPR and competitive ELISA determined relative antigenicity in solution, in real time, with rapid turn-around, and without the need of dissolving the particulate aluminum based adjuvant. These methods demonstrated the nature of the clinically relevant epitopes of HBsAg as being responsive to heat and/or redox treatment. In-solution AFM and cryoTEM determined vaccine particle size distribution, shape, and morphology. Redox-treated rHBsAg enabled 3D reconstruction from CryoTEM images--confirming the previously proposed octahedral structure and the established lipid-to-protein ratio of HBsAg particles. Results from these non-intrusive biophysical and immunochemical analyses coalesced into a comprehensive understanding of rHBsAg vaccine epitope structure and function that was important for assuring the desired epitope formation, determinants for vaccine potency, and particle stability during vaccine design, development, and manufacturing. Together, the methods presented here comprise a novel suite of non-intrusive VLP structural and functional characterization tools

  18. Cloning and expression of Clostridium perfringens type D vaccine strain epsilon toxin gene in E. coli as a recombinant vaccine candidate.

    Science.gov (United States)

    Aziminia, Parastoo; Pilehchian-Langroudi, Reza; Esmaeilnia, Kasra

    2016-08-01

    Clostridium perfringens, a Gram-positive obligate anaerobic bacterium, is able to form resistant spores which are widely distributed in the environment. C. perfringens is subdivided into five types A to E based on its four major alpha, beta, epsilon and iota toxins. The aim of the present study was cloning and expression of C. perfringens type D vaccine strain epsilon toxin gene. Genomic DNA was extracted and the epsilon toxin gene was amplified using Pfu DNA polymerase. The PCR product was cloned into pJET1.2/blunt cloning vector. The recombinant vector (pJETε) was sequenced using universal primers. At the next step epsilon toxin gene was subcloned into pET22b(+) expression vector and transformed into E. coli Rosetta (DE3) host strain. The recombinant protein has been expressed in E. coli Rosetta (DE3) cells after subcloning of C. perfringens etx gene (1008 bp) into the expression vector. We concluded that E. coli Rosetta strain was suitable for the expression of recombinant C. perfringens epsilon toxin protein from pET22ε expression vector. This recombinant cell can be used for further research on recombinant vaccine development.

  19. Assessment of a recombinant F1-V fusion protein vaccine intended to protect Canada lynx (Lynx canadensis) from plague

    Science.gov (United States)

    Wolfe, Lisa L.; Shenk, Tanya M.; Powell, Bradford; Rocke, Tonie E.

    2011-01-01

    As part of an ongoing restoration program in Colorado, USA, we evaluated adverse reactions and seroconversion in captive Canada lynx (Lynx canadensis) after vaccination with a recombinant F1-V fusion protein vaccine against Yersinia pestis, the bacterium that causes plague. Ten adult female lynx received the F1-V vaccine; 10 source- and age-matched lynx remained unvaccinated as controls. All of the vaccinated and control lynx remained apparently healthy throughout the confinement period. We observed no evidence of injection site or systemic reactions to the F1-V vaccine. Among vaccinated lynx, differences in log10 reciprocal antibody titers measured in sera collected before and after vaccination (two doses) ranged from 1.2 to 5.2 for anti-F1 antibodies and from 0.6 to 5.2 for anti-V antibodies; titers in unvaccinated lynx did not change appreciably over the course of confinement prior to release, and thus differences in anti-F1 (P=0.003) and anti-V (P=0.0005) titers were greater among vaccinated lynx than among controls. Although our findings suggest that the F1-V fusion protein vaccine evaluated here is likely to stimulate antibody responses that may help protect Canada lynx from plague, we observed no apparent differences in survival between vaccinated and unvaccinated subject animals. Retrospectively, 22 of 50 (44%; 95% confidence interval 29–59%) unvaccinated lynx captured or recaptured in Colorado during 2000–08 had passive hemagglutination antibody titers >1:16, consistent with exposure to Y. pestis; paired pre- and postrelease titers available for eight of these animals showed titer increases similar in magnitude to those seen in response to vaccination, suggesting at least some lynx may naturally acquire immunity to plague in Colorado habitats.

  20. Assessment of a recombinant F1-V fusion protein vaccine intended to protect Canada lynx (Lynx canadensis) from plague.

    Science.gov (United States)

    Wolfe, Lisa L; Shenk, Tanya M; Powell, Bradford; Rocke, Tonie E

    2011-10-01

    As part of an ongoing restoration program in Colorado, USA, we evaluated adverse reactions and seroconversion in captive Canada lynx (Lynx canadensis) after vaccination with a recombinant F1-V fusion protein vaccine against Yersinia pestis, the bacterium that causes plague. Ten adult female lynx received the F1-V vaccine; 10 source- and age-matched lynx remained unvaccinated as controls. All of the vaccinated and control lynx remained apparently healthy throughout the confinement period. We observed no evidence of injection site or systemic reactions to the F1-V vaccine. Among vaccinated lynx, differences in log(10) reciprocal antibody titers measured in sera collected before and after vaccination (two doses) ranged from 1.2 to 5.2 for anti-F1 antibodies and from 0.6 to 5.2 for anti-V antibodies; titers in unvaccinated lynx did not change appreciably over the course of confinement prior to release, and thus differences in anti-F1 (P=0.003) and anti-V (P=0.0005) titers were greater among vaccinated lynx than among controls. Although our findings suggest that the F1-V fusion protein vaccine evaluated here is likely to stimulate antibody responses that may help protect Canada lynx from plague, we observed no apparent differences in survival between vaccinated and unvaccinated subject animals. Retrospectively, 22 of 50 (44%; 95% confidence interval 29-59%) unvaccinated lynx captured or recaptured in Colorado during 2000-08 had passive hemagglutination antibody titers >1:16, consistent with exposure to Y. pestis; paired pre- and postrelease titers available for eight of these animals showed titer increases similar in magnitude to those seen in response to vaccination, suggesting at least some lynx may naturally acquire immunity to plague in Colorado habitats.

  1. Three-year duration of immunity in cats vaccinated with a canarypox-vectored recombinant rabies virus vaccine.

    Science.gov (United States)

    Jas, D; Coupier, C; Toulemonde, C Edlund; Guigal, P-M; Poulet, H

    2012-11-19

    Despite the availability of efficacious vaccines for animals and humans, rabies is still a major zoonosis. Prevention of rabies in dogs and cats is key for reducing the risk of transmission of this deadly disease to humans. Most veterinary vaccines are adjuvanted inactivated vaccines and have been shown to provide one to four-year duration of immunity. In response to debates about the safety of adjuvanted vaccines in cats, a non-adjuvanted feline rabies vaccine with one-year duration of immunity claim was specifically developed using the canarypoxvirus vector technology. The objective of this study was to validate a vaccination program based on primary vaccination, revaccination one year later and boosters every three years. Seronegative cats were vaccinated at 12 weeks of age and received a booster vaccination one year later. This vaccination regimen induced a strong and sustained antibody response, and all vaccinated animals were protected against virulent rabies challenge carried out 3 years after vaccination. These results validated 3-year duration of immunity after a complete basic vaccination program consisting in primary vaccination from 12 weeks of age followed by revaccination one year later with a non-adjuvanted canarypox-vectored vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague.

    Science.gov (United States)

    Sanapala, Shilpa; Rahav, Hannah; Patel, Hetal; Sun, Wei; Curtiss, Roy

    2016-05-05

    Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Orally administered recombinant Lactobacillus casei vector vaccine expressing β-toxoid of Clostridium perfringens that induced protective immunity responses.

    Science.gov (United States)

    Alimolaei, Mojtaba; Golchin, Mehdi; Ezatkhah, Majid

    2017-12-01

    Clostridium perfringens types B and C cause enteritis and enterotoxemia in animals. The conventional vaccine production systems need time-consuming detoxification and difficult quality control steps. In this study, a modified β-toxoid gene was synthesized, cloned into the pT1NX vector, and electroporated into Lactobacillus casei competent cells to yield L. casei-β recombinant strain. Surface expression of the recombinant β-toxoid was evaluated by ELISA and confirmed by immunofluorescence microscopy. Vaccinated BALB/c mice with L. casei-β induced potent humoral and cell-mediated immune responses that were protective against lethal challenges with 100 MLD/mL of the β-toxin. Safety and efficacy of the recombinant clone was evaluated and the presumptive toxicity of L. casei-β was studied by toxicity test and histopathological findings, which were the same as negative controls. Our results support the use of L. casei as a live oral vector vaccine, and that the recombinant L. casei-β is a potential candidate for being used in the control of enterotoxemia diseases caused by C. perfringens types B and C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Synergism/complementarity of recombinant adenoviral vectors and other vaccination platforms during induction of protective immunity against malaria

    Directory of Open Access Journals (Sweden)

    Ana Paula Morais Martins Almeida

    2011-08-01

    Full Text Available The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures, has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject.

  5. The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia: A Model Comparison Study.

    Directory of Open Access Journals (Sweden)

    Stefan Flasche

    2016-11-01

    Full Text Available Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9. These predictions were conducted for the World Health Organization to inform their recommendations on optimal use of this vaccine.The models adopted, with small variations, a parsimonious vaccine mode of action that was able to reproduce quantitative features of the observed trial data. The adopted mode of action assumed that vaccination, similarly to natural infection, induces transient, heterologous protection and, further, establishes a long-lasting immunogenic memory, which determines disease severity of subsequent infections. The default vaccination policy considered was routine vaccination of 9-y-old children in a three-dose schedule at 80% coverage. The outcomes examined were the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, deaths, and cost-effectiveness over a 30-y postvaccination period. Case definitions were chosen in accordance with the Phase III trials. All models predicted that in settings with moderate to high dengue endemicity (SP9 ≥ 50%, the default vaccination policy would reduce the burden of dengue disease for the population by 6%-25% (all simulations: -3%-34% and in high-transmission settings (SP9 ≥ 70% by 13%-25% (all simulations: 10%- 34%. These endemicity levels are representative of the

  6. Protection against respiratory syncytial virus by inactivated influenza virus carrying a fusion protein neutralizing epitope in a chimeric hemagglutinin.

    Science.gov (United States)

    Lee, Yu-Na; Hwang, Hye Suk; Kim, Min-Chul; Lee, Young-Tae; Kim, Yu-Jin; Lee, F Eun-Hyung; Kang, Sang-Moo

    2016-04-01

    A desirable vaccine against respiratory syncytial virus (RSV) should induce neutralizing antibodies without eliciting abnormal T cell responses to avoid vaccine-enhanced pathology. In an approach to deliver RSV neutralizing epitopes without RSV-specific T cell antigens, we genetically engineered chimeric influenza virus expressing RSV F262-276 neutralizing epitopes in the globular head domain as a chimeric hemagglutinin (HA) protein. Immunization of mice with formalin-inactivated recombinant chimeric influenza/RSV F262-276 was able to induce RSV protective neutralizing antibodies and lower lung viral loads after challenge. Formalin-inactivated RSV immune mice showed high levels of pulmonary inflammatory cytokines, macrophages, IL-4-producing T cells, and extensive histopathology. However, RSV-specific T cell responses and enhancement of pulmonary histopathology were not observed after RSV infection of inactivated chimeric influenza/RSV F262-276. This study provides evidence that an inactivated vaccine platform of chimeric influenza/RSV virus can be developed into a safe RSV vaccine candidate without priming RSV-specific T cells and immunopathology. Respiratory syncytial virus (RSV) is a major cause of respiratory tract illness and morbidity in children. Hence, there is a need to develop an effective vaccine against this virus. In this article, the authors engineered chimeric influenza virus to express RSV neutralizing epitopes. The positive findings in in-vivo experiments provide a beginning for future clinical trials and perhaps eventual product realization. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Prevention of cervical, vaginal, and vulval cancers: role of the quadrivalent human papillomavirus (6, 11, 16, 18 recombinant vaccine

    Directory of Open Access Journals (Sweden)

    Maria Lina Diaz

    2009-09-01

    Full Text Available Maria Lina DiazSection of Ambulatory Gynecology Cleveland Clinic Florida Weston, Florida, USAAbstract: The relationship between the human papillomavirus (HPV and malignancies of the uterine cervix, vagina, and vulva has been established. The development of a quadrivalent HPV recombinant prophylactic vaccine represents the first time in history that primary prevention of these cancers is offered to girls and women. The prevalence of oncogenic HPV subtypes in cervical cancers has been the most studied, but prevalence has also been established for vaginal and vulvar cancers. Clinical trials demonstrate impressive efficacy in disease prevention as well as excellent safety and tolerability. The role the quadrivalent HPV recombinant vaccine promises to have in the reduction of gynecologic malignancies will depend on various factors, including acceptance and accessibility of the vaccine, duration of immunity, and cross-protection against other oncogenic HPV subtypes. The HPV vaccine’s role in disease reduction will probably be viewed in the context of a strategy that involves continued secondary screening and lifestyle modification to reduce modifiable risk factors, along with widespread vaccination.Keywords: human papillomavirus, quadrivalent vaccine, cervical cancer, vaginal cancer, vulvar cancer

  8. A novel recombinant BCG vaccine encoding eimeria tenella rhomboid and chicken IL-2 induces protective immunity against coccidiosis.

    Science.gov (United States)

    Wang, Qiuyue; Chen, Lifeng; Li, Jianhua; Zheng, Jun; Cai, Ning; Gong, Pengtao; Li, Shuhong; Li, He; Zhang, Xichen

    2014-06-01

    A novel recombinant Bacille Calmette-Guerin (rBCG) vaccine co-expressed Eimeria tenella rhomboid and cytokine chicken IL-2 (chIL-2) was constructed, and its efficacy against E. tenella challenge was observed. The rhomboid gene of E. tenella and chIL-2 gene were subcloned into integrative expression vector pMV361, producing vaccines rBCG pMV361-rho and pMV361-rho-IL2. Animal experiment via intranasal and subcutaneous route in chickens was carried out to evaluate the immune efficacy of the vaccines. The results indicated that these rBCG vaccines could obviously alleviate cacal lesions and oocyst output. Intranasal immunization with pMV361-rho and pMV361-rho-IL2 elicited better protective immunity against E. tenella than subcutaneous immunization. Splenocytes from chickens immunized with either rBCG pMV361-rho and pMV361-rho-IL2 had increased CD4(+) and CD8(+) cell production. Our data indicate recombinant BCG is able to impart partial protection against E. tenella challenge and co-expression of cytokine with antigen was an effective strategy to improve vaccine immunity.

  9. How to Meet the Last OIE Expert Surveillance Panel Recommendations on Equine Influenza (EI) Vaccine Composition: A Review of the Process Required for the Recombinant Canarypox-Based EI Vaccine.

    Science.gov (United States)

    Paillot, Romain; Rash, Nicola L; Garrett, Dion; Prowse-Davis, Leah; Montesso, Fernando; Cullinane, Ann; Lemaitre, Laurent; Thibault, Jean-Christophe; Wittreck, Sonia; Dancer, Agnes

    2016-11-25

    Vaccination is highly effective to prevent, control, and limit the impact of equine influenza (EI), a major respiratory disease of horses. However, EI vaccines should contain relevant equine influenza virus (EIV) strains for optimal protection. The OIE expert surveillance panel annually reviews EIV evolution and, since 2010, the use of Florida clade 1 and 2 sub-lineages representative vaccine strains is recommended. This report summarises the development process of a fully- updated recombinant canarypox-based EI vaccine in order to meet the last OIE recommendations, including the vaccine mode of action, production steps and schedule. The EI vaccine ProteqFlu contains 2 recombinant canarypox viruses expressing the haemagglutinin of the A/equine/Ohio/03 and A/equine/Richmond/1/07 isolates (Florida clade 1 and 2 sub-lineages, respectively). The updated EI vaccine was tested for efficacy against the representative Florida clade 2 EIV strain A/equine/Richmond/1/07 in the Welsh mountain pony model. Protective antibody response, clinical signs of disease and virus shedding were compared with unvaccinated control ponies. Significant protection was measured in vaccinated ponies, which supports the vaccine registration. The recombinant canarypox-based EI vaccine was the first fully updated EI vaccine available in the EU, which will help to minimise the increasing risk of vaccine breakdown due to constant EIV evolution through antigenic drift.

  10. A Recombinant Multi-Stage Vaccine against Paratuberculosis Significantly Reduces Bacterial Level in Tissues without Interference in Diagnostics

    DEFF Research Database (Denmark)

    Jungersen, Gregers; Thakur, Aneesh; Aagaard, C.

    A new (FET11) recombinant vaccine against paratuberculosis was developed based on recombinant antigens from acute and latent stages of Mycobacterium avium subsp. paratuberculosis (Map) infection. In two experiments 28 calves and 15 goats were orally inoculated with live Map in their third week......, PPDj-specific IFN-γ responses or positive PPDa or PPDb skin tests developed in vaccinees. Antibodies and cell-mediated immune responses were developed against FET11 antigens, however. At necropsy 8 or 12 months of age, relative Map burden was determined in a number of gut tissues by quantitative IS900...

  11. Recombinant system for overexpression of cholera toxin B subunit in Vibrio cholerae as a basis for vaccine development.

    OpenAIRE

    J Sanchez; Holmgren, J

    1989-01-01

    We have constructed an overexpression system in which the gene encoding the B subunit of cholera toxin (CTB) was placed under the control of the strong tacP promoter in a wide host range plasmid. Recombinant nontoxigenic classical and E1 Tor Vibrio cholerae strains of different serotypes harboring this plasmid excreted 10- to 100-fold higher amounts of CTB than any other wild-type or recombinant strain tested and may therefore be useful killed oral vaccine strains. The manipulations to place ...

  12. Development of the Brazilian anti Schistosomiasis vaccine based on the recombinant FABP Sm14 +GLA-SE

    Directory of Open Access Journals (Sweden)

    Miriam eTendler

    2015-05-01

    Full Text Available Data herein reported and discussed refer to vaccination with the recombinant Fatty Acid Binding protein family member of the Schistosomes, called Sm14, discovered and developed under a Brazilian platform leaded by the Oswaldo Cruz Foundation, from the Health Ministry in Brazil, undertaken to assess safety and immunogenicity in healthy volunteers. This paper reviews past and recent outcomes of developmental phases of the Sm14 based anti Schistosomiasis vaccine addressed to, ultimately, impact transmission of the second most prevalent parasitic endemic disease worldwide.

  13. Immunogenicity of three recombinant hepatitis B vaccines administered to students in three doses containing half the antigen amount routinely used for adult vaccination

    Directory of Open Access Journals (Sweden)

    Baldy José Luís da Silveira

    2004-01-01

    Full Text Available We evaluated the immunogenicity of three recombinant hepatitis B vaccines, one Brazilian (Butang, Instituto Butantan and two Korean vaccines (Euvax-B, LG Chemical Ltd. and Hepavax-Gene, Greencross Vaccine Corp., administered intramuscularly to students aged 17 to 19 years in three 10-µg doses (corresponding to half the amount of antigen routinely used for adult vaccination at intervals of one month between the first and second dose, and of four months between the second and third dose. A total of 316 students non-reactive for any serological marker of hepatitis B virus infection were vaccinated: 77 (24.4% with the Butang vaccine, 71 (22.5% with Euvax-B, 85 (26.9% with Hepavax-Gene and, for comparison, 83 (26.2% with Engerix-B (GlaxoSmithKline, whose efficacy in young adults at the dose used here has been confirmed in previous studies. Similar seroconversion rates (anti-HBs > 10 mIU/mL about one month after application of the third dose were obtained for the Butang, Euvax-B, Hepavax-Gene and Engerix-B vaccines (96.2%, 98.6%, 96.5% and 97.6%, respectively. The frequency of good responders (anti-HBs > 100 mIU/mL was also similar among students receiving the four vaccines (85.8%, 91.6%, 89.4% and 89.2%, respectively. The geometric mean titers (GMT of anti-HBs about one month after the third dose obtained with these vaccines were 727.78 ± 6.46 mIU/mL, 2009.09 ± 7.16 mIU/mL, 1729.82 ± 8.85 mIU/mL and 2070.14 ± 11.69 mIU/mL, respectively. The GMT of anti-HBs induced by the Euvax-B and Engerix-B vaccines were higher than those obtained with the Butang vaccine (p < 0.05; this difference was not significant when comparing the other vaccines two-by-two. No spontaneous adverse effects attributable to the application of any dose of the four vaccines were reported.

  14. Instruments for oral disease-intervention strategies : recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis

    NARCIS (Netherlands)

    Maassen, C.B.M.; Laman, J.D.; Heijne den Bak-Glashouwer, M.J.; Tielen, F.J.; Holten-Neelen, J.C.P.A. van; Hoogteijling, L.; Antonissen, C.; Leer, R.J.; Pouwels, P.H.; Boersma, W.J.A.; Shaw, D.M.

    1999-01-01

    Lactobacillus strains possess properties that make them attractive candidates as vehicles for oral administration of therapeutics. In this report we describe the construction and analysis of recombinant Lactobacillus casei applicable in oral vaccination against an infectious disease (tetanus) and in

  15. Expression of interleukin-6 by a recombinant rabies virus enhances its immunogenicity as a potential vaccine.

    Science.gov (United States)

    Luo, Jun; Zhang, Boyue; Wu, Yuting; Tian, Qin; Zhao, Jing; Lyu, Ziyu; Zhang, Qiong; Mei, Mingzhu; Luo, Yongwen; Guo, Xiaofeng

    2017-02-07

    Several studies have confirmed that interleukin-6 (IL6) mediates multiple biological effects that enhance immune responses when used as an adjuvant. In the present study, recombinant rabies virus (RABV) expressing canine IL6 (rHEP-CaIL6) was rescued and its pathogenicity and immunogenicity were investigated in mice. We demonstrated that mice received a single intramuscular immunization with rHEP-CaIL6 showed an earlier increase and higher maximum titres of virus-neutralizing antibody (VNA) as well as anti-RABV antibodies compared with mice immunized with the parent strain. Moreover, survival rates of mice immunized with rHEP-CaIL6 were higher compared with mice immunized with parent HEP-Flury according to the challenge assay. Flow cytometry further confirmed that immunization with rHEP-CaIL6 induced the strong recruitment of mature B cells and CD8 + T cells to lymph nodes, which may partially explain the high levels of VNA and enhanced cellular immunity. Quantitative real-time PCR indicated that rHEP-CaIL6 induced stronger inflammatory and immune responses in the central nervous system, which might have allowed virus clearance in the early infection phase. Furthermore, mice infected intranasally with rHEP-CaIL6 developed no clinical symptoms while mice infected with HEP-Flury showed piloerection. In summary, these data indicate that rHEP-CaIL6 induces a strong, protective immune response with a good safety profile. Therefore, a recombinant RABV strain expressing canine IL6 may aid the development of an effective, safe attenuated rabies vaccine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. CD4+ T cells mediate the protective effect of the recombinant Asp f3-based anti-aspergillosis vaccine.

    Science.gov (United States)

    Diaz-Arevalo, Diana; Bagramyan, Karine; Hong, Teresa B; Ito, James I; Kalkum, Markus

    2011-06-01

    The mortality and morbidity caused by invasive aspergillosis present a major obstacle to the successful treatment of blood cancers with hematopoietic cell transplants. Patients who receive hematopoietic cell transplants are usually immunosuppressed for extended periods, and infection with the ubiquitous mold Aspergillus fumigatus is responsible for most cases of aspergillosis. Previously, we demonstrated that vaccination with recombinant forms of the A. fumigatus protein Asp f3 protected cortisone acetate-immunosuppressed mice from experimentally induced pulmonary aspergillosis. Here, we investigated the vaccine's protective mechanism and evaluated in particular the roles of antibodies and T cells. After vaccination, Asp f3-specific preinfection IgG titers did not significantly differ between surviving and nonsurviving mice, and passive transfer of anti-Asp f3 antibodies did not protect immunosuppressed recipients from aspergillosis. We experimentally confirmed Asp f3's predicted peroxisomal localization in A. fumigatus hyphae. We found that fungal Asp f3 is inaccessible to antibodies, unless both cell walls and membranes have been permeabilized. Antibody-induced depletion of CD4+ T cells reduced the survival of recombinant Asp f3 (rAsp f3)-vaccinated mice to nonimmune levels, and transplantation of purified CD4+ T cells from rAsp f3-vaccinated mice into nonimmunized recipients transferred antifungal protection. In addition, residues 60 to 79 and 75 to 94 of Asp f3 contain epitopes that induce proliferation of T cells from vaccinated survivors. Vaccine-primed CD4+ T cells are not expected to clear the fungal pathogen directly; however, they may locally activate immunosuppressed phagocytes that elicit the antifungal effect.

  17. CD4+ T Cells Mediate the Protective Effect of the Recombinant Asp f3-Based Anti-Aspergillosis Vaccine

    Science.gov (United States)

    Diaz-Arevalo, Diana; Bagramyan, Karine; Hong, Teresa B.; Ito, James I.; Kalkum, Markus

    2011-01-01

    The mortality and morbidity caused by invasive aspergillosis present a major obstacle to the successful treatment of blood cancers with hematopoietic cell transplants. Patients who receive hematopoietic cell transplants are usually immunosuppressed for extended periods, and infection with the ubiquitous mold Aspergillus fumigatus is responsible for most cases of aspergillosis. Previously, we demonstrated that vaccination with recombinant forms of the A. fumigatus protein Asp f3 protected cortisone acetate-immunosuppressed mice from experimentally induced pulmonary aspergillosis. Here, we investigated the vaccine's protective mechanism and evaluated in particular the roles of antibodies and T cells. After vaccination, Asp f3-specific preinfection IgG titers did not significantly differ between surviving and nonsurviving mice, and passive transfer of anti-Asp f3 antibodies did not protect immunosuppressed recipients from aspergillosis. We experimentally confirmed Asp f3's predicted peroxisomal localization in A. fumigatus hyphae. We found that fungal Asp f3 is inaccessible to antibodies, unless both cell walls and membranes have been permeabilized. Antibody-induced depletion of CD4+ T cells reduced the survival of recombinant Asp f3 (rAsp f3)-vaccinated mice to nonimmune levels, and transplantation of purified CD4+ T cells from rAsp f3-vaccinated mice into nonimmunized recipients transferred antifungal protection. In addition, residues 60 to 79 and 75 to 94 of Asp f3 contain epitopes that induce proliferation of T cells from vaccinated survivors. Vaccine-primed CD4+ T cells are not expected to clear the fungal pathogen directly; however, they may locally activate immunosuppressed phagocytes that elicit the antifungal effect. PMID:21422177

  18. Recombinant system for overexpression of cholera toxin B subunit in Vibrio cholerae as a basis for vaccine development.

    Science.gov (United States)

    Sanchez, J; Holmgren, J

    1989-01-01

    We have constructed an overexpression system in which the gene encoding the B subunit of cholera toxin (CTB) was placed under the control of the strong tacP promoter in a wide host range plasmid. Recombinant nontoxigenic classical and E1 Tor Vibrio cholerae strains of different serotypes harboring this plasmid excreted 10- to 100-fold higher amounts of CTB than any other wild-type or recombinant strain tested and may therefore be useful killed oral vaccine strains. The manipulations to place the CTB gene under tacP also included, by design, the introduction of single enzyme restriction sites for gene fusions to the CTB amino terminus. Cloning into these sites allows construction of CTB-derived hybrid proteins carrying various putative vaccine peptide antigens.

  19. Oral immunization and protection of raccoons (Procyon lotor) with a vaccinia-rabies glycoprotein recombinant virus vaccine.

    OpenAIRE

    Rupprecht, C. E.; Wiktor, T. J.; Johnston, D H; Hamir, A. N.; Dietzschold, B; Wunner, W. H.; Glickman, L T; Koprowski, H

    1986-01-01

    Animal rabies control has been frustrated by the existence of multiple wildlife reservoirs and the lack of efficacious oral vaccines. In this investigation, raccoons fed a vaccinia-rabies glycoprotein recombinant virus in a sponge bait developed rabies virus-neutralizing antibody (0.6-54.0 units) and resisted street rabies virus infection 28 and 205 days after feeding. Additional raccoons immunized by oral infusion with attenuated antigenic variants of rabies virus strains CVS-11 and ERA fail...

  20. Vaccination with Salmonella Typhi recombinant outer membrane protein 28 induces humoral but non-protective immune response in rabbit

    Directory of Open Access Journals (Sweden)

    Anjani Saxena

    2017-08-01

    Full Text Available Aim: Typhoid is one of the most important food and water borne disease causing millions of deaths over the world. Presently, there is no cost effective vaccine available in India. The outer-membrane proteins (Omps of Salmonella have been exhibited as a potential candidate for development of subunit vaccine against typhoid. The objective of the present study was to evaluate the use of recombinant Omp 28 protein for immunization of rabbit to elucidate its protection against virulent Salmonella Typhi. Materials and Methods: Immune potential of recombinant Omp28 was tested in New Zealand Rabbits. Rabbits were divided into two groups, i.e., control and test group. Control group was injected with phosphate buffer saline with adjuvant while test group were injected with recombinant Omp28 along with adjuvant. Rabbits were bleed and serum was collected from each rabbit. Serum was tested by Enzyme-linked immunosorbent assay (ELISA for humoral response. Rabbits were challenged with virulent culture to test the protective immunity. Results: Humoral response was provoked at 15th day and maintained till 30th day. The mean ELISA titer at 15th day was 1 : 28000 (mean titer log 10 : 4.4472 and on the 30th day was 1 : 25866 (mean titer log 10 : 4.4127. Protective immune potential of Omp 28 was assessed by challenge studies in rabbits for which vaccinated and control rabbits were challenged with 109 cells of virulent culture of S. Typhi. In control group, out of six, no rabbit could survive after 48 days while in vaccinated group, three out of six rabbit were survived. Conclusion: Immunization of rabbit with recombinant Omp 28 induced a strong humoral response which was exhibited by high antibody titer in ELISA. Subsequently, intraperitoneal homologous challenge of the immunized New Zealand rabbit resulted in lack of significant protection. These findings indicate that Omp 28 though provoked the humoral immunity but could not provide the protective immunity in

  1. Protection against infectious bursal disease virulent challenge conferred by a recombinant avian adeno-associated virus vaccine.

    Science.gov (United States)

    Perozo, F; Villegas, P; Estevez, C; Alvarado, I R; Purvis, L B; Williams, S

    2008-06-01

    The development and use of recombinant vaccine vectors for the expression of poultry pathogens proteins is an active research field. The adeno-associated virus (AAV) is a replication-defective virus member of the family Parvoviridae that has been successfully used for gene delivery in humans and other species. In this experiment, an avian adeno-associated virus (AAAV) expressing the infectious bursal disease virus (IBDV) VP2 protein (rAAAV-VP2) was evaluated for protection against IBDV-virulent challenge. Specific pathogen free (SPF) birds were inoculated with rAAAV-VP2 or with a commercial intermediate IBDV vaccine and then challenged with the Edgar strain. IBDV-specific antibody levels were observed in all vaccinated groups; titers were higher for the commercial vaccine group. The live, commercial vaccine induced adequate protection against morbidity and mortality; nevertheless, initial lymphoid depletion and follicular atrophy related to active viral replication was observed as early as day 14 and persisted up to day 28, when birds were challenged. No bursal tissue damage due to rAAAV-VP2 vaccination was observed. Eight-out-of-ten rAAAV-VP2-vaccinated birds survived the challenge and showed no clinical signs. The bursa:body weight ratio and bursa lesion scores in the rAAAV-VP2 group indicated protection against challenge. Therefore, transgenic expression of the VP2 protein after rAAAV-VP2 vaccination induced protective immunity against IBDV challenge in 80% of the birds, without compromising the bursa of Fabricius. The use of rAAAV virions for gene delivery represents a novel approach to poultry vaccination.

  2. Recombinant BCG: Innovations on an old vaccine. Scope of BCG strains and strategies to improve long lasting memory

    Directory of Open Access Journals (Sweden)

    Adeliane C da Costa

    2014-04-01

    Full Text Available BCG (Bacille Calmette-Guérin, an attenuated vaccine derived from Mycobacterium bovis, is the current vaccine of choice against tuberculosis (TB. Despite its protection against active TB in children, BCG has failed to protect adults against TB infection and active disease development, especially in developing countries where the disease is endemic. Currently, there is a significant effort towards the development of a new TB vaccine. This review article aims to address publications on recombinant BCG (rBCG published in the last 5 years, to highlight the strategies used to develop rBCG, with a focus on the criteria used to improve immunological memory and protection compared with BCG. The literature review was done in April 2013, using the key words tuberculosis, rBCG vaccine and memory. This review discusses the BCG strains and strategies currently used for the modification of BCG, including: overexpression of M. tuberculosis (Mtb immunodominant antigens already present in BCG; gene insertion of immunodominant antigens from Mtb absent in the BCG vaccine; combination of introduction and over expression of genes that are lost during the attenuation process of BCG; BCG modifications for the induction of CD8+ T cell immune responses and cytokines expressing rBCG. Among the vaccines discussed, VPM1002, also called rBCGΔureC::hly, is currently in human clinical trials. Much progress has been made in the effort to improve BCG, with some promising candidates, but considerable work is still required to address functional long-lasting memory.

  3. Recombinant Leishmania tarentolae expressing the A2 virulence gene as a novel candidate vaccine against visceral leishmaniasis.

    Science.gov (United States)

    Mizbani, Amir; Taheri, Tahereh; Zahedifard, Farnaz; Taslimi, Yasaman; Azizi, Hiva; Azadmanesh, Kayhan; Papadopoulou, Barbara; Rafati, Sima

    2009-12-10

    Visceral leishmaniasis is the most severe form of leishmaniasis. To date, there is no effective vaccine against this disease. Many antigens have been examined so far as protein- or DNA-based vaccines, but none of them conferred complete long-term protection. The use of live attenuated vaccines has recently emerged as a promising vaccination strategy. In this study, we stably expressed the Leishmania donovani A2 antigen in Leishmania tarentolae, a non-pathogenic member of the genus Leishmania, and evaluated its protective efficacy as a live vaccine against L. infantum challenge. Our results show that a single intraperitoneal administration of the A2-recombinant L. tarentolae strain protects BALB/c mice against L. infantum challenge and that protective immunity is associated with high levels of IFN-gamma production prior and after challenge. This is accompanied by reduced levels of IL-5 production after challenge, leading to a potent Th1 immune response. In contrast, intravenous injection elicited a Th2 type response, characterized by higher levels of IL-5 and high humoral immune response, resulting in a less efficient protection. All together, these results indicate the promise of A2-expressing L. tarentolae as a safe live vaccine against visceral leishmaniasis.

  4. The immunogenicity of GSK's recombinant hepatitis B vaccine in children: a systematic review of 30 years of experience.

    Science.gov (United States)

    van den Ende, Caroline; Marano, Cinzia; van Ahee, Ayla; Bunge, Eveline M; De Moerlooze, Laurence

    2017-08-01

    The World Health Organization recommends hepatitis B virus (HBV) vaccines to be included in national immunization schedules everywhere, and has adopted the strategic goal of halting viral hepatitis as a major public health threat by 2030, under which vaccination plays a major role. Engerix™ B (GSK HepB, GSK, Belgium) was the first recombinant HBV vaccine to be licensed, and marked its 30th anniversary in 2016. Areas covered: We conducted a systematic review of the literature summarizing 30 years of immunogenicity and safety data for GSK HepB in children and adolescents. Expert commentary: Primary 3-dose vaccination of healthy infants and children, including infants born to HBsAg-positive mothers, using the standard 0, 1, 6 month schedule was associated with seroprotection rates ≥96.0%. In high-risk infants, vaccine efficacy at year 5 was 96.0% after 3-dose priming in infancy and immunoglobulin at birth. Lower seroprotection rates were observed in children with severe underlying disease including human immunodeficiency virus infection and cancer. GSK HepB had a clinically acceptable safety profile in all of the populations studied. HBV vaccines have demonstrated long-term impacts on rates of fulminant hepatitis, chronic liver disease and hepatocellular carcinoma. GSK HepB will continue to contribute to global HBV control for the foreseeable future.

  5. Clinical and parasitological protection in a Leishmania infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen.

    Science.gov (United States)

    Grimaldi, Gabriel; Teva, Antonio; Porrozzi, Renato; Pinto, Marcelo A; Marchevsky, Renato S; Rocha, Maria Gabrielle L; Dutra, Miriam S; Bruña-Romero, Oscar; Fernandes, Ana-Paula; Gazzinelli, Ricardo T

    2014-06-01

    Visceral leishmaniasis (VL) is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2) protein that protects against experimental L. infantum infections in mice and dogs. Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12) adsorbed in alum (rA2/rhIL-12/alum); two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2) followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum); and plasmid DNA encoding A2 gene (DNA-A2) boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2). Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol. The remarkable clinical protection induced by A2 in an animal model that is

  6. Clinical and parasitological protection in a Leishmania infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen.

    Directory of Open Access Journals (Sweden)

    Gabriel Grimaldi

    2014-06-01

    Full Text Available BACKGROUND: Visceral leishmaniasis (VL is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2 protein that protects against experimental L. infantum infections in mice and dogs. METHODOLOGY/PRINCIPAL FINDINGS: Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12 adsorbed in alum (rA2/rhIL-12/alum; two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2 followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum; and plasmid DNA encoding A2 gene (DNA-A2 boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2. Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol. CONCLUSIONS

  7. [Research progress regarding the clinical evaluation on recombinant human papillomavirus vaccines].

