WorldWideScience

Sample records for vaccine induces protective

  1. Heterosubtypic cross-protection induced by whole inactivated influenza virus vaccine in mice : Influence of the route of vaccine administration

    NARCIS (Netherlands)

    Budimir, Natalija; de Haan, Aalzen; Meijerhof, Tjarko; Gostick, Emma; Price, David A.; Huckriede, Anke; Wilschut, Jan

    2013-01-01

    Background Development of influenza vaccines capable of inducing broad protection against different virus subtypes is necessary given the ever-changing viral genetic landscape. Previously, we showed that vaccination with whole inactivated virus (WIV) induces heterosubtypic protection against lethal

  2. Vector transmission of leishmania abrogates vaccine-induced protective immunity.

    Directory of Open Access Journals (Sweden)

    Nathan C Peters

    2009-06-01

    Full Text Available Numerous experimental vaccines have been developed to protect against the cutaneous and visceral forms of leishmaniasis caused by infection with the obligate intracellular protozoan Leishmania, but a human vaccine still does not exist. Remarkably, the efficacy of anti-Leishmania vaccines has never been fully evaluated under experimental conditions following natural vector transmission by infected sand fly bite. The only immunization strategy known to protect humans against natural exposure is "leishmanization," in which viable L. major parasites are intentionally inoculated into a selected site in the skin. We employed mice with healed L. major infections to mimic leishmanization, and found tissue-seeking, cytokine-producing CD4+ T cells specific for Leishmania at the site of challenge by infected sand fly bite within 24 hours, and these mice were highly resistant to sand fly transmitted infection. In contrast, mice vaccinated with a killed vaccine comprised of autoclaved L. major antigen (ALM+CpG oligodeoxynucleotides that protected against needle inoculation of parasites, showed delayed expression of protective immunity and failed to protect against infected sand fly challenge. Two-photon intra-vital microscopy and flow cytometric analysis revealed that sand fly, but not needle challenge, resulted in the maintenance of a localized neutrophilic response at the inoculation site, and removal of neutrophils following vector transmission led to increased parasite-specific immune responses and promoted the efficacy of the killed vaccine. These observations identify the critical immunological factors influencing vaccine efficacy following natural transmission of Leishmania.

  3. Vector transmission of leishmania abrogates vaccine-induced protective immunity.

    Science.gov (United States)

    Peters, Nathan C; Kimblin, Nicola; Secundino, Nagila; Kamhawi, Shaden; Lawyer, Phillip; Sacks, David L

    2009-06-01

    Numerous experimental vaccines have been developed to protect against the cutaneous and visceral forms of leishmaniasis caused by infection with the obligate intracellular protozoan Leishmania, but a human vaccine still does not exist. Remarkably, the efficacy of anti-Leishmania vaccines has never been fully evaluated under experimental conditions following natural vector transmission by infected sand fly bite. The only immunization strategy known to protect humans against natural exposure is "leishmanization," in which viable L. major parasites are intentionally inoculated into a selected site in the skin. We employed mice with healed L. major infections to mimic leishmanization, and found tissue-seeking, cytokine-producing CD4+ T cells specific for Leishmania at the site of challenge by infected sand fly bite within 24 hours, and these mice were highly resistant to sand fly transmitted infection. In contrast, mice vaccinated with a killed vaccine comprised of autoclaved L. major antigen (ALM)+CpG oligodeoxynucleotides that protected against needle inoculation of parasites, showed delayed expression of protective immunity and failed to protect against infected sand fly challenge. Two-photon intra-vital microscopy and flow cytometric analysis revealed that sand fly, but not needle challenge, resulted in the maintenance of a localized neutrophilic response at the inoculation site, and removal of neutrophils following vector transmission led to increased parasite-specific immune responses and promoted the efficacy of the killed vaccine. These observations identify the critical immunological factors influencing vaccine efficacy following natural transmission of Leishmania.

  4. Heterosubtypic cross-protection induced by whole inactivated influenza virus vaccine in mice: influence of the route of vaccine administration.

    Science.gov (United States)

    Budimir, Natalija; de Haan, Aalzen; Meijerhof, Tjarko; Gostick, Emma; Price, David A; Huckriede, Anke; Wilschut, Jan

    2013-11-01

    Development of influenza vaccines capable of inducing broad protection against different virus subtypes is necessary given the ever-changing viral genetic landscape. Previously, we showed that vaccination with whole inactivated virus (WIV) induces heterosubtypic protection against lethal virus infection in mice. Whole inactivated virus-induced cross-protection was found to be mediated primarily by flu-specific CD8+ T cells. As it has been demonstrated that the route of vaccine administration strongly influences both the quantity and quality of vaccine-induced immunity, in this study, we determined which route of WIV administration induces optimal heterosubtypic cross-protection. We compared the magnitude of the immune response and heterosubtypic protection against lethal A/PR/8/34 (H1N1) infection after subcutaneous (SC), intramuscular (IM), and intranasal (IN) vaccination with A/NIBRG-14 (H5N1) WIV. Subcutaneous and IM administration was superior to IN administration of influenza WIV in terms of flu-specific CD8+ T-cell induction and protection of mice against lethal heterosubtypic challenge. Surprisingly, despite the very low flu-specific CD8+ T-cell responses detected in IN-vaccinated mice, these animals were partially protected, most likely due to cross-reactive IgA antibodies. The results of this study show that the magnitude of WIV-induced flu-specific CD8+ T-cell activity depends on the applied vaccination route. We conclude that parenteral administration of WIV vaccine, in particular IM injection, is superior to IN vaccine delivery for the induction of heterosubtypic cross-protection and generally appears to elicit stronger immune responses than mucosal vaccination with WIV. © 2013 The Authors. Influenza and Other Respiratory Viruses published by John Wiley & Sons Ltd.

  5. Protective antitumor activity induced by a fusion vaccine with murine ...

    African Journals Online (AJOL)

    Targeting angiogenesis is an effective strategy for anticancer therapy. The vascular endothelialcadherin (VE-cad) regulated angiogenesis is a potential target for anti-angiogenesis. Here, we develop a fusion vaccine plasmid DNA pSec-MBD2-VE-cad from VE-cad and murine beta defensin2 (MBD2) to induce immunity for ...

  6. Short- and long-term immunogenicity and protection induced by non-replicating smallpox vaccine candidates in mice and comparison with the traditional 1st generation vaccine.

    Science.gov (United States)

    Ferrier-Rembert, Audrey; Drillien, Robert; Tournier, Jean-Nicolas; Garin, Daniel; Crance, Jean-Marc

    2008-03-25

    This study assessed three non-replicating smallpox vaccine candidates (modified vaccinia Ankara (MVA), NYVAC and HR) for their immunogenicity and ability to protect mice against an intranasal cowpox virus challenge and compared them with the traditional replicating vaccine. A single immunisation with the non-replicating vaccines induced a complete protection from death at short-term, but was not fully protective when mice were challenged 150 days post-vaccination with protection correlated with the specific neutralizing antibodies and CD4(+) T-cells responses. Prime-boost vaccination enabled effective long-term protection from death for mice vaccinated with MVA, but protection from disease and CD4(+) T-cell level were lower than the ones induced by the traditional vaccine over the long-term period. Further investigations are necessary with MVA to determine the optimal conditions of immunisation to induce at long-term immunogenicity and protection observed with the 1st generation smallpox vaccine.

  7. Basophils help establish protective immunity induced by irradiated larval vaccination for filariasis

    Science.gov (United States)

    Torrero, Marina N.; Morris, C. Paul; Mitre, Blima K.; Hübner, Marc P.; Mueller, Ellen; Karasuyama, Hajime; Mitre, Edward

    2013-01-01

    Basophils are increasingly recognized as playing important roles in the immune response towards helminths. In this study, we evaluated the role of basophils in vaccine-mediated protection against filariae, tissue-invasive parasitic nematodes responsible for diseases such as elephantiasis and river blindness. Protective immunity and immunological responses were assessed in BALB/c mice vaccinated with irradiated L3 stage larvae and depleted of basophils with weekly injections of anti-CD200R3 antibody. Depletion of basophils after administration of the vaccination regimen but before challenge infection did not alter protective immunity. In contrast, basophil depletion initiated prior to vaccination and continued after challenge infection significantly attenuated the protective effect conferred by vaccination. Vaccine-induced cellular immune responses to parasite antigen were substantially decreased in basophil-depleted mice, with significant decreases in CD4+ T-cell production of IL-4, IL-5, IL-10, and IFN-γ. Interestingly, skin mast cell numbers, which increased significantly after vaccination with irradiated L3 larvae, were unchanged after vaccination in basophil-depleted mice. These findings demonstrate that basophils help establish the immune responses responsible for irradiated L3 vaccine protection. PMID:23777951

  8. Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis

    Science.gov (United States)

    Perdomo, Carolina; Zedler, Ulrike; Kühl, Anja A.; Lozza, Laura; Saikali, Philippe; Sander, Leif E.; Vogelzang, Alexis; Kupz, Andreas

    2016-01-01

    ABSTRACT Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (TRM) cells have been implicated in protective immune responses against viral infections, but the role of TRM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and TRM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4+ T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8+ T cells displayed prototypical TRM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. PMID:27879332

  9. Eye mucosa: an efficient vaccine delivery route for inducing protective immunity.

    Science.gov (United States)

    Seo, Kyoung Yul; Han, Soo Jung; Cha, Hye-Ran; Seo, Sang-Uk; Song, Joo-Hye; Chung, So-Hyang; Kweon, Mi-Na

    2010-09-15

    The external part of the eye shares mucosa-associated common characteristics and is an obvious entry site for foreign Ags. We assessed the potential of eyedrop vaccination for effective delivery of vaccines against viral or bacterial infection in mice. Both OVA-specific IgG Ab in serum and IgA Ab in mucosal compartments were induced by eyedrops of OVA with cholera toxin (CT). Eyedrop vaccination of influenza A/PR/8 virus (H1N1) induced both influenza virus-specific systemic and mucosal Ab responses and protected mice completely against respiratory infection with influenza A/PR/8 virus. In addition, eyedrop vaccination of attenuated Salmonella vaccine strains induced LPS-specific Ab and complete protection against oral challenge of virulent Salmonella. Unlike with the intranasal route, eyedrop vaccinations did not redirect administered Ag into the CNS in the presence of CT. When mice were vaccinated by eyedrop, even after the occlusion of tear drainage from eye to nose, Ag-specific systemic IgG and mucosal IgA Abs could be induced effectively. Of note, eyedrops with OVA plus CT induced organogenesis of conjunctiva-associated lymphoid tissue and increased microfold cell-like cells on the conjunctiva-associated lymphoid tissue in the nictitating membrane on conjunctiva, the mucosal side of the external eye. On the basis of these findings, we propose that the eyedrop route is an alternative to mucosal routes for administering vaccines.

  10. Strong protection induced by an experimental DIVA subunit vaccine against bluetongue virus serotype 8 in cattle.

    Science.gov (United States)

    Anderson, Jenna; Hägglund, Sara; Bréard, Emmanuel; Riou, Mickaël; Zohari, Siamak; Comtet, Loic; Olofson, Ann-Sophie; Gélineau, Robert; Martin, Guillaume; Elvander, Marianne; Blomqvist, Gunilla; Zientara, Stéphan; Valarcher, Jean Francois

    2014-11-20

    Bluetongue virus (BTV) infections in ruminants pose a permanent agricultural threat since new serotypes are constantly emerging in new locations. Clinical disease is mainly observed in sheep, but cattle were unusually affected during an outbreak of BTV seroype 8 (BTV-8) in Europe. We previously developed an experimental vaccine based on recombinant viral protein 2 (VP2) of BTV-8 and non-structural proteins 1 (NS1) and NS2 of BTV-2, mixed with an immunostimulating complex (ISCOM)-matrix adjuvant. We demonstrated that bovine immune responses induced by this vaccine were as good or superior to those induced by a classic commercial inactivated vaccine. In this study, we evaluated the protective efficacy of the experimental vaccine in cattle and, based on the detection of VP7 antibodies, assessed its DIVA compliancy following virus challenge. Two groups of BTV-seronegative calves were subcutaneously immunized twice at a 3-week interval with the subunit vaccine (n=6) or with adjuvant alone (n=6). Following BTV-8 challenge 3 weeks after second immunization, controls developed viremia and fever associated with other mild clinical signs of bluetongue disease, whereas vaccinated animals were clinically and virologically protected. The vaccine-induced protection was likely mediated by high virus-neutralizing antibody titers directed against VP2 and perhaps by cellular responses to NS1 and NS2. T lymphocyte responses were cross-reactive between BTV-2 and BTV-8, suggesting that NS1 and NS2 may provide the basis of an adaptable vaccine that can be varied by using VP2 of different serotypes. The detection of different levels of VP7 antibodies in vaccinated animals and controls after challenge suggested a compliancy between the vaccine and the DIVA companion test. This BTV subunit vaccine is a promising candidate that should be further evaluated and developed to protect against different serotypes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Montanide ISA™ 201 adjuvanted FMD vaccine induces improved immune responses and protection in cattle.

    Science.gov (United States)

    Dar, Pervaiz; Kalaivanan, Ramya; Sied, Nuru; Mamo, Bedaso; Kishore, Subodh; Suryanarayana, V V S; Kondabattula, Ganesh

    2013-07-18

    Despite significant advancements in modern vaccinology, inactivated whole virus vaccines for foot-and-mouth disease (FMD) remain the mainstay for prophylactic and emergency uses. Many efforts are currently devoted to improve the immune responses and protective efficacy of these vaccines. Adjuvants, which are often used to potentiate immune responses, provide an excellent mean to improve the efficacy of FMD vaccines. This study aimed to evaluate three oil adjuvants namely: Montanide ISA-201, ISA-206 (SEPPIC, France) and GAHOL (an in-house developed oil-adjuvant) for adjuvant potential in inactivated FMD vaccine. Groups of cattle (n=6) were immunized once intramuscularly with monovalent FMDV 'O' vaccine formulated in these adjuvants, and humoral (serum neutralizing antibody, IgG1 and IgG2) and cellular (lymphoproliferation) responses were measured. Montanide ISA-201 adjuvanted vaccine induced earlier and higher neutralizing antibody responses as compared to the two other adjuvants. All the adjuvants induced mainly serum IgG1 isotype antibody responses against FMDV. However, Montanide ISA-201 induced relatively higher IgG2 responses than the other two adjuvants. Lymphoproliferative responses to recall FMDV antigen were relatively higher with Montanide ISA-201, although not always statistically significant. On homologous FMDV challenge at 30 days post-vaccination, 100% (6/6) of the cattle immunized with Montanide-201 adjuvanted vaccine were protected, which was superior to those immunized with ISA-206 (66.6%, 4/6) or GAHOL adjuvanted vaccine (50%, 3/6). Virus replication following challenge infection, as determined by presence of the viral genome in oropharynx and non-structural protein serology, was lowest with Montanide ISA-201 adjuvant. Collectively, these results indicate that the Montanide ISA-201 adjuvanted FMD vaccine induces enhanced immune responses and protective efficacy in cattle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Microneedle delivery of trivalent influenza vaccine to the skin induces long-term cross-protection.

    Science.gov (United States)

    Kim, Yeu-Chun; Lee, Su-Hwa; Choi, Won-Hyung; Choi, Hyo-Jick; Goo, Tae-Won; Lee, Ju-Hie; Quan, Fu-Shi

    2016-12-01

    A painless self-immunization method with effective and broad cross-protection is urgently needed to prevent infections against newly emerging influenza viruses. In this study, we investigated the cross-protection efficacy of trivalent influenza vaccine containing inactivated A/PR/8/34 (H1N1), A/Hong Kong/68 (H3N2) and B/Lee/40 after skin vaccination using microneedle patches coated with this vaccine. Microneedle vaccination of mice in the skin provided 100% protection against lethal challenges with heterologous pandemic strain influenza A/California/04/09, heterogeneous A/Philippines/2/82 and B/Victoria/287 viruses 8 months after boost immunization. Cross-reactive serum IgG antibody responses against heterologous influenza viruses A/California/04/09, A/Philippines/2/82 and B/Victoria/287 were induced at high levels. Hemagglutination inhibition titers were also maintained at high levels against these heterogeneous viruses. Microneedle vaccination induced substantial levels of cross-reactive IgG antibody responses in the lung and cellular immune responses, as well as cross-reactive antibody-secreting plasma cells in the spleen. Viral loads in the lung were significantly (p < 0.05) reduced. All mice survived after viral challenges. These results indicate that skin vaccination with trivalent vaccine using a microneedle array could provide protection against seasonal epidemic or new pandemic strain of influenza viruses.

  13. IL-22-induced antimicrobial peptides are key determinants of mucosal vaccine-induced protection against H. pylori in mice.

    Science.gov (United States)

    Moyat, M; Bouzourene, H; Ouyang, W; Iovanna, J; Renauld, J-C; Velin, D

    2017-01-01

    Despite the recent description of the mucosal vaccine-induced reduction of Helicobacter pylori natural infection in a phase 3 clinical trial, the absence of immune correlates of protection slows the final development of the vaccine. In this study, we evaluated the role of interleukin (IL)-22 in mucosal vaccine-induced protection. Gastric IL-22 levels were increased in mice intranasally immunized with urease+cholera toxin and challenged with H. felis, as compared with controls. Flow cytometry analysis showed that a peak of CD4 + IL-22 + IL-17 + T cells infiltrating the gastric mucosa occurred in immunized mice in contrast to control mice. The inhibition of the IL-22 biological activity prevented the vaccine-induced reduction of H. pylori infection. Remarkably, anti-microbial peptides (AMPs) extracted from the stomachs of vaccinated mice, but not from the stomachs of non-immunized or immunized mice, injected with anti-IL-22 antibodies efficiently killed H. pylori in vitro. Finally, H. pylori infection in vaccinated RegIIIβ-deficient mice was not reduced as efficiently as in wild-type mice. These results demonstrate that IL-22 has a critical role in vaccine-induced protection, by promoting the expression of AMPs, such as RegIIIβ, capable of killing Helicobacter. Therefore, it can be concluded that urease-specific memory Th17/Th22 cells could constitute immune correlates of vaccine protection in humans.

  14. Combination of Protein and Viral Vaccines Induces Potent Cellular and Humoral Immune Responses and Enhanced Protection from Murine Malaria Challenge▿

    OpenAIRE

    Hutchings, Claire L.; Birkett, Ashley J.; Moore, Anne C.; Hill, Adrian V. S.

    2007-01-01

    The search for an efficacious vaccine against malaria is ongoing, and it is now widely believed that to confer protection a vaccine must induce very strong cellular and humoral immunity concurrently. We studied the immune response in mice immunized with the recombinant viral vaccines fowlpox strain FP9 and modified virus Ankara (MVA), a protein vaccine (CV-1866), or a combination of the two; all vaccines express parts of the same preerythrocytic malaria antigen, the Plasmodium berghei circums...

  15. HPV16/18 L1 VLP Vaccine Induces Cross-Neutralizing Antibodies that May Mediate Cross-Protection

    OpenAIRE

    Kemp, Troy J; Hildesheim, Allan; Safaeian, Mahboobeh; Dauner, Joseph G.; Pan, Yuanji; Porras, Carolina; Schiller, John T.; Lowy, Douglas R.; Herrero, Rolando; Pinto, Ligia A

    2011-01-01

    Human papillomavirus (HPV) L1 VLP-based vaccines are protective against HPV vaccine-related types; however, the correlates of protection have not been defined. We observed that vaccination with Cervarix™ induced cross-neutralizing antibodies for HPV types for which evidence of vaccine efficacy has been demonstrated (HPV31/45) but not for other types (HPV52/58). In addition, HPV31/45 cross-neutralizing titers showed a significant increase with number of doses (HPV31, p

  16. Can VHS virus bypass the protective immunity induced by DNA vaccination in rainbow trout?

    DEFF Research Database (Denmark)

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability...... and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV), an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly...... pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus...

  17. DNA vaccination protects mice against Zika virus-induced damage to the testes

    Science.gov (United States)

    Griffin, Bryan D.; Muthumani, Kar; Warner, Bryce M.; Majer, Anna; Hagan, Mable; Audet, Jonathan; Stein, Derek R.; Ranadheera, Charlene; Racine, Trina; De La Vega, Marc-Antoine; Piret, Jocelyne; Kucas, Stephanie; Tran, Kaylie N.; Frost, Kathy L.; De Graff, Christine; Soule, Geoff; Scharikow, Leanne; Scott, Jennifer; McTavish, Gordon; Smid, Valerie; Park, Young K.; Maslow, Joel N.; Sardesai, Niranjan Y.; Kim, J. Joseph; Yao, Xiao-jian; Bello, Alexander; Lindsay, Robbin; Boivin, Guy; Booth, Stephanie A.; Kobasa, Darwyn; Embury-Hyatt, Carissa; Safronetz, David; Weiner, David B.; Kobinger, Gary P.

    2017-01-01

    Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract. PMID:28589934

  18. DNA vaccination protects mice against Zika virus-induced damage to the testes.

    Science.gov (United States)

    Griffin, Bryan D; Muthumani, Kar; Warner, Bryce M; Majer, Anna; Hagan, Mable; Audet, Jonathan; Stein, Derek R; Ranadheera, Charlene; Racine, Trina; De La Vega, Marc-Antoine; Piret, Jocelyne; Kucas, Stephanie; Tran, Kaylie N; Frost, Kathy L; De Graff, Christine; Soule, Geoff; Scharikow, Leanne; Scott, Jennifer; McTavish, Gordon; Smid, Valerie; Park, Young K; Maslow, Joel N; Sardesai, Niranjan Y; Kim, J Joseph; Yao, Xiao-Jian; Bello, Alexander; Lindsay, Robbin; Boivin, Guy; Booth, Stephanie A; Kobasa, Darwyn; Embury-Hyatt, Carissa; Safronetz, David; Weiner, David B; Kobinger, Gary P

    2017-06-07

    Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract.

  19. Combination of protein and viral vaccines induces potent cellular and humoral immune responses and enhanced protection from murine malaria challenge.

    Science.gov (United States)

    Hutchings, Claire L; Birkett, Ashley J; Moore, Anne C; Hill, Adrian V S

    2007-12-01

    The search for an efficacious vaccine against malaria is ongoing, and it is now widely believed that to confer protection a vaccine must induce very strong cellular and humoral immunity concurrently. We studied the immune response in mice immunized with the recombinant viral vaccines fowlpox strain FP9 and modified virus Ankara (MVA), a protein vaccine (CV-1866), or a combination of the two; all vaccines express parts of the same preerythrocytic malaria antigen, the Plasmodium berghei circumsporozoite protein (CSP). Mice were then challenged with P. berghei sporozoites to determine the protective efficacies of different vaccine regimens. Two immunizations with the protein vaccine CV-1866, based on the hepatitis B core antigen particle, induced strong humoral immunity to the repeat region of CSP that was weakly protective against sporozoite challenge. Prime-boost with the viral vector vaccines, FP9 followed by MVA, induced strong T-cell immunity to the CD8+ epitope Pb9 and partially protected animals from challenge. Physically mixing CV-1866 with FP9 or MVA and then immunizing with the resultant combinations in a prime-boost regimen induced both cellular and humoral immunity and afforded substantially higher levels of protection (combination, 90%) than either vaccine alone (CV-1866, 12%; FP9/MVA, 37%). For diseases such as malaria in which different potent immune responses are required to protect against different stages, using combinations of partially effective vaccines may offer a more rapid route to achieving deployable levels of efficacy than individual vaccine strategies.

  20. Protective antitumor activity induced by a fusion vaccine with murine ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... the mechanisms for manipulating the immune system, tumor immunotherapy, especially, targeting angiogenesis ... delivery system for transfection. The effects of resulting vaccine and underlying mechanism were investigated in ..... Genetic and epigenetic inactivation of T-cadherin in human hepatocellular ...

  1. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Jong Seok [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); National Institute of Biological Resources, Incheon (Korea, Republic of); Kim, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Yu-Na; Kim, Min-Chul [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Animal and Plant Quarantine Agency, Gyeonggi-do, Gimcheon, Gyeongsangbukdo (Korea, Republic of); Cho, Minkyoung [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Kang, Sang-Moo, E-mail: skang24@gsu.edu [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States)

    2016-07-15

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.

  2. Vaccination with Enzymatically Cleaved GPI-Anchored Proteins from Schistosoma mansoni Induces Protection against Challenge Infection

    Directory of Open Access Journals (Sweden)

    Vicente P. Martins

    2012-01-01

    Full Text Available The flatworm Schistosoma mansoni is a blood fluke parasite that causes schistosomiasis, a debilitating disease that occurs throughout the developing world. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control schistosomiasis is through immunization with an antischistosomiasis vaccine combined with drug treatment. In the search for potential vaccine candidates, numerous tegument antigens have been assessed. As the major interface between parasite and mammalian host, the tegument plays crucial roles in the establishment and further course of schistosomiasis. Herein, we evaluated the potential of a GPI fraction, containing representative molecules located on the outer surface of adult worms, as vaccine candidate. Immunization of mice with GPI-anchored proteins induced a mixed Th1/Th2 type of immune response with production of IFN-γ and TNF-α, and low levels of IL-5 into the supernatant of splenocyte cultures. The protection engendered by this vaccination protocol was confirmed by 42% reduction in worm burden, 45% reduction in eggs per gram of hepatic tissue, 29% reduction in the number of granulomas per area, and 53% reduction in the granuloma fibrosis. Taken together, the data herein support the potential of surface-exposed GPI-anchored antigens from the S. mansoni tegument as vaccine candidate.

  3. Vaccination with enzymatically cleaved GPI-anchored proteins from Schistosoma mansoni induces protection against challenge infection.

    Science.gov (United States)

    Martins, Vicente P; Pinheiro, Carina S; Figueiredo, Barbara C P; Assis, Natan R G; Morais, Suellen B; Caliari, Marcelo V; Azevedo, Vasco; Castro-Borges, William; Wilson, R Alan; Oliveira, Sergio C

    2012-01-01

    The flatworm Schistosoma mansoni is a blood fluke parasite that causes schistosomiasis, a debilitating disease that occurs throughout the developing world. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control schistosomiasis is through immunization with an antischistosomiasis vaccine combined with drug treatment. In the search for potential vaccine candidates, numerous tegument antigens have been assessed. As the major interface between parasite and mammalian host, the tegument plays crucial roles in the establishment and further course of schistosomiasis. Herein, we evaluated the potential of a GPI fraction, containing representative molecules located on the outer surface of adult worms, as vaccine candidate. Immunization of mice with GPI-anchored proteins induced a mixed Th1/Th2 type of immune response with production of IFN-γ and TNF-α, and low levels of IL-5 into the supernatant of splenocyte cultures. The protection engendered by this vaccination protocol was confirmed by 42% reduction in worm burden, 45% reduction in eggs per gram of hepatic tissue, 29% reduction in the number of granulomas per area, and 53% reduction in the granuloma fibrosis. Taken together, the data herein support the potential of surface-exposed GPI-anchored antigens from the S. mansoni tegument as vaccine candidate.

  4. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2002-01-01

    It was recently reported that DNA vaccination of rainbow trout fingerlings against viral hemorrhagic septicaemia virus (VHSV) induced protection within 8 days after intramuscular injection of plasmid DNA. In order to analyse the specificity of this early immunity, fish were vaccinated with plasmi...

  5. Vaccination using live attenuated Leishmania donovani centrin deleted parasites induces protection in dogs against Leishmania infantum.

    Science.gov (United States)

    Fiuza, Jacqueline Araújo; Gannavaram, Sreenivas; Santiago, Helton da Costa; Selvapandiyan, Angamuthu; Souza, Daniel Menezes; Passos, Lívia Silva Araújo; de Mendonça, Ludmila Zanandreis; Lemos-Giunchetti, Denise da Silveira; Ricci, Natasha Delaqua; Bartholomeu, Daniella Castanheira; Giunchetti, Rodolfo Cordeiro; Bueno, Lilian Lacerda; Correa-Oliveira, Rodrigo; Nakhasi, Hira L; Fujiwara, Ricardo Toshio

    2015-01-03

    Live attenuated Leishmania donovani parasites such as LdCen(-/-) have been shown elicit protective immunity against leishmanial infection in mice and hamster models. Previously, we have reported on the induction of strong immunogenicity in dogs upon vaccination with LdCen(-/-) including an increase in immunoglobulin isotypes, higher lymphoproliferative response, higher frequencies of activated CD4(+) and CD8(+) T cells, IFN-γ production by CD8(+) T cells, increased secretion of TNF-α and IL-12/IL-23p40 and, finally, decreased secretion of IL-4. To further explore the potential of LdCen(-/-) parasites as vaccine candidates, we performed a 24-month follow up of LdCen(-/-) immunized dogs after challenge with virulent Leishmania infantum, aiming determination of parasite burden by qPCR, antibody production (ELISA) and cellular responses (T cell activation and cytokine production) by flow cytometry and sandwich ELISA. Our data demonstrated that vaccination with a single dose of LdCen(-/-) (without any adjuvant) resulted in the reduction of up to 87.3% of parasite burden after 18 months of virulent challenge. These results are comparable to those obtained with commercially available vaccine in Brazil (Leishmune(®)). The protection was associated with antibody production and CD4(+) and CD8(+) proliferative responses, as well as T cell activation and significantly higher production of IFN-γ, IL-12/IL-23p40 and TNF-α, which was comparable to responses induced by immunization with Leishmune(®), with significant differences when compared to control animals (Placebo). Moreover, only animals immunized with LdCen(-/-) expressed lower levels of IL-4 when compared to animals vaccinated either with Leishmune(®) or PBS. Our results support further studies aiming to demonstrate the potential of genetically modified live attenuated L. donovani vaccine to control L. infantum transmission in endemic areas for CVL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    Science.gov (United States)

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  7. Poly I:C adjuvanted inactivated swine influenza vaccine induces heterologous protective immunity in pigs.

    Science.gov (United States)

    Thomas, Milton; Wang, Zhao; Sreenivasan, Chithra C; Hause, Ben M; Gourapura J Renukaradhya; Li, Feng; Francis, David H; Kaushik, Radhey S; Khatri, Mahesh

    2015-01-15

    Swine influenza is widely prevalent in swine herds in North America and Europe causing enormous economic losses and a public health threat. Pigs can be infected by both avian and mammalian influenza viruses and are sources of generation of reassortant influenza viruses capable of causing pandemics in humans. Current commercial vaccines provide satisfactory immunity against homologous viruses; however, protection against heterologous viruses is not adequate. In this study, we evaluated the protective efficacy of an intranasal Poly I:C adjuvanted UV inactivated bivalent swine influenza vaccine consisting of Swine/OH/24366/07 H1N1 and Swine/CO/99 H3N2, referred as PAV, in maternal antibody positive pigs against an antigenic variant and a heterologous swine influenza virus challenge. Groups of three-week-old commercial-grade pigs were immunized intranasally with PAV or a commercial vaccine (CV) twice at 2 weeks intervals. Three weeks after the second immunization, pigs were challenged with the antigenic variant Swine/MN/08 H1N1 (MN08) and the heterologous Swine/NC/10 H1N2 (NC10) influenza virus. Antibodies in serum and respiratory tract, lung lesions, virus shedding in nasal secretions and virus load in lungs were assessed. Intranasal administration of PAV induced challenge viruses specific-hemagglutination inhibition- and IgG antibodies in the serum and IgA and IgG antibodies in the respiratory tract. Importantly, intranasal administration of PAV provided protection against the antigenic variant MN08 and the heterologous NC10 swine influenza viruses as evidenced by significant reductions in lung virus load, gross lung lesions and significantly reduced shedding of challenge viruses in nasal secretions. These results indicate that Poly I:C or its homologues may be effective as vaccine adjuvants capable of generating cross-protective immunity against antigenic variants/heterologous swine influenza viruses in pigs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Dual DNA vaccination of rainbow trout (Oncorhynchus mykiss) against two different rhabdoviruses, VHSV and IHNV, induces specific divalent protection

    DEFF Research Database (Denmark)

    Einer-Jensen, Katja; Delgado, L.; Lorenzen, Ellen

    2009-01-01

    DNA vaccines encoding the glycoprotein genes of the salmonid rhabdoviruses VHSV and IHNV are very efficient in eliciting protective immune responses against their respective diseases in rainbow trout (Oncorhynchus mykiss). The early anti-viral response (EAVR) provides Protection by 4 days post...... vaccination and is non-specific and transient while the specific anti-viral response (SAVR) is long lasting and highly specific. Since both VHSV and IHNV are endemic in rainbow trout in several geographical regions of Europe and Atlantic salmon (Salmo salar) on the Pacific coast of North America, co-vaccination...... against the two diseases would be a preferable option. In the present study we demonstrated that a single injection of mixed DNA vaccines induced long-lasting protection against both individual and a simultaneous virus challenge 80 days post vaccination. Transfected muscle cells at the injection site...

  9. An alphavirus vector-based tetravalent dengue vaccine induces a rapid and protective immune response in macaques that differs qualitatively from immunity induced by live virus infection.

    Science.gov (United States)

    White, Laura J; Sariol, Carlos A; Mattocks, Melissa D; Wahala M P B, Wahala; Yingsiwaphat, Vorraphun; Collier, Martha L; Whitley, Jill; Mikkelsen, Rochelle; Rodriguez, Idia V; Martinez, Melween I; de Silva, Aravinda; Johnston, Robert E

    2013-03-01

    Despite many years of research, a dengue vaccine is not available, and the more advanced live attenuated vaccine candidate in clinical trials requires multiple immunizations with long interdose periods and provides low protective efficacy. Here, we report important contributions to the development of a second-generation dengue vaccine. First, we demonstrate that a nonpropagating vaccine vector based on Venezuelan equine encephalitis virus replicon particles (VRP) expressing two configurations of dengue virus E antigen (subviral particles [prME] and soluble E dimers [E85]) successfully immunized and protected macaques against dengue virus, while antivector antibodies did not interfere with a booster immunization. Second, compared to prME-VRP, E85-VRP induced neutralizing antibodies faster, to higher titers, and with improved protective efficacy. Third, this study is the first to map antigenic domains and specificities targeted by vaccination versus natural infection, revealing that, unlike prME-VRP and live virus, E85-VRP induced only serotype-specific antibodies, which predominantly targeted EDIII, suggesting a protective mechanism different from that induced by live virus and possibly live attenuated vaccines. Fourth, a tetravalent E85-VRP dengue vaccine induced a simultaneous and protective response to all 4 serotypes after 2 doses given 6 weeks apart. Balanced responses and protection in macaques provided further support for exploring the immunogenicity and safety of this vaccine candidate in humans.

  10. Formalin-Inactivated Coxiella burnetii Phase I Vaccine-Induced Protection Depends on B Cells To Produce Protective IgM and IgG

    Science.gov (United States)

    Peng, Ying; Schoenlaub, Laura; Elliott, Alexandra; Mitchell, William; Zhang, Yan

    2013-01-01

    To further understand the mechanisms of formalin-inactivated Coxiella burnetii phase I (PI) vaccine (PIV)-induced protection, we examined if B cell, T cell, CD4+ T cell, or CD8+ T cell deficiency in mice significantly affects the ability of PIV to confer protection against a C. burnetii infection. Interestingly, compared to wild-type (WT) mice, PIV conferred comparable levels of protection in CD4+ T cell- or CD8+ T cell-deficient mice and partial protection in T cell-deficient mice but did not provide measurable protection in B cell-deficient mice. These results suggest that PIV-induced protection depends on B cells. In addition, anti-PI-specific IgM was the major detectable antibody (Ab) in immune sera from PIV-vaccinated CD4+ T cell-deficient mice, and passive transfer of immune sera from PIV-vaccinated CD4+ T cell-deficient mice conferred significant protection. These results suggest that T cell-independent anti-PI-specific IgM may contribute to PIV-induced protection. Our results also suggested that PIV-induced protection may not depend on complement activation and Fc receptor-mediated effector functions. Furthermore, our results demonstrated that both IgM and IgG from PIV-vaccinated WT mouse sera were able to inhibit C. burnetii infection in vivo, but only IgM from PIV-vaccinated CD4+ T cell-deficient mouse sera inhibited C. burnetii infection. Collectively, these findings suggest that PIV-induced protection depends on B cells to produce protective IgM and IgG and that T cell-independent anti-PI-specific IgM may play a critical role in PIV-induced protection against C. burnetii infection. PMID:23545296

  11. Protection against bovine tuberculosis induced by oral vaccination of cattle with Mycobacterium bovis BCG is not enhanced by co-administration of mycobacterial protein vaccines.

    Science.gov (United States)

    Wedlock, D Neil; Aldwell, Frank E; Vordermeier, H Martin; Hewinson, R Glyn; Buddle, Bryce M

    2011-12-15

    Mycobacterium bovis bacille Calmette-Guérin (BCG) delivered to calves by the oral route in a formulated lipid matrix has been previously shown to induce protection against bovine tuberculosis. A study was conducted in cattle to determine if a combination of a low dose of oral BCG and a protein vaccine could induce protective immunity to tuberculosis while not sensitising animals to tuberculin. Groups of calves (10 per group) were vaccinated by administering 2 × 10(7)colony forming units (CFU) of BCG orally or a combination of 2 × 10(7)CFU oral BCG and a protein vaccine comprised of M. bovis culture filtrate proteins (CFP) formulated with the adjuvants Chitin and Gel 01 and delivered by the intranasal route, or CFP formulated with Emulsigen and the TLR2 agonist Pam(3)CSK(4) and administered by the subcutaneous (s.c.) route. Two further groups were vaccinated with the CFP/Chitin/Gel 01 or CFP/Emulsigen/Pam(3)CSK(4) vaccines alone. Positive control groups were given 10(8)CFU oral BCG or 10(6)CFU s.c. BCG while a negative control group was non-vaccinated. All animals were challenged with M. bovis 15 weeks after vaccination and euthanized and necropsied at 16 weeks following challenge. Groups of cattle vaccinated with s.c. BCG, 10(8)CFU or 2 × 10(7)CFU oral BCG showed significant reductions in seven, three and four pathological or microbiological disease parameters, respectively, compared to the results for the non-vaccinated group. There was no evidence of protection in calves vaccinated with the combination of oral BCG and CFP/Emulsigen/Pam(3)CSK(4) or oral BCG and CFP/Chitin/Gel 01 or vaccinated with the protein vaccines alone. Positive responses in the comparative cervical skin test at 12 weeks after vaccination were only observed in animals vaccinated with s.c. BCG, 10(8)CFU oral BCG or a combination of 2 × 10(7)CFU oral BCG and CFP/Chitin/Gel 01. In conclusion, co-administration of a protein vaccine, administered by either systemic or mucosal routes with oral

  12. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites.

    Science.gov (United States)

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E; Yoshida, Shigeto

    2014-10-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Hepatitis B Vaccination Protection

    Science.gov (United States)

    Fact Sheet Hepatitis B Vaccination Protection Hepatitis B virus (HBV) is a pathogenic microorganism that can cause potentially life- threatening disease in humans. HBV infection is transmitted through exposure ...

  14. Matrix-M (TM) adjuvation broadens protection induced by seasonal trivalent virosomal influenza vaccine

    NARCIS (Netherlands)

    Cox, Freek; Saeland, Eirikur; Baart, Matthijs; Koldijk, Martin; Tolboom, Jeroen; Dekking, Liesbeth; Koudstaal, Wouter; Lövgren Bengtsson, Karin; Goudsmit, Jaap; Radošević, Katarina

    2015-01-01

    Background: Influenza virus infections are responsible for significant morbidity worldwide and therefore it remains a high priority to develop more broadly protective vaccines. Adjuvation of current seasonal influenza vaccines has the potential to achieve this goal. Methods: To assess the immune

  15. Both CD4+ and CD8+ T cells can mediate vaccine-induced protection against Coccidioides immitis infection in mice.

    Science.gov (United States)

    Fierer, Joshua; Waters, Crystal; Walls, Lorraine

    2006-05-01

    To determine which lymphocytes are required for vaccine-induced immunity to coccidioidomycosis, we used a temperature-sensitive mutant of Coccidioides immitis to immunize mice lacking subsets of lymphocytes or specific cytokines and infected the mice 4 weeks later with virulent C. immitis. After 2 weeks, we determined the number of fungi in their lungs and spleens. Vaccine-induced immunity required alpha beta T lymphocytes. beta -2 microglobulin knockout (KO) mice were protected by immunization, and we transferred protection using CD4+ T cells from immunized mice. However, vaccination also protected CD4+ KO mice, which suggests that CD8+ T cells played a role in vaccine-induced immunity, even though they were not required. We adaptively transferred protection using spleen cells from immunized CD4+ KO mice to nonimmune B6 mice, but CD8+ -depleted spleen cells did not protect against infection. Recipients of spleen cells from immunized CD4+ KO mice had 6 times more tumor necrosis factor (TNF)- alpha mRNA in their lungs than did mice that received nonimmune spleen cells, and TNF receptor-1 KO mice were not fully protected by immunization. These results show that both CD4+ and CD8+ T cells can protect against coccidioidomycosis and that TNF- alpha is a necessary component of the acquired immune response.

  16. Intracutaneous DNA Vaccination with the E8 Gene of Cottontail Rabbit Papillomavirus Induces Protective Immunity against Virus Challenge in Rabbits

    OpenAIRE

    Hu, Jiafen; Han, Ricai; Cladel, Nancy M.; Pickel, Martin D; Christensen, Neil D.

    2002-01-01

    The cottontail rabbit papillomavirus (CRPV)-rabbit model has been used in several studies for testing prophylactic and therapeutic papillomavirus vaccines. Earlier observations had shown that the CRPV nonstructural genes E1, E2, and E6 induced strong to partial protective immunity against CRPV infection. In this study, we found that CRPV E8 immunization eliminated virus-induced papillomas in EIII/JC inbred rabbits (100%) and provided partial protection (55%) against virus challenge in outbred...

  17. An mRNA Vaccine Encoding Rabies Virus Glycoprotein Induces Protection against Lethal Infection in Mice and Correlates of Protection in Adult and Newborn Pigs.

    Science.gov (United States)

    Schnee, Margit; Vogel, Annette B; Voss, Daniel; Petsch, Benjamin; Baumhof, Patrick; Kramps, Thomas; Stitz, Lothar

    2016-06-01

    Rabies is a zoonotic infectious disease of the central nervous system (CNS). In unvaccinated or untreated subjects, rabies virus infection causes severe neurological symptoms and is invariably fatal. Despite the long-standing existence of effective vaccines, vaccine availability remains insufficient, with high numbers of fatal infections mostly in developing countries. Nucleic acid based vaccines have proven convincingly as a new technology for the fast development of vaccines against newly emerging pathogens, diseases where no vaccine exists or for replacing already existing vaccines. We used an optimized non-replicating rabies virus glycoprotein (RABV-G) encoding messenger RNA (mRNA) to induce potent neutralizing antibodies (VN titers) in mice and domestic pigs. Functional antibody titers were followed in mice for up to one year and titers remained stable for the entire observation period in all dose groups. T cell analysis revealed the induction of both, specific CD4+ as well as CD8+ T cells by RABV-G mRNA, with the induced CD4+ T cells being higher than those induced by a licensed vaccine. Notably, RABV-G mRNA vaccinated mice were protected against lethal intracerebral challenge infection. Inhibition of viral replication by vaccination was verified by qRT-PCR. Furthermore, we demonstrate that CD4+ T cells are crucial for the generation of neutralizing antibodies. In domestic pigs we were able to induce VN titers that correlate with protection in adult and newborn pigs. This study demonstrates the feasibility of a non-replicating mRNA rabies vaccine in small and large animals and highlights the promises of mRNA vaccines for the prevention of infectious diseases.

  18. An mRNA Vaccine Encoding Rabies Virus Glycoprotein Induces Protection against Lethal Infection in Mice and Correlates of Protection in Adult and Newborn Pigs.

    Directory of Open Access Journals (Sweden)

    Margit Schnee

    2016-06-01

    Full Text Available Rabies is a zoonotic infectious disease of the central nervous system (CNS. In unvaccinated or untreated subjects, rabies virus infection causes severe neurological symptoms and is invariably fatal. Despite the long-standing existence of effective vaccines, vaccine availability remains insufficient, with high numbers of fatal infections mostly in developing countries. Nucleic acid based vaccines have proven convincingly as a new technology for the fast development of vaccines against newly emerging pathogens, diseases where no vaccine exists or for replacing already existing vaccines. We used an optimized non-replicating rabies virus glycoprotein (RABV-G encoding messenger RNA (mRNA to induce potent neutralizing antibodies (VN titers in mice and domestic pigs. Functional antibody titers were followed in mice for up to one year and titers remained stable for the entire observation period in all dose groups. T cell analysis revealed the induction of both, specific CD4+ as well as CD8+ T cells by RABV-G mRNA, with the induced CD4+ T cells being higher than those induced by a licensed vaccine. Notably, RABV-G mRNA vaccinated mice were protected against lethal intracerebral challenge infection. Inhibition of viral replication by vaccination was verified by qRT-PCR. Furthermore, we demonstrate that CD4+ T cells are crucial for the generation of neutralizing antibodies. In domestic pigs we were able to induce VN titers that correlate with protection in adult and newborn pigs. This study demonstrates the feasibility of a non-replicating mRNA rabies vaccine in small and large animals and highlights the promises of mRNA vaccines for the prevention of infectious diseases.

  19. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model.

    Science.gov (United States)

    Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V S; Fletcher, Helen A

    2015-09-29

    The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. These results represent novel insights into the immune repertoires involved in malaria vaccination. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Dual DNA vaccination of rainbow trout (Oncorhynchus mykiss) against two different rhabdoviruses, VHSV and IHNV, induces specific divalent protection.

    Science.gov (United States)

    Einer-Jensen, Katja; Delgado, Lourdes; Lorenzen, Ellen; Bovo, Giuseppe; Evensen, Øystein; Lapatra, Scott; Lorenzen, Niels

    2009-02-18

    DNA vaccines encoding the glycoprotein genes of the salmonid rhabdoviruses VHSV and IHNV are very efficient in eliciting protective immune responses against their respective diseases in rainbow trout (Oncorhynchus mykiss). The early anti-viral response (EAVR) provides protection by 4 days post vaccination and is non-specific and transient while the specific anti-viral response (SAVR) is long lasting and highly specific. Since both VHSV and IHNV are endemic in rainbow trout in several geographical regions of Europe and Atlantic salmon (Salmo salar) on the Pacific coast of North America, co-vaccination against the two diseases would be a preferable option. In the present study we demonstrated that a single injection of mixed DNA vaccines induced long-lasting protection against both individual and a simultaneous virus challenge 80 days post vaccination. Transfected muscle cells at the injection site expressed both G proteins. This study confirms the applied potential of using a combined DNA vaccination for protection of fish against two different rhabdoviral diseases.

  1. Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens.

    Science.gov (United States)

    Maruggi, Giulietta; Chiarot, Emiliano; Giovani, Cinzia; Buccato, Scilla; Bonacci, Stefano; Frigimelica, Elisabetta; Margarit, Immaculada; Geall, Andrew; Bensi, Giuliano; Maione, Domenico

    2017-01-05

    Nucleic acid vaccines represent an attractive approach to vaccination, combining the positive attributes of both viral vectors and live-attenuated vaccines, without the inherent limitations of each technology. We have developed a novel technology, the Self-Amplifying mRNA (SAM) platform, which is based on the synthesis of self-amplifying mRNA formulated and delivered as a vaccine. SAM vaccines have been shown to stimulate robust innate and adaptive immune responses in small animals and non-human primates against a variety of viral antigens, thus representing a safe and versatile tool against viral infections. To assess whether the SAM technology could be used for a broader range of targets, we investigated the immunogenicity and efficacy of SAM vaccines expressing antigens from Group A (GAS) and Group B (GBS) Streptococci, as models of bacterial pathogens. Two prototype bacterial antigens (the double-mutated GAS Streptolysin-O (SLOdm) and the GBS pilus 2a backbone protein (BP-2a)) were successfully expressed by SAM vectors. Mice immunized with both vaccines produced significant amounts of fully functional serum antibodies. The antibody responses generated by SAM vaccines were capable of conferring consistent protection in murine models of GAS and GBS infections. Inclusion of a eukaryotic secretion signal or boosting with the recombinant protein resulted in higher specific-antibody levels and protection. Our results support the concept of using SAM vaccines as potential solution for a wide range of both viral and bacterial pathogens, due to the versatility of the manufacturing processes and the broad spectrum of elicited protective immune response. Copyright © 2016 GSK Vaccines. Published by Elsevier Ltd.. All rights reserved.

  2. CD47 Plays a Role as a Negative Regulator in Inducing Protective Immune Responses to Vaccination against Influenza Virus.

    Science.gov (United States)

    Lee, Young-Tae; Ko, Eun-Ju; Lee, Youri; Lee, Yu-Na; Bian, Zhen; Liu, Yuan; Kang, Sang-Moo

    2016-08-01

    An integrin-associated protein CD47, which is a ligand for the inhibitory receptor signal regulatory protein α, is expressed on B and T cells, as well as on most innate immune cells. However, the roles of CD47 in the immune responses to viral infection or vaccination remain unknown. We investigated the role of CD47 in inducing humoral immune responses after intranasal infection with virus or immunization with influenza virus-like particles (VLPs). Virus infection or vaccination with VLPs containing hemagglutinin from A/PR8/34 influenza virus induced higher levels of antigen-specific IgG2c isotype dominant antibodies in CD47-deficient (CD47KO) mice than in wild-type (WT) mice. CD47KO mice with vaccination showed greater protective efficacy against lethal challenge, as evidenced by no loss in body weight and reduced lung viral titers compared to WT mice. In addition, inflammatory responses which include cytokine production, leukocyte infiltrates, and gamma interferon-producing CD4(+) T cells, as well as an anti-inflammatory cytokine (interleukin-10), were reduced in the lungs of vaccinated CD47KO mice after challenge with influenza virus. Analysis of lymphocytes indicated that GL7(+) germinal center B cells were induced at higher levels in the draining lymph nodes of CD47KO mice compared to those in WT mice. Notably, CD47KO mice exhibited significant increases in the numbers of antigen-specific memory B cells in spleens and plasma cells in bone marrow despite their lower levels of background IgG antibodies. These results suggest that CD47 plays a role as a negative regulator in inducing protective immune responses to influenza vaccination. Molecular mechanisms that control B cell activation to produce protective antibodies upon viral vaccination remain poorly understood. The CD47 molecule is known to be a ligand for the inhibitory receptor signal regulatory protein α and expressed on the surfaces of most immune cell types. CD47 was previously demonstrated to play

  3. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease.

    Science.gov (United States)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Jong Seok; Kim, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Cho, Minkyoung; Kang, Sang-Moo

    2016-07-01

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. Copyright © 2016. Published by Elsevier Inc.

  4. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zheng

    2017-05-01

    Full Text Available Dengue virus (DV is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  5. A cell wall protein-based vaccine candidate induce protective immune response against Sporothrix schenckii infection.

    Science.gov (United States)

    Portuondo, Deivys Leandro; Batista-Duharte, Alexander; Ferreira, Lucas Souza; Martínez, Damiana Téllez; Polesi, Marisa Campos; Duarte, Roberta Aparecida; de Paula E Silva, Ana Carolina Alves; Marcos, Caroline Maria; Almeida, Ana Marisa Fusco de; Carlos, Iracilda Zeppone

    2016-02-01

    Sporotrichosis is a subcutaneous mycosis caused by several closely related thermo-dimorphic fungi of the Sporothrix schenckii species complex, affecting humans and other mammals. In the last few years, new strategies have been proposed for controlling sporotrichosis owning to concerns about its growing incidence in humans, cats, and dogs in Brazil, as well as the toxicity and limited efficacy of conventional antifungal drugs. In this study, we assessed the immunogenicity and protective properties of two aluminum hydroxide (AH)-adsorbed S. schenckii cell wall protein (ssCWP)-based vaccine formulations in a mouse model of systemic S. schenckii infection. Fractioning by SDS-PAGE revealed nine protein bands, two of which were functionally characterized: a 44kDa peptide hydrolase and a 47kDa enolase, which was predicted to be an adhesin. Sera from immunized mice recognized the 47kDa enolase and another unidentified 71kDa protein, whereas serum from S. schenckii-infected mice recognized both these proteins plus another unidentified 9.4kDa protein. Furthermore, opsonization with the anti-ssCWP sera led to markedly increased phagocytosis and was able to strongly inhibit the fungus' adhesion to fibroblasts. Immunization with the higher-dose AH-adjuvanted formulation led to increased ex vivo release of IL-12, IFN-γ, IL-4, and IL-17, whereas only IL-12 and IFN-γ were induced by the higher-dose non-adjuvanted formulation. Lastly, passive transference of the higher-dose AH-adjuvanted formulation's anti-ssCWP serum was able to afford in vivo protection in a subsequent challenge with S. schenckii, becoming a viable vaccine candidate for further testing. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. DNA vaccine encoding myristoylated membrane protein (MMP) of rock bream iridovirus (RBIV) induces protective immunity in rock bream (Oplegnathus fasciatus).

    Science.gov (United States)

    Jung, Myung-Hwa; Nikapitiya, Chamilani; Jung, Sung-Ju

    2018-02-01

    Rock bream iridovirus (RBIV) causes severe mass mortalities in rock bream (Oplegnathus fasciatus) in Korea. In this study, we investigated the potential of viral membrane protein to induce antiviral status protecting rock bream against RBIV infection. We found that fish administered with ORF008L (myristoylated membrane protein, MMP) vaccine exhibited significantly higher levels of survival compared to ORF007L (major capsid protein, MCP). Moreover, ORF008L-based DNA vaccinated fish showed significant protection at 4 and 8 weeks post vaccination (wpv) than non-vaccinated fish after infected with RBIV (6.7 × 10 5 ) at 23 °C, with relative percent survival (RPS) of 73.36% and 46.72%, respectively. All of the survivors from the first RBIV infection were strongly protected (100% RPS) from re-infected with RBIV (1.1 × 10 7 ) at 100 dpi. In addition, the MMP (ORF008L)-based DNA vaccine significantly induced the gene expression of TLR3 (14.2-fold), MyD88 (11.6-fold), Mx (84.7-fold), ISG15 (8.7-fold), PKR (25.6-fold), MHC class I (13.3-fold), Fas (6.7-fold), Fas ligand (6.7-fold), caspase9 (17.0-fold) and caspase3 (15.3-fold) at 7 days post vaccination in the muscle (vaccine injection site). Our results showed the induction of immune responses and suggest the possibility of developing preventive measures against RBIV using myristoylated membrane protein-based DNA vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Remote glucosyltransferase-microparticle vaccine delivery induces protective immunity in the oral cavity.

    Science.gov (United States)

    Smith, D J; Lam, A; Barnes, L A; King, W F; Peacock, Z; Wise, D L; Trantolo, D J; Taubman, M A

    2003-08-01

    Intranasally administered dental caries vaccines show significant promise for human application. Alternate mucosal routes may be required, however, to induce caries-protective salivary IgA antibody in children with respiratory diseases. Since rectal mucosa contains inductive lymphoid tissue, we hypothesized that the rectal route could be used to induce salivary immunity to mutans streptococcal glucosyltransferase (GTF), resulting in protective immunity to experimental dental caries. We first explored the ability of glucosyltransferase, incorporated into polylactide-co-glycolide (PLGA) microparticles (MP), and administered rectally together with mucosal adjuvant, to induce a salivary IgA antibody response. Groups of Sprague-Dawley rats (6/group) were immunized rectally on days 0, 7, 14 and 21 with a) GTF-MP alone, b) GTF-MP with cholera toxin, c) GTF-MP with detoxified mutant Escherichia coli toxin (dLT), or d) sham immunized with PLGA and cholera toxin. An additional group was immunized intranasally with GTF-MP alone. Saliva and nasal washes of all intranasally immunized rats contained IgA antibody to glucosyltransferase on day 28. Salivary IgA antibody was also detected in 7/12 rats rectally immunized with GTF-MP and cholera toxin or dLT, although responses were lower than those obtained by intranasal immunization. Most fecal extracts from rectally delivered GTF-MP plus cholera toxin or dLT rats contained IgA antibody to GTF-MP. Low levels of fecal IgA antibody were detected in 3/6 intranasally immunized rats and 2/6 rats rectally immunized with GTF-MP alone. We then examined the extent to which salivary IgA antibody induced by the rectal route could be protective. At 25, 31 and 38 days of age, two groups of female Sprague-Dawley rats (13/group) were rectally immunized with GTF-MP and cholera toxin or with empty microparticles and cholera toxin (sham group). A third group was intranasally immunized with GTF-MP alone. After demonstrating salivary IgA responses to

  8. Potential Role of Specific Antibodies as Important Vaccine Induced Protective Mechanism against Aeromonas salmonicida in Rainbow Trout

    DEFF Research Database (Denmark)

    Rømer Villumsen, Kasper; Dalsgaard, Inger; Holten-Andersen, Lars

    2012-01-01

    . In this study we have examined the protection against infection with a Danish strain of A. salmonicida in both vaccinated and non-vaccinated rainbow trout. A commercial and an experimental auto-vaccine were tested. The protective effects of the vaccines were evaluated through an A. salmonicida challenge 18...... weeks post vaccination. Both vaccines resulted in a significantly increased survival in the vaccinated fish during a 28 day challenge period relative to non-vaccinated fish (P = 0.01 and P = 0.001 for the commercial and experimental vaccine, respectively). Throughout the entire experiment, the presence...

  9. Vaccination with a DNA vaccine encoding Toxoplasma gondii ROP54 induces protective immunity against toxoplasmosis in mice.

    Science.gov (United States)

    Yang, Wen-Bin; Zhou, Dong-Hui; Zou, Yang; Chen, Kai; Liu, Qing; Wang, Jin-Lei; Zhu, Xing-Quan; Zhao, Guang-Hui

    2017-12-01

    Toxoplasma gondii is an obligatory intracellular protozoan, which infects most of the warm-blooded animals, causing serious public health problems and enormous economic losses worldwide. The rhoptry effector protein 54 (ROP54) has been indicated as a virulence factor that promotes Toxoplasma infection by modulating GBP2 loading onto parasite-containing vacuoles, which can modulate some aspects of the host immune response. In order to evaluate the immuno-protective value of ROP54, we constructed a eukaryotic recombinant plasmid expressing T. gondii ROP54 and intramuscularly immunized Kunming mice with this recombinant plasmid against acute and chronic toxoplasmosis. All mice immunized with pVAX-ROP54 elicited a high level of specific antibody responses, a significant increase of lymphocyte proliferation, and a significant level of Th1-type cytokines (IFN-γ, IL-2 and IL-12p70), in addition to an increased production of Th2-type cytokines (IL-4 and IL-10). These results demonstrated that pVAX-ROP54 induced significant cellular and humoral (Th1/Th2) immune responses, which extended the survival time (13.0±1.15days for pVAX-ROP54 vs 6.7±0.48days for pVAX I, 6.8±0.42days for PBS and 6.5±0.53 for blank control) and significantly reduced cyst burden (35.9% for pVAX-ROP54, 1% for pVAX I and 2% for PBS, compared with blank control) of immunized mice. These results indicate that the recombinant ROP54 plasmid can provide partial protection and might be a potential vaccine candidate against acute and chronic toxoplasmosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A DNA Vaccine Encoding Cu,Zn Superoxide Dismutase of Brucella abortus Induces Protective Immunity in BALB/c Mice

    Science.gov (United States)

    Oñate, Angel A.; Céspedes, Sandra; Cabrera, Alex; Rivers, Rodolfo; González, Andrés; Muñoz, Carola; Folch, Hugo; Andrews, Edilia

    2003-01-01

    This study was conducted to evaluate the immunogenicity and protective efficacy of a DNA vaccine encoding Brucella abortus Cu,Zn superoxide dismutase (SOD). Intramuscular injection of plasmid DNA carrying the SOD gene (pcDNA-SOD) into BALB/c mice elicited both humoral and cellular immune responses. Animals injected with pcDNA-SOD developed SOD-specific antibodies which exhibited a dominance of immunoglobulin G2a (IgG2a) over IgG1. In addition, the DNA vaccine elicited a T-cell-proliferative response and also induced the production of gamma interferon, but not interleukin-10 (IL-10) or IL-4, upon restimulation with either recombinant SOD or crude Brucella protein, suggesting the induction of a typical T-helper-1-dominated immune response in mice. The pcDNA-SOD (but not the control vector) induced a strong, significant level of protection in BALB/c mice against challenge with B. abortus virulent strain 2308; the level of protection was similar to the one induced by B. abortus vaccine strain RB51. Altogether, these data suggest that pcDNA-SOD is a good candidate for use in future studies of vaccination against brucellosis. PMID:12933826

  11. A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection.

    Directory of Open Access Journals (Sweden)

    Olivia C Demurtas

    Full Text Available BACKGROUND: The E7 protein of the Human Papillomavirus (HPV type 16, being involved in malignant cellular transformation, represents a key antigen for developing therapeutic vaccines against HPV-related lesions and cancers. Recombinant production of this vaccine antigen in an active form and in compliance with good manufacturing practices (GMP plays a crucial role for developing effective vaccines. E7-based therapeutic vaccines produced in plants have been shown to be active in tumor regression and protection in pre-clinical models. However, some drawbacks of in whole-plant vaccine production encouraged us to explore the production of the E7-based therapeutic vaccine in Chlamydomonas reinhardtii, an organism easy to grow and transform and fully amenable to GMP guidelines. METHODOLOGY/PRINCIPAL FINDINGS: An expression cassette encoding E7GGG, a mutated, attenuated form of the E7 oncoprotein, alone or as a fusion with affinity tags (His6 or FLAG, under the control of the C. reinhardtii chloroplast psbD 5' UTR and the psbA 3' UTR, was introduced into the C. reinhardtii chloroplast genome by homologous recombination. The protein was mostly soluble and reached 0.12% of total soluble proteins. Affinity purification was optimized and performed for both tagged forms. Induction of specific anti-E7 IgGs and E7-specific T-cell proliferation were detected in C57BL/6 mice vaccinated with total Chlamydomonas extract and with affinity-purified protein. High levels of tumor protection were achieved after challenge with a tumor cell line expressing the E7 protein. CONCLUSIONS: The C. reinhardtii chloroplast is a suitable expression system for the production of the E7GGG protein, in a soluble, immunogenic form. The production in contained and sterile conditions highlights the potential of microalgae as alternative platforms for the production of vaccines for human uses.

  12. Optimized subunit vaccine protects against experimental leishmaniasis.

    Science.gov (United States)

    Bertholet, Sylvie; Goto, Yasuyuki; Carter, Lauren; Bhatia, Ajay; Howard, Randall F; Carter, Darrick; Coler, Rhea N; Vedvick, Thomas S; Reed, Steven G

    2009-11-23

    Development of a protective subunit vaccine against Leishmania spp. depends on antigens and adjuvants that induce appropriate immune responses. We evaluated a second generation polyprotein antigen (Leish-110f) in different adjuvant formulations for immunogenicity and protective efficacy against Leishmania spp. challenges. Vaccine-induced protection was associated with antibody and T cell responses to Leish-110f. CD4 T cells were the source of IFN-gamma, TNF, and IL-2 double- and triple-positive populations. This study establishes the immunogenicity and protective efficacy of the improved Leish-110f subunit vaccine antigen adjuvanted with natural (MPL-SE) or synthetic (EM005) Toll-like receptor 4 agonists.

  13. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model.

    Directory of Open Access Journals (Sweden)

    Simon H Apte

    Full Text Available Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+ and/or CD8(+ T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+ T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+ T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.

  14. Protective immunity induced by a recombinant BCG vaccine encoding the cyclophilin gene of Toxoplasma gondii.

    Science.gov (United States)

    Yu, Qinlei; Huang, Xiangsheng; Gong, Pengtao; Zhang, Qian; Li, Jianhua; Zhang, Guocai; Yang, Ju; Li, He; Wang, Nan; Zhang, Xichen

    2013-12-09

    The investigation of Toxoplasma gondii virulence factors can elucidate the immunopathology of T. gondii infection and identify potential candidates for effective human vaccines. The adjuvant is an important component of an effective vaccine. In this study, attenuated Mycobacterium bovis was used as a live vaccine vector with both antigen and adjuvant characteristics. Following amplification of the T. gondii cyclophilin gene, the shuttle expression plasmid pMV261-TgCyP and integrative expression plasmid pMV361-TgCyP were constructed, and their expression was stimulated after transfection into BCG. Both recombinant plasmids were highly immunogenic. Greater proliferation of CD4(+) and CD8(+) T cells was observed in the rBCG-vaccinated groups compared to the control groups. The levels of Th1-type IFN-γ, IL-2 and IL-12 were significantly increased following immunisation with the rBCG vaccines via the i.v. or oral route, which indicated that catalytic activity against T. gondii infection was generated in the mice. rBCGpMV361-TgCyP i.v. inoculation resulted in a higher protection efficiency, as demonstrated by the increased survival time and survival rate (17%) of BALB/c mice. The present study demonstrates that a BCG vector expressing a target antigen, TgCyP, represent an alternative system for the production of effective vaccines to prevent toxoplasmosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Protective immunity against Trichinella spiralis infection induced by a multi-epitope vaccine in a murine model.

    Directory of Open Access Journals (Sweden)

    Yuan Gu

    Full Text Available Trichinellosis is one of the most important food-borne parasitic zoonoses throughout the world. Because infected pigs are the major source of human infections, and China is becoming the largest international producer of pork, the development of a transmission-blocking vaccine to prevent swine from being infected is urgently needed for trichinellosis control in China. Our previous studies have demonstrated that specific Trichinella spiralis paramyosin (Ts-Pmy and Ts-87 antigen could provide protective immunity against T. spiralis infection in immunized mice. Certain protective epitopes of Ts-Pmy and Ts-87 antigen have been identified. To identify more Ts-Pmy protective epitopes, a new monoclonal antibody, termed 8F12, was produced against the N-terminus of Ts-Pmy. This antibody elicited significant protective immunity in mice against T. spiralis infection by passive transfer and was subsequently used to screen a random phage display peptide library to identify recognized epitopes. Seven distinct positive phage clones were identified and their displayed peptides were sequenced. Synthesized epitope peptides conjugated to keyhole limpet hemocyanin were used to immunize mice, four of which exhibited larval reduction (from 18.7% to 26.3%, respectively in vaccinated mice in comparison to the KLH control. To increase more effective protection, the epitope 8F7 that was found to induce the highest protection in this study was combined with two other previously identified epitopes (YX1 from Ts-Pmy and M7 from Ts-87 to formulate a multi-epitope vaccine. Mice immunized with this multi-epitope vaccine experienced a 35.0% reduction in muscle larvae burden after being challenged with T. spiralis larvae. This protection is significantly higher than that induced by individual-epitope peptides and is associated with high levels of subclasses IgG and IgG1. These results showed that a multi-epitope vaccine induced better protective immunity than an individual

  16. Protective immunity against Trichinella spiralis infection induced by a multi-epitope vaccine in a murine model.

    Science.gov (United States)

    Gu, Yuan; Wei, Junfei; Yang, Jing; Huang, Jingjing; Yang, Xiaodi; Zhu, Xinping

    2013-01-01

    Trichinellosis is one of the most important food-borne parasitic zoonoses throughout the world. Because infected pigs are the major source of human infections, and China is becoming the largest international producer of pork, the development of a transmission-blocking vaccine to prevent swine from being infected is urgently needed for trichinellosis control in China. Our previous studies have demonstrated that specific Trichinella spiralis paramyosin (Ts-Pmy) and Ts-87 antigen could provide protective immunity against T. spiralis infection in immunized mice. Certain protective epitopes of Ts-Pmy and Ts-87 antigen have been identified. To identify more Ts-Pmy protective epitopes, a new monoclonal antibody, termed 8F12, was produced against the N-terminus of Ts-Pmy. This antibody elicited significant protective immunity in mice against T. spiralis infection by passive transfer and was subsequently used to screen a random phage display peptide library to identify recognized epitopes. Seven distinct positive phage clones were identified and their displayed peptides were sequenced. Synthesized epitope peptides conjugated to keyhole limpet hemocyanin were used to immunize mice, four of which exhibited larval reduction (from 18.7% to 26.3%, respectively) in vaccinated mice in comparison to the KLH control. To increase more effective protection, the epitope 8F7 that was found to induce the highest protection in this study was combined with two other previously identified epitopes (YX1 from Ts-Pmy and M7 from Ts-87) to formulate a multi-epitope vaccine. Mice immunized with this multi-epitope vaccine experienced a 35.0% reduction in muscle larvae burden after being challenged with T. spiralis larvae. This protection is significantly higher than that induced by individual-epitope peptides and is associated with high levels of subclasses IgG and IgG1. These results showed that a multi-epitope vaccine induced better protective immunity than an individual epitope and provided a

  17. Recombinant proteins as vaccines for protection against disease induced by infection with mink astrovirus

    DEFF Research Database (Denmark)

    2012-01-01

    and polypeptides of the capsid protein of a novel mink astrovirus strain denoted DK7627. Such polynucleotides and polypeptides may be used for the production of vaccines against mink astrovirus which may induce pre-weaning diarrhoea in minks. The invention furthermore relates to vectors, host cells, compositions...

  18. Mycobacterium indicus pranii as a booster vaccine enhances BCG induced immunity and confers higher protection in animal models of tuberculosis.

    Science.gov (United States)

    Saqib, Mohd; Khatri, Rahul; Singh, Bindu; Gupta, Ananya; Kumar, Arvind; Bhaskar, Sangeeta

    2016-12-01

    BCG, the only approved vaccine protects against severe form of childhood tuberculosis but its protective efficacy wanes in adolescence. BCG has reduced the incidence of infant TB considerably in endemic areas; therefore prime-boost strategy is the most realistic measure for control of tuberculosis in near future. Mycobacterium indicus pranii (MIP) shares significant antigenic repertoire with Mtb and BCG and has been shown to impart significant protection in animal models of tuberculosis. In this study, MIP was given as a booster to BCG vaccine which enhanced the BCG mediated immune response, resulting in higher protection. MIP booster via aerosol route was found to be more effective in protection than subcutaneous route of booster immunization. Pro-inflammatory cytokines like IFN-γ, IL-12 and IL-17 were induced at higher level in infected lungs of 'BCG-MIP' group both at mRNA expression level and in secretory form when compared with 'only BCG' group. BCG-MIP groups had increased frequency of multifunctional T cells with high MFI for IFN-γ and TNF-α in Mtb infected mice. Our data demonstrate for the first time, potential application of MIP as a booster to BCG vaccine for efficient protection against tuberculosis. This could be very cost effective strategy for efficient control of tuberculosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus

    Science.gov (United States)

    Bagnoli, Fabio; Fontana, Maria Rita; Soldaini, Elisabetta; Mishra, Ravi P. N.; Fiaschi, Luigi; Cartocci, Elena; Nardi-Dei, Vincenzo; Ruggiero, Paolo; Nosari, Sarah; De Falco, Maria Grazia; Lofano, Giuseppe; Marchi, Sara; Galletti, Bruno; Mariotti, Paolo; Bacconi, Marta; Torre, Antonina; Maccari, Silvia; Scarselli, Maria; Rinaudo, C. Daniela; Inoshima, Naoko; Savino, Silvana; Mori, Elena; Rossi-Paccani, Silvia; Baudner, Barbara; Pallaoro, Michele; Swennen, Erwin; Petracca, Roberto; Brettoni, Cecilia; Liberatori, Sabrina; Norais, Nathalie; Monaci, Elisabetta; Bubeck Wardenburg, Juliane; Schneewind, Olaf; O’Hagan, Derek T.; Valiante, Nicholas M.; Bensi, Giuliano; Bertholet, Sylvie; De Gregorio, Ennio; Rappuoli, Rino; Grandi, Guido

    2015-01-01

    Both active and passive immunization strategies against Staphylococcus aureus have thus far failed to show efficacy in humans. With the attempt to develop an effective S. aureus vaccine, we selected five conserved antigens known to have different roles in S. aureus pathogenesis. They include the secreted factors α-hemolysin (Hla), ess extracellular A (EsxA), and ess extracellular B (EsxB) and the two surface proteins ferric hydroxamate uptake D2 and conserved staphylococcal antigen 1A. The combined vaccine antigens formulated with aluminum hydroxide induced antibodies with opsonophagocytic and functional activities and provided consistent protection in four mouse models when challenged with a panel of epidemiologically relevant S. aureus strains. The importance of antibodies in protection was demonstrated by passive transfer experiments. Furthermore, when formulated with a toll-like receptor 7-dependent (TLR7) agonist recently designed and developed in our laboratories (SMIP.7–10) adsorbed to alum, the five antigens provided close to 100% protection against four different staphylococcal strains. The new formulation induced not only high antibody titers but also a Th1 skewed immune response as judged by antibody isotype and cytokine profiles. In addition, low frequencies of IL-17–secreting T cells were also observed. Altogether, our data demonstrate that the rational selection of mixtures of conserved antigens combined with Th1/Th17 adjuvants can lead to promising vaccine formulations against S. aureus. PMID:25775551

  20. Non-pathogenic colonization with Chlamydia in the gastrointestinal tract as oral vaccination for inducing transmucosal protection.

    Science.gov (United States)

    Wang, Luying; Zhu, Cuiming; Zhang, Tianyuan; Tian, Qi; Zhang, Nu; Morrison, Sandra; Morrison, Richard; Xue, Min; Zhong, Guangming

    2017-11-13

    Chlamydia has been detected in the gastrointestinal tracts of humans and animals. We now report that gastrointestinal Chlamydia muridarum is able to induce robust transmucosal protection in mice. C. muridarum colonization in the gastrointestinal tract correlated with both a shortened course of C. muridarum genital infection and stronger protection against subsequent genital tract challenge infection. Mice pre-inoculated intragastrically with C. muridarum became highly resistant to subsequent C. muridarum infection in the genital tract, resulting in prevention of pathology in the upper genital tract. The transmucosal protection in the genital tract was rapidly induced, durable and dependent on MHC class II but not class I antigen presentation. Although deficiency in CD4+ T cells only partially reduced the transmucosal protection, depletion of CD4+ T cells from B cell-deficient mice completely abolished the protection, suggesting a synergistic role of both CD4+ T and B cells in the gastrointestinal C. muridarum-induced transmucosal immunity. However, the same protective immunity did not significantly affect C. muridarum colonization in the gastrointestinal tract. The long-lasting colonization with C. muridarum was restricted to the gastrointestinal tract and nonpathogenic to either gastrointestinal or extra-gastrointestinal tissues. Furthermore, the gastrointestinal C. muridarum did not alter gut microbiota or the development of gut mucosal resident memory T cells to a non-chlamydial infection. Thus, Chlamydia may be developed into a safe and orally deliverable replicating vaccine for inducing transmucosal protection. Copyright © 2017 American Society for Microbiology.

  1. Co-immunization with virus-like particle and DNA vaccines induces protection against respiratory syncytial virus infection and bronchiolitis.

    Science.gov (United States)

    Hwang, Hye Suk; Kwon, Young-Man; Lee, Jong Seok; Yoo, Si-Eun; Lee, Yu-Na; Ko, Eun-Ju; Kim, Min-Chul; Cho, Min-Kyoung; Lee, Young-Tae; Jung, Yu-Jin; Lee, Ji-Yun; Li, Jian-Dong; Kang, Sang-Moo

    2014-10-01

    This study demonstrates that immunization with non-replicating virus-like particle (FFG VLP) containing RSV F and G glycoproteins together with RSV F DNA induced T helper type 1 antibody responses to RSV F similar to live RSV infection. Upon RSV challenge 21weeks after immunization, FFG VLP vaccination induced protection against RSV infection as shown by clearance of lung viral loads, and the absence of eosinophil infiltrates, and did not cause lung pathology. In contrast, formalin-inactivated RSV (FI-RSV) vaccination showed significant pulmonary eosinophilia, severe mucus production, and extensive histopathology resulting in a hallmark of pulmonary pathology. Substantial lung pathology was also observed in mice with RSV re-infections. High levels of systemic and local inflammatory cytokine-secreting cells were induced in mice with FI-RSV but not with FFG VLP immunization after RSV challenge. Therefore, the results provide evidence that recombinant RSV FFG VLP vaccine can confer long-term protection against RSV without causing lung pathology. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A novel mucosal vaccine targeting Peyer's patch M cells induces protective antigen-specific IgA responses.

    Science.gov (United States)

    Shima, Hideaki; Watanabe, Takashi; Fukuda, Shinji; Fukuoka, Shin-Ichi; Ohara, Osamu; Ohno, Hiroshi

    2014-11-01

    Mucosal vaccines can induce mucosal immunity, including antigen-specific secretory IgA production, to protect from invasion by pathogens and to neutralize toxins at mucosal surfaces. We established an effective antigen-delivering fusion protein, anti-GP2-SA, as a mucosal vaccine. The anti-GP2-SA consists of streptavidin (SA) fused to the antigen-binding fragment region from a mAb against glycoprotein 2 (GP2), an antigen-uptake receptor specifically expressed on M cells. Anti-GP2-SA targets antigen-sampling M cells in the follicle-associated epithelium covering Peyer's patches. Immunofluorescence showed that anti-GP2-SA specifically bound to M cells. Orally administered biotinylated ovalbumin peptide (bOVA) conjugated with anti-GP2-SA more efficiently induced OVA-specific fecal IgA secretion compared with bOVA alone or bOVA conjugated with SA. Furthermore, mice immunized by oral administration of the biotinylated Salmonella enterica serovar Typhimurium (S. Typhimurium) lysate conjugated with anti-GP2-SA were significantly better protected from subsequent infection by virulent S. Typhimurium than mice treated with the bacterial lysate alone or conjugated with SA. These results suggest that anti-GP2-SA-based M-cell-targeting vaccines are a novel strategy for inducing efficient mucosal immunity. © The Japanese Society for Immunology. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers of an appropr......Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers......-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels...... of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination...

  4. Vaccination with the Secreted Glycoprotein G of Herpes Simplex Virus 2 Induces Protective Immunity after Genital Infection.

    Science.gov (United States)

    Önnheim, Karin; Ekblad, Maria; Görander, Staffan; Bergström, Tomas; Liljeqvist, Jan-Åke

    2016-04-22

    Herpes simplex virus 2 (HSV-2) infects the genital mucosa and establishes a life-long infection in sensory ganglia. After primary infection HSV-2 may reactivate causing recurrent genital ulcerations. HSV-2 infection is prevalent, and globally more than 400 million individuals are infected. As clinical trials have failed to show protection against HSV-2 infection, new vaccine candidates are warranted. The secreted glycoprotein G (sgG-2) of HSV-2 was evaluated as a prophylactic vaccine in mice using two different immunization and adjuvant protocols. The protocol with three intramuscular immunizations combining sgG-2 with cytosine-phosphate-guanine dinucleotide (CpG) motifs and alum induced almost complete protection from genital and systemic disease after intra-vaginal challenge with HSV-2. Robust immunoglobulin G (IgG) antibody titers were detected with no neutralization activity. Purified splenic CD4+ T cells proliferated and produced interferon-γ (IFN-γ) when re-stimulated with the antigen in vitro. sgG-2 + adjuvant intra-muscularly immunized mice showed a significant reduction of infectious HSV-2 and increased IFN-γ levels in vaginal washes. The HSV-2 DNA copy numbers were significantly reduced in dorsal root ganglia, spinal cord, and in serum at day six or day 21 post challenge. We show that a sgG-2 based vaccine is highly effective and can be considered as a novel candidate in the development of a prophylactic vaccine against HSV-2 infection.

  5. Vaccination with Salmonella Typhi recombinant outer membrane protein 28 induces humoral but non-protective immune response in rabbit

    Directory of Open Access Journals (Sweden)

    Anjani Saxena

    2017-08-01

    Full Text Available Aim: Typhoid is one of the most important food and water borne disease causing millions of deaths over the world. Presently, there is no cost effective vaccine available in India. The outer-membrane proteins (Omps of Salmonella have been exhibited as a potential candidate for development of subunit vaccine against typhoid. The objective of the present study was to evaluate the use of recombinant Omp 28 protein for immunization of rabbit to elucidate its protection against virulent Salmonella Typhi. Materials and Methods: Immune potential of recombinant Omp28 was tested in New Zealand Rabbits. Rabbits were divided into two groups, i.e., control and test group. Control group was injected with phosphate buffer saline with adjuvant while test group were injected with recombinant Omp28 along with adjuvant. Rabbits were bleed and serum was collected from each rabbit. Serum was tested by Enzyme-linked immunosorbent assay (ELISA for humoral response. Rabbits were challenged with virulent culture to test the protective immunity. Results: Humoral response was provoked at 15th day and maintained till 30th day. The mean ELISA titer at 15th day was 1 : 28000 (mean titer log 10 : 4.4472 and on the 30th day was 1 : 25866 (mean titer log 10 : 4.4127. Protective immune potential of Omp 28 was assessed by challenge studies in rabbits for which vaccinated and control rabbits were challenged with 109 cells of virulent culture of S. Typhi. In control group, out of six, no rabbit could survive after 48 days while in vaccinated group, three out of six rabbit were survived. Conclusion: Immunization of rabbit with recombinant Omp 28 induced a strong humoral response which was exhibited by high antibody titer in ELISA. Subsequently, intraperitoneal homologous challenge of the immunized New Zealand rabbit resulted in lack of significant protection. These findings indicate that Omp 28 though provoked the humoral immunity but could not provide the protective immunity in

  6. A booster vaccine expressing a latency-associated antigen augments BCG induced immunity and confers enhanced protection against tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bappaditya Dey

    Full Text Available BACKGROUND: In spite of a consistent protection against tuberculosis (TB in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB. METHODS/PRINCIPAL FINDINGS: In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin--a key latency antigen of M. tuberculosis to boost the BCG induced immunity. 'BCG prime-DNA boost' regimen (B/D confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log(10 and 1.96 log(10 fewer bacilli in lungs and spleen, respectively; p<0.01. In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3(+ simultaneously producing interferon (IFNγ, tumor necrosis factor (TNFα and interleukin (IL2. CONCLUSIONS/SIGNIFICANCE: These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3(+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.

  7. HI responses induced by seasonal influenza vaccination are associated with clinical protection and with seroprotection against non-homologous strains.

    Science.gov (United States)

    Luytjes, Willem; Enouf, Vincent; Schipper, Maarten; Gijzen, Karlijn; Liu, Wai Ming; van der Lubben, Mariken; Meijer, Adam; van der Werf, Sylvie; Soethout, Ernst C

    2012-07-27

    Vaccination against influenza induces homologous as well as cross-specific hemagglutination inhibiting (HI) responses. Induction of cross-specific HI responses may be essential when the influenza strain does not match the vaccine strain, or even to confer a basic immune response against a pandemic influenza virus. We carried out a clinical study to evaluate the immunological responses after seasonal vaccination in healthy adults 18-60 years of age, receiving the yearly voluntary vaccination during the influenza season 2006/2007. Vaccinees of different age groups were followed for laboratory confirmed influenza (LCI) and homologous HI responses as well as cross-specific HI responses against the seasonal H1N1 strain of 2008 and pandemic H1N1 virus of 2009 (H1N1pdm09) were determined. Homologous HI titers that are generally associated with protection (i.e. seroprotective HI titers ≥40) were found in more than 70% of vaccinees. In contrast, low HI titers before and after vaccination were significantly associated with seasonal LCI. Cross-specific HI titers ≥40 against drifted seasonal H1N1 were found in 69% of vaccinees. Cross-specific HI titers ≥40 against H1N1pdm09 were also significantly induced, especially in the youngest age group. More specifically, cross-specific HI titers ≥40 against H1N1pdm09 were inversely correlated with age. We did not find a correlation between the subtype of influenza which was circulating at the age of birth of the vaccinees and cross-specific HI response against H1N1pdm09. These data indicate that the HI titers before and after vaccination determine the vaccination efficacy. In addition, in healthy adults between 18 and 60 years of age, young adults appear to be best able to mount a cross-protective HI response against H1N1pdm09 or drifted seasonal influenza after seasonal vaccination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Potential role of specific antibodies as important vaccine induced protective mechanism against Aeromonas salmonicida in rainbow trout.