    Science.gov (United States)

    He, W G; Zhao, J; Huang, S J; Wu, T

    2016-06-01

    Human papillomavirus (HPV) is the main cause for cervical cancer, anogenital cancers and genital warts. Three HPV vaccines have been licensed abroad. Data from clinical trials showed high efficacy of the HPV vaccines in young women with 90%-100% vaccine-related HPV diseases prevented. Though efficacy of the vaccine appears lower in older women, this population can still benefit from vaccination. Immunobriging trials show that the two-dose schedule in 9-14 years old girls elicits non-inferior immune response than the three-dose one in young adults. In addition, HPV vaccines can reduce the recurrent rates in CIN2+ patients after therapeutic surgery and the vaccines have cross-protection aganist diseases caused by non-vaccine type HPV. Safety data on HPV vaccines are assuring. Thus HPV vaccine should be widely used in adolescent girls and women of appropriate age groups.

  8. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates

    DEFF Research Database (Denmark)

    Jones, Sophie; Grignard, Lynn; Nebie, Issa

    2015-01-01

    for the future evaluation of vaccine immunogenicity and efficacy in populations naturally exposed to malaria. METHODS: We determined naturally acquired antibody responses to the recombinant proteins Pfs48/45-10C and Pfs230-230CMB in children from three malaria endemic settings in Ghana, Tanzania and Burkina Faso......OBJECTIVES: Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences....... CONCLUSIONS: We conclude there are naturally acquired antibody responses to both vaccine candidates which have functional relevance by reducing the transmissibility of infected individuals. We identified genetic polymorphisms, in pfs48/45 which exhibited geographical specificity....

  9. RiVax, a recombinant ricin subunit vaccine, protects mice against ricin delivered by gavage or aerosol

    Science.gov (United States)

    Smallshaw, Joan E.; Richardson, James A.; Vitetta, Ellen S.

    2007-01-01

    Ricin is a plant toxin that is a CDC level B biothreat. Our recombinant ricin A chain vaccine (RiVax), which contains mutations in both known toxic sites, has no residual toxicity at doses at least 800 times the immunogenic dose. RiVax without adjuvant given intramuscularly (i.m.) protected mice against intraperitoneally administered ricin. Furthermore the vaccine without alum was safe and immunogenic in human volunteers. Here we describe the development of gavage and aerosol ricin challenge models in mice and demonstrate that i.m. vaccination protects mice against ricin delivered by either route. Also RiVax protects against aerosol-induced lung damage as determined by histology and lung function tests. PMID:17875350

  10. Expression and immunogenic characterization of recombinant gp350 for developing a subunit vaccine against Epstein-Barr virus.

    Science.gov (United States)

    Wang, Man; Jiang, Shuai; Han, Zhenwei; Zhao, Bing; Wang, Li'ao; Zhou, Zhixia; Wang, Yefu

    2016-02-01

    Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that is linked to the development of various malignancies. There is an urgent need for effective vaccines against EBV. EBV envelope glycoprotein gp350 is an attractive candidate for a prophylactic vaccine. This study was undertaken to produce the truncated (codons 1-443) gp350 protein (gp350(1-443)) in Pichia pastoris and evaluate its immunogenicity. The gp350(1-443) protein was expressed as a secretory protein with an N-terminal His-tag in P. pastoris and purified through Ni-NTA chromatography. Immunization with the recombinant gp350(1-443) could elicit high levels of gp350(1-443)-specific antibodies in mice. Moreover, gp350(1-443)-immunized mice developed strong lymphoproliferative and Th1/Th2 cytokine responses. Furthermore, the recombinant gp350(1-443) could stimulate CD4(+) and CD8(+) T cell responses in vaccinated mice. Collectively, these findings demonstrated that the yeast-expressed gp350(1-443) retained strong immunogenicity. This study will provide a useful source for developing EBV subunit vaccine candidates.

  11. Vaccination with Clostridium perfringens recombinant proteins in combination with Montanide™ ISA 71 VG adjuvant increases protection against experimental necrotic enteritis in commercial broiler chickens

    Science.gov (United States)

    This study was performed to compare four Clostridium perfringens recombinant proteins as vaccine candidates using the Montanide™ ISA 71 VG adjuvant in an experimental model of necrotic enteritis. Broiler chickens were immunized with clostridial recombinant proteins with ISA 71 VG, and intestinal le...

  12. Safety and Immunogenicity of an Inactivated Whole Cell Plus Recombinant B Subunit (WC/RBS) Cholera Vaccine in Healthy Adult Peruvian Military Volunteers.

    Science.gov (United States)

    1992-11-30

    AD-A260 586 IFB0 919931 MIPR NO: 92MM2532W TITLE: SAFETY AND IMMUNOGENICITY OF AN INACTIVATED WHOLE CELL PLUS RECOMBINANT B SUBUNIT (WCIRBS) COLERA ...NUMBERS Safety and Immunogenicity of an Inactivated Whole MIPR No. Cell Plus Recombinant B Subunit (WC/RBS) Colera 92MM2532 Vaccine in Healthy Adult

  13. Trivalent pneumococcal protein recombinant vaccine protects against lethal Streptococcus pneumoniae pneumonia and correlates with phagocytosis by neutrophils during early pathogenesis.

    Science.gov (United States)

    Xu, Qingfu; Surendran, Naveen; Verhoeven, David; Klapa, Jessica; Ochs, Martina; Pichichero, Michael E

    2015-02-18

    Due to the fact that current polysaccharide-based pneumococcal vaccines have limited serotype coverage, protein-based vaccine candidates have been sought for over a decade to replace or complement current vaccines. We previously reported that a trivalent Pneumococcal Protein recombinant Vaccine (PPrV), showed protection against pneumonia and sepsis in an infant murine model. Here we investigated immunological correlates of protection of PPrV in the same model. C57BL/6J infant mice were intramuscularly vaccinated at age 1-3 weeks with 3 doses of PPrV, containing pneumococcal histidine triad protein D (PhtD), pneumococcal choline binding protein A (PcpA), and detoxified pneumolysin mutant PlyD1. 3-4 weeks after last vaccination, serum and lung antibody levels to PPrV components were measured, and mice were intranasally challenged with a lethal dose of Streptococcus pneumoniae (Spn) serotype 6A. Lung Spn bacterial burden, number of neutrophils and alveolar macrophages, phagocytosed Spn by granulocytes, and levels of cytokines and chemokines were determined at 6, 12, 24, and 48h after challenge. PPrV vaccination conferred 83% protection against Spn challenge. Vaccinated mice had significantly elevated serum and lung antibody levels to three PPrV components. In the first stage of pathogenesis of Spn induced pneumonia (6-24h after challenge), vaccinated mice had lower Spn bacterial lung burdens and more phagocytosed Spn in the granulocytes. PPrV vaccination led to lower levels of pro-inflammatory cytokines IL-6, IL-1β, and TFN-α, and other cytokines and chemokines (IL-12, IL-17, IFN-γ, MIP-1b, MIP-2 and KC, and G-CSF), presumably due to a lower lung bacterial burden. Trivalent PPrV vaccination results in increased serum and lung antibody levels to the vaccine components, a reduction in Spn induced lethality, enhanced early clearance of Spn in lungs due to more rapid and thorough phagocytosis of Spn by neutrophils, and correspondingly a reduction in lung inflammation

  14. Ex vivo analysis of human memory B lymphocytes specific for A and B influenza hemagglutinin by polychromatic flow-cytometry.

    Science.gov (United States)

    Bardelli, Monia; Alleri, Liliana; Angiolini, Francesca; Buricchi, Francesca; Tavarini, Simona; Sammicheli, Chiara; Nuti, Sandra; Degl'Innocenti, Elena; Isnardi, Isabelle; Fragapane, Elena; Del Giudice, Giuseppe; Castellino, Flora; Galli, Grazia

    2013-01-01

    Understanding the impact that human memory B-cells (MBC), primed by previous infections or vaccination, exert on neutralizing antibody responses against drifted influenza hemagglutinin (HA) is key to design best protective vaccines. A major obstacle to these studies is the lack of practical tools to analyze HA-specific MBCs in human PBMCs ex vivo. We report here an efficient method to identify MBCs carrying HA-specific BCR in frozen PBMC samples. By using fluorochrome-tagged recombinant HA baits, and vaccine antigens from mismatched influenza strains to block BCR-independent binding, we developed a protocol suitable for quantitative, functional and molecular analysis of single MBCs specific for HA from up to two different influenza strains in the same tube. This approach will permit to identify the naive and MBC precursors of plasmablasts and novel MBCs appearing in the blood following infection or vaccination, thus clarifying the actual contribution of pre-existing MBCs in antibody responses against novel influenza viruses. Finally, this protocol can allow applying high throughput deep sequencing to analyze changes in the repertoire of HA⁺ B-cells in longitudinal samples from large cohorts of vaccinees and infected subjects with the ultimate goal of understanding the in vivo B-cell dynamics driving the evolution of broadly cross-protective antibody responses.

  15. Ex vivo analysis of human memory B lymphocytes specific for A and B influenza hemagglutinin by polychromatic flow-cytometry.

    Directory of Open Access Journals (Sweden)

    Monia Bardelli

    Full Text Available Understanding the impact that human memory B-cells (MBC, primed by previous infections or vaccination, exert on neutralizing antibody responses against drifted influenza hemagglutinin (HA is key to design best protective vaccines. A major obstacle to these studies is the lack of practical tools to analyze HA-specific MBCs in human PBMCs ex vivo. We report here an efficient method to identify MBCs carrying HA-specific BCR in frozen PBMC samples. By using fluorochrome-tagged recombinant HA baits, and vaccine antigens from mismatched influenza strains to block BCR-independent binding, we developed a protocol suitable for quantitative, functional and molecular analysis of single MBCs specific for HA from up to two different influenza strains in the same tube. This approach will permit to identify the naive and MBC precursors of plasmablasts and novel MBCs appearing in the blood following infection or vaccination, thus clarifying the actual contribution of pre-existing MBCs in antibody responses against novel influenza viruses. Finally, this protocol can allow applying high throughput deep sequencing to analyze changes in the repertoire of HA⁺ B-cells in longitudinal samples from large cohorts of vaccinees and infected subjects with the ultimate goal of understanding the in vivo B-cell dynamics driving the evolution of broadly cross-protective antibody responses.

  16. The live-attenuated yellow fever vaccine 17D induces broad and potent T cell responses against several viral proteins in Indian rhesus macaques – implications for recombinant vaccine design

    OpenAIRE

    Mudd, Philip A.; Piaskowski, Shari M.; Neves, Patricia C. Costa; Rudersdorf, Richard; Kolar, Holly L.; Eernisse, Christopher M.; Weisgrau, Kim L.; Veloso de Santana, Marlon G.; Wilson, Nancy A.; Bonaldo, Myrna C.; Galler, Ricardo; Rakasz, Eva G.; Watkins, David I.

    2010-01-01

    The yellow fever vaccine 17D (YF17D) is one of the most effective vaccines. Its wide use and favorable safety profile make it a prime candidate for recombinant vaccines. It is believed that neutralizing antibodies account for a large measure of the protection afforded to YF17D-vaccinated individuals, however cytotoxic T lymphocyte (CTL) responses have been described in the setting of YF17D vaccination. YF17D is an ssRNA flavivirus that is translated as a full-length polyprotein, several domai...

  17. Overexpression of a Mycobacterium ulcerans Ag85B-EsxH Fusion Protein in Recombinant BCG Improves Experimental Buruli Ulcer Vaccine Efficacy

    Science.gov (United States)

    Hart, Bryan E.

    2016-01-01

    Buruli ulcer (BU) vaccine design faces similar challenges to those observed during development of prophylactic tuberculosis treatments. Multiple BU vaccine candidates, based upon Mycobacterium bovis BCG, altered Mycobacterium ulcerans (MU) cells, recombinant MU DNA, or MU protein prime-boosts, have shown promise by conferring transient protection to mice against the pathology of MU challenge. Recently, we have shown that a recombinant BCG vaccine expressing MU-Ag85A (BCG MU-Ag85A) displayed the highest level of protection to date, by significantly extending the survival time of MU challenged mice compared to BCG vaccination alone. Here we describe the generation, immunogenicity testing, and evaluation of protection conferred by a recombinant BCG strain which overexpresses a fusion of two alternative MU antigens, Ag85B and the MU ortholog of tuberculosis TB10.4, EsxH. Vaccination with BCG MU-Ag85B-EsxH induces proliferation of Ag85 specific CD4+ T cells in greater numbers than BCG or BCG MU-Ag85A and produces IFNγ+ splenocytes responsive to whole MU and recombinant antigens. In addition, anti-Ag85A and Ag85B IgG humoral responses are significantly enhanced after administration of the fusion vaccine compared to BCG or BCG MU-Ag85A. Finally, mice challenged with MU following a single subcutaneous vaccination with BCG MU-Ag85B-EsxH display significantly less bacterial burden at 6 and 12 weeks post-infection, reduced histopathological tissue damage, and significantly longer survival times compared to vaccination with either BCG or BCG MU-Ag85A. These results further support the potential of BCG as a foundation for BU vaccine design, whereby discovery and recombinant expression of novel immunogenic antigens could lead to greater anti-MU efficacy using this highly safe and ubiquitous vaccine. PMID:27941982

  18. Overexpression of a Mycobacterium ulcerans Ag85B-EsxH Fusion Protein in Recombinant BCG Improves Experimental Buruli Ulcer Vaccine Efficacy.

    Directory of Open Access Journals (Sweden)

    Bryan E Hart

    2016-12-01

    Full Text Available Buruli ulcer (BU vaccine design faces similar challenges to those observed during development of prophylactic tuberculosis treatments. Multiple BU vaccine candidates, based upon Mycobacterium bovis BCG, altered Mycobacterium ulcerans (MU cells, recombinant MU DNA, or MU protein prime-boosts, have shown promise by conferring transient protection to mice against the pathology of MU challenge. Recently, we have shown that a recombinant BCG vaccine expressing MU-Ag85A (BCG MU-Ag85A displayed the highest level of protection to date, by significantly extending the survival time of MU challenged mice compared to BCG vaccination alone. Here we describe the generation, immunogenicity testing, and evaluation of protection conferred by a recombinant BCG strain which overexpresses a fusion of two alternative MU antigens, Ag85B and the MU ortholog of tuberculosis TB10.4, EsxH. Vaccination with BCG MU-Ag85B-EsxH induces proliferation of Ag85 specific CD4+ T cells in greater numbers than BCG or BCG MU-Ag85A and produces IFNγ+ splenocytes responsive to whole MU and recombinant antigens. In addition, anti-Ag85A and Ag85B IgG humoral responses are significantly enhanced after administration of the fusion vaccine compared to BCG or BCG MU-Ag85A. Finally, mice challenged with MU following a single subcutaneous vaccination with BCG MU-Ag85B-EsxH display significantly less bacterial burden at 6 and 12 weeks post-infection, reduced histopathological tissue damage, and significantly longer survival times compared to vaccination with either BCG or BCG MU-Ag85A. These results further support the potential of BCG as a foundation for BU vaccine design, whereby discovery and recombinant expression of novel immunogenic antigens could lead to greater anti-MU efficacy using this highly safe and ubiquitous vaccine.

  19. Overexpression of a Mycobacterium ulcerans Ag85B-EsxH Fusion Protein in Recombinant BCG Improves Experimental Buruli Ulcer Vaccine Efficacy.

    Science.gov (United States)

    Hart, Bryan E; Lee, Sunhee

    2016-12-01

    Buruli ulcer (BU) vaccine design faces similar challenges to those observed during development of prophylactic tuberculosis treatments. Multiple BU vaccine candidates, based upon Mycobacterium bovis BCG, altered Mycobacterium ulcerans (MU) cells, recombinant MU DNA, or MU protein prime-boosts, have shown promise by conferring transient protection to mice against the pathology of MU challenge. Recently, we have shown that a recombinant BCG vaccine expressing MU-Ag85A (BCG MU-Ag85A) displayed the highest level of protection to date, by significantly extending the survival time of MU challenged mice compared to BCG vaccination alone. Here we describe the generation, immunogenicity testing, and evaluation of protection conferred by a recombinant BCG strain which overexpresses a fusion of two alternative MU antigens, Ag85B and the MU ortholog of tuberculosis TB10.4, EsxH. Vaccination with BCG MU-Ag85B-EsxH induces proliferation of Ag85 specific CD4+ T cells in greater numbers than BCG or BCG MU-Ag85A and produces IFNγ+ splenocytes responsive to whole MU and recombinant antigens. In addition, anti-Ag85A and Ag85B IgG humoral responses are significantly enhanced after administration of the fusion vaccine compared to BCG or BCG MU-Ag85A. Finally, mice challenged with MU following a single subcutaneous vaccination with BCG MU-Ag85B-EsxH display significantly less bacterial burden at 6 and 12 weeks post-infection, reduced histopathological tissue damage, and significantly longer survival times compared to vaccination with either BCG or BCG MU-Ag85A. These results further support the potential of BCG as a foundation for BU vaccine design, whereby discovery and recombinant expression of novel immunogenic antigens could lead to greater anti-MU efficacy using this highly safe and ubiquitous vaccine.

  20. The key role of rubella virus glycoproteins in the formation of immune response, and perspectives on their use in the development of new recombinant vaccines.

    Science.gov (United States)

    Petrova, Ekaterina K; Dmitrieva, Anastasia A; Trifonova, Ekaterina A; Nikitin, Nikolai A; Karpova, Olga V

    2016-02-17

    Rubella is a highly contagious viral disease which is mostly threatens to women of reproductive age. Existent live attenuated vaccines are effective enough, but have some drawbacks and are unusable for a certain group of people, including pregnant women and people with AIDS and other immunodeficiency. Thereby the development of alternative non-replicating, recombinant vaccines undoubtedly is needed. This review discusses the protein E1 and E2 role in formation of immune response and perspectives in development of new generation recombinant vaccines using them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Vaccination with recombinant Boophilus annulatus Bm86 ortholog protein, Ba86, protects cattle against B. annulatus and B. microplus infestations

    Directory of Open Access Journals (Sweden)

    Jongejan Frans

    2009-03-01

    Full Text Available Abstract Background The cattle ticks, Boophilus spp., affect cattle production in tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The recombinant B. microplus Bm86 protective antigen has been shown to protect cattle against tick infestations. Recently, the gene coding for B. annulatus Bm86 ortholog, Ba86, was cloned and the recombinant protein was secreted and purified from the yeast Pichia pastoris. Results Recombinant Ba86 (Israel strain was used to immunize cattle to test its efficacy for the control of B. annulatus (Mercedes, Texas, USA strain and B. microplus (Susceptible, Mexico strain infestations. Bm86 (Gavac and Mozambique strain and adjuvant/saline were used as positive and negative controls, respectively. Vaccination with Ba86 reduced tick infestations (71% and 40%, weight (8% and 15%, oviposition (22% and 5% and egg fertility (25% and 50% for B. annulatus and B. microplus, respectively. The efficacy of both Ba86 and Bm86 was higher for B. annulatus than for B. microplus. The efficacy of Ba86 was higher for B. annulatus (83.0% than for B. microplus (71.5%. The efficacy of Bm86 (Gavac; 85.2% but not Bm86 (Mozambique strain; 70.4% was higher than that of Ba86 (71.5% on B. microplus. However, the efficacy of Bm86 (both Gavac and Mozambique strain; 99.6% was higher than that of Ba86 (83.0% on B. annulatus. Conclusion These experiments showed the efficacy of recombinant Ba86 for the control of B. annulatus and B. microplus infestations in cattle and suggested that physiological differences between B. microplus and B. annulatus and those encoded in the sequence of Bm86 orthologs may be responsible for the differences in susceptibility of these tick species to Bm86 vaccines.

  2. Recombinant expression of Chlamydia trachomatis major outer membrane protein in E. Coli outer membrane as a substrate for vaccine research.

    Science.gov (United States)

    Wen, Zhiyun; Boddicker, Melissa A; Kaufhold, Robin M; Khandelwal, Puneet; Durr, Eberhard; Qiu, Ping; Lucas, Bob J; Nahas, Debbie D; Cook, James C; Touch, Sinoeun; Skinner, Julie M; Espeseth, Amy S; Przysiecki, Craig T; Zhang, Lan

    2016-07-27

    Chlamydia trachomatis is a human pathogen which causes a number of pathologies, including genital tract infections in women that can result in tubal infertility. Prevention of infection and disease control might be achieved through vaccination; however, a safe, efficacious and cost-effective vaccine against C. trachomatis infection remains an unmet medical need. C. trachomatis major outer membrane protein (MOMP), a β-barrel integral outer membrane protein, is the most abundant antigen in the outer membrane of the bacterium and has been evaluated as a subunit vaccine candidate. Recombinant MOMP (rMOMP) expressed in E. coli cytoplasm forms inclusion bodies and rMOMP extracted from inclusion bodies results in a reduced level of protection compared to the native MOMP in a mouse challenge model. We sought to target the recombinant expression of MOMP to the E. coli outer membrane (OM). Successful surface expression was achieved with codon harmonization, utilization of low copy number vectors and promoters with moderate strength, suitable leader sequences and optimization of cell culture conditions. rMOMP was extracted from E. coli outer membrane, purified, and characterized biophysically. The OM expressed and purified rMOMP is immunogenic in mice and elicits antibodies that react to the native antigen, Chlamydia elementary body (EB). C. trachomatis MOMP was functionally expressed on the surface of E. coli outer membrane. The OM expressed and purified rMOMP elicits antibodies that react to the native antigen, Chlamydia EB, in a mouse immunogenicity model. Surface expression of MOMP could provide useful reagents for vaccine research, and the methodology could serve as a platform to produce other outer membrane proteins recombinantly.

  3. New vaccine strategies against enterotoxigenic Escherichia coli: II: Enhanced systemic and secreted antibody responses against the CFA/I fimbriae by priming with DNA and boosting with a live recombinant Salmonella vaccine

    Directory of Open Access Journals (Sweden)

    M.O. Lásaro

    1999-02-01

    Full Text Available The induction of systemic (IgG and mucosal (IgA antibody responses against the colonization factor I antigen (CFA/I of enterotoxigenic Escherichia coli (ETEC was evaluated in mice primed with an intramuscularly delivered CFA/I-encoding DNA vaccine followed by two oral immunizations with a live recombinant Salmonella typhimurium vaccine strain expressing the ETEC antigen. The booster effect induced by the oral immunization was detected two weeks and one year after the administration of the DNA vaccine. The DNA-primed/Salmonella-boosted vaccination regime showed a synergistic effect on the induced CFA/I-specific systemic and secreted antibody levels which could not be attained by either immunization strategy alone. These results suggest that the combined use of DNA vaccines and recombinant Salmonella vaccine strains can be a useful immunization strategy against enteric pathogens.

  4. Comparative Evaluation of Vaccine Efficacy of Recombinant Marek's Disease Virus Vaccine Lacking Meq Oncogene in Commercial Chickens

    Science.gov (United States)

    Marek's disease virus oncogene meq has been identified as the gene involved in tumorigenesis in chickens. We have recently developed a Meq-null virus, rMd5delMeq, in which the oncogene Meq was deleted. Vaccine efficacy experiments conducted in ADOL 15I5 x 71 chickens vaccinated with rMd5delMeq virus...

  5. Broad protection against avian influenza virus by using a modified vaccinia Ankara virus expressing a mosaic hemagglutinin gene.

    Science.gov (United States)

    Kamlangdee, Attapon; Kingstad-Bakke, Brock; Anderson, Tavis K; Goldberg, Tony L; Osorio, Jorge E

    2014-11-01

    A critical failure in our preparedness for an influenza pandemic is the lack of a universal vaccine. Influenza virus strains diverge by 1 to 2% per year, and commercially available vaccines often do not elicit protection from one year to the next, necessitating frequent formulation changes. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. We have constructed a recombinant modified vaccinia virus Ankara (MVA) that expresses an H5N1 mosaic hemagglutinin (H5M) (MVA-H5M). This mosaic was generated in silico using 2,145 field-sourced H5N1 isolates. A single dose of MVA-H5M provided 100% protection in mice against clade 0, 1, and 2 avian influenza viruses and also protected against seasonal H1N1 virus (A/Puerto Rico/8/34). It also provided short-term (10 days) and long-term (6 months) protection postvaccination. Both neutralizing antibodies and antigen-specific CD4(+) and CD8(+) T cells were still detected at 5 months postvaccination, suggesting that MVA-H5M provides long-lasting immunity. Influenza viruses infect a billion people and cause up to 500,000 deaths every year. A major problem in combating influenza is the lack of broadly effective vaccines. One solution from the field of human immunodeficiency virus vaccinology involves a novel in silico mosaic approach that has been shown to provide broad and robust protection against highly variable viruses. Unlike a consensus algorithm which picks the most frequent residue at each position, the mosaic method chooses the most frequent T-cell epitopes and combines them to form a synthetic antigen. These studies demonstrated that a mosaic influenza virus H5 hemagglutinin expressed by a viral vector can elicit full protection against diverse H5N1 challenges as well as induce broader immunity than a wild-type hemagglutinin. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial.

    Science.gov (United States)

    Grode, Leander; Ganoza, Christian A; Brohm, Christiane; Weiner, January; Eisele, Bernd; Kaufmann, Stefan H E

    2013-02-18

    Current vaccination using Mycobacterium bovis bacillus Calmette-Guérin (BCG), fails to prevent pulmonary tuberculosis (TB). New vaccination strategies are essential for reducing the global incidence of TB. We assessed the safety and immunogenicity of VPM1002, a recombinant BCG vaccine candidate. EudraCT (2007-002789-37) and ClinicalTrials.gov (NCT00749034). Healthy volunteers were enrolled in a phase 1 open-label, dose escalation randomized clinical trial, and received one intradermal dose of VPM1002 (Mycobacterium bovis BCG ΔureC::hly Hm(R)) or BCG. Immunogenicity was assessed by interferon-gamma (IFN-γ) production, cellular immune response markers by flow cytometry and serum antibodies against mycobacterial antigens. Eighty volunteers were randomized into two groups according to previous BCG vaccination and mycobacterial exposure (BCG-naïve, n=40 and BCG-immune, n=40). In each group, 30 individuals were vaccinated with VPM1002 (randomized to three escalating doses) and 10 with BCG. VPM1002 was safe and stimulated IFN-γ-producing and multifunctional T cells, as well as antibody-producing B cells in BCG-naïve and BCG-immune individuals. VPM1002 was safe and immunogenic for B-cell and T-cell responses and hence will be brought forward through the clinical trial pipeline. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Influenza (flu) vaccine (Inactivated or Recombinant): What you need to know

    Science.gov (United States)

    ... taken in its entirety from the CDC Inactivated Influenza Vaccine Information Statement (VIS) www.cdc.gov/vaccines/hcp/vis/vis-statements/flu.html CDC review information for Inactivated Influenza VIS: ...

  8. Serological response to filamentous hemagglutinin and lymphocytosis-promoting toxin of Bordetella pertussis.

    Science.gov (United States)

    Burstyn, D G; Baraff, L J; Peppler, M S; Leake, R D; St Geme, J; Manclark, C R

    1983-01-01

    Serum antibody responses to the filamentous hemagglutinin and the lymphocytosis-promoting toxin of Bordetella pertussis after vaccination with diphtheria and tetanus toxoids and pertussis vaccine, adsorbed, were assayed by using the enzyme-linked immunosorbent assay. The effect of early immunization, during the first week of life, on the antibody response also was determined. After vaccination, immunoglobulin G (IgG) and IgM directed against both the filamentous hemagglutinin and the lymphocytosis-promoting toxin were detected. Generally, antibody titers increased with subsequent injections and the age of the children. Maternal antibodies against filamentous hemagglutinin and lymphocytosis-promoting toxin were detected in cord blood. The ability of an infant to produce serum IgG anti-lymphocytosis-promoting toxin after vaccination with pertussis vaccine was inversely related to the cord blood serum IgG anti-lymphocytosis-promoting toxin titer at birth. A good antibody response was observed in infants with low cord blood titers, and a poor antibody response was seen in infants with high cord blood values. The IgM anti-lymphocytosis-promoting toxin response was good in groups with both low and high cord blood titer, with no significant difference observed between the two groups. No IgA anti-lymphocytosis-promoting toxin or IgA anti-filamentous hemagglutinin titers were observed in vaccines. IgA antibodies were observed in convalescent sera from two adults and may be presumptive evidence of infection with B. pertussis. PMID:6309662

  9. Waning immunity and booster responses in nursing and medical technology students who had received plasma-derived or recombinant hepatitis B vaccine during infancy.

    Science.gov (United States)

    Lin, Ching-Chiang; Yang, Chun-Yuh; Shih, Ching-Tang; Chen, Bai-Hsiun; Huang, Yeou-Lih

    2011-06-01

    The national hepatitis B virus (HBV) vaccination program was launched in Taiwan in 1984. After November 1992, a recombinant HBV vaccine replaced the plasma-derived HBV vaccine. A total of 1,812 nursing and medical technology freshman students was tested to evaluate their waning immunity toward hepatitis B. In the 2007 (2008) academic year, 438 (382) students testing nonprotective antibodies received 3 (1) booster doses of HBV vaccine according to suggestions from Taiwan's Center for Disease Control (CDC). The seroprevalences of hepatitis B surface antigen (+) were 0.8% and 0.7% in the plasma-derived and recombinant group, respectively; for antibody to hepatitis B surface antigen (anti-HBs) (+), they were 43.2% and 33.3% (P students previously vaccinated with plasma-derived HBV vaccine exhibited anti-HBs seroconversion. In the 2008 freshman group, the booster dose induced anti-HBs seroconversions of 92.1% and 95.9% in the students who had received the plasma-derived and recombinant HBV vaccine, respectively (P = .370). Most students exhibited signs of immune memory after receiving the booster, regardless of having received plasma-derived or recombinant HBV. Only a small number of vaccinees lost their immune memory after 16 years, suggesting that some students might benefit from boosting before proceeding to clinical practice. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  10. Clonal antibody dominance after influenza vaccination in IgA nephropathy patients and controls

    NARCIS (Netherlands)

    Radl, J.; Hoogeveen, C.M.; Wall Bake, A.W.L. van den; Mestecky, J.

    1995-01-01

    Chemicals/CAS: hemagglutinin, 37333-12-3; sialidase, 9001-67-6; Antibodies, Monoclonal; Antibodies, Viral; Hemagglutinins, Viral; Immunoglobulin A; Immunoglobulin G; Influenza Vaccine; Neuraminidase, EC 3.2.1.18

  11. Adjuvant effect of recombinant interleukin-12 in the Nocardiosis formalin-killed vaccine of the amberjack Seriola dumerili.

    Science.gov (United States)

    Matsumoto, Megumi; Araki, Kyosuke; Hayashi, Kazuma; Takeuchi, Yutaka; Shiozaki, Kazuhiro; Suetake, Hiroaki; Yamamoto, Atsushi

    2017-08-01

    Nocardiosis causes serious economic damage in the fish farming of Japanese yellowtail fish. Nocardia seriolae identified as pathogenic bacterium is an intracellular-pathogen. In general, induction of cell-mediated immunity (CMI) is effective in infection defense against intracellular-pathogen. However, the conventional formalin-killed N. seriolae (FKC) vaccine induces humoral immunity. Interleukin-12 (IL-12) is Th1 type heterodimeric cytokine and induces cell differentiation in mammals. Our previous study showed that recombinant amberjack IL-12 has a role in CMI induction in vitro and could be a possible CMI inducing adjuvant. However, its adjuvant effect of fish IL-12 was not studied. In the present study, six types of amberjack recombinant IL-12 (rIL-12) were mixed and injected into amberjack with FKC. Firstly, we analyzed Th1- and Th2- related gene expression and monitored Th1/Th2 status followed by investigation of antibody titer. As a result, Th1-type immunity was induced in FKC + rIL-12 vaccinated fish. Secondly, we checked Th1/Th2 status of vaccinated fish after 10 days of N. seriolae infection using the expression of related genes. High T-bet/GATA-3 ratio was observed in FKC + rIL-12 vaccinated fish, suggesting that Th1 cells possesing antigen memory were induced against N. seriolae infection. Finally, the survival rate in challenge test showed that 88% of FKC + rIL-12 vaccinated fish was survived at 34 days after N. seriolae injection whereas PBS (control) and FKC only were exterminated. These result suggest that i) rIL-12 is viable CMI inducible adjuvant and ii) production of Th1 cells having antigen memory resulting from activation of IL-12 signaling pathway is important for defense against N. seriolae infection. Copyright © 2017. Published by Elsevier Ltd.

  12. Immunogenicity of a Trivalent Recombinant Vaccine Against Clostridium perfringens Alpha, Beta, and Epsilon Toxins in Farm Ruminants.

    Science.gov (United States)

    Moreira, Gustavo Marçal Schmidt Garcia; Salvarani, Felipe Masiero; da Cunha, Carlos Eduardo Pouey; Mendonça, Marcelo; Moreira, Ângela Nunes; Gonçalves, Luciana Aramuni; Pires, Prhiscylla Sadanã; Lobato, Francisco Carlos Faria; Conceição, Fabricio Rochedo

    2016-03-23

    Clostridium perfringens is an anaerobic bacterium that produces several toxins. Of these, the alpha, beta, and epsilon toxins are responsible for causing the most severe C. perfringens-related diseases in farm animals. The best way to control these diseases is through vaccination. However, commercially available vaccines are based on inactivated toxins and have many production drawbacks, which can be overcome through the use of recombinant antigens. In this study, we produced recombinant alpha, beta, and epsilon toxins in Escherichia coli to formulate a trivalent vaccine. Its effectiveness was evaluated through a potency test in rabbits, in which the vaccine generated 9.6, 24.4, and 25.0 IU/mL of neutralizing antibodies against the respective toxins. Following this, cattle, sheep, and goats received the same formulation, generating, respectively, 5.19 ± 0.48, 4.34 ± 0.43, and 4.70 ± 0.58 IU/mL against alpha toxin, 13.71 ± 1.17 IU/mL (for all three species) against beta toxin, and 12.74 ± 1.70, 7.66 ± 1.69, and 8.91 ± 2.14 IU/mL against epsilon toxin. These levels were above the minimum recommended by international protocols. As such, our vaccine was effective in generating protective antibodies and, thus, may represent an interesting alternative for the prevention of C. perfringens-related intoxications in farm animals.

  13. Recombinant cholera toxin B subunit and gene fusion proteins for oral vaccination.

    Science.gov (United States)

    Sanchez, J; Johansson, S; Löwenadler, B; Svennerholm, A M; Holmgren, J

    1990-01-01

    The B subunit portion of cholera toxin (CTB) is a safe and effective oral immunizing agent in humans, affording protection against both cholera and diarrhoea caused by enterotoxigenic Escherichia coli producing heat-labile toxin (LT) (Clemens et al., 1986; 1988). CTB may also be used as a carrier of various "foreign" antigens suitable for oral administration. To facilitate large-scale production of CTB for vaccine development purposes, we have constructed recombinant overexpression systems for CTB proteins in which the CTB gene is under the control of strong foreign (non-cholera) promoters and in which it is also possible to fuse oligonucleotides to the CTB gene and thereby achieve overexpression of hybrid proteins (Sanchez and Holmgren, 1989; Sanchez et al., 1988). We here expand these findings by describing overexpression of CTB by a constitutive tacP promoter as well as by the T7 RNA-polymerase promoter, and also by describing gene fusions leading to overexpression of several hybrid proteins between heat-stable E. coli enterotoxin (STa)-related peptides to either the amino or carboxy ends of CTB. Each of the hybrid proteins, when tested as immunogens in rabbits, stimulated significant anti-STa as well as anti-CTB antibody formation, although the anti-STa antibody levels attained (c.a. 1-15 micrograms/ml specific anti-STa immunoglobulin) were too low to give more than partial neutralization of STa intestinal challenge in baby mice. The hybrid proteins also had a near-native conformation, as apparent from their oligomeric nature and their strong reactivity with both a neutralizing antibody against the B subunit and a neutralizing monoclonal antibody (mAb) against STa.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Immunological and protective effects of Bordetella bronchiseptica subunit vaccines based on the recombinant N-terminal domain of dermonecrotic toxin.

    Science.gov (United States)

    Wang, Chuanwen; Liu, Liping; Zhang, Zhen; Yan, Zhengui; Yu, Cuilian; Shao, Mingxu; Jiang, Xiaodong; Chi, Shanshan; Wei, Kai; Zhu, Ruiliang

    2015-10-01

    Dermonecrotic toxin (DNT) produced by Bordetella bronchiseptica (B. bronchiseptica) can cause clinical turbinate atrophy in swine and induce dermonecrotic lesions in model mice. We know that the N-terminal of DNT molecule contains the receptor-binding domain, which facilitates binding to the target cells. However, we do not know whether this domain has sufficient immunogenicity to resist B. bronchiseptica damage and thereby to develop a subunit vaccine for the swine industry. In this study, we prokaryotically expressed the recombinant N-terminal of DNT from B. bronchiseptica (named DNT-N) and prepared it for the subunit vaccine to evaluate its immunogenicity. Taishan Pinus massoniana pollen polysaccharide (TPPPS), a known immunomodulator, was used as the adjuvant to examine its immune-conditioning effects. At 49 d after inoculation, 10 mice from each group were challenged with B. bronchiseptica, and another 10 mice were intradermally challenged with native DNT, to examine the protection imparted by the vaccines. The immune parameters (T-lymphocyte counts, cytokine secretions, serum antibody titers, and survival rates) and skin lesions were determined. The results showed that pure DNT-N vaccine significantly induced immune responses and had limited ability to resist the B. bronchiseptica and DNT challenge, whereas the mice administered with TPPPS or Freund's incomplete adjuvant vaccine could induce higher levels of the above immune parameters. Remarkably, the DNT-N vaccine combined with TPPPS adjuvant protected the mice effectively to prevent B. bronchiseptica infection. Our findings indicated that DNT-N has potential for development as an effective subunit vaccine to counteract the damage of B. bronchiseptica infection, especially when used conjointly with TPPPS. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Vaccination with Recombinant Non-transmembrane Domain of Protein Mannosyltransferase 4 Improves Survival during Murine Disseminated Candidiasis.