    Directory of Open Access Journals (Sweden)

    Kasper Rømer Villumsen

    Full Text Available Furunculosis caused by infection with Aeromonas salmonicida subsp. salmonicida has been a known threat to aquaculture for more than a century. Efficient prophylactic approaches against this disease are essential for continued growth of salmonid aquaculture. Since the introduction of successful oil-adjuvanted vaccines in the early 1990's, a number of studies have been published on the protective as well as adverse effects of these vaccines. Most studies focus on vaccination of salmon (Salmo salar. However, rainbow trout (Oncorhynchus mykiss are also very susceptible to infection and are vaccinated accordingly. In this study we have examined the protection against infection with a Danish strain of A. salmonicida in both vaccinated and non-vaccinated rainbow trout. A commercial and an experimental auto-vaccine were tested. The protective effects of the vaccines were evaluated through an A. salmonicida challenge 18 weeks post vaccination. Both vaccines resulted in a significantly increased survival in the vaccinated fish during a 28 day challenge period relative to non-vaccinated fish (P = 0.01 and P = 0.001 for the commercial and experimental vaccine, respectively. Throughout the entire experiment, the presence of specific antibodies in plasma was monitored using ELISA. A significant increase in specific antibody levels was seen in fish vaccinated with both vaccines during the 18 weeks between vaccination and challenge. Within 3 days post challenge, a significant decrease in specific antibodies occurred in vaccinated fish. A positive correlation was found between mean levels of specific antibodies pre challenge and overall survival. This correlation, along with the observed depletion of antibodies during the initial phase of infection, suggests that specific antibodies play an essential role in vaccine mediated protection against A. salmonicida in rainbow trout.

  9. Self Amplifying RNA Vaccines for Venezuelan Equine Encephalitis Virus Induce Robust Protective Immunogenicity in Mice

    Science.gov (United States)

    2017-09-18

    Dupuy,b Clayton W. Beard,a,1 Carolyn M. Six,b Connie S. 3 Schmaljohn,b Peter Mason,c,2 Andrew J. Geall,a,3 Jeffery B. Ulmer,a and Dong Yua 4 a GSK...Annu Rev 698 Microbiol. 2001;55:235-53. 699 [2] Pittman PR, Makuch RS, Mangiafico JA, Cannon TL, Gibbs PH, Peters CJ. Long-term 700 duration of... Reed DS, Lind CM, Lackemeyer MG, Sullivan LJ, Pratt WD, Parker MD. Genetically 705 engineered, live, attenuated vaccines protect nonhuman primates

  10. Mumps-specific cross-neutralization by MMR vaccine-induced antibodies predicts protection against mumps virus infection.

    Science.gov (United States)

    Gouma, Sigrid; Ten Hulscher, Hinke I; Schurink-van 't Klooster, Tessa M; de Melker, Hester E; Boland, Greet J; Kaaijk, Patricia; van Els, Cécile A C M; Koopmans, Marion P G; van Binnendijk, Rob S

    2016-07-29

    Similar to other recent mumps genotype G outbreaks worldwide, most mumps patients during the recent mumps genotype G outbreaks in the Netherlands had received 2 doses of measles, mumps and rubella (MMR) vaccine during childhood. Here, we investigate the capacity of vaccine-induced antibodies to neutralize wild type mumps virus strains, including mumps virus genotype G. In this study, we tested 105 pre-outbreak serum samples from students who had received 2 MMR vaccine doses and who had no mumps virus infection (n=76), symptomatic mumps virus infection (n=10) or asymptomatic mumps virus infection (n=19) during the mumps outbreaks. In all samples, mumps-specific IgG concentrations were measured by multiplex immunoassay and neutralization titers were measured against the Jeryl Lynn vaccine strain and against wild type genotype G and genotype D mumps virus strains. The correlation between mumps-specific IgG concentrations and neutralization titers against Jeryl Lynn was poor, which suggests that IgG concentrations do not adequately represent immunological protection against mumps virus infection by antibody neutralization. Pre-outbreak neutralization titers in infected persons were significantly lower against genotype G than against the vaccine strain. Furthermore, antibody neutralization of wild type mumps virus genotype G and genotype D was significantly reduced in pre-outbreak samples from infected persons as compared with non-infected persons. No statistically significant difference was found for the vaccine strain. The sensitivity/specificity ratio was largest for neutralization of the genotype G strain as compared with the genotype D strain and the vaccine strain. The reduced neutralization of wild type mumps virus strains in MMR vaccinated persons prior to infection indicates that pre-outbreak mumps virus neutralization is partly strain-specific and that neutralization differs between infected and non-infected persons. Therefore, we recommend the use of wild

  11. Inactivated Eyedrop Influenza Vaccine Adjuvanted with Poly(I:C Is Safe and Effective for Inducing Protective Systemic and Mucosal Immunity.

    Directory of Open Access Journals (Sweden)

    Eun-Do Kim

    Full Text Available The eye route has been evaluated as an efficient vaccine delivery routes. However, in order to induce sufficient antibody production with inactivated vaccine, testing of the safety and efficacy of the use of inactivated antigen plus adjuvant is needed. Here, we assessed various types of adjuvants in eyedrop as an anti-influenza serum and mucosal Ab production-enhancer in BALB/c mice. Among the adjuvants, poly (I:C showed as much enhancement in antigen-specific serum IgG and mucosal IgA antibody production as cholera toxin (CT after vaccinations with trivalent hemagglutinin-subunits or split H1N1 vaccine antigen in mice. Vaccination with split H1N1 eyedrop vaccine antigen plus poly(I:C showed a similar or slightly lower efficacy in inducing antibody production than intranasal vaccination; the eyedrop vaccine-induced immunity was enough to protect mice from lethal homologous influenza A/California/04/09 (H1N1 virus challenge. Additionally, ocular inoculation with poly(I:C plus vaccine antigen generated no signs of inflammation within 24 hours: no increases in the mRNA expression levels of inflammatory cytokines nor in the infiltration of mononuclear cells to administration sites. In contrast, CT administration induced increased expression of IL-6 cytokine mRNA and mononuclear cell infiltration in the conjunctiva within 24 hours of vaccination. Moreover, inoculated visualizing materials by eyedrop did not contaminate the surface of the olfactory bulb in mice; meanwhile, intranasally administered materials defiled the surface of the brain. On the basis of these findings, we propose that the use of eyedrop inactivated influenza vaccine plus poly(I:C is a safe and effective mucosal vaccine strategy for inducing protective anti-influenza immunity.

  12. Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine.

    Directory of Open Access Journals (Sweden)

    Stephen A Kaba

    Full Text Available The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8(+ and CD4(+ T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects.To establish the basis for a SAPN-based vaccine, B- and CD8(+ T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP. We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year protective antibody and poly-functional (IFNγ(+, IL-2(+ long-lived central memory CD8(+ T-cells. Furthermore, we demonstrated that these Ab or CD8(+ T-cells can independently provide sterile protection against a lethal challenge of the transgenic parasites.The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP.

  13. A polyvalent influenza A DNA vaccine induces heterologous immunity and protects pigs against pandemic A(H1N1)pdm09 virus infection

    DEFF Research Database (Denmark)

    Bragstad, Karoline; Vinner, Lasse; Hansen, Mette Sif

    2013-01-01

    The composition of current influenza protein vaccines has to be reconsidered every season to match the circulating influenza viruses, continuously changing antigenicity. Thus, influenza vaccines inducing a broad cross-reactive immune response would be a great advantage for protection against both...... seasonal and emerging influenza viruses. We have developed an alternative influenza vaccine based on DNA expressing selected influenza proteins of pandemic and seasonal origin. In the current study, we investigated the protection of a polyvalent influenza DNA vaccine approach in pigs. We immunised pigs...... intradermally with a combination of influenza DNA vaccine components based on the pandemic 1918 H1N1 (M and NP genes), pandemic 2009 H1N1pdm09 (HA and NA genes) and seasonal 2005 H3N2 genes (HA and NA genes) and investigated the protection against infection with virus both homologous and heterologous to the DNA...

  14. Vaccination with the Mycoplasma suis recombinant adhesion protein MSG1 elicits a strong immune response but fails to induce protection in pigs.

    Science.gov (United States)

    Hoelzle, Katharina; Doser, Susanne; Ritzmann, Mathias; Heinritzi, Karl; Palzer, Andreas; Elicker, Sabine; Kramer, Manuela; Felder, Kathrin M; Hoelzle, Ludwig E

    2009-08-27

    Mycoplasma suis is the unculturable pathogen of porcine infectious anemia. The study was aimed to determine the immunogenicity and protective efficacy of MSG1, an immunodominant adhesin of M. suis as the first vaccine candidate against M. suis. The results demonstrated that recombinant MSG1 and Escherichia coli transformants expressing MSG1 (E. coli_MSG1) induced a strong humoral and cellular immunity against M. suis. The induced antibodies were found to be functionally active as confirmed by an in vitro adhesion inhibition assay. Both, IgG1 and IgG2 antibodies were induced, but E. coli_MSG1 immune response was characterized by a significantly higher IgG1 antibody production. Both vaccine candidates failed to protect against M. suis challenge. However, E. coli_MSG1 vaccination has a considerable effect on the severity of the disease as shown by higher post-challenge hemoglobin and hematocrit values in comparison to control groups. This indicated that a high IgG1 antibody titer is negatively connected with severity of M. suis-induced anemia. Furthermore, the induction of monospecific anti-MSG1 antibodies by both vaccine candidates clearly allows for the differentiation between infected and vaccinated animals (DIVA principle). Overall, the importance of MSG1 as potential vaccine candidate remains to be established. Future studies will evaluate the conditions (i.e. adjuvant, vaccination scheme, and application route) to optimize the effects of E. coli_MSG1 vaccines.

  15. Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour.

    Science.gov (United States)

    Herd, Karen A; Harvey, Tracey; Khromykh, Alexander A; Tindle, Robert W

    2004-02-20

    The persistence of the E7 oncoprotein in transformed cells in human papillomavirus (HPV)-associated cervical cancer provides a tumour-specific antigen to which immunotherapeutic strategies may be directed. Self-replicating RNA (replicon) vaccine vectors derived from the flavivirus Kunjin (KUN) have recently been reported to induce T-cell immunity. Here, we report that inclusion of a CTL epitope of HPV16 E7 protein into a polyepitope encoded by a KUN vector induced E7-directed T-cell responses and protected mice against challenge with an E7-expressing epithelial tumour. We found replicon RNA packaged into virus-like particles to be more effective than naked replicon RNA or plasmid DNA constructed to allow replicon RNA transcription in vivo. Protective immunity was induced although the E7 CTL epitope was subdominant in the context of other CTL epitopes in the polyepitope. The results demonstrate the efficacy of the KUN replicon vector system for inducing protective immunity directed towards a virally encoded human tumour-specific antigen, and for inducing multi-epitopic CTL responses.

  16. Vaccine protection against Zika virus from Brazil.

    Science.gov (United States)

    Larocca, Rafael A; Abbink, Peter; Peron, Jean Pierre S; Zanotto, Paolo M de A; Iampietro, M Justin; Badamchi-Zadeh, Alexander; Boyd, Michael; Ng'ang'a, David; Kirilova, Marinela; Nityanandam, Ramya; Mercado, Noe B; Li, Zhenfeng; Moseley, Edward T; Bricault, Christine A; Borducchi, Erica N; Giglio, Patricia B; Jetton, David; Neubauer, George; Nkolola, Joseph P; Maxfield, Lori F; De La Barrera, Rafael A; Jarman, Richard G; Eckels, Kenneth H; Michael, Nelson L; Thomas, Stephen J; Barouch, Dan H

    2016-08-25

    Zika virus (ZIKV) is a flavivirus that is responsible for the current epidemic in Brazil and the Americas. ZIKV has been causally associated with fetal microcephaly, intrauterine growth restriction, and other birth defects in both humans and mice. The rapid development of a safe and effective ZIKV vaccine is a global health priority, but very little is currently known about ZIKV immunology and mechanisms of immune protection. Here we show that a single immunization with a plasmid DNA vaccine or a purified inactivated virus vaccine provides complete protection in susceptible mice against challenge with a strain of ZIKV involved in the outbreak in northeast Brazil. This ZIKV strain has recently been shown to cross the placenta and to induce fetal microcephaly and other congenital malformations in mice. We produced DNA vaccines expressing ZIKV pre-membrane and envelope (prM-Env), as well as a series of deletion mutants. The prM-Env DNA vaccine, but not the deletion mutants, afforded complete protection against ZIKV, as measured by absence of detectable viraemia following challenge, and protective efficacy correlated with Env-specific antibody titers. Adoptive transfer of purified IgG from vaccinated mice conferred passive protection, and depletion of CD4 and CD8 T lymphocytes in vaccinated mice did not abrogate this protection. These data demonstrate that protection against ZIKV challenge can be achieved by single-shot subunit and inactivated virus vaccines in mice and that Env-specific antibody titers represent key immunologic correlates of protection. Our findings suggest that the development of a ZIKV vaccine for humans is likely to be achievable.

  17. Boosting BCG-primed mice with chimeric DNA vaccine HG856A induces potent multifunctional T cell responses and enhanced protection against Mycobacterium tuberculosis.

    Science.gov (United States)

    Ji, Ping; Hu, Zhi-Dong; Kang, Han; Yuan, Qin; Ma, Hui; Wen, Han-Li; Wu, Juan; Li, Zhong-Ming; Lowrie, Douglas B; Fan, Xiao-Yong

    2016-02-01

    The tuberculosis pandemic continues to rampage despite widespread use of the current Bacillus Calmette-Guerin (BCG) vaccine. Because DNA vaccines can elicit effective antigen-specific immune responses, including potent T cell-mediated immunity, they are promising vehicles for antigen delivery. In a prime-boost approach, they can supplement the inadequate anti-TB immunological memory induced by BCG. Based on this, a chimeric DNA vaccine HG856A encoding Mycobacterium tuberculosis (M. tuberculosis) immunodominant antigen Ag85A plus two copies of ESAT-6 was constructed. Potent humoral immune responses, as well as therapeutic effects induced by this DNA vaccine, were observed previously in M. tuberculosis-infected mice. In this study, we further evaluated the antigen-specific T cell immune responses and showed that repeated immunization with HG856A gave modest protection against M. tuberculosis challenge infection and significantly boosted the immune protection primed by BCG vaccination. Enhanced protection was accompanied by increased multifunctional Th1 CD4(+) T cell responses, most notably by an elevated frequency of M. tuberculosis antigen-specific IL-2-producing CD4(+) T cells post-vaccination. These data confirm the potential of chimeric DNA vaccine HG856A as an anti-TB vaccine candidate.

  18. Vaccine-elicited CD8+ T cells protect against respiratory syncytial virus strain A2-line19F-induced pathogenesis in BALB/c mice.

    Science.gov (United States)

    Lee, Sujin; Stokes, Kate L; Currier, Michael G; Sakamoto, Kaori; Lukacs, Nicholas W; Celis, Esteban; Moore, Martin L

    2012-12-01

    CD8(+) T cells may contribute to vaccines for respiratory syncytial virus (RSV). Compared to CD8(+) T cells responding to RSV infection, vaccine-elicited anti-RSV CD8(+) T cells are less well defined. We used a peptide vaccine to test the hypothesis that vaccine-elicited RSV-specific CD8(+) T cells are protective against RSV pathogenesis. BALB/c mice were treated with a mixture (previously termed TriVax) of an M2(82-90) peptide representing an immunodominant CD8 epitope, the Toll-like receptor (TLR) agonist poly(I·C), and a costimulatory anti-CD40 antibody. TriVax vaccination induced potent effector anti-RSV CD8(+) cytotoxic T lymphocytes (CTL). Mice were challenged with RSV strain A2-line19F, a model of RSV pathogenesis leading to airway mucin expression. Mice were protected against RSV infection and against RSV-induced airway mucin expression and cellular lung inflammation when challenged 6 days after vaccination. Compared to A2-line19F infection alone, TriVax vaccination followed by challenge resulted in effector CD8(+) T cells with greater cytokine expression and the more rapid appearance of RSV-specific CD8(+) T cells in the lung. When challenged 42 days after TriVax vaccination, memory CD8(+) T cells were elicited with RSV-specific tetramer responses equivalent to TriVax-induced effector CD8(+) T cells. These memory CD8(+) T cells had lower cytokine expression than effector CD8(+) T cells, and protection against A2-line19F was partial during the memory phase. We found that vaccine-elicited effector anti-RSV CD8(+) T cells protected mice against RSV infection and pathogenesis, and waning protection correlated with reduced CD8(+) T cell cytokine expression.

  19. Vaccine-Elicited CD8+ T Cells Protect against Respiratory Syncytial Virus Strain A2-Line19F-Induced Pathogenesis in BALB/c Mice

    Science.gov (United States)

    Lee, Sujin; Stokes, Kate L.; Currier, Michael G.; Sakamoto, Kaori; Lukacs, Nicholas W.; Celis, Esteban

    2012-01-01

    CD8+ T cells may contribute to vaccines for respiratory syncytial virus (RSV). Compared to CD8+ T cells responding to RSV infection, vaccine-elicited anti-RSV CD8+ T cells are less well defined. We used a peptide vaccine to test the hypothesis that vaccine-elicited RSV-specific CD8+ T cells are protective against RSV pathogenesis. BALB/c mice were treated with a mixture (previously termed TriVax) of an M282-90 peptide representing an immunodominant CD8 epitope, the Toll-like receptor (TLR) agonist poly(I·C), and a costimulatory anti-CD40 antibody. TriVax vaccination induced potent effector anti-RSV CD8+ cytotoxic T lymphocytes (CTL). Mice were challenged with RSV strain A2-line19F, a model of RSV pathogenesis leading to airway mucin expression. Mice were protected against RSV infection and against RSV-induced airway mucin expression and cellular lung inflammation when challenged 6 days after vaccination. Compared to A2-line19F infection alone, TriVax vaccination followed by challenge resulted in effector CD8+ T cells with greater cytokine expression and the more rapid appearance of RSV-specific CD8+ T cells in the lung. When challenged 42 days after TriVax vaccination, memory CD8+ T cells were elicited with RSV-specific tetramer responses equivalent to TriVax-induced effector CD8+ T cells. These memory CD8+ T cells had lower cytokine expression than effector CD8+ T cells, and protection against A2-line19F was partial during the memory phase. We found that vaccine-elicited effector anti-RSV CD8+ T cells protected mice against RSV infection and pathogenesis, and waning protection correlated with reduced CD8+ T cell cytokine expression. PMID:23015695

  20. Orally administered recombinant Lactobacillus casei vector vaccine expressing β-toxoid of Clostridium perfringens that induced protective immunity responses.

    Science.gov (United States)

    Alimolaei, Mojtaba; Golchin, Mehdi; Ezatkhah, Majid

    2017-12-01

    Clostridium perfringens types B and C cause enteritis and enterotoxemia in animals. The conventional vaccine production systems need time-consuming detoxification and difficult quality control steps. In this study, a modified β-toxoid gene was synthesized, cloned into the pT1NX vector, and electroporated into Lactobacillus casei competent cells to yield L. casei-β recombinant strain. Surface expression of the recombinant β-toxoid was evaluated by ELISA and confirmed by immunofluorescence microscopy. Vaccinated BALB/c mice with L. casei-β induced potent humoral and cell-mediated immune responses that were protective against lethal challenges with 100 MLD/mL of the β-toxin. Safety and efficacy of the recombinant clone was evaluated and the presumptive toxicity of L. casei-β was studied by toxicity test and histopathological findings, which were the same as negative controls. Our results support the use of L. casei as a live oral vector vaccine, and that the recombinant L. casei-β is a potential candidate for being used in the control of enterotoxemia diseases caused by C. perfringens types B and C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Vaccination protects rats from methamphetamine-induced impairment of behavioral responding for food.

    Science.gov (United States)

    Rüedi-Bettschen, Daniela; Wood, Sherri L; Gunnell, Melinda G; West, C Michael; Pidaparthi, Rama R; Carroll, F Ivy; Blough, Bruce E; Owens, S Michael

    2013-09-23

    (+)-Methamphetamine (METH) addiction is a chronic disease that interferes with fundamental brain-mediated behaviors and biological functions like eating. These studies present preclinical efficacy and safety profiles for a METH conjugate vaccine (IC(KLH)-SMO9) designed to treat METH abuse. ICKLH-SMO9 efficacy and safety were assessed over a 16-week period by monitoring general health and stability of responding in a food maintained behavioral paradigm. Male Sprague-Dawley rats were trained to lever press for food reinforcers until stable behavior was established. Rats (n=9/group) were then immunized with 100 μg of a control antigenic carrier protein (IC(KLH)-Cys) or IC(KLH)-SMO9 in Alhydrogel adjuvant, with booster immunizations at 4, 8 and 12 weeks. Health, immunization site and behavior were assessed daily. No adverse effects were found. During weeks 14-16, when antibody titers and METH affinity (K(d)=13.9 ± 1.7 nM) were maximal, all rats received progressively higher METH doses (0.3-3.0 mg/kg) every 3-4 days, followed by behavioral testing. Even though the lower METH doses from 0.3 to 1.0 mg/kg produced no impairment in food maintained behavior, 3.0-mg/kg in control rats showed significantly (pMETH dose, even though METH serum concentrations showed profound increases due to anti-METH antibody binding. These findings suggest the IC(KLH)-SMO9 vaccine is effective and safe at reducing adverse METH-induced effects, even at high METH doses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Live attenuated influenza vaccine provides superior protection from heterologous infection in pigs with maternal antibodies without inducing vaccine associated enhanced respiratory disease (VAERD)

    Science.gov (United States)

    Control of swine influenza A virus (IAV) in the US is hindered since inactivated vaccines do not provide robust cross-protection against the multiple antigenic variants co-circulating in the field. Vaccine efficacy can be further limited when administered to young pigs that possess maternally deriv...

  3. A single-dose cytomegalovirus-based vaccine encoding tetanus toxin fragment C induces sustained levels of protective tetanus toxin antibodies in mice.

    Science.gov (United States)

    Tierney, Rob; Nakai, Toru; Parkins, Christopher J; Caposio, Patrizia; Fairweather, Neil F; Sesardic, Dorothea; Jarvis, Michael A

    2012-04-26

    The current commercially available vaccine used to prevent tetanus disease following infection with the anaerobic bacterium Clostridium tetani is safe and effective. However, tetanus remains a major source of mortality in developing countries. In 2008, neonatal tetanus was estimated to have caused >59,000 deaths, accounting for 1% of worldwide infant mortality, primarily in poorer nations. The cost of multiple vaccine doses administered by injection necessary to achieve protective levels of anti-tetanus toxoid antibodies is the primary reason for low vaccine coverage. Herein, we show that a novel vaccine strategy using a cytomegalovirus (CMV)-based vaccine platform induces protective levels of anti-tetanus antibodies that are durable (lasting >13 months) in mice following only a single dose. This study demonstrates the ability of a 'single-dose' CMV-based vaccine strategy to induce durable protection, and supports the potential for a tetanus vaccine based on CMV to impact the incidence of tetanus in developing countries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. H5N1 whole-virus vaccine induces neutralizing antibodies in humans which are protective in a mouse passive transfer model.

    Directory of Open Access Journals (Sweden)

    M Keith Howard

    Full Text Available BACKGROUND: Vero cell culture-derived whole-virus H5N1 vaccines have been extensively tested in clinical trials and consistently demonstrated to be safe and immunogenic; however, clinical efficacy is difficult to evaluate in the absence of wide-spread human disease. A lethal mouse model has been utilized which allows investigation of the protective efficacy of active vaccination or passive transfer of vaccine induced sera following lethal H5N1 challenge. METHODS: We used passive transfer of immune sera to investigate antibody-mediated protection elicited by a Vero cell-derived, non-adjuvanted inactivated whole-virus H5N1 vaccine. Mice were injected intravenously with H5N1 vaccine-induced rodent or human immune sera and subsequently challenged with a lethal dose of wild-type H5N1 virus. RESULTS: Passive transfer of H5N1 vaccine-induced mouse, guinea pig and human immune sera provided dose-dependent protection of recipient mice against lethal challenge with wild-type H5N1 virus. Protective dose fifty values for serum H5N1 neutralizing antibody titers were calculated to be ≤1∶11 for all immune sera, independently of source species. CONCLUSIONS: These data underpin the confidence that the Vero cell culture-derived, whole-virus H5N1 vaccine will be effective in a pandemic situation and support the use of neutralizing serum antibody titers as a correlate of protection for H5N1 vaccines.

  5. Trypanosomiasis-induced B cell apoptosis results in loss of protective anti-parasite antibody responses and abolishment of vaccine-induced memory responses.

    Directory of Open Access Journals (Sweden)

    Magdalena Radwanska

    2008-05-01

    Full Text Available African trypanosomes of the Trypanosoma brucei species are extra-cellular parasites that cause human African trypanosomiasis (HAT as well as infections in game animals and livestock. Trypanosomes are known to evade the immune response of their mammalian host by continuous antigenic variation of their surface coat. Here, we aim to demonstrate that in addition, trypanosomes (i cause the loss of various B cell populations, (ii disable the hosts' capacity to raise a long-lasting specific protective anti-parasite antibody response, and (iii abrogate vaccine-induced protective response to a non-related human pathogen such as Bordetella pertussis. Using a mouse model for T. brucei, various B cell populations were analyzed by FACS at different time points of infection. The results show that during early onset of a T. brucei infection, spleen remodeling results in the rapid loss of the IgM(+ marginal zone (IgM(+MZ B cell population characterized as B220(+IgM(HighIgD(Int CD21(HighCD23(LowCD1d(+CD138(-. These cells, when isolated during the first peak of infection, stained positive for Annexin V and had increased caspase-3 enzyme activity. Elevated caspase-3 mRNA levels coincided with decreased mRNA levels of the anti-apoptotic Bcl-2 protein and BAFF receptor (BAFF-R, indicating the onset of apoptosis. Moreover, affected B cells became unresponsive to stimulation by BCR cross-linking with anti-IgM Fab fragments. In vivo, infection-induced loss of IgM(+ B cells coincided with the disappearance of protective variant-specific T-independent IgM responses, rendering the host rapidly susceptible to re-challenge with previously encountered parasites. Finally, using the well-established human diphtheria, tetanus, and B. pertussis (DTPa vaccination model in mice, we show that T. brucei infections abrogate vaccine-induced protective responses to a non-related pathogen such as B. pertussis. Infections with T. brucei parasites result in the rapid loss of T

  6. A DNA vaccine directed against a rainbow trout rhabdovirus induces early protection against a nodavirus challenge in turbot

    DEFF Research Database (Denmark)

    Sommerset, I.; Lorenzen, Ellen; Lorenzen, Niels

    2003-01-01

    encoding the capsid protein of AHNV revealed no protective properties against the nodavirus challenge. Histological examination of muscle tissue sections from the vaccine injection site showed that the DNA vaccine against VHSV triggered a pronounced inflammatory response in turbot similar to what has...

  7. An interferon inducing porcine reproductive and respiratory syndrome virus vaccine candidate elicits protection against challenge with the heterologous virulent type 2 strain VR-2385 in pigs.

    Science.gov (United States)

    Fontanella, Eve; Ma, Zexu; Zhang, Yanjin; de Castro, Alessandra M M G; Shen, Huigang; Halbur, Patrick G; Opriessnig, Tanja

    2017-01-03

    Achieving consistent protection by vaccinating pigs against porcine reproductive and respiratory syndrome virus (PRRSV) remains difficult. Recently, an interferon-inducing PRRSV vaccine candidate strain A2MC2 was demonstrated to be attenuated and induced neutralizing antibodies. The objective of this study was to determine the efficacy of passage 90 of A2MC2 (A2P90) to protect pigs against challenge with moderately virulent PRRSV strain VR-2385 (92.3% nucleic acid identity with A2MC2) and highly virulent atypical PRRSV MN184 (84.5% nucleic acid identity with A2MC2). Forty 3-week old pigs were randomly assigned to five groups including a NEG-CONTROL group (non-vaccinated, non-challenged), VAC-VR2385 (vaccinated, challenged with strain VR-2385), VR2385 (challenged with strain VR-2385), VAC-MN184 (vaccinated, challenged with strain MN184) and a MN184 group (challenged with MN184 virus). Vaccination was done at 3weeks of age followed by challenge at 8weeks of age. No viremia was detectable in any of the vaccinated pigs; however, by the time of challenge, 15/16 vaccinated pigs had seroconverted based on ELISA and had neutralizing antibodies against a homologous strain with titers ranging from 8 to 128. Infection with VR-2385 resulted in mild-to-moderate clinical disease and lesions. For VR-2385 infected pigs, vaccination significantly lowered PRRSV viremia and nasal shedding by 9days post challenge (dpc), significantly reduced macroscopic lung lesions, and significantly increased the average daily weight gain compared to the non-vaccinated pigs. Infection with MN184 resulted in moderate-to-severe clinical disease and lesions regardless of vaccination status; however, vaccinated pigs had significantly less nasal shedding by dpc 5 compared to non-vaccinated pigs. Under the study conditions, the A2P90 vaccine strain was attenuated without detectable shedding, improved weight gain, and offered protection to the pigs challenged with VR-2385 by reduction of virus load and

  8. Passive protection of mice against Streptococcus pneumoniae challenge by naturally occurring and vaccine-induced human anti-PhtD antibodies.

    Science.gov (United States)

    Brookes, Roger H; Ming, Marin; Williams, Kimberley; Hopfer, Robert; Gurunathan, Sanjay; Gallichan, Scott; Tang, Mei; Ochs, Martina M

    2015-01-01

    Currently marketed Streptococcus pneumoniae vaccines are based on polysaccharide capsular antigens from the most common strains. Pneumococcal histidine triad protein D (PhtD) is a conserved surface protein that is being evaluated as a candidate for a vaccine with improved serotype coverage. Here, we measured the functional activity of human anti-PhtD antibodies in a passive protection model wherein mice were challenged with a lethal dose of S. pneumoniae by intravenous injection. This functional activity was compared with anti-PhtD antibody concentrations measured by enzyme-linked immunosorbent assay (ELISA) to estimate the 50% protective dose (ED50). Anti-PhtD antibodies affinity purified from pooled normal human sera passively protected mice with an ED50 of 1679 ELISA units/ml (95% confidence interval, 1420-1946). Sera from subjects injected with aluminum-adjuvanted PhtD in a phase I trial had similar activity per unit of antibody (ED50 = 1331 ELISA units/ml [95% confidence interval, 762-2038]). Vaccine-induced activity in the passive protection model was blocked by pre-incubation with recombinant PhtD but not by a control S. pneumoniae antigen (LytB). These results show that human anti-PhtD antibodies, whether naturally acquired or induced by the PhtD candidate vaccine, are functional. This supports the development of the PhtD candidate as part of a broadly protective pneumococcal vaccine.

  9. Vaccine induced Hepatitis A and B protection in children at risk for cystic fibrosis associated liver disease.

    Science.gov (United States)

    Shapiro, Adam J; Esther, Charles R; Leigh, Margaret W; Dellon, Elisabeth P

    2013-01-30

    Hepatitis A (HAV) and Hepatitis B (HBV) infections can cause serious morbidity in patients with liver disease, including cystic fibrosis associated liver disease (CFALD). HAV and HBV vaccinations are recommended in CFALD, and maintenance of detectable antibody levels is also recommended with chronic liver disease. A better understanding of factors predicting low HAV and HBV antibodies may help physicians improve protection from these viruses in CFALD patients. We examined HAV and HBV vaccine protection in children at risk for CFALD. Clinical and vaccine histories were reviewed, and HAV and HBV antibody titers measured. Those with no vaccination history or low HAV or HBV titers received primary or booster vaccinations, and responses were measured. Thirty-four of 308 children were at risk for CFALD per project criteria. Ten had previous HAV vaccination, of which 90% had positive anti-HAV antibodies. Thirty-three of 34 had previously received primary HBV vaccination (most in infancy), but only 12 (35%) had adequate anti-HBs levels (≥10mIU/mL). Children with adequate anti-HBs levels were older at first HBV vaccine (median 2.3 vs. 0.1 years, pvaccine (median 4.0 vs. 0.8 years, p=0.01). Fourteen of 19 (74%) responded to HBV boosters. Z-scores for BMI at HBV booster were significantly lower in booster non-responders (p=0.04). Children at increased risk of CFALD have inadequate HAV and HBV antibody levels, and HBV antibody protection can be enhanced through vaccine boosters. HBV antibody titers should be assessed in CFALD patients with a history of vaccination, particularly in those who received HBV vaccines in infancy or who are malnourished. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Alphavirus-based Vaccines Encoding Nonstructural Proteins of Hepatitis C Virus Induce Robust and Protective T-cell Responses

    NARCIS (Netherlands)

    Ip, Peng; Boerma, Annemarie; Regts, Joke; Meijerhof, Tjarko; Wilschut, Jan; Nijman, Hans W.; Daemen, Toos

    An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all-or a part of

  11. Early life DNA vaccination with the H gene of Canine distemper virus induces robust protection against distemper

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent

    2009-01-01

    Young mink kits (n = 8)were vaccinated withDNA plasmids encoding the viral haemagglutinin protein (H) of a vaccine strain of Canine distemper virus (CDV). Virus neutralising (VN) antibodieswere induced after 2 immunisations and after the third immunisation all kits had high VN antibody titres...

  12. Vaccine-induced protection of rhesus macaques against plasma viremia after intradermal infection with a European lineage 1 strain of West Nile virus.

    Directory of Open Access Journals (Sweden)

    Babs E Verstrepen

    Full Text Available The mosquito-borne West Nile virus (WNV causes human and animal disease with outbreaks in several parts of the world including North America, the Mediterranean countries, Central and East Europe, the Middle East, and Africa. Particularly in elderly people and individuals with an impaired immune system, infection with WNV can progress into a serious neuroinvasive disease. Currently, no treatment or vaccine is available to protect humans against infection or disease. The goal of this study was to develop a WNV-vaccine that is safe to use in these high-risk human target populations. We performed a vaccine efficacy study in non-human primates using the contemporary, pathogenic European WNV genotype 1a challenge strain, WNV-Ita09. Two vaccine strategies were evaluated in rhesus macaques (Macaca mulatta using recombinant soluble WNV envelope (E ectodomain adjuvanted with Matrix-M, either with or without DNA priming. The DNA priming immunization was performed with WNV-DermaVir nanoparticles. Both vaccination strategies successfully induced humoral and cellular immune responses that completely protected the macaques against the development of viremia. In addition, the vaccine was well tolerated by all animals. Overall, The WNV E protein adjuvanted with Matrix-M is a promising vaccine candidate for a non-infectious WNV vaccine for use in humans, including at-risk populations.

  13. A Fasciola hepatica-derived fatty acid binding protein induces protection against schistosomiasis caused by Schistosoma bovis using the adjuvant adaptation (ADAD) vaccination system.

    Science.gov (United States)

    Vicente, Belén; López-Abán, Julio; Rojas-Caraballo, José; Pérez del Villar, Luis; Hillyer, George V; Martínez-Fernández, Antonio R; Muro, Antonio

    2014-10-01

    Several efforts have been made to identify anti-schistosomiasis vaccine candidates and new vaccination systems. The fatty acid binding protein (FAPB) has been shown to induce a high level of protection in trematode infection. The adjuvant adaptation (ADAD) vaccination system was used in this study, including recombinant FABP, a natural immunomodulator and saponins. Mice immunised with the ADAD system were able to up-regulate proinflammatory cytokines (IL-1 and IL-6) and induce high IgG2a levels. Moreover, there was a significant reduction in worm burden, egg liver and hepatic lesion in vaccinated mice in two independent experiments involving Schistosoma bovis infected mice. The foregoing data shows that ADAD system using FABP provide a good alternative for triggering an effective immune response against animal schistosomiasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Synthetic Toll-like receptor 4 (TLR4) and TLR7 ligands as influenza virus vaccine adjuvants induce rapid, sustained, and broadly protective responses.

    Science.gov (United States)

    Goff, Peter H; Hayashi, Tomoko; Martínez-Gil, Luis; Corr, Maripat; Crain, Brian; Yao, Shiyin; Cottam, Howard B; Chan, Michael; Ramos, Irene; Eggink, Dirk; Heshmati, Mitra; Krammer, Florian; Messer, Karen; Pu, Minya; Fernandez-Sesma, Ana; Palese, Peter; Carson, Dennis A

    2015-03-01

    Current vaccines against influenza virus infection rely on the induction of neutralizing antibodies targeting the globular head of the viral hemagglutinin (HA). Protection against seasonal antigenic drift or sporadic pandemic outbreaks requires further vaccine development to induce cross-protective humoral responses, potentially to the more conserved HA stalk region. Here, we present a novel viral vaccine adjuvant comprised of two synthetic ligands for Toll-like receptor 4 (TLR4) and TLR7. 1Z105 is a substituted pyrimido[5,4-b]indole specific for the TLR4-MD2 complex, and 1V270 is a phospholipid-conjugated TLR7 agonist. Separately, 1Z105 induces rapid Th2-associated IgG1 responses, and 1V270 potently generates Th1 cellular immunity. 1Z105 and 1V270 in combination with recombinant HA from the A/Puerto Rico/8/1934 strain (rPR/8 HA) effectively induces rapid and sustained humoral immunity that is protective against lethal challenge with a homologous virus. More importantly, immunization with the combined adjuvant and rPR/8 HA, a commercially available split vaccine, or chimeric rHA antigens significantly improves protection against both heterologous and heterosubtypic challenge viruses. Heterosubtypic protection is associated with broadly reactive antibodies to HA stalk epitopes. Histological examination and cytokine profiling reveal that intramuscular (i.m.) administration of 1Z105 and 1V270 is less reactogenic than a squalene-based adjuvant, AddaVax. In summary, the combination of 1Z105 and 1V270 with a recombinant HA induces rapid, long-lasting, and balanced Th1- and Th2-type immunity; demonstrates efficacy in a variety of murine influenza virus vaccine models assaying homologous, heterologous, and heterosubtypic challenge viruses; and has an excellent safety profile. Novel adjuvants are needed to enhance immunogenicity and increase the protective breadth of influenza virus vaccines to reduce the seasonal disease burden and ensure pandemic preparedness. We show

  15. A Respiratory Syncytial Virus Vaccine Vectored by a Stable Chimeric and Replication-Deficient Sendai Virus Protects Mice without Inducing Enhanced Disease.

    Science.gov (United States)

    Wiegand, Marian Alexander; Gori-Savellini, Gianni; Gandolfo, Claudia; Papa, Guido; Kaufmann, Christine; Felder, Eva; Ginori, Alessandro; Disanto, Maria Giulia; Spina, Donatella; Cusi, Maria Grazia

    2017-05-15

    Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in children and elderly people, and no marketed vaccine exists. In this study, we generated and analyzed a subunit vaccine against RSV based on a novel genome replication-deficient Sendai virus (SeV) vector. We inserted the RSV F protein, known to be a genetically stable antigen, into our vector in a specific way to optimize the vaccine features. By exchanging the ectodomain of the SeV F protein for its counterpart from RSV, we created a chimeric vectored vaccine that contains the RSV F protein as an essential structural component. In this way, the antigen is actively expressed on the surfaces of vaccine particles in its prefusion conformation, and as recently reported for other vectored vaccines, the occurrence of silencing mutations of the transgene in the vaccine genome can be prevented. In addition, its active gene expression contributes to further stimulation of the immune response. In order to understand the best route of immunization, we compared vaccine efficacies after intranasal (i.n.) or intramuscular (i.m.) immunization of BALB/c mice. Via both routes, substantial RSV-specific immune responses were induced, consisting of serum IgG and neutralizing antibodies, as well as cytotoxic T cells. Moreover, i.n. immunization was also able to stimulate specific mucosal IgA in the upper and lower respiratory tract. In virus challenge experiments, animals were protected against RSV infection after both i.n. and i.m. immunization without inducing vaccine-enhanced disease. Above all, the replication-deficient SeV appeared to be safe and well tolerated.IMPORTANCE Respiratory syncytial virus (RSV) is a major cause of respiratory diseases in young children and elderly people worldwide. There is a great demand for a licensed vaccine. Promising existing vaccine approaches based on live-attenuated vaccines or viral vectors have suffered from unforeseen drawbacks related to immunogenicity

  16. Novel Bivalent Viral-Vectored Vaccines Induce Potent Humoral and Cellular Immune Responses Conferring Protection against Stringent Influenza A Virus Challenge.

    Science.gov (United States)

    Tully, Claire M; Chinnakannan, Senthil; Mullarkey, Caitlin E; Ulaszewska, Marta; Ferrara, Francesca; Temperton, Nigel; Gilbert, Sarah C; Lambe, Teresa

    2017-07-19

    Seasonal influenza viruses are a common cause of acute respiratory illness worldwide and generate a significant socioeconomic burden. Influenza viruses mutate rapidly, necessitating annual vaccine reformulation because traditional vaccines do not typically induce broad-spectrum immunity. In addition to seasonal infections, emerging pandemic influenza viruses present a continued threat to global public health. Pandemic influenza viruses have consistently higher attack rates and are typically associated with greater mortality compared with seasonal strains. Ongoing strategies to improve vaccine efficacy typically focus on providing broad-spectrum immunity; although B and T cells can mediate heterosubtypic responses, typical vaccine development will augment either humoral or cellular immunity. However, multipronged approaches that target several Ags may limit the generation of viral escape mutants. There are few vaccine platforms that can deliver multiple Ags and generate robust cellular and humoral immunity. In this article, we describe a novel vaccination strategy, tested preclinically in mice, for the delivery of novel bivalent viral-vectored vaccines. We show this strategy elicits potent T cell responses toward highly conserved internal Ags while simultaneously inducing high levels of Abs toward hemagglutinin. Importantly, these humoral responses generate long-lived plasma cells and generate Abs capable of neutralizing variant hemagglutinin-expressing pseudotyped lentiviruses. Significantly, these novel viral-vectored vaccines induce strong immune responses capable of conferring protection in a stringent influenza A virus challenge. Thus, this vaccination regimen induces lasting efficacy toward influenza. Importantly, the simultaneous delivery of dual Ags may alleviate the selective pressure that is thought to potentiate antigenic diversity in avian influenza viruses. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. Vaccines Help Protect Us

    Centers for Disease Control (CDC) Podcasts

    2013-04-23

    In this podcast for kids, the Kidtastics talk about the importance of vaccines and how they work.  Created: 4/23/2013 by Centers for Disease Control and Prevention (CDC).   Date Released: 4/23/2013.

  18. Co-expression of Interleukin-15 Enhances the Protective Immune Responses Induced by Immunization with a Murine Malaria MVA-Based Vaccine Encoding the Circumsporozoite Protein.

    Science.gov (United States)

    Parra, Marcela; Liu, Xia; Derrick, Steven C; Yang, Amy; Molina-Cruz, Alvaro; Barillas-Mury, Carolina; Zheng, Hong; Thao Pham, Phuong; Sedegah, Martha; Belmonte, Arnel; Litilit, Dianne D; Waldmann, Thomas A; Kumar, Sanjai; Morris, Sheldon L; Perera, Liyanage P

    2015-01-01

    Malaria remains a major global public health problem with an estimated 200 million cases detected in 2012. Although the most advanced candidate malaria vaccine (RTS,S) has shown promise in clinical trials, its modest efficacy and durability have created uncertainty about the impact of RTS,S immunization (when used alone) on global malaria transmission. Here we describe the development and characterization of a novel modified vaccinia virus Ankara (MVA)-based malaria vaccine which co-expresses the Plasmodium yoelii circumsporozoite protein (CSP) and IL-15. Vaccination/challenge studies showed that C57BL/6 mice immunized with the MVA-CSP/IL15 vaccine were protected significantly better against a P. yoelii 17XNL sporozoite challenge than either mice immunized with an MVA vaccine expressing only CSP or naïve controls. Importantly, the levels of total anti-CSP IgG were elevated about 100-fold for the MVA-CSP/IL15 immunized group compared to mice immunized with the MVA-CSP construct that does not express IL-15. Among the IgG subtypes, the IL-15 expressing MVA-CSP vaccine induced levels of IgG1 (8 fold) and IgG2b (80 fold) higher than the MVA-CSP construct. The significantly enhanced humoral responses and protection detected after immunization with the MVA-CSP/IL15 vaccine suggest that this IL-15 expressing MVA construct could be considered in the development of future malaria immunization strategies.

  19. Cell culture (Vero) derived whole virus (H5N1) vaccine based on wild-type virus strain induces cross-protective immune responses.

    Science.gov (United States)

    Kistner, Otfried; Howard, M Keith; Spruth, Martin; Wodal, Walter; Brühl, Peter; Gerencer, Marijan; Crowe, Brian A; Savidis-Dacho, Helga; Livey, Ian; Reiter, Manfred; Mayerhofer, Ines; Tauer, Christa; Grillberger, Leopold; Mundt, Wolfgang; Falkner, Falko G; Barrett, P Noel

    2007-08-10

    The rapid spread and the transmission to humans of avian influenza virus (H5N1) have induced world-wide fears of a new pandemic and raised concerns over the ability of standard influenza vaccine production methods to rapidly supply sufficient amounts of an effective vaccine. We report here on a robust and flexible strategy which uses wild-type virus grown in a continuous cell culture (Vero) system to produce an inactivated whole virus vaccine. Candidate vaccines based on clade 1 and clade 2 influenza H5N1 strains were developed and demonstrated to be highly immunogenic in animal models. The vaccines induce cross-neutralising antibodies, highly cross-reactive T-cell responses and are protective in a mouse challenge model not only against the homologous virus but also against other H5N1 strains, including those from another clade. These data indicate that cell culture-grown whole virus vaccines, based on the wild-type virus, allow the rapid high yield production of a candidate pandemic vaccine.

  20. Viral Booster Vaccines Improve Mycobacterium bovis BCG-Induced Protection Against Bovine Tuberculosis

    Science.gov (United States)

    Previous work in small animal laboratory models of tuberculosis have shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacille Calmette-Guerin (BCG) to prime and Modified Vaccinia Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad8...

  1. Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza

    National Research Council Canada - National Science Library

    Shim, Byoung-Shik; Choi, Young Ki; Yun, Cheol-Heui; Lee, Eu-Gene; Jeon, Yoon Seong; Park, Sung-Moo; Cheon, In Su; Joo, Dong-Hyun; Cho, Chung Hwan; Song, Min-Suk; Seo, Sang-Uk; Byun, Young-Ho; Park, Hae-Jung; Poo, Haryoung; Seong, Baik Lin; Kim, Jae Ouk; Nguyen, Huan Huu; Stadler, Konrad; Kim, Dong Wook; Hong, Kee-Jong; Czerkinsky, Cecil; Song, Man Ki

    2011-01-01

    The ectodomain of matrix protein 2 (M2e) of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains...

  2. A Salmonella typhimurium ghost vaccine induces cytokine expression in vitro and immune responses in vivo and protects rats against homologous and heterologous challenges.

    Directory of Open Access Journals (Sweden)

    Nagarajan Vinod

    Full Text Available Salmonella enteritidis and Salmonella typhimurium are important food-borne bacterial pathogens, which are responsible for diarrhea and gastroenteritis in humans and animals. In this study, S. typhimurium bacterial ghost (STG was generated based on minimum inhibitory concentration (MIC of sodium hydroxide (NaOH. Experimental studies performed using in vitro and in vivo experimental model systems to characterize effects of STG as a vaccine candidate. When compared with murine macrophages (RAW 264.7 exposed to PBS buffer (98.1%, the macrophages exposed to formalin-killed inactivated cells (FKC, live wild-type bacterial cells and NaOH-induced STG at 1 × 108 CFU/mL showed 85.6%, 66.5% and 84.6% cell viability, respectively. It suggests that STG significantly reduces the cytotoxic effect of wild-type bacterial cells. Furthermore, STG is an excellent inducer for mRNAs of pro-inflammatory cytokine (TNF-α, IL-1β and factor (iNOS, anti-inflammatory cytokine (IL-10 and dual activities (IL-6 in the stimulated macrophage cells. In vivo, STG vaccine induced humoral and cellular immune responses and protection against homologous and heterologous challenges in rats. Furthermore, the immunogenicity and protective efficacy of STG vaccine were compared with those of FKC and non-vaccinated PBS control groups. The vaccinated rats from STG group exhibited higher levels of serum IgG antibody responses, serum bactericidal antibodies, and CD4+ and CD8+ T-cell populations than those of the FKC and PBS control groups. Most importantly, after challenge with homologous and heterologous strains, the bacterial loads in the STG group were markedly lower than the FKC and PBS control groups. In conclusion, these findings suggest that the STG vaccine induces protective immunity against homologous and heterologous challenges.

  3. Protective immunity induced by the vaccination of recombinant Proteus mirabilis OmpA expressed in Pichia pastoris.

    Science.gov (United States)

    Zhang, Yongbing; Yang, Shifa; Dai, Xiumei; Liu, Liping; Jiang, Xiaodong; Shao, Mingxu; Chi, Shanshan; Wang, Chuanwen; Yu, Cuilian; Wei, Kai; Zhu, Ruiliang

    2015-01-01

    Proteus mirabilis (P. mirabilis) is a zoonotic pathogen that has recently presented a rising infection rate in the poultry industry. To develop an effective vaccine to protect chickens against P. mirabilis infection, OmpA, one of the major outer membrane proteins of P. mirabilis, was expressed in Pichia pastoris. The concentration of the expressed recombinant OmpA protein reached 8.0μg/mL after induction for 96h with 1.0% methanol in the culture. In addition, OmpA protein was confirmed by SDS-PAGE and Western blot analysis using the antibody against Escherichia coli-expressed OmpA protein. Taishan Pinus massoniana pollen polysaccharide, a known plant-derived adjuvant, was mixed into the recombinant OmpA protein to prepare the OmpA subunit vaccine. We then subcutaneously inoculated this vaccine into chickens to examine the immunoprotective effects. ELISA analysis indicated that an excellent antibody response against OmpA was elicited in the vaccinated chickens. Moreover, a high protection rate of 80.0% was observed in the vaccinated group, which was subsequently challenged with P. mirabilis. The results suggest that the eukaryotic P. mirabilis OmpA was an ideal candidate protein for developing an effective subunit vaccine against P. mirabilis infection. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The relationship between RTS,S vaccine-induced antibodies, CD4⁺ T cell responses and protection against Plasmodium falciparum infection.

    Directory of Open Access Journals (Sweden)

    Michael T White

    Full Text Available Vaccination with the pre-erythrocytic malaria vaccine RTS,S induces high levels of antibodies and CD4(+ T cells specific for the circumsporozoite protein (CSP. Using a biologically-motivated mathematical model of sporozoite infection fitted to data from malaria-naive adults vaccinated with RTS,S and subjected to experimental P. falciparum challenge, we characterised the relationship between antibodies, CD4(+ T cell responses and protection from infection. Both anti-CSP antibody titres and CSP-specific CD4(+ T cells were identified as immunological surrogates of protection, with RTS,S induced anti-CSP antibodies estimated to prevent 32% (95% confidence interval (CI 24%-41% of infections. The addition of RTS,S-induced CSP-specific CD4(+ T cells was estimated to increase vaccine efficacy against infection to 40% (95% CI, 34%-48%. This protective efficacy is estimated to result from a 96.1% (95% CI, 93.4%-97.8% reduction in the liver-to-blood parasite inoculum, indicating that in volunteers who developed P. falciparum infection, a small number of parasites (often the progeny of a single surviving sporozoite are responsible for breakthrough blood-stage infections.

  5. Novel HIV IL-4R antagonist vaccine strategy can induce both high avidity CD8 T and B cell immunity with greater protective efficacy.

    Science.gov (United States)

    Jackson, Ronald J; Worley, Matthew; Trivedi, Shubhanshi; Ranasinghe, Charani

    2014-09-29

    We have established that the efficacy of a heterologous poxvirus vectored HIV vaccine, fowlpox virus (FPV)-HIV gag/pol prime followed by attenuated vaccinia virus (VV)-HIV gag/pol booster immunisation, is strongly influenced by the cytokine milieu at the priming vaccination site, with endogenous IL-13 detrimental to the quality of the HIV specific CD8+ T cell response induced. We have now developed a novel HIV vaccine that co-expresses a C-terminal deletion mutant of the mouse IL-4, deleted for the essential tyrosine (Y119) required for signalling. In our vaccine system, the mutant IL-4C118 can bind to IL-4 type I and II receptors with high affinity, and transiently prevent the signalling of both IL-4 and IL-13 at the vaccination site. When this IL-4C118 adjuvanted vaccine was used in an intranasal rFPV/intramuscular rVV prime-boost immunisation strategy, greatly enhanced mucosal/systemic HIV specific CD8+ T cells with higher functional avidity, expressing IFN-γ, TNF-α and IL-2 and greater protective efficacy were detected. Surprisingly, the IL-4C118 adjuvanted vaccines also induced robust long-lived HIV gag-specific serum antibody responses, specifically IgG1 and IgG2a. The p55-gag IgG2a responses induced were of a higher magnitude relative to the IL-13Rα2 adjuvant vaccine. More interestingly, our recently tested IL-13Rα2 adjuvanted vaccine which only inhibited IL-13 activity, even though induced excellent high avidity HIV-specific CD8+ T cells, had a detrimental impact on the induction of gag-specific IgG2a antibody immunity. Our observations suggest that (i) IL-4 cell-signalling in the absence of IL-13 retarded gag-specific antibody isotype class switching, or (ii) IL-13Rα2 signalling was involved in inducing good gag-specific B cell immunity. Thus, we believe our novel IL-4R antagonist adjuvant strategy offers great promise not only for HIV-1 vaccines, but also against a range of chronic infections where sustained high quality mucosal and systemic T and B

  6. Vaccine-induced protection against orthopoxvirus infection is mediated through the combined functions of CD4 T cell-dependent antibody and CD8 T cell responses.

    Science.gov (United States)

    Chaudhri, Geeta; Tahiliani, Vikas; Eldi, Preethi; Karupiah, Gunasegaran

    2015-02-01

    Antibody production by B cells in the absence of CD4 T cell help has been shown to be necessary and sufficient for protection against secondary orthopoxvirus (OPV) infections. This conclusion is based on short-term depletion of leukocyte subsets in vaccinated animals, in addition to passive transfer of immune serum to naive hosts that are subsequently protected from lethal orthopoxvirus infection. Here, we show that CD4 T cell help is necessary for neutralizing antibody production and virus control during a secondary ectromelia virus (ECTV) infection. A crucial role for CD4 T cells was revealed when depletion of this subset was extended beyond the acute phase of infection. Sustained depletion of CD4 T cells over several weeks in vaccinated animals during a secondary infection resulted in gradual diminution of B cell responses, including neutralizing antibody, contemporaneous with a corresponding increase in the viral load. Long-term elimination of CD8 T cells alone delayed virus clearance, but prolonged depletion of both CD4 and CD8 T cells resulted in death associated with uncontrolled virus replication. In the absence of CD4 T cells, perforin- and granzyme A- and B-dependent effector functions of CD8 T cells became critical. Our data therefore show that both CD4 T cell help for antibody production and CD8 T cell effector function are critical for protection against secondary OPV infection. These results are consistent with the notion that the effectiveness of the smallpox vaccine is related to its capacity to induce both B and T cell memory. Smallpox eradication through vaccination is one of the most successful public health endeavors of modern medicine. The use of various orthopoxvirus (OPV) models to elucidate correlates of vaccine-induced protective immunity showed that antibody is critical for protection against secondary infection, whereas the role of T cells is unclear. Short-term leukocyte subset depletion in vaccinated animals or transfer of immune serum

  7. Report on the first WHO integrated meeting on development and clinical trials of influenza vaccines that induce broadly protective and long-lasting immune responses: Hong Kong SAR, China, 24-26 January 2013.

    Science.gov (United States)

    Girard, Marc P; Tam, John S; Pervikov, Yuri; Katz, Jacqueline M

    2013-08-20

    On January 24-26, 2013, the World Health Organization convened the first integrated meeting on "The development and clinical trials of vaccines that induce broadly protective and long-lasting immune responses" to review the current status of development and clinical evaluation of novel influenza vaccines as well as strategies to produce and deliver vaccines in novel ways. Special attention was given to the development of possible universal influenza vaccines. Other topics that were addressed included an update on clinical trials of pandemic and seasonal influenza vaccines in high-risk groups and vaccine safety, as well as regulatory issues. Copyright © 2013. Published by Elsevier Ltd.. All rights reserved.

  8. A novel recombinant BCG vaccine encoding eimeria tenella rhomboid and chicken IL-2 induces protective immunity against coccidiosis.

    Science.gov (United States)

    Wang, Qiuyue; Chen, Lifeng; Li, Jianhua; Zheng, Jun; Cai, Ning; Gong, Pengtao; Li, Shuhong; Li, He; Zhang, Xichen

    2014-06-01

    A novel recombinant Bacille Calmette-Guerin (rBCG) vaccine co-expressed Eimeria tenella rhomboid and cytokine chicken IL-2 (chIL-2) was constructed, and its efficacy against E. tenella challenge was observed. The rhomboid gene of E. tenella and chIL-2 gene were subcloned into integrative expression vector pMV361, producing vaccines rBCG pMV361-rho and pMV361-rho-IL2. Animal experiment via intranasal and subcutaneous route in chickens was carried out to evaluate the immune efficacy of the vaccines. The results indicated that these rBCG vaccines could obviously alleviate cacal lesions and oocyst output. Intranasal immunization with pMV361-rho and pMV361-rho-IL2 elicited better protective immunity against E. tenella than subcutaneous immunization. Splenocytes from chickens immunized with either rBCG pMV361-rho and pMV361-rho-IL2 had increased CD4(+) and CD8(+) cell production. Our data indicate recombinant BCG is able to impart partial protection against E. tenella challenge and co-expression of cytokine with antigen was an effective strategy to improve vaccine immunity.

  9. Protection induced by virus-like particle vaccine containing tandem repeat gene of respiratory syncytial virus G protein.

    Science.gov (United States)

    Kim, Ah-Ra; Lee, Dong-Hun; Lee, Su-Hwa; Rubino, Ilaria; Choi, Hyo-Jick; Quan, Fu-Shi

    2018-01-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants, young children and the elderly. However, there is no licensed vaccine available against RSV infection. In this study, we generated virus-like particle (VLP) vaccine and investigated the vaccine efficacy in a mouse model. For VLP vaccines, tandem gene (1-780 bp) for V1 VLPs and tandem repeat gene (repeated 450-780 bp) for V5 VLPs were constructed in pFastBacTM vectors, respectively. Influenza matrix protein 1 (M1) was used as a core protein in the VLPs. Notably, upon challenge infection, significantly lower virus loads were measured in the lung of mice immunized with V1 or V5 VLPs compared to those of naïve mice and formalin-inactivated RSV immunized control mice. In particular, V5 VLPs immunization showed significantly lower virus titers than V1 VLPs immunization. Furthermore, V5 VLPs immunization elicited increased memory B cells responses in the spleen. These results indicated that V5 VLP vaccine containing tandem repeat gene protein provided better protection than V1 VLPs with significantly decreased inflammation in the lungs. Thus, V5 VLPs could be a potential vaccine candidate against RSV.

  10. Respiratory syncytial virus-like nanoparticle vaccination induces long-term protection without pulmonary disease by modulating cytokines and T-cells partially through alveolar macrophages.

    Science.gov (United States)

    Lee, Young-Tae; Ko, Eun-Ju; Hwang, Hye Suk; Lee, Jong Seok; Kim, Ki-Hye; Kwon, Young-Man; Kang, Sang-Moo

    2015-01-01

    The mechanisms of protection against respiratory syncytial virus (RSV) are poorly understood. Virus-like nanoparticles expressing RSV glycoproteins (eg, a combination of fusion and glycoprotein virus-like nanoparticles [FG VLPs]) have been suggested to be a promising RSV vaccine candidate. To understand the roles of alveolar macrophages (AMs) in inducing long-term protection, mice that were 12 months earlier vaccinated with formalin-inactivated RSV (FI-RSV) or FG VLPs were treated with clodronate liposome prior to RSV infection. FI-RSV immune mice with clodronate liposome treatment showed increases in eosinophils, plasmacytoid dendritic cells, interleukin (IL)-4(+) T-cell infiltration, proinflammatory cytokines, chemokines, and, in particular, mucus production upon RSV infection. In contrast to FI-RSV immune mice with severe pulmonary histopathology, FG VLP immune mice showed no overt sign of histopathology and significantly lower levels of eosinophils, T-cell infiltration, and inflammatory cytokines, but higher levels of interferon-γ, which are correlated with protection against RSV disease. FG VLP immune mice with depletion of AMs showed increases in inflammatory cytokines and chemokines, as well as eosinophils. The results in this study suggest that FG nanoparticle vaccination induces long-term protection against RSV and that AMs play a role in the RSV protection by modulating eosinophilia, mucus production, inflammatory cytokines, and T-cell infiltration.

  11. Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response.

    Science.gov (United States)

    Zhou, Bin; Liu, Ke; Jiang, Yan; Wei, Jian-Chao; Chen, Pu-Yan

    2011-07-30

    Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus, an OIE list A pathogen. Epitope-based vaccines is one of the current focuses in the development of new vaccines against classical swine fever virus (CSFV). Two B-cell linear epitopes rE2-ba from the E2 glycoprotein of CSFV, rE2-a (CFRREKPFPHRMDCVTTTVENED, aa844-865) and rE2-b (CKEDYRYAISSTNEIGLLGAGGLT, aa693-716), were constructed and heterologously expressed in Escherichia coli as multiple epitope vaccine. Fifteen 6-week-old specified-pathogen-free (SPF) piglets were intramuscularly immunized with epitopes twice at 2-week intervals. All epitope-vaccinated pigs could mount an anamnestic response after booster vaccination with neutralizing antibody titers ranging from 1:16 to 1:256. At this time, the pigs were subjected to challenge infection with a dose of 1 × 106 TCID50 virulent CSFV strain. After challenge infection, all of the rE2-ba-immunized pigs were alive and without symptoms or signs of CSF. In contrast, the control pigs continuously exhibited signs of CSF and had to be euthanized because of severe clinical symptoms at 5 days post challenge infection. The data from in vivo experiments shown that the multiple epitope rE2-ba shown a greater protection (similar to that of HCLV vaccine) than that of mono-epitope peptide(rE2-a or rE2-b). Therefore, The results demonstrated that this multiple epitope peptide expressed in a prokaryotic system can be used as a potential DIVA (differentiating infected from vaccinated animals) vaccine. The E.coli-expressed E2 multiple B-cell linear epitopes retains correct immunogenicity and is able to induce a protective immune response against CSFV infection.

  12. Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response

    Directory of Open Access Journals (Sweden)

    Wei Jian-Chao

    2011-07-01

    Full Text Available Abstract Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus, an OIE list A pathogen. Epitope-based vaccines is one of the current focuses in the development of new vaccines against classical swine fever virus (CSFV. Two B-cell linear epitopes rE2-ba from the E2 glycoprotein of CSFV, rE2-a (CFRREKPFPHRMDCVTTTVENED, aa844-865 and rE2-b (CKEDYRYAISSTNEIGLLGAGGLT, aa693-716, were constructed and heterologously expressed in Escherichia coli as multiple epitope vaccine. Fifteen 6-week-old specified-pathogen-free (SPF piglets were intramuscularly immunized with epitopes twice at 2-week intervals. All epitope-vaccinated pigs could mount an anamnestic response after booster vaccination with neutralizing antibody titers ranging from 1:16 to 1:256. At this time, the pigs were subjected to challenge infection with a dose of 1 × 106 TCID50 virulent CSFV strain. After challenge infection, all of the rE2-ba-immunized pigs were alive and without symptoms or signs of CSF. In contrast, the control pigs continuously exhibited signs of CSF and had to be euthanized because of severe clinical symptoms at 5 days post challenge infection. The data from in vivo experiments shown that the multiple epitope rE2-ba shown a greater protection (similar to that of HCLV vaccine than that of mono-epitope peptide(rE2-a or rE2-b. Therefore, The results demonstrated that this multiple epitope peptide expressed in a prokaryotic system can be used as a potential DIVA (differentiating infected from vaccinated animals vaccine. The E.coli-expressed E2 multiple B-cell linear epitopes retains correct immunogenicity and is able to induce a protective immune response against CSFV infection.

  13. StreptInCor: a candidate vaccine epitope against S. pyogenes infections induces protection in outbred mice.

    Science.gov (United States)

    Postol, Edilberto; Alencar, Raquel; Higa, Fabio T; Freschi de Barros, Samar; Demarchi, Lea M F; Kalil, Jorge; Guilherme, Luiza

    2013-01-01

    Infection with Streptococcus pyogenes (S. pyogenes) can result in several diseases, particularly in children. S. pyogenes M protein is the major virulence factor, and certain regions of its N-terminus can trigger autoimmune sequelae such as rheumatic fever in susceptible individuals with untreated group A streptococcal pharyngitis. In a previous study, we utilized a large panel of human peripheral blood cells to define the C-terminal protective epitope StreptInCor (medical identity), which does not induce autoimmune reactions. We recently confirmed the results in HLA-transgenic mice. In the present study, we extended the experimental assays to outbred animals (Swiss mice). Herein, we demonstrate high titers of StreptInCor-specific antibodies, as well as appropriate T-cell immune responses. No cross-reaction to cardiac myosin was detected. Additionally, immunized Swiss mice exhibited 87% survival one month after challenge with S. pyogenes. In conclusion, the data presented herein reinforce previous results in humans and animals and further emphasize that StreptInCor could be an effective and safe vaccine for the prevention of S. pyogenes infections.

  14. StreptInCor: a candidate vaccine epitope against S. pyogenes infections induces protection in outbred mice.

    Directory of Open Access Journals (Sweden)

    Edilberto Postol

    Full Text Available Infection with Streptococcus pyogenes (S. pyogenes can result in several diseases, particularly in children. S. pyogenes M protein is the major virulence factor, and certain regions of its N-terminus can trigger autoimmune sequelae such as rheumatic fever in susceptible individuals with untreated group A streptococcal pharyngitis. In a previous study, we utilized a large panel of human peripheral blood cells to define the C-terminal protective epitope StreptInCor (medical identity, which does not induce autoimmune reactions. We recently confirmed the results in HLA-transgenic mice. In the present study, we extended the experimental assays to outbred animals (Swiss mice. Herein, we demonstrate high titers of StreptInCor-specific antibodies, as well as appropriate T-cell immune responses. No cross-reaction to cardiac myosin was detected. Additionally, immunized Swiss mice exhibited 87% survival one month after challenge with S. pyogenes. In conclusion, the data presented herein reinforce previous results in humans and animals and further emphasize that StreptInCor could be an effective and safe vaccine for the prevention of S. pyogenes infections.

  15. Vaccine Induced Specific Protection Against Enteric Red Mouth Disease (ERM) Caused by Yersinia Ruckeri Serotype 1 Biotype 2

    DEFF Research Database (Denmark)

    Deshmukh, Sidharta; Raida, Martin K.; Dalsgaard, Inger

    2011-01-01

    biotype 1 and 2. In this study, the specificity of immune protection extended by three commercial vaccines viz; AQUAVAC ERM® Intervet Schering Plough (based on biotype 1 only), ERMOGEN VET® Novartis (based on biotype 1 only) and AQUAVAC RELERA® Intervet Schering Plough (based on both biotype 1and 2...... by AQUAVAC RELERA® in terms of milder and lesser degree of certain pathological lesions like haemorrhages in or around the buccal cavity, base of fins and intestines, when compared to ERMOGEN VET®, AQUAVAC ERM® vaccinated group and Yersinia ruckeri (BT2) infected group....

  16. Vaccine-induced protection from egg production losses in commercial turkey breeder hens following experimental challenge with a triple-reassortant H3N2 avian influenza virus.

    Science.gov (United States)

    Kapczynski, Darrell R; Gonder, Eric; Liljebjelke, Karen; Lippert, Ron; Petkov, Daniel; Tilley, Becky

    2009-03-01

    Infections of avian influenza virus (AIV) in turkey breeder hens can cause a decrease in both egg production and quality, resulting in significant production losses. In North Carolina in 2003, a triple-reassortant H3N2 AIV containing human, swine, and avian gene segments was isolated from turkey breeder hens (A/turkey/NC/16108/03). This viral subtype was subsequently isolated from both turkeys and swine in Ohio in 2004, and in Minnesota in 2005, and was responsible for significant losses in turkey production. The objective of this study was to determine if currently available commercial, inactivated avian influenza H3 subtype oil-emulsion vaccines would protect laying turkey hens from egg production losses following challenge with the 2003 H3N2 field virus isolate from North Carolina. Laying turkey hens were vaccinated in the field with two injections of either a commercial monovalent (A/duck/Minnesota/79/79 [H3N4]) or autogenous bivalent (A/turkey/North Carolina/05 (H3N2)-A/turkey/North Carolina/88 [H1N1]) vaccine, at 26 and 30 wk of age, and subsequently challenged under BSL 3-Ag conditions at 32 wk of age. Vaccine-induced efficacy was determined as protection from a 50% decrease in egg production and from a decrease in egg quality within 21 days postchallenge. Results indicate that, following a natural route of challenge (eye drop and intranasal), birds vaccinated with the 2005 North Carolina H3N2 subtype were significantly protected from the drop in egg production observed in both the H3N4 vaccinated and sham-vaccinated hens. The results demonstrate that groups receiving vaccines containing either H3 subtype had a decreased number of unsettable eggs, increased hemagglutination inhibition titers following challenge, and decreased virus isolations from cloacal swabs as compared to the sham-vaccinated group. Phylogenetic analysis of the nucleotide sequence of the HA1 gene segment from the three H3 viruses used in these studies indicated that the two North Carolina

  17. Protective Vaccination against Papillomavirus-Induced Skin Tumors under Immunocompetent and Immunosuppressive Conditions: A Preclinical Study Using a Natural Outbred Animal Model

    Science.gov (United States)

    Vinzón, Sabrina E.; Braspenning-Wesch, Ilona; Müller, Martin; Geissler, Edward K.; Nindl, Ingo; Gröne, Hermann-Josef

    2014-01-01

    Certain cutaneous human papillomaviruses (HPVs), which are ubiquitous and acquired early during childhood, can cause a variety of skin tumors and are likely involved in the development of non-melanoma skin cancer, especially in immunosuppressed patients. Hence, the burden of these clinical manifestations demands for a prophylactic approach. To evaluate whether protective efficacy of a vaccine is potentially translatable to patients, we used the rodent Mastomys coucha that is naturally infected with Mastomys natalensis papillomavirus (MnPV). This skin type papillomavirus induces not only benign skin tumours, such as papillomas and keratoacanthomas, but also squamous cell carcinomas, thereby allowing a straightforward read-out for successful vaccination in a small immunocompetent laboratory animal. Here, we examined the efficacy of a virus-like particle (VLP)-based vaccine on either previously or newly established infections. VLPs raise a strong and long-lasting neutralizing antibody response that confers protection even under systemic long-term cyclosporine A treatment. Remarkably, the vaccine completely prevents the appearance of benign as well as malignant skin tumors. Protection involves the maintenance of a low viral load in the skin by an antibody-dependent prevention of virus spread. Our results provide first evidence that VLPs elicit an effective immune response in the skin under immunocompetent and immunosuppressed conditions in an outbred animal model, irrespective of the infection status at the time of vaccination. These findings provide the basis for the clinical development of potent vaccination strategies against cutaneous HPV infections and HPV-induced tumors, especially in patients awaiting organ transplantation. PMID:24586150

  18. Protective vaccination against papillomavirus-induced skin tumors under immunocompetent and immunosuppressive conditions: a preclinical study using a natural outbred animal model.

    Directory of Open Access Journals (Sweden)

    Sabrina E Vinzón

    2014-02-01

    Full Text Available Certain cutaneous human papillomaviruses (HPVs, which are ubiquitous and acquired early during childhood, can cause a variety of skin tumors and are likely involved in the development of non-melanoma skin cancer, especially in immunosuppressed patients. Hence, the burden of these clinical manifestations demands for a prophylactic approach. To evaluate whether protective efficacy of a vaccine is potentially translatable to patients, we used the rodent Mastomys coucha that is naturally infected with Mastomys natalensis papillomavirus (MnPV. This skin type papillomavirus induces not only benign skin tumours, such as papillomas and keratoacanthomas, but also squamous cell carcinomas, thereby allowing a straightforward read-out for successful vaccination in a small immunocompetent laboratory animal. Here, we examined the efficacy of a virus-like particle (VLP-based vaccine on either previously or newly established infections. VLPs raise a strong and long-lasting neutralizing antibody response that confers protection even under systemic long-term cyclosporine A treatment. Remarkably, the vaccine completely prevents the appearance of benign as well as malignant skin tumors. Protection involves the maintenance of a low viral load in the skin by an antibody-dependent prevention of virus spread. Our results provide first evidence that VLPs elicit an effective immune response in the skin under immunocompetent and immunosuppressed conditions in an outbred animal model, irrespective of the infection status at the time of vaccination. These findings provide the basis for the clinical development of potent vaccination strategies against cutaneous HPV infections and HPV-induced tumors, especially in patients awaiting organ transplantation.

  19. A DNA vaccine expressing CFP21 and MPT64 fusion protein enhances BCG-induced protective immunity against Mycobacterium tuberculosis infection in mice.

    Science.gov (United States)

    Wang, Chun; Chen, Zhenhua; Fu, Ruiling; Zhang, Ying; Chen, Lingxia; Huang, Li; Li, Jinjin; Shi, Chunwei; Fan, Xionglin

    2011-08-01

    The efficacy of Bacillus Calmette-Guérin (BCG) vaccine in preventing adult tuberculosis (TB) is highly variable. Genetic differences between BCG vaccine substrains, which can be divided into early strains and late strains based on the loss of region of difference two (RD2), may result in the variability and BCG substrains. The effect of lack of RD2 on the protective efficacy of BCG substrains against TB remains unknown. In this study, we demonstrated that CFP21 and MPT64(rCM) fusion protein, encoded by RD2 of Mycobacterium tuberculosis, could stimulate higher level of interferon (IFN)-γ in tuberculin skin test (TST)-positive healthy population than in TST-negative healthy population. Compared with naive mice challenged with virulent M. tuberculosis H37Rv, C57BL/6 mice vaccinated with pcD2164 DNA expressing rCM protein resulted in a greater decrease in the bacterial load of lung. Moreover, pcD2164 could boost the protective immunity in mice primed by BCG than BCG alone or DNA vaccination alone, as evidenced by lower bacterial load in the lung tissue and reduced lung pathology. The protection induced by BCG prime-DNA vaccine boost strategy was associated with significant increases in rCM protein-specific IFN-γ. Therefore, our results clearly indicate that the loss of RD2 has an important influence on the protective efficacy of different BCG substrains. These findings will benefit the optimal choice of BCG substrain for neonatal immunization and rational design of new vaccines for the prevention of TB.

  20. Protection induced by a commercial bivalent vaccine against Foot-and-Mouth Disease 2010 field virus from Ecuador.

    Science.gov (United States)

    Duque, Hernando; Naranjo, Jose; Carrillo, Consuelo; Burbano, Alexandra; Vargas, Javier; Pauszek, Lisa; Olesen, Ian; Sanchez-Vazquez, Manuel J; Cosivi, Ottorino; Allende, Rossana M

    2016-07-29

    Foot-and-Mouth Disease serotype O circulated endemically in Ecuador for many years, with an upsurge occurring in 2009. This manuscript describes retrospectively in vitro and in vivo laboratory studies to predict the field effectiveness of a commercial FMD vaccine to protect against the field strain, and explains the key actions and epidemiological strategies followed by the country to control the disease. The results established that the use of a good quality oil vaccine, manufactured with strains that were isolated long ago: O1 Campos Br/58 and A24 Cruzeiro Br/55; combined with the correct epidemiological strategies, are useful to control field strains when used in periodic biannual vaccination campaigns. Published by Elsevier Ltd.

  1. Passive Transfer of Immune Sera Induced by a Zika Virus-Like Particle Vaccine Protects AG129 Mice Against Lethal Zika Virus Challenge.

    Science.gov (United States)

    Espinosa, Diego; Mendy, Jason; Manayani, Darly; Vang, Lo; Wang, Chunling; Richard, Tiffany; Guenther, Ben; Aruri, Jayavani; Avanzini, Jenny; Garduno, Fermin; Farness, Peggy; Gurwith, Marc; Smith, Jon; Harris, Eva; Alexander, Jeff

    2017-12-12

    Zika virus (ZIKV) poses a serious public health threat due to its association with birth defects in developing fetuses and Guillain-Barré Syndrome in adults. We are developing a ZIKV vaccine based on virus-like particles (VLPs) generated in transiently transfected HEK293 cells. The genetic construct consists of the prM and envelope structural protein genes of ZIKV placed downstream from a heterologous signal sequence. To better understand the humoral responses and correlates of protection (CoP) induced by the VLP vaccine, we evaluated VLP immunogenicity with and without alum in immune-competent mice (C57Bl/6 x Balb/c) and observed efficient induction of neutralizing antibody as well as a dose-sparing effect of alum. To assess the efficacy of the immune sera, we performed passive transfer experiments in AG129 mice. Mice that received the immune sera prior to ZIKV infection demonstrated significantly reduced viral replication as measured by viral RNA levels in the blood and remained healthy, whereas control mice succumbed to infection. The results underscore the protective effect of the antibody responses elicited by this ZIKV VLP vaccine candidate. These studies will help define optimal vaccine formulations, contribute to translational efforts in developing a vaccine for clinical development, and assist in the definition of immunologic CoP. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Genetically modified rabies virus ERA strain is safe and induces long-lasting protective immune response in dogs after oral vaccination.

    Science.gov (United States)

    Shuai, Lei; Feng, Na; Wang, Xijun; Ge, Jinying; Wen, Zhiyuan; Chen, Weiye; Qin, Lide; Xia, Xianzhu; Bu, Zhigao

    2015-09-01

    Oral immunization in free-roaming dogs is one of the most practical approaches to prevent rabies for developing countries. The safe, efficient and long-lasting protective oral rabies vaccine for dogs is highly sought. In this study, rabies virus (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain wild-type (rERA) and a genetically modified type (rERAG333E) containing a mutation from arginine to glutamic acid at residue 333 of glycoprotein (G333E) were generated by reverse genetic. The recombinant virus rERAG333E retained growth properties of similar to the parent strain rERA in BHK-21 cell culture. The G333E mutation showed genetic stability during passage into neuroblastoma cells and in the brains of suckling mice and was significantly reduced the virulence of rERA in mice. rERAG333E was immunogenic in dogs by intramuscular inoculation. Mice orally vaccinated with rERAG333E induced strong and one year longer virus neutralizing antibodies (VNA) to RABV, and were completely protected from challenge with lethal street virus at 12months after immunization. Dogs received oral vaccination with rERAG333E induced strong protective RABV VNA response, which lasted for over 3years, and moderate saliva RABV-specific IgA. Moreover, sizeable booster responses to RABV VNA were induced by a second oral dose 1year after the first dose. These results demonstrated that the genetically modified ERA vaccine strain has the potential to serve as a safe and efficient oral live vaccine against rabies in dogs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Pandemic H1N1 influenza infection and vaccination in humans induces cross-protective antibodies that target the hemagglutinin stem

    Directory of Open Access Journals (Sweden)

    Christy Ann Thomson

    2012-05-01

    Full Text Available Most monoclonal antibodies (mAbs generated from humans infected or vaccinated with the 2009 pandemic H1N1 (pdmH1N1 influenza virus targeted the hemagglutinin (HA stem. These anti-HA stem mAbs mostly used IGHV1-69 and bound readily to epitopes on the conventional seasonal influenza and pdmH1N1 vaccines. The anti-HA stem mAbs neutralized pdmH1N1, seasonal influenza H1N1 and avian H5N1 influenza viruses by inhibiting HA-mediated fusion of membranes and protected against and treated heterologous lethal infections in mice with H5N1 influenza virus. This demonstrated that therapeutic mAbs could be generated a few months after the new virus emerged. Human immunization with the pdmH1N1 vaccine induced circulating antibodies that protected mice from lethal, heterologous H5N1 influenza infections. We observed that the dominant heterosubtypic antibody response against the HA stem correlated with the relative absence of memory B cells against the HA head of pdmH1N1, thus enabling the rare heterosubtypic memory B cells induced by seasonal influenza and specific for conserved sites on the HA stem to compete for T-cell help. These results support the notion that broadly protective antibodies against influenza would be induced by successive vaccination with conventional influenza vaccines based on subtypes of HA in viruses not circulating in humans.

  4. The protective immune response against Pseudorabies virus induced by DNA vaccination is impaired if the plasmid harbors a functional Porcine circovirus type 2 rep and origin of replication.

    Science.gov (United States)

    Faurez, Florence; Grasland, Béatrice; Béven, Véronique; Cariolet, Roland; Keranflec'h, André; Henry, Aurélie; Jestin, André; Dory, Daniel

    2012-12-01

    A plasmid rendered replicative in mammalian cells by inserting the Porcine circovirus 2 (PCV2) origin of replication and replicase gene (Ori-rep) has been previously constructed. The aim of the present study was to evaluate if the replication capacity of this plasmid could be advantageously used to improve the protective immunity induced by DNA vaccination. In this case we used the porcine Pseudorabies virus (PrV) DNA vaccination model. The replicative capacity of the DNA vaccine did not improve the protective immunity against PrV in pigs, but on the contrary the presence of the PCV2 Ori-rep sequence was harmful in the induction of this immunity compared to an equivalent but non-replicative DNA vaccine. In addition, the distribution and the persistence of the replicative and non-replicative plasmids inside the body were the same. This is the first study showing an in vivo deleterious effect of the replicative active PCV2 Ori-rep on the natural and specific protection against PrV infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Norovirus (NoV) specific protective immune responses induced by recombinant P dimer vaccine are enhanced by the mucosal adjuvant FlaB.