    Science.gov (United States)

    Wang, Li; Yan, Lan; Li, Xing Xing; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2015-01-01

    Candida albicans is the most common cause of invasive fungal infections in humans. The C. albicans cell wall proteins play an important role in crucial host-fungus interactions and might be ideal vaccine targets to induce protective immune response in host. Meanwhile, protein that is specific to C. albicans is also an ideal target of vaccine. In this study, 11 proteins involving cell wall biosynthesis, yeast-to-hypha formation, or specific to C. albicans were chosen and were successfully cloned, purified and verified. The immune protection of vaccination with each recombinant protein respectively in preventing systemic candidiasis in BALB/c mice was assessed. The injection of rPmt4p vaccination significantly increased survival rate, decreased fungal burdens in the heart, liver, brain, and kidneys, and increased serum levels of both immunoglobulin G (IgG) and IgM against rPmt4p in the immunized mice. Histopathological assessment demonstrated that rPmt4p vaccination protected the tissue structure, and decreased the infiltration of inflammatory cells. Passive transfer of the rPmt4p immunized serum increased survival rate against murine systemic candidiasis and significantly reduced organ fungal burden. The immune serum enhanced mouse neutrophil killing activity by directly neutralizing rPmt4p effects in vitro. Levels of interleukin (IL)-4, IL-10, IL-12p70, IL-17A and tumor necrosis factor (TNF)-α in serum were higher in the immunized mice compared to those in the adjuvant control group. In conclusion, our results suggested that rPmt4p vaccination may be considered as a potential vaccine candidate against systemic candidiasis.

  16. The Recombinant BCG ΔureC::hly Vaccine Targets the AIM2 Inflammasome to Induce Autophagy and Inflammation.

    Science.gov (United States)

    Saiga, Hiroyuki; Nieuwenhuizen, Natalie; Gengenbacher, Martin; Koehler, Anne-Britta; Schuerer, Stefanie; Moura-Alves, Pedro; Wagner, Ina; Mollenkopf, Hans-Joachim; Dorhoi, Anca; Kaufmann, Stefan H E

    2015-06-01

    The recombinant BCG ΔureC::hly (rBCG) vaccine candidate induces improved protection against tuberculosis over parental BCG (pBCG) in preclinical studies and has successfully completed a phase 2a clinical trial. However, the mechanisms responsible for the superior vaccine efficacy of rBCG are still incompletely understood. Here, we investigated the underlying biological mechanisms elicited by the rBCG vaccine candidate relevant to its protective efficacy. THP-1 macrophages were infected with pBCG or rBCG, and inflammasome activation and autophagy were evaluated. In addition, mice were vaccinated with pBCG or rBCG, and gene expression in the draining lymph nodes was analyzed by microarray at day 1 after vaccination. BCG-derived DNA was detected in the cytosol of rBCG-infected macrophages. rBCG infection was associated with enhanced absent in melanoma 2 (AIM2) inflammasome activation, increased activation of caspases and production of interleukin (IL)-1β and IL-18, as well as induction of AIM2-dependent and stimulator of interferon genes (STING)-dependent autophagy. Similarly, mice vaccinated with rBCG showed early increased expression of Il-1β, Il-18, and Tmem173 (transmembrane protein 173; also known as STING). rBCG stimulates AIM2 inflammasome activation and autophagy, suggesting that these cell-autonomous functions should be exploited for improved vaccine design. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Safety of recombinant VSV-Ebola virus vaccine vector in pigs.

    Science.gov (United States)

    de Wit, Emmie; Marzi, Andrea; Bushmaker, Trenton; Brining, Doug; Scott, Dana; Richt, Juergen A; Geisbert, Thomas W; Feldmann, Heinz

    2015-04-01

    The ongoing Ebola outbreak in West Africa has resulted in fast-track development of vaccine candidates. We tested a vesicular stomatitis virus vector expressing Ebola virus glycoprotein for safety in pigs. Inoculation did not cause disease and vaccine virus shedding was minimal, which indicated that the vaccine virus does not pose a risk of dissemination in pigs.

  18. Recombinant viral-vectored vaccines for the control of avian influenza in poultry

    Science.gov (United States)

    Vaccination is a commonly used tool for the control of both low pathogenic and highly pathogenic avian influenza viruses. Traditionally inactivated adjuvanted vaccines made from a low pathogenic field strain has been used for vaccination, but advances in molecular biology has allowed a number of di...

  19. Live vaccinia-rabies virus recombinants, but not an inactivated rabies virus cell culture vaccine, protect B-lymphocyte-deficient A/WySnJ mice against rabies: considerations of recombinant defective poxviruses for rabies immunization of immunocompromised individuals.

    Science.gov (United States)

    Lodmell, Donald L; Esposito, Joseph J; Ewalt, Larry C

    2004-09-03

    Presently, commercially available cell culture rabies vaccines for humans and animals consist of the five inactivated rabies virus proteins. The vaccines elicit a CD4+ helper T-cell response and a humoral B-cell response against the viral glycoprotein (G) resulting in the production of virus neutralizing antibody. Antibody against the viral nucleoprotein (N) is also present, but the mechanism(s) of its protection is unclear. HIV-infected individuals with low CD4+ T-lymphocyte counts and individuals undergoing treatment with immunosuppressive drugs have an impaired neutralizing antibody response after pre- and post-exposure immunization with rabies cell culture vaccines. Here we show the efficacy of live vaccinia-rabies virus recombinants, but not a cell culture vaccine consisting of inactivated rabies virus, to elicit elevated levels of neutralizing antibody in B-lymphocyte deficient A/WySnJ mice. The cell culture vaccine also failed to protect the mice, whereas a single immunization of a vaccinia recombinant expressing the rabies virus G or co-expressing G and N equally protected the mice up to 18 months after vaccination. The data suggest that recombinant poxviruses expressing the rabies virus G, in particular replication defective poxviruses such as canarypox or MVA vaccinia virus that undergo abortive replication in non-avian cells, or the attenuated vaccinia virus NYVAC, should be evaluated as rabies vaccines in immunocompromised individuals.

  20. Chimeric Hemagglutinin Constructs Induce Broad Protection against Influenza B Virus Challenge in the Mouse Model.

    Science.gov (United States)

    Ermler, Megan E; Kirkpatrick, Ericka; Sun, Weina; Hai, Rong; Amanat, Fatima; Chromikova, Veronika; Palese, Peter; Krammer, Florian

    2017-06-15

    Seasonal influenza virus epidemics represent a significant public health burden. Approximately 25% of all influenza virus infections are caused by type B viruses, and these infections can be severe, especially in children. Current influenza virus vaccines are an effective prophylaxis against infection but are impacted by rapid antigenic drift, which can lead to mismatches between vaccine strains and circulating strains. Here, we describe a broadly protective vaccine candidate based on chimeric hemagglutinins, consisting of globular head domains from exotic influenza A viruses and stalk domains from influenza B viruses. Sequential vaccination with these constructs in mice leads to the induction of broadly reactive antibodies that bind to the conserved stalk domain of influenza B virus hemagglutinin. Vaccinated mice are protected from lethal challenge with diverse influenza B viruses. Results from serum transfer experiments and antibody-dependent cell-mediated cytotoxicity (ADCC) assays indicate that this protection is antibody mediated and based on Fc effector functions. The present data suggest that chimeric hemagglutinin-based vaccination is a viable strategy to broadly protect against influenza B virus infection.IMPORTANCE While current influenza virus vaccines are effective, they are affected by mismatches between vaccine strains and circulating strains. Furthermore, the antiviral drug oseltamivir is less effective for treating influenza B virus infections than for treating influenza A virus infections. A vaccine that induces broad and long-lasting protection against influenza B viruses is therefore urgently needed. Copyright © 2017 American Society for Microbiology.

  1. Failure of a vaccine using immunogenic recombinant proteins rNcSAG4 and rNcGRA7 against neosporosis in mice.

    Science.gov (United States)

    Aguado-Martínez, Adriana; Alvarez-García, Gema; Fernández-García, Aurora; Risco-Castillo, Verónica; Marugán-Hernández, Virginia; Ortega-Mora, Luis M

    2009-12-09

    The development of an effective vaccine against Neospora caninum infection in cattle is an important issue due to the significant economic impact of this parasitic disease worldwide. In this work, the immune response, safety and efficacy of different vaccine formulations using the N. caninum recombinant proteins rNcSAG4 (the first bradyzoite-specific protein assayed as a vaccine) and rNcGRA7 were evaluated in mouse models. The survival curves of pups from all vaccinated groups showed a slight delay in time to death compared to control groups; this difference was statistically significant for rNcSAG4+adjuvant group. Immune response of mice vaccinated with rNcSAG4 was characterized by reduced specific IgG and cytokine levels with an equilibrated IFN-gamma/IL-10 balance. Regarding mice vaccinated with rNcGRA7, a very strong humoral and cellular immune response was generated characterized by a hyper-production of IFN-gamma. This response was not accompanied by significant protection. Vaccination with a mixture of both recombinant proteins reduced infection in lung and brain during acute and chronic infection, respectively, although it was not statistically significant. In summary, no significant protection was obtained with these vaccine formulations in the present mouse models. However, the study reveals some positive results on immune response and efficacy for both recombinant proteins; these results are being discussed in order to suggest new approaches with new chronic infection mouse models and adjuvants.

  2. High prevalence of antibodies against canine adenovirus (CAV) type 2 in domestic dog populations in South Africa precludes the use of CAV-based recombinant rabies vaccines.

    Science.gov (United States)

    Wright, N; Jackson, F R; Niezgoda, M; Ellison, J A; Rupprecht, C E; Nel, L H

    2013-08-28

    Rabies in dogs can be controlled through mass vaccination. Oral vaccination of domestic dogs would be useful in the developing world, where greater vaccination coverage is needed especially in inaccessible areas or places with large numbers of free-roaming dogs. From this perspective, recent research has focused on development of new recombinant vaccines that can be administered orally in a bait to be used as adjunct for parenteral vaccination. One such candidate, a recombinant canine adenovirus type 2 vaccine expressing the rabies virus glycoprotein (CAV2-RG), is considered a promising option for dogs, given host specificity and safety. To assess the potential use of this vaccine in domestic dog populations, we investigated the prevalence of antibodies against canine adenovirus type 2 in South African dogs. Blood was collected from 241 dogs from the Gauteng and KwaZulu-Natal provinces. Sampled dogs had not previously been vaccinated against canine adenovirus type 1 (CAV1) or canine adenovirus type 2 (CAV2). Animals from both provinces had a high percentage of seropositivity (45% and 62%), suggesting that CAV2 circulates extensively among domestic dog populations in South Africa. Given this finding, we evaluated the effect of pre-existing CAV-specific antibodies on the efficacy of the CAV2-RG vaccine delivered via the oral route in dogs. Purpose-bred Beagle dogs, which received prior vaccination against canine parvovirus, canine distemper virus and CAV, were immunized by oral administration of CAV2-RG. After rabies virus (RABV) infection all animals, except one vaccinated dog, developed rabies. This study demonstrated that pre-existing antibodies against CAV, such as naturally occurs in South African dogs, inhibits the development of neutralizing antibodies against RABV when immunized with a CAV-based rabies recombinant vaccine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine in healthy adults.

    Science.gov (United States)

    Moutschen, Michel; Léonard, Philippe; Sokal, Etienne M; Smets, Françoise; Haumont, Michèle; Mazzu, Pasqualina; Bollen, Alex; Denamur, Francoise; Peeters, Pascal; Dubin, Gary; Denis, Martine

    2007-06-11

    Two double-blind randomised controlled studies (phase I and I/II) were performed to assess for the first time the safety and immunogenicity of a recombinant subunit gp350 Epstein-Barr virus (EBV) vaccine in 148 healthy adult volunteers. All candidate vaccine formulations had a good safety profile and were well tolerated, with the incidence of solicited and unsolicited symptoms within a clinically acceptable range. One serious adverse event was reported in the phase I trial which was considered to be of suspected relationship to vaccination. The gp350 vaccine formulations were immunogenic and induced gp350-specific antibody responses (including neutralising antibodies).

  4. Functional and structural characterization of neutralizing epitopes of measles virus hemagglutinin protein.

    Science.gov (United States)

    Tahara, Maino; Ito, Yuri; Brindley, Melinda A; Ma, Xuemin; He, Jilan; Xu, Songtao; Fukuhara, Hideo; Sakai, Kouji; Komase, Katsuhiro; Rota, Paul A; Plemper, Richard K; Maenaka, Katsumi; Takeda, Makoto

    2013-01-01

    Effective vaccination programs have dramatically reduced the number of measles-related deaths globally. Although all the available data suggest that measles eradication is biologically feasible, a structural and biochemical basis for the single serotype nature of measles virus (MV) remains to be provided. The hemagglutinin (H) protein, which binds to two discrete proteinaceous receptors, is the major neutralizing target. Monoclonal antibodies (MAbs) recognizing distinct epitopes on the H protein were characterized using recombinant MVs encoding the H gene from different MV genotypes. The effects of various mutations on neutralization by MAbs and virus fitness were also analyzed, identifying the location of five epitopes on the H protein structure. Our data in the present study demonstrated that the H protein of MV possesses at least two conserved effective neutralizing epitopes. One, which is a previously recognized epitope, is located near the receptor-binding site (RBS), and thus MAbs that recognize this epitope blocked the receptor binding of the H protein, whereas the other epitope is located at the position distant from the RBS. Thus, a MAb that recognizes this epitope did not inhibit the receptor binding of the H protein, rather interfered with the hemagglutinin-fusion (H-F) interaction. This epitope was suggested to play a key role for formation of a higher order of an H-F protein oligomeric structure. Our data also identified one nonconserved effective neutralizing epitope. The epitope has been masked by an N-linked sugar modification in some genotype MV strains. These data would contribute to our understanding of the antigenicity of MV and support the global elimination program of measles.

  5. Evaluation of Recombinant Multi-Epitope Outer Membrane Protein-Based Klebsiella pneumoniae Subunit Vaccine in Mouse Model

    Directory of Open Access Journals (Sweden)

    Litty Babu

    2017-09-01

    Full Text Available Safety and protective efficacy of recombinant multi-epitope subunit vaccine (r-AK36 was evaluated in a mouse model. Recombinant AK36 protein comprised of immunodominant antigens from outer membrane proteins (Omp’s of Klebsiella pneumoniae namely OmpA and OmpK36. r-AK36 was highly immunogenic and the hyperimmune sera reacted strongly with native OmpA and OmpK36 proteins from different K. pneumoniae strains. Hyperimmune sera showed cross-reactivity with Omp’s of other Gram-negative organisms. Humoral responses showed a Th2-type polarized immune response with IgG1 being the predominant antibody isotype. Anti-r-AK36 antibodies showed antimicrobial effect during in vitro testing with MIC values in the range of 25–50 μg/ml on different K. pneumoniae strains. The recombinant antigen elicited three fold higher proliferation of splenocytes from immunized mice compared to those with sham-immunized mice. Anti-r-AK36 antibodies also exhibited in vitro biofilm inhibition property. Subunit vaccine r-AK36 immunization promoted induction of protective cytokines IL-2 and IFN-γ in immunized mice. When r-AK36-immunized mice were challenged with 3 × LD100 dose, ∼80% of mice survived beyond the observation period. Passive antibody administration to naive mice protected them (67% against the lethal challenge. Since the targeted OMPs are conserved among all K. pneumoniae serovars and due to the strong nature of immune responses, r-AK36 subunit vaccine could be a cost effective candidate against klebsiellosis.

  6. Vaccination with recombinant adenovirus expressing peste des petits ruminants virus-F or -H proteins elicits T cell responses to epitopes that arises during PPRV infection.

    Science.gov (United States)

    Rojas, José Manuel; Avia, Miguel; Pascual, Elena; Sevilla, Noemí; Martín, Verónica

    2017-11-21

    Peste des petits ruminants virus (PPRV) causes an economically important disease that limits productivity in small domestic ruminants and often affects the livestock of the poorest populations in developing countries. Animals that survive PPRV develop strong cellular and humoral responses, which are probably necessary for protection. Vaccination should thus aim at mimicking these natural responses. Immunization strategies against this morbillivirus using recombinant adenoviruses expressing PPRV-F or -H proteins can protect PPRV-challenged animals and permit differentiation of infected from vaccinated animals. Little is known of the T cell repertoire these recombinant vaccines induce. In the present work, we identified several CD4+ and CD8+ T cell epitopes in sheep infected with PPRV. We also show that recombinant adenovirus vaccination induced T cell responses to the same epitopes, and led to memory T cell differentiation. T cells primed by these recombinant adenovirus vaccines expanded after PPRV challenge and probably contributed to protection. These data validate the use of recombinant adenovirus expressing PPRV genes as DIVA strategies to control this highly contagious disease.

  7. Recombinant BCG: Innovations on an Old Vaccine. Scope of BCG Strains and Strategies to Improve Long-Lasting Memory

    Science.gov (United States)

    da Costa, Adeliane Castro; Nogueira, Sarah Veloso; Kipnis, André; Junqueira-Kipnis, Ana Paula

    2014-01-01

    Bacille Calmette–Guérin (BCG), an attenuated vaccine derived from Mycobacterium bovis, is the current vaccine of choice against tuberculosis (TB). Despite its protection against active TB in children, BCG has failed to protect adults against TB infection and active disease development, especially in developing countries where the disease is endemic. Currently, there is a significant effort toward the development of a new TB vaccine. This review article aims to address publications on recombinant BCG (rBCG) published in the last 5 years, to highlight the strategies used to develop rBCG, with a focus on the criteria used to improve immunological memory and protection compared with BCG. The literature review was done in April 2013, using the key words TB, rBCG vaccine, and memory. This review discusses the BCG strains and strategies currently used for the modification of BCG, including: overexpression of Mycobacterium tuberculosis (Mtb) immunodominant antigens already present in BCG; gene insertion of immunodominant antigens from Mtb absent in the BCG vaccine; combination of introduction and overexpression of genes that are lost during the attenuation process of BCG; BCG modifications for the induction of CD8+ T-cell immune responses and cytokines expressing rBCG. Among the vaccines discussed, VPM1002, also called rBCGΔureC:hly, is currently in human clinical trials. Much progress has been made in the effort to improve BCG, with some promising candidates, but considerable work is still required to address functional long-lasting memory. PMID:24778634

  8. A recombinant Hendra virus G glycoprotein-based subunit vaccine protects ferrets from lethal Hendra virus challenge.

    Science.gov (United States)

    Pallister, Jackie; Middleton, Deborah; Wang, Lin-Fa; Klein, Reuben; Haining, Jessica; Robinson, Rachel; Yamada, Manabu; White, John; Payne, Jean; Feng, Yan-Ru; Chan, Yee-Peng; Broder, Christopher C

    2011-08-05

    The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are two deadly zoonotic viruses for which no vaccines or therapeutics have yet been approved for human or livestock use. In 14 outbreaks since 1994 HeV has been responsible for multiple fatalities in horses and humans, with all known human infections resulting from close contact with infected horses. A vaccine that prevents virus shedding in infected horses could interrupt the chain of transmission to humans and therefore prevent HeV disease in both. Here we characterise HeV infection in a ferret model and show that it closely mirrors the disease seen in humans and horses with induction of systemic vasculitis, including involvement of the pulmonary and central nervous systems. This model of HeV infection in the ferret was used to assess the immunogenicity and protective efficacy of a subunit vaccine based on a recombinant soluble version of the HeV attachment glycoprotein G (HeVsG), adjuvanted with CpG. We report that ferrets vaccinated with a 100 μg, 20 μg or 4 μg dose of HeVsG remained free of clinical signs of HeV infection following a challenge with 5000 TCID₅₀ of HeV. In addition, and of considerable importance, no evidence of virus or viral genome was detected in any tissues or body fluids in any ferret in the 100 and 20 μg groups, while genome was detected in the nasal washes only of one animal in the 4 μg group. Together, our findings indicate that 100 μg or 20 μg doses of HeVsG vaccine can completely prevent a productive HeV infection in the ferret, suggesting that vaccination to prevent the infection and shedding of HeV is possible. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Rabies-virus-glycoprotein-pseudotyped recombinant baculovirus vaccine confers complete protection against lethal rabies virus challenge in a mouse model.

    Science.gov (United States)

    Wu, Qunfeng; Yu, Fulai; Xu, Jinfang; Li, Yang; Chen, Huanchun; Xiao, Shaobo; Fu, Zhen F; Fang, Liurong

    2014-06-25

    Rabies virus has been an ongoing threat to humans and animals. Here, we developed a new strategy to generate a rabies virus vaccine based on a pseudotyped baculovirus. The recombinant baculovirus (BV-RVG/RVG) was pseudotyped with the rabies virus glycoprotein (RVG) and also simultaneously expressed another RVG under the control of the immediate early CMV promoter. In vitro, this RVG-pseudotyped baculovirus vector induced syncytium formation in insect cells and displayed more efficient gene delivery into mammalian cells. Mice immunized with BV-RVG/RVG developed higher levels of virus-neutralizing antibodies, and conferred 100% protection against rabies viral challenge. These data indicate that the RVG-pseudotyped baculovirus BV-RVG/RVG can be used as an alternative strategy to develop a safe and efficacious vaccine against the rabies virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. An Investigation of Immunogenicity of Chitosan-Based Botulinum Neurotoxin E Binding Domain Recombinant Candidate Vaccine via Mucosal Route

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Bagheripour

    2017-01-01

    Full Text Available Background and Objectives: Botulism syndrome is caused by serotypes A-G of neurotoxins of Clostridium genus. Neurotoxin binding domain is an appropriate vaccine candidate due to its immunogenic activity. In this study, the immunogenicity of chitosan-based botulinum neurotoxin E binding domain recombinant candidate vaccine was investigated via mucosal route of administration. Methods: In this experimental study, chitosan nanoparticles containing rBoNT/E protein were synthesized by ionic gelation method and were administered orally and intranasally to mice. After each administration, IgG antibody titer was measured by ELISA method. Finally, all groups were challenged with active botulinum neurotoxin type E. Data were analyzed using Duncan and repeated ANOVA tests. The significance level was considered as p0.05, even intranasal route reduced the immunogenicity.

  11. A recombinant raccoon poxvirus vaccine expressing both Yersinia pestis F1 and truncated V antigens protects animals against lethal plague.

    Science.gov (United States)

    Rocke, Tonie E.; Kingstad-Bakke, B; Berlier, W; Osorio, J.E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis.. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  12. Vaccination trials in sheep against Chrysomya bezziana larvae using the recombinant peritrophin antigens Cb15, Cb42 and Cb48

    Directory of Open Access Journals (Sweden)

    Sukarsih

    2000-10-01

    Full Text Available Recombinant forms of a number of peritrophic membrane proteins from the screwworm fly Chrysomya bezziana have been assessed in vitro and in vivo for their efficacy as antigens in vaccination against the tissue-invasive, larval form of the parasite. The proteins included Cb15 and Cb42 expressed in Escherichia coli and Cb48 expressed in both Escherichia coli and Pichia pastoris. In all cases, the in vitro assays of larval growth on serum from vaccinated sheep failed to show inhibition of larval weight gain or any detrimental effect on larval survival relative to controls. Chrysomya bezziana Cb48 has a significant degree of sequence identity with the antigen PM48 from Lucilia cuprina. Feeding Lucilia cuprina larvae on antisera to Cb48 induced a small but statistically significant reduction in weight gain, as does feeding on antisera to PM48. In vivo, larvae feeding on sheep vaccinated with Escherichia coli-expressed Cb15 and Cb42 and Pichia pastoris-expressed Cb48 showed marginally greater weight gain and survival which was equal to or greater than that on non-vaccinated sheep. The significance of these observations is discussed.

  13. Establishment of an in vivo potency assay for the recombinant hepatit is B surface antigen in monovalent and combined vaccines

    Directory of Open Access Journals (Sweden)

    Mabel Izquierdo-López

    2014-12-01

    Full Text Available In this paper the development of potency assay in animals (mice was made, with the objective of demonstrating the immunogenic power of the recombinant Hepatitis B surface antigen in monovalent and combined vaccines, produced at the Center of Genetic Engineering and Biotechnology. The potency test is a parameter in quality control and it is also a tool to demonstrate the consistency of the production process. Parameters such as duration of the test, number of animals in the test, as well as different areas for the maintenance of the animals were evaluated. The results on the applicability of the potency test, to two presentations of the vaccines; monovalent Heberbiovac HB and pentavalent liquid in one vial Heberpenta-L are shown, for which specificity studies, evaluating different vaccine lots, the behavior of linearity, and parallelism, as well as establishing quality specification of the test were performed. This assay led to the obtainment of reliable results for the vaccines evaluated, the consistent evaluation of the immunogenic power and the monitoring of different production processes.

  14. Immunogenicity and efficacy of three recombinant subunit Pasteurella multocida toxin vaccines against progressive atrophic rhinitis in pigs

    Science.gov (United States)

    Liao, Chih-Ming; Huang, Chienjin; Hsuan, Shih-Ling; Chen, Zeng-Weng; Lee, Wei-Cheng; Liu, Cheng-I; Winton, James R.; Chien, Maw-Sheng

    2006-01-01

    Three short fragments of recombinant subunit Pasteurella multocida toxin (rsPMT) were constructed for evaluation as candidate vaccines against progressive atrophic rhinitis (PAR) of swine. PMT-specific antibody secreting cells and evidence of cellular immunity were detected in rsPMT-immunized pigs following authentic PMT challenge or homologous antigen booster. Piglets immunized with rsPMT fragments containing either the N-terminal or the C-terminal portions of PMT developed high titers of neutralizing antibodies. Pregnant sows immunized with rsPMT had higher levels of maternal antibodies in their colostrum than did those immunized with a conventional PAR-toxoid vaccine. Offspring from rsPMT vaccinated sows had better survival after challenge with a five-fold lethal dose of authentic PMT and had better growth performance after challenge with a sublethal dose of toxin. Our findings indicate these non-toxic rsPMT proteins are attractive candidates for development of a subunit vaccine against PAR in pigs.

  15. Vaccination of goats against the trematode Schistosoma bovis with a recombinant homologous schistosome-derived glutathione S-transferase.

    Science.gov (United States)

    Boulanger, D; Trottein, F; Mauny, F; Bremond, P; Couret, D; Pierce, R J; Kadri, S; Godin, C; Sellin, E; Lecocq, J P

    1994-08-01

    We assayed the vaccine potentialities of a recombinant S. bovis-derived glutathione S-transferase (rSb28GST), member of a molecular family already shown to have protective capacities in the S. mansoni and S. japonicum models. Injection of the rSb28GST in Freund's Complete Adjuvant resulted in good specific IgG responses allowing all the animals to display high antibody titres on the day of experimental challenge with S. bovis cercariae. No statistically significant differences were observed in the faecal egg output. Although tissue egg counts in vaccinated animals were lower than in controls, the difference was not statistically significant, apart from the number of eggs trapped in the liver (P bovis, by affecting worm viability but not fecundity. These results also point to the striking differences in the effect of vaccination according to animal species. Because it has the capacity to prevent growth impairment due to schistosome pathogenicity, the molecule can be proposed as a valuable tool in the development of vaccine-based control programs in endemic areas.

  16. Studies on recombinant glucokinase (r-glk) protein of Brucella abortus as a candidate vaccine molecule for brucellosis.

    Science.gov (United States)

    Vrushabhendrappa; Singh, Amit Kumar; Balakrishna, Konduru; Sripathy, Murali Harishchandra; Batra, Harsh Vardhan

    2014-09-29

    Brucellosis is one of the most prevalent zoonotic diseases of worldwide distribution caused by the infection of genus Brucella. Live attenuated vaccines such as B. abortus S19, B. abortus RB51 and B. melitensis Rev1 are found most effective against brucellosis infection in animals, contriving a number of serious side effects and having chances to revert back into their active pathogenic form. In order to engineer a safe and effective vaccine candidate to be used in both animals and human, a recombinant subunit vaccine molecule comprising the truncated region of glucokinase (r-glk) gene from B. abortus S19 was cloned and expressed in Escherichia coli BL21DE3 host. Female BALB/c mice immunized with purified recombinant protein developed specific antibody titer of 1:64,000. The predominant IgG2a and IgG2b isotypes signified development of Th1 directed immune responses. In vitro cell cytotoxicity assay using anti-r-glk antibodies incubated with HeLa cells showed 81.20% and 78.5% cell viability against lethal challenge of B. abortus 544 and B. melitensis 16M, respectively. The lymphocyte proliferative assay indicated a higher splenic lymphocyte responses at 25μg/ml concentration of protein which implies the elevated development of memory immune responses. In contrast to control, the immunized group of mice intra-peritoneal (I.P.) challenged with B. abortus 544 were significantly protected with no signs of necrosis and vacuolization in their liver and spleen tissue. The elevated B-cell response associated with Th1 adopted immunity, significant in vitro cell viability as well as protection afforded in experimental animals after challenge, supplemented with histopathological analysis are suggestive of r-glk protein as a prospective candidate vaccine molecule against brucellosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Use of computational and recombinant technologies for developing novel influenza vaccines.

    Science.gov (United States)

    Wong, Terianne M; Ross, Ted M

    2016-01-01

    Influenza vaccine design has changed considerably with advancements in bioinformatics and computational biology. Improved surveillance efforts provide up-to-date information about influenza sequence diversity and assist with monitoring the spread of epidemics and vaccine efficacy rates. The advent of next-generation sequencing, epitope scanning and high-throughput analysis all help decipher influenza-associated protein interactions as well as predict immune responsiveness based on host genetic diversity. Computational approaches are utilized in nearly all aspects of vaccine design, from modeling, compatibility predictions, and optimization of antigens in various platforms. This overview discusses how computational techniques strengthen vaccine efforts against highly diverse influenza species.

  18. Reduced cerebral infection of Neospora caninum in BALB/c mice vaccinated with recombinant Brucella abortus RB51 strains expressing N. caninum SRS2 and GRA7 proteins.

    Science.gov (United States)

    Vemulapalli, Ramesh; Sanakkayala, Neelima; Gulani, Jatinder; Schurig, Gerhardt G; Boyle, Stephen M; Lindsay, David S; Sriranganathan, Nammalwar

    2007-09-30

    Neospora caninum, an obligate intracellular protozoan parasite, is the causative agent of bovine neosporosis, an important disease affecting the reproductive performance of cattle worldwide. Currently there is no effective vaccine available to prevent N. caninum infection in cattle. In this study, we examined the feasibility of developing a live, recombinant N. caninum vaccine using Brucella abortus vaccine strain RB51 as the expression and delivery vector. We generated two recombinant RB51 strains each expressing SRS2 (RB51/SRS2) or GRA7 (RB51/GRA7) antigens of N. caninum. BALB/c mice immunized by single intraperitoneal inoculation of the recombinant RB51 strains developed IgG antibodies specific to the respective N. caninum antigen. In vitro stimulation of splenocytes from the vaccinated mice with specific antigen resulted in the production of interferon-gamma, but not IL-5 or IL-10, suggesting the development of a Th1 type immune response. Upon challenge with N. caninum tachyzoites, mice vaccinated with strain RB51/SRS2, but not RB51/GRA7, showed significant resistance to cerebral infection when compared to the RB51 vaccinated mice, as determined by the tissue parasite load using a real-time quantitative TaqMan assay. Interestingly, mice vaccinated with either strain RB51 or RB51/GRA7 also contained significantly lower parasite burden in their brains compared to those inoculated with saline. Mice vaccinated with strain RB51/SRS2 or RB51/GRA7 were protected to the same extent as the strain RB51 vaccinated mice against challenge with B. abortus virulent strain 2308. These results suggest that a recombinant RB51 strain expressing an appropriate protective antigen(s), such as SRS2 of N. caninum, can confer protection against both neosporosis and brucellosis.

  19. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines.

    Directory of Open Access Journals (Sweden)

    Clement A Meseda

    Full Text Available The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification. The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1 elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that

  20. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Amy R Noe

    Full Text Available The circumsporozoite protein (CSP of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA and immunofluorescence assay (IFA, as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime

  1. Immunization with a hemagglutinin-derived synthetic peptide formulated with a CpG-DNA-liposome complex induced protection against lethal influenza virus infection in mice.

    Directory of Open Access Journals (Sweden)

    Jae Won Rhee

    Full Text Available Whole-virus vaccines, including inactivated or live-attenuated influenza vaccines, have been conventionally developed and supported as a prophylaxis. These currently available virus-based influenza vaccines are widely used in the clinic, but the vaccine production takes a long time and a huge number of embryonated chicken eggs. To overcome the imperfection of egg-based influenza vaccines, epitope-based peptide vaccines have been studied as an alternative approach. Here, we formulated an efficacious peptide vaccine without carriers using phosphodiester CpG-DNA and a special liposome complex. Potential epitope peptides predicted from the hemagglutinin (HA protein of the H5N1 A/Viet Nam/1203/2004 strain (NCBI database, AAW80717 were used to immunize mice along with phosphodiester CpG-DNA co-encapsulated in a phosphatidyl-β-oleoyl-γ-palmitoyl ethanolamine (DOPE:cholesterol hemisuccinate (CHEMS complex (Lipoplex(O without carriers. We identified a B cell epitope peptide (hH5N1 HA233 epitope, 14 amino acids that can potently induce epitope-specific antibodies. Furthermore, immunization with a complex of the B cell epitope and Lipoplex(O completely protects mice challenged with a lethal dose of recombinant H5N1 virus. These results suggest that our improved peptide vaccine technology can be promptly applied to vaccine development against pandemic influenza. Furthermore our results suggest that potent epitopes, which cannot be easily found using proteins or a virus as an antigen, can be screened when we use a complex of peptide epitopes and Lipoplex(O.

  2. Design and Antigenic Epitopes Prediction of a New Trial Recombinant Multiepitopic Rotaviral Vaccine: In Silico Analyses.

    Science.gov (United States)

    Jafarpour, Sima; Ayat, Hoda; Ahadi, Ali Mohammad

    2015-01-01

    Rotavirus is the major etiologic factor of severe diarrheal disease. Natural infection provides protection against subsequent rotavirus infection and diarrhea. This research presents a new vaccine designed based on computational models. In this study, three types of epitopes are considered-linear, conformational, and combinational-in a proposed model protein. Several studies on rotavirus vaccines have shown that VP6 and VP4 proteins are good candidates for vaccine production. In the present study, a fusion protein was designed as a new generation of rotavirus vaccines by bioinformatics analyses. This model-based study using ABCpred, BCPREDS, Bcepred, and Ellipro web servers showed that the peptide presented in this article has the necessary properties to act as a vaccine. Prediction of linear B-cell epitopes of peptides is helpful to investigate whether these peptides are able to activate humoral immunity.

  3. Two potential recombinant rabies vaccines expressing canine parvovirus virion protein 2 induce immunogenicity to canine parvovirus and rabies virus.

    Science.gov (United States)

    Luo, Jun; Shi, Hehe; Tan, Yeping; Niu, Xuefeng; Long, Teng; Zhao, Jing; Tian, Qin; Wang, Yifei; Chen, Hao; Guo, Xiaofeng

    2016-08-17

    Both rabies virus (RABV) and canine parvovirus (CPV) cause lethal diseases in dogs. In this study, both high egg passage Flury (HEP-Flury) strains of RABV and recombinant RABV carrying double RABV glycoprotein (G) gene were used to express the CPV virion protein 2 (VP2) gene, and were designated rHEP-VP2 and, rHEP-dG-VP2 respectively. The two recombinant RABVs maintained optimal virus titration according to their viral growth kinetics assay compared with the parental strain HEP-Flury. Western blotting indicated that G protein and VP2 were expressed in vitro. The expression of VP2 in Crandell feline kidney cells post-infection by rHEP-VP2 and rHEP-dG-VP2 was confirmed by indirect immunofluorescence assay with antibody against VP2. Immunogenicity of recombinant rabies viruses was tested in Kunming mice. Both rHEP-VP2 and rHEP-dG-VP2 induced high levels of rabies antibody compared with HEP-Flury. Mice immunized with rHEP-VP2 and rHEP-dG-VP2 both had a high level of antibodies against VP2, which can protect against CPV infection. A challenge experiment indicated that more than 80% mice immunized with recombinant RABVs survived after infection of challenge virus standard 24 (CVS-24). Together, this study showed that recombinant RABVs expressing VP2 induced protective immune responses to RABV and CPV. Therefore, rHEP-VP2 and rHEP-dG-VP2 might be potential combined vaccines for RABV and CPV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Recombinant Listeria monocytogenes as a Live Vaccine Vehicle for the Induction of Protective Anti-Viral Cell-Mediated Immunity

    Science.gov (United States)

    Shen, Hao; Slifka, Mark K.; Matloubian, Mehrdad; Jensen, Eric R.; Ahmed, Rafi; Miller, Jeff F.

    1995-04-01

    Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2L^d-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8^+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8^+ T cells.

  5. A Prototype Recombinant-Protein Based Chlamydia pecorum Vaccine Results in Reduced Chlamydial Burden and Less Clinical Disease in Free-Ranging Koalas (Phascolarctos cinereus.