    Science.gov (United States)

    Verma, Vivek; Tan, Wenzhi; Puth, Sao; Cho, Kyoung-Oh; Lee, Shee Eun; Rhee, Joon Haeng

    2016-05-17

    Noroviruses (NoVs) are a major cause of childhood gastroenteritis and foodborne diseases worldwide. Lack of appropriate animal models or cell-based culture systems makes the development and evaluation of NoV-specific vaccines a daunting task. VP1 is the major capsid protein of the NoVs that acts as a binding motif to human histo-blood group antigens (HBGAs) through its protruding 2 (P2) domain and can serve as a protective antigen candidate for vaccine development. Recombinantly produced NoV specific P domain (Pd) vaccine was inoculated into groups of mice either alone or in conjugation with mucosal adjuvant FlaB, the flagellar protein from Vibrio vulnificus. Antigen specific humoral and cell mediated immune responses were assessed by enzyme linked immunosorbent assay (ELISA) or fluorescent activated cell sorting (FACS). A comparative analysis of various routes of vaccination viz. intranasal, sublingual and subcutaneous, was also done. In this study, we show that a recombinant Pd-vaccine administered through intranasal route induced a robust TH2-dependent humoral immune response and that the combination of vaccine with FlaB significantly enhanced the antibody response. Interestingly, FlaB induced a mixed TH1/TH2 type of immune response with a significant induction of IgG1 as well as IgG2a antibodies. FlaB also induced strong IgA responses in serum and feces. FlaB mediated antibody responses were toll like receptor 5 (TLR5) dependent, since the FlaB adjuvanticity was lost in TLR5(-/-) mice. Further, though the Pd-vaccine by itself failed to induce a cell mediated immune response, the Pd-FlaB combination stimulated a robust CD4(+)IFNγ(+) and CD8(+)IFNγ(+) T cell response in spleen and mesenteric lymph nodes. We also compared the adjuvant effects of FlaB with that of alum and complete Freund's adjuvant (CFA). We found that subcutaneously inoculated FlaB induced more significant levels of IgG and IgA in both serum and feces compared to alum or CFA in respective

  6. Community Immunity: How Vaccines Protect Us All

    Science.gov (United States)

    ... Special Issues Subscribe October 2011 Print this issue Community Immunity How Vaccines Protect Us All Send us ... time. That’s because enough people in the surrounding communities had already been vaccinated against measles. “The important ...

  7. Similar protective immunity induced by an inactivated enterovirus 71 (EV71) vaccine in neonatal rhesus macaques and children.

    Science.gov (United States)

    Zhang, Ying; Wang, Lichun; Liao, Yun; Liu, Longding; Ma, Kaili; Yang, Erxia; Wang, Jingjing; Che, Yanchun; Jiang, Li; Pu, Jing; Guo, Lei; Feng, Min; Liang, Yan; Cui, Wei; Yang, Huai; Li, Qihan

    2015-11-17

    During the development of enterovirus 71 (EV71) inactivated vaccine for preventing human hand, foot and mouth diseases (HFMD) by EV71 infection, an effective animal model is presumed to be significant and necessary. Our previous study demonstrated that the vesicles in oral regions and limbs potentially associated with viremia, which are the typical manifestations of HFMD, and remarkable pathologic changes were identified in various tissues of neonatal rhesus macaque during EV71 infection. Although an immune response in terms of neutralizing antibody and T cell memory was observed in animals infected by the virus or stimulated by viral antigen, whether such a response could be considered as an indicator to justify the immune response in individuals vaccinated or infected in a pandemic needs to be investigated. Here, a comparative analysis of the neutralizing antibody response and IFN-γ-specific T cell response in vaccinated neonatal rhesus macaques and a human clinical trial with an EV71 inactivated vaccine was performed, and the results showed the identical tendency and increased level of neutralizing antibody and the IFN-γ-specific T cell response stimulated by the EV71 antigen peptide. Importantly, the clinical protective efficacy against virus infection by the elicited immune response in the immunized population compared with the placebo control and the up-modulated gene profile associated with immune activation were similar to those in infected macaques. Further safety verification of this vaccine in neonatal rhesus macaques and children confirmed the potential use of the macaque as a reliable model for the evaluation of an EV71 candidate vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Alphavirus-based Vaccines Encoding Nonstructural Proteins of Hepatitis C Virus Induce Robust and Protective T-cell Responses

    Science.gov (United States)

    Ip, Peng Peng; Boerma, Annemarie; Regts, Joke; Meijerhof, Tjarko; Wilschut, Jan; Nijman, Hans W; Daemen, Toos

    2014-01-01

    An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all- or a part of the conserved nonstructural proteins (nsPs) of HCV. We demonstrated that an rSFV vector was able to encode a transgene as large as 6.1 kb without affecting its vaccine immunogenicity. Prime-boost immunizations of mice with rSFV expressing all nsPs induced strong and long-lasting NS3-specific CD8+ T-cell responses. The strength and functional heterogeneity of the T-cell response was similar to that induced with rSFV expressing only NS3/4A. Furthermore this leads to a significant growth delay and negative selection of HCV-expressing EL4 tumors in an in vivo mouse model. In general, as broad-spectrum T-cell responses are only seen in patients with resolved HCV infection, this rSFV-based vector, which expresses all nsPs, inducing robust T-cell activity has a potential for the treatment of HCV infections. PMID:24370701

  9. A field vaccine trial in Tanzania demonstrates partial protection ...

    African Journals Online (AJOL)

    This study demonstrated a baseline level of MCF-seropositivity among cattle in northern Tanzania of 1% and showed that AlHV-1 virus-neutralizing antibodies could be induced in Tanzanian zebu shorthorn cross cattle by our attenuated vaccine, a correlate of protection in previous experimental trials. The vaccine reduced ...

  10. Development of a poly (lactic-co-glycolic acid) particle vaccine to protect against house dust mite induced allergy.

    Science.gov (United States)

    Joshi, Vijaya B; Adamcakova-Dodd, Andrea; Jing, Xuefang; Wongrakpanich, Amaraporn; Gibson-Corley, Katherine N; Thorne, Peter S; Salem, Aliasger K

    2014-09-01

    Poly(lactic-co-glycolic acid) (PLGA) particles carrying antigen and adjuvant is a promising vaccine system which has been shown to stimulate systemic antigen-specific immune responses. In this study, we investigated the relationship of (i) the sizes of PLGA particle and (ii) the presence of cytosine-phosphate-guanine motifs (CpG), with the extent and type of immune response stimulated against Dermatophagoides pteronyssinus-2 (Der p2) antigen. Different sizes of PLGA particles encapsulating CpG were prepared using a double emulsion solvent evaporation method. Mice were vaccinated with Der p2 and different sizes of empty or CpG-loaded PLGA particles. Vaccinated mice were exposed to daily intranasal instillation of Der p2 for 10 days followed by euthanization to estimate leukocyte accumulation in bronchoalveolar lavage (BAL) fluids, antibody profiles, and airway hyperresponsiveness. PLGA particles showed a size-dependent decrease in the proportion of eosinophils found in BAL fluids. Mice vaccinated with the Der p2 coated on 9-μm-sized empty PLGA particles showed increased levels of IgE and IgG1 antibodies as well as increased airway hyperresponsiveness. All sizes of PLGA particles encapsulating CpG prevented airway hyperresponsiveness after Der p2 exposures. Inflammatory responses to Der p2 exposure were significantly reduced when smaller PLGA particles were used for vaccination. In addition, encapsulating CpG in PLGA particles increased IgG2a secretion. This study shows that the size of PLGA particles used for vaccination plays a major role in the prevention of house dust mite-induced allergy and that incorporation of CpG into the PLGA particles preferentially develops a Th1-type immune response.

  11. Testing the ability of viral haemorrhagic septicaemia virus to evade the protective immune response induced in rainbow trout by DNA vaccination

    DEFF Research Database (Denmark)

    Sepulveda, Dagoberto; Lorenzen, Niels

    2013-01-01

    glycoprotein, the only surface protein of the VHSV, has been successful as an experimental prophylactic treatment against this disease, because it induces a strong innate (interferon) and adaptive (cellular and humoral) immune response. However, since RNA viruses are known to possess high variability......, this work aims to evaluate whether VHSV is able to evade the protective immune response induced by the DNA vaccination. Earlier studies have demonstrated that VHSV can evade the neutralizing effect of monoclonal antibodies by mutations in the glycoprotein gene. One approach of the present study is therefore...

  12. Vaccination with the Leishmania major ribosomal proteins plus CpG oligodeoxynucleotides induces protection against experimental cutaneous leishmaniasis in mice.

    Science.gov (United States)

    Iborra, Salvador; Parody, Nuria; Abánades, Daniel R; Bonay, Pedro; Prates, Deboraci; Novais, Fernanda O; Barral-Netto, Manoel; Alonso, Carlos; Soto, Manuel

    2008-01-01

    In the present work we analyze the antigenicity of Leishmania major ribosomal proteins (LRP) in infected BALB/c mice. We show that BALB/c mice vaccinated with LRP in the presence of CpG oligodeoxynucleotides (CpG-ODN) were protected against the development of dermal pathology and showed a reduction in the parasite load after challenge with L. major. This protection was associated with the induction of an IL-12 dependent specific-IFN-gamma response mediated mainly by CD4(+) T cell, albeit a minor contribution of CD8(+) T cells cannot be ruled out. Induction of Th1 responses against LRP also resulted in a reversion of the Th2 responses associated with susceptibility. A marked reduction of IgG1 antibody titer against parasite antigens besides an impaired IL-4 and IL-10 cytokine production by parasite specific T cells was observed. In addition, we show that the administration of the LRP plus CpG-ODN preparation also conferred protection in the naturally resistant C57BL/6 mice. In this strain protection was associated with a LRP specific IFN-gamma production in lymph nodes draining the challenge site. We believe that these evolutionary conserved proteins, combined with adjuvants that favor Th1 responses, may be relevant components of a pan-Leishmania vaccine.

  13. A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice.

    Science.gov (United States)

    Fonseca, Jairo A; McCaffery, Jessica N; Kashentseva, Elena; Singh, Balwan; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2017-05-31

    Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4 + T cell responses. Based on evidence that viral vectors increase CD8 + T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8 + T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8 + T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Coadministration of the Three Antigenic Leishmania infantum Poly (A) Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice.

    Science.gov (United States)

    Soto, Manuel; Corvo, Laura; Garde, Esther; Ramírez, Laura; Iniesta, Virginia; Bonay, Pedro; Gómez-Nieto, Carlos; González, Víctor M; Martín, M Elena; Alonso, Carlos; Coelho, Eduardo A F; Barral, Aldina; Barral-Netto, Manoel; Iborra, Salvador

    2015-05-01

    Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A) binding proteins (LiPABPs). Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid. The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses) by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasis.

  15. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates.

    Science.gov (United States)

    Todd, Thomas E; Tibi, Omar; Lin, Yu; Sayers, Samantha; Bronner, Denise N; Xiang, Zuoshuang; He, Yongqun

    2013-01-01

    Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability, and challenge pathogen strain

  16. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates

    Science.gov (United States)

    2013-01-01

    Background Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. Results Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability, and

  17. Liposomes containing anti-idiotypic antibodies: an oral vaccine to induce protective secretory immune responses specific for pathogens of mucosal surfaces.

    OpenAIRE

    Jackson, S.; Mestecky, J; Childers, N. K.; Michalek, S M

    1990-01-01

    By using a gnotobiotic rat model system to study the induction of protective immune responses by anti-idiotype (anti-id) vaccines specific for antibodies directed at the cariogenic microorganism Streptococcus mutans, it was shown that administration of such an anti-id vaccine provided partial protection against dental caries after challenge with virulent microorganisms. Protective effects were first demonstrated by direct parenteral administration of the anti-id vaccine into salivary gland re...

  18. Broad Cross-Protection Is Induced in Preclinical Models by a Human Papillomavirus Vaccine Composed of L1/L2 Chimeric Virus-Like Particles

    Science.gov (United States)

    Boxus, Mathieu; Fochesato, Michel; Miseur, Agnès; Mertens, Emmanuel; Dendouga, Najoua; Brendle, Sarah; Balogh, Karla K.; Christensen, Neil D.

    2016-01-01

    ABSTRACT At least 15 high-risk human papillomaviruses (HPVs) are linked to anogenital preneoplastic lesions and cancer. Currently, there are three licensed prophylactic HPV vaccines based on virus-like particles (VLPs) of the L1 major capsid protein from HPV-2, -4, or -9, including the AS04-adjuvanted HPV-16/18 L1 vaccine. The L2 minor capsid protein contains HPV-neutralizing epitopes that are well conserved across numerous high-risk HPVs. Therefore, the objective of our study was to assess the capacity to broaden vaccine-mediated protection using AS04-adjuvanted vaccines based on VLP chimeras of L1 with one or two L2 epitopes. Several chimeric VLPs were constructed by inserting L2 epitopes within the DE loop and/or C terminus of L1. Based on the shape, yield, size, and immunogenicity, one of seven chimeras was selected for further evaluation in mouse and rabbit challenge models. The chimeric VLP consisted of HPV-18 L1 with insertions of HPV-33 L2 (amino acid residues 17 to 36; L1 DE loop) and HPV-58 L2 (amino acid residues 56 to 75; L1 C terminus). This chimeric L1/L2 VLP vaccine induced persistent immune responses and protected against all of the different HPVs evaluated (HPV-6, -11, -16, -31, -35, -39, -45, -58, and -59 as pseudovirions or quasivirions) in both mouse and rabbit challenge models. The degree and breadth of protection in the rabbit were further enhanced when the chimeric L1/L2 VLP was formulated with the L1 VLPs from the HPV-16/18 L1 vaccine. Therefore, the novel HPV-18 L1/L2 chimeric VLP (alone or in combination with HPV-16 and HPV-18 L1 VLPs) formulated with AS04 has the potential to provide broad protective efficacy in human subjects. IMPORTANCE From evaluations in human papillomavirus (HPV) protection models in rabbits and mice, our study has identified a prophylactic vaccine with the potential to target a wide range of HPVs linked to anogenital cancer. The three currently licensed vaccines contain virus-like particles (VLPs) of the L1 major

  19. Linear Epitopes in Vaccinia Virus A27 Are Targets of Protective Antibodies Induced by Vaccination against Smallpox.

    Science.gov (United States)

    Kaever, Thomas; Matho, Michael H; Meng, Xiangzhi; Crickard, Lindsay; Schlossman, Andrew; Xiang, Yan; Crotty, Shane; Peters, Bjoern; Zajonc, Dirk M

    2016-05-01

    Vaccinia virus (VACV) A27 is a target for viral neutralization and part of the Dryvax smallpox vaccine. A27 is one of the three glycosaminoglycan (GAG) adhesion molecules and binds to heparan sulfate. To understand the function of anti-A27 antibodies, especially their protective capacity and their interaction with A27, we generated and subsequently characterized 7 murine monoclonal antibodies (MAbs), which fell into 4 distinct epitope groups (groups I to IV). The MAbs in three groups (groups I, III, and IV) bound to linear peptides, while the MAbs in group II bound only to VACV lysate and recombinant A27, suggesting that they recognized a conformational and discontinuous epitope. Only group I antibodies neutralized the mature virion in a complement-dependent manner and protected against VACV challenge, while a group II MAb partially protected against VACV challenge but did not neutralize the mature virion. The epitope for group I MAbs was mapped to a region adjacent to the GAG binding site, a finding which suggests that group I MAbs could potentially interfere with the cellular adhesion of A27. We further determined the crystal structure of the neutralizing group I MAb 1G6, as well as the nonneutralizing group IV MAb 8E3, bound to the corresponding linear epitope-containing peptides. Both the light and the heavy chains of the antibodies are important in binding to their antigens. For both antibodies, the L1 loop seems to dominate the overall polar interactions with the antigen, while for MAb 8E3, the light chain generally appears to make more contacts with the antigen. Vaccinia virus is a powerful model to study antibody responses upon vaccination, since its use as the smallpox vaccine led to the eradication of one of the world's greatest killers. The immunodominant antigens that elicit the protective antibodies are known, yet for many of these antigens, little information about their precise interaction with antibodies is available. In an attempt to better

  20. Correlates of protection for enteric vaccines.

    Science.gov (United States)

    Holmgren, Jan; Parashar, Umesh D; Plotkin, Stanley; Louis, Jacques; Ng, Su-Peing; Desauziers, Eric; Picot, Valentina; Saadatian-Elahi, Mitra

    2017-06-08

    An immunological Correlate of Protection (CoP) is an immune response that is statistically interrelated with protection. Identification of CoPs for enteric vaccines would help design studies to improve vaccine performance of licensed vaccines in low income settings, and would facilitate the testing of future vaccines in development that might be more affordable. CoPs are lacking today for most existing and investigational enteric vaccines. In order to share the latest information on CoPs for enteric vaccines and to discuss novel approaches to correlate mucosal immune responses in humans with protection, the Foundation Mérieux organized an international conference of experts where potential CoPs for vaccines were examined using case-studies for both bacterial and viral enteric pathogens. Experts on the panel concluded that to date, all established enteric vaccine CoPs, such as those for hepatitis A, Vi typhoid and poliovirus vaccines, are based on serological immune responses even though these may poorly reflect the relevant gut immune responses or predict protective efficacy. Known CoPs for cholera, norovirus and rotavirus could be considered as acceptable for comparisons of similarly composed vaccines while more work is still needed to establish CoPs for the remaining enteric pathogens and their candidate vaccines. Novel approaches to correlate human mucosal immune responses with protection include the investigation of gut-originating antibody-secreting cells (ASCs), B memory cells and follicular helper T cells from samples of peripheral blood during their recirculation. Copyright © 2017.

  1. Intradermally Administered Yellow Fever Vaccine at Reduced Dose Induces a Protective Immune Response: A Randomized Controlled Non-Inferiority Trial

    NARCIS (Netherlands)

    M.G. Roukens (Guy); A.C.Th.M. Vossen (Ann); P.J. Bredenbeek (Peter); J.T. van Dissel (Jaap); L.G. Visser (Leo)

    2008-01-01

    textabstractBackground:Implementation of yellow fever vaccination is currently hampered by limited supply of vaccine. An alternative route of administration with reduced amounts of vaccine but without loss of vaccine efficacy would boost vaccination programmes.Methods and Findings:A randomized,

  2. An Overview of Challenges Limiting the Design of Protective Mucosal Vaccines for Finfish

    Science.gov (United States)

    Munang’andu, Hetron Mweemba; Mutoloki, Stephen; Evensen, Øystein

    2015-01-01

    Research in mucosal vaccination in finfish has gained prominence in the last decade in pursuit of mucosal vaccines that would lengthen the duration of protective immunity in vaccinated fish. However, injectable vaccines have continued to dominate in the vaccination of finfish because they are perceived to be more protective than mucosal vaccines. Therefore, it has become important to identify the factors that limit developing protective mucosal vaccines in finfish as an overture to identifying key areas that require optimization in mucosal vaccine design. Some of the factors that limit the success for designing protective mucosal vaccines for finfish identified in this review include the lack optimized protective antigen doses for mucosal vaccines, absence of immunostimulants able to enhance the performance of non-replicative mucosal vaccines, reduction of systemic antibodies due to prolonged exposure to oral vaccination and the lack of predefined correlates of protective immunity for use in the optimization of newly developed mucosal vaccines. This review also points out the need to develop prime-boost vaccination regimes able to induce long-term protective immunity in vaccinated fish. By overcoming some of the obstacles identified herein, it is anticipated that future mucosal vaccines shall be designed to induce long-term protective immunity in finfish. PMID:26557121

  3. An overview of challenges limiting the design of protective mucosal vaccines for finfish

    Directory of Open Access Journals (Sweden)

    Hetron Mweemba Munang'andu

    2015-10-01

    Full Text Available Research in mucosal vaccination in finfish has gained prominence in the last decade in pursuit of mucosal vaccines that would lengthen the duration of protective immunity in vaccinated fish. However, injectable vaccines have continued to dominate in the vaccination of finfish because they are perceived to be more protective than mucosal vaccines. Therefore, it has become important to identify the factors that limit developing protective mucosal vaccines in finfish as an overture to identifying key areas that require optimization in mucosal vaccine design. Some of the factors that limit the success for designing protective mucosal vaccines for finfish identified in this review include the lack optimized protective antigen doses for mucosal vaccines, absence of immunostimulants able to enhance the performance of non-replicative mucosal vaccines, reduction of systemic antibodies due to prolonged exposure to oral vaccination and the lack of predefined correlates of protective immunity for use in the optimization of newly developed mucosal vaccines. This review also points out the need to develop prime-boost vaccination regimes able to induce long-term protective immunity in vaccinated fish. By overcoming some of the obstacles identified herein it is anticipated that future mucosal vaccines shall be designed to induce long-term protective immunity in finfish.

  4. DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity.

    Directory of Open Access Journals (Sweden)

    Ilin Chuang

    Full Text Available Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection.The vaccine regimen was three monthly doses of two DNA plasmids (DNA followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad. The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP and apical membrane antigen-1 (AMA1. The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea, possibly related to immunization, was severe (Grade 3, preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27% were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102 and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270 and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019. Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant.The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%. Protection was associated with cell-mediated immunity to AMA1, with CSP

  5. Prospects for broadly protective influenza vaccines.

    Science.gov (United States)

    Treanor, John Jay

    2015-11-27

    The development of vaccines that could provide broad protection against antigenically variant influenza viruses has long been the ultimate prize in influenza research. Recent developments have pushed us closer to this goal, and such vaccines may now be within reach. This brief review outlines the current approaches to broadly protective vaccines, and the probable hurdles and roadblocks to achieving this goal. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Ltd.. All rights reserved.

  6. Vaccination scars in HIV infected patients – does vaccinia vaccination confer protection against HIV?

    DEFF Research Database (Denmark)

    Jespersen, Sanne; Hønge, Bo Langhoff; Medina, Candida

    Vaccination scars in HIV infected patients – does vaccinia vaccination confer protection against HIV?......Vaccination scars in HIV infected patients – does vaccinia vaccination confer protection against HIV?...

  7. Vaccination with recombinant L7/L12-truncated Omp31 protein induces protection against Brucella infection in BALB/c mice.

    Science.gov (United States)

    Golshani, Maryam; Rafati, Sima; Dashti, Amir; Gholami, Elham; Siadat, Seyed Davar; Oloomi, Mana; Jafari, Anis; Bouzari, Saeid

    2015-06-01

    Brucellosis is the most common bacterial zoonotic disease worldwide and no vaccine is available for the prevention of human brucellosis. In humans, brucellosis is mostly caused by Brucella melitensis and Brucella abortus. The Outer membrane protein 31 (Omp31) and L7/L12 are immunodominant and protective antigens conserved in human Brucella pathogens. In the present study, we evaluated the humoral and cellular immune responses induced by a fusion protein designed based on the Truncated form of Omp31 (TOmp31) and L7-L12 antigens. Vaccination of BALB/c mice with the recombinant fusion protein (rL7/L12-TOmp31) provided the significant protection level against B. melitensis and B. abortus challenge. Moreover, rL7/L12-TOmp31 elicited a strong specific IgG response (higher IgG2a titers) and significant IFN-γ/IL2 production and T-cell proliferation was also observed. The T helper1 (Th1) oriented response persisted for 12 weeks after the first immunization. The rL7/L12-TOmp31 could be a new potential antigen candidate for the development of a subunit vaccine against B. melitensis and B. abortus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Interferon-γ induced by in vitro re-stimulation of CD4+ T-cells correlates with in vivo FMD vaccine induced protection of cattle against disease and persistent infection.

    Science.gov (United States)

    Oh, Yooni; Fleming, Lucy; Statham, Bob; Hamblin, Pip; Barnett, Paul; Paton, David J; Park, Jong-Hyeon; Joo, Yi Seok; Parida, Satya

    2012-01-01

    The immune defense against FMDV has been correlated to the antibody mediated component. However, there are occasions when some animals with high virus neutralising (VN) antibody are not protected following challenge and some with low neutralising antibody which do not succumb to disease. The importance of cell mediated immunity in clinical protection is less clear and so we investigated the source and production of interferon-gamma (IFN-γ) in re-stimulated whole blood of FMDV immunized cattle and its correlation to vaccine induced protection and FMDV persistence. We were able to show a positive correlation between IFN-γ response and vaccine induced protection as well as reduction of long term persistence of FMD virus. When combining this IFN-γ response in re-stimulated blood with virus neutralizing antibody titer in serum on the day of challenge, a better correlation of vaccine-induced protection with IFN-γ and VN antibody was predicted. Our investigations also showed that CD4+ T-cells are the major proliferating phenotype and IFN-γ producing cells.

  9. A multivalent chimeric vaccine composed of Schistosoma mansoni SmTSP-2 and Sm29 was able to induce protection against infection in mice.

    Science.gov (United States)

    Pinheiro, C S; Ribeiro, A P D; Cardoso, F C; Martins, V P; Figueiredo, B C P; Assis, N R G; Morais, S B; Caliari, M V; Loukas, A; Oliveira, S C

    2014-07-01

    Schistosoma mansoni is a blood fluke parasite responsible for schistosomiasis. The best long-term strategy to control schistosomiasis is through immunization combined with drug treatment. In this study, we cloned, expressed and purified SmTSP-2 fused to the N- and C-terminal halves of Sm29 and tested these chimeras as vaccine candidates using an adjuvant approved to be used in humans. The results demonstrated that vaccination with SmTSP-2 fused to N- or C-terminus of Sm29-induced reduction in worm burden and liver pathology when compared to control animals. Additionally, we detected high levels of mouse-specific IgG, IgG1 and IgG2a against both chimeras and significant amounts of IFN-γ and TNF-α and no IL-4. Finally, studies with sera from patients resistant to infection and living in schistosomiasis endemic areas revealed high levels of specific IgG to both chimeras when compared to healthy individuals. In conclusion, SmTSP-2/Sm29 chimeras tested here induced partial protection against infection and might be a potential vaccine candidate. © 2014 John Wiley & Sons Ltd.

  10. Novel approaches to identify protective malaria vaccine candidates

    Directory of Open Access Journals (Sweden)

    Wan Ni eChia

    2014-11-01

    Full Text Available Efforts to develop vaccines against malaria have been the focus of substantial research activities for decades. Several categories of candidate vaccines are currently being developed for protection against malaria, based on antigens corresponding to the pre-erythrocytic, blood-stage or sexual stages of the parasite. Long lasting sterile protection from Plasmodium falciparum sporozoite challenge has been observed in human following vaccination with whole parasite formulations, clearly demonstrating that a protective immune response targeting predominantly the pre-erythrocytic stages can develop against malaria. However, most of vaccine candidates currently being investigated, which are mostly subunits vaccines, have not been able to induce substantial (>50% protection thus far. This is due to the fact that the antigens responsible for protection against the different parasite stages are still yet to be known and relevant correlates of protection have remained elusive. For a vaccine to be developed in a timely manner, novel approaches are required. In this article, we review the novel approaches that have been developed to identify the antigens for the development of an effective malaria vaccine.

  11. Sculpting humoral immunity through dengue vaccination to enhance protective immunity

    Directory of Open Access Journals (Sweden)

    Wayne eCrill

    2012-11-01

    Full Text Available Dengue viruses (DENV are the most important mosquito transmitted viral pathogens infecting humans. DENV infection produces a spectrum of disease, most commonly causing a self-limiting flu-like illness known as dengue fever; yet with increased frequency, manifesting as life-threatening dengue hemorrhagic fever (DHF. Waning cross-protective immunity from any of the four dengue serotypes may enhance subsequent infection with another heterologous serotype to increase the probability of DHF. Decades of effort to develop dengue vaccines are reaching the finishing line with multiple candidates in clinical trials. Nevertheless, concerns remain that imbalanced immunity, due to the prolonged prime-boost schedules currently used in clinical trials, could leave some vaccinees temporarily unprotected or with increased susceptibility to enhanced disease. Here we develop a DENV serotype 1 (DENV-1 DNA vaccine with the immunodominant cross-reactive B cell epitopes associated with immune enhancement removed. We compare wild-type (WT with this cross-reactivity reduced (CRR vaccine and demonstrate that both vaccines are equally protective against lethal homologous DENV-1 challenge. Under conditions mimicking natural exposure prior to acquiring protective immunity, WT vaccinated mice enhanced a normally sub-lethal heterologous DENV-2 infection resulting in DHF-like disease and 95% mortality in AG129 mice. However, CRR vaccinated mice exhibited redirected serotype-specific and protective immunity, and significantly reduced morbidity and mortality not differing from naïve mice. Thus, we demonstrate in an in vivo DENV disease model, that non-protective vaccine-induced immunity can prime vaccinees for enhanced DHF-like disease and that CRR DNA immunization significantly reduces this potential vaccine safety concern. The sculpting of immune memory by the modified vaccine and resulting redirection of humoral immunity provide insight into DENV vaccine induced immune

  12. Vaccination with heat-killed leishmania antigen or recombinant leishmanial protein and CpG oligodeoxynucleotides induces long-term memory CD4+ and CD8+ T cell responses and protection against leishmania major infection.

    Science.gov (United States)

    Rhee, Elizabeth G; Mendez, Susana; Shah, Javeed A; Wu, Chang-you; Kirman, Joanna R; Turon, Tara N; Davey, Dylan F; Davis, Heather; Klinman, Dennis M; Coler, Rhea N; Sacks, David L; Seder, Robert A

    2002-06-17

    CpG oligodeoxynucleotides (ODN) have potent effects on innate and adaptive cellular immune responses. In this report, the ability of CpG ODN to confer long-term immunity and protection when used as a vaccine adjuvant with a clinical grade of leishmanial antigen, autoclaved Leishmania major (ALM), or a recombinant leishmanial protein was studied. In two different mouse models of L. major infection, vaccination with ALM plus CpG ODN was able to control infection and markedly reduce lesion development in susceptible BALB/c and resistant C57BL/6 (B6) mice, respectively, up to 12 wk after immunization. Moreover, B6 mice immunized with ALM plus CpG ODNs were still protected against infectious challenge even 6 mo after vaccination. In terms of immune correlates of protection, ALM plus CpG ODN-vaccinated mice displayed L. major-specific T helper cell 1 and CD8+ responses. In addition, complete protection was markedly abrogated in mice depleted of CD8+ T cells at the time of vaccination. Similarly, mice vaccinated with a recombinant leishmanial protein plus CpG ODN also had long-term protection that was dependent on CD8+ T cells in vivo. Together, these data demonstrate that CpG ODN, when used as a vaccine adjuvant with either a recombinant protein or heat-killed leishmanial antigen, can induce long-term protection against an intracellular infection in a CD8-dependent manner.

  13. Downmodulation of Vaccine-Induced Immunity and Protection against the Intracellular Bacterium Francisella tularensis by the Inhibitory Receptor FcγRIIB

    Directory of Open Access Journals (Sweden)

    Brian J. Franz

    2015-01-01

    Full Text Available Fc gamma receptor IIB (FcγRIIB is the only Fc gamma receptor (FcγR which negatively regulates the immune response, when engaged by antigen- (Ag- antibody (Ab complexes. Thus, the generation of Ag-specific IgG in response to infection or immunization has the potential to downmodulate immune protection against infection. Therefore, we sought to determine the impact of FcγRIIB on immune protection against Francisella tularensis (Ft, a Category A biothreat agent. We utilized inactivated Ft (iFt as an immunogen. Naïve and iFt-immunized FcγRIIB knockout (KO or wildtype (WT mice were challenged with Ft-live vaccine strain (LVS. While no significant difference in survival between naïve FcγRIIB KO versus WT mice was observed, iFt-immunized FcγRIIB KO mice were significantly better protected than iFt-immunized WT mice. Ft-specific IgA in serum and bronchial alveolar lavage, as well as IFN-γ, IL-10, and TNF-α production by splenocytes harvested from iFt-immunized FcγRIIB KO, were also significantly elevated. In addition, iFt-immunized FcγRIIB KO mice exhibited a reduction in proinflammatory cytokine levels in vivo at 5 days after challenge, which correlates with increased survival following Ft-LVS challenge in published studies. Thus, these studies demonstrate for the first time the ability of FcγRIIB to regulate vaccine-induced IgA production and downmodulate immunity and protection. The immune mechanisms behind the above observations and their potential impact on vaccine development are discussed.

  14. DNA vaccination of neonate piglets in the face of maternal immunity induces humoral memory and protection against a virulent pseudorabies virus challenge.

    Science.gov (United States)

    Fischer, Laurent; Barzu, Simona; Andreoni, Christine; Buisson, Nathalie; Brun, André; Audonnet, Jean Christophe

    2003-04-02

    DNA vaccination represents a unique opportunity to overcome the limitations of conventional vaccine strategy in early life in the face of maternal-derived immunity. We used the model of pseudorabies virus (PRV) infection in pigs to further explore the potential of DNA vaccination in piglets born to sows repeatedly vaccinated with a PRV inactivated vaccine. A single immunisation of 8-week-old piglets with a DNA vaccine expressing secreted forms of PRV gB, gC, and gD, triggered an active serological response, confirming that DNA vaccination can over-ride significant residual maternal-derived immunity. A clear anamnestic response was evidenced when a secondary DNA vaccination was performed at 11 weeks of age, suggesting that DNA vaccination, performed in the face of passive immunity, elicited a strong humoral memory. We subsequently explored the potential of DNA vaccination in neonate piglets (5-6 days of age) in the face of very high titres of maternal antibodies and demonstrated that very high titres of passive antibodies selectively inhibited serological responses but not the establishment of potent memory responses. Finally, we demonstrated that DNA vaccination provided protection against an infectious PRV challenge at the end of the fattening period (i.e. at approximately 5 months of age). Collectively, our results pave the way for a new flexible vaccination program, which could ensure uninterrupted protection of fattening pigs over their entire economical life under field conditions.

  15. Protective immunity induced with the RTS,S/AS vaccine is associated with IL-2 and TNF-α producing effector and central memory CD4 T cells.

    Directory of Open Access Journals (Sweden)

    Joanne M Lumsden

    Full Text Available A phase 2a RTS,S/AS malaria vaccine trial, conducted previously at the Walter Reed Army Institute of Research, conferred sterile immunity against a primary challenge with infectious sporozoites in 40% of the 80 subjects enrolled in the study. The frequency of Plasmodium falciparum circumsporozoite protein (CSP-specific CD4(+ T cells was significantly higher in protected subjects as compared to non-protected subjects. Intrigued by these unique vaccine-related correlates of protection, in the present study we asked whether RTS,S also induced effector/effector memory (T(E/EM and/or central memory (T(CM CD4(+ T cells and whether one or both of these sub-populations is the primary source of cytokine production. We showed for the first time that PBMC from malaria-non-exposed RTS,S-immunized subjects contain both T(E/EM and T(CM cells that generate strong IL-2 responses following re-stimulation in vitro with CSP peptides. Moreover, both the frequencies and the total numbers of IL-2-producing CD4(+ T(E/EM cells and of CD4(+ T(CM cells from protected subjects were significantly higher than those from non-protected subjects. We also demonstrated for the first time that there is a strong association between the frequency of CSP peptide-reactive CD4(+ T cells producing IL-2 and the titers of CSP-specific antibodies in the same individual, suggesting that IL-2 may be acting as a growth factor for follicular Th cells and/or B cells. The frequencies of CSP peptide-reactive, TNF-α-producing CD4(+ T(E/EM cells and of CD4(+ T(E/EM cells secreting both IL-2 and TNF-α were also shown to be higher in protected vs. non-protected individuals. We have, therefore, demonstrated that in addition to TNF-α, IL-2 is also a significant contributing factor to RTS,S/AS vaccine induced immunity and that both T(E/EM and T(CM cells are major producers of IL-2.

  16. Vaccination of horses with Lyme vaccines for dogs induces short-lasting antibody responses.

    Science.gov (United States)

    Guarino, Cassandra; Asbie, Sanda; Rohde, Jennifer; Glaser, Amy; Wagner, Bettina

    2017-07-24

    Borrelia burgdorferi can induce Lyme disease. Approved Lyme vaccines for horses are currently not available. In an effort to protect horses, veterinarians are using Lyme vaccines licensed for dogs. However, data to assess the response of horses to, or determine the efficacy of this off-label vaccine use are missing. Here, antibodies against outer surface protein A (OspA), OspC, and OspF were quantified in diagnostic serum submissions from horses with a history of vaccination with canine Lyme vaccines. The results suggested that many horses respond with low and often short-lasting antibody responses. Subsequently, four experimental vaccination trials were performed. First, we investigated antibody responses to three canine vaccines in B. burgdorferi-naïve horses. One killed bacterin vaccine induced antibodies against OspC. OspA antibodies were low for all three vaccines and lasted less than 16weeks. The second trial tested the impact of the vaccine dose using the OspA/OspC inducing bacterin vaccine in horses. A 2mL dose produced higher OspA and OspC antibody values than a 1mL dose. However, the antibody response again quickly declined, independent of dose. Third, the horses were vaccinated with 2 doses of a recombinant OspA vaccine. Previous vaccination and/or environmental exposure enhanced the magnitude and longevity of the OspA antibody response to about 20weeks. Last, the influence of intramuscular versus subcutaneous vaccine administration was investigated for the recombinant OspA vaccine. OspA antibody responses were not influenced by injection route. The current work highlights that commercial Lyme vaccines for dogs induce only transient antibody responses in horses which can also be of low magnitude. Protection from infection with B. burgdorferi should not be automatically assumed after vaccinating horses with Lyme vaccines for dogs. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Challenges of Generating and Maintaining Protective Vaccine-Induced Immune Responses for Foot-and-Mouth Disease Virus in Pigs.

    Science.gov (United States)

    Lyons, Nicholas A; Lyoo, Young S; King, Donald P; Paton, David J

    2016-01-01

    Vaccination can play a central role in the control of outbreaks of foot-and-mouth disease (FMD) by reducing both the impact of clinical disease and the extent of virus transmission between susceptible animals. Recent incursions of exotic FMD virus lineages into several East Asian countries have highlighted the difficulties of generating and maintaining an adequate immune response in vaccinated pigs. Factors that impact vaccine performance include (i) the potency, antigenic payload, and formulation of a vaccine; (ii) the antigenic match between the vaccine and the heterologous circulating field strain; and (iii) the regime (timing, frequency, and herd-level coverage) used to administer the vaccine. This review collates data from studies that have evaluated the performance of foot-and-mouth disease virus vaccines at the individual and population level in pigs and identifies research priorities that could provide new insights to improve vaccination in the future.

  18. A DNA vaccine co-expressing Trichinella spiralis MIF and MCD-1 with murine ubiquitin induces partial protective immunity in mice.

    Science.gov (United States)

    Tang, F; Xu, L; Yan, R; Song, X; Li, X

    2013-03-01

    Co-expression of Trichinella spiralis macrophage migration inhibitory factor (TsMIF) with T. spiralis cystatin-like domain protein (TsMCD-1) in a DNA vaccine induces a Th1 immune response and partial protection against T. spiralis infection. The present study evaluated whether co-expression of mouse ubiquitin (Ub) with TsMIF and TsMCD-1 might improve the immune response against T. spiralis infection. Groups of BALB/c mice were immunized twice at 2-week intervals with 100 μg of plasmid DNA encoding either a TsMIF-TsMCD-1 fusion protein (pVAX1-Tsmif-Tsmcd-1) or an Ub-co-expressing triple fusion protein Ub-TsMIF-TsMCD-1 (pVAX1-Ub-Tsmif-Tsmcd-1). Control animals were immunized with pVAX1-Ub or blank vector plasmid. Specific antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, IgA, IgE) against the recombinant protein TsMIF-TsMCD-1, serum cytokines (interferon (IFN)-γ, interleukin (IL)-4, IL-5, transforming growth factor (TGF)-β1 and IL-17), CD4+/CD8+ T cells and cytotoxic T lymphocyte (CTL) responses were monitored. Challenge infection was performed 2 weeks after the second immunization and worm burden was assayed at 35 days post-challenge. Antibody responses induced by pVAX1-Ub-Tsmif-Tsmcd-1 were significantly lower than for TsMIF-TsMCD-1, but the vaccine induced increased levels of Th1 cytokine (IFN-γ) and increased T-cell cytotoxicity. The reduction of worm burden (37.95%) following immunization with pVAX1-Ub-Tsmif-Tsmcd-1 was significantly greater than that induced by the pVAX1-Tsmif-Tsmcd-1 vaccine (23.17%; P< 0.05).

  19. Therapeutic DNA vaccine induces broad T cell responses in the gut and sustained protection from viral rebound and AIDS in SIV-infected rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Deborah Heydenburg Fuller

    Full Text Available Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT, during antiretroviral therapy (ART induced a substantial 2-4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-γ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans.

  20. Report on the second WHO integrated meeting on development and clinical trials of influenza vaccines that induce broadly protective and long-lasting immune responses: Geneva, Switzerland, 5-7 May 2014.

    Science.gov (United States)

    Cox, Nancy J; Hickling, Julian; Jones, Rebecca; Rimmelzwaan, Guus F; Lambert, Linda C; Boslego, John; Rudenko, Larisa; Yeolekar, Leena; Robertson, James S; Hombach, Joachim; Ortiz, Justin R

    2015-11-27

    On 5-7 May 2014, the World Health Organization (WHO) convened the second integrated meeting on "influenza vaccines that induce broadly protective and long-lasting immune responses". Around 100 invited experts from academia, the vaccine industry, research and development funders, and regulatory and public health agencies attended the meeting. Areas covered included mechanisms of protection in natural influenza-virus infection and vaccine-induced immunity, new approaches to influenza-vaccine design and production, and novel routes of vaccine administration. A timely focus was on how this knowledge could be applied to both seasonal influenza and emerging viruses with pandemic potential such as influenza A (H7N9), currently circulating in China. Special attention was given to the development of possible universal influenza vaccines, given that the Global Vaccine Action Plan calls for at least one licensed universal influenza vaccine by 2020. This report highlights some of the topics discussed and provides an update on studies published since the report of the previous meeting. Copyright © 2015. Published by Elsevier Ltd.. All rights reserved.