    Directory of Open Access Journals (Sweden)

    Courtney Waugh

    Full Text Available Diseases associated with Chlamydia pecorum infection are a major cause of decline in koala populations in Australia. While koalas in care can generally be treated, a vaccine is considered the only option to effectively reduce the threat of infection and disease at the population level. In the current study, we vaccinated 30 free-ranging koalas with a prototype Chlamydia pecorum vaccine consisting of a recombinant chlamydial MOMP adjuvanted with an immune stimulating complex. An additional cohort of 30 animals did not receive any vaccine and acted as comparison controls. Animals accepted into this study were either uninfected (Chlamydia PCR negative at time of initial vaccination, or infected (C. pecorum positive at either urogenital (UGT and/or ocular sites (Oc, but with no clinical signs of chlamydial disease. All koalas were vaccinated/sampled and then re-released into their natural habitat before re-capturing and re-sampling at 6 and 12 months. All vaccinated koalas produced a strong immune response to the vaccine, as indicated by high titres of specific plasma antibodies. The incidence of new infections in vaccinated koalas over the 12-month period post-vaccination was slightly less than koalas in the control group, however, this was not statistically significant. Importantly though, the vaccine was able to significantly reduce the infectious load in animals that were Chlamydia positive at the time of vaccination. This effect was evident at both the Oc and UGT sites and was stronger at 6 months than at 12 months post-vaccination. Finally, the vaccine was also able to reduce the number of animals that progressed to disease during the 12-month period. While the sample sizes were small (statistically speaking, results were nonetheless striking. This study highlights the potential for successful development of a Chlamydia vaccine for koalas in a wild setting.

  6. Prevention of Influenza A(H7N9 and Bacterial Infections in Mice Using Intranasal Immunization With Live Influenza Vaccine and the Group B Streptococcus Recombinant Polypeptides

    Directory of Open Access Journals (Sweden)

    Yulia A Desheva

    2017-06-01

    Full Text Available We investigate the protective effect of combined vaccination based on live attenuated influenza vaccine (LAIV and group B streptococcus (GBS recombinant polypeptides against potential pandemic H7N9 influenza infection followed by GBS burden. Mice were intranasally immunized using 10 7 50% egg infectious dose (EID 50 of H7N3 LAIV, the mix of the 4 GBS peptides (group B streptococcus vaccine [GBSV], or combined LAIV + GBSV vaccine. The LAIV raised serum hemagglutination-inhibition antibodies against H7N9 in higher titers than against H7N3. Combined vaccination provided advantageous protection against infections with A/Shanghai/2/2013(H7N9CDC-RG influenza and serotype II GBS. Combined vaccine significantly improved bacterial clearance from the lungs after infection compared with other vaccine groups. The smallest lung lesions due to combined LAIV + GBSV vaccination were associated with a prevalence of lung interferon-γ messenger RNA expression. Thus, combined viral and bacterial intranasal immunization using H7N3 LAIV and recombinant bacterial polypeptides induced balanced adaptive immune response, providing protection against potential pandemic influenza H7N9 and bacterial complications.

  7. Recombinant α-actinin subunit antigens of Trichomonas vaginalis as potential vaccine candidates in protecting against trichomoniasis.

    Science.gov (United States)

    Xie, Yi-Ting; Gao, Jiang-Mei; Wu, Ya-Ping; Tang, Petrus; Hide, Geoff; Lai, De-Hua; Lun, Zhao-Rong

    2017-02-16

    Human trichomoniasis caused by Trichomonas vaginalis is one of the most common sexually transmitted diseases with more than 200 million cases worldwide. It has caused a series of health problems to patients. For prevention and control of infectious diseases, vaccines are usually considered as one of the most cost-efficient tools. However, until now, work on the development of T. vaginalis vaccines is still mainly focused on the screening of potential immunogens. Alpha-actinin characterized by high immunogenicity in T. vaginalis was suggested as a promising candidate. Therefore, the purpose of this study was to evaluate the protective potency of recombinant α-actinin against T. vaginalis infection in a mouse intraperitoneal model. Two selected coding regions of α-actinin (ACT-F, 14-469 aa and ACT-T, 462-844 aa) amplified from cDNA were cloned into pET-32a (+) expression vector and transfected into BL21 cells. After induction with IPTG and purification with electroelution, the two recombinant fusion proteins were emulsified in Freund's adjuvant (FA) and used to immunize BALB/C mice. Following intraperitoneal inoculation with T. vaginalis, the survival rate of mice was monitored for the assessment of protective potency. After immunization, the antibody level in mouse serum was assessed by ELISA, splenocyte proliferation response was detected with CCK8 and cytokines in the supernatant of splenocytes were quantified with a cytometric bead-based assay. We successfully obtained purified ACT-F (70.33 kDa) and ACT-T (61.7kDa). Both recombinant proteins could provide significant protection against T. vaginalis challenge, especially ACT-T (with 100% protection within one month). Meanwhile, high levels of specific total IgG and subtypes (IgG1 > IgG2a) were detected in sera from the immunized mice. Our results also revealed a statistically significant increase in splenocyte proliferation and related cytokine (IFN-γ, IL-6, IL-17A and IL-10) production after repeated

  8. The use of an E1-deleted, replication-defective adenovirus recombinant expressing the rabies virus glycoprotein for early vaccination of mice against rabies virus.

    OpenAIRE

    Wang, Y.; Xiang, Z.; Pasquini, S; Ertl, H C

    1997-01-01

    An E1-deleted, replication-defective adenovirus recombinant of the human strain 5 expressing the rabies virus glycoprotein, termed Adrab.gp, was tested in young mice. Mice immunized at birth with the Adrab.gp construct developed antibodies to rabies virus and cytokine-secreting lymphocytes and were protected against subsequent challenge. Maternal immunity to rabies virus strongly interferes with vaccination of the offspring with a traditional inactivated rabies virus vaccine. The immune respo...

  9. Recombinant botulinum neurotoxin Hc subunit (BoNT Hc) and catalytically inactive Clostridium botulinum holoproteins (ciBoNT HPs) as vaccine candidates for the prevention of botulism

    Science.gov (United States)

    2017-09-03

    Recombinant botulinum neurotoxin Hc subunit (BoNT Hc) and catalytically inactive Clostridium 1 botulinum holoproteins (ciBoNT HPs) as vaccine...hundreds of years, the disease was 47 recognized as a public health concern in the United States after 32 people died in 5 outbreaks 48 associated with...ripe olives in 1919 and 1920 [3]. These incidents emphasized the need for 49 effective treatments, such as antitoxins and vaccines, to counteract

  10. Relative contributions of measles virus hemagglutinin- and fusion protein- specific serum antibodies to virus neutralization.

    NARCIS (Netherlands)

    R.L. de Swart (Rik); S. Yüksel (Selma); A.D.M.E. Osterhaus (Albert)

    2005-01-01

    textabstractThe relative contribution of measles virus hemagglutinin (H)- or fusion protein (F)-specific antibodies to virus neutralization (VN) has not been demonstrated. We have depleted these specific antibodies from sera collected from young adults, who had been vaccinated during childhood, by

  11. Adjuvanticity of a CTLA-4 3' UTR complementary oligonucleotide for emulsion formulated recombinant subunit and inactivated vaccines.

    Science.gov (United States)

    Li, Xin; Yang, Lei; Zhao, Peiyan; Yao, Yun; Lu, Fangjie; Tu, Liqun; Liu, Jiwei; Li, Zhiqin; Yu, Yongli; Wang, Liying

    2017-04-25

    Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is recognized as a critical inhibitory regulator of T-cell proliferation and activation, opposing the action of CD28-mediated co-stimulation. Interfering or blocking CTLA-4 can result in continuous T-cell activation required for the full immune response to pathogenic microbes and vaccines. To test if nucleic acid-based CTLA-4 inhibitors could be developed into a novel adjuvant, we designed two oligonucleotides, CMD-1 and CMD-2, with the sequences complementary to the conserve regions identical between human and mouse CTLA-4 mRNA 3' untranslated region (3' UTR), and tested their in vitro effects on CTLA-4 production and their adjuvanticity for vaccines in mice. We found that CMD-1 inhibited the antigen-induced CTLA-4 up-regulation on the CD4+ T cells by interfering its mRNA expression, maintained higher levels of CD80 and CD86 on the CD11c+ cells and promoted the recalled proliferation of the CD4+ T cells and CD19+ B cells, and that the CMD-1 enhanced the antibody response against recombinant PCV2b capsid protein or inactivated foot-and-mouth disease virus in both ICR and BALB/c mice. These data suggest that the CMD-1 could be used as a novel vaccine adjuvant capable of inhibiting inhibitory signals rather than inducing stimulatory signals of immune cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Defining influenza A virus hemagglutinin antigenic drift by sequential monoclonal antibody selection.

    Science.gov (United States)

    Das, Suman R; Hensley, Scott E; Ince, William L; Brooke, Christopher B; Subba, Anju; Delboy, Mark G; Russ, Gustav; Gibbs, James S; Bennink, Jack R; Yewdell, Jonathan W

    2013-03-13

    Human influenza A virus (IAV) vaccination is limited by "antigenic drift," rapid antibody-driven escape reflecting amino acid substitutions in the globular domain of hemagglutinin (HA), the viral attachment protein. To better understand drift, we used anti-hemagglutinin monoclonal Abs (mAbs) to sequentially select IAV escape mutants. Twelve selection steps, each resulting in a single amino acid substitution in the hemagglutinin globular domain, were required to eliminate antigenicity defined by monoclonal or polyclonal Abs. Sequential mutants grow robustly, showing the structural plasticity of HA, although several hemagglutinin substitutions required an epistatic substitution in the neuraminidase glycoprotein to maximize growth. Selecting escape mutants from parental versus sequential variants with the same mAb revealed distinct escape repertoires, attributed to contextual changes in antigenicity and the mutation landscape. Since each hemagglutinin mutation potentially sculpts future mutation space, drift can follow many stochastic paths, undermining its unpredictability and underscoring the need for drift-insensitive vaccines. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Adsorption of recombinant poxvirus L1-protein to aluminum hydroxide/CpG vaccine adjuvants enhances immune responses and protection of mice from vaccinia virus challenge.

    Science.gov (United States)

    Xiao, Yuhong; Zeng, Yuhong; Alexander, Edward; Mehta, Shyam; Joshi, Sangeeta B; Buchman, George W; Volkin, David B; Middaugh, C Russell; Isaacs, Stuart N

    2013-01-02

    The stockpiling of live vaccinia virus vaccines has enhanced biopreparedness against the intentional or accidental release of smallpox. Ongoing research on future generation smallpox vaccines is providing key insights into protective immune responses as well as important information about subunit-vaccine design strategies. For protein-based recombinant subunit vaccines, the formulation and stability of candidate antigens with different adjuvants are important factors to consider for vaccine design. In this work, a non-tagged secreted L1-protein, a target antigen on mature virus, was expressed using recombinant baculovirus technology and purified. To identify optimal formulation conditions for L1, a series of biophysical studies was performed over a range of pH and temperature conditions. The overall physical stability profile was summarized in an empirical phase diagram. Another critical question to address for development of an adjuvanted vaccine was if immunogenicity and protection could be affected by the interactions and binding of L1 to aluminum salts (Alhydrogel) with and without a second adjuvant, CpG. We thus designed a series of vaccine formulations with different binding interactions between the L1 and the two adjuvants, and then performed a series of vaccination-challenge experiments in mice including measurement of antibody responses and post-challenge weight loss and survival. We found that better humoral responses and protection were conferred with vaccine formulations when the L1-protein was adsorbed to Alhydrogel. These data demonstrate that designing vaccine formulation conditions to maximize antigen-adjuvant interactions is a key factor in smallpox subunit-vaccine immunogenicity and protection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Getting to grips with strangles: an effective multi-component recombinant vaccine for the protection of horses from Streptococcus equi infection.

    Directory of Open Access Journals (Sweden)

    Bengt Guss

    2009-09-01

    Full Text Available Streptococcus equi subspecies equi (S. equi is a clonal, equine host-adapted pathogen of global importance that causes a suppurative lymphodendopathy of the head and neck, more commonly known as Strangles. The disease is highly prevalent, can be severe and is highly contagious. Antibiotic treatment is usually ineffective. Live attenuated vaccine strains of S. equi have shown adverse reactions and they suffer from a short duration of immunity. Thus, a safe and effective vaccine against S. equi is highly desirable. The bacterium shows only limited genetic diversity and an effective vaccine could confer broad protection to horses throughout the world. Welsh mountain ponies (n = 7 vaccinated with a combination of seven recombinant S. equi proteins were significantly protected from experimental infection by S. equi, resembling the spontaneous disease. Vaccinated horses had significantly reduced incidence of lymph node swelling (p = 0.0013 lymph node abscessation (p = 0.00001, fewer days of pyrexia (p = 0.0001, reduced pathology scoring (p = 0.005 and lower bacterial recovery from lymph nodes (p = 0.004 when compared with non-vaccinated horses (n = 7. Six of 7 vaccinated horses were protected whereas all 7 non-vaccinated became infected. The protective antigens consisted of five surface localized proteins and two IgG endopeptidases. A second vaccination trial (n = 7+7, in which the IgG endopeptidases were omitted, demonstrated only partial protection against S. equi, highlighting an important role for these vaccine components in establishing a protective immune response. S. equi shares >80% sequence identity with Streptococcus pyogenes. Several of the components utilized here have counterparts in S. pyogenes, suggesting that our findings have broader implications for the prevention of infection with this important human pathogen. This is one of only a few demonstrations of protection from streptococcal infection conferred by a recombinant multi

  15. Heterologous protection elicited by candidate monomeric recombinant HIV-1 gp120 vaccine in the absence of cross neutralising antibodies in a macaque model

    Directory of Open Access Journals (Sweden)

    Page Mark

    2012-07-01

    Full Text Available Abstract Background Current data suggest that an efficacious human immunodeficiency virus type 1 (HIV-1 vaccine should elicit both adaptive humoral and cell mediated immune responses. Such a vaccine will also need to protect against infection from a range of heterologous viral variants. Here we have developed a simian-human immunodeficiency virus (SHIV based model in cynomolgus macaques to investigate the breadth of protection conferred by HIV-1W61D recombinant gp120 vaccination against SHIVsbg and SHIVSF33 challenge, and to identify correlates of protection. Results High titres of anti-envelope antibodies were detected in all vaccinees. The antibodies reacted with both the homologous HIV-1W61D and heterologous HIV-1IIIB envelope rgp120 which has an identical sequence to the SHIVsbg challenge virus. Significant titres of virus neutralising antibodies were detected against SHIVW61D expressing an envelope homologous with the vaccine, but only limited cross neutralisation against SHIVsbg, SHIV-4 and SHIVSF33 was observed. Protection against SHIVsbg infection was observed in vaccinated animals but none was observed against SHIVSF33 challenge. Transfer of immune sera from vaccinated macaques to naive recipients did not confer protection against SHIVsbg challenge. In a follow-up study, T cell proliferative responses detected after immunisation with the same vaccine against a single peptide present in the second conserved region 2 of HIV-1 W61D and HIV-1 IIIB gp120, but not SF33 gp120. Conclusions Following extended vaccination with a HIV-1 rgp120 vaccine, protection was observed against heterologous virus challenge with SHIVsbg, but not SHIVSF33. Protection did not correlate with serological responses generated by vaccination, but might be associated with T cell proliferative responses against an epitope in the second constant region of HIV-1 gp120. Broader protection may be obtained with recombinant HIV-1 envelope based vaccines formulated with

  16. Recombinant plants provide a new approach to the production of bacterial polysaccharide for vaccines

    National Research Council Canada - National Science Library

    Smith, Claire M; Fry, Stephen C; Gough, Kevin C; Patel, Alexandra J F; Glenn, Sarah; Goldrick, Marie; Roberts, Ian S; Whitelam, Garry C; Andrew, Peter W

    2014-01-01

    Bacterial polysaccharides have numerous clinical or industrial uses. Recombinant plants could offer the possibility of producing bacterial polysaccharides on a large scale and free of contaminating bacterial toxins and antigens...

  17. The Recombinant Bacille Calmette–Guérin Vaccine VPM1002: Ready for Clinical Efficacy Testing

    National Research Council Canada - National Science Library

    Natalie E. Nieuwenhuizen; Prasad S. Kulkarni; Umesh Shaligram; Mark F. Cotton; Cyrill A. Rentsch; Bernd Eisele; Leander Grode; Stefan H. E. Kaufmann

    2017-01-01

    The only licensed vaccine against tuberculosis (TB), bacille Calmette–Guérin (BCG), protects against severe extrapulmonary forms of TB but is virtually ineffective against the most prevalent form of the disease, pulmonary TB...

  18. Live Attenuated Recombinant Vaccine Protects Nonhuman Primates Against Ebola and Marburg Viruses

    National Research Council Canada - National Science Library

    Jones, Steven M; Feldmann, Heinz; Stroher, Ute; Geisbert, Joan B; Fernando, Lisa; Grolla, Allen; Klenk, Hans-Dieter; Sullivan, Nancy J; Volchkov, Viktor E; Fritz, Elizabeth A; Daddario, Kathleen M; Hensley, Lisa E; Jahrling, Peter B; Geisbert, Thomas W

    2005-01-01

    Vaccines and therapies are urgently needed to address public health needs stemming from emerging pathogens and biological threat agents such as the filoviruses Ebola virus (EBOV) and Marburg virus (MARV...

  19. Schistosoma bovis: vaccine effects of a recombinant homologous glutathione S-transferase in sheep.

    Science.gov (United States)

    Boulanger, D; Schneider, D; Chippaux, J P; Sellin, B; Capron, A

    1999-03-01

    The economic importance of the trematode Schistosoma bovis in African livestock has justified the development of a specific vaccine. Administered preventively to sheep, rSb28GST--the only molecule cloned from S. bovis which has demonstrated vaccine potentialities in goats and cattle--reduced the mean worm burden in vaccinated animals and improved their health status compared with that of non-vaccinated controls. As in goats, but not in bovines, the fecundity of the settled worm pairs was not modified. Therefore, rSb28GST can be proposed as a universal tool for the prevention of clinical disorders engendered by the main schistosome species affecting domestic ruminants in the African continent.

  20. Comparison of immunogenicity of Aluminum salts as adjuvant for recombinant Hepatitis-B vaccine

    OpenAIRE

    Fazeli MR; Abbaspour M; Ghahremani MH; Alimian M; Ilka H; Jamalifar H; Azadi S; Azizi E

    2007-01-01

    Background: Aluminum salts are common adjuvants in human and animal vaccine preparations. The two adjuvants aluminum phosphate and aluminum hydroxide show acceptable immunoadjuvant properties with many antigens. These two salts have different physicochemical characteristics that make each one suitable for certain antigens. The surface antigen of Hepatitis B (HBsAg) has several antigenic epitopes that bind to aluminum adjuvants by a ligand exchange mechanism. Although HBV vaccines using an alu...

  1. Diversity of the murine antibody response targeting influenza A(H1N1pdm09) hemagglutinin.

    Science.gov (United States)

    Wilson, Jason R; Tzeng, Wen-Pin; Spesock, April; Music, Nedzad; Guo, Zhu; Barrington, Robert; Stevens, James; Donis, Ruben O; Katz, Jacqueline M; York, Ian A

    2014-06-01

    We infected mice with the 2009 influenza A pandemic virus (H1N1pdm09), boosted with an inactivated vaccine, and cloned immunoglobulins (Igs) from HA-specific B cells. Based on the redundancy in germline gene utilization, we inferred that between 72-130 unique IgH VDJ and 35 different IgL VJ combinations comprised the anti-HA recall response. The IgH VH1 and IgL VK14 variable gene families were employed most frequently. A representative panel of antibodies were cloned and expressed to confirm reactivity with H1N1pdm09 HA. The majority of the recombinant antibodies were of high avidity and capable of inhibiting H1N1pdm09 hemagglutination. Three of these antibodies were subtype-specific cross-reactive, binding to the HA of A/South Carolina/1/1918(H1N1), and one further reacted with A/swine/Iowa/15/1930(H1N1). These results help to define the genetic diversity of the influenza anti-HA antibody repertoire profile induced following infection and vaccination, which may facilitate the development of influenza vaccines that are more protective and broadly neutralizing. Protection against influenza viruses is mediated mainly by antibodies, and in most cases this antibody response is narrow, only providing protection against closely related viruses. In spite of this limited range of protection, recent findings indicate that individuals immune to one influenza virus may contain antibodies (generally a minority of the overall response) that are more broadly reactive. These findings have raised the possibility that influenza vaccines could induce a more broadly protective response, reducing the need for frequent vaccine strain changes. However, interpretation of these observations is hampered by the lack of quantitative characterization of the antibody repertoire. In this study, we used single-cell cloning of influenza HA-specific B cells to assess the diversity and nature of the antibody response to influenza hemagglutinin in mice. Our findings help to put bounds on the

  2. A recombinant live attenuated tetravalent vaccine for the prevention of dengue.

    Science.gov (United States)

    Guy, Bruno; Noriega, Fernando; Ochiai, R Leon; L'azou, Maïna; Delore, Valentine; Skipetrova, Anna; Verdier, François; Coudeville, Laurent; Savarino, Stephen; Jackson, Nicholas

    2017-07-01

    Dengue is an important and still growing public health problem associated with substantial morbidity, as well as significant social and economic impact. The present review describes the main features and development of the first dengue vaccine (CYD-TDV, Dengvaxia®), which has been licensed by several dengue-endemic countries in Asia and Latin America for use in populations above 9 years of age. Areas covered: The review focuses on the large clinical development of CYD-TDV, which includes in particular two pivotal phase III efficacy trials conducted in Asia and Latin America and supported vaccine licensure. Based on these clinical data, the WHO Strategic Advisory Group of Experts (SAGE) on Immunization recommended considering introduction of the vaccine in geographic settings (national or subnational) with high burden of disease. Long-term safety follow-up studies of the efficacy trials are currently ongoing, and post-licensure studies will evaluate the vaccine effectiveness and safety in 'real-life' following vaccine introduction. Expert commentary: During vaccine development, a number of complexities were tackled, innovation pursued, and risk managed. These aspects, as well as the potential impact of CYD-TDV on public health are also discussed.

  3. Full protection in mink against mink enteritis virus with new generation canine parvovirus vaccines based on synthetic peptide or recombinant protein

    DEFF Research Database (Denmark)

    Langeveld, J. P.; Kamstrup, Søren; Uttenthal, Åse

    1995-01-01

    Two recently developed vaccines—one based on synthetic peptide and one based on recombinant capsid protein—fully protected dogs against heavy experimental canine parvovirus (CPV) infection. The high sequence homology (>98%) and antigenic similarity between CPV and mink enteritis virus (MEV), feline...... panleukopenia virus, and raccoon parvovirus, suggest that both vaccines could protect mink, cats and raccoons against these respective host range variants. This was tested in mink and turned out to be the case. The two vaccines were fully protective and as effective as a conventional commercial vaccine based...

  4. Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection

    OpenAIRE

    Mallajosyula, Vamsee V. A.; Citron, Michael; Ferrara, Francesca; Lu, Xianghan; Callahan, Cheryl; Heidecker, Gwendolyn J.; Sarma, Siddhartha P.; Flynn, Jessica A.; Temperton, Nigel J.; Liang, Xiaoping; Varadarajan, Raghavan

    2014-01-01

    Influenza hemagglutinin (HA) is the primary target of the humoral response during infection/vaccination. Current influenza vaccines typically fail to elicit/boost broadly neutralizing antibodies (bnAbs), thereby limiting their efficacy. Although several bnAbs bind to the conserved stem domain of HA, focusing the immune response to this conserved stem in the presence of the immunodominant, variable head domain of HA is challenging. We report the design of a thermotolerant, disulfide-free, and ...

  5. Potentiating effects of MPL on DSPC bearing cationic liposomes promote recombinant GP63 vaccine efficacy: high immunogenicity and protection.

    Science.gov (United States)

    Mazumder, Saumyabrata; Maji, Mithun; Ali, Nahid

    2011-12-01

    Vaccines that activate strong specific Th1-predominant immune responses are critically needed for many intracellular pathogens, including Leishmania. The requirement for sustained and efficient vaccination against leishmaniasis is to formulate the best combination of immunopotentiating adjuvant with the stable antigen (Ag) delivery system. The aim of the present study is to evaluate the effectiveness of an immunomodulator on liposomal Ag through subcutaneous (s.c.) route of immunization, and its usefulness during prime/boost against visceral leishmaniasis (VL) in BALB/c mice. Towards this goal, we formulated recombinant GP63 (rGP63)-based vaccines either with monophosphoryl lipid A-trehalose dicorynomycolate (MPL-TDM) or entrapped within cationic liposomes or both. Combinatorial administration of liposomes with MPL-TDM during prime confers activation of dendritic cells, and induces an early robust T cell response. To investigate whether the combined formulation is required for optimum immune response during boost as well, we chose to evaluate the vaccine efficacy in mice primed with combined adjuvant system followed by boosting with either rGP63 alone, in association with MPL-TDM, liposomes or both. We provide evidences that the presence of either liposomal rGP63 or combined formulations during boost is necessary for effective Th1 immune responses (IFN-γ, IL-12, NO) before challenge infection. However, boosting with MPL-TDM in conjugation with liposomal rGP63 resulted in a greater number of IFN-γ producing effector T cells, significantly higher levels of splenocyte proliferation, and Th1 responses compared to mice boosted with liposomal rGP63, after virulent Leishmania donovani (L. donovani) challenge. Moreover, combined formulations offered superior protection against intracellular amastigote replication in macrophages in vitro, and hepatic and splenic parasite load in vivo. Our results define the immunopotentiating effect of MPL-TDM on protein Ag encapsulated

  6. Maternal immunization with vaccines containing recombinant NetB toxin partially protects progeny chickens from necrotic enteritis.

    Science.gov (United States)

    Keyburn, Anthony L; Portela, Ricardo W; Ford, Mark E; Bannam, Trudi L; Yan, Xu X; Rood, Julian I; Moore, Robert J

    2013-11-13

    Avian necrotic enteritis is a major economic and welfare issue throughout the global poultry industry and is caused by isolates of Clostridium perfringens that produce NetB toxin. Previously we have shown that birds directly vaccinated with inactivated C. perfringens type A culture supernatant (toxoid) combined with recombinant NetB (rNetB) protein were significantly protected from homologous and heterologous challenge. In the present study the protective effect of maternal immunization was examined. Broiler breeder hens were injected subcutaneously with genetically toxoided rNetB(S254L) alone, C. perfringens type A toxoid and toxoid combined with rNetB(S254L). Vaccination resulted in a strong serum immunoglobulin Y response to NetB in hens immunized with rNetB(S254L) formulations. Anti-NetB antibodies were transferred to the eggs and on into the hatched progeny. Subclinical necrotic enteritis was induced experimentally in the progeny and the occurrence of specific necrotic enteritis lesions evaluated. Birds derived from hens immunized with rNetB(S254L) combined with toxoid and challenged with a homologous strain (EHE-NE18) at either 14 or 21 days post-hatch had significantly lower levels of disease compared to birds from adjuvant only vaccinated hens. In addition, birds from hens immunized with rNetB(S254L) alone were significantly protected when challenged at 14 days post-hatch. These results demonstrate that maternal immunization with a NetB-enhanced toxoid vaccine is a promising method for the control of necrotic enteritis in young broiler chickens.

  7. Predicted Coverage and Immuno-Safety of a Recombinant C-Repeat Region Based Streptococcus pyogenes Vaccine Candidate.

    Science.gov (United States)

    McNeilly, Celia; Cosh, Samantha; Vu, Therese; Nichols, Jemma; Henningham, Anna; Hofmann, Andreas; Fane, Anne; Smeesters, Pierre R; Rush, Catherine M; Hafner, Louise M; Ketheesan, Natkuman; Sriprakash, Kadaba S; McMillan, David J

    2016-01-01

    The C-terminal region of the M-protein of Streptococcus pyogenes is a major target for vaccine development. The major feature is the C-repeat region, consisting of 35-42 amino acid repeat units that display high but not perfect identity. SV1 is a S. pyogenes vaccine candidate that incorporates five 14mer amino acid sequences (called J14i variants) from differing C-repeat units in a single recombinant construct. Here we show that the J14i variants chosen for inclusion in SV1 are the most common variants in a dataset of 176 unique M-proteins. Murine antibodies raised against SV1 were shown to bind to each of the J14i variants present in SV1, as well as variants not present in the vaccine. Antibodies raised to the individual J14i variants were also shown to bind to multiple but different combinations of J14i variants, supporting the underlying rationale for the design of SV1. A Lewis Rat Model of valvulitis was then used to assess the capacity of SV1 to induce deleterious immune response associated with rheumatic heart disease. In this model, both SV1 and the M5 positive control protein were immunogenic. Neither of these antibodies were cross-reactive with cardiac myosin or collagen. Splenic T cells from SV1/CFA and SV1/alum immunized rats did not proliferate in response to cardiac myosin or collagen. Subsequent histological examination of heart tissue showed that 4 of 5 mice from the M5/CFA group had valvulitis and inflammatory cell infiltration into valvular tissue, whereas mice immunised with SV1/CFA, SV1/alum showed no sign of valvulitis. These results suggest that SV1 is a safe vaccine candidate that will elicit antibodies that recognise the vast majority of circulating GAS M-types.

  8. Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins

    Directory of Open Access Journals (Sweden)

    Suzanne R. Kalb

    2017-06-01

    Full Text Available Botulism is a disease involving intoxication with botulinum neurotoxins (BoNTs, toxic proteins produced by Clostridium botulinum and other clostridia. The 150 kDa neurotoxin is produced in conjunction with other proteins to form the botulinum progenitor toxin complex (PTC, alternating in size from 300 kDa to 500 kDa. These progenitor complexes can be classified into hemagglutinin positive or hemagglutinin negative, depending on the ability of some of the neurotoxin-associated proteins (NAPs to cause hemagglutination. The hemagglutinin positive progenitor toxin complex consists of BoNT, nontoxic non-hemagglutinin (NTNH, and three hemagglutinin proteins; HA-70, HA-33, and HA-17. Hemagglutinin negative progenitor toxin complexes contain BoNT and NTNH as the minimally functional PTC (M-PTC, but not the three hemagglutinin proteins. Interestingly, the genome of hemagglutinin negative progenitor toxin complexes comprises open reading frames (orfs which encode for three proteins, but the existence of these proteins has not yet been extensively demonstrated. In this work, we demonstrate that these three proteins exist and form part of the PTC for hemagglutinin negative complexes. Several hemagglutinin negative strains producing BoNT/A, /E, and /F were found to contain the three open reading frame proteins. Additionally, several BoNT/A-containing bivalent strains were examined, and NAPs from both genes, including the open reading frame proteins, were associated with BoNT/A. The open reading frame encoded proteins are more easily removed from the botulinum complex than the hemagglutinin proteins, but are present in several BoNT/A and /F toxin preparations. These are not easily removed from the BoNT/E complex, however, and are present even in commercially-available purified BoNT/E complex.

  9. A Plasmodium falciparum candidate vaccine based on a six-antigen polyprotein encoded by recombinant poxviruses.

    Science.gov (United States)

    Prieur, Eric; Gilbert, Sarah C; Schneider, Joerg; Moore, Anne C; Sheu, Eric G; Goonetilleke, Nilu; Robson, Kathryn J H; Hill, Adrian V S

    2004-01-06

    To generate broadly protective T cell responses more similar to those acquired after vaccination with radiation-attenuated Plasmodium falciparum sporozoites, we have constructed candidate subunit malaria vaccines expressing six preerythrocytic antigens linked together to produce a 3240-aa-long polyprotein (L3SEPTL). This polyprotein was expressed by a plasmid DNA vaccine vector (DNA) and by two attenuated poxvirus vectors, modified vaccinia virus Ankara (MVA) and fowlpox virus of the FP9 strain. MVAL3SEPTL boosted anti-thrombospondin-related adhesive protein (anti-TRAP) and anti-liver stage antigen 1 (anti-LSA1) CD8(+) T cell responses when primed by single antigen TRAP- or LSA1-expressing DNAs, respectively, but not by DNA-L3SEPTL. However, prime boost regimes involving two heterologous viral vectors expressing L3SEPTL induced a strong cellular response directed against an LSA1 peptide located in the C-terminal region of the polyprotein. Peptide-specific T cells secreted IFN-gamma and were cytotoxic. IFN-gamma-secreting T cells specific for each of the six antigens were induced after vaccination with L3SEPTL, supporting the use of polyprotein inserts to induce multispecific T cells against P. falciparum. The use of polyprotein constructs in nonreplicating poxviruses should broaden the target antigen range of vaccine-induced immunity and increase the number of potential epitopes available for immunogenetically diverse human populations.

  10. Immunogenicity of DNA- and recombinant protein-based Alzheimer disease epitope vaccines.

    Science.gov (United States)

    Davtyan, Hayk; Bacon, Andrew; Petrushina, Irina; Zagorski, Karen; Cribbs, David H; Ghochikyan, Anahit; Agadjanyan, Michael G

    2014-01-01

    Alzheimer disease (AD) process involves the accumulation of amyloid plaques and tau tangles in the brain, nevertheless the attempts at targeting the main culprits, neurotoxic β-amyloid (Aβ) peptides, have thus far proven unsuccessful for improving cognitive function. Important lessons about anti-Aβ immunotherapeutic strategies were learned from the first active vaccination clinical trials. AD progression could be safely prevented or delayed if the vaccine (1) induces high titers of antibodies specific to toxic forms of Aβ; (2) does not activate the harmful autoreactive T cells that may induce inflammation; (3) is initiated before or at least at the early stages of the accumulation of toxic forms of Aβ. Data from the recent passive vaccination trials with bapineuzumab and solanezumab also indicated that anti-Aβ immunotherapy might be effective in reduction of the AD pathology and even improvement of cognitive and/or functional performance in patients when administered early in the course of the disease. For the prevention of AD the active immunization strategy may be more desirable than passive immunotherapy protocol and it can offer the potential for sustainable clinical and commercial advantages. Here we discuss the active vaccine approaches, which are still in preclinical development and vaccines that are already in clinical trials.

  11. Cell-Mediated and Humoral Immune Responses after Immunization of Calves with a Recombinant Multiantigenic Mycobacterium avium subsp. paratuberculosis Subunit Vaccine at Different Ages

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Aagaard, Claus; Stockmarr, Anders

    2013-01-01

    Neonates and juvenile ruminants are very susceptible to paratuberculosis infection. This is likely due to a high degree of exposure from their dams and an immature immune system. To test the influence of age on vaccine-induced responses, a cocktail of recombinant Mycobacterium avium subsp. paratu...

  12. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle

    Science.gov (United States)

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O,A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutral...

  13. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates

    NARCIS (Netherlands)

    Bolton, Diane L.; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A.; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-01-01

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston

  14. Protection of mice against Staphylococcus aureus infection by a recombinant protein ClfA-IsdB-Hlg as a vaccine candidate.

    Science.gov (United States)

    Delfani, Somayeh; Mohabati Mobarez, Ashraf; Imani Fooladi, Abbas Ali; Amani, Jafar; Emaneini, Mohammad

    2016-02-01

    Staphylococcus aureus is one of the most important causes of nosocomial infections. An effective vaccine to prevent S. aureus infections is urgently required due to the dramatic increase in the number of antibiotic-resistant strains. In this report, we evaluated a newly recombinant protein composed of selected antigenic regions of clumping factor A (ClfA), iron surface determinant B (IsdB) and gamma hemolysin B (HlgB) of S. aureus and sequence coding for hydrophobic linkers between three domains. The recombinant gene was constructed in pET-28a (+) and expressed in Escherichia coli BL21. In addition, sequence coding for a His(6)-tag was added followed by a hybrid procedure of nickel chelate protein purification. Immunization of BALB/c mice with the recombinant protein ClfA-IsdB-Hlg evoked antigen-specific antibodies that could opsonize S. aureus cells, enhancing in vitro phagocytosis by macrophages. Vaccination with the recombinant protein also reduced the bacterial load recovered from mice spleen samples and increased survival following the intraperitoneal challenge with pathogenic S. aureus compared to the control mice. Our results showed that the recombinant protein ClfA-IsdB-Hlg is a promising vaccine candidate for the prevention of S. aureus bacteremia infections.

  15. Therapeutic vaccination with recombinant adenovirus reduces splenic parasite burden in experimental visceral leishmaniasis.

    Science.gov (United States)

    Maroof, Asher; Brown, Najmeeyah; Smith, Barbara; Hodgkinson, Michael R; Maxwell, Alice; Losch, Florian O; Fritz, Ulrike; Walden, Peter; Lacey, Charles N J; Smith, Deborah F; Aebischer, Toni; Kaye, Paul M

    2012-03-01

    Therapeutic vaccines, when used alone or in combination therapy with antileishmanial drugs, may have an important place in the control of a variety of forms of human leishmaniasis. Here, we describe the development of an adenovirus-based vaccine (Ad5-KH) comprising a synthetic haspb gene linked to a kmp11 gene via a viral 2A sequence. In nonvaccinated Leishmania donovani-infected BALB/c mice, HASPB- and KMP11-specific CD8(+) T cell responses were undetectable, although IgG1 and IgG2a antibodies were evident. After therapeutic vaccination, antibody responses were boosted, and IFNγ(+)CD8(+) T cell responses, particularly to HASPB, became apparent. A single vaccination with Ad5-KH inhibited splenic parasite growth by ∼66%, a level of efficacy comparable to that observed in early stage testing of clinically approved antileishmanial drugs in this model. These studies indicate the usefulness of adenoviral vectors to deliver leishmanial antigens in a potent and host protective manner to animals with existing L. donovani infection.