  1. Seasonal influenza vaccines and hurdles to mutual protection.

    Science.gov (United States)

    Chiu, C

    2016-12-01

    While vaccines against seasonal influenza are available, major hurdles still exist that prevent their use having any impact on epidemic spread. Recent epidemiologic data question the appropriateness of traditional vaccination timing (prior to the winter season) in many parts of the world. Furthermore, vaccine uptake in most countries even in high-risk populations does not reach the 75% target recommended by the World Health Organization. Influenza viruses continually undergo antigenic variation, and both inactivated and live attenuated influenza vaccines confer only short-lived strain-specific immunity, so annual revaccination is required. Improving vaccine-induced immunity is therefore an important goal. A vaccine that could confer durable protection against emerging influenza strains could significantly reduce onward transmission. Therefore, further understanding of protective immunity against influenza (including broadly cross-protective immune mechanisms such as haemagglutinin stem-binding antibodies and T cells) offers the hope of vaccines that can confer the long-lived heterosubtypic immune responses required for mutual protection. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. Stabilization of influenza vaccine enhances protection by microneedle delivery in the mouse skin.

    Directory of Open Access Journals (Sweden)

    Fu-Shi Quan

    2009-09-01

    Full Text Available Simple and effective vaccine administration is particularly important for annually recommended influenza vaccination. We hypothesized that vaccine delivery to the skin using a patch containing vaccine-coated microneedles could be an attractive approach to improve influenza vaccination compliance and efficacy.Solid microneedle arrays coated with inactivated influenza vaccine were prepared for simple vaccine delivery to the skin. However, the stability of the influenza vaccine, as measured by hemagglutination activity, was found to be significantly damaged during microneedle coating. The addition of trehalose to the microneedle coating formulation retained hemagglutination activity, indicating stabilization of the coated influenza vaccine. For both intramuscular and microneedle skin immunization, delivery of un-stabilized vaccine yielded weaker protective immune responses including viral neutralizing antibodies, protective efficacies, and recall immune responses to influenza virus. Immunization using un-stabilized vaccine also shifted the pattern of antibody isotypes compared to the stabilized vaccine. Importantly, a single microneedle-based vaccination using stabilized influenza vaccine was found to be superior to intramuscular immunization in controlling virus replication as well as in inducing rapid recall immune responses post challenge.The functional integrity of hemagglutinin is associated with inducing improved protective immunity against influenza. Simple microneedle influenza vaccination in the skin produced superior protection compared to conventional intramuscular immunization. This approach is likely to be applicable to other vaccines too.

  3. Role of Mycobacterium vaccae in the protection induced by first generation Leishmania vaccine against murine model of leishmaniasis.

    Science.gov (United States)

    Keshavarz Valian, Hosein; Khoshabe Abdollah Kenedy, Lavinia; Nateghi Rostami, Mahmoud; Miramin Mohammadi, Akram; Khamesipour, Ali

    2008-06-01

    Various Leishmania antigens showed to induce protection when used with IL-12 as an adjuvant in an animal model of leishmaniasis. Limitations in using IL-12 justify searching for an appropriate adjuvant to accelerate induction of a Th1-type immune response and protection. In this study, the role of Mycobacterium vaccae as an adjuvant mixed with either autoclaved Leishmania major (ALM) or freeze-thawed-killed L. major (KLM) in increasing protection in susceptible and resistant mice was studied. Nineteen groups of BALB/c and 19 groups of C57BL/6 mice, ten mice per group, were immunized three times in 45 days interval with different doses of either KLM or ALM alone or mixed with either BCG or different doses of M. vaccae. Immunized groups of mice and PBS-injected control group were challenged with 2 x 10(6) promastigotes of L. major at the base of the tail. The evolution of the lesion was monitored, and the size of the lesion was measured and recorded weekly. Anti-Leishmania total IgG Ab was titrated before and after challenge. The results showed that immunization of either susceptible or resistant mice with KLM or ALM mixed with low dose of M. vaccae increased protection defined by significantly smaller ulcer size in immunized mice compared with the PBS-injected control group.

  4. Vaccine-Elicited CD8+ T Cells Protect against Respiratory Syncytial Virus Strain A2-Line19F-Induced Pathogenesis in BALB/c Mice

    OpenAIRE

    Lee, Sujin; Stokes, Kate L.; Currier, Michael G.; Sakamoto, Kaori; Lukacs, Nicholas W.; Celis, Esteban; Moore, Martin L.

    2012-01-01

    CD8+ T cells may contribute to vaccines for respiratory syncytial virus (RSV). Compared to CD8+ T cells responding to RSV infection, vaccine-elicited anti-RSV CD8+ T cells are less well defined. We used a peptide vaccine to test the hypothesis that vaccine-elicited RSV-specific CD8+ T cells are protective against RSV pathogenesis. BALB/c mice were treated with a mixture (previously termed TriVax) of an M282-90 peptide representing an immunodominant CD8 epitope, the Toll-like receptor (TLR) ag...

  5. Protection from Hendra virus infection with Canarypox recombinant vaccine.

    Science.gov (United States)

    Guillaume-Vasselin, Vanessa; Lemaitre, Laurent; Dhondt, Kévin P; Tedeschi, Laurence; Poulard, Amelie; Charreyre, Catherine; Horvat, Branka

    2016-01-01

    Hendra virus (HeV) is an emerging zoonotic pathogen, which causes severe respiratory illness and encephalitis in humans and horses. Since its first appearance in 1994, spillovers of HeV from its natural reservoir fruit bats occur on almost an annual basis. The high mortality rate in both humans and horses and the wide-ranging reservoir distribution are making HeV a serious public health problem, especially for people exposed to sick horses. This study has aimed to develop an efficient low-cost HeV vaccine for horses based on Canarypox recombinant vector expressing HeV glycoproteins, attachment glycoprotein (G) and fusion protein (F). This vaccine was used to immunise hamsters and then challenged intraperitoneally with HeV 3 weeks later. The higher tested dose of the vaccine efficiently prevented oropharyngeal virus shedding and protected animals from clinical disease and virus-induced mortality. Vaccine induced generation of seroneutralising antibodies and prevented virus-induced histopathological changes and a production of viral RNA and antigens in animal tissues. Interestingly, some vaccinated animals, including those immunised at a lower dose, were protected in the absence of detectable specific antibodies, suggesting the induction of an efficient virus-specific cellular immunity. Finally, ponies immunised using the same vaccination protocol as hamsters developed strong seroneutralising titres against both HeV and closely related Nipah virus, indicating that this vaccine may have the ability to induce cross-protection against Henipavirus infection. These data suggest that Canarypox-based vectors encoding for HeV glycoproteins present very promising new vaccine candidate to prevent infection and shedding of the highly lethal HeV.

  6. Protection against Multiple Influenza A Virus Strains Induced by Candidate Recombinant Vaccine Based on Heterologous M2e Peptides Linked to Flagellin

    Science.gov (United States)

    Kovaleva, Anna A.; Potapchuk, Marina V.; Korotkov, Alexandr V.; Sergeeva, Mariia V.; Kasianenko, Marina A.; Kuprianov, Victor V.; Ravin, Nikolai V.; Tsybalova, Liudmila M.; Skryabin, Konstantin G.; Kiselev, Oleg I.

    2015-01-01

    Matrix 2 protein ectodomain (M2e) is considered a promising candidate for a broadly protective influenza vaccine. M2e-based vaccines against human influenza A provide only partial protection against avian influenza viruses because of differences in the M2e sequences. In this work, we evaluated the possibility of obtaining equal protection and immune response by using recombinant protein on the basis of flagellin as a carrier of the M2e peptides of human and avian influenza A viruses. Recombinant protein was generated by the fusion of two tandem copies of consensus M2e sequence from human influenza A and two copies of M2e from avian A/H5N1 viruses to flagellin (Flg-2M2eh2M2ek). Intranasal immunisation of Balb/c mice with recombinant protein significantly elicited anti-M2e IgG in serum, IgG and sIgA in BAL. Antibodies induced by the fusion protein Flg-2M2eh2M2ek bound efficiently to synthetic peptides corresponding to the human consensus M2e sequence as well as to the M2e sequence of A/Chicken/Kurgan/05/05 RG (H5N1) and recognised native M2e epitopes exposed on the surface of the MDCK cells infected with A/PR/8/34 (H1N1) and A/Chicken/Kurgan/05/05 RG (H5N1) to an equal degree. Immunisation led to both anti-M2e IgG1 and IgG2a response with IgG1 prevalence. We observed a significant intracellular production of IL-4, but not IFN-γ, by CD4+ T-cells in spleen of mice following immunisation with Flg-2M2eh2M2ek. Immunisation with the Flg-2M2eh2M2ek fusion protein provided similar protection from lethal challenge with human influenza A viruses (H1N1, H3N2) and avian influenza virus (H5N1). Immunised mice experienced significantly less weight loss and decreased lung viral titres compared to control mice. The data obtained show the potential for the development of an M2e-flagellin candidate influenza vaccine with broad spectrum protection against influenza A viruses of various origins. PMID:25799221

  7. Protection against multiple influenza A virus strains induced by candidate recombinant vaccine based on heterologous M2e peptides linked to flagellin.

    Directory of Open Access Journals (Sweden)

    Liudmila A Stepanova

    Full Text Available Matrix 2 protein ectodomain (M2e is considered a promising candidate for a broadly protective influenza vaccine. M2e-based vaccines against human influenza A provide only partial protection against avian influenza viruses because of differences in the M2e sequences. In this work, we evaluated the possibility of obtaining equal protection and immune response by using recombinant protein on the basis of flagellin as a carrier of the M2e peptides of human and avian influenza A viruses. Recombinant protein was generated by the fusion of two tandem copies of consensus M2e sequence from human influenza A and two copies of M2e from avian A/H5N1 viruses to flagellin (Flg-2M2eh2M2ek. Intranasal immunisation of Balb/c mice with recombinant protein significantly elicited anti-M2e IgG in serum, IgG and sIgA in BAL. Antibodies induced by the fusion protein Flg-2M2eh2M2ek bound efficiently to synthetic peptides corresponding to the human consensus M2e sequence as well as to the M2e sequence of A/Chicken/Kurgan/05/05 RG (H5N1 and recognised native M2e epitopes exposed on the surface of the MDCK cells infected with A/PR/8/34 (H1N1 and A/Chicken/Kurgan/05/05 RG (H5N1 to an equal degree. Immunisation led to both anti-M2e IgG1 and IgG2a response with IgG1 prevalence. We observed a significant intracellular production of IL-4, but not IFN-γ, by CD4+ T-cells in spleen of mice following immunisation with Flg-2M2eh2M2ek. Immunisation with the Flg-2M2eh2M2ek fusion protein provided similar protection from lethal challenge with human influenza A viruses (H1N1, H3N2 and avian influenza virus (H5N1. Immunised mice experienced significantly less weight loss and decreased lung viral titres compared to control mice. The data obtained show the potential for the development of an M2e-flagellin candidate influenza vaccine with broad spectrum protection against influenza A viruses of various origins.

  8. An mRNA Vaccine Encoding Rabies Virus Glycoprotein Induces Protection against Lethal Infection in Mice and Correlates of Protection in Adult and Newborn Pigs

    OpenAIRE

    Margit Schnee; Vogel, Annette B.; Daniel De Voss; Benjamin Petsch; Patrick Baumhof; Thomas Kramps; Lothar Stitz

    2016-01-01

    Rabies is a zoonotic infectious disease of the central nervous system (CNS). In unvaccinated or untreated subjects, rabies virus infection causes severe neurological symptoms and is invariably fatal. Despite the long-standing existence of effective vaccines, vaccine availability remains insufficient, with high numbers of fatal infections mostly in developing countries. Nucleic acid based vaccines have proven convincingly as a new technology for the fast development of vaccines against newly e...

  9. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ(+) CMI responses protects against a genital infection in minipigs

    DEFF Research Database (Denmark)

    Bøje, Sarah; Olsen, Anja Weinreich; Erneholm, Karin

    2016-01-01

    animal model, we evaluated the immunogenicity and efficacy of a multi-subunit vaccine formulated in the strong Th1-inducing adjuvant CAF01. We evaluated a mixture of two fusion proteins (Hirep1 and CTH93) designed to promote either neutralizing antibodies or cell-mediated immunity, respectively. Hirep1......Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig...... trachomatis SvD bacteria (UV-SvD/CAF01) or CAF01. The Hirep1+CTH93/CAF01 vaccine induced a strong CMI response against the vaccine antigens and high titers of antibodies, particularly against the VD4 region of MOMP. Sera from Hirep1+CTH93/CAF01 immunized pigs neutralized C. trachomatis SvD and SvF infectivity...

  10. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice

    DEFF Research Database (Denmark)

    Bassi, Maria R; Larsen, Mads Andreas Bay; Kongsgaard, Michael

    2016-01-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should...... these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response......, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both...

  11. Thermostable cross-protective subunit vaccine against Brucella species.

    Science.gov (United States)

    Cherwonogrodzky, John W; Barabé, Nicole D; Grigat, Michelle L; Lee, William E; Poirier, Robert T; Jager, Scott J; Berger, Bradley J

    2014-12-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 10(5) CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. MF59- and Al(OH)3-Adjuvanted Staphylococcus aureus (4C-Staph) Vaccines Induce Sustained Protective Humoral and Cellular Immune Responses, with a Critical Role for Effector CD4 T Cells at Low Antibody Titers

    Science.gov (United States)

    Monaci, Elisabetta; Mancini, Francesca; Lofano, Giuseppe; Bacconi, Marta; Tavarini, Simona; Sammicheli, Chiara; Arcidiacono, Letizia; Giraldi, Monica; Galletti, Bruno; Rossi Paccani, Silvia; Torre, Antonina; Fontana, Maria Rita; Grandi, Guido; de Gregorio, Ennio; Bensi, Giuliano; Chiarot, Emiliano; Nuti, Sandra; Bagnoli, Fabio; Soldaini, Elisabetta; Bertholet, Sylvie

    2015-01-01

    Staphylococcus aureus (S. aureus) is an important opportunistic pathogen that may cause invasive life-threatening infections, like sepsis and pneumonia. Due to the increasing antibiotic resistance, the development of an effective vaccine against S. aureus is needed. Although a correlate of protection against staphylococcal diseases is not yet established, several findings suggest that both antibodies and CD4 T cells might contribute to optimal immunity. In this study, we show that adjuvanting a multivalent vaccine (4C-Staph) with MF59, an oil-in-water emulsion licensed in human vaccines, further potentiated antigen-specific IgG titers and CD4 T-cell responses compared to alum and conferred protection in the peritonitis model of S. aureus infection. Moreover, we showed that MF59- and alum-adjuvanted 4C-Staph vaccines induced persistent antigen-specific humoral and T-cell responses, and protected mice from infection up to 4 months after immunization. Furthermore, 4C-Staph formulated with MF59 was used to investigate which immune compartment is involved in vaccine-induced protection. Using CD4 T cell-depleted mice or B cell-deficient mice, we demonstrated that both T and B-cell responses contributed to 4C-Staph vaccine-mediated protective immunity. However, the role of CD4 T cells seemed more evident in the presence of low-antibody responses. This study provides preclinical data further supporting the use of the adjuvanted 4C-Staph vaccines against S. aureus diseases, and provides critical insights on the correlates of protective immunity necessary to combat this pathogen. PMID:26441955

  13. MF59- and Al(OH3-adjuvanted Staphylococcus aureus (4C-Staph vaccines induce sustained protective humoral and cellular immune responses, with a critical role for effector CD4 T cells at low antibody titers.

    Directory of Open Access Journals (Sweden)

    Elisabetta eMonaci

    2015-09-01

    Full Text Available Staphylococcus aureus (S. aureus is an important opportunistic pathogen that may cause invasive life-threatening infections like sepsis and pneumonia. Due to increasing antibiotic-resistance, the development of an effective vaccine against S. aureus is needed. Although a correlate of protection against staphylococcal diseases is not yet established, several findings suggest that both antibodies and CD4 T cells might contribute to optimal immunity. In this study, we show that adjuvanting a multivalent vaccine (4C-Staph with MF59, an oil-in-water emulsion licensed in human vaccines, further potentiated antigen-specific IgG titers and CD4 T cell responses compared to alum and conferred protection in the peritonitis model of S. aureus infection. Moreover, we showed that MF59- and alum-adjuvanted 4C-Staph vaccines induced persistent antigen-specific humoral and T cell responses, and protected mice from infection up to 4 months after immunization. Furthermore, 4C-Staph formulated with MF59 was used to investigate which immune compartment is involved in vaccine-induced protection. Using CD4 T cell-depleted mice or B cell deficient mice, we demonstrated that both T and B cell responses contributed to 4C-Staph vaccine-mediated protective immunity. However, the role of CD4 T cells seemed more evident in the presence of low antibody responses. This study provides preclinical data further supporting the use of the adjuvanted 4C-Staph vaccines against S. aureus diseases, and provides critical insights on the correlates of protective immunity necessary to combat this pathogen.

  14. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    2016-07-01

    Full Text Available A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines.

  15. Delivery of an inactivated avian influenza virus vaccine adjuvanted with poly(D,L-lactic-co-glycolic acid) encapsulated CpG ODN induces protective immune responses in chickens.

    Science.gov (United States)

    Singh, Shirene M; Alkie, Tamiru N; Nagy, Éva; Kulkarni, Raveendra R; Hodgins, Douglas C; Sharif, Shayan

    2016-09-14

    In poultry, systemic administration of commercial vaccines consisting of inactivated avian influenza virus (AIV) requires the simultaneous delivery of an adjuvant (water-in-oil emulsion). These vaccines are often limited in their ability to induce quantitatively better local (mucosal) antibody responses capable of curtailing virus shedding. Therefore, more efficacious adjuvants with the ability to provide enhanced immunogenicity and protective anti-AIV immunity in chickens are needed. While the Toll-like receptor (TLR) 21 agonist, CpG oligodeoxynucleotides (ODNs) has been recognized as a potential vaccine adjuvant in chickens, poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles, successfully tested as vaccine delivery systems in other species, have not been extensively explored. The present study, therefore, assessed both systemic and mucosal antibody-mediated responses following intramuscular vaccination (administered at 7 and 21days post-hatch) of chickens with PLGA encapsulated H9N2 AIV plus encapsulated CpG ODN 2007 (CpG 2007), and nonencapsulated AIV plus PLGA encapsulated CpG 2007 vaccine formulations. Virus challenge was performed at 2weeks post-secondary vaccination using the oculo-nasal route. Our results showed that chickens vaccinated with the nonencapsulated AIV vaccine plus PLGA encapsulated CpG 2007 developed significantly higher systemic IgY and local (mucosal) IgY antibodies as well as haemagglutination inhibition antibody titres compared to PLGA encapsulated AIV plus encapsulated CpG 2007 vaccinated chickens. Furthermore, chickens that received CpG 2007 as an adjuvant in the vaccine formulation had antibodies exhibiting higher avidity indicating that the TLR21-mediated pathway may enhance antibody affinity maturation qualitatively. Collectively, our data indicate that vaccination of chickens with nonencapsulated AIV plus PLGA encapsulated CpG 2007 results in qualitatively and quantitatively augmented antibody responses leading to a reduction in

  16. Improved influenza viral vector based Brucella abortus vaccine induces robust B and T-cell responses and protection against Brucella melitensis infection in pregnant sheep and goats.

    Science.gov (United States)

    Mailybayeva, Aigerim; Yespembetov, Bolat; Ryskeldinova, Sholpan; Zinina, Nadezhda; Sansyzbay, Abylai; Renukaradhya, Gourapura J; Petrovsky, Nikolai; Tabynov, Kaissar

    2017-01-01

    We previously developed a potent candidate vaccine against bovine brucellosis caused by Brucella abortus using the influenza viral vector expressing Brucella Omp16 and L7/L12 proteins (Flu-BA). Our success in the Flu-BA vaccine trial in cattle and results of a pilot study in non-pregnant small ruminants prompted us in the current study to test its efficacy against B. melitensis infection in pregnant sheep and goats. In this study, we improved the Flu-BA vaccine formulation and immunization method to achieve maximum efficacy and safety. The Flu-BA vaccine formulation had two additional proteins Omp19 and SOD, and administered thrice with 20% Montanide Gel01 adjuvant, simultaneously by both subcutaneous and conjunctival routes at 21 days intervals in pregnant sheep and goats. At 42 days post-vaccination (DPV) we detected antigen-specific IgG antibodies predominantly of IgG2a isotype but also IgG1, and also detected a strong lymphocyte recall response with IFN-γ production. Importantly, our candidate vaccine prevented abortion in 66.7% and 77.8% of pregnant sheep and goats, respectively. Furthermore, complete protection (absence of live B. melitensis 16M) was observed in 55.6% and 66.7% of challenged sheep and goats, and 72.7% and 90.0% of their fetuses (lambs/yeanlings), respectively. The severity of B. melitensis 16M infection in vaccinated sheep and goats and their fetuses (index of infection and rates of Brucella colonization in tissues) was significantly lower than in control groups. None of the protection parameters after vaccination with Flu-BA vaccine were statistically inferior to protection seen with the commercial B. melitensis Rev.1 vaccine (protection against abortion and vaccination efficacy, alpha = 0.18-0.34, infection index, P = 0.37-0.77, Brucella colonization, P = 0.16 to P > 0.99). In conclusion, our improved Flu-BA vaccine formulation and delivery method were found safe and effective in protecting pregnant sheep and goats against adverse

  17. Protective immunity and vaccination against cutaneous leishmaniasis.

    Science.gov (United States)

    Okwor, Ifeoma; Mou, Zhirong; Liu, Dong; Uzonna, Jude

    2012-01-01

    Although a great deal of knowledge has been gained from studies on the immunobiology of leishmaniasis, there is still no universally acceptable, safe, and effective vaccine against the disease. This strongly suggests that we still do not completely understand the factors that control and/or regulate the development and sustenance of anti-Leishmania immunity, particularly those associated with secondary (memory) immunity. Such an understanding is critically important for designing safe, effective, and universally acceptable vaccine against the disease. Here we review the literature on the correlate of protective anti-Leishmania immunity and vaccination strategies against leishmaniasis with a bias emphasis on experimental cutaneous leishmaniasis.

  18. Protective Immunity and Vaccination Against Cutaneous Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Ifeoma eOkwor

    2012-05-01

    Full Text Available Although a great deal of knowledge has been gained from studies on the immunobiology of leishmaniasis, there is still no effective vaccine against the disease. This strongly suggests that we still do not understand the factors that control and/or regulate the development and sustenance of anti-Leishmania immunity, particularly those associated with secondary (memory immunity. Such an understanding is critically important for designing effective vaccines against the disease. Here we review the literature on the correlate of protective anti-Leishmania immunity and vaccination strategies against leishmaniasis with a bias emphasis on experimental cutaneous leishmaniasis.

  19. IMPIPS: the immune protection-inducing protein structure concept in the search for steric-electron and topochemical principles for complete fully-protective chemically synthesised vaccine development.

    Directory of Open Access Journals (Sweden)

    Manuel Elkin Patarroyo

    Full Text Available Determining immune protection-inducing protein structures (IMPIPS involves defining the stereo-electron and topochemical characteristics which are essential in MHC-p-TCR complex formation. Modified high activity binding peptides (mHABP were thus synthesised to produce a large panel of IMPIPS measuring 26.5 ±3.5Å between the farthest atoms fitting into Pockets 1 to 9 of HLA-DRβ1* structures. They displayed a polyproline II-like (PPIIL structure with their backbone O and N atoms orientated to establish H-bonds with specific residues from HLA-DRβ1*-peptide binding regions (PBR. Residues having specific charge and gauche+ orientation regarding p3χ1, p5χ2, and p7χ1 angles determined appropriate rotamer orientation for perfectly fitting into the TCR to induce an appropriate immune response. Immunological assays in Aotus monkeys involving IMPIPS mixtures led to promising results; taken together with the aforementioned physicochemical principles, non-interfering, long-lasting, protection-inducing, multi-epitope, multistage, minimal subunit-based chemically-synthesised peptides can be designed against diseases scourging humankind.

  20. A vaccine of L2 epitope repeats fused with a modified IgG1 Fc induced cross-neutralizing antibodies and protective immunity against divergent human papillomavirus types.

    Directory of Open Access Journals (Sweden)

    Xue Chen

    Full Text Available Current human papillomavirus (HPV major capsid protein L1 virus-like particles (VLPs-based vaccines in clinic induce strong HPV type-specific neutralizing antibody responses. To develop pan-HPV vaccines, here, we show that the fusion protein E3R4 consisting of three repeats of HPV16 L2 aa 17-36 epitope (E3 and a modified human IgG1 Fc scaffold (R4 induces cross-neutralizing antibodies and protective immunity against divergent HPV types. E3R4 was expressed as a secreted protein in baculovirus expression system and could be simply purified by one step Protein A affinity chromatography with the purity above 90%. Vaccination of E3R4 formulated with Freunds adjuvant not only induced cross-neutralizing antibodies against HPV pseudovirus types 16, 18, 45, 52, 58, 6, 11 and 5 in mice, but also protected mice against vaginal challenges with HPV pseudovirus types 16, 45, 52, 58, 11 and 5 for at least eleven months after the first immunization. Moreover, vaccination of E3R4 formulated with FDA approved adjuvant alum plus monophosphoryl lipid A also induced cross-neutralizing antibodies against HPV types 16, 18 and 6 in rabbits. Thus, our results demonstrate that delivery of L2 antigen as a modified Fc-fusion protein may facilitate pan-HPV vaccine development.

  1. Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response

    Directory of Open Access Journals (Sweden)

    Carmen W. E. Embregts

    2017-10-01

    Full Text Available Although spring viremia of carp virus (SVCV can cause high mortalities in common carp, a commercial vaccine is not available for worldwide use. Here, we report a DNA vaccine based on the expression of the SVCV glycoprotein (G which, when injected in the muscle even at a single low dose of 0.1 µg DNA/g of fish, confers up to 100% protection against a subsequent bath challenge with SVCV. Importantly, to best validate vaccine efficacy, we also optimized a reliable bath challenge model closely mimicking a natural infection, based on a prolonged exposure of carp to SVCV at 15°C. Using this optimized bath challenge, we showed a strong age-dependent susceptibility of carp to SVCV, with high susceptibility at young age (3 months and a full resistance at 9 months. We visualized local expression of the G protein and associated early inflammatory response by immunohistochemistry and described changes in the gene expression of pro-inflammatory cytokines, chemokines, and antiviral genes in the muscle of vaccinated fish. Adaptive immune responses were investigated by analyzing neutralizing titers against SVCV in the serum of vaccinated fish and the in vitro proliferation capacity of peripheral SVCV-specific T cells. We show significantly higher serum neutralizing titers and the presence of SVCV-specific T cells in the blood of vaccinated fish, which proliferated upon stimulation with SVCV. Altogether, this is the first study reporting on a protective DNA vaccine against SVCV in carp and the first to provide a detailed characterization of local innate as well as systemic adaptive immune responses elicited upon DNA vaccination that suggest a role not only of B cells but also of T cells in the protection conferred by the SVCV-G DNA vaccine.

  2. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    Science.gov (United States)

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  3. Broadly protective influenza vaccines: Redirecting the antibody response through adjuvation

    NARCIS (Netherlands)

    Cox, F.

    2016-01-01

    Influenza virus infections are responsible for significant morbidity worldwide and current vaccines have limited coverage, therefore it remains a high priority to develop broadly protective vaccines. With the discovery of broadly neutralizing antibodies (bnAbs) against influenza these vaccines

  4. Vaccination with the Leishmania infantum ribosomal proteins induces protection in BALB/c mice against Leishmania chagasi and Leishmania amazonensis challenge.

    Science.gov (United States)

    Chávez-Fumagalli, Miguel A; Costa, Mariana A F; Oliveira, Dulcilene M; Ramírez, Laura; Costa, Lourena E; Duarte, Mariana C; Martins, Vivian T; Oliveira, Jamil S; Olortegi, Carlos C; Bonay, Pedro; Alonso, Carlos; Tavares, Carlos A P; Soto, Manuel; Coelho, Eduardo A F

    2010-11-01

    Leishmania chagasi and Leishmania amazonensis are the etiologic agents of different clinical forms of human leishmaniasis in South America. In an attempt to select candidate antigens for a vaccine protecting against different Leishmania species, the efficacy of vaccination using Leishmania ribosomal proteins and saponin as adjuvant was examined in BALB/c mice against challenge infection with both parasite species. Mice vaccinated with parasite ribosomal proteins purified from Leishmania infantum plus saponin showed a specific production of IFN-γ, IL-12 and GM-CSF after in vitro stimulation with L. infantum ribosomal proteins. Vaccinated mice showed a reduction in the liver and spleen parasite burdens after L. chagasi infection. After L. amazonensis challenge, vaccinated mice showed a decrease of the dermal pathology and a reduction in the parasite loads in the footpad and spleen. In both models, protection was correlated to an IL-12-dependent production of IFN-γ by CD4(+) and CD8(+) T cells that activate macrophages for the synthesis of NO. In the protected mice a decrease in the parasite-mediated IL-4 and IL-10 responses was also observed. In mice challenged with L. amazonensis, lower levels of anti-parasite-specific antibodies were detected. Thus, Leishmania ribosomal proteins plus saponin fits the requirements to compose a pan-Leishmania vaccine. Copyright © 2010 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  5. Enhanced protection against FMDV in cattle after prime- boost vaccination based on mucosal and inactivated FMD vaccine.

    Science.gov (United States)

    Khalifa, Manar E; El-Deeb, Ayman H; Zeidan, Sayed M; Hussein, Hussein A; Abu-El-Naga, Hany I

    2017-10-01

    Improved immunization and control strategies and platforms are greatly needed for foot and mouth disease virus (FMDV) and mucosal vaccines propose an effective strategy for the control FMDV by blocking viral entry. In this study, several immunization strategies, using two FMDV vaccine formulations, including Montanide ISA 206 oil-based FMD inactivated vaccine and Montanide IMS 1313 VG N PR-based concentrated semi-purified FMD mucosal vaccine, were applied. Results of intranasal immunization with the prepared FMD mucosal vaccine, given once or twice, induced IgA levels in both nasal and salivary secretions besides a high response of lymphocyte proliferation with protection levels reaching 20% and 40%, respectively, in a challenge trial in cattle. Immunization with Montanide 206 inactivated FMD vaccine was capable of inducing 80% protection whereas prime-boost strategy based on the administration of mucosal vaccine followed by inactivated vaccine appeared to be the most potent strategy by achieving 100% protection against an FMDV challenge. Indeed, the study reports the efficacy of the prepared IMS 1313 FMD mucosal vaccine and the possible use of this vaccine in the context of different vaccination strategies to control FMDV. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Temperature effects on vaccine induced immunity to viruses in fish

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Rasmussen, Jesper Skou

    a problem in terms of inducing a protective immune response by vaccination in aquaculture, since it is often desirable to vaccinate fish during autumn, winter, or spring. In experimental vaccination trials with rainbow trout (Oncorhynchus mykiss) using a DNA-vaccine encoding the viral glycoprotein of viral...... haemorrhagic septicaemia virus (VHSV), non-specific as well as specific immune mechanisms seemed to be delayed at low temperature. At five weeks post vaccination fish kept at 5C had no detectable response of neutralising antibodies while two thirds of the fish kept at 15C had sero-converted. While protective...... immunity was still established at both temperatures, specificity analysis suggested that protection at the lower temperature was mainly due to non-specific innate antiviral mechanisms, which appeared to last longer at low temperature. This was presumably related to a prolonged persistence of the vaccine...

  7. Protective antiviral immune responses to pseudorabies virus induced by DNA vaccination using dimethyldioctadecylammonium bromide as an adjuvant

    NARCIS (Netherlands)

    Rooij, van E.M.A.; Glansbeek, H.L.; Hilgers, L.A.T.; Lintelo, te E.G.; Visser, de Y.E.; Boersma, W.J.A.; Haagmans, B.L.; Bianchi, A.T.J.

    2002-01-01

    To enhance the efficacy of a DNA vaccine against pseudorabies virus (PRV), we evaluated the adjuvant properties of plasmids coding for gamma interferon or interleukin-12, of CpG immunostimulatory motifs, and of the conventional adjuvants dimethyldioctadecylammonium bromide in water (DDA) and

  8. Serum IgA levels induced by rotavirus natural infection, but not following immunization with the RRV-TV vaccine (Rotashield), correlate with protection.

    Science.gov (United States)

    González, Rosabel; Franco, Manuel; Sarmiento, Luis; Romero, Milagros; Schael, Irene Pérez

    2005-08-01

    To directly compare serum rotavirus specific IgA as a marker of protection in children vaccinated with the RRV-TV (Rotashield) vaccine and in naturally infected children, we studied pre-existing rotavirus IgA antibodies by ELISA assays in these groups of children within the first 5 days after the onset of a diarrhea episode, due or not to rotavirus. In immunized children, rotavirus IgA titers were similar between infected and non-RV infected children. In non-immunized children, the proportion with rotavirus IgA titers was significantly greater in non-RV infected children (58%) than in infected children (31%). Additionally, a titer >/=1:800 was associated with 68% protection. Thus, in this study serum rotavirus IgA showed a good correlation with protection in children pre-exposed to natural infection but not in those immunized with the RRV-TV vaccine. (c) 2005 Wiley-Liss, Inc.

  9. Protective effect of a polyvalent influenza DNA vaccine in pigs

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Borggren, Marie; Rosenstierne, Maiken Worsøe

    2018-01-01

    Background Influenza A virus in swine herds represents a major problem for the swine industry and poses a constant threat for the emergence of novel pandemic viruses and the development of more effective influenza vaccines for pigs is desired. By optimizing the vector backbone and using a needle......-free delivery method, we have recently demonstrated a polyvalent influenza DNA vaccine that induces a broad immune response, including both humoral and cellular immunity. Objectives To investigate the protection of our polyvalent influenza DNA vaccine approach in a pig challenge study. Methods By intradermal...... needle-free delivery to the skin, we immunized pigs with two different doses (500 μg and 800 μg) of an influenza DNA vaccine based on six genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase as previously demonstrated...

  10. A rabies vaccine adjuvanted with saponins from leaves of the soap tree (Quillaja brasiliensis) induces specific immune responses and protects against lethal challenge.

    Science.gov (United States)

    Yendo, Anna Carolina A; de Costa, Fernanda; Cibulski, Samuel P; Teixeira, Thais F; Colling, Luana C; Mastrogiovanni, Mauricio; Soulé, Silvia; Roehe, Paulo M; Gosmann, Grace; Ferreira, Fernando A; Fett-Neto, Arthur G

    2016-04-29

    Quillaja brasiliensis (Quillajaceae) is a saponin producing species native from southern Brazil and Uruguay. Its saponins are remarkably similar to those of Q. saponaria, which provides most of the saponins used as immunoadjuvants in vaccines. The immunostimulating capacities of aqueous extract (AE) and purified saponin fraction (QB-90) obtained from leaves of Q. brasiliensis were favorably comparable to those of a commercial saponin-based adjuvant preparation (Quil-A) in experimental vaccines against bovine herpesvirus type 1 and 5, poliovirus and bovine viral diarrhea virus in mice model. Herein, the immunogenicity and protection efficacy of rabies vaccines adjuvanted with Q. brasiliensis AE and its saponin fractions were compared with vaccines adjuvanted with either commercial Quil-A or Alum. Mice were vaccinated with one or two doses (on days 0 and 14) of one of the different vaccines and serum levels of total IgG, IgG1 and IgG2a were quantified over time. A challenge experiment with a lethal dose of rabies virus was carried out with the formulations. Viral RNA detection in the brain of mice was performed by qPCR, and RNA copy-numbers were quantified using a standard curve of in vitro transcribed RNA. All Q. brasiliensis saponin-adjuvanted vaccines significantly enhanced levels of specific IgG isotypes when compared with the no adjuvant group (P ≤ 0.05). Overall, one or two doses of saponin-based vaccine were efficient to protect against the lethal rabies exposure. Both AE and saponin fractions from Q. brasiliensis leaves proved potent immunological adjuvants in vaccines against a lethal challenge with a major livestock pathogen, hence confirming their value as competitive or complementary sustainable alternatives to saponins of Q. saponaria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection.

    Science.gov (United States)

    Wagemakers, A; Mason, L M K; Oei, A; de Wever, B; van der Poll, T; Bins, A D; Hovius, J W R

    2014-12-01

    Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method that can be applied in a rapid vaccination schedule. We vaccinated C3H/HeN mice with B. afzelii strain PKo OspC (outer-surface protein C) using a codon-optimized DNA vaccine tattoo and compared this with recombinant protein vaccination in a 0-2-4 week vaccination schedule. We also assessed protection by DNA tattoo in a 0-3-6 day schedule. DNA tattoo and recombinant OspC vaccination induced comparable total IgG responses, with a lower IgG1/IgG2a ratio after DNA tattoo. Two weeks after syringe-challenge with 5 × 10(5) B. afzelii spirochetes most vaccinated mice had negative B. afzelii tissue DNA loads and all were culture negative. Furthermore, DNA tattoo vaccination in a 0-3-6 day regimen also resulted in negative Borrelia loads and cultures after challenge. To conclude, DNA vaccination by tattoo was fully protective against B. afzelii challenge in mice in a rapid vaccination protocol, and induces a favorable humoral immunity compared to recombinant protein vaccination. Rapid DNA tattoo is a promising vaccination strategy against spirochetes.

  12. Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host.

    Directory of Open Access Journals (Sweden)

    Jodi L McGill

    Full Text Available Ehrlichia chaffeensis is a tick-borne rickettsial pathogen and the causative agent of human monocytic ehrlichiosis. Transmitted by the Amblyomma americanum tick, E. chaffeensis also causes disease in several other vertebrate species including white-tailed deer and dogs. We have recently described the generation of an attenuated mutant strain of E. chaffeensis, with a mutation in the Ech_0660 gene, which is able to confer protection from secondary, intravenous-administered, wild-type E. chaffeensis infection in dogs. Here, we extend our previous results, demonstrating that vaccination with the Ech_0660 mutant protects dogs from physiologic, tick-transmitted, secondary challenge with wild-type E. chaffeensis; and describing, for the first time, the cellular and humoral immune responses induced by Ech_0660 mutant vaccination and wild-type E. chaffeensis infection in the canine host. Both vaccination and infection induced a rise in E. chaffeensis-specific antibody titers and a significant Th1 response in peripheral blood as measured by E. chaffeensis antigen-dependent CD4+ T cell proliferation and IFNγ production. Further, we describe for the first time significant IL-17 production by peripheral blood leukocytes from both Ech_0660 mutant vaccinated animals and control animals infected with wild-type E. chaffeensis, suggesting a previously unrecognized role for IL-17 and Th17 cells in the immune response to rickettsial pathogens. Our results are a critical first step towards defining the role of the immune system in vaccine-induced protection from E. chaffeensis infection in an incidental host; and confirm the potential of the attenuated mutant clone, Ech_0660, to be used as a vaccine candidate for protection against tick-transmitted E. chaffeensis infection.

  13. Smallpox vaccines: targets of protective immunity.

    Science.gov (United States)

    Moss, Bernard

    2011-01-01

    The eradication of smallpox, one of the great triumphs of medicine, was accomplished through the prophylactic administration of live vaccinia virus, a comparatively benign relative of variola virus, the causative agent of smallpox. Nevertheless, recent fears that variola virus may be used as a biological weapon together with the present susceptibility of unimmunized populations have spurred the development of new-generation vaccines that are safer than the original and can be produced by modern methods. Predicting the efficacy of such vaccines in the absence of human smallpox, however, depends on understanding the correlates of protection. This review outlines the biology of poxviruses with particular relevance to vaccine development, describes protein targets of humoral and cellular immunity, compares animal models of orthopoxvirus disease with human smallpox, and considers the status of second- and third-generation smallpox vaccines. Published 2010. This article is a US Government work and is in the public domain in the USA.

  14. A synthetic M protein peptide synergizes with a CXC chemokine protease to induce vaccine-mediated protection against virulent streptococcal pyoderma and bacteremia.

    Science.gov (United States)

    Pandey, Manisha; Langshaw, Emma; Hartas, Jon; Lam, Alfred; Batzloff, Michael R; Good, Michael F

    2015-06-15

    Infections caused by Streptococcus pyogenes (group A Streptococcus [GAS]) are highly prevalent in the tropics, in developing countries, and in the Indigenous populations of developed countries. These infections and their sequelae are responsible for almost 500,000 lives lost prematurely each year. A synthetic peptide vaccine (J8-DT) from the conserved region of the M protein has shown efficacy against disease that follows i.p. inoculation of bacteria. By developing a murine model for infection that closely mimics human skin infection, we show that the vaccine can protect against pyoderma and subsequent bacteremia caused by multiple GAS strains, including strains endemic in Aboriginal communities in the Northern Territory of Australia. However, the vaccine was ineffective against a hypervirulent cluster of virulence responder/sensor mutant GAS strain; this correlated with the strain's ability to degrade CXC chemokines, thereby preventing neutrophil chemotaxis. By combining J8-DT with an inactive form of the streptococcal CXC protease, S. pyogenes cell envelope proteinase, we developed a combination vaccine that is highly effective in blocking CXC chemokine degradation and permits opsonic Abs to kill the bacteria. Mice receiving the combination vaccine were strongly protected against pyoderma and bacteremia, as evidenced by a 100-1000-fold reduction in bacterial burden following challenge. To our knowledge, a vaccine requiring Abs to target two independent virulence factors of an organism is unique. Copyright © 2015 by The American Association of Immunologists, Inc.

  15. Measles vaccine expressing the secreted form of West Nile virus envelope glycoprotein induces protective immunity in squirrel monkeys, a new model of West Nile virus infection.

    Science.gov (United States)

    Brandler, Samantha; Marianneau, Philippe; Loth, Philippe; Lacôte, Sandra; Combredet, Chantal; Frenkiel, Marie-Pascale; Desprès, Philippe; Contamin, Hugues; Tangy, Frédéric

    2012-07-15

    West Nile virus (WNV) is a mosquito-borne flavivirus that emerged in North America and caused numerous cases of human encephalitis, thus urging the development of a vaccine. We previously demonstrated the efficacy of a recombinant measles vaccine (MV) expressing the secreted form of the envelope glycoprotein from WNV to prevent WNV encephalitis in mice. In the present study, we investigated the capacity of this vaccine candidate to control WNV infection in a primate model. We first established experimental WNV infection of squirrel monkeys (Saimiri sciureus). A high titer of virus was detected in plasma on day 2 after infection, and viremia persisted for 5 days. A single immunization of recombinant MV-WNV vaccine elicited anti-WNV neutralizing antibodies that strongly reduced WNV viremia at challenge. This study demonstrates for the first time the capacity of a recombinant live attenuated measles vector to protect nonhuman primates from a heterologous infectious challenge.

  16. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys.

    Science.gov (United States)

    Abbink, Peter; Larocca, Rafael A; De La Barrera, Rafael A; Bricault, Christine A; Moseley, Edward T; Boyd, Michael; Kirilova, Marinela; Li, Zhenfeng; Ng'ang'a, David; Nanayakkara, Ovini; Nityanandam, Ramya; Mercado, Noe B; Borducchi, Erica N; Agarwal, Arshi; Brinkman, Amanda L; Cabral, Crystal; Chandrashekar, Abishek; Giglio, Patricia B; Jetton, David; Jimenez, Jessica; Lee, Benjamin C; Mojta, Shanell; Molloy, Katherine; Shetty, Mayuri; Neubauer, George H; Stephenson, Kathryn E; Peron, Jean Pierre S; Zanotto, Paolo M de A; Misamore, Johnathan; Finneyfrock, Brad; Lewis, Mark G; Alter, Galit; Modjarrad, Kayvon; Jarman, Richard G; Eckels, Kenneth H; Michael, Nelson L; Thomas, Stephen J; Barouch, Dan H

    2016-09-09

    Zika virus (ZIKV) is responsible for a major ongoing epidemic in the Americas and has been causally associated with fetal microcephaly. The development of a safe and effective ZIKV vaccine is therefore an urgent global health priority. Here we demonstrate that three different vaccine platforms protect against ZIKV challenge in rhesus monkeys. A purified inactivated virus vaccine induced ZIKV-specific neutralizing antibodies and completely protected monkeys against ZIKV strains from both Brazil and Puerto Rico. Purified immunoglobulin from vaccinated monkeys also conferred passive protection in adoptive transfer studies. A plasmid DNA vaccine and a single-shot recombinant rhesus adenovirus serotype 52 vector vaccine, both expressing ZIKV premembrane and envelope, also elicited neutralizing antibodies and completely protected monkeys against ZIKV challenge. These data support the rapid clinical development of ZIKV vaccines for humans. Copyright © 2016, American Association for the Advancement of Science.

  17. Ubiquitin conjugation of open reading frame F DNA vaccine leads to enhanced cell-mediated immune response and induces protection against both antimony-susceptible and -resistant strains of Leishmania donovani.

    Science.gov (United States)

    Sharma, Ankur; Madhubala, Rentala

    2009-12-15

    Resistance of Leishmania donovani to sodium antimony gluconate has become a critical issue in the current, prolonged epidemic in India. Hence, there is an urgent need for a vaccine that is protective against both antimony-susceptible and -resistant strains of L. donovani. The multigene LD1 locus located on chromosome 35 of Leishmania is amplified in approximately 15% of the isolates examined. The open reading frame F (ORFF), a potential vaccine candidate against visceral leishmaniasis, is part of the multigene LD1 locus. ORFF was expressed as a chimeric conjugate of ubiquitin to elicit an Ag-specific cell-mediated immune response. Analysis of the cellular immune responses of ubiquitin-conjugated ORFF (UBQ-ORFF) DNA-immunized, uninfected BALB/c mice demonstrated that the vaccine induced enhanced IFN-gamma-producing CD4(+) and CD8(+) T cells compared with nonubiquitinated ORFF DNA vaccine. Higher levels of IL-12 and IFN-gamma and the low levels of IL-4 and IL-10 further indicated that the immune responses with UBQ-ORFF were mediated toward the Th1 rather than Th2 type. Infection of immunized mice with either the antimony-susceptible (AG83) or -resistant (GE1F8R) L. donovani strain showed that UBQ-ORFF DNA vaccine induced higher protection when compared with ORFF DNA. UBQ-ORFF DNA-immunized and -infected mice showed a significant increase in IL-12 and IFN-gamma and significant down-regulation of IL-10. High levels of production of nitrite and superoxide, two macrophage-derived oxidants that are critical in controlling Leishmania infection, were observed in protected mice. The feasibility of using ubiquitinated-conjugated ORFF DNA vaccine as a promising immune enhancer for vaccination against both antimony-susceptible and -resistant strains of L. donovani is reported.

  18. Subunit Recombinant Vaccine Protects Against Monkeypox

    Science.gov (United States)

    2006-05-27

    smallpox, monkeypox cannot be eradicated. The virus has an unknown animal reservoir and the existence of more virulent strains is plausible. The 2003 U.S...smallpox vaccine Dryvax, a live vaccinia virus (VACV), protects against smallpox and monkeypox , but is contraindicated in immunocompromised individuals...protective Ab response. We immunized rhesus macaques with plasmid DNA encoding the monkeypox orthologs of the VACV L1R, A27L, A33R, and B5R proteins by the

  19. Vaccine-induced virus-neutralizing antibodies and cytotoxic T cells do not protect macaques from experimental infection with simian immunodeficiency virus SIVmac32H (J5).

    NARCIS (Netherlands)

    E.G.J. Hulskotte (Ellen); A.M. Geretti (Anna Maria); C.H.J. Siebelink (Kees); G. van Amerongen (Geert); M.P. Cranage (Martin); E. Rud; S.G. Norley (Stephen); P. de Vries (Petra); A.D.M.E. Osterhaus (Albert)

    1995-01-01

    textabstractTo gain further insight into the ability of subunit vaccines to protect monkeys from experimental infection with simian immunodeficiency virus (SIV), two groups of cynomolgus macaques were immunized with either recombinant SIVmac32H-derived envelope glycoproteins (Env) incorporated into

  20. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ(+) CMI responses protects against a genital infection in minipigs

    DEFF Research Database (Denmark)

    Bøje, Sarah; Olsen, Anja Weinreich; Erneholm, Karin

    2016-01-01

    Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig...... animal model, we evaluated the immunogenicity and efficacy of a multi-subunit vaccine formulated in the strong Th1-inducing adjuvant CAF01. We evaluated a mixture of two fusion proteins (Hirep1 and CTH93) designed to promote either neutralizing antibodies or cell-mediated immunity, respectively. Hirep1...... is a novel immunogen based on the variant domain (VD) 4 region from major outer membrane protein (MOMP) serovar (Sv) D, SvE and SvF, and CTH93 is a fusion molecule of three antigens (CT043, CT414 and MOMP). Pigs were immunized twice intramuscularly with either Hirep1+CTH93/CAF01, UV-inactivated Chlamydia...

  1. Serological Protection Induced by Haemophilus influenzae Type b Conjugate Vaccine in Mexican Children: Is a Booster Dose of the Vaccine Needed? ▿

    Science.gov (United States)

    Rodriguez, Romeo S.; Mascarenas, Cesar; Conde-Glez, Carlos J.; Inostroza, Jaime; Villanueva, Sonia; Velázquez, María Elena; Sánchez-Alemán, Miguel Angel; Echániz, Gabriela

    2010-01-01

    We determined the seroprevalence of protective antibodies against Hib in Mexican children under the age of five using a standardized enzyme-linked immunosorbent assay. Hib antibodies (≥0.15 μg/ml) were present in 95.34% (±1.14% [seroprevalence ± standard error]) of samples. Fewer children aged 30 to 47 months had protective Hib antibody levels (91.45% ± 2.60%) than children from 12 to 29 and 48 to 59 months (97.3% ± 1.34% and 97.44% ± 1.80%, respectively). PMID:20719986

  2. Insight from Molecular, Pathological, and Immunohistochemical Studies on Cellular and Humoral Mechanisms Responsible for Vaccine-Induced Protection of Rainbow Trout against Yersinia ruckeri

    DEFF Research Database (Denmark)

    Deshmukh, Sidhartha; Kania, Per W.; Chettri, Jiwan K.

    2013-01-01

    with the expression of genes encoding innate factors (complement factors, lysozyme, and acute phase proteins), but in the later phase of infection, increased expression of adaptive immune genes dominated. The histological approach used has shown that the cellular changes correlated with protection of vaccinated fish...... indirectly to both humoral and cellular elements being involved in protection. The present study correlates the level of protection in rainbow trout to cellular reactions in spleen and head kidney and visualizes the processes by applying histopathological, immunohistochemical, and in situ hybridization...... techniques. It was shown that these cellular reactions, which were more prominent in spleen than in head kidney, were associated with the expression of immune-related genes, suggesting a Th2-like response. Y. ruckeri, as shown by in situ hybridization (ISH), was eliminated within a few days in vaccinated...

  3. Oral and anal vaccination confers full protection against enteric redmouth disease (ERM) in rainbow trout

    DEFF Research Database (Denmark)

    Villumsen, Kasper Rømer; Neumann, Lukas; Otani, Maki

    2014-01-01

    The effect of oral vaccines against bacterial fish diseases has been a topic for debate for decades. Recently both M-like cells and dendritic cells have been discovered in the intestine of rainbow trout. It is therefore likely that antigens reaching the intestine can be taken up and thereby induce...... immunity in orally vaccinated fish. The objective of this project was to investigate whether oral and anal vaccination of rainbow trout induces protection against an experimental waterborne infection with the pathogenic enterobacteria Yersinia ruckeri O1 biotype 1 the causative agent of enteric redmouth...... disease (ERM). Rainbow trout were orally vaccinated with AquaVac ERM Oral (MERCK Animal Health) or an experimental vaccine bacterin of Y. ruckeri O1. Both vaccines were tested with and without a booster vaccination four months post the primary vaccination. Furthermore, two groups of positive controls were...

  4. Vaccines for Your Children: Protect Your Child at Every Age

    Science.gov (United States)

    ... about the 6 month shots, side effects, flu vaccine, and child care requirements. 7 to 11 Months Learn about ... vaccines before college. Adoption and Vaccines Learn about vaccines for international adoption, domestic adoption, ... Protect Your Child Home Pregnancy Birth 1 to 2 months 4 ...

  5. Universal vaccine against influenza virus: linking TLR signaling to anti-viral protection.

    Science.gov (United States)

    Schmitz, Nicole; Beerli, Roger R; Bauer, Monika; Jegerlehner, Andrea; Dietmeier, Klaus; Maudrich, Melanie; Pumpens, Paul; Saudan, Philippe; Bachmann, Martin F

    2012-04-01

    A vaccine protecting against all influenza strains is a long-sought goal, particularly for emerging pandemics. As previously shown, vaccines based on the highly conserved extracellular domain of M2 (M2e) may protect against all influenza A strains. Here, we demonstrate that M2e-specific monoclonal antibodies (mAbs) protect mice from a lethal influenza infection. To be protective, antibodies had to be able to bind to Fc receptors and fix complement. Furthermore, mAbs of IgG2c isotype were protective in mice, while antibodies of identical specificity, but of the IgG1 isotype, failed to prevent disease. These findings readily translated into vaccine design. A vaccine targeting M2 in the absence of a toll-like receptor (TLR) 7 ligand primarily induced IgG1, whilst the same vaccine linked to a TLR7 ligand yielded high levels of IgG2c antibodies. Although both vaccines protected mice from a lethal challenge, mice treated with the vaccine containing a TLR7 ligand showed significantly lower morbidity. In accordance with these findings, vaccination of TLR7(-/-) mice with a vaccine containing a TLR7 ligand did not result in protection from a lethal challenge. Hence, the innate immune system is required to direct isotype switching toward the more protective IgG2a/c antibodies. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Impact of vaccine protection against multiple HPV types on the cost-effectiveness of cervical screening.

    Science.gov (United States)

    Coupé, Veerle M H; Bogaards, Johannes A; Meijer, Chris J L M; Berkhof, Johannes

    2012-02-27

    Cross-protection against non-HPV16/18 types and the emergence of broad spectrum vaccines protecting against multiple HPV types will influence the cost-effectiveness of future screening. To assess this influence we used an individual-based simulation model describing the relation between 14 HPV types and cervical disease, allowing the occurrence of multiple type infections. Screening scenarios for vaccinated women were evaluated, firstly for HPV16/18 vaccination with partial cross-protection against HPV 31, 33, 45 and 58 and secondly, for broad spectrum vaccination against 5-13 HPV types. The vaccine-induced incidence reduction of type-specific infection was varied from 0 to 95% in the cross-protection setting and set at 100% in the setting of broad spectrum vaccines. Scenarios of either cytology or HPV DNA screening were considered under varying lifetime number of screening rounds. At a cost-effectiveness threshold of €20,000/QALY, four times HPV DNA screening between 30 and 60 years was the selected scenario in addition to HPV16/18 vaccination, whether or not cross-protection was conferred (€6707 and €9994/QALY, respectively). In the absence of cross-protection, a fifth screening round might be considered (ICER €22,967/QALY). In addition to broad spectrum vaccination, one screen during lifetime was cost-effective up to an 11-valent vaccine. If the vaccine-induced type-specific incidence reduction was lowered to 99%, one screen during lifetime was cost-effective even in addition to 13-valent vaccination. In conclusion, in a cohort of HPV16/18 vaccinated women, four rounds of HPV DNA screening is cost-effective. One screen during lifetime remains cost-effective in addition to broad spectrum vaccination offering protection against many high-risk HPV types. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Attenuated Salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge

    Directory of Open Access Journals (Sweden)

    Yu Xia

    2012-07-01

    Full Text Available Abstract Orally delivered DNA vaccines against duck enteritis virus (DEV were developed using live attenuated Salmonella typhimurium (SL7207 as a carrier and Escherichia coli heat labile enterotoxin B subunit (LTB as a mucosal adjuvant. DNA vaccine plasmids pVAX-UL24 and pVAX-LTB-UL24 were constructed and transformed into attenuated Salmonella typhimurium SL7207 resulting SL7207 (pVAX-UL24 and SL7207 (pVAX-LTB-UL24 respectively. After ducklings were orally inoculated with SL7207 (pVAX-UL24 or SL7207 (pVAX-LTB-UL24, the anti-DEV mucosal and systemic immune responses were recorded. To identify the optimum dose that confers maximum protection, we used different doses of the candidate vaccine SL7207 (pVAX-LTB-UL24 during oral immunization. The strongest mucosal and systemic immune responses developed in the SL7207 (pVAX-LTB-UL24 (1011 CFU immunized group. Accordingly, oral immunization of ducklings with SL7207 (pVAX-LTB-UL24 showed superior efficacy of protection (60-80% against a lethal DEV challenge (1000 LD50, compared with the limited survival rate (40% of ducklings immunized with SL7207 (pVAX-UL24. Our study suggests that the SL7207 (pVAX-LTB-UL24 can be a candidate DEV vaccine.

  8. Vaccination of Elk (Cervus canadensis) with Brucella abortus Strain RB51 Overexpressing Superoxide Dismutase and Glycosyltransferase Genes Does Not Induce Adequate Protection against Experimental Brucella abortus Challenge.

    Science.gov (United States)

    Nol, Pauline; Olsen, Steven C; Rhyan, Jack C; Sriranganathan, Nammalwar; McCollum, Matthew P; Hennager, Steven G; Pavuk, Alana A; Sprino, Phillip J; Boyle, Stephen M; Berrier, Randall J; Salman, Mo D

    2016-01-01

    In recent years, elk (Cervus canadensis) have been implicated as the source of Brucella abortus infection for numerous cattle herds in the Greater Yellowstone Area. In the face of environmental and ecological changes on the landscape, the range of infected elk is expanding. Consequently, the development of effective disease management strategies for wild elk herds is of utmost importance, not only for the prevention of reintroduction of brucellosis to cattle, but also for the overall health of the Greater Yellowstone Area elk populations. In two studies, we evaluated the efficacy of B. abortus strain RB51 over-expressing superoxide dismutase and glycosyltransferase for protecting elk from infection and disease caused by B. abortus after experimental infection with a virulent B. abortus strain. Our data indicate that the recombinant vaccine does not protect elk against brucellosis. Further, work is needed for development of an effective brucellosis vaccine for use in elk.

  9. Vaccination of elk (Cervus canadensis with Brucella abortus strain RB51 overexpressing superoxide dismutase and glycosyltransferase genes does not induce adequate protection against experimental Brucella abortus challenge

    Directory of Open Access Journals (Sweden)

    Pauline eNol

    2016-02-01

    Full Text Available In recent years, elk (Cervus canadensis have been implicated as the source of Brucella abortus infection for numerous cattle herds in the Greater Yellowstone Area. In the face of environmental and ecological changes on the landscape, the range of infected elk is expanding. Consequently, the development of effective disease management strategies for wild elk herds is of utmost importance, not only for the prevention of reintroduction of brucellosis to cattle, but also for the overall health of the Greater Yellowstone Area elk populations. In two studies, we evaluated the efficacy of B. abortus strain RB51 over-expressing superoxide dismutase and glycosytransferase for protecting elk from infection and disease caused by B. abortus after experimental infection with a virulent B. abortus strain. Our data indicate that the recombinant vaccine does not protect elk against brucellosis. Further work is needed for development of an effective brucellosis vaccine for use in elk

  10. Multiple linear epitopes (B-cell, CTL and Th) of JEV expressed in recombinant MVA as multiple epitope vaccine induces a protective immune response.

    Science.gov (United States)

    Wang, Fengjuan; Feng, Xiuli; Zheng, Qisheng; Hou, Hongyan; Cao, Ruibing; Zhou, Bin; Liu, Qingtao; Liu, Xiaodong; Pang, Ran; Zhao, Jin; Deng, Wenlei; Chen, Puyan

    2012-09-17

    Epitope-based vaccination might play an important role in the protective immunity against Japanese encephalitis virus (JEV) infection. The purpose of the study is to evaluate the immune characteristics of recombinant MVA carrying multi-epitope gene of JEV (rMVA-mep). The synthetic gene containing critical epitopes (B-cell, CTL and Th) of JEV was cloned into the eukaryotic expression vector pGEM-K1L, and the rMVA-mep was prepared. BALB/c mice were immunized with different dosages of purified rMVA-mep and the immune responses were determined in the form of protective response against JEV, antibodies titers (IgG1 and IgG2a), spleen cell lymphocyte proliferation, and the levels of interferon-γ and interleukin-4 cytokines. The results showed that live rMVA-mep elicited strongly immune responses in dose-dependent manner, and the highest level of immune responses was observed from the groups immunized with 107 TCID50 rMVA-mep among the experimental three concentrations. There were almost no difference of cytokines and neutralizing antibody titers among 107 TCID50 rMVA-mep, recombinant ED3 and inactivated JEV vaccine. It was noteworthy that rMVA-mep vaccination potentiates the Th1 and Th2-type immune responses in dose-dependent manner, and was sufficient to protect the mice survival against lethal JEV challenge. These findings demonstrated that rMVA-mep can produce adequate humoral and cellular immune responses, and protection in mice, which suggested that rMVA-mep might be an attractive candidate vaccine for preventing JEV infection.

  11. A single intranasal administration of virus-like particle vaccine induces an efficient protection for mice against human respiratory syncytial virus.

    Science.gov (United States)

    Jiao, Yue-Ying; Fu, Yuan-Hui; Yan, Yi-Fei; Hua, Ying; Ma, Yao; Zhang, Xiu-Juan; Song, Jing-Dong; Peng, Xiang-Lei; Huang, Jiaqiang; Hong, Tao; He, Jin-Sheng

    2017-08-01

    Human respiratory syncytial virus (RSV) is an important pediatric pathogen causing acute viral respiratory disease in infants and young children. However, no licensed vaccines are currently available. Virus-like particles (VLPs) may bring new hope to producing RSV VLP vaccine with high immunogenicity and safety. Here, we constructed the recombinants of matrix protein (M) and fusion glycoprotein (F) of RSV, respectively into a replication-deficient first-generation adenoviral vector (FGAd), which were used to co-infect Vero cells to assemble RSV VLPs successfully. The resulting VLPs showed similar immunoreactivity and function to RSV virion in vitro. Moreover, Th1 polarized response, and effective mucosal virus-neutralizing antibody and CD8+ T-cell responses were induced by a single intranasal (i.n.) administration of RSV VLPs rather than intramuscular (i.m.) inoculation, although the comparable RSV F-specific serum IgG and long-lasting RSV-specific neutralizing antibody were detected in the mice immunized by both routes. Upon RSV challenge, VLP-immunized mice showed increased viral clearance but decreased signs of enhanced lung pathology and fewer eosinophils compared to mice immunized with formalin-inactivated RSV (FI-RSV). In addition, a single i.n. RSV VLP vaccine has the capability to induce RSV-specific long-lasting neutralizing antibody responses observable up to 15 months. Our results demonstrate that the long-term and memory immune responses in mice against RSV were induced by a single i.n. administration of RSV VLP vaccine, suggesting a successful approach of RSV VLPs as an effective and safe mucosal vaccine against RSV infection, and an applicable and qualified platform of FGAd-infected Vero cells for VLP production. Copyright © 2017. Published by Elsevier B.V.

  12. Efficacy, duration of immunity and cross protection after HPV vaccination: a review of the evidence.

    Science.gov (United States)

    Bonanni, Paolo; Boccalini, Sara; Bechini, Angela

    2009-05-29

    The efficacy and immunogenicity of HPV vaccines has proven excellent in several phase 2 and phase 3 trials involving tens of thousand women. A decrease in antibody titres was observed in follow-up studies of vaccinees, with initial sharp decline reaching a plateau in the longer term. Only few subjects lost their antibodies during the 5-6 years after vaccination. However, no breakthrough disease occurred even in those subjects. The administration of a challenge dose of quadrivalent vaccine at month 60 of follow-up resulted in a strong anamnestic response. The mechanism by which vaccination confers protection and the reasons for continuing vaccine efficacy remain to be elucidated. The same applies to the possibility of inducing an anamnestic response following viral challenge via genital mucosa. Data strongly suggest that both vaccines can have a variable level of cross protection against HPV types genetically and antigenically-closely related to vaccine types. Demonstration of cross protection against combined endpoints (CIN2/3 and AIS) for combined HPV types, and, as a single type, for HPV-31, has been reached for the quadrivalent vaccine, and there is evidence of cross protection against HPV 31 and 45 persistent infections (as single types) for the bivalent vaccine. Assays used for antibody detection were different for the two vaccines, and standardisation of methods for anti-HPV L1 protein detection is presently underway. The possibility to use universally accepted tests for antibody measurement would make comparison between vaccines and among different studies much easier.

  13. Immunization with a DNA vaccine encoding Toxoplasma gondii Superoxide dismutase (TgSOD) induces partial immune protection against acute toxoplasmosis in BALB/c mice.

    Science.gov (United States)

    Liu, Yuan; Cao, Aiping; Li, Yawen; Li, Xun; Cong, Hua; He, Shenyi; Zhou, Huaiyu

    2017-06-07

    Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects all warm-blooded animals including humans and causes toxoplasmosis. An effective vaccine could be an ideal choice for preventing and controlling toxoplasmosis. T. gondii Superoxide dismutase (TgSOD) might participate in affecting the intracellular growth of both bradyzoite and tachyzoite forms. In the present study, the TgSOD gene was used to construct a DNA vaccine (pEGFP-SOD). TgSOD gene was amplified and inserted into eukaryotic vector pEGFP-C1 and formed the DNA vaccine pEGFP-SOD. Then the BALB/c mice were immunized intramuscularly with the DNA vaccine and those injected with pEGFP-C1, PBS or nothing were treated as controls. Four weeks after the last immunization, all mouse groups followed by challenging intraperitoneally with tachyzoites of T. gondii ME49 strain. Results showed higher levels of total IgG, IgG2α in the sera and interferon gamma (IFN-γ) in the splenocytes from pEGFP-SOD inoculated mice than those unvaccinated, or inoculated with either empty plasmid vector or PBS. The proportions of CD4 + T cells and CD8 + T cells in the spleen from pEGFP-SOD inoculated mice were significantly (p < 0.05) increased compared to control groups. In addition, the survival time of mice immunized with pEGFP-SOD was significantly prolonged as compared to the controls (p < 0.05) although all the mice died. The present study revealed that the DNA vaccine triggered strong humoral and cellular immune responses, and aroused partial protective immunity against acute T. gondii infection in BALB/c mice. The collective data suggests the SOD may be a potential vaccine candidate for further development.

  14. Oral and anal vaccination confers full protection against enteric redmouth disease (ERM in rainbow trout.

    Directory of Open Access Journals (Sweden)

    Kasper Rømer Villumsen

    Full Text Available The effect of oral vaccines against bacterial fish diseases has been a topic for debate for decades. Recently both M-like cells and dendritic cells have been discovered in the intestine of rainbow trout. It is therefore likely that antigens reaching the intestine can be taken up and thereby induce immunity in orally vaccinated fish. The objective of this project was to investigate whether oral and anal vaccination of rainbow trout induces protection against an experimental waterborne infection with the pathogenic enterobacteria Yersinia ruckeri O1 biotype 1 the causative agent of enteric redmouth disease (ERM. Rainbow trout were orally vaccinated with AquaVac ERM Oral (MERCK Animal Health or an experimental vaccine bacterin of Y. ruckeri O1. Both vaccines were tested with and without a booster vaccination four months post the primary vaccination. Furthermore, two groups of positive controls were included, one group receiving the experimental oral vaccine in a 50 times higher dose, and the other group receiving a single dose administered anally in order to bypass the stomach. Each group was bath challenged with 6.3 × 10(8 CFU/ml Y. ruckeri, six months post the primary vaccination. The challenge induced significant mortality in all the infected groups except for the groups vaccinated anally with a single dose or orally with the high dose of bacterin. Both of these groups had 100% survival. These results show that a low dose of Y. ruckeri bacterin induces full protection when the bacterin is administered anally. Oral vaccination also induces full protection, however, at a dose 50 times higher than if the fish were to be vaccinated anally. This indicates that much of the orally fed antigen is digested in the stomach before it reaches the second segment of the intestine where it can be taken up as immunogenic antigens and presented to lymphocytes.

  15. Multiple vaccinations with UV- attenuated cercariae in pig enhance protective immunity against Schistosoma japonicum infection as compared to single vaccination.

    Science.gov (United States)

    Lin, Dandan; Tian, Fang; Wu, Haiwei; Gao, Yanan; Wu, Jingjiao; Zhang, Donghui; Ji, Minjun; McManus, Donald P; Driguez, Patrick; Wu, Guanling

    2011-06-10

    Schistosomiasis japonica is a major public health problem in the endemic areas of China, the Philippines, and Indonesia. To date, a vaccine has not been developed against this disease but immunization with UV-attenuated cercariae can induce a high level of protective immunity in Landrace/Yorkshire/Duroc crossbred pigs. To compare the efficacy of a single vaccination and multiple vaccinations with UV-attenuated Schistosoma japonicum cercariae, two groups of pigs received either one or three exposures to 10,000 cercariae attenuated with 400 μw UV. Pigs with a single immunization had a 59.33% reduction in adult worm burden, a 89.87% reduction in hepatic eggs and a 86.27% reduction in fecal eggs at eight weeks post-challenge (P vaccinated groups were higher than in the infection-control group. Triple vaccinations resulted in higher levels of antibodies, especially IgG2, compared with a single vaccination and IFN-γ levels increased with repeated immunization with UV-irradiated cercariae. The high levels of protection against S. japonicum infection can be achieved with a UV-attenuated vaccine in pigs, and that three vaccinations were possibly more effective than a single vaccination. Moreover, triple vaccinations evoked a more vigorous IFN-γ response and a stronger antibody-mediated response, especially an increase in the levels of IgG2 antibodies.

  16. Radiation-Induced Vaccination to Breast Cancer

    Science.gov (United States)

    2015-10-01

    Award Number: W81XWH-11-1-0531 TITLE: Radiation-Induced Vaccination to Breast Cancer PRINCIPAL INVESTIGATOR: William H. McBride CONTRACTING...FORM TO THE ABOVE ADDRESS. 1. REPORT DATE 2. REPORT TYPE Annual 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Radiation-Induced Vaccination to...determine abscopal responses that are hypothesized to be due to RT- induced vaccination . RT was started 10 days after the first and 3rd dose of

  17. Insights into long-lasting protection induced by RTS,S/AS02A malaria vaccine: further results from a phase IIb trial in Mozambican children.

    Directory of Open Access Journals (Sweden)

    Caterina Guinovart

    Full Text Available The pre-erythrocytic malaria vaccine RTS,S/AS02A has shown to confer protection against clinical malaria for at least 21 months in a trial in Mozambican children. Efficacy varied between different endpoints, such as parasitaemia or clinical malaria; however the underlying mechanisms that determine efficacy and its duration remain unknown. We performed a new, exploratory analysis to explore differences in the duration of protection among participants to better understand the protection afforded by RTS,S.The study was a Phase IIb double-blind, randomized controlled trial in 2022 children aged 1 to 4 years. The trial was designed with two cohorts to estimate vaccine efficacy against two different endpoints: clinical malaria (cohort 1 and infection (cohort 2. Participants were randomly allocated to receive three doses of RTS,S/AS02A or control vaccines. We did a retrospective, unplanned sub-analysis of cohort 2 data using information collected for safety through the health facility-based passive case detection system. Vaccine efficacy against clinical malaria was estimated over the first six-month surveillance period (double-blind phase and over the following 12 months (single-blind phase, and analysis was per-protocol. Adjusted vaccine efficacy against first clinical malaria episodes in cohort 2 was of 35.4% (95% CI 4.5-56.3; p = 0.029 over the double-blind phase and of 9.0% (-30.6-36.6; p = 0.609 during the single-blind phase.Contrary to observations in cohort 1, where efficacy against clinical malaria did not wane over time, in cohort 2 the efficacy decreases with time. We hypothesize that this reduced duration of protection is a result of the early diagnosis and treatment of infections in cohort 2 participants, preventing sufficient exposure to asexual-stage antigens. On the other hand, the long-term protection against clinical disease observed in cohort 1 may be a consequence of a prolonged exposure to low-dose blood-stage asexual parasitaemia

  18. H5 N-terminal β sheet promotes oligomerization of H7-HA1 that induces better antibody affinity maturation and enhanced protection against H7N7 and H7N9 viruses compared to inactivated influenza vaccine.

    Science.gov (United States)

    Khurana, Surender; Coyle, Elizabeth M; Verma, Swati; King, Lisa R; Manischewitz, Jody; Crevar, Corey J; Carter, Donald M; Ross, Ted M; Golding, Hana

    2014-11-12

    Initiation of mass vaccination is critical in response to influenza pandemic. There is an urgent need of a simple, rapid method for production of influenza vaccine that is more effective than current traditional influenza vaccines. Recent H7N9 transmissions to humans in China with high morbidity/mortality initiated extensive vaccine evaluation. We produced the HA1 domains (amino acids 1-320) from H7N9 and H7N7 strains in E. coli. Both were found to contain primarily monomers/trimers with low oligomeric content. However, when residues from the N-terminal β sheet (first 8 amino acid) of H7 HA1 domains were swapped with the corresponding amino acids from H5N1, functional oligomeric H7 HA1 were produced (HA1-DS), demonstrating strong receptor binding and hemagglutination. In rabbits, the HA1-DS from either H7N9 or H7N7 generated high neutralization titers against both homologous and heterologous H7 strains, superior to the unmodified H7 HA1 proteins. In ferrets, HA1-DS from H7N7 elicited higher (and faster) HI titers, better protected ferrets from lethality, weight loss, and reduced viral loads following challenge with wild-type highly pathogenic H7N7 virus compared with inactivated H7N7 subunit vaccine. HA1-DS vaccinated ferrets were also better protected from weight loss after challenge with the heterologous H7N9 virus compared with inactivated H7N7 subunit vaccine. Importantly, the H7N7 HA1-DS vaccine induced antibody affinity maturation far superior to the inactivated H7N7 subunit vaccine, which strongly correlated with control of viral loads in the nasal washes after challenge with either H7N7 or H7N9 strains. We conclude that N-terminus β sheet domain-swap can be used to produce stable functional oligomeric forms of better recombinant HA1 vaccines in simple, inexpensive bacterial system for rapid response to emerging pandemic threat for the global population. Published by Elsevier Ltd.

  19. Mucosal immune responses induced by transcutaneous vaccines.

    Science.gov (United States)

    Lawson, L B; Clements, J D; Freytag, L C

    2012-01-01

    The skin has been investigated as a site for vaccine delivery only since the late 1990s. However, much has been discovered about the cell populations that reside in the skin, their active role in immune responses, and the fate of trans- cutaneously applied antigens. Transcutaneous immunization (TCI) is a safe, effective means of inducing immune responses against a number of pathogens. One of the most notable benefits of TCI is the induction of immune responses in both systemic and mucosal compartments. This chapter focuses on the transport of antigen into and beyond intact skin, the cutaneous sentinel cell populations that play a role in TCI, and the types of mucosal immune responses that have been generated. A number of in vivo studies in murine models have provided information about the broad responses induced by TCI. Cellular and humoral responses and protection against challenge have been noted in the gastrointestinal, reproductive, and respiratory tracts. Clinical trials have demonstrated the benefits of this vaccine delivery route in humans. As with other routes of immunization, the type of vaccine formulation and choice of adjuvant may be critical for achieving appropriate responses and can be tailored to activate specific immune-responsive cells in the skin to increase the efficacy of TCI against mucosal pathogens.

  20. Maternal and neonatal vaccination protects newborn baboons from pertussis infection.

    Science.gov (United States)

    Warfel, Jason M; Papin, James F; Wolf, Roman F; Zimmerman, Lindsey I; Merkel, Tod J

    2014-08-15

    The United States is experiencing a pertussis resurgence that resulted in a 60-year high of 48 000 cases in 2012. The majority of hospitalizations and deaths occur in infants too young to be vaccinated. Neonatal and maternal vaccination have been proposed to protect newborns until the first vaccination, currently recommended at 2 months of age. These interventions result in elevated anti-Bordetella pertussis titers, but there have been no studies demonstrating that these measures confer protection. Baboons were vaccinated with acellular pertussis vaccine at 2 days of age or at 2 and 28 days of age. To model maternal vaccination, adult female baboons primed with acellular pertussis vaccine were boosted in the third trimester of pregnancy. Neonatally vaccinated infants, infants born to vaccinated mothers, and naive infants born to unvaccinated mothers were infected with B. pertussis at 5 weeks of age. Naive infant baboons developed severe disease when challenged with B. pertussis at 5 weeks of age. Baboons receiving acellular pertussis vaccine and infants born to mothers vaccinated at the beginning of their third trimester were protected. Our results demonstrate that neonatal vaccination and maternal vaccination confer protection in the baboon model and support further study of these strategies for protection of newborns from pertussis. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2013. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. One Dose of HPV Vaccine May Protect against Cervical Cancer | FNLCR

    Science.gov (United States)

    A single dose of the cancer-fighting human papillomavirus (HPV) vaccine Cervarix™ appears to induce an immune response that remains stable in the blood four years after vaccination. This may be enough to protect women from two strains of HPV and, u

  2. Gene-deleted live-attenuated Trypanosoma cruzi parasites as vaccines to protect against Chagas disease.

    Science.gov (United States)

    Sánchez-Valdéz, Fernando J; Pérez Brandán, Cecilia; Ferreira, Arturo; Basombrío, Miguel Ángel

    2015-05-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. This illness is now becoming global, mainly due to congenital transmission, and so far, there are no prophylactic or therapeutic vaccines available to either prevent or treat Chagas disease. Therefore, different approaches aimed at identifying new protective immunogens are urgently needed. Live vaccines are likely to be more efficient in inducing protection, but safety issues linked with their use have been raised. The development of improved protozoan genetic manipulation tools and genomic and biological information has helped to increase the safety of live vaccines. These advances have generated a renewed interest in the use of genetically attenuated parasites as vaccines against Chagas disease. This review discusses the protective capacity of genetically attenuated parasite vaccines and the challenges and perspectives for the development of an effective whole-parasite Chagas disease vaccine.

  3. VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells.

    Science.gov (United States)

    Stary, Georg; Olive, Andrew; Radovic-Moreno, Aleksandar F; Gondek, David; Alvarez, David; Basto, Pamela A; Perro, Mario; Vrbanac, Vladimir D; Tager, Andrew M; Shi, Jinjun; Yethon, Jeremy A; Farokhzad, Omid C; Langer, Robert; Starnbach, Michael N; von Andrian, Ulrich H

    2015-06-19

    Genital Chlamydia trachomatis (Ct) infection induces protective immunity that depends on interferon-γ-producing CD4 T cells. By contrast, we report that mucosal exposure to ultraviolet light (UV)-inactivated Ct (UV-Ct) generated regulatory T cells that exacerbated subsequent Ct infection. We show that mucosal immunization with UV-Ct complexed with charge-switching synthetic adjuvant particles (cSAPs) elicited long-lived protection in conventional and humanized mice. UV-Ct-cSAP targeted immunogenic uterine CD11b(+)CD103(-) dendritic cells (DCs), whereas UV-Ct accumulated in tolerogenic CD11b(-)CD103(+) DCs. Regardless of vaccination route, UV-Ct-cSAP induced systemic memory T cells, but only mucosal vaccination induced effector T cells that rapidly seeded uterine mucosa with resident memory T cells (T(RM) cells). Optimal Ct clearance required both T(RM) seeding and subsequent infection-induced recruitment of circulating memory T cells. Thus, UV-Ct-cSAP vaccination generated two synergistic memory T cell subsets with distinct migratory properties. Copyright © 2015, American Association for the Advancement of Science.

  4. Does Oral Vaccination Protect Rainbow Trout (Oncorhynchus mykiss) Against Enteric Red Mouth Disease?

    DEFF Research Database (Denmark)

    Neumann, Lukas; Villumsen, Kasper Rømer; Kragelund Strøm, Helene

    The effect of oral vaccines against bacterial fish diseases has been a topic for debate in many years. Recently both M-cells and dendritic cells have been found in fish and it is therefore likely that antigens can be taken up from the intestine and induce immunity in orally vaccinated fish....... The objective for this project is to investigate whether oral vaccination of rainbow trout against Yersinia ruckeri O1 (biotype 1) causing Enteric Red Mouth disease (ERM) can protect rainbow trout against a subsequent experimental bath challenge with Y. ruckeri. The rainbow trout were given oral vaccinations...... with AquaVacTM ERM Oral vet. (MSD animal health) or an experimental vaccine based on killed Yersinia ruckeri O1, (biotype 1) bacteria. Seven groups were studied: 1) Control group (no vaccination, no infection), 2) infected control, 3) experimental vaccine, 4) experimental vaccine w/ booster (4 months post...

  5. Oral and Anal vaccination against enteric red mouth disease protection against yersiniosis

    DEFF Research Database (Denmark)

    Neumann, Lukas; Villumsen, Kasper Rømer; Kragelund Strøm, Helene

    The effect of oral vaccines against bacterial fish diseases has been a topic for debate in many years. Recently both M-cells and dendritic cells have been found in fish and it is therefore likely that antigens can be taken up from the intestine and induce immunity in orally and anally vaccinated...... fish. The objective for this project is to investigate whether oral and anal vaccination of rainbow trout against Yersinia ruckeri O1 (biotype 1) causing Enteric Red Mouth disease (ERM) can protect rainbow trout against a subsequent experimental bath challenge.The rainbow trout were given oral...... vaccinations with AquaVacTM ERM Oral vet. (MSD animal health) or an experimental vaccine based on formalin killed Yersinia ruckeri O1, (biotype 1) bacteria. Eight groups were studied: 1) Control group (no vaccination, no infection), 2) infected control, 3) experimental vaccine, 4) experimental vaccine w...

  6. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    Science.gov (United States)

    2013-02-14

    next 5 years, based on gender, blood pressure, body mass index, smoking history and presence or absence of diabetes [29]. This was done to avoid the...lacking effective vaccines, such as HIV/AIDS, tuberculosis and malaria. Adeno- vectors have proven especially effective at inducing robust CD8+ T cell...infectious diseases particularly tuberculosis [50] and HIV [51,52,53] where CMI is likely important. Limitations The main finding of this study that CD8+ T

  7. Long-term protective immunity from an influenza virus-like particle vaccine administered with a microneedle patch.

    Science.gov (United States)

    Quan, Fu-Shi; Kim, Yeu-Chun; Song, Jae-Min; Hwang, Hye Suk; Compans, Richard W; Prausnitz, Mark R; Kang, Sang-Moo

    2013-09-01

    Skin vaccination with influenza virus-like particles (VLPs) using microneedles has been shown to induce protection similar to or better than that induced by intramuscular immunization. In this study, we examined the long-term protective efficacy of influenza (H1N1 A/PR/8/34) VLPs after skin vaccination using microneedle patches coated with the vaccine. Microneedle vaccination of mice in the skin induced 100% protection against lethal challenge infection with influenza A/PR/8/34 virus 14 months after a single vaccine dose. Influenza virus-specific total IgG response and hemagglutination inhibition (HAI) titers were maintained at high levels for over 1 year after microneedle vaccination. Microneedle vaccination also induced substantial levels of lung IgG and IgA antibody responses, and antibody-secreting plasma cells from spleen and bone marrow, as well as conferring effective control of lung viral loads, resulting in complete protection 14 months after vaccination. These strong and long-lasting immune responses were enabled in part by stabilization of the vaccine by formulation with trehalose during microneedle patch fabrication. Administration of the stabilized vaccine using microneedles was especially effective at enabling strong recall responses measured 4 days after lethal virus challenge, including increased HAI and antibody-secreting cells in the spleen and reduced viral titer and inflammatory response in the lung. The results in this study indicate that skin vaccination with VLP vaccine using a microneedle patch provides long-term protection against influenza in mice.