  16. Therapeutic Vaccination With Recombinant Adenovirus Reduces Splenic Parasite Burden in Experimental Visceral Leishmaniasis

    Science.gov (United States)

    Maroof, Asher; Brown, Najmeeyah; Smith, Barbara; Hodgkinson, Michael R.; Maxwell, Alice; Losch, Florian O.; Fritz, Ulrike; Walden, Peter; Lacey, Charles N. J.; Smith, Deborah F.; Aebischer, Toni

    2012-01-01

    Therapeutic vaccines, when used alone or in combination therapy with antileishmanial drugs, may have an important place in the control of a variety of forms of human leishmaniasis. Here, we describe the development of an adenovirus-based vaccine (Ad5-KH) comprising a synthetic haspb gene linked to a kmp11 gene via a viral 2A sequence. In nonvaccinated Leishmania donovani–infected BALB/c mice, HASPB- and KMP11-specific CD8+ T cell responses were undetectable, although IgG1 and IgG2a antibodies were evident. After therapeutic vaccination, antibody responses were boosted, and IFNγ+CD8+ T cell responses, particularly to HASPB, became apparent. A single vaccination with Ad5-KH inhibited splenic parasite growth by ∼66%, a level of efficacy comparable to that observed in early stage testing of clinically approved antileishmanial drugs in this model. These studies indicate the usefulness of adenoviral vectors to deliver leishmanial antigens in a potent and host protective manner to animals with existing L. donovani infection. PMID:22301630

  17. Production of a Recombinant Vaccine Candidate against Burkholderia pseudomallei Exploiting the Bacterial N-Glycosylation Machinery

    Directory of Open Access Journals (Sweden)

    Fatima eGarcia-Quintanilla

    2014-07-01

    Full Text Available Vaccines developing immune responses towards surface carbohydrates conjugated to proteins are effective in preventing infection and death by bacterial pathogens. Traditional production of these vaccines utilizes complex synthetic chemistry to acquire and conjugate the glycan to a protein. However, glycoproteins produced by bacterial protein glycosylation systems are significantly easier to produce, and could possible be used as vaccine candidates. In this work we functionally expressed the B. pseudomallei O polysaccharide (OPS II, the C. jejuni oligosaccharyltransferase (OTase, and a suitable glycoprotein (AcrA in a designer E. coli strain with a higher efficiency for production of glycoconjugates. We were able to produce and purify the OPS II-AcrA glycoconjugate, and MS analysis confirmed correct glycan was produced and attached. We observed the attachment of the O-acetylated deoxyhexose directly to the acceptor protein, which expands the range of substrates utilized by the OTase PglB. Injection of the glycoprotein into mice generated an IgG immune response against B. pseudomallei, and this response was partially protective against an intranasal challenge. Our experiments show that bacterial engineered glycoconjugates can be utilized as vaccine candidates against B. pseudomallei. Additionally, our new E. coli strain SDB1 is more efficient in glycoprotein production, and could have additional applications in the future.

  18. Recombinant proteins as vaccines for protection against disease induced by infection with mink astrovirus

    DEFF Research Database (Denmark)

    2012-01-01

    and polypeptides of the capsid protein of a novel mink astrovirus strain denoted DK7627. Such polynucleotides and polypeptides may be used for the production of vaccines against mink astrovirus which may induce pre-weaning diarrhoea in minks. The invention furthermore relates to vectors, host cells, compositions...

  19. Serological characterization of guinea pigs infected with H3N2 human influenza or immunized with hemagglutinin protein

    Science.gov (United States)

    2010-01-01

    Background Recent and previous studies have shown that guinea pigs can be infected with, and transmit, human influenza viruses. Therefore guinea pig may be a useful animal model for better understanding influenza infection and assessing vaccine strategies. To more fully characterize the model, antibody responses following either infection/re-infection with human influenza A/Wyoming/03/2003 H3N2 or immunization with its homologous recombinant hemagglutinin (HA) protein were studied. Results Serological samples were collected and tested for anti-HA immunoglobulin by ELISA, antiviral antibodies by hemagglutination inhibition (HI), and recognition of linear epitopes by peptide scanning (PepScan). Animals inoculated with infectious virus demonstrated pronounced viral replication and subsequent serological conversion. Animals either immunized with the homologous HA antigen or infected, showed a relatively rapid rise in antibody titers to the HA glycoprotein in ELISA assays. Antiviral antibodies, measured by HI assay, were detectable after the second inoculation. PepScan data identified both previously recognized and newly defined linear epitopes. Conclusions Infection and/or recombinant HA immunization of guinea pigs with H3N2 Wyoming influenza virus resulted in a relatively rapid production of viral-specific antibody thus demonstrating the strong immunogenicity of the major viral structural proteins in this animal model for influenza infection. The sensitivity of the immune response supports the utility of the guinea pig as a useful animal model of influenza infection and immunization. PMID:20735849

  20. Serological characterization of guinea pigs infected with H3N2 human influenza or immunized with hemagglutinin protein

    Directory of Open Access Journals (Sweden)

    Bushnell Ruth V

    2010-08-01

    Full Text Available Abstract Background Recent and previous studies have shown that guinea pigs can be infected with, and transmit, human influenza viruses. Therefore guinea pig may be a useful animal model for better understanding influenza infection and assessing vaccine strategies. To more fully characterize the model, antibody responses following either infection/re-infection with human influenza A/Wyoming/03/2003 H3N2 or immunization with its homologous recombinant hemagglutinin (HA protein were studied. Results Serological samples were collected and tested for anti-HA immunoglobulin by ELISA, antiviral antibodies by hemagglutination inhibition (HI, and recognition of linear epitopes by peptide scanning (PepScan. Animals inoculated with infectious virus demonstrated pronounced viral replication and subsequent serological conversion. Animals either immunized with the homologous HA antigen or infected, showed a relatively rapid rise in antibody titers to the HA glycoprotein in ELISA assays. Antiviral antibodies, measured by HI assay, were detectable after the second inoculation. PepScan data identified both previously recognized and newly defined linear epitopes. Conclusions Infection and/or recombinant HA immunization of guinea pigs with H3N2 Wyoming influenza virus resulted in a relatively rapid production of viral-specific antibody thus demonstrating the strong immunogenicity of the major viral structural proteins in this animal model for influenza infection. The sensitivity of the immune response supports the utility of the guinea pig as a useful animal model of influenza infection and immunization.

  1. The Encapsulation of Hemagglutinin in Protein Bodies Achieves a Stronger Immune Response in Mice than the Soluble Antigen.

    Science.gov (United States)

    Hofbauer, Anna; Melnik, Stanislav; Tschofen, Marc; Arcalis, Elsa; Phan, Hoang T; Gresch, Ulrike; Lampel, Johannes; Conrad, Udo; Stoger, Eva

    2016-01-01

    Zein is a water-insoluble polymer from maize seeds that has been widely used to produce carrier particles for the delivery of therapeutic molecules. We encapsulated a recombinant model vaccine antigen in newly formed zein bodies in planta by generating a fusion construct comprising the ectodomain of hemagglutinin subtype 5 and the N-terminal part of γ-zein. The chimeric protein was transiently produced in tobacco leaves, and H5-containing protein bodies (PBs) were used to immunize mice. An immune response was achieved in all mice treated with H5-zein, even at low doses. The fusion to zein markedly enhanced the IgG response compared the soluble H5 control, and the effect was similar to a commercial adjuvant. The co-administration of adjuvants with the H5-zein bodies did not enhance the immune response any further, suggesting that the zein portion itself mediates an adjuvant effect. While the zein portion used to induce protein body formation was only weakly immunogenic, our results indicate that zein-induced PBs are promising production and delivery vehicles for subunit vaccines.

  2. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions.

    Directory of Open Access Journals (Sweden)

    Jessica B Hostetler

    2015-12-01

    are natively folded and functional. This screen also identified two novel protein-protein interactions, between P12 and PVX_110945, and between MSP3.10 and MSP7.1, the latter of which was confirmed by surface plasmon resonance.We produced a new library of recombinant full-length P. vivax ectodomains, established that the majority of them contain tertiary structure, and used them to identify predicted and novel protein-protein interactions. As well as identifying new interactions for further biological studies, this library will be useful in identifying P. vivax proteins with vaccine potential, and studying P. vivax malaria pathogenesis and immunity.ClinicalTrials.gov NCT00663546.

  3. Hookworm burden reductions in BALB/c mice vaccinated with recombinant Ancylostoma secreted proteins (ASPs) from Ancylostoma duodenale, Ancylostoma caninum and Necator americanus.

    Science.gov (United States)

    Sen, L; Ghosh, K; Bin, Z; Qiang, S; Thompson, M G; Hawdon, J M; Koski, R A; Shuhua, X; Hotez, P J

    2000-01-06

    Vaccination of mice with alum-precipitated recombinant Ancylostoma secreted protein-1 from the canine hookworm Ancylostoma caninum (Ac-ASP-1) results in protection against A. caninum larval challenge. Vaccine protection is manifested by host reductions in hookworm burden compared to control mice. The goal of this study was to determine whether ASP antigens cloned and expressed from different hookworm species will cross protect against A. caninum larval challenge. Cross-species protection against A. caninum challenge infections was observed with immunizations using recombinant ASP-1 from the human hookworms Ancylostoma duodenale and Necator americanus. However, the degree of protection was proportional to the extent of amino acid sequence homology between the ASP immunogen used for vaccination and the Ac-ASP-1 produced by the challenge larval strain. Vaccine protection was noted to decrease significantly as amino acid sequence homologies diverged 10% or more. It was also determined that Ac-ASP-2, a molecule cloned from A. caninum having 55% amino acid sequence homology to the C-terminus of Ac-ASP-1, did not elicit vaccine protection. These observations were partly reflected in the titer of antibodies that recognize Ac-ASP-1. The studies reported here will help to design immunogenic peptide vaccines based on the sequence divergence of hookworm ASPs.

  4. Recombinant Human Hepatitis B Vaccine Initiating Alopecia Areata: Testing the Hypothesis Using the C3H/HeJ Mouse Model

    Science.gov (United States)

    Sundberg, John P.; Silva, Kathleen A.; Zhang, Weidong; Sundberg, Beth A.; Edwards, Kathryn; King, Lloyd E.; Davis, Robert L.; Black, Steven

    2010-01-01

    Untoward effects of human vaccines suggest that recombinant hepatitis B vaccine may induce alopecia areata (AA) in some patients. Similar untoward immunological effects may also account for AA-like diseases in domestic species. In this study the C3H/HeJ spontaneous adult onset AA mouse model was used to test the role, if any, of recombinant hepatitis B vaccine on the initiation or activation of AA. Initial experiments demonstrated no effect on induction of AA in young adult female C3H/HeJ mice (p =0.5689). By contrast, older females, those at the age when AA first begins to appear in this strain, had a significant increase (p = 0.0264) in the time of onset of AA suggesting that the vaccine may initiate disease in mice predisposed to AA. However, larger vaccine trials, which included diphtheria and tetanus toxoids as additional controls, did not support these initial result findings and suggest that AA associated with vaccination may be within the normal background levels of the given population. PMID:19175564

  5. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle.

    Science.gov (United States)

    Sreenivasa, B P; Mohapatra, J K; Pauszek, S J; Koster, M; Dhanya, V C; Tamil Selvan, R P; Hosamani, M; Saravanan, P; Basagoudanavar, Suresh H; de Los Santos, T; Venkataramanan, R; Rodriguez, L L; Grubman, M J

    2017-05-01

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O, A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutralizing antibody response in indigenous cattle (Bos indicus). Purified Ad5-FMD viruses were inoculated in cattle as monovalent (5×109 pfu/animal) or trivalent (5×109 pfu/animal per serotype) vaccines. Animals vaccinated with monovalent Ad5-FMD vaccines were boosted 63days later with the same dose. After primary immunization, virus neutralization tests (VNT) showed seroconversion in 83, 67 and 33% of animals vaccinated with Ad5-FMD O, A and Asia 1, respectively. Booster immunization elicited seroconversion in all of the animals (100%) in the monovalent groups. When used in a trivalent form, the Ad5-FMD vaccine induced neutralizing antibodies in only 33, 50 and 16% of animals against serotypes O, A and Asia 1, respectively on primo-vaccination, and titers were significantly lower than when the same vectors were used in monovalent form. Neutralizing antibody titers differed by serotype for both Ad5-FMD monovalent and trivalent vaccines, with Asia 1 serotype inducing the lowest titers. Antibody response to Ad5 vector in immunized cattle was also assessed by VNT. It appeared that the vector immunity did not impact the recall responses to expressed FMDV antigens on booster immunization. In summary, the study suggested that the recombinant Ad5-FMD vaccine has a potential use in monovalent form, while its application in multivalent form is not currently encouraging. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A Phase 1 Study of 4 Live, Recombinant Human Cytomegalovirus Towne/Toledo Chimera Vaccines in Cytomegalovirus-Seronegative Men.

    Science.gov (United States)

    Adler, Stuart P; Manganello, Anne-Marie; Lee, Ronzo; McVoy, Michael A; Nixon, Daniel E; Plotkin, Stanley; Mocarski, Edward; Cox, Josephine H; Fast, Patricia E; Nesterenko, Pavlo A; Murray, Susan E; Hill, Ann B; Kemble, George

    2016-11-01

     Human cytomegalovirus (HCMV) infection causes disease in newborns and transplant recipients. A HCMV vaccine (Towne) protects transplant recipients.  The genomes of Towne and the nonattenuated Toledo strain were recombined, yielding 4 Towne/Toledo chimera vaccines. Each of 36 HCMV-seronegative men received 1 subcutaneous dose of 10, 100, or 1000 plaque-forming units (PFU) in cohorts of 3. Safety and immunogenicity were evaluated over 12 weeks after immunization and for 52 weeks for those who seroconverted.  There were no serious local or systemic reactions. No subject had HCMV in urine or saliva. For chimera 3, none of 9 subjects seroconverted. For chimera 1, 1 of 9 seroconverted (the seroconverter received 100 PFU). For chimera 2, 3 subjects seroconverted (1 received 100 PFU, and 2 received 1000 PFU). For chimera 4, 7 subjects seroconverted (1 received 10 PFU, 3 received 100 PFU, and 3 received 1000 PFU). All 11 seroconverters developed low but detectable levels of neutralizing activity. CD4+ T-cell responses were detectable in 1 subject (who received 100 PFU of chimera 4). Seven subjects receiving chimera 2 or 4 had detectable CD8+ T-cell responses to IE1; 3 responded to 1-2 additional antigens.  The Towne/Toledo chimera vaccine candidates were well tolerated and were not excreted. Additional human trials of chimeras 2 and 4 are appropriate.  NCT01195571. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  7. Intrarectal vaccination with recombinant vaccinia virus expressing carcinoembronic antigen induces mucosal and systemic immunity and prevents progression of colorectal cancer.

    Science.gov (United States)

    Kim-Schulze, Seunghee; Kim, Hong Sung; Wainstein, Alberto; Kim, Dae Won; Yang, Wein Cui; Moroziewicz, Dorota; Mong, Phyllus Y; Bereta, Michal; Taback, Bret; Wang, Qin; Kaufman, Howard L

    2008-12-01

    The gastrointestinal mucosa contains an intact immune system that protects the host from pathogens and communicates with the systemic immune system. Absorptive epithelial cells in the mucosa give rise to malignant tumors although the interaction between tumor cells and the mucosal immune system is not well defined. The pathophysiology of colorectal cancer has been elucidated through studies of hereditary syndromes, such as familial adenomatous polyposis, a cancer predisposition syndrome caused by germline mutations in the adenomatous polyposis coli tumor suppressor gene. Patients with FAP develop adenomas and inevitably progress to invasive carcinomas by the age of 40. To better delineate the role of mucosal immunity in colorectal cancer, we evaluated the efficacy of intrarectal recombinant vaccinia virus expressing the human carcinoembryonic Ag (CEA) in a murine FAP model in which mice are predisposed to colorectal cancer and also express human CEA in the gut. Mucosal vaccination reduced the incidence of spontaneous adenomas and completely prevented progression to invasive carcinoma. The therapeutic effects were associated with induction of mucosal CEA-specific IgA Ab titers and CD8(+) CTLs. Mucosal vaccination was also associated with an increase in systemic CEA-specific IgG Ab titers, CD4(+) and CD8(+) T cell responses and resulted in growth inhibition of s.c. implanted CEA-expressing tumors suggesting communication between mucosal and systemic immune compartments. Thus, intrarectal vaccination induces mucosal and systemic antitumor immunity and prevents progression of spontaneous colorectal cancer. These results have implications for the prevention of colorectal cancer in high-risk individuals.

  8. Rational design and efficacy of a multi-epitope recombinant protein vaccine against foot-and-mouth disease virus serotype A in pigs.

    Science.gov (United States)

    Cao, Yimei; Li, Dong; Fu, Yuanfang; Bai, Qifeng; Chen, Yingli; Bai, Xingwen; Jing, Zhizhong; Sun, Pu; Bao, Huifang; Li, Pinghua; Zhang, Jing; Ma, Xueqing; Lu, Zengjun; Liu, Zaixin

    2017-04-01

    Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals, and outbreaks of this disease are often economically catastrophic. Recently, a series of outbreaks of foot-and-mouth disease virus (FMDV) serotype A occurred in many countries, including China. Therefore, it is necessary to develop safe and effective vaccines. We designed multi-epitope recombinant proteins A6, A7, and A8 with different three-dimensional structures and compared their immunogenicity in pigs. The results indicated that A8 conferred the greatest protection against FMDV serotype A challenge in pigs, and A8 was selected as the vaccine antigen. We further tested the adjuvant activity of CpG DNA in conjunction with the A8 vaccine, and the results showed significantly increased antigen-specific IFN-γ responses in pigs co-administered A8 with CpG compared to those vaccinated with A8 alone. A vaccine potency test showed that the CpG-adjuvanted A8 vaccine contained a 10.81 protective dose 50% (PD50) per dose for pigs, suggesting the potential for this vaccine to be used in emergency vaccination campaigns for the prevention of FMDV serotype A infection in pigs. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa.

    Science.gov (United States)

    Loxton, André G; Knaul, Julia K; Grode, Leander; Gutschmidt, Andrea; Meller, Christiane; Eisele, Bernd; Johnstone, Hilary; van der Spuy, Gian; Maertzdorf, Jeroen; Kaufmann, Stefan H E; Hesseling, Anneke C; Walzl, Gerhard; Cotton, Mark F

    2017-02-01

    Tuberculosis is a global threat to which infants are especially vulnerable. Effective vaccines are required to protect infants from this devastating disease. VPM1002, a novel recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine previously shown to be safe and immunogenic in adults, was evaluated for safety in its intended target population, namely, newborn infants in a region with high prevalence of tuberculosis. A total of 48 newborns were vaccinated intradermally with VPM1002 (n = 36) or BCG Danish strain (n = 12) in a phase II open-labeled, randomized trial with a 6-month follow-up period. Clinical and laboratory measures of safety were evaluated during this time. In addition, vaccine-induced immune responses to mycobacteria were analyzed in whole-blood stimulation and proliferation assays. The safety parameters and immunogenicity were comparable in the two groups. Both vaccines induced interleukin-17 (IL-17) responses; however, VPM1002 vaccination led to an increase of CD8+ IL-17+ T cells at the week 16 and month 6 time points. The incidence of abscess formation was lower for VPM1002 than for BCG. We conclude that VPM1002 is a safe, well-tolerated, and immunogenic vaccine in newborn infants, confirming results from previous trials in adults. These results strongly support further evaluation of the safety and efficacy of this vaccination in larger studies. (This study has been registered at ClinicalTrials.gov under registration no. NCT01479972.). Copyright © 2017 Loxton et al.

  10. Vaccination with the Mycoplasma suis recombinant adhesion protein MSG1 elicits a strong immune response but fails to induce protection in pigs.

    Science.gov (United States)

    Hoelzle, Katharina; Doser, Susanne; Ritzmann, Mathias; Heinritzi, Karl; Palzer, Andreas; Elicker, Sabine; Kramer, Manuela; Felder, Kathrin M; Hoelzle, Ludwig E

    2009-08-27

    Mycoplasma suis is the unculturable pathogen of porcine infectious anemia. The study was aimed to determine the immunogenicity and protective efficacy of MSG1, an immunodominant adhesin of M. suis as the first vaccine candidate against M. suis. The results demonstrated that recombinant MSG1 and Escherichia coli transformants expressing MSG1 (E. coli_MSG1) induced a strong humoral and cellular immunity against M. suis. The induced antibodies were found to be functionally active as confirmed by an in vitro adhesion inhibition assay. Both, IgG1 and IgG2 antibodies were induced, but E. coli_MSG1 immune response was characterized by a significantly higher IgG1 antibody production. Both vaccine candidates failed to protect against M. suis challenge. However, E. coli_MSG1 vaccination has a considerable effect on the severity of the disease as shown by higher post-challenge hemoglobin and hematocrit values in comparison to control groups. This indicated that a high IgG1 antibody titer is negatively connected with severity of M. suis-induced anemia. Furthermore, the induction of monospecific anti-MSG1 antibodies by both vaccine candidates clearly allows for the differentiation between infected and vaccinated animals (DIVA principle). Overall, the importance of MSG1 as potential vaccine candidate remains to be established. Future studies will evaluate the conditions (i.e. adjuvant, vaccination scheme, and application route) to optimize the effects of E. coli_MSG1 vaccines.

  11. Design of lipid nanoparticle delivery agents for multivalent display of recombinant Env trimers in HIV vaccination

    OpenAIRE

    Pejawar Gaddy, Sharmila; Kovacs, J.; Barouch, D.; Chen, B.; Irvine, Darrell J.

    2012-01-01

    Background: Immunization strategies that elicit antibodies capable of neutralizing diverse strains of the virus will likely be an important part of a successful vaccine against HIV. The envelope trimer is the only neutralizing target on the virus, and strategies to promote durable, high avidity antibody responses against the native intact trimer structure are lacking. We recently developed chemically-crosslinked lipid nanocapsules as carriers of molecular adjuvants and encapsulated or surf...

  12. The Recombinant Bacille Calmette–Guérin Vaccine VPM1002: Ready for Clinical Efficacy Testing

    Directory of Open Access Journals (Sweden)

    Natalie E. Nieuwenhuizen

    2017-09-01

    Full Text Available The only licensed vaccine against tuberculosis (TB, bacille Calmette–Guérin (BCG, protects against severe extrapulmonary forms of TB but is virtually ineffective against the most prevalent form of the disease, pulmonary TB. BCG was genetically modified at the Max Planck Institute for Infection Biology to improve its immunogenicity by replacing the urease C encoding gene with the listeriolysin encoding gene from Listeria monocytogenes. Listeriolysin perturbates the phagosomal membrane at acidic pH. Urease C is involved in neutralization of the phagosome harboring BCG. Its depletion allows for rapid phagosome acidification and promotes phagolysosome fusion. As a result, BCGΔureC::hly (VPM1002 promotes apoptosis and autophagy and facilitates release of mycobacterial antigens into the cytosol. In preclinical studies, VPM1002 has been far more efficacious and safer than BCG. The vaccine was licensed to Vakzine Projekt Management and later sublicensed to the Serum Institute of India Pvt. Ltd., the largest vaccine producer in the world. The vaccine has passed phase I clinical trials in Germany and South Africa, demonstrating its safety and immunogenicity in young adults. It was also successfully tested in a phase IIa randomized clinical trial in healthy South African newborns and is currently undergoing a phase IIb study in HIV exposed and unexposed newborns. A phase II/III clinical trial will commence in India in 2017 to assess efficacy against recurrence of TB. The target indications for VPM1002 are newborn immunization to prevent TB as well as post-exposure immunization in adults to prevent TB recurrence. In addition, a Phase I trial in non-muscle invasive bladder cancer patients has been completed, and phase II trials are ongoing. This review describes the development of VPM1002 from the drawing board to its clinical assessment.

  13. Cloning, expression and characterization of recombinant exotoxin A-flagellin fusion protein as a new vaccine candidate against Pseudomonas aeruginosa infections.

    Science.gov (United States)

    Tanomand, Asghar; Farajnia, Safar; Najar Peerayeh, Shahin; Majidi, Jafar

    2013-01-01

    Infections due to Pseudomonas aeruginosa are among the leading causes of morbidity and mortality in patients who suffer from impaired immune responses and chronic diseases such as cystic fibrosis. At present, aggressive antibiotic therapy is the only choice for management of P. aeruginosa infections, but emergence of highly resistant strains necessitated the development of novel alternative therapeutics including an effective vaccine. Several P. aeruginosa antigens have been tested for vaccine development, including lipopolysaccharide alone, polysaccharides alginate, extracellular proteins, exotoxin A (exo A) and killed whole cell. However, none of them are currently available clinically. In this research, recombinant exoA-flagellin (fliC) fusion protein as a cocktail antigen was expressed and purified and its antigenic characteristics were evaluated. Expression of recombinant fusion protein by E. coli using pET22b vector resulted in production of exoA-fliC fusion protein in high concentration. Based on Western-blotting results, recombinant fusion protein showed a good antigenic interaction with sera from patients with various P. aeruginosa infections. These results suggested that recombinant exoA-fliC fusion protein can be produced in the laboratory, and tested as a candidate vaccine in P. aeruginosa infections.

  14. Flagellin FljB as an adjuvant to the recombinant adenovirus rabies glycoprotein vaccine increases immune responses against rabies in mice.

    Science.gov (United States)

    Xiao, Xingxing; Zhang, Yun; Wei, Qiaolin; Yin, Xiangping

    2017-09-01

    Rabies virus (RABV) causes an acute progressive viral encephalitis. Although currently licensed vaccines have an excellent safety and efficacy record, the development of a safer and more cost-effective vaccine is still being sought. An E1-deleted, replication-defective human adenovirus type 5 (HAd5) vector expressing RABV glycoprotein (HAd5-G) is thought to be a promising candidate vaccine for immune prophylaxis against rabies. Salmonella enterica serovar Typhimurium (S. Typhimurium) flagellin is a well-known immune adjuvant. In this work, we have researched the adjuvant effect of flagellins (FljB and FliC) for HAd5 in mice for the first time. We found that the recombinant HAd5 expressing RABV glycoprotein and FljB (HAd5-GB), if administered intramuscularly, but not orally, could induce stronger immune responses and provide better protection against rabies than HAd5-G or the recombinant HAd5 expressing glycoprotein and FliC (HAd5-GC). These results suggest that the recombinant HAd5-GB has potential for development as a promising rabies vaccine.

  15. PRODUCTION OF HYBRID RECOMBINANT PROTEIN Flu-Chim, CONTAINING INFLUENZA VIRUSES A AND B MAJOR EPITOPES

    Directory of Open Access Journals (Sweden)

    I. V. Dukhovlinov

    2017-01-01

    Full Text Available The influenza virus is highly contagious diseases of people, birds and mammals. Approximately 250 000– 500 000 deaths are caused by influenza epidemics worldwide yearly, and the death number may be up to millions in a possible influenza pandemic. Vaccination is the most cost-effective way to reduce the considerable disease burden of seasonal influenza. Although seasonal influenza vaccines are effective, their performance in the elderly and immunocompromised individuals would benefit from improvement. Major problems related to the development and production of pandemic influenza vaccines are response time and production capacity as well as vaccine efficacy and safety. Reverse genetics techniques can speed up the generation of seed viruses and new mathematical modelling methods improve vaccine strain selection. Using vaccines based on recombinant proteins, we avoid the risks associated with the introduction of the virus into the body, even inactivated. In this paper, we have got a highly purified recombinant fusion protein composed of fragments of the hemagglutinin of influenza viruses A and B. As adjuvant we used components of flagellin. We used the most immunogenic and conserved areas of hemagglutinin H1, H3, H5 and B, which cause the formation of specific antibodies which can cross-react with homologous epitopes among the various strains of influenza A and B. Vaccine efficacy is increased by using multiple epitopes of various proteins. The aim of this study was to clone and express the hybrid recombinant protein Flu-Chim, containing immunogenic epitopes of influenza A/H1N1, A/H3N2, A/H5N1 and B fused with fragments of flagellin in Escherichia coli expression system and its subsequent purification. During the study was created high-yield E. coli strain, which produces the recombinant protein Flu-Chim, selected the optimal protocol of induction of the gene encoding the protein. The protein was purified using metal affinity chromatography. The

  16. Towards the conservation of endangered avian species: a recombinant West Nile Virus vaccine results in increased humoral and cellular immune responses in Japanese Quail (Coturnix japonica.

    Directory of Open Access Journals (Sweden)

    Jay A Young

    Full Text Available West Nile Virus (WNV arrived in North America in 1999 and is now endemic. Many families of birds, especially corvids, are highly susceptible to WNV and infection often results in fatality. Avian species susceptible to WNV infection also include endangered species, such as the Greater Sage-Grouse (Centrocercus uropbasianuts and the Eastern Loggerhead Shrike (Lanius ludovicianus migrans. The virus has been shown to contribute towards the likelihood of their extinction. Although a clear and present threat, there exists no avian WNV vaccine available to combat this lethal menace. As a first step in establishing an avian model for testing candidate WNV vaccines, avian antibody based reagents were assessed for cross-reactivity with Japanese quail (Coturnix japonica T cell markers CD4 and CD8; the most reactive were found to be the anti-duck CD8 antibody, clone Du-CD8-1, and the anti-chicken/turkey CD4 antibody, clone CT4. These reagents were then used to assess vaccine performance as well as to establish T cell populations in quail, with a novel population of CD4/CD8 double positive T cells being identified in Japanese quail. Concurrently, non-replicating recombinant adenoviruses, expressing either the WNV envelope or NS3 'genes' were constructed and assessed for effectiveness as avian vaccines. Japanese Quail were selected for testing the vaccines, as they provide an avian model that parallels the population diversity of bird species in the wild. Both the level of WNV specific antibodies and the number of T cells in vaccinated birds were increased compared to unvaccinated controls. The results indicate the vaccines to be effective in increasing both humoral and cellular immune responses. These recombinant vaccines therefore may find utility as tools to protect and maintain domestic and wild avian populations. Their implementation may also arrest the progression towards extinction of endangered avian species and reduce the viral reservoir that

  17. Vaccination with a Streptococcus pneumoniae trivalent recombinant PcpA, PhtD and PlyD1 protein vaccine candidate protects against lethal pneumonia in an infant murine model.

    Science.gov (United States)

    Verhoeven, David; Xu, Qingfu; Pichichero, Michael E

    2014-05-30

    Streptococcus pneumoniae infections continue to cause significant worldwide morbidity and mortality despite the availability of efficacious serotype-dependent vaccines. The need to incorporate emergent strains expressing additional serotypes into pneumococcal polysaccharide conjugate vaccines has led to an identified need for a pneumococcal protein-based vaccine effective against a broad scope of serotypes. A vaccine consisting of several conserved proteins with different functions during pathogenesis would be preferred. Here, we investigated the efficacy of a trivalent recombinant protein vaccine containing pneumococcal choline-binding protein A (PcpA), pneumococcal histidine triad D (PhtD), and genetically detoxified pneumolysin (PlyD1) in an infant mouse model. We found the trivalent vaccine conferred protection from lethal pneumonia challenges using serotypes 6A and 3. The observed protection with trivalent PcpA, PhtD, and PlyD1 vaccine in infant mice supports the ongoing study of this candidate vaccine in human infant clinical trials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. An H10N8 influenza virus vaccine strain and mouse challenge model based on the human isolate A/Jiangxi-Donghu/346/13.

    Science.gov (United States)

    Wohlbold, Teddy John; Hirsh, Ariana; Krammer, Florian

    2015-02-25

    Three human cases of H10N8 viruses were reported in China in late 2013 and early 2014, two of which were fatal. This was the first time the H10N8 subtype has been detected in humans and no vaccine candidates or antibody therapy has been developed for these viruses so far. We developed an H10N8 vaccine candidate virus based on A/Jiangxi-Donghu/346/13 that can also be used in a murine challenge model for vaccine and monoclonal antibody research. The vaccine virus is a 6:2 re-assortant virus expressing the surface glycoproteins of A/Jiangxi-Donghu/346/13 on an A/Puerto Rico/8/34 backbone. Vaccination with inactivated challenge virus or recombinant hemagglutinin or neuraminidase derived from this strain protected mice from viral challenge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Safety Overview of a Recombinant Live-Attenuated Tetravalent Dengue Vaccine: Pooled Analysis of Data from 18 Clinical Trials.

    Directory of Open Access Journals (Sweden)

    Sophia Gailhardou

    2016-07-01

    Full Text Available A recombinant live attenuated tetravalent dengue vaccine (CYD-TDV has been shown to be efficacious in preventing virologically-confirmed dengue disease, severe dengue disease and dengue hospitalization in children aged 2-16 years in Asia and Latin America. We analyzed pooled safety data from 18 phase I, II and III clinical trials in which the dengue vaccine was administered to participants aged 2-60 years, including long-term safety follow-up in three efficacy trials. The participants were analyzed according to their age at enrollment. The percentage of participants aged 2-60 years reporting ≥1 solicited injection-site or systemic reactions was slightly higher in the CYD-TDV group than in the placebo group. The most common solicited injection-site reactions were pain. Headache and malaise were the most common solicited systemic reactions. In both groups 0.3% of participants discontinued for safety reasons. The most common unsolicited adverse events were injection-site reactions, gastrointestinal disorders, and infections. Reactogenicity did not increase with successive doses of CYD-TDV. The frequency and nature of SAEs occurring within 28 days of any dose were similar in the CYD-TDV and placebo groups and were common medical conditions that could be expected as a function of age. Baseline dengue virus serostatus did not appear to influence the safety profile. No vaccine-related anaphylactic reactions, neurotropic events or viscerotropic events were reported. In year 3 after dose 1, an imbalance for dengue hospitalization, including for severe dengue, observed in participants aged <9 years in the CYD-TDV group compared with the placebo group was not observed for participants aged ≥9 years. In Year 4, this imbalance in participants aged <9 years was less marked, giving an overall lower risk of dengue hospitalization or severe dengue from dose 1 to Year 4 in the CYD-TDV group. These results have contributed to the definition of the target

  20. Safety Overview of a Recombinant Live-Attenuated Tetravalent Dengue Vaccine: Pooled Analysis of Data from 18 Clinical Trials.

    Science.gov (United States)

    Gailhardou, Sophia; Skipetrova, Anna; Dayan, Gustavo H; Jezorwski, John; Saville, Melanie; Van der Vliet, Diane; Wartel, T Anh

    2016-07-01

    A recombinant live attenuated tetravalent dengue vaccine (CYD-TDV) has been shown to be efficacious in preventing virologically-confirmed dengue disease, severe dengue disease and dengue hospitalization in children aged 2-16 years in Asia and Latin America. We analyzed pooled safety data from 18 phase I, II and III clinical trials in which the dengue vaccine was administered to participants aged 2-60 years, including long-term safety follow-up in three efficacy trials. The participants were analyzed according to their age at enrollment. The percentage of participants aged 2-60 years reporting ≥1 solicited injection-site or systemic reactions was slightly higher in the CYD-TDV group than in the placebo group. The most common solicited injection-site reactions were pain. Headache and malaise were the most common solicited systemic reactions. In both groups 0.3% of participants discontinued for safety reasons. The most common unsolicited adverse events were injection-site reactions, gastrointestinal disorders, and infections. Reactogenicity did not increase with successive doses of CYD-TDV. The frequency and nature of SAEs occurring within 28 days of any dose were similar in the CYD-TDV and placebo groups and were common medical conditions that could be expected as a function of age. Baseline dengue virus serostatus did not appear to influence the safety profile. No vaccine-related anaphylactic reactions, neurotropic events or viscerotropic events were reported. In year 3 after dose 1, an imbalance for dengue hospitalization, including for severe dengue, observed in participants aged dengue hospitalization or severe dengue from dose 1 to Year 4 in the CYD-TDV group. These results have contributed to the definition of the target population for vaccination (≥9 years old) for which CYD-TDV has a satisfactory safety profile. Long-term safety will continue to be monitored in the ongoing follow-up of efficacy trials. Safety and effectiveness in real-life settings will

  1. Immunopotentiation of trivalent influenza vaccine when given with VAX102, a recombinant influenza M2e vaccine fused to the TLR5 ligand flagellin.

    Directory of Open Access Journals (Sweden)

    H Keipp Talbot

    Full Text Available BACKGROUND: Currently controversy exists about the immunogenicity of seasonal trivalent influenza vaccine in certain populations, especially the elderly. STF2.4×M2e (VAX102 is a recombinant fusion protein that links four copies of the ectodomain of influenza virus matrix protein 2 (M2e antigen to Salmonella typhimurium flagellin, a TLR5 ligand. The objectives of this study were to assess the feasibility of giving VAX102 and TIV in combination in an effort to achieve greater immunogenicity and to provide cross-protection. METHODOLOGY/PRINCIPAL FINDINGS: Eighty healthy subjects, 18-49 years old, were enrolled in May and June 2009 in a double-blind, randomized, controlled trial at two clinical sites. Subjects were randomized to receive either TIV + VAX102 or TIV + placebo. Both arms tolerated the vaccines. Pain at the injection site was more severe with TIV + VAX102. Two weeks after immunization the HAI responses to the H1 and H3 antigens of TIV were higher in those that received TIV + VAX102 than in TIV + placebo (309 vs 200 and 269 vs 185, respectively, although statistically non-significant. There was no difference in the HAI of the B antigen. In the TIV + VAX102 arm, the geometric mean M2e antibody concentration was 0.5 µg/ml and 73% seroconverted. CONCLUSIONS/SIGNIFICANCE: The combination of TIV + VAX102 has the potential to increase the immune response to the influenza A components of TIV and to provide M2e immunity which may protect against influenza A strains not contained in seasonal TIV. TRIAL REGISTRATION: ClinicalTrials.gov NCT00921973.

  2. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis

    Science.gov (United States)

    Shahbazi, Mehdi; Zahedifard, Farnaz; Taheri, Tahereh; Taslimi, Yasaman; Jamshidi, Shahram; Shirian, Sadegh; Mahdavi, Niousha; Hassankhani, Mehdi; Daneshbod, Yahya; Zarkesh-Esfahani, Sayyed Hamid; Papadopoulou, Barbara; Rafati, Sima

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL. PMID:26197085

  3. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis.

    Science.gov (United States)

    Shahbazi, Mehdi; Zahedifard, Farnaz; Taheri, Tahereh; Taslimi, Yasaman; Jamshidi, Shahram; Shirian, Sadegh; Mahdavi, Niousha; Hassankhani, Mehdi; Daneshbod, Yahya; Zarkesh-Esfahani, Sayyed Hamid; Papadopoulou, Barbara; Rafati, Sima

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.

  4. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Mehdi Shahbazi

    Full Text Available Canine Visceral Leishmaniasis (CVL is a major veterinary and public health problem caused by Leishmania infantum (L. infantum in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.

  5. Effectiveness and economic analysis of the whole cell/recombinant B subunit (WC/rbs inactivated oral cholera vaccine in the prevention of traveller's diarrhoea

    Directory of Open Access Journals (Sweden)

    Diez-Diaz Rosa

    2009-05-01

    Full Text Available Abstract Background Nowadays there is a debate about the indication of the oral whole-cell/recombinant B-subunit cholera vaccine (WC/rBS in traveller's diarrhoea. However, a cost-benefit analysis based on real data has not been published. Methods A cost-effectiveness and cost-benefit study of the oral cholera vaccine (WC/rBS, Dukoral® for the prevention of traveller's diarrhoea (TD was performed in subjects travelling to cholera risk areas. The effectiveness of WC/rBS vaccine in the prevention of TD was analyzed in 362 travellers attending two International Vaccination Centres in Spain between May and September 2005. Results The overall vaccine efficacy against TD was 42,6%. Direct healthcare-related costs as well as indirect costs (lost vacation days subsequent to the disease were considered. Preventive vaccination against TD resulted in a mean saving of 79.26 € per traveller. Conclusion According to the cost-benefit analysis performed, the recommendation for WC/rBS vaccination in subjects travelling to zones at risk of TD is beneficial for the traveller, regardless of trip duration and visited continent.

  6. L1R, A27L, A33R and B5R vaccinia virus genes expressed by fowlpox recombinants as putative novel orthopoxvirus vaccines.

    Science.gov (United States)

    Pacchioni, Sole Maria; Bissa, Massimiliano; Zanotto, Carlo; Morghen, Carlo De Giuli; Illiano, Elena; Radaelli, Antonia

    2013-04-11

    The traditional smallpox vaccine, administered by scarification, was discontinued in the general population from 1980, because of the absence of new smallpox cases. However, the development of an effective prophylactic vaccine against smallpox is still necessary, to protect from the threat of deliberate release of the variola virus for bioterrorism and from new zoonotic infections, and to improve the safety of the traditional vaccine. Preventive vaccination still remains the most effective control and new vectors have been developed to generate recombinant vaccines against smallpox that induce the same immunogenicity as the traditional one. As protective antibodies are mainly directed against the surface proteins of the two infectious forms of vaccinia, the intracellular mature virions and the extracellular virions, combined proteins from these viral forms can be used to better elicit a complete and protective immunity. Four novel viral recombinants were constructed based on the fowlpox genetic background, which independently express the vaccinia virus L1 and A27 proteins present on the mature virions, and the A33 and B5 proteins present on the extracellular virions. The correct expression of the transgenes was determined by RT-PCR, Western blotting, and immunofluorescence. Using immunoprecipitation and Western blotting, the ability of the proteins expressed by the four novel FPL1R, FPA27L, FPA33R and FPB5R recombinants to be recognized by VV-specific hyperimmune mouse sera was demonstrated. By neutralisation assays, recombinant virus particles released by infected chick embryo fibroblasts were shown not be recognised by hyperimmune sera. This thus demonstrates that the L1R, A27L, A33R and B5R gene products are not inserted into the new viral progeny. Fowlpox virus replicates only in avian species, but it is permissive for entry and transgene expression in mammalian cells, while being immunologically non-cross-reactive with vaccinia virus. These recombinants might

  7. Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients.

    Science.gov (United States)

    Odunsi, Kunle; Matsuzaki, Junko; Karbach, Julia; Neumann, Antje; Mhawech-Fauceglia, Paulette; Miller, Austin; Beck, Amy; Morrison, Carl D; Ritter, Gerd; Godoy, Heidi; Lele, Shashikant; duPont, Nefertiti; Edwards, Robert; Shrikant, Protul; Old, Lloyd J; Gnjatic, Sacha; Jäger, Elke

    2012-04-10

    Recombinant poxviruses (vaccinia and fowlpox) expressing tumor-associated antigens are currently being evaluated in clinical trials as cancer vaccines to induce tumor-specific immune responses that will improve clinical outcome. To test whether a diversified prime and boost regimen targeting NY-ESO-1 will result in clinical benefit, we conducted two parallel phase II clinical trials of recombinant vaccinia-NY-ESO-1 (rV-NY-ESO-1), followed by booster vaccinations with recombinant fowlpox-NY-ESO-1 (rF-NY-ESO-1) in 25 melanoma and 22 epithelial ovarian cancer (EOC) patients with advanced disease who were at high risk for recurrence/progression. Integrated NY-ESO-1-specific antibody and CD4(+) and CD8(+) T cells were induced in a high proportion of melanoma and EOC patients. In melanoma patients, objective response rate [complete and partial response (CR+PR)] was 14%, mixed response was 5%, and disease stabilization was 52%, amounting to a clinical benefit rate (CBR) of 72% in melanoma patients. The median PFS in the melanoma patients was 9 mo (range, 0-84 mo) and the median OS was 48 mo (range, 3-106 mo). In EOC patients, the median PFS was 21 mo (95% CI, 16-29 mo), and median OS was 48 mo (CI, not estimable). CD8(+) T cells derived from vaccinated patients were shown to lyse NY-ESO-1-expressing tumor targets. These data provide preliminary evidence of clinically meaningful benefit for diversified prime and boost recombinant pox-viral-based vaccines in melanoma and ovarian cancer and support further evaluation of this approach in these patient populations.

  8. High yield expression in a recombinant E. coli of a codon optimized chicken anemia virus capsid protein VP1 useful for vaccine development

    OpenAIRE

    Lee, Meng-Shiou; Hseu, You-Cheng; Lai, Guan-Hua; Chang, Wen-Te; Chen, Hsi-Jien; Huang, Chi-Hung; Lee, Meng-Shiunn; Wang, Min-Ying; Kao, Jung-Yie; You, Bang-Jau; Lin, Wen- Hsin; Lien, Yi-Yang; Lin, Ming-Kuem

    2011-01-01

    Abstract Background Chicken anemia virus (CAV), the causative agent chicken anemia, is the only member of the genus Gyrovirus of the Circoviridae family. CAV is an immune suppressive virus and causes anemia, lymph organ atrophy and immunodeficiency. The production and biochemical characterization of VP1 protein and its use in a subunit vaccine or as part of a diagnostic kit would be useful to CAV infection prevention. Results Significantly increased expression of the recombinant full-length V...

  9. Efficacy of Recombinant HVT-IBD Vaccines Administered to Broiler Chicks from a Single Breeder Flock at 30 and 60 Weeks of Age.

    Science.gov (United States)

    Gelb, Jack; Jackwood, Daral J; Brannick, Erin M; Ladman, Brian S

    2016-09-01

    The efficacy of commercially available recombinant herpesvirus of turkeys-infectious bursal disease (rHVT-IBD) virus vaccines was studied in broiler chickens derived from an IBDV-vaccinated breeder flock at 30 wk of age (Trial 1) and 60 wk of age (Trial 2). In parallel, specific-pathogen-free (SPF) white leghorn chickens were used to evaluate vaccine efficacy to control for the effects of maternally derived antibodies (MDA) associated with the broiler chickens. Broilers and SPF leghorns were vaccinated subcutaneously in the neck at 1 day of age with Vaxxitek® HVT+IBD or Vectormune® HVT-IBD vaccines and were placed in isolators. On 10, 14, 18, 22, and 26 days postvaccination (DPV), vaccinated and nonvaccinated broilers and SPF leghorns were bled prior to challenge via the oral-nasal route with infectious bursal disease (IBD) reference strains ST-C, Delaware variant E (Del E), or contemporary field isolates DMV/5038/07 or FF6. Microscopic lesion assessment of the bursa was useful for assessing IBDV challenge in both rHVT-IBD-vaccinated broiler and SPF leghorn chickens. In general, rHVT-IBD vaccines induced greater protection as the time between vaccination and challenge increased. Based on incidence of microscopic lesions (IML) of bursa tissue, Vaxxitek HVT+IBD vaccination of SPF leghorns induced protection by 18 DPV and continued to protect 22 DPV and 26 DPV in Trials 1 and 2. Vectormune HVT-IBD vaccine induced protection of SPF leghorns by 18 or 22 DPV in Trial 1, depending upon the IBDV challenge strain. However, the onset of protection was delayed until 22 or 26 DPV in Trial 2. With either commercial vaccine, rHVT-IBD vaccination of broiler chickens was not as effective as was observed in SPF leghorns, based on IML of bursa tissue. However, Vaxxitek HVT+IBD vaccination protected broilers following challenge with ST-C in both Trial 1 (30-wk-old breeder progeny) and Trial 2 (60-wk-old breeder progeny). Partial protection against FF6 (Trial 1) and DMV/5038

  10. The use of an in vitro microneutralization assay to evaluate the potential of recombinant VP5 protein as an antigen for vaccinating against Grass carp reovirus

    Directory of Open Access Journals (Sweden)

    Xu Dan

    2011-03-01

    Full Text Available Abstract Background Grass carp reovirus (GCRV is the causative pathogen of grass carp hemorrhagic disease, one of the major diseases damaging grass carp Ctenopharyngon idellus breeding industry in China. Prevention and control of the disease is impeded largely due to the lack of research in economic subunit vaccine development. This study aimed to evaluate the potential of viral outer shell protein VP5 as subunit vaccine. Methods The vp5 gene was isolated from the viral genome through RT-PCR and genetically engineered to express the recombinant VP5 protein in E coli. The viral origin of the recombinant protein was confirmed by Western blot analysis with a monoclonal antibody against viral VP5 protein. Polyclonal antibody against the recombinant VP5 protein was prepared from mice. A microneutralization assay was developed to test its neutralizing ability against GCRV infection in cell culture. Results The GST-VP5 fusion protein (rVP5 was produced from E. Coli with expected molecular weight of 90 kDa. The protein was purified and employed to prepare anti-VP5 polyclonal antibody from mice. The anti-VP5 antibody was found to neutralize GCRV through in vitro microneutralization assay and viral progeny quantification analysis. Conclusions The present study showed that the viral VP5 protein was involved in viral infection and bacterially-expressed VP5 could be suitable for developing subunit vaccine for the control of GCRV infection.

  11. Expression and immunogenic analysis of recombinant polypeptides derived from capsid protein VP1 for developing subunit vaccine material against hepatitis A virus.

    Science.gov (United States)

    Jang, Kyoung Ok; Park, Jong-Hwa; Lee, Hyun Ho; Chung, Dae Kyun; Kim, Wonyong; Chung, In Sik

    2014-08-01

    Three recombinant polypeptides, VP1-His, VP1-3N-His, and 3D2-His, were produced by Escherichia coli expression system. Recombinant VP1-His, VP1-3N-His, and 3D2-His were expressed as bands with molecular weights of 32, 38, and 30 kDa, respectively. These were purified by affinity chromatography using Ni-NTA Fast-flow resin and/or ion-exchange chromatography using DEAE-Sepharose Fast-flow resin. Intraperitoneal immunizations of recombinant polypeptides successfully elicited the productions of VP1-His, VP1-3N-His, and 3D2-His specific IgG antibodies (IgG subclass distribution of IgG1>IgG2a>IgG2b>IgG3) in sera and induced the secretions of cytokines IFN-γ and IL-6 in spleen cells. Sera from recombinant VP1-His-, VP1-3N-His-, and 3D2-His-immunized mice neutralized the propagation of HAV. The highest neutralizing activity was shown in sera from recombinant VP1-3N-His-immunized mice. These results suggest that recombinant VP1-3N-His can be a useful source for developing hepatitis A virus (HAV) subunit vaccine candidates. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Protective effect of a recombinant VHSV-G vaccine using poly(I:C) loaded nanoparticles as an adjuvant in zebrafish (Danio rerio) infection model.

    Science.gov (United States)

    Kavaliauskis, Arturas; Arnemo, Marianne; Speth, Martin; Lagos, Leidy; Rishovd, Anne-Lise; Estepa, Amparo; Griffiths, Gareth; Gjøen, Tor

    2016-08-01

    There is a constant need to increase the efficiency of vaccines in the aquaculture industry. Although several nano-based vaccine formulations have been reported, to the best of our knowledge so far only one of them have been implemented in the industry. Here we report on chitosan-poly(I:C) nanoparticles (NPs) that could be used as a non-specific adjuvant in antiviral vaccines in aquaculture. We have characterized the physical parameters of the NPs, studied the in vivo and in vitro bio-distribution of fluorescent NPs and verified NP uptake by zebrafish leucocytes. We used the zebrafish model to test the protective efficiency of the recombinant glycoprotein G (rgpG) of VHSV compared to inactivated whole virus (iV) against VHSV using NPs as an adjuvant in both formulations. In parallel we tested free poly(I:C) and rgpG (pICrgpG), and free chitosan and rgpG (CSrgpG) vaccine formulations. While the iV group (with NP adjuvant) provided the highest overall survival, all vaccine formulations with poly(I:C) provided a significant protection against VHSV; possibly through an early induction of an anti-viral state. Our results suggest that chitosan-poly(I:C) NPs are a promising adjuvant candidate for future vaccine formulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A recombinant vesicular stomatitis virus-based Lassa fever vaccine protects guinea pigs and macaques against challenge with geographically and genetically distinct Lassa viruses.

    Science.gov (United States)

    Safronetz, David; Mire, Chad; Rosenke, Kyle; Feldmann, Friederike; Haddock, Elaine; Geisbert, Thomas; Feldmann, Heinz

    2015-04-01

    Lassa virus (LASV) is endemic in several West African countries and is the etiological agent of Lassa fever. Despite the high annual incidence and significant morbidity and mortality rates, currently there are no approved vaccines to prevent infection or disease in humans. Genetically, LASV demonstrates a high degree of diversity that correlates with geographic distribution. The genetic heterogeneity observed between geographically distinct viruses raises concerns over the potential efficacy of a "universal" LASV vaccine. To date, several experimental LASV vaccines have been developed; however, few have been evaluated against challenge with various genetically unique Lassa virus isolates in relevant animal models. Here we demonstrate that a single, prophylactic immunization with a recombinant vesicular stomatitis virus (VSV) expressing the glycoproteins of LASV strain Josiah from Sierra Leone protects strain 13 guinea pigs from infection / disease following challenge with LASV isolates originating from Liberia, Mali and Nigeria. Similarly, the VSV-based LASV vaccine yields complete protection against a lethal challenge with the Liberian LASV isolate in the gold-standard macaque model of Lassa fever. Our results demonstrate the VSV-based LASV vaccine is capable of preventing morbidity and mortality associated with non-homologous LASV challenge in two animal models of Lassa fever. Additionally, this work highlights the need for the further development of disease models for geographical distinct LASV strains, particularly those from Nigeria, in order to comprehensively evaluate potential vaccines and therapies against this prominent agent of viral hemorrhagic fever.

  14. A recombinant vesicular stomatitis virus-based Lassa fever vaccine protects guinea pigs and macaques against challenge with geographically and genetically distinct Lassa viruses.

    Directory of Open Access Journals (Sweden)

    David Safronetz

    2015-04-01

    Full Text Available Lassa virus (LASV is endemic in several West African countries and is the etiological agent of Lassa fever. Despite the high annual incidence and significant morbidity and mortality rates, currently there are no approved vaccines to prevent infection or disease in humans. Genetically, LASV demonstrates a high degree of diversity that correlates with geographic distribution. The genetic heterogeneity observed between geographically distinct viruses raises concerns over the potential efficacy of a "universal" LASV vaccine. To date, several experimental LASV vaccines have been developed; however, few have been evaluated against challenge with various genetically unique Lassa virus isolates in relevant animal models.Here we demonstrate that a single, prophylactic immunization with a recombinant vesicular stomatitis virus (VSV expressing the glycoproteins of LASV strain Josiah from Sierra Leone protects strain 13 guinea pigs from infection / disease following challenge with LASV isolates originating from Liberia, Mali and Nigeria. Similarly, the VSV-based LASV vaccine yields complete protection against a lethal challenge with the Liberian LASV isolate in the gold-standard macaque model of Lassa fever.Our results demonstrate the VSV-based LASV vaccine is capable of preventing morbidity and mortality associated with non-homologous LASV challenge in two animal models of Lassa fever. Additionally, this work highlights the need for the further development of disease models for geographical distinct LASV strains, particularly those from Nigeria, in order to comprehensively evaluate potential vaccines and therapies against this prominent agent of viral hemorrhagic fever.

  15. Immunologic memory response induced by a meningococcal serogroup C conjugate vaccine using the P64k recombinant protein as carrier.

    Science.gov (United States)

    Guirola, María; Urquiza, Dioslaida; Alvarez, Anabel; Cannan-Haden, Leonardo; Caballero, Evelin; Guillén, Gerardo

    2006-03-01

    In this study, we used an adoptive lymphocyte transfer experiment to evaluate the ability of the P64k recombinant protein to recruit T-helper activity and induce immunologic memory response to the polysaccharide moiety in a meningococcal serogroup C conjugate vaccine. Adoptive transfer of splenocytes from mice immunized with the glycoconjugate conferred antipolysaccharide immunologic memory to naive recipient mice. The observed anamnestic immune response was characterized by more rapid kinetics, isotype switching from IgM to IgG and higher antipolysaccharide antibody titers compared with those reached in groups transferred with splenocytes from plain polysaccharide or phosphate-immunized mice. The memory response generated was also long lasting. Sera from mice transferred with cells from conjugate-immunized mice were the only protective in the infant rat passive protection assay, and also showed higher bactericidal titers. We demonstrated that priming the mice immune system with the glycoconjugate using the P64k protein as carrier induced a memory response to the polysaccharide, promoting a switch of the T-cell-independent response to a T-cell dependent one.

  16. A Recombinant Respiratory Syncytial Virus Vaccine Candidate Attenuated by a Low-Fusion F Protein Is Immunogenic and Protective against Challenge in Cotton Rats.

    Science.gov (United States)

    Rostad, Christina A; Stobart, Christopher C; Gilbert, Brian E; Pickles, Ray J; Hotard, Anne L; Meng, Jia; Blanco, Jorge C G; Moin, Syed M; Graham, Barney S; Piedra, Pedro A; Moore, Martin L

    2016-08-15

    Although respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, a safe and effective vaccine is not yet available. Live-attenuated vaccines (LAVs) are the most advanced vaccine candidates in RSV-naive infants. However, designing an LAV with appropriate attenuation yet sufficient immunogenicity has proven challenging. In this study, we implemented reverse genetics to address these obstacles with a multifaceted LAV design that combined the codon deoptimization of genes for nonstructural proteins NS1 and NS2 (dNS), deletion of the small hydrophobic protein (ΔSH) gene, and replacement of the wild-type fusion (F) protein gene with a low-fusion RSV subgroup B F consensus sequence of the Buenos Aires clade (BAF). This vaccine candidate, RSV-A2-dNS-ΔSH-BAF (DB1), was attenuated in two models of primary human airway epithelial cells and in the upper and lower airways of cotton rats. DB1 was also highly immunogenic in cotton rats and elicited broadly neutralizing antibodies against a diverse panel of recombinant RSV strains. When vaccinated cotton rats were challenged with wild-type RSV A, DB1 reduced viral titers in the upper and lower airways by 3.8 log10 total PFU and 2.7 log10 PFU/g of tissue, respectively, compared to those in unvaccinated animals (P < 0.0001). DB1 was thus attenuated, highly immunogenic, and protective against RSV challenge in cotton rats. DB1 is the first RSV LAV to incorporate a low-fusion F protein as a strategy to attenuate viral replication and preserve immunogenicity. RSV is a leading cause of infant hospitalizations and deaths. The development of an effective vaccine for this high-risk population is therefore a public health priority. Although live-attenuated vaccines have been safely administered to RSV-naive infants, strategies to balance vaccine attenuation with immunogenicity have been elusive. In this study, we introduced a novel strategy to attenuate a recombinant RSV vaccine by

  17. Interaction of Bordetella pertussis filamentous hemagglutinin with human TLR2: identification of the TLR2-binding domain

    NARCIS (Netherlands)

    Asgarian-Omran, Hossein; Amirzargar, Ali Akbar; Zeerleder, Sacha; Mahdavi, Marzieh; van Mierlo, Gerard; Solati, Shabnam; Jeddi-Tehrani, Mahmood; Rabbani, Hodjatallah; Aarden, Leucien; Shokri, Fazel

    2015-01-01

    Filamentous hemagglutinin (FHA) is a major adhesion and virulence factor of Bordetella pertussis and also a main component of acellular pertussis vaccines. Interaction of FHA with different receptors on human epithelial and immune cells facilitates entrance and colonization of bacteria as well as

  18. Oral vaccination with a recombinant Salmonella vaccine vector provokes systemic HIV-1 subtype C Gag-specific CD4+ Th1 and Th2 cell immune responses in mice

    Directory of Open Access Journals (Sweden)

    Williamson Anna-Lise

    2009-06-01

    Full Text Available Abstract Background Recombinant Salmonella vaccine vectors may potentially be used to induce specific CD4+ T cell responses against foreign viral antigens. Such immune responses are required features of vaccines against pathogens such as human immunodeficiency virus type 1 (HIV-1. The aim of this study was to investigate the induction of systemic HIV-1-specific CD4+ T helper (Th responses in mice after oral immunization with a live attenuated Salmonella vaccine vector that expressed HIV-1 subtype C Gag. Groups of BALB/c mice were vaccinated orally three times (4 weeks apart with this recombinant Salmonella. At sacrifice, 28 days after the last immunization, systemic CD4+ Th1 and Th2 cytokine responses were evaluated by enzyme-linked immunospot assay and cytometric bead array. HIV-1 Gag-specific IgG1 and IgG2a humoral responses in the serum were determined by enzyme-linked immunosorbent assay. Results Mice vaccinated with the recombinant Salmonella elicited both HIV-1-specific Th1 (interferon-gamma (IFN-γ and tumour necrosis factor-alpha (TNF-α and Th2 (interleukin-4 (IL-4 and interleukin-5 (IL-5 cytokine responses. The vaccine induced 70 (IFN-γ spot-forming units (SFUs/10e6 splenocytes and 238 IL-4 SFUs/10e6 splenocytes. Splenocytes from vaccinated mice also produced high levels of Th1 and Th2 cytokines upon stimulation with a Gag CD4 peptide. The levels of IFN-γ, TNF-α, IL-4 and IL-5 were 7.5-, 29.1-, 26.2- and 89.3-fold above the background, respectively. Both HIV-1 Gag-specific IgG1 and IgG2a antibodies were detected in the sera of vaccinated mice. Conclusion The study highlights the potential of orally-delivered attenuated Salmonella as mucosal vaccine vectors for HIV-1 Subtype C Gag to induce Gag-specific CD4+ Th1 and Th2 cellular immune responses and antibodies which may be important characteristics required for protection against HIV-1 infection.

  19. Vaccination with recombinant adenoviruses and dendritic cells expressing prostate-specific antigens is effective in eliciting CTL and suppresses tumor growth in the experimental prostate cancer.

    Science.gov (United States)

    Kim, Sol; Lee, Jee-Boong; Lee, Geon Kook; Chang, Jun

    2009-06-15

    Prostate cancer is currently the most commonly diagnosed cancer in men and the second leading cause of cancer-related death in men in the US. Immunological approaches may provide an alternative option for prevention and treatment of prostate cancer. To develop vaccine against prostate cancer using mouse model, we constructed three recombinant adenoviruses expressing prostate-specific membrane antigen (rAd/PSMA), prostate stem cell antigen (rAd/PSCA) and six-transmembrane epithelial antigen of the prostate (rAd/STEAP), that were specifically up-regulated in the transgenic murine prostate cancer. Male C57BL/6 mice were immunized by intravenous injection of these recombinant adenoviruses and subsequently by subcutaneous injection of dendritic cells pulsed with TRAMP-C1 tumor lysate. After subcutaneous challenge with TRAMP-C1 cells, tumor growth was significantly delayed in the immunized mice compared to the control group. Surprisingly, significant numbers of STEAP-specific CD8 T cells were detected in the peripheral blood and the spleen of immune mice using MHC I tetramers, and injection of rAd/STEAP alone followed by pulsed DC was sufficient to inhibit tumor growth. Therapeutic vaccination also significantly delayed the growth of pre-established tumors. Our results suggest that STEAP is a good immunologic target antigen against prostate cancer and our vaccination regimen successfully elicits anti-tumor CTL responses and suppresses tumor growth. More studies will expedite the development of this vaccine toward clinical application.

  20. Addition of N-glycosylation sites on the globular head of the H5 hemagglutinin induces the escape of highly pathogenic avian influenza A H5N1 viruses from vaccine-induced immunity.

    Science.gov (United States)

    Hervé, Pierre-Louis; Lorin, Valérie; Jouvion, Grégory; Da Costa, Bruno; Escriou, Nicolas

    2015-12-01

    Highly pathogenic avian influenza A H5N1 viruses remain endemic in poultry in several countries and still constitute a pandemic threat. Since the early 20th century, we experienced four influenza A pandemics. H3N2 and H1N1pdm09 viruses that respectively emerged during 1968 and 2009 pandemics are still responsible for seasonal epidemics. These viruses evolve regularly by substitutions in antigenic sites of the hemagglutinin (HA), which prevent neutralization by antibodies directed against previous strains (antigenic drift). For seasonal H3N2 viruses, an addition of N-glycosylation sites (glycosites) on H3 contributed to this drift. Here, we questioned whether additional glycosites on H5 could induce an escape of H5N1 virus from neutralization, as it was observed for seasonal H3N2 viruses. Seven H5N1 mutants were produced by adding glycosites on H5. The most glycosylated virus escaped from neutralizing antibodies, in vitro and in vivo. Furthermore, a single additional glycosite was responsible for this escape. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Evaluation of immunogenicity and safety of Genevac B: A new recombinant hepatitis b vaccine in comparison with Engerix B and Shanvac B in healthy adults

    Directory of Open Access Journals (Sweden)

    Vijayakumar V

    2004-01-01

    Full Text Available PURPOSE: Genevac B, a new indigenous recombinant hepatitis B vaccine was evaluated for its immunogenicity and safety in comparison with Engerix B (Smithkline Beecham Biologicals, Belgium and Shanvac B (Shantha Biotechnics, India in healthy adult volunteers. METHODS: While 240 study subjects were included in the Genevac B group, 80 each were the subjects for Engerix B and Shanvac B. A three dose regimen of 0,1,2 months was adopted with 20 gm dosage uniformly in all the three groups. Vaccinees were assessed during prevaccination, followup and post vaccination periods for clinical, haematological, biochemical and immunological parameters for safety and immunogenicity. RESULTS: Successful follow-up in all parameters for four months could be achieved in 92.5% (222/240 for Genevac B study subjects and the same was 85% (68/80 and 80% (64/80 for Engerix B and Shanvac B respectively. While 100% seroconversion was observed in all the three groups, the rate of seroprotectivity was 99.5% by Genevac B, 98.5% by Engerix B and 98.4% for Shanvac B. However the difference was not statistically significant (p>0.05. The GMT values of anti HBs after one month of completion of the vaccination were 735.50, 718.23 and 662.20 mIU/mL respectively. No systemic reaction was either seen or reported by the volunteers during the vaccination process of Genevac B and other two vaccines. Clinical, haematological and biochemical safety parameters remained within normal limits throughout the study period. CONCLUSION: The study confirms that Genevac B, the new recombinant Hepatitis B vaccine has the acceptable international standards of safety and immunogenicity.

  2. Efficient in vivo priming by vaccination with recombinant NY-ESO-1 protein and CpG in antigen naive prostate cancer patients.

    Science.gov (United States)

    Karbach, Julia; Neumann, Antje; Atmaca, Akin; Wahle, Claudia; Brand, Kathrin; von Boehmer, Lotta; Knuth, Alexander; Bender, Armin; Ritter, Gerd; Old, Lloyd J; Jäger, Elke

    2011-02-15

    NY-ESO-1, one of the most immunogenic tumor antigens, is expressed in 15% to 25% of metastatic prostate cancers. The immunological and clinical effects of vaccination with recombinant NY-ESO-1 protein combined with CpG as adjuvant were evaluated. In a phase I clinical study, patients with advanced prostate cancer were vaccinated with recombinant NY-ESO-1 protein (100 μg) mixed with CpG 7909 (2.5 mg) every 3 weeks intradermally for 4 doses. Objectives of the study were the safety of the vaccine and changes of specific humoral and cellular immunological responses to NY-ESO-1 in relation to detectable NY-ESO-1 expression in the individual tumor. All 12 baseline sero-negative patients developed high-titer NY-ESO-1 antibody responses. B-cell epitope mapping identified NY-ESO-1 p91-110 to be recognized most frequently by vaccine-induced antibodies. Two patients developed significant antibody titers against the adjuvant CpG. NY-ESO-1-specific CD4+ and/or CD8+ T-cell responses were induced in 9 patients (69%). Five of these 9 patients did not express NY-ESO-1 in the autologous tumor. Postvaccine CD8+ T-cell clones recognized and lyzed HLA-matched tumor cell lines in an antigen-specific manner. Our data provide clear evidence for the capacity of NY-ESO-1 protein/CpG vaccine to induce integrated antigen-specific immune responses in vivo and to efficiently prime CD8+ T-cell responses in NY-ESO-1 antigen-negative patients. Our results may also support further clinical vaccination protocols with NY-ESO-1 protein not only focused on the treatment of existing cancer, but also to prevent further development of NY-ESO-1 positive cancers in vivo. ©2010 AACR.

  3. Recombinant gp350 vaccine for infectious mononucleosis: A phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults

    OpenAIRE

    Sokal, E M; Hoppenbrouwers, K; Vandermeulen, C.; Moutschen, Michel; Leonard, Philippe; MOREELS, A.; Haumont, M.; Bollen, A; F. Smets; Denis, M

    2007-01-01

    Background. To date, there is no commercially available vaccine to prevent infectious mononucleosis, a disease frequently induced by Epstein-Barr virus (EBV) infection in adolescents or adults devoid of preexisting immunity to the virus. Methods. A total of 181 EBV-seronegative, healthy, young adult volunteers were randomized in a double-blind fashion to receive either placebo or a recombinant EBV subunit glycoprotein 350 (gp350)/aluminum hydroxide and 3-O-desacyl-4'-monophosphoryl lipid A (A...

  4. HIV-1-Specific Antibody Response and Function after DNA Prime and Recombinant Adenovirus 5 Boost HIV Vaccine in HIV-Infected Subjects.

    Directory of Open Access Journals (Sweden)

    Johannes S Gach

    Full Text Available Little is known about the humoral immune response against DNA prime-recombinant adenovirus 5 (rAd5 boost HIV vaccine among HIV-infected patients on long-term suppressive antiretroviral therapy (ART. Previous studies emphasized cellular immune responses; however, current research suggests both cellular and humoral responses are likely required for a successful therapeutic vaccine. Thus, we aimed to understand antibody response and function induced by vaccination of ART-treated HIV-1-infected patients with immune recovery. All subjects participated in EraMune 02, an open-label randomized clinical trial of ART intensification followed by a six plasmid DNA prime (envA, envB, envC, gagB, polB, nefB and rAd5 boost HIV vaccine with matching inserts. Antibody binding levels were determined with a recently developed microarray approach. We also analyzed neutralization efficiency and antibody-dependent cellular cytotoxicity (ADCC. We found that the DNA prime-rAd5 boost vaccine induced a significant cross-clade HIV-specific antibody response, which correlated with antibody neutralization efficiency. However, despite the increase in antibody binding levels, the vaccine did not significantly stimulate neutralization or ADCC responses. This finding was also reflected by a lack of change in total CD4+ cell associated HIV DNA in those who received the vaccine. Our results have important implications for further therapeutic vaccine design and administration, especially in HIV-1 infected patients, as boosting of preexisting antibody responses are unlikely to lead to clearance of latent proviruses in the HIV reservoir.

  5. Inclusion of a universal tetanus toxoid CD4(+) T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ΔVP8* subunit parenteral vaccines.

    Science.gov (United States)

    Wen, Xiaobo; Wen, Ke; Cao, Dianjun; Li, Guohua; Jones, Ronald W; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka; Yuan, Lijuan

    2014-07-31

    Currently available live oral rotavirus vaccines, Rotarix(®) and RotaTeq(®), are highly efficacious in developed countries. However, the immunogenicity and efficacy of such vaccines in some developing countries are low. We reported previously that bacterially-expressed rotavirus ΔVP8* subunit vaccine candidates with P[8], P[4] or P[6] specificity elicited high-titer virus neutralizing antibodies in animals immunized intramuscularly. Of note was the finding that antibodies induced with the P[8]ΔVP8* vaccine neutralized both homotypic P[8] and heterotypic P[4] rotavirus strains to high titer. To further improve its vaccine potential, a tetanus toxoid universal CD4(+) T cell epitope P2 was introduced into P[8] or P[6]ΔVP8* construct. The resulting recombinant fusion proteins expressed in Escherichia coli were of high solubility and were produced with high yield. Two doses (10 or 20 μg/dose) of the P2-P[8]ΔVP8* vaccine or P2-P[6]ΔVP8* vaccine with aluminum phosphate adjuvant elicited significantly higher geometric mean homologous neutralizing antibody titers than the vaccines without P2 in intramuscularly immunized guinea pigs. Interestingly, high levels of neutralizing antibody responses induced in guinea pigs with 3 doses of the P2-P[8]ΔVP8* vaccine persisted for at least 6 months. Furthermore, in the gnotobiotic piglet challenge study, three intramuscular doses (50 μg/dose) of the P2-P[8]ΔVP8* vaccine with aluminum phosphate adjuvant significantly delayed the onset of diarrhea and significantly reduced the duration of diarrhea and the cumulative diarrhea score after oral challenge with virulent human rotavirus Wa (G1P[8]) strain. The P2-P[8]ΔVP8* vaccine induced serum virus neutralizing antibody and VP4-specific IgG antibody production prechallenge, and primed the pigs for higher antibody and intestinal and systemic virus-specific IFN-γ producing CD4(+) T cell responses postchallenge. These two subunit vaccines could be used at a minimum singly or

  6. Freeze-thaw stress of Alhydrogel ® alone is sufficient to reduce the immunogenicity of a recombinant hepatitis B vaccine containing native antigen.

    Science.gov (United States)

    Clapp, Tanya; Munks, Michael W; Trivedi, Ruchit; Kompella, Uday B; Braun, LaToya Jones

    2014-06-24

    Preventing losses in vaccine potency due to accidental freezing has recently become a topic of interest for improving vaccines. All vaccines with aluminum-containing adjuvants are susceptible to such potency losses. Recent studies have described excipients that protect the antigen from freeze-induced inactivation, prevent adjuvant agglomeration and retain potency. Although these strategies have demonstrated success, they do not provide a mechanistic understanding of freeze-thaw (FT) induced potency losses. In the current study, we investigated how adjuvant frozen in the absence of antigen affects vaccine immunogenicity and whether preventing damage to the freeze-sensitive recombinant hepatitis B surface antigen (rHBsAg) was sufficient for maintaining vaccine potency. The final vaccine formulation or Alhydrogel(®) alone was subjected to three FT-cycles. The vaccines were characterized for antigen adsorption, rHBsAg tertiary structure, particle size and charge, adjuvant elemental content and in-vivo potency. Particle agglomeration of either vaccine particles or adjuvant was observed following FT-stress. In vivo studies demonstrated no statistical differences in IgG responses between vaccines with FT-stressed adjuvant and no adjuvant. Adsorption of rHBsAg was achieved; regardless of adjuvant treatment, suggesting that the similar responses were not due to soluble antigen in the frozen adjuvant-containing formulations. All vaccines with adjuvant, including the non-frozen controls, yielded similar, blue-shifted fluorescence emission spectra. Immune response differences could not be traced to differences in the tertiary structure of the antigen in the formulations. Zeta potential measurements and elemental content analyses suggest that FT-stress resulted in a significant chemical alteration of the adjuvant surface. This data provides evidence that protecting a freeze-labile antigen from subzero exposure is insufficient to maintain vaccine potency. Future studies should

  7. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults.

    Science.gov (United States)

    Sokal, Etienne M; Hoppenbrouwers, Karel; Vandermeulen, Corinne; Moutschen, Michel; Léonard, Philippe; Moreels, Andre; Haumont, Michèle; Bollen, Alex; Smets, Françoise; Denis, Martine

    2007-12-15

    To date, there is no commercially available vaccine to prevent infectious mononucleosis, a disease frequently induced by Epstein-Barr virus (EBV) infection in adolescents or adults devoid of preexisting immunity to the virus. A total of 181 EBV-seronegative, healthy, young adult volunteers were randomized in a double-blind fashion to receive either placebo or a recombinant EBV subunit glycoprotein 350 (gp350)/aluminum hydroxide and 3-O-desacyl-4'-monophosphoryl lipid A (AS04) candidate vaccine in a 3-dose regimen. The vaccine had demonstrable efficacy (mean efficacy rate, 78.0% [95% confidence interval {CI}, 1.0%-96.0%]) in preventing the development of infectious mononucleosis induced by EBV infection, but it had no efficacy in preventing asymptomatic EBV infection. One month after receipt of the final dose of gp350 vaccine, 98.7% of subjects showed seroconversion to anti-gp350 antibodies (95% CI, 85.5%-97.9%), and they remained anti-gp350 antibody positive for >18 months. Furthermore, there were no concerns regarding the safety or reactogenicity of the gp350/AS04 vaccine. These data support the clinical feasibility of using an EBV vaccine to prevent infectious mononucleosis. ClinicalTrials.gov identifier: NCT00430534.

  8. An Amphibian Host Defense Peptide Is Virucidal for Human H1 Hemagglutinin-Bearing Influenza Viruses.

    Science.gov (United States)

    Holthausen, David J; Lee, Song Hee; Kumar, Vineeth Tv; Bouvier, Nicole M; Krammer, Florian; Ellebedy, Ali H; Wrammert, Jens; Lowen, Anice C; George, Sanil; Pillai, Madhavan Radhakrishna; Jacob, Joshy

    2017-04-18

    Although vaccines confer protection against influenza A viruses, antiviral treatment becomes the first line of defense during pandemics because there is insufficient time to produce vaccines. Current antiviral drugs are susceptible to drug resistance, and developing new antivirals is essential. We studied host defense peptides from the skin of the South Indian frog and demonstrated that one of these, which we named "urumin," is virucidal for H1 hemagglutinin-bearing human influenza A viruses. This peptide specifically targeted the conserved stalk region of H1 hemagglutinin and was effective against drug-resistant H1 influenza viruses. Using electron microscopy, we showed that this peptide physically destroyed influenza virions. It also protected naive mice from lethal influenza infection. Urumin represents a unique class of anti-influenza virucide that specifically targets the hemagglutinin stalk region, similar to targeting of antibodies induced by universal influenza vaccines. Urumin therefore has the potential to contribute to first-line anti-viral treatments during influenza outbreaks. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Immunogenicity of viral vector, prime-boost SIV vaccine regimens in infant rhesus macaques: attenuated vesicular stomatitis virus (VSV) and modified vaccinia Ankara (MVA) recombinant SIV vaccines compared to live-attenuated SIV.

    Science.gov (United States)

    Van Rompay, Koen K A; Abel, Kristina; Earl, Patricia; Kozlowski, Pamela A; Easlick, Juliet; Moore, Joseph; Buonocore-Buzzelli, Linda; Schmidt, Kimberli A; Wilson, Robert L; Simon, Ian; Moss, Bernard; Rose, Nina; Rose, John; Marthas, Marta L

    2010-02-10

    In a previously developed infant macaque model mimicking HIV infection by breast-feeding, we demonstrated that intramuscular immunization with recombinant poxvirus vaccines expressing simian immunodeficiency virus (SIV) structural proteins provided partial protection against infection following oral inoculation with virulent SIV. In an attempt to further increase systemic but also local antiviral immune responses at the site of viral entry, we tested the immunogenicity of different orally administered, replicating vaccines. One group of newborn macaques received an oral prime immunization with a recombinant vesicular stomatitis virus expressing SIVmac239 gag, pol and env (VSV-SIVgpe), followed 2 weeks later by an intramuscular boost immunization with MVA-SIV. Another group received two immunizations with live-attenuated SIVmac1A11, administered each time both orally and intravenously. Control animals received mock immunizations or non-SIV VSV and MVA control vectors. Analysis of SIV-specific immune responses in blood and lymphoid tissues at 4 weeks of age demonstrated that both vaccine regimens induced systemic antibody responses and both systemic and local cell-mediated immune responses. The safety and immunogenicity of the VSV-SIVgpe+MVA-SIV immunization regimen described in this report provide the scientific incentive to explore the efficacy of this vaccine regimen against virulent SIV exposure in the infant macaque model. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. Cellular immune responses induced in cattle by heterologous prime-boost vaccination using recombinant viruses and bacille Calmette-Guérin.

    Science.gov (United States)

    Vordermeier, H Martin; Rhodes, Shelley G; Dean, Gillian; Goonetilleke, Nilu; Huygen, Kris; Hill, Adrian V S; Hewinson, R Glyn; Gilbert, Sarah C

    2004-07-01

    The development of novel vaccine strategies to replace or supplement bacille Calmette-Guérin (BCG) is urgently required. Here we study, in cattle, the use of heterologous prime-boost strategies based on vaccination with BCG and the mycobacterial mycolyl transferase Ag85A (Rv3804c) expressed either in recombinant modified vaccinia virus Ankara (MVA85A) or attenuated fowlpox strain FP9 (FP85A). Five different vaccination schedules were tested in the first experiment: MVA85A followed by BCG (group 1); BCG followed by MVA85A (group 2); BCG followed by FP85A and then MVA85A (group 3); MVA85A followed by MVA85A and then FP85A (group 4); and FP85A followed by FP85A and then MVA85A (group 5). Vaccine-induced levels of cellular immunity were assessed by determining interferon-gamma (IFN-gamma) responses in vitro. Prime-boost protocols, using recombinant MVA and BCG in combination (groups 1-3), resulted in significantly higher frequencies of Ag85-specific IFN-gamma-secreting cells than the two viral vectors used in combination (P=0.0055), or BCG used alone (groups 2 and 3, P=0.04). The T-cell repertoires of the calves in all five groups were significantly broader following heterologous booster immunizations than after the primary immunization. In a second experiment, the effects of BCG\\MVA85A heterologous prime-boost vaccination were compared with BCG\\BCG homologous revaccination. The results suggested a higher Ag85A-specific response with a wider T-cell repertoire in the MVA85A-boosted calves than in the BCG\\BCG-vaccinated calves. In conclusion therefore, the present report demonstrates the effectiveness of heterologous prime-boost strategies based on recombinant MVA and BCG to induce strong cellular immune responses in cattle and prioritise such vaccination strategies for rapid assessment of protective efficacy in this natural target species of tuberculosis.

  11. Vaccination of Koalas with a Recombinant Chlamydia pecorum Major Outer Membrane Protein Induces Antibodies of Different Specificity Compared to Those Following a Natural Live Infection

    Science.gov (United States)

    Kollipara, Avinash; Polkinghorne, Adam; Beagley, Kenneth W.; Timms, Peter

    2013-01-01

    Chlamydial infection in koalas is common across the east coast of Australia and causes significant morbidity, infertility and mortality. An effective vaccine to prevent the adverse consequences of chlamydial infections in koalas (particularly blindness and infertility in females) would provide an important management tool to prevent further population decline of this species. An important step towards developing a vaccine in koalas is to understand the host immune response to chlamydial infection. In this study, we used the Pepscan methodology to identify B cell epitopes across the Major Outer Membrane Protein (MOMP) of four C. pecorum strains/genotypes that are recognized, either following (a) natural live infection or (b) administration of a recombinant MOMP vaccine. Plasma antibodies from the koalas naturally infected with a C. pecorum G genotype strain recognised the epitopes located in the variable domain (VD) four of MOMP G and also VD4 of MOMP H. By comparison, plasma antibodies from an animal infected with a C. pecorum F genotype strain recognised epitopes in VD1, 2 and 4 of MOMP F, but not from other genotype MOMPs. When Chlamydia-free koalas were immunised with recombinant MOMP protein they produced antibodies not only against epitopes in the VDs but also in conserved domains of MOMP. Naturally infected koalas immunised with recombinant MOMP protein also produced antibodies against epitopes in the conserved domains. This work paves the way for further refinement of a MOMP-based Chlamydia vaccine that will offer wide cross-protection against the variety of chlamydial infections circulating in wild koala populations. PMID:24086379

  12. Vaccination of koalas with a recombinant Chlamydia pecorum major outer membrane protein induces antibodies of different specificity compared to those following a natural live infection.

    Directory of Open Access Journals (Sweden)

    Avinash Kollipara

    Full Text Available Chlamydial infection in koalas is common across the east coast of Australia and causes significant morbidity, infertility and mortality. An effective vaccine to prevent the adverse consequences of chlamydial infections in koalas (particularly blindness and infertility in females would provide an important management tool to prevent further population decline of this species. An important step towards developing a vaccine in koalas is to understand the host immune response to chlamydial infection. In this study, we used the Pepscan methodology to identify B cell epitopes across the Major Outer Membrane Protein (MOMP of four C. pecorum strains/genotypes that are recognized, either following (a natural live infection or (b administration of a recombinant MOMP vaccine. Plasma antibodies from the koalas naturally infected with a C. pecorum G genotype strain recognised the epitopes located in the variable domain (VD four of MOMP G and also VD4 of MOMP H. By comparison, plasma antibodies from an animal infected with a C. pecorum F genotype strain recognised epitopes in VD1, 2 and 4 of MOMP F, but not from other genotype MOMPs. When Chlamydia-free koalas were immunised with recombinant MOMP protein they produced antibodies not only against epitopes in the VDs but also in conserved domains of MOMP. Naturally infected koalas immunised with recombinant MOMP protein also produced antibodies against epitopes in the conserved domains. This work paves the way for further refinement of a MOMP-based Chlamydia vaccine that will offer wide cross-protection against the variety of chlamydial infections circulating in wild koala populations.

  13. Pseudomonas fluorescens filamentous hemagglutinin, an iron-regulated protein, is an important virulence factor that modulates bacterial pathogenicity

    Directory of Open Access Journals (Sweden)

    Yuan-yuan Sun

    2016-08-01

    Full Text Available Pseudomonas fluorescens is a common bacterial pathogen to a wide range of aquaculture animals including various species of fish. In this study, we employed proteomic analysis and identified filamentous hemagglutinin (FHA as an iron-responsive protein secreted by TSS, a pathogenic P. fluorescens isolate. In vitro study showed that compared to the wild type, the fha mutant TSSfha (i exhibited a largely similar vegetative growth profile but significantly retarded in the ability of biofilm growth and producing extracellular matrix, (ii displayed no apparent flagella and motility, (iii was defective in the attachment to host cells and unable to form self-aggregation, (iv displayed markedly reduced capacity of hemagglutination and surviving in host serum. In vivo infection analysis revealed that TSSfha was significantly attenuated in the ability of dissemination in fish tissues and inducing host mortality, and that antibody blocking of the natural FHA produced by the wild type TSS impaired the infectivity of the pathogen. Furthermore, when introduced into turbot as a subunit vaccine, recombinant FHA elicited a significant protection against lethal TSS challenge. Taken together, these results indicate for the first time that P. fluorescens FHA is a key virulence factor essential to multiple biological processes associated with pathogenicity.

  14. Cloning and expression of the guinea pig cytomegalovirus glycoprotein B (gB) in a recombinant baculovirus: utility for vaccine studies for the prevention of experimental infection.

    Science.gov (United States)

    Schleiss, Mark R; Jensen, Nancy J

    2003-03-01

    The guinea pig cytomegalovirus (GPCMV) is unique among the cytomegaloviruses of small mammals, insofar as during pregnancy it crosses the placenta, causing infection of the fetus. Although the guinea pig model is well suited to vaccine studies, the lack of cloned, recombinant forms of immunogenic GPCMV proteins, such as envelope glycoproteins, has hindered experimental evaluations of subunit immunization for prevention of fetal disease. Since the glycoprotein B (gB) is a major target of neutralizing antibody responses, the GPCMV gB was cloned and expressed in a recombinant baculovirus. A recombinant was generated which expressed gB, truncated at codon 692, upstream of the putative transmembrane domain. Processing and expression of the recombinant protein, designated Bac-gB, was assessed, and the protein was characterized immunologically. Anti-gB antibodies were immunoreactive with Bac-gB by enzyme linked immunosorbent assay (ELISA) and immunoblot assay. Immunoprecipitation with polyclonal anti-GPCMV antisera identified protein species of 120, 80 and 30 kDa by reducing SDS-PAGE, suggesting that authentic cleavage and processing of Bac-gB occurred in insect cells. Sera from guinea pigs immunized with lectin-column purified native glycoproteins had high ELISA titers to Bac-gB. Recombinant GPCMV gB expressed in insect cells should prove useful in defining correlates of protective immunity in the GPCMV congenital infection model.

  15. Safety of recombinant fowlpox strain FP9 and modified vaccinia virus Ankara vaccines against liver-stage P. falciparum malaria in non-immune volunteers.

    Science.gov (United States)

    Webster, D P; Dunachie, S; McConkey, S; Poulton, I; Moore, A C; Walther, M; Laidlaw, S M; Peto, T; Skinner, M A; Gilbert, S C; Hill, A V S

    2006-04-05

    The ability to generate potent antigen-specific T cell responses by vaccination has been a major hurdle in vaccinology. Vaccinia virus and avipox viruses have been shown to be capable of expressing antigens in mammalian cells and can induce a protective immune response against several mammalian pathogens. We report on two such vaccine constructs, modified vaccinia virus Ankara and FP9 (an attenuated fowlpox virus) both expressing the pre-erythrocytic malaria antigen thrombospondin-related adhesion protein and a string of CD8+ epitopes (ME-TRAP). In prime-boost combinations in a mouse model MVA and FP9 are highly immunogenic and induce substantial protective efficacy. A series of human clinical trials using the recombinant MVA and FP9 malaria vaccines encoding ME-TRAP, both independently and in prime-boost combinations with or without the DNA vaccine DNA ME-TRAP, has shown them to be both immunogenic for CD8+ T cells and capable of inducing protective efficacy. We report here a detailed analysis of the safety profiles of these viral vectors and show that anti-vector antibody responses induced by the vectors are generally low to moderate. We conclude that these vectors are safe and show acceptable side effect profiles for prophylactic vaccination.

  16. Correlating novel variable and conserved motifs in the Hemagglutinin protein with significant biological functions

    Directory of Open Access Journals (Sweden)

    Werner Mark

    2008-08-01

    Full Text Available Abstract Background Variations in the influenza Hemagglutinin protein contributes to antigenic drift resulting in decreased efficiency of seasonal influenza vaccines and escape from host immune response. We performed an in silico study to determine characteristics of novel variable and conserved motifs in the Hemagglutinin protein from previously reported H3N2 strains isolated from Hong Kong from 1968–1999 to predict viral motifs involved in significant biological functions. Results 14 MEME blocks were generated and comparative analysis of the MEME blocks identified blocks 1, 2, 3 and 7 to correlate with several biological functions. Analysis of the different Hemagglutinin sequences elucidated that the single block 7 has the highest frequency of amino acid substitution and the highest number of co-mutating pairs. MEME 2 showed intermediate variability and MEME 1 was the most conserved. Interestingly, MEME blocks 2 and 7 had the highest incidence of potential post-translational modifications sites including phosphorylation sites, ASN glycosylation motifs and N-myristylation sites. Similarly, these 2 blocks overlap with previously identified antigenic sites and receptor binding sites. Conclusion Our study identifies motifs in the Hemagglutinin protein with different amino acid substitution frequencies over a 31 years period, and derives relevant functional characteristics by correlation of these motifs with potential post-translational modifications sites, antigenic and receptor binding sites.

  17. Establishment of human sperm-specific voltage-dependent anion channel 3 recombinant vector for the production of a male contraceptive vaccine

    Directory of Open Access Journals (Sweden)

    Asmarinah Asmarinah

    2012-05-01

    Full Text Available Background: The aim of this study was to construct a recombinant vector of human sperm specific VDAC3 gene for production of VDAC3 antibody, which is potential as male contraception vaccine.Methods: Target fragment sequence of VDAC3 gene was obtained through amplification of human sperm VDAC3 cDNA with primers covering exon 5 to exon 8. Its PCR product in size of 435 bp was cloned to the pET101/D-TOPO expression vector (5753 bp. E. coli bacteria were transformed with this vector. Cloning of VDAC3 fragment gene to the vector was confirmed by the using of XbaI restriction enzyme and PCR colony method with primers covering exons 5-8 of the human VDAC3 gene.Results: Alignment analysis of amplified fragment covering exon 5 to exon 8 of VDAC3 gene showed 94% homology to human VDAC3 gene from databank. After cloning to the expression vector and transformation to E. coli competent cells, twelve colonies could grow in culture media. Gel electrophoresis of sliced VDAC3 recombinant vector showed a single band in the size of 6181 bp in 8 colonies. After application of PCR colony and amplicon sequencing, the result showed a single band in the size of 435 bp and fragment sequence with 94% identity to human VDAC3 gene.Conclusion: The construction of human sperm specific VDAC3 gene recombinant vector was established in this study. In the future, this recombinant vector will be used to produce VDAC3 antibody for the development of a male contraception vaccine. (Med J Indones. 2012;21:61-5Keywords: Contraception, recombinant vector, sperm, VDAC3

  18. Yeast-expressed recombinant protein of the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS vaccine candidate.

    Science.gov (United States)

    Chen, Wen-Hsiang; Du, Lanying; Chag, Shivali M; Ma, Cuiqing; Tricoche, Nancy; Tao, Xinrong; Seid, Christopher A; Hudspeth, Elissa M; Lustigman, Sara; Tseng, Chien-Te K; Bottazzi, Maria Elena; Hotez, Peter J; Zhan, Bin; Jiang, Shibo

    2014-01-01

    Development of vaccines for preventing a future pandemic of severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV) and for biodefense preparedness is urgently needed. Our previous studies have shown that a candidate SARS vaccine antigen consisting of the receptor-binding domain (RBD) of SARS-CoV spike protein can induce potent neutralizing antibody responses and protection against SARS-CoV challenge in vaccinated animals. To optimize expression conditions for scale-up production of the RBD vaccine candidate, we hypothesized that this could be potentially achieved by removing glycosylation sites in the RBD protein. In this study, we constructed two RBD protein variants: 1) RBD193-WT (193-aa, residues 318-510) and its deglycosylated forms (RBD193-N1, RBD193-N2, RBD193-N3); 2) RBD219-WT (219-aa, residues 318-536) and its deglycosylated forms (RBD219-N1, RBD219-N2, and RBD219-N3). All constructs were expressed as recombinant proteins in yeast. The purified recombinant proteins of these constructs were compared for their antigenicity, functionality and immunogenicity in mice using alum as the adjuvant. We found that RBD219-N1 exhibited high expression yield, and maintained its antigenicity and functionality. More importantly, RBD219-N1 induced significantly stronger RBD-specific antibody responses and a higher level of neutralizing antibodies in immunized mice than RBD193-WT, RBD193-N1, RBD193-N3, or RBD219-WT. These results suggest that RBD219-N1 could be selected as an optimal SARS vaccine candidate for further development.

  19. Single-dose vaccination of a recombinant parainfluenza virus 5 expressing NP from H5N1 virus provides broad immunity against influenza A viruses.

    Science.gov (United States)

    Li, Zhuo; Gabbard, Jon D; Mooney, Alaina; Gao, Xiudan; Chen, Zhenhai; Place, Ryan J; Tompkins, S Mark; He, Biao

    2013-05-01

    Influenza viruses often evade host immunity via antigenic drift and shift despite previous influenza virus infection and/or vaccination. Vaccines that match circulating virus strains are needed for optimal protection. Development of a universal influenza virus vaccine providing broadly cross-protective immunity will be of great importance. The nucleoprotein (NP) of influenza A virus is highly conserved among all strains of influenza A viruses and has been explored as an antigen for developing a universal influenza virus vaccine. In this work, we generated a recombinant parainfluenza virus 5 (PIV5) containing NP from H5N1 (A/Vietnam/1203/2004), a highly pathogenic avian influenza (HPAI) virus, between HN and L (PIV5-NP-HN/L) and tested its efficacy. PIV5-NP-HN/L induced humoral and T cell responses in mice. A single inoculation of PIV5-NP-HN/L provided complete protection against lethal heterosubtypic H1N1 challenge and 50% protection against lethal H5N1 HPAI virus challenge. To improve efficacy, NP was inserted into different locations within the PIV5 genome. Recombinant PIV5 containing NP between F and SH (PIV5-NP-F/SH) or between SH and HN (PIV5-NP-SH/HN) provided better protection against H5N1 HPAI virus challenge than did PIV5-NP-HN/L. These results suggest that PIV5 expressing NP from H5N1 has the potential to be utilized as a universal influenza virus vaccine.

  20. Recombinant prohibitin protein of Leishmania infantum acts as a vaccine candidate and diagnostic marker against visceral leishmaniasis.

    Science.gov (United States)

    Dias, Daniel S; Ribeiro, Patrícia A F; Martins, Vívian T; Lage, Daniela P; Ramos, Fernanda F; Dias, Anna L T; Rodrigues, Marcella R; Portela, Áquila S B; Costa, Lourena E; Caligiorne, Rachel B; Steiner, Bethina T; Chávez-Fumagalli, Miguel A; Salles, Beatriz C S; Santos, Thaís T O; Silveira, Julia A G; Magalhães-Soares, Danielle F; Roatt, Bruno M; Machado-de-Ávila, Ricardo A; Duarte, Mariana C; Menezes-Souza, Daniel; Silva, Eduardo S; Galdino, Alexsandro S; Coelho, Eduardo A F

    2017-11-09

    Visceral leishmaniasis (VL) represents a serious public health problem, as Leishmania infantum is one of main disease causative agents in the Americas. In a previous immunoproteomic study, the prohibitin (PHB) protein was identified in L. infantum promastigote and amastigote extracts by antibodies in asymptomatic and symptomatic VL dog sera. This protein was found to be highly conserved between different Leishmania spp., but it presented a low identity with amino acid sequences of other organisms. The aim of the present study was to evaluate the cellular response induced by the recombinant PHB (rPHB) protein in BALB/c mice, as well as in PBMCs purified from untreated and treated VL patients, as well as to evaluate its protective efficacy against an infection by L. infantum promastigotes. Our data showed that there was a Th1 cellular response to rPHB, based on high levels of IFN-γ, IL-12, and GM-CSF in the immunized animals, as well as a proliferative response specific to the protein and higher IFN-γ levels induced in PBMCs from individuals who had recovered from the disease. The protection was represented by significant reductions in the parasite load in the animals' spleen, liver, bone marrow, and draining lymph nodes, as compared to results found in the control groups. In addition, an anti-rPHB serology, using a canine and human serological panel, showed a high performance of this protein when diagnosing VL based on high sensitivity and specificity values, as compared to results found for the rA2 antigen and the soluble Leishmania antigenic extract. Our data suggest that PHB has a potential application for the diagnosis of canine and human VL through antibody detection, as well as an application as a vaccine candidate to protect against disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Natural type 3/type 2 intertypic vaccine-related poliovirus recombinants with the first crossover sites within the VP1 capsid coding region.

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    Full Text Available BACKGROUND: Ten uncommon natural type 3/type 2 intertypic poliovirus recombinants were isolated from stool specimens from nine acute flaccid paralysis case patients and one healthy vaccinee in China from 2001 to 2008. PRINCIPAL FINDINGS: Complete genomic sequences revealed their vaccine-related genomic features and showed that their first crossover sites were randomly distributed in the 3' end of the VP1 coding region. The length of donor Sabin 2 sequences ranged from 55 to 136 nucleotides, which is the longest donor sequence reported in the literature for this type of poliovirus recombination. The recombination resulted in the introduction of Sabin 2 neutralizing antigenic site 3a (NAg3a into a Sabin 3 genomic background in the VP1 coding region, which may have been altered by some of the type 3-specific antigenic properties, but had not acquired any type 2-specific characterizations. NAg3a of the Sabin 3 strain seems atypical; other wild-type poliovirus isolates that have circulated in recent years have sequences of NAg3a more like the Sabin 2 strain. CONCLUSIONS: 10 natural type 3/type 2 intertypic VP1 capsid-recombinant polioviruses, in which the first crossover sites were found to be in the VP1 coding region, were isolated and characterized. In spite of the complete replacement of NAg3a by type 2-specific amino acids, the serotypes of the recombinants were not altered, and they were totally neutralized by polyclonal type 3 antisera but not at all by type 2 antisera. It is possible that recent type 3 wild poliovirus isolates may be a recombinant having NAg3a sequences derived from another strain during between 1967 and 1980, and the type 3/type 2 recombination events in the 3' end of the VP1 coding region may result in a higher fitness.

  2. Recombinant vaccinia DIs expressing simian immunodeficiency virus gag and pol in mammalian cells induces efficient cellular immunity as a safe immunodeficiency virus vaccine candidate.

    Science.gov (United States)

    Okamura, Tomotaka; Someya, Kenji; Matsuo, Kazuhiro; Hasegawa, Atsuhiko; Yamamoto, Naoki; Honda, Mitsuo

    2006-01-01

    A highly attenuated vaccinia virus substrain of Dairen-I (DIs) shows promise as a candidate vector for eliciting positive immunity against immune deficiency virus. DIs was randomly obtained by serial 1-day egg passages of a chorioarantoic membrane-adapted Dairen strain (DIE), resulting in substantial genomic deletion, including various genes regulating the virus-host-range. To investigate the impact of that deletion and of the subsequent insertion of a foreign gene into that region of DIs on the ability of the DIs recombinant to induce antigen-specific immunity, we generated a recombinant vaccinia DIs expressing fulllength gag and pol genes of simian immunodeficiency virus (SIV) (rDIsSIV gag/pol) and studied the biological and immunological characteristics of the recombinant natural mutant. The rDIsSIV gag/pol developed a tiny plaque on the chick embryo fibroblast (CEF). Viral particles of rDIsSIV gag/pol as well as SIV Gag-like particles were electromicroscopically detected in the cytoplasm. Interestingly, the recombinant DIs strain grows well in CEF cells but not in mammalian cells. While rDIsSIV gag/pol produces SIV proteins in mammalian HeLa and CV-1 cells, recombinant modified vaccinia Ankara strain (MVA) expressing SIV gag and pol genes (MVA/SIV239 gag/pol) clearly replicates in HeLa and CV-1 cell lines under synchronized growth conditions and produces the SIV protein in all cell lines. Moreover, intradermal administration of rDIsSIV gag/pol or of MVA/SIV239 gag/pol elicited similar levels of IFN-gamma spot-forming cells specific for SIV Gag. If the non-productive infection characteristically induced by recombinant DIs is sufficient to trigger immune induction, as we believe it is, then a human immunodeficiency virus vaccine employing the DIs recombinant would have the twin advantages of being both effective and safe.

  3. Evaluation of recombinant Leishmania poly-protein plus GLA-SE vaccines against sand fly-transmitted Leishmania major in C57Bl/6 mice1

    Science.gov (United States)

    Peters, Nathan C.; Bertholet, Sylvie; Lawyer, Phillip G.; Charmoy, Melanie; Romano, Audrey; Ribeiro-Gomes, Flavia L.; Stamper, Lisa W.; Sacks, David L.

    2012-01-01

    Numerous experimental Leishmania vaccines have been developed to prevent the visceral and cutaneous forms of Leishmaniasis, which occur after exposure to the bite of an infected sand fly, yet only one is under evaluation in humans. KSAC and L110f, recombinant Leishmania poly-proteins delivered in a stable emulsion (SE) with the TLR 4 agonists monophosphoryl lipid A (MPL) or glucopyranosyl lipid A (GLA) have shown protection in animal models. KSAC+GLA-SE protected against cutaneous disease following sand fly transmission of L. major in susceptible BALB/c mice. Similar poly-protein adjuvant combinations are the vaccine candidates most likely to see clinical evaluation. We assessed immunity generated by KSAC or L110f vaccination with GLA-SE following challenge with L. major by needle or infected sand fly bite in resistant C57BL/6 mice. Poly-protein vaccinated mice had a 60-fold increase in CD4+IFN-γ+ T cell numbers versus control animals at 2 weeks post needle inoculation of L. major and this correlated with a 100-fold reduction in parasite load. Immunity did not, however, reach levels observed in mice with a healed primary infection. Following challenge by infected sand fly bite, poly-protein vaccinated animals had comparable parasite loads, greater numbers of neutrophils at the challenge site, and reduced CD4+ IFN-γ+:IL-17+ ratios versus non-vaccinated controls. In contrast, healed animals had significantly reduced parasite loads and higher CD4+ IFN-γ+:IL-17+ ratios. These observations demonstrate that vaccine-induced protection against needle challenge does not necessarily translate to protection following challenge by infected sand fly bite. PMID:23045616

  4. Combined IL-12 Plasmid and Recombinant SjGST Enhance the Protective and Anti-pathology Effect of SjGST DNA Vaccine Against Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    Po-Ching Cheng

    2016-02-01

    Full Text Available Schistosomiasis is listed as one of most important tropical diseases and more than 200 million people are estimated to be infected. Development of a vaccine is thought to be the most effective way to control this disease. Recombinant 26-kDa glutathione S-transferase (rSjGST has previously been reported to achieve a worm reduction rate of 42-44%. To improve the efficiency of the vaccine against Schistosoma japonicum, we immunized mice with a combination of pcDNA vector-encoded 26-kDa SjGST (pcDNA/SjGST, IL-12 expressing-plasmid (pIL-12, and rSjGST. Co-vaccination with pcDNA/SjGST, pIL-12, and rSjGST led to a reduction in worm burden, hepatic egg burden, and the size of liver tissue granulomas than that in the untreated infection controls. In addition, we detected high levels of specific IgG, IgG1, and IgG2a against the rSjGST antigen in infected mice vaccinated with this combination of pcDNA/SjGST, pIL-12, and rSjGST. Moreover, high expression levels of Th2 cytokines, including IL-4 and IL-10, were also detected in this group, without diminished levels of IL-12, INF-γ, and TNF-α cytokines that are related to parasite killing. In conclusion, we have developed a new vaccination regimen against S. japonicum infection and shown that co-immunization with pcDNA/SjGST vaccine, pIL-12, and rSjGST has significant anti-parasite, anti-hepatic egg and anti-pathology effects in mice. The efficacy of this vaccination method should be further validated in large animals such as water buffalo. This method may help to reduce the transmission of zoonotic schistosomiasis japonica.

  5. Combined IL-12 Plasmid and Recombinant SjGST Enhance the Protective and Anti-pathology Effect of SjGST DNA Vaccine Against Schistosoma japonicum

    Science.gov (United States)

    Cheng, Po-Ching; Lin, Ching-Nan; Peng, Shih-Yi; Kang, Tsung-Fu; Lee, Kin-Mu

    2016-01-01

    Schistosomiasis is listed as one of most important tropical diseases and more than 200 million people are estimated to be infected. Development of a vaccine is thought to be the most effective way to control this disease. Recombinant 26-kDa glutathione S-transferase (rSjGST) has previously been reported to achieve a worm reduction rate of 42–44%. To improve the efficiency of the vaccine against Schistosoma japonicum, we immunized mice with a combination of pcDNA vector-encoded 26-kDa SjGST (pcDNA/SjGST), IL-12 expressing-plasmid (pIL-12), and rSjGST. Co-vaccination with pcDNA/SjGST, pIL-12, and rSjGST led to a reduction in worm burden, hepatic egg burden, and the size of liver tissue granulomas than that in the untreated infection controls. In addition, we detected high levels of specific IgG, IgG1, and IgG2a against the rSjGST antigen in infected mice vaccinated with this combination of pcDNA/SjGST, pIL-12, and rSjGST. Moreover, high expression levels of Th2 cytokines, including IL-4 and IL-10, were also detected in this group, without diminished levels of IL-12, INF-γ, and TNF-α cytokines that are related to parasite killing. In conclusion, we have developed a new vaccination regimen against S. japonicum infection and shown that co-immunization with pcDNA/SjGST vaccine, pIL-12, and rSjGST has significant anti-parasite, anti-hepatic egg and anti-pathology effects in mice. The efficacy of this vaccination method should be further validated in large animals such as water buffalo. This method may help to reduce the transmission of zoonotic schistosomiasis japonica. PMID:26891172

  6. Norovirus (NoV) specific protective immune responses induced by recombinant P dimer vaccine are enhanced by the mucosal adjuvant FlaB.

    Science.gov (United States)

    Verma, Vivek; Tan, Wenzhi; Puth, Sao; Cho, Kyoung-Oh; Lee, Shee Eun; Rhee, Joon Haeng

    2016-05-17

    Noroviruses (NoVs) are a major cause of childhood gastroenteritis and foodborne diseases worldwide. Lack of appropriate animal models or cell-based culture systems makes the development and evaluation of NoV-specific vaccines a daunting task. VP1 is the major capsid protein of the NoVs that acts as a binding motif to human histo-blood group antigens (HBGAs) through its protruding 2 (P2) domain and can serve as a protective antigen candidate for vaccine development. Recombinantly produced NoV specific P domain (Pd) vaccine was inoculated into groups of mice either alone or in conjugation with mucosal adjuvant FlaB, the flagellar protein from Vibrio vulnificus. Antigen specific humoral and cell mediated immune responses were assessed by enzyme linked immunosorbent assay (ELISA) or fluorescent activated cell sorting (FACS). A comparative analysis of various routes of vaccination viz. intranasal, sublingual and subcutaneous, was also done. In this study, we show that a recombinant Pd-vaccine administered through intranasal route induced a robust TH2-dependent humoral immune response and that the combination of vaccine with FlaB significantly enhanced the antibody response. Interestingly, FlaB induced a mixed TH1/TH2 type of immune response with a significant induction of IgG1 as well as IgG2a antibodies. FlaB also induced strong IgA responses in serum and feces. FlaB mediated antibody responses were toll like receptor 5 (TLR5) dependent, since the FlaB adjuvanticity was lost in TLR5(-/-) mice. Further, though the Pd-vaccine by itself failed to induce a cell mediated immune response, the Pd-FlaB combination stimulated a robust CD4(+)IFNγ(+) and CD8(+)IFNγ(+) T cell response in spleen and mesenteric lymph nodes. We also compared the adjuvant effects of FlaB with that of alum and complete Freund's adjuvant (CFA). We found that subcutaneously inoculated FlaB induced more significant levels of IgG and IgA in both serum and feces compared to alum or CFA in respective

  7. Immunogenicity and protective efficacy of virus-like particles and recombinant fiber proteins in broiler-breeder vaccination against fowl adenovirus (FAdV)-8b.

    Science.gov (United States)

    Gupta, Ashish; Ahmed, Khawaja Ashfaque; Ayalew, Lisanework E; Popowich, Shelly; Kurukulasuriya, Shanika; Goonewardene, Kalhari; Gunawardana, Thushari; Karunarathna, Ruwani; Ojkic, Davor; Tikoo, Suresh K; Willson, Philip; Gomis, Susantha

    2017-05-09

    Inclusion body hepatitis (IBH) is an economically important diseases in broiler chicken industry. Several serotypes of fowl adenovirus (FAdV) can cause IBH, among them, serotype FAdV-8b is associated with the majority of the IBH cases in Canada. Here, we evaluated FAdV-8b virus-like particles (VLPs) and recombinant FAdV-8b fiber proteins (expressed in E. coli) as potential broiler-breeder vaccines against IBH. For assessing the immunogenicity of vaccines, we investigated both humoral and cellular immunity. The humoral immune response was evaluated by determining total IgY and virus-neutralizing antibody in serum at 14, 28, 35 and 60days post-immunization (dpi). We examined cellular immunity using flow cytometry by determining CD4:CD8 ratio change in peripheral blood after the booster vaccination. The protective effect of vaccines was tested by challenging 14day-old progeny (n=30/group) carrying maternal antibodies (MtAb) by challenging with virulent FAdV-8b virus (1×107 TCID50, FAdV-8b-SK). Although total IgY levels were comparable in all groups, the neutralizing antibody response in broiler-breeders at 35 and 60 dpi was significantly (pbroiler-breeders four days after the booster vaccination. Unlike FAdV-8b fiber-knob, FAdV-8b VLPs, and FAdV-8b fiber vaccinated broiler-breeders were able to transfer a substantial amount (28.4±9%) of MtAb to their progeny. Challenge revealed that MtAb provided 100% and 82.7% protection in progeny hatched from FAdV-8b VLPs, and FAdV-8b fiber vaccinated broiler-breeders, respectively. Collectively, our data suggest that FAdV-8b subunit vaccine-induced MtAb efficiently protected progeny against clinical IBH and broiler-breeder vaccination with subunit vaccines is a potential approach to protect against IBH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Vaccination with recombinant adenovirus expressing multi-stage antigens of Toxoplasma gondii by the mucosal route induces higher systemic cellular and local mucosal immune responses than with other vaccination routes

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2017-01-01

    Full Text Available Toxoplasmosis caused by Toxoplasma gondii, an obligate intracellular protozoan, is a cause of congenital disease and abortion in humans and animals. Various vaccination strategies against toxoplasmosis in rodent models have been used in the past few decades; however, effective vaccines remain a challenge. A recombinant adenovirus vaccine expressing ubiquitin-conjugated multi-stage antigen segments (Ad-UMAS derived from different life-cycle stages of T. gondii was constructed previously. Here, we compared the immune responses and protection effects in vaccination of mice with Ad-UMAS by five vaccination routes including intramuscular (i.m., intravenous (i.v., subcutaneous (s.c., intraoral (i.o., and intranasal (i.n.. Much higher levels of T. gondii-specific IgG and IgA antibodies were detected in the sera of the intraoral and intranasal vaccination groups on day 49 compared with controls (p < 0.05. The percentages of CD8+ T-cells in mice immunized intranasally and intraorally were larger than in mice immunized intramuscularly (p < 0.05. The highest level of IL-2 and IFN-γ was detected in the group with nasal immunization, and splenocyte proliferation activity was significantly enhanced in mice immunized via the oral and nasal routes. Furthermore, the higher survival rate (50% and lower cyst numbers observed in the intraoral and intranasal groups all indicate that Ad-UMAS is far more effective in protecting mice against T. gondii infection via the mucosal route. Ad-UMAS could be an effective and safe mucosal candidate vaccine to protect animals and humans against T. gondii infection.

  9. Evaluation of recombinant Leishmania polyprotein plus glucopyranosyl lipid A stable emulsion vaccines against sand fly-transmitted Leishmania major in C57BL/6 mice.

    Science.gov (United States)

    Peters, Nathan C; Bertholet, Sylvie; Lawyer, Phillip G; Charmoy, Melanie; Romano, Audrey; Ribeiro-Gomes, Flavia L; Stamper, Lisa W; Sacks, David L

    2012-11-15

    Numerous experimental Leishmania vaccines have been developed to prevent the visceral and cutaneous forms of Leishmaniasis, which occur after exposure to the bite of an infected sand fly, yet only one is under evaluation in humans. KSAC and L110f, recombinant Leishmania polyproteins delivered in a stable emulsion (SE) with the TLR4 agonists monophosphoryl lipid A or glucopyranosyl lipid A (GLA) have shown protection in animal models. KSAC+GLA-SE protected against cutaneous disease following sand fly transmission of Leishmania major in susceptible BALB/c mice. Similar polyprotein adjuvant combinations are the vaccine candidates most likely to see clinical evaluation. We assessed immunity generated by KSAC or L110f vaccination with GLA-SE following challenge with L. major by needle or infected sand fly bite in resistant C57BL/6 mice. Polyprotein-vaccinated mice had a 60-fold increase in CD4(+)IFN-γ(+) T cell numbers versus control animals at 2 wk post-needle inoculation of L. major, and this correlated with a 100-fold reduction in parasite load. Immunity did not, however, reach levels observed in mice with a healed primary infection. Following challenge by infected sand fly bite, polyprotein-vaccinated animals had comparable parasite loads, greater numbers of neutrophils at the challenge site, and reduced CD4(+)IFN-γ(+)/IL-17(+) ratios versus nonvaccinated controls. In contrast, healed animals had significantly reduced parasite loads and higher CD4(+)IFN-γ(+)/IL-17(+) ratios. These observations demonstrate that vaccine-induced protection against needle challenge does not necessarily translate to protection following challenge by infected sand fly bite.

  10. Development and immunogenicity of recombinant GapA(+) Mycoplasma gallisepticum vaccine strain ts-11 expressing infectious bronchitis virus-S1 glycoprotein and chicken interleukin-6.

    Science.gov (United States)

    Shil, Pollob K; Kanci, Anna; Browning, Glenn F; Markham, Philip F

    2011-04-12

    Mycoplasma gallisepticum (MG) is a major pathogen of poultry that causes chronic respiratory disease in chickens and infectious sinusitis in turkeys. A live attenuated vaccine, ts-11, has been used for the control of MG in several countries. The efficacy of this vaccine is highly dose dependent and the flock antibody response is weak. To improve the functionality of the vaccine and investigate its potential as a delivery vector for foreign antigens and immunomodulatory proteins, we developed a derivative of ts-11 expressing infectious bronchitis virus-S1 glycoprotein (IBV-S1) and releasing chicken interleukin-6 into the extracellular milieu (MG ts-11 C3 (+CS)) using a transposon-based delivery vector. Following administration of MG ts-11 C3 (+CS) to chickens by eye-drop, an antibody response to MG and IBV-S1, as determined by the rapid serum agglutination test (RSA) and Western blotting, respectively, could be detected. Birds inoculated with the recombinant vaccine had significantly enhanced weight gain and were partially protected against damage by pathogenic IBV. These results indicate that the ChIL-6 released by MG ts-11 C3 (+CS) may have had a non-specific effect on growth rate. They also suggest that ts-11 is a promising vaccine vector, capable of delivering heterologous protective antigens, and may also provide non-specific benefits when engineered to express immunomodulatory proteins. With some improvements in the expression system, it could be used to induce a targeted immune response against specific mucosal pathogens, and co-expression of several antigens would allow development of a novel multivalent vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Towards vaccine against toxoplasmosis: evaluation of the immunogenic and protective activity of recombinant ROP5 and ROP18 Toxoplasma gondii proteins.

    Science.gov (United States)

    Grzybowski, Marcin M; Dziadek, Bożena; Gatkowska, Justyna M; Dzitko, Katarzyna; Długońska, Henryka

    2015-12-01

    Toxoplasmosis is one of the most common parasitic infections worldwide. An effective vaccine against human and animal toxoplasmosis is still needed to control this parasitosis. The polymorphic rhoptry proteins, ROP5 and ROP18, secreted by Toxoplasma gondii during the invasion of the host cell have been recently considered as promising vaccine antigens, as they appear to be the major determinants of T. gondii virulence in mice. The goal of this study was to evaluate their immunogenic and immunoprotective activity after their administration (separately or both recombinant proteins together) with the poly I:C as an adjuvant. Immunization of BALB/c and C3H/HeOuJ mice generated both cellular and humoral specific immune responses with some predominance of IgG1 antibodies. The spleen cells derived from vaccinated animals reacted to the parasite's native antigens. Furthermore, the immunization led to a partial protection against acute and chronic toxoplasmosis. These findings confirm the previous assumptions about ROP5 and ROP18 antigens as valuable components of a subunit vaccine against toxoplasmosis.

  12. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance.

    Directory of Open Access Journals (Sweden)

    Emily Xie

    Full Text Available The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases.

  13. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance

    Science.gov (United States)

    Xie, Emily; Kotha, Abhiroop; Biaco, Tracy; Sedani, Nikita; Zou, Jonathan; Stashenko, Phillip; Duncan, Margaret J.; Campos-Neto, Antonio; Cayabyab, Mark J.

    2015-01-01

    The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis) that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases. PMID:26618634

  14. Multiple linear epitopes (B-cell, CTL and Th) of JEV expressed in recombinant MVA as multiple epitope vaccine induces a protective immune response.

    Science.gov (United States)

    Wang, Fengjuan; Feng, Xiuli; Zheng, Qisheng; Hou, Hongyan; Cao, Ruibing; Zhou, Bin; Liu, Qingtao; Liu, Xiaodong; Pang, Ran; Zhao, Jin; Deng, Wenlei; Chen, Puyan

    2012-09-17

    Epitope-based vaccination might play an important role in the protective immunity against Japanese encephalitis virus (JEV) infection. The purpose of the study is to evaluate the immune characteristics of recombinant MVA carrying multi-epitope gene of JEV (rMVA-mep). The synthetic gene containing critical epitopes (B-cell, CTL and Th) of JEV was cloned into the eukaryotic expression vector pGEM-K1L, and the rMVA-mep was prepared. BALB/c mice were immunized with different dosages of purified rMVA-mep and the immune responses were determined in the form of protective response against JEV, antibodies titers (IgG1 and IgG2a), spleen cell lymphocyte proliferation, and the levels of interferon-γ and interleukin-4 cytokines. The results showed that live rMVA-mep elicited strongly immune responses in dose-dependent manner, and the highest level of immune responses was observed from the groups immunized with 107 TCID50 rMVA-mep among the experimental three concentrations. There were almost no difference of cytokines and neutralizing antibody titers among 107 TCID50 rMVA-mep, recombinant ED3 and inactivated JEV vaccine. It was noteworthy that rMVA-mep vaccination potentiates the Th1 and Th2-type immune responses in dose-dependent manner, and was sufficient to protect the mice survival against lethal JEV challenge. These findings demonstrated that rMVA-mep can produce adequate humoral and cellular immune responses, and protection in mice, which suggested that rMVA-mep might be an attractive candidate vaccine for preventing JEV infection.

  15. Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis.

    Science.gov (United States)

    Saljoughian, Noushin; Taheri, Tahereh; Zahedifard, Farnaz; Taslimi, Yasaman; Doustdari, Fatemeh; Bolhassani, Azam; Doroud, Delaram; Azizi, Hiva; Heidari, Kazem; Vasei, Mohammad; Namvar Asl, Nabiollah; Papadopoulou, Barbara; Rafati, Sima

    2013-01-01

    Visceral leishmaniasis (VL) is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L.) tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB(-CTE))) as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN) acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB(-CTE)-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB(-CTE)-recombinant L. tarentolae as a safe live vaccine candidate against VL.

  16. Development of Novel Prime-Boost Strategies Based on a Tri-Gene Fusion Recombinant L. tarentolae Vaccine against Experimental Murine Visceral Leishmaniasis

    Science.gov (United States)

    Saljoughian, Noushin; Taheri, Tahereh; Zahedifard, Farnaz; Taslimi, Yasaman; Doustdari, Fatemeh; Bolhassani, Azam; Doroud, Delaram; Azizi, Hiva; Heidari, Kazem; Vasei, Mohammad; Namvar Asl, Nabiollah; Papadopoulou, Barbara; Rafati, Sima

    2013-01-01

    Visceral leishmaniasis (VL) is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L.) tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB-CTE)) as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN) acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL. PMID:23638195

  17. Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Noushin Saljoughian

    Full Text Available Visceral leishmaniasis (VL is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L. tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB(-CTE as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB(-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB(-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL.

  18. Use of recombinant capsid proteins in the development of a vaccine against foot-and-mouth disease virus (FMDV)

    DEFF Research Database (Denmark)

    Belsham, Graham; Bøtner, Anette

    2015-01-01

    -scale culling of infected, and potentially infected, animals there has been significant effort to develop new vaccines against this disease which avoid some, or all, of the deficiencies of current vaccines. A major focus has been on the use of systems that express the structural proteins of the virus that self....... The development and use of such improved vaccines should assist in the global efforts to control this important disease...

  19. Immunogenic multistage recombinant protein vaccine confers partial protection against experimental toxoplasmosis mimicking natural infection in murine model

    Directory of Open Access Journals (Sweden)

    Yaprak Gedik

    2016-01-01

    To generate a protective vaccine against toxoplasmosis, multistage vaccines and usage of challenging models mimicking natural route of infection are critical cornerstones. In this study, we generated a BAG1 and GRA1 multistage vaccine that induced strong immune response in which the protection was not at anticipated level. In addition, the murine model was orally challenged with tissue cysts to mimic natural route of infection.

  20. Recombinant BCG: Innovations on an Old Vaccine. Scope of BCG Strains and Strategies to Improve Long-Lasting Memory

    OpenAIRE

    da Costa, Adeliane Castro; Nogueira, Sarah Veloso; Kipnis, André; Junqueira-Kipnis, Ana Paula

    2014-01-01

    BCG (Bacille Calmette-Guérin), an attenuated vaccine derived from Mycobacterium bovis, is the current vaccine of choice against tuberculosis (TB). Despite its protection against active TB in children, BCG has failed to protect adults against TB infection and active disease development, especially in developing countries where the disease is endemic. Currently, there is a significant effort towards the development of a new TB vaccine. This review article aims to address publications on recombi...

  1. Vaccination with heat-killed leishmania antigen or recombinant leishmanial protein and CpG oligodeoxynucleotides induces long-term memory CD4+ and CD8+ T cell responses and protection against leishmania major infection.

    Science.gov (United States)

    Rhee, Elizabeth G; Mendez, Susana; Shah, Javeed A; Wu, Chang-you; Kirman, Joanna R; Turon, Tara N; Davey, Dylan F; Davis, Heather; Klinman, Dennis M; Coler, Rhea N; Sacks, David L; Seder, Robert A

    2002-06-17

    CpG oligodeoxynucleotides (ODN) have potent effects on innate and adaptive cellular immune responses. In this report, the ability of CpG ODN to confer long-term immunity and protection when used as a vaccine adjuvant with a clinical grade of leishmanial antigen, autoclaved Leishmania major (ALM), or a recombinant leishmanial protein was studied. In two different mouse models of L. major infection, vaccination with ALM plus CpG ODN was able to control infection and markedly reduce lesion development in susceptible BALB/c and resistant C57BL/6 (B6) mice, respectively, up to 12 wk after immunization. Moreover, B6 mice immunized with ALM plus CpG ODNs were still protected against infectious challenge even 6 mo after vaccination. In terms of immune correlates of protection, ALM plus CpG ODN-vaccinated mice displayed L. major-specific T helper cell 1 and CD8+ responses. In addition, complete protection was markedly abrogated in mice depleted of CD8+ T cells at the time of vaccination. Similarly, mice vaccinated with a recombinant leishmanial protein plus CpG ODN also had long-term protection that was dependent on CD8+ T cells in vivo. Together, these data demonstrate that CpG ODN, when used as a vaccine adjuvant with either a recombinant protein or heat-killed leishmanial antigen, can induce long-term protection against an intracellular infection in a CD8-dependent manner.

  2. Synthetic Toll-like receptor 4 (TLR4) and TLR7 ligands as influenza virus vaccine adjuvants induce rapid, sustained, and broadly protective responses.

    Science.gov (United States)

    Goff, Peter H; Hayashi, Tomoko; Martínez-Gil, Luis; Corr, Maripat; Crain, Brian; Yao, Shiyin; Cottam, Howard B; Chan, Michael; Ramos, Irene; Eggink, Dirk; Heshmati, Mitra; Krammer, Florian; Messer, Karen; Pu, Minya; Fernandez-Sesma, Ana; Palese, Peter; Carson, Dennis A

    2015-03-01

    Current vaccines against influenza virus infection rely on the induction of neutralizing antibodies targeting the globular head of the viral hemagglutinin (HA). Protection against seasonal antigenic drift or sporadic pandemic outbreaks requires further vaccine development to induce cross-protective humoral responses, potentially to the more conserved HA stalk region. Here, we present a novel viral vaccine adjuvant comprised of two synthetic ligands for Toll-like receptor 4 (TLR4) and TLR7. 1Z105 is a substituted pyrimido[5,4-b]indole specific for the TLR4-MD2 complex, and 1V270 is a phospholipid-conjugated TLR7 agonist. Separately, 1Z105 induces rapid Th2-associated IgG1 responses, and 1V270 potently generates Th1 cellular immunity. 1Z105 and 1V270 in combination with recombinant HA from the A/Puerto Rico/8/1934 strain (rPR/8 HA) effectively induces rapid and sustained humoral immunity that is protective against lethal challenge with a homologous virus. More importantly, immunization with the combined adjuvant and rPR/8 HA, a commercially available split vaccine, or chimeric rHA antigens significantly improves protection against both heterologous and heterosubtypic challenge viruses. Heterosubtypic protection is associated with broadly reactive antibodies to HA stalk epitopes. Histological examination and cytokine profiling reveal that intramuscular (i.m.) administration of 1Z105 and 1V270 is less reactogenic than a squalene-based adjuvant, AddaVax. In summary, the combination of 1Z105 and 1V270 with a recombinant HA induces rapid, long-lasting, and balanced Th1- and Th2-type immunity; demonstrates efficacy in a variety of murine influenza virus vaccine models assaying homologous, heterologous, and heterosubtypic challenge viruses; and has an excellent safety profile. Novel adjuvants are needed to enhance immunogenicity and increase the protective breadth of influenza virus vaccines to reduce the seasonal disease burden and ensure pandemic preparedness. We show

  3. Differentiating infection from vaccination in foot-and-mouth-disease: evaluation of an ELISA based on recombinant 3ABC

    NARCIS (Netherlands)

    Bruderer, U.; Swam, H.; Haas, B.; Visser, N.; Brocchi, E.; Grazioli, S.; Esterhuysen, J.J.; Vosloo, W.; Forsyth, M.; Aggarwal, N.; Cox, S.; Armstrong, R.; Anderson, J.

    2004-01-01

    Recent devastating outbreaks of foot-and-mouth disease (FMD) in Europe have reopened the discussion about the adequacy of the non-vaccination strategy implemented by the EU in 1991. Here we describe the evaluation of a new commercially available test kit for the discrimination between vaccination

  4. A recombinant rabies vaccine expressing the trimeric form of the glycoprotein confers enhanced immunogenicity and protection in outbred mice.

    NARCIS (Netherlands)

    Koraka, Penelope; Bosch, Berend-Jan; Cox, Manon; Chubet, Rick; Amerongen, Geert van; Lövgren-Bengtsson, Karen; Martina, Byron E E; Roose, Jouke; Rottier, Peter J M; Osterhaus, Albert D M E

    2014-01-01

    Rabies is a disease characterized by an invariably lethal encephalitis of viral origin that can be controlled by preventive vaccination programs of wildlife, domestic animals and humans in areas with a high risk of exposure. Currently available vaccines are expensive, cumbersome to produce and

  5. Recombinant non-structural polyprotein 3AB-based serodiagnostic strategy for FMD surveillance in bovines irrespective of vaccination.

    Science.gov (United States)

    Mohapatra, Jajati K; Pandey, Laxmi K; Sanyal, Aniket; Pattnaik, Bramhadev

    2011-11-01

    In India, the proportion of bovines vaccinated against foot-and-mouth disease (FMD) is increasing since the implementation of the Government supported 'FMD Control Programme', and non-structural protein (NSP)-based serological assays for discriminating between antibodies induced by infection or vaccination (DIVA) could be useful. The FMD virus NSP 3AB was expressed in a prokaryotic system and an indirect ELISA (r3AB(3) I-ELISA) was developed and validated as a screening assay for detecting virus in vaccinated bovines. The diagnostic sensitivity of the assay was estimated to be 96%, while the diagnostic specificity varied between the naïve and vaccinates as 99.1% and 96.4%, respectively. This assay could detect antibodies to 3AB (3AB-Ab) from 10 to as late as 900 days post-infection in cattle infected experimentally. The "in-house" assay demonstrated higher sensitivity than a commercial 3ABC ELISA kit particularly with samples obtained from the late stages of infection. Transient post-vaccinal 3AB-Ab response could be detected in one of the three commercial vaccines during the six-month vaccination regimen, which emphasizes the fact that for a DIVA-compatible diagnostic strategy to be a realistic option, all vaccines need to be quality checked for the NSP content. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Simultaneous Targeting of Multiple Hemagglutinins to APCs for Induction of Broad Immunity against Influenza.

    Science.gov (United States)

    Anderson, Ane Marie; Baranowska-Hustad, Marta; Braathen, Ranveig; Grodeland, Gunnveig; Bogen, Bjarne

    2018-02-02

    There is a need for vaccines that can confer broad immunity against highly diverse pathogens, such as influenza. The efficacy of conventional influenza vaccines is dependent on accurate matching of vaccines to circulating strains, but slow and limited production capacities increase the probability of vaccine mismatches. In contrast, DNA vaccination allows for rapid production of vaccines encoding novel influenza Ags. The efficacy of DNA vaccination is greatly improved if the DNA-encoded vaccine proteins target APCs. In this study, we have used hemagglutinin (HA) genes from each of six group 1 influenza viruses (H5, H6, H8, H9, H11, and H13), and inserted these into a DNA vaccine format that induces delivery of the HA protein Ags to MHC class II molecules on APCs. Each of the targeted DNA vaccines induced high titers of strain-specific anti-HA Abs. Importantly, when the six HA vaccines were mixed and injected simultaneously, the strain-specific Ab titers were maintained. In addition, the vaccine mixture induced Abs that cross-reacted with strains not included in the vaccine mixture (H1) and could protect mice against a heterosubtypic challenge with the H1 viruses A/Puerto Rico/8/1934 (H1N1) and A/California/07/2009 (H1N1). The data suggest that vaccination with a mixture of HAs could be useful for induction of strain-specific immunity against strains represented in the mixture and, in addition, confer some degree of cross-protection against unrelated influenza strains. Copyright © 2018 by The American Association of Immunologists, Inc.

  7. IL-4 and IL-13 mediated down-regulation of CD8 expression levels can dampen anti-viral CD8⁺ T cell avidity following HIV-1 recombinant pox viral vaccination.

    Science.gov (United States)

    Wijesundara, Danushka K; Jackson, Ronald J; Tscharke, David C; Ranasinghe, Charani

    2013-09-23

    We have shown that mucosal HIV-1 recombinant pox viral vaccination can induce high, avidity HIV-specific CD8(+) T cells with reduced interleukin (IL)-4 and IL-13 expression compared to, systemic vaccine delivery. In the current study how these cytokines act to regulate anti-viral CD8(+) T, cell avidity following HIV-1 recombinant pox viral prime-boost vaccination was investigated. Out of a panel of T cell avidity markers tested, only CD8 expression levels were found to be enhanced on, KdGag197-205 (HIV)-specific CD8(+) T cells obtained from IL-13(-/-), IL-4(-/-) and signal transducer and, activator of transcription of 6 (STAT6)(-/-) mice compared to wild-type (WT) controls following, vaccination. Elevated CD8 expression levels in this instance also correlated with polyfunctionality, (interferon (IFN)-γ, tumour necorsis factor (TNF)-α and IL-2 production) and the avidity of HIVspecific CD8(+) T cells. Furthermore, mucosal vaccination and vaccination with the novel adjuvanted IL-13 inhibitor (i.e. IL-13Rα2) vaccines significantly enhanced CD8 expression levels on HIV-specific CD8(+), T cells, which correlated with avidity. Using anti-CD8 antibodies that blocked CD8 availability on CD8(+), T cells, it was established that CD8 played an important role in increasing HIV-specific CD8(+) T cell avidity and polyfunctionality in IL-4(-/-), IL-13(-/-) and STAT6(-/-) mice compared to WT controls, following vaccination. Collectively, our data demonstrate that IL-4 and IL-13 dampen CD8 expression levels on anti-viral CD8(+) T cells, which can down-regulate anti-viral CD8(+) T cell avidity and, polyfunctionality following HIV-1 recombinant pox viral vaccination. These findings can be exploited to, design more efficacious vaccines not only against HIV-1, but many chronic infections where high, avidity CD8(+) T cells help protection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Phase I study of safety and immunogenicity of an Escherichia coli-derived recombinant protective antigen (rPA vaccine to prevent anthrax in adults.

    Directory of Open Access Journals (Sweden)

    Bruce K Brown

    Full Text Available BACKGROUND: The fatal disease caused by Bacillus anthracis is preventable with a prophylactic vaccine. The currently available anthrax vaccine requires a lengthy immunization schedule, and simpler and more immunogenic options for protection against anthrax are a priority for development. In this report we describe a phase I clinical trial testing the safety and immunogenicity of an anthrax vaccine using recombinant Escherichia coli-derived, B. anthracis protective antigen (rPA. METHODOLOGY/PRINCIPAL FINDINGS: A total of 73 healthy adults ages 18-40 were enrolled and 67 received 2 injections separated by 4 weeks of either buffered saline placebo, or rPA formulated with or without 704 µg/ml Alhydrogel® adjuvant in increasing doses (5, 25, 50, 100 µg of rPA. Participants were followed for one year and safety and immunologic data were assessed. Tenderness and warmth were the most common post-injection site reactions. No serious adverse events related to the vaccine were observed. The most robust humoral immune responses were observed in subjects receiving 50 µg of rPA formulated with Alhydrogel® with a geometric mean concentration of anti-rPA IgG antibodies of 283 µg/ml and a toxin neutralizing geometric 50% reciprocal geometric mean titer of 1061. The highest lymphoproliferative peak cellular response (median Lymphocyte Stimulation Index of 29 was observed in the group receiving 25 µg Alhydrogel®-formulated rPA. CONCLUSIONS/SIGNIFICANCE: The vaccine was safe, well tolerated and stimulated a robust humoral and cellular response after two doses. TRIAL REGISTRATION: ClinicalTrials.gov NCT00057525.

  9. Gnarled-trunk evolutionary model of influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Kimihito Ito

    Full Text Available Human influenza A viruses undergo antigenic changes with gradual accumulation of amino acid substitutions on the hemagglutinin (HA molecule. A strong antigenic mismatch between vaccine and epidemic strains often requires the replacement of influenza vaccines worldwide. To establish a practical model enabling us to predict the future direction of the influenza virus evolution, relative distances of amino acid sequences among past epidemic strains were analyzed by multidimensional scaling (MDS. We found that human influenza viruses have evolved along a gnarled evolutionary pathway with an approximately constant curvature in the MDS-constructed 3D space. The gnarled pathway indicated that evolution on the trunk favored multiple substitutions at the same amino acid positions on HA. The constant curvature was reasonably explained by assuming that the rate of amino acid substitutions varied from one position to another according to a gamma distribution. Furthermore, we utilized the estimated parameters of the gamma distribution to predict the amino acid substitutions on HA in subsequent years. Retrospective prediction tests for 12 years from 1997 to 2009 showed that 70% of actual amino acid substitutions were correctly predicted, and that 45% of predicted amino acid substitutions have been actually observed. Although it remains unsolved how to predict the exact timing of antigenic changes, the present results suggest that our model may have the potential to recognize emerging epidemic strains.

  10. Characterization and reactivity of broiler chicken sera to selected recombinant Campylobacter jejuni chemotactic proteins.

    Science.gov (United States)

    Yeh, Hung-Yueh; Hiett, Kelli L; Line, John E; Seal, Bruce S

    2014-05-01

    Campylobacter jejuni, a Gram-negative rod bacterium, is the leading causative agent of human acute bacterial gastroenteritis worldwide. Consumption and handling of raw or undercooked poultry are regarded as a major source for human infection. Because bacterial chemotaxis guides microorganisms to colonization and invasion in the host cells, proteins involved in chemotactic processes can be novel targets for vaccine development. In this communication, we report amplification, cloning and expression of the C. jejuni chemotactic proteins in an Escherichia coli expression system. A total of 15 chemotactic protein genes were successfully expressed. These recombinant proteins were confirmed by nucleotide sequencing, SDS-PAGE analysis and immunoblot analysis of six-His and hemagglutinin tags. Twelve recombinant chemotactic proteins were further tested whether they were antigenic using sera from broiler chickens older than 4 weeks. The immunoblot results show that each chicken serum reacted to a variety of the recombinant proteins, but all sera reacted to the Cjj0473 gene product (annotated as a methyl-accepting chemotaxis protein), suggesting that anti-Campylobacter antibodies may be prevalent in the poultry population. These antibody screening results provide a rationale for further evaluation of the Cjj0473 protein as a potential vaccine for broilers to improve human food safety.

  11. Relationship of Impairment of Schistosome 28-Kilodalton Glutathione S-Transferase (GST) Activity to Expression of Immunity to Schistosoma mattheei in Calves Vaccinated with Recombinant Schistosoma bovis 28-Kilodalton GST

    OpenAIRE

    Grzych, Jean-Marie; De Bont, Jan; Liu, Jinli; Neyrinck, Jean-Loup; Fontaine, Josette; Vercruysse, Jozef; Capron, André

    1998-01-01

    Sera from calves vaccinated with the recombinant Schistosoma bovis-derived 28-kDa glutathione S-transferase (28GST) and subsequently naturally or experimentally exposed to Schistosoma mattheei were studied for their content of specific immunoglobulin G (IgG) and IgA antibodies to recombinant S. bovis 28GST as well as for their capacity to inhibit the enzymatic activity of the antigen. The results were analyzed in regard to the presence (natural infection) or absence (experimental infection) o...

  12. Characterization of Recombinant B. abortus Strain RB51SOD Toward Understanding the Uncorrelated Innate and Adaptive Immune Responses Induced by RB51SOD Compared to Its Parent Vaccine Strain RB51

    OpenAIRE

    Zhu, Jianguo; Larson, Charles B.; Ramaker, Megan Ann; Quandt, Kimberly; Wendte, Jered M.; Ku, Kimberly P.; Chen, Fang; Jourdian, George W.; Vemulapalli, Ramesh; Schurig, Gerhardt G.; He, Yongqun

    2011-01-01

    Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD) in a recombinant strain of RB51 (strain RB51SOD) significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. ...

  13. Characterization of recombinant B. abortus strain RB51SOD towards understanding the uncorrelated innate and adaptive immune responses induced by RB51SOD compared to its parent vaccine strain RB51

    OpenAIRE

    Jianguo eZhu; Jianguo eZhu; Charles Bradford Larson; Megan Ann Ramaker; Kimberly eQuandt; Jered eWendte; Kimberly eKu; Fang eChen; George eJourdian; Ramesh eVemulapalli; Gerhardt G. Schurig; Yongqun Oliver eHe

    2011-01-01

    Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD) in a recombinant strain of RB51 (strain RB51SOD) significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. ...

  14. Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity.

    Science.gov (United States)

    Wang, Wei; DeFeo, Christopher J; Alvarado-Facundo, Esmeralda; Vassell, Russell; Weiss, Carol D

    2015-10-01

    Influenza virus hemagglutinin (HA) mediates virus entry by binding to cell surface receptors and fusing the viral and endosomal membranes following uptake by endocytosis. The acidic environment of endosomes triggers a large-scale conformational change in the transmembrane subunit of HA (HA2) involving a loop (B loop)-to-helix transition, which releases the fusion peptide at the HA2 N terminus from an interior pocket within the HA trimer. Subsequent insertion of the fusion peptide into the endosomal membrane initiates fusion. The acid stability of HA is influenced by residues in the fusion peptide, fusion peptide pocket, coiled-coil regions of HA2, and interactions between the surface (HA1) and HA2 subunits, but details are not fully understood and vary among strains. Current evidence suggests that the HA from the circulating pandemic 2009 H1N1 influenza A virus [A(H1N1)pdm09] is less stable than the HAs from other seasonal influenza virus strains. Here we show that residue 205 in HA1 and residue 399 in the B loop of HA2 (residue 72, HA2 numbering) in different monomers of the trimeric A(H1N1)pdm09 HA are involved in functionally important intermolecular interactions and that a conserved histidine in this pair helps regulate HA stability. An arginine-lysine pair at this location destabilizes HA at acidic pH and mediates fusion at a higher pH, while a glutamate-lysine pair enhances HA stability and requires a lower pH to induce fusion. Our findings identify key residues in HA1 and HA2 that interact to help regulate H1N1 HA stability and virus infectivity. Influenza virus hemagglutinin (HA) is the principal antigen in inactivated influenza vaccines and the target of protective antibodies. However, the influenza A virus HA is highly variable, necessitating frequent vaccine changes to match circulating strains. Sequence changes in HA affect not only antigenicity but also HA stability, which has important implications for vaccine production, as well as viral adaptation

  15. Evaluation of Protective Potential of Yersinia pestis Outer Membrane Protein Antigens as Possible Candidates for a New-Generation Recombinant Plague Vaccine

    Science.gov (United States)

    Erova, Tatiana E.; Rosenzweig, Jason A.; Sha, Jian; Suarez, Giovanni; Sierra, Johanna C.; Kirtley, Michelle L.; van Lier, Christina J.; Telepnev, Maxim V.; Motin, Vladimir L.

    2013-01-01

    Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1− strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1− mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1− CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains. PMID:23239803

  16. Evaluation of protective potential of Yersinia pestis outer membrane protein antigens as possible candidates for a new-generation recombinant plague vaccine.

    Science.gov (United States)

    Erova, Tatiana E; Rosenzweig, Jason A; Sha, Jian; Suarez, Giovanni; Sierra, Johanna C; Kirtley, Michelle L; van Lier, Christina J; Telepnev, Maxim V; Motin, Vladimir L; Chopra, Ashok K

    2013-02-01

    Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1(-) strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1(-) mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1(-) CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains.

  17. Multimeric recombinant M2e protein-based ELISA: a significant improvement in differentiating avian influenza infected chickens from vaccinated ones.

    Directory of Open Access Journals (Sweden)

    Farshid Hadifar

    Full Text Available Killed avian influenza virus (AIV vaccines have been used to control H5N1 infections in countries where the virus is endemic. Distinguishing vaccinated from naturally infected birds (DIVA in such situations however, has become a major challenge. Recently, we introduced the recombinant ectodomain of the M2 protein (M2e of H5N1 subtype as a novel tool for an ELISA based DIVA test. Despite being antigenic in natural infection the monomer form of the M2e used in ELISA had limited antigenicity and consequently poor diagnostic capability. To address this shortcoming, we evaluated the use of four tandem copies of M2e (tM2e for increased efficiency of M2e antibody detection. The tM2e gene of H5N1 strain from Indonesia (A/Indonesia/CDC540/2006 was cloned into a pMAL- p4x expression vector and expressed in E.coli as a recombinant tM2e-MBP or M2e-MBP proteins. Both of these, M2e and tM2e antigens reacted with sera obtained from chickens following live H5N1 infection but not with sera from vaccinated birds. A significantly stronger M2e antibody reaction was observed with the tM2e compared to M2e antigen. Western blotting also supported the superiority of tM2e over M2e in detection of specific M2e antibodies against live H5N1 infection. Results from this study demonstrate that M2e tetramer is a better antigen than single M2e and could be more suitable for an ELISA based DIVA test.

  18. Vaccinations

    Science.gov (United States)

    ... disease — reinforcing the importance of vaccines in your pet's preventive health care program. Are there risks? Any treatment carries some risk, but these risks should be weighed against the benefits of protecting your pet from potentially fatal diseases. ...

  19. Vaccination with a novel recombinant Leishmania antigen plus MPL provides partial protection against L. donovani challenge in experimental model of visceral leishmaniasis.

    Science.gov (United States)

    Bhardwaj, Suvercha; Vasishta, R K; Arora, Sunil K

    2009-01-01

    The acquisition of immunity following subclinical or resolved infection with the intracellular parasite Leishmania donovani suggests that vaccination could prevent visceral leishmaniasis. The characteristics and in vitro stimulating capability of the recombinant proteins expressed by previously identified clones on the basis of their capacity to stimulate an indigenously established Leishmania-specific cell line leading to high level of IFN-gamma suggested these to be potential candidates for immunoprophylaxis against leishmaniasis. In this study, we investigated the protective efficacy of purified recombinant proteins from two of the identified cDNA clones along with the adjuvant MPL, in a hamster model of experimental leishmaniasis. We demonstrate here that the immunization of animals with one of the recombinant proteins (rF14) having 97% similarity to C1 clone of L. chagasi ribosomal protein gene P0 (rLiP0) along with MPL provided partial protection against the virulent challenge of L. donovani. The absence of antigen-specific lymphoproliferative responses in these immunized animals may be responsible for the lack of complete and long-lasting protection.

  20. An anti-amoebic vaccine: generation of the recombinant antigen LC3 from Entamoeba histolytica linked to mutated exotoxin A (PEΔIII) via the Pichia pastoris system.

    Science.gov (United States)

    Martínez-Hernández, Sandra Luz; Cervantes-García, Daniel; Muñoz-Ortega, Martín; Aldaba-Muruato, Liseth R; Loera-Muro, Victor M; Ascacio-Martínez, Jorge A; de Jesús Loera-Arias, María; de Oca-Luna, Roberto Montes; Ventura-Juárez, Javier

    2017-08-01

    To generate an immunogenic chimeric protein containing the Entamoeba histolytica LC3 fragment fused to the retrograde delivery domains of exotoxin A of Pseudomonas aeruginosa and KDEL3 for use as an effective vaccine. A codon-optimized synthetic gene encoding the PEΔIII-LC3-KDEL3 fusion construct was designed for expression in Pichia pastoris. This transgene was subcloned into the plasmid pPIC9 for methanol-inducible expression. After transformation and selection of positive-transformed clones by PCR, the expression of the recombinant protein PEΔIII-LC3-KDEL3 was elicited. SDS-PAGE, protein glycosylation staining and western blot assays demonstrated a 67 kDa protein in the medium culture supernatant. The recombinant protein was detected with a polyclonal anti-6X His tag antibody and a polyclonal E. histolytica-specific antibody. A specific antibody response was induced in hamsters after immunization with this protein. We report for the first time the design and expression of the recombinant E. histolytica LC3 protein fused to PEΔIII and KDEL3, with potential application as an immunogen.

  1. Vaccination with recombinant L7/L12-truncated Omp31 protein induces protection against Brucella infection in BALB/c mice.

    Science.gov (United States)

    Golshani, Maryam; Rafati, Sima; Dashti, Amir; Gholami, Elham; Siadat, Seyed Davar; Oloomi, Mana; Jafari, Anis; Bouzari, Saeid

    2015-06-01

    Brucellosis is the most common bacterial zoonotic disease worldwide and no vaccine is available for the prevention of human brucellosis. In humans, brucellosis is mostly caused by Brucella melitensis and Brucella abortus. The Outer membrane protein 31 (Omp31) and L7/L12 are immunodominant and protective antigens conserved in human Brucella pathogens. In the present study, we evaluated the humoral and cellular immune responses induced by a fusion protein designed based on the Truncated form of Omp31 (TOmp31) and L7-L12 antigens. Vaccination of BALB/c mice with the recombinant fusion protein (rL7/L12-TOmp31) provided the significant protection level against B. melitensis and B. abortus challenge. Moreover, rL7/L12-TOmp31 elicited a strong specific IgG response (higher IgG2a titers) and significant IFN-γ/IL2 production and T-cell proliferation was also observed. The T helper1 (Th1) oriented response persisted for 12 weeks after the first immunization. The rL7/L12-TOmp31 could be a new potential antigen candidate for the development of a subunit vaccine against B. melitensis and B. abortus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Development and Pre-Clinical Evaluation of Recombinant Human Myelin Basic Protein Nano Therapeutic Vaccine in Experimental Autoimmune Encephalomyelitis Mice Animal Model

    Science.gov (United States)

    Al-Ghobashy, Medhat A.; Elmeshad, Aliaa N.; Abdelsalam, Rania M.; Nooh, Moham