  8. Long-Term Protective Immunity from an Influenza Virus-Like Particle Vaccine Administered with a Microneedle Patch

    OpenAIRE

    Quan, Fu-Shi; Kim, Yeu-Chun; Song, Jae-Min; Hwang, Hye Suk; Compans, Richard W.; Prausnitz, Mark R.; Kang, Sang-Moo

    2013-01-01

    Skin vaccination with influenza virus-like particles (VLPs) using microneedles has been shown to induce protection similar to or better than that induced by intramuscular immunization. In this study, we examined the long-term protective efficacy of influenza (H1N1 A/PR/8/34) VLPs after skin vaccination using microneedle patches coated with the vaccine. Microneedle vaccination of mice in the skin induced 100% protection against lethal challenge infection with influenza A/PR/8/34 virus 14 month...

  9. Pulmonary immunity and durable protection induced by the ID93/GLA-SE vaccine candidate against the hyper-virulent Korean Beijing Mycobacterium tuberculosis strain K.

    Science.gov (United States)

    Cha, Seung Bin; Kim, Woo Sik; Kim, Jong-Seok; Kim, Hongmin; Kwon, Kee Woong; Han, Seung Jung; Cho, Sang-Nae; Coler, Rhea N; Reed, Steven G; Shin, Sung Jae

    2016-04-27

    The majority of tuberculosis (TB) vaccine candidates advanced to clinical trials have been evaluated preclinically using laboratory-adapted strains. However, it has been proposed that challenge with clinical isolates in preclinical vaccine testing could provide further and more practical validation. Here, we tested the ID93/GLA-SE TB vaccine candidate against the clinical Mycobacterium tuberculosis (Mtb) strain K (Mtb K) belonging to the Beijing family, the most prevalent Mtb strain in South Korea. Mice immunized with ID93/GLA-SE exhibited a significant reduction in bacteria and reduced lung inflammation against Mtb K when compared to non-immunized controls. In addition, we analyzed the immune responses in the lungs of ID93/GLA-SE-immunized mice, and showed that ID93/GLA-SE was able to elicit sustained Th1-biased immune responses including antigen-specific multifunctional CD4(+) T cell co-producing IFN-γ, TNF-α, and IL-2 as well as a high magnitude of IFN-γ response for up to 10 weeks post-challenge. Notably, further investigation of T cell subsets in the lung following challenge showed remarkable generation of CD8(+) central memory T cells by ID93/GLA-SE-immunization. Our findings showed that ID93/GLA-SE vaccine confers a high level of robust protection against the hypervirulent Mtb Beijing infection which was characterized by pulmonary Th1-polarized T-cell immune responses. These findings may also provide relevant information for potential utility of this vaccine candidate in East-Asian countries where the Beijing genotype is highly prevalent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Vaccine Containing the Three Allelic Variants of the Plasmodium vivax Circumsporozoite Antigen Induces Protection in Mice after Challenge with a Transgenic Rodent Malaria Parasite

    Directory of Open Access Journals (Sweden)

    Alba Marina Gimenez

    2017-10-01

    Full Text Available Plasmodium vivax is the most common species that cause malaria outside of the African continent. The development of an efficacious vaccine would contribute greatly to control malaria. Recently, using bacterial and adenoviral recombinant proteins based on the P. vivax circumsporozoite protein (CSP, we demonstrated the possibility of eliciting strong antibody-mediated immune responses to each of the three allelic forms of P. vivax CSP (PvCSP. In the present study, recombinant proteins representing the PvCSP alleles (VK210, VK247, and P. vivax-like, as well as a hybrid polypeptide, named PvCSP-All epitopes, were generated. This hybrid containing the conserved C-terminal of the PvCSP and the three variant repeat domains in tandem were successfully produced in the yeast Pichia pastoris. After purification and biochemical characterization, they were used for the experimental immunization of C57BL/6 mice in a vaccine formulation containing the adjuvant Poly(I:C. Immunization with a recombinant protein expressing all three different allelic forms in fusion elicited high IgG antibody titers reacting with all three different allelic variants of PvCSP. The antibodies targeted both the C-terminal and repeat domains of PvCSP and recognized the native protein on the surface of P. vivax sporozoites. More importantly, mice that received the vaccine formulation were protected after challenge with chimeric Plasmodium berghei sporozoites expressing CSP repeats of P. vivax sporozoites (Pb/PvVK210. Our results suggest that it is possible to elicit protective immunity against one of the most common PvCSP alleles using soluble recombinant proteins expressed by P. pastoris. These recombinant proteins are promising candidates for clinical trials aiming to develop a multiallele vaccine against P. vivax malaria.

  11. Development of cross-protective influenza A vaccines based on cellular responses

    Directory of Open Access Journals (Sweden)

    Peter Christiaan Soema

    2015-05-01

    Full Text Available Seasonal influenza vaccines provide protection against matching influenza A virus (IAV strains mainly through the induction of neutralizing serum IgG antibodies. However, these antibodies fail to confer a protective effect against mismatched IAV. This lack of efficacy against heterologous influenza strains has spurred the vaccine development community to look for other influenza vaccine concepts, which have the ability to elicit cross-protective immune responses.One of the concepts that is currently been worked on are influenza vaccines inducing influenza-specific T cell responses. T cells are able to lyse infected host cells, thereby clearing the virus. More interestingly, these T cells can recognize highly conserved epitopes of internal influenza proteins, making cellular responses less vulnerable to antigenic variability. T cells are therefore cross-reactive against many influenza strains, and thus are a promising concept for future influenza vaccines. Despite their potential, there are currently no T cell based IAV vaccines on the market. Selection of the proper antigen, appropriate vaccine formulation and evaluation of the efficacy of T cell vaccines remains challenging, both in preclinical and clinical settings.In this review, we will discuss the current developments in influenza T cell vaccines, focusing on existing protein-based and novel peptide-based vaccine formulations. Furthermore, we will discuss the feasibility of influenza T cell vaccines and their possible use in the future.

  12. Roles of Aluminum Hydroxide and Monophosphoryl Lipid A Adjuvants in Overcoming CD4+ T Cell Deficiency To Induce Isotype-Switched IgG Antibody Responses and Protection by T-Dependent Influenza Vaccine.

    Science.gov (United States)

    Ko, Eun-Ju; Lee, Young-Tae; Kim, Ki-Hye; Lee, Youri; Jung, Yu-Jin; Kim, Min-Chul; Lee, Yu-Na; Kang, Taeuk; Kang, Sang-Moo

    2017-01-01

    Vaccine adjuvant effects in the CD4-deficient condition largely remain unknown. We investigated the roles of combined monophosphoryl lipid A (MPL) and aluminum hydroxide (Alum) adjuvant (MPL+Alum) in inducing immunity after immunization of CD4 knockout (CD4KO) and wild-type (WT) mice with T-dependent influenza vaccine. MPL+Alum adjuvant mediated IgG isotype-switched Abs, IgG-secreting cell responses, and protection in CD4KO mice, which were comparable to those in WT mice. In contrast, Alum adjuvant effects were dependent on CD4+ T cells. MPL+Alum adjuvant was effective in recruiting monocytes and neutrophils as well as in protecting macrophages from Alum-mediated cell loss at the injection site in CD4KO mice. MPL+Alum appeared to attenuate MPL-induced inflammatory responses in WT mice, likely improving the safety. Additional studies in CD4-depleted WT mice and MHC class II KO mice suggest that MHC class II+ APCs contribute to providing alternative B cell help in the CD4-deficient condition in the context of MPL+Alum-adjuvanted vaccination. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Unveiling Unexpected Immune Activities Induced by Your Pneumococcal Vaccine

    Directory of Open Access Journals (Sweden)

    Julia L. Hurwitz

    2016-03-01

    Full Text Available In modern-day vaccine design, a good pneumococcal capsular polysaccharide vaccine is measured by its ability to induce opsonic antibodies. These antibodies label bacteria for phagocytosis by neutrophils and thereby overcome the capsule’s barrier function. Doyle and Pirofski have raised a serious challenge to the current paradigm by describing anti-capsular antibodies that are highly protective but nonopsonic [C.R. Doyle and L. Pirofski, mBio 7(1:e02260-15, 2016, doi:10.1128/mBio.02260-15]. In fact, some functions are not related to neutrophils or phagocytosis at all. An increased awareness of these activities is critical not only for accurate comparisons of vaccine candidates but also for improvements in vaccination outcomes in settings of neutropenia. When vaccine developers select a single gatekeeper assay (e.g., an opsonophagocytic assay for bacteria or a neutralization assay for viruses, promising vaccine candidates may be missed. Doyle and Pirofski stress that multiple functions, not just one, should be investigated to enhance discovery of antibody mechanisms and to best assess vaccine-induced correlates of immune protection.

  14. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors.

    Science.gov (United States)

    Wang, Hai-Chao; An, Huai-Jie; Yu, Yun-Zhou; Xu, Qing

    2015-02-01

    DNA vaccines require improvement for human use because they are generally weak stimulators of the immune system in humans. The efficacy of DNA vaccines can be improved using a viral replicon as vector to administer antigen of pathogen. In this study, we comprehensively evaluated the conventional non-viral DNA, viral replicon DNA or viral replicon particles (VRP) vaccines encoding different forms of anthrax protective antigen (PA) for specific immunity and protective potency against anthrax. Our current results clearly suggested that these viral replicon DNA or VRP vaccines derived from Semliki Forest virus (SFV) induced stronger PA-specific immune responses than the conventional non-viral DNA vaccines when encoding the same antigen forms, which resulted in potent protection against challenge with the Bacillus anthracis strain A16R. Additionally, the naked PA-expressing SFV replicon DNA or VRP vaccines without the need for high doses or demanding particular delivery regimens elicited robust immune responses and afforded completely protective potencies, which indicated the potential of the SFV replicon as vector of anthrax vaccines for use in clinical application. Therefore, our results suggest that these PA-expressing SFV replicon DNA or VRP vaccines may be suitable as candidate vaccines against anthrax. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Host Nonresponsiveness Does not Interfere With Vaccine-Mediated Protection Against Gastric Helicobacter Infection.

    Science.gov (United States)

    Harbour, Stacey N; Mitchell, Hazel M; Sutton, Philip

    2015-06-01

    Helicobacter pylori pathogenesis results from the inflammation induced by chronic infection. CBA mice are nonresponsive to gastric Helicobacter infection, providing a useful model for examining host regulation of Helicobacter-induced gastritis. We examined whether gastric Helicobacter nonresponsiveness impacts upon vaccine efficacy and whether immune-mediated protection could occur in the absence of inflammation. Mice were vaccinated prior to challenge with Helicobacter felis or H. pylori. Gastritis and H. felis colonization was evaluated histologically. H. pylori colonization was quantified by colony-forming assay. Immunizations protected CBA mice against challenge with either H. felis or H. pylori. Protection against H. felis was marked by a loss of nonresponsiveness and development of an atrophic gastritis with mucus metaplasia. However, vaccine-induced protection against H. pylori was only associated with cell infiltration into the gastric mucosa. Nonresponsiveness to gastric Helicobacter infection did not interfere with vaccination-induced protection. Vaccine-induced protective immunity against H. pylori was linked with the induction of cellular infiltration, but importantly not atrophic gastritis. © 2015 John Wiley & Sons Ltd.

  16. Safeguarding Our Health: Vaccines Protect Us All

    Science.gov (United States)

    ... own vaccinations. Some vaccines must be given before pregnancy. Rubella, for instance, can cause life-altering birth defects ... There’s no treatment, but the measles, mumps, and rubella (MMR) vaccine given pre-pregnancy offers prevention. Vaccines for many other common diseases ...

  17. Mucosal vaccination of conserved sM2, HA2 and cholera toxin subunit A1 (CTA1) fusion protein with poly gamma-glutamate/chitosan nanoparticles (PC NPs) induces protection against divergent influenza subtypes.

    Science.gov (United States)

    Chowdhury, Mohammed Y E; Kim, Tae-Hwan; Uddin, Md Bashir; Kim, Jae-Hoon; Hewawaduge, C Y; Ferdowshi, Zannatul; Sung, Moon-Hee; Kim, Chul-Joong; Lee, Jong-Soo

    2017-03-01

    To develop a safe and effective mucosal vaccine that broad cross protection against seasonal or emerging influenza A viruses, we generated a mucosal influenza vaccine system combining the highly conserved matrix protein-2 (sM2), fusion peptide of hemagglutinin (HA 2 ), the well-known mucosal adjuvant cholera toxin subunit A1 (CTA1) and poly-γ-glutamic acid (γ-PGA)-chitosan nanoparticles (PC NPs), which are safe, natural materials that are able to target the mucosal membrane as a mucosal adjuvant. The mucosal administration of sM2HA2CTA1/PC NPs could induce a high degree of systemic immunity (IgG and IgA) at the site of inoculation as well as at remote locations and also significantly increase the levels of sM2- or HA2-specific cell-mediated immune response. In challenge tests in BALB/c mice with 10 MLD 50 of A/EM/Korea/W149/06(H5N1), A/Puerto Rico/8/34(H1N1), A/Aquatic bird/Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005 (H7N3) or A/Chicken/Korea/116/2004(H9N2) viruses, the recombinant sM2HA2CTA1/PC NPs provided cross protection against divergent lethal influenza subtypes and also the protection was maintained up to six months after vaccination. Thus, sM2HA2CTA1/PC NPs could be a promising strategy for a universal influenza vaccine. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. An RNA Vaccine Based on Recombinant Semliki Forest Virus Particles Expressing the Cu,Zn Superoxide Dismutase Protein of Brucella abortus Induces Protective Immunity in BALB/c Mice

    Science.gov (United States)

    Oñate, Angel A.; Donoso, Gabriel; Moraga-Cid, Gustavo; Folch, Hugo; Céspedes, Sandra; Andrews, Edilia

    2005-01-01

    We constructed infectious but replication-deficient Semliki Forest virus (SFV) particles carrying recombinant RNA encoding Brucella abortus Cu,Zn superoxide dismutase (SOD). The recombinant SFV particles (SFV-SOD particles) were then evaluated for their ability to induce a T-cell immune response and to protect BALB/c mice against a challenge with B. abortus 2308. Intraperitoneal injection of mice with recombinant SFV-SOD particles did not lead to the induction of SOD-specific antibodies, at least until week 6 after immunization (the end of the experiment). In vitro stimulation of splenocytes from the vaccinated mice with either recombinant Cu,Zn SOD (rSOD) or crude Brucella protein resulted in a T-cell proliferative response and the induction of gamma interferon secretion but not interleukin-4. In addition, the splenocytes exhibited significant levels of cytotoxic T-lymphocyte activity against Brucella-infected cells. The SFV-SOD particles, but not the control virus particles, induced a significant level of protection in BALB/c mice against challenge with B. abortus virulent strain 2308. These findings indicated that an SFV-based vector carrying the SOD gene has potential for use as a vaccine to induce resistance against B. abortus infections. PMID:15908354

  19. Dissecting polyclonal vaccine-induced humoral immunity against HIV using Systems Serology

    Science.gov (United States)

    Chung, Amy W.; Kumar, Manu P.; Arnold, Kelly B.; Yu, Wen Han; Schoen, Matthew K.; Dunphy, Laura J.; Suscovich, Todd J.; Frahm, Nicole; Linde, Caitlyn; Mahan, Alison E.; Hoffner, Michelle; Streeck, Hendrik; Ackerman, Margaret E.; McElrath, M. Juliana; Schuitemaker, Hanneke; Pau, Maria G.; Baden, Lindsey R.; Kim, Jerome H.; Michael, Nelson L.; Barouch, Dan H.; Lauffenburger, Douglas A.; Alter, Galit

    2017-01-01

    While antibody titers and neutralization are considered the gold standard for the selection of successful vaccines, these parameters are often inadequate predictors of protective immunity. As antibodies mediate an array of extra-neutralizing Fc-functions, when neutralization fails to predict protection, investigating Fc-mediated activity may help identify immunological correlates and mechanism(s) of humoral protection. Here, we used an integrative approach termed Systems Serology to analyze relationships among humoral responses elicited in four HIV vaccine-trials. Each vaccine regimen induced a unique humoral “Fc-fingerprint”. Moreover, analysis of case:control data from the first moderately protective HIV vaccine trial, RV144, pointed to mechanistic insights into immune complex composition that may underlie protective immunity to HIV. Thus, multi-dimensional relational comparisons of vaccine humoral fingerprints offer a unique approach for the evaluation and design of novel vaccines against pathogens for which correlates of protection remain elusive. PMID:26544943

  20. PROTECTIVE EFFICACY OF PERTACTIN CONTAINING ACELLULAR DPT VACCINES

    Directory of Open Access Journals (Sweden)

    M.V. Fesenko

    2008-01-01

    Full Text Available Pertussis vaccination with the use of DPT vaccines is a necessary condition for fighting the infection called bordetella pertussis. At the same time, it is known that the use of whole cellular DPT vaccines is accompanied with high incidence of side effects and serious neurological complications, and, as a result, reasonable refuse from injections by the population. Creation of less reactogenic, acellular vaccines would not only permit to decrease the incidence of side effects, but also increase the efficiency of pertussis vaccination. Maximum protective effect is achieved by using threebcomponent vaccines ( 80%, containng pertactin — outer membrane protein b. pertussis. the absence of this antigen in twobcomponent DPT vaccines predetermines their significantly lower efficacy.Key words: children, pertussis, acellular DPT vaccines, pertactin.

  1. Protective efficacy of a lipid antigen vaccine in a guinea pig model of tuberculosis.

    Science.gov (United States)

    Larrouy-Maumus, Gérald; Layre, Emilie; Clark, Simon; Prandi, Jacques; Rayner, Emma; Lepore, Marco; de Libero, Gennaro; Williams, Ann; Puzo, Germain; Gilleron, Martine

    2017-03-07

    The bacillus Calmette Guérin (BCG) vaccine, the only licensed vaccine against TB, displays partial and variable efficacy, thus making the exploitation of novel vaccination strategies a major priority. Most of the current vaccines in pre-clinical or clinical development are based on the induction of T cells recognizing protein antigens. However, a large number of T cells specific for mycobacterial lipids are induced during infection, suggesting that lipid-based vaccines might represent an important component of novel sub-unit vaccines. Here, we investigated whether immunization with defined mycobacterial lipid antigens induces protection in guinea pigs challenged with M. tuberculosis. Two purified mycobacterial lipid antigens, the diacylated sulfoglycolipids (Ac2SGL) and the phosphatidyl-myo-inositol dimannosides (PIM2) were formulated in biophysically characterized liposomes made of dimethyl-dioctadecyl-ammonium (DDA) and synthetic trehalose 6,6'-dibehenate (TDB). In three protection trials, a reduction of bacterial load in the spleen of inoculated animals was consistently observed compared to the unvaccinated group. Moreover, a reduction in the number of lesions and severity of pathology was detected in the lungs and spleen of the lipid vaccine group compared to unvaccinated controls. As the degree of protection achieved is similar to that observed using protein antigens in the same guinea pig model, these promising results pave the way to future investigations of lipid antigens as subunit vaccines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Multiserotype protection elicited by a combinatorial prime-boost vaccination strategy against bluetongue virus.

    Directory of Open Access Journals (Sweden)

    Eva Calvo-Pinilla

    Full Text Available Bluetongue virus (BTV belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has allowed the development of novel strategies to develop marker and safe vaccines against BTV. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA expressing VP2, VP7 and NS1 proteins from BTV-4. IFNAR((-/- mice inoculated with DNA/rMVA-VP2,-VP7-NS1 in an heterologous prime boost vaccination strategy generated significant levels of antibodies specific of VP2, VP7, and NS1, including those with neutralizing activity against BTV-4. In addition, vaccination stimulated specific CD8(+ T cell responses against these three BTV proteins. Importantly, the vaccine combination expressing NS1, VP2 and VP7 proteins of BTV-4, elicited sterile protection against a lethal dose of homologous BTV-4 infection. Remarkably, the vaccine induced cross-protection against lethal doses of heterologous BTV-8 and BTV-1 suggesting that the DNA/rMVA-VP2,-VP7,-NS1 marker vaccine is a promising multiserotype vaccine against BTV.

  3. Immunogenic multistage recombinant protein vaccine confers partial protection against experimental toxoplasmosis mimicking natural infection in murine model

    Directory of Open Access Journals (Sweden)

    Yaprak Gedik

    2016-01-01

    To generate a protective vaccine against toxoplasmosis, multistage vaccines and usage of challenging models mimicking natural route of infection are critical cornerstones. In this study, we generated a BAG1 and GRA1 multistage vaccine that induced strong immune response in which the protection was not at anticipated level. In addition, the murine model was orally challenged with tissue cysts to mimic natural route of infection.

  4. Characterization of immune responses induced by inactivated, live attenuated and DNA vaccines against Japanese encephalitis virus in mice.

    Science.gov (United States)

    Li, Jieqiong; Chen, Hui; Wu, Na; Fan, Dongying; Liang, Guodong; Gao, Na; An, Jing

    2013-08-28

    Vaccination is the most effective countermeasure for protecting individuals from Japanese encephalitis virus (JEV) infection. There are two types of JEV vaccines currently used in China: the Vero cell-derived inactivated vaccine and the live attenuated vaccine. In this study, we characterized the immune response and protective efficacy induced in mice by the inactivated vaccine, live attenuated vaccine and the DNA vaccine candidate pCAG-JME, which expresses JEV prM-E proteins. We found that the live attenuated vaccine conferred 100% protection and resulted in the generation of high levels of specific anti-JEV antibodies and cytokines. The pCAG-JME vaccine induced protective immunity as well as the live attenuated vaccine. Unexpectedly, immunization with the inactivated vaccine only induced a limited immune response and partial protection, which may be due to the decreased activity of dendritic cells and the expansion of CD4+CD25+Foxp3+ regulatory T cells observed in these mice. Altogether, our results suggest that the live attenuated vaccine is more effective in providing protection against JEV infection than the inactivated vaccine and that pCAG-JME will be a potential JEV vaccine candidate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Rationalized design of a mucosal vaccine protects againstMycobacterium tuberculosischallenge in mice.

    Science.gov (United States)

    Ahmed, Mushtaq; Jiao, Hongmei; Domingo-Gonzalez, Racquel; Das, Shibali; Griffiths, Kristin L; Rangel-Moreno, Javier; Nagarajan, Uma M; Khader, Shabaana A

    2017-06-01

    Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis ( Mtb ) is a leading cause of global morbidity and mortality. The only licensed TB vaccine, Mycobacterium bovis bacillus Calmette-Guerin (BCG), has variable efficacy in protecting against pulmonary TB. Thus, the development of more effective TB vaccines is critical to control the TB epidemic. Specifically, vaccines delivered through the mucosal route are known to induce Th17 responses and provide superior protection against Mtb infection. However, already tested Th17-inducing mucosal adjuvants, such as heat-labile enterotoxins and cholera toxins, are not considered safe for use in humans. In the current study, we rationally screened adjuvants for their ability to induce Th17-polarizing cytokines in dendritic cells (DCs) and determined whether they could be used in a protective mucosal TB vaccine. Our new studies show that monophosphoryl lipid A (MPL), when used in combination with chitosan, potently induces Th17-polarizing cytokines in DCs and downstream Th17/Th1 mucosal responses and confers significant protection in mice challenged with a clinical Mtb strain. Additionally, we show that both TLRs and the inflammasome pathways are activated in DCs by MPL-chitosan to mediate induction of Th17-polarizing cytokines. Together, our studies put forward the potential of a new, protective mucosal TB vaccine candidate, which incorporates safe adjuvants already approved for use in humans. © Society for Leukocyte Biology.

  6. A DNA Vaccine Protects Human Immune Cells against Zika Virus Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    2017-11-01

    Full Text Available A DNA vaccine encoding prM and E protein has been shown to induce protection against Zika virus (ZIKV infection in mice and monkeys. However, its effectiveness in humans remains undefined. Moreover, identification of which immune cell types are specifically infected in humans is unclear. We show that human myeloid cells and B cells are primary targets of ZIKV in humanized mice. We also show that a DNA vaccine encoding full length prM and E protein protects humanized mice from ZIKV infection. Following administration of the DNA vaccine, humanized DRAG mice developed antibodies targeting ZIKV as measured by ELISA and neutralization assays. Moreover, following ZIKV challenge, vaccinated animals presented virtually no detectable virus in human cells and in serum, whereas unvaccinated animals displayed robust infection, as measured by qRT-PCR. Our results utilizing humanized mice show potential efficacy for a targeted DNA vaccine against ZIKV in humans.

  7. Protective association between rotavirus vaccination and childhood seizures in the year following vaccination in US children.

    Science.gov (United States)

    Payne, Daniel C; Baggs, James; Zerr, Danielle M; Klein, Nicola P; Yih, Katherine; Glanz, Jason; Curns, Aaron T; Weintraub, Eric; Parashar, Umesh D

    2014-01-01

    Rotavirus illness has been linked to childhood seizures. We investigated whether a protective association exists between receipt of rotavirus vaccine and being hospitalized or visiting the emergency department for seizures in the year after vaccination. We retrospectively analyzed a cohort of children born after 28 February 2006 (when rotavirus vaccine was licensed in the United States) and enrolled in the Vaccine Safety Datalink (VSD) through November 2009. Seizure rates from 4 to 55 weeks following last rotavirus vaccination were compared by vaccine exposure status (fully vaccinated and unvaccinated). A time-to-event analysis using a Cox proportional hazards model was performed, accounting for time-varying covariates. We calculated the relative incidence of seizure compared by vaccine exposure status during the postexposure interval. Our cohort contained VSD data on 250 601 infants, including 186 502 children fully vaccinated (74.4%) and 64 099 (25.6%) not vaccinated with rotavirus vaccine. Rates of seizures were associated with rotavirus vaccination status. After adjusting for covariates (VSD site, age at last dose, sex, and calendar month of the index date), a statistically significant protective association was observed between a full course of rotavirus vaccination vs no vaccination for both first-ever seizures (risk ratio [RR] = 0.82; 95% confidence interval [CI], .73-.91) and all seizures (RR = 0.79; 95% CI, .71-.88). A full course of rotavirus vaccination was statistically associated with an 18%-21% reduction in risk of seizure requiring hospitalization or emergency department care in the year following vaccination, compared with unvaccinated children. This reduction in childhood seizures complements the well-documented vaccine-related benefit of preventing US diarrhea hospitalizations.

  8. Use of the mice passive protection test to evaluate the humoral response in goats vaccinated with Sterne 34F2 live spore vaccine.

    Science.gov (United States)

    Phaswana, P H; Ndumnego, O C; Koehler, S M; Beyer, W; Crafford, J E; van Heerden, H

    2017-09-07

    The Sterne live spore vaccine (34F2) is the most widely used veterinary vaccine against anthrax in animals. Antibody responses to several antigens of Bacillus anthracis have been described with a large focus on those against protective antigen (PA). The focus of this study was to evaluate the protective humoral immune response induced by the live spore anthrax vaccine in goats. Boer goats vaccinated twice (week 0 and week 12) with the Sterne live spore vaccine and naive goats were used to monitor the anti-PA and toxin neutralizing antibodies at week 4 and week 17 (after the second vaccine dose) post vaccination. A/J mice were passively immunized with different dilutions of sera from immune and naive goats and then challenged with spores of B. anthracis strain 34F2 to determine the protective capacity of the goat sera. The goat anti-PA ELISA titres indicated significant sero-conversion at week 17 after the second doses of vaccine (p = 0.009). Mice receiving undiluted sera from goats given two doses of vaccine (twice immunized) showed the highest protection (86%) with only 20% of mice receiving 1:1000 diluted sera surviving lethal challenge. The in vitro toxin neutralization assay (TNA) titres correlated to protection of passively immunized A/J mice against lethal infection with the vaccine strain Sterne 34F2 spores using immune goat sera up to a 1:10 dilution (rs ≥ 0.522, p = 0.046). This study suggests that the passive mouse protection model could be potentially used to evaluate the protective immune response in livestock animals vaccinated with the current live vaccine and new vaccines.

  9. Vaccination with a gE-negative bovine herpesvirus type 1 vaccine confers insufficient protection to a bovine herpesvirus type 5 challenge

    NARCIS (Netherlands)

    Silva, A.D.; Spilki, F.R.; Franco, A.C.; Esteves, P.A.; Hubner, S.O.; Driemeier, D.; Oliveira, A.P.; Rijsewijk, F.A.M.; Roehe, P.M.

    2006-01-01

    In the present study, cross-protection to bovine herpesvirus type 5 (BHV-5) induced by bovine herpesvirus type 1 (BHV-1) vaccination was examined following inoculation of rabbits and calves with a glycoprotein E (gE)-negative BHV-1 vaccine and subsequent challenge with BHV-5. Rabbits (n = 5) and

  10. vaccination using profilin and NetB proteins in Montanide IMS adjuvant increases protective immunity against experimentally-induced necrotic enteritis

    Directory of Open Access Journals (Sweden)

    Hyun Soon Lillehoj

    2017-10-01

    Full Text Available Objective The effects of vaccinating 18-day-old chicken embryos with the combination of recombinant Eimeria profilin plus Clostridium perfringens (C. perfringens NetB proteins mixed in the Montanide IMS adjuvant on the chicken immune response to necrotic enteritis (NE were investigated using an Eimeria maxima (E. maxima/C. perfringens co-infection NE disease model that we previously developed. Methods Eighteen-day-old broiler embryos were injected with 100 μL of phosphate-buffered saline, profilin, profilin plus necrotic enteritis B-like (NetB, profilin plus NetB/Montanide adjuvant (IMS 106, and profilin plus Net-B/Montanide adjuvant (IMS 101. After post-hatch birds were challenged with our NE experimental disease model, body weights, intestinal lesions, serum antibody levels to NetB, and proinflammatory cytokine and chemokine mRNA levels in intestinal intraepithelial lymphocytes were measured. Results Chickens in ovo vaccinated with recombinant profilin plus NetB proteins/IMS106 and recombinant profilin plus NetB proteins/IMS101 showed significantly increased body weight gains and reduced gut damages compared with the profilin-only group, respectively. Greater antibody response to NetB toxin were observed in the profilin plus NetB/IMS 106, and profilin plus NetB/IMS 101 groups compared with the other three vaccine/adjuvant groups. Finally, diminished levels of transcripts encoding for proinflammatory cytokines such as lipopolysaccharide-induced tumor necrosis factor-α factor, tumor necrosis factor superfamily 15, and interleukin-8 were observed in the intestinal lymphocytes of chickens in ovo injected with profilin plus NetB toxin in combination with IMS 106, and profilin plus NetB toxin in combination with IMS 101 compared with profilin protein alone bird. Conclusion These results suggest that the Montanide IMS adjuvants potentiate host immunity to experimentally-induced avian NE when administered in ovo in conjunction with the profilin and

  11. Duration of protective immunity after a single vaccination with a live attenuated bivalent bluetongue vaccine.

    Science.gov (United States)

    Zhugunissov, Kuandyk; Yershebulov, Zakir; Barakbayev, Kainar; Bulatov, Yerbol; Taranov, Dmitriy; Amanova, Zhanat; Abduraimov, Yergali

    2015-12-01

    The prevention of bluetongue is typically achieved with mono- or polyvalent modified- live-attenuated virus (MLV) vaccines. MLV vaccines typically elicit a strong antibody response that correlates directly with their ability to replicate in the vaccinated animal. They are inexpensive, stimulate protective immunity after a single inoculation, and have been proven effective in preventing clinical bluetongue disease. In this study, we evaluated the safety, immunogenicity, and efficacy of a bluetongue vaccine against Bluetongue virus serotypes 4 and 16 in sheep. All the animals remained clinically healthy during the observation period. The vaccinated animals showed no clinical signs except fever (>40.8 °C) for 2-4 days. Rapid seroconversion was observed in the sheep, with the accumulation of high antibody titers in the vaccinated animals. No animal became ill after the challenge, indicating that effective protection was achieved. Therefore, this vaccine, prepared from attenuated bluetongue virus strains, is safe, immunogenic, and efficacious.

  12. Protective immunity to H7N9 influenza viruses elicited by synthetic DNA vaccine.

    Science.gov (United States)

    Yan, Jian; Villarreal, Daniel O; Racine, Trina; Chu, Jaemi S; Walters, Jewell N; Morrow, Matthew P; Khan, Amir S; Sardesai, Niranjan Y; Kim, J Joseph; Kobinger, Gary P; Weiner, David B

    2014-05-19

    Despite an intensive vaccine program influenza infections remain a major health problem, due to the viruses' ability to change its envelope glycoprotein hemagglutinin (HA), through shift and drift, permitting influenza to escape protection induced by current vaccines or natural immunity. Recently a new variant, H7N9, has emerged in China causing global concern. First, there have been more than 130 laboratory-confirmed human infections resulting in an alarmingly high death rate (32.3%). Second, genetic changes found in H7N9 appear to be associated with enabling avian influenza viruses to spread more effectively in mammals, thus transmitting infections on a larger scale. Currently, no vaccines or drugs are effectively able to target H7N9. Here, we report the rapid development of a synthetic consensus DNA vaccine (pH7HA) to elicit potent protective immunity against the H7N9 viruses. We show that pH7HA induces broad antibody responses that bind to divergent HAs from multiple new members of the H7N9 family. These antibody responses result in high-titer HAI against H7N9. Simultaneously, this vaccine induces potent polyfunctional effector CD4 and CD8T cell memory responses. Animals vaccinated with pH7HA are completely protected from H7N9 virus infection and any morbidity associated with lethal challenge. This study establishes that this synthetic consensus DNA vaccine represents a new tool for targeting emerging infection, and more importantly, its design, testing and development into seed stock for vaccine production in a few days in the pandemic setting has significant implications for the rapid deployment of vaccines protecting against emerging infectious diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A DIVA vaccine for cross-protection against Salmonella.

    Science.gov (United States)

    Bearson, Bradley L; Bearson, Shawn M D; Kich, Jalusa D

    2016-03-04

    Swine are often asymptomatic carriers of Salmonella spp., a leading cause of human bacterial foodborne disease. Vaccination against Salmonella is effective for protecting animal health and enhancing food safety. However, with >2500 Salmonella serovars, current vaccines for swine offer limited cross-protection against heterologous serovars. Also, existing vaccines can interfere with surveillance programs that monitor the Salmonella status of swine herds. To overcome Salmonella vaccine limitations, we rationally designed and constructed an attenuated Salmonella enterica serovar Typhimurium vaccine (BBS 866) by deleting multiple small regulatory RNA (sRNA) genes (omrA, omrB, rybB, micA, and invR) in combination with an rfaH mutation. We vaccinated swine intranasally at 3-weeks of age with PBS (mock-vaccinated), BBS 866 or BBS 202 (S. Typhimurium rfaH, Bearson et al., Front Vet Sci 2014;1:9.) and challenged at 7-weeks of age with virulent S. Choleraesuis, a swine pathogen. Vaccination with BBS 866 enhanced protection against S. Choleraesuis by significantly limiting the duration of fever, weight loss, the levels of circulating INFγ, and the total number of swine with S. Choleraesuis septicemia. Vaccination with either BBS 866 or BBS 202 significantly reduced S. Choleraesuis colonization of both systemic (spleen and liver) and gastrointestinal (Peyer's Patch, Ileocecal lymph nodes, and cecum) tissues. Similar to our earlier report for BBS 202, the BBS 866 vaccine strain can be used in swine without compromising the differentiation of infected from vaccinated animals (DIVA). Therefore, the attenuated S. Typhimurium BBS 866 strain, containing mutations in rfaH and multiple sRNAs, addresses the limitations of current Salmonella vaccines by providing cross-protection against Salmonella serovars in swine without interfering with established monitoring programs for Salmonella surveillance. Published by Elsevier Ltd.

  14. Oral Vaccination with Heat Inactivated Mycobacterium bovis Activates the Complement System to Protect against Tuberculosis

    Science.gov (United States)

    Garrido, Joseba M.; Aranaz, Alicia; Sevilla, Iker; Villar, Margarita; Boadella, Mariana; Galindo, Ruth C.; Pérez de la Lastra, José M.; Moreno-Cid, Juan A.; Fernández de Mera, Isabel G.; Alberdi, Pilar; Santos, Gracia; Ballesteros, Cristina; Lyashchenko, Konstantin P.; Minguijón, Esmeralda; Romero, Beatriz; de Juan, Lucía; Domínguez, Lucas; Juste, Ramón; Gortazar, Christian

    2014-01-01

    Tuberculosis (TB) remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV). Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs) in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar. PMID:24842853

  15. Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir.

    Science.gov (United States)

    Hensel, Michael T; Marshall, Jason D; Dorwart, Michael R; Heeke, Darren S; Rao, Eileen; Tummala, Padmaja; Yu, Li; Cohen, Gary H; Eisenberg, Roselyn J; Sloan, Derek D

    2017-05-01

    Several prophylactic vaccines targeting herpes simplex virus 2 (HSV-2) have failed in the clinic to demonstrate sustained depression of viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies (NAbs), their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the NAb targets gD and gB and the novel T cell antigen and tegument protein UL40, and we compared this vaccine to a whole-inactivated-virus vaccine (formaldehyde-inactivated HSV-2 [FI-HSV-2]). We evaluated different formulations in combination with several Th1-inducing Toll-like receptor (TLR) agonists in vivo In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted most robust, functional HSV-2 antigen-specific CD8 T cell responses and high titers of neutralizing antibodies, demonstrating its superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)-alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of NAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses. IMPORTANCE Millions of people worldwide are infected with herpes simplex virus 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors

  16. Vaccination of goats with fresh extract from Sarcoptes scabiei confers partial protective immunity

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    2006-06-01

    Full Text Available Protective immunity has been known to develop in animals infested with Sarcoptes scabiei. However, our previous attempt to induce protective immunity in goats by vaccination with fractions of soluble or insoluble mite proteins had been unsuccessful. Degradation or denaturation of protective antigens occurred during vaccine preparation was suggested as one possible cause of the failure. In this study, mite proteins that used to immunise animals were prepared rapidly in order to prevent protein degradation or denaturation. About 150 mg of freshly isolated mites were rapidly homogenised, centrifuged then separated into supernatant and pellet fractions. Twenty-eight goats were allocated equally into 4 groups. Group-1 goats were vaccinated with the whole mite homogenate supernatant, group 2 with the supernatant, group 3 with the pellet, and group 4 with PBS (unvaccinated control. Vaccination was conducted three times, with three-week intervals between vaccinations, using Quil A as adjuvant, and each vaccination using fresh mite homogenates. One week after the last vaccination, all animals were challenged with approximately 2000 live mites. The severity of lesions, scored from 0 (no lesions to 5 (>75% infested auricle affected, were determined one day, two days, then every week after challenge. Mite challenge caused the development of skin lesions in all animals. No significant differences between vaccinated and unvaccinated animals were observed in regards to the severity of lesions. However, the mite densities in vaccinated animals were significantly lower (P=0.015 than those in unvaccinated control. This study indicates that the protective antigens of S. scabiei are liable to degradation or denaturation and exist in a very low concentration or have vary low antigenicity. This implies isolation of the protective antigens by the conventional approach, fracionation of the whole mite proteins and testing each fractions in vaccination trials, is

  17. Protective and immunological behavior of chimeric yellow fever dengue vaccine.

    Science.gov (United States)

    Halstead, Scott B; Russell, Philip K

    2016-03-29

    Clinical observations from the third year of the Sanofi Pasteur chimeric yellow fever dengue tetravalent vaccine (CYD) trials document both protection and vaccination-enhanced dengue disease among vaccine recipients. Children who were 5 years-old or younger when vaccinated experienced a DENV disease resulting in hospitalization at 5 times the rate of controls. On closer inspection, hospitalized cases among vaccinated seropositives, those at highest risk to hospitalized disease accompanying a dengue virus (DENV) infection, were greatly reduced by vaccination. But, seronegative individuals of all ages after being vaccinated were only modestly protected from mild to moderate disease throughout the entire observation period despite developing neutralizing antibodies at high rates. Applying a simple epidemiological model to the data, vaccinated seronegative individuals of all ages were at increased risk of developing hospitalized disease during a subsequent wild type DENV infection. The etiology of disease in placebo and vaccinated children resulting in hospitalization during a DENV infection, while clinically similar are of different origin. The implications of the observed mixture of DENV protection and enhanced disease in CYD vaccinees are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. An overview of challenges limiting the design of protective mucosal vaccines for finfish

    OpenAIRE

    Munangandu, Hetron Mweemba; Mutoloki, Stephen; Evensen, Øystein

    2015-01-01

    Research in mucosal vaccination in finfish has gained prominence in the last decade in pursuit of mucosal vaccines that would lengthen the duration of protective immunity in vaccinated fish. However, injectable vaccines have continued to dominate in the vaccination of finfish because they are perceived to be more protective than mucosal vaccines. Therefore, it has become important to identify the factors that limit developing protective mucosal vaccines in finfish as an overture to identifyin...

  19. DNA Vaccination in the Skin Using Microneedles Improves Protection Against Influenza

    Science.gov (United States)

    Song, Jae-Min; Kim, Yeu-Chun; O, Eunju; Compans, Richard W; Prausnitz, Mark R; Kang, Sang-Moo

    2012-01-01

    In this study, we tested the hypothesis that DNA vaccination in the skin using microneedles improves protective immunity compared to conventional intramuscular (IM) injection of a plasmid DNA vaccine encoding the influenza hemagglutinin (HA). In vivo fluorescence imaging demonstrated the expression of a reporter gene delivered to the skin using a solid microneedle patch coated with plasmid DNA. Vaccination at a low dose (3 µg HA DNA) using microneedles generated significantly stronger humoral immune responses and better protective responses post-challenge compared to IM vaccination at either low or high (10 µg HA DNA) dose. Vaccination using microneedles at a high (10 µg) dose further generated improved post-challenge protection, as measured by survival, recall antibody-secreting cell responses in spleen and bone marrow, and interferon (IFN)-γ cytokine T-cell responses. This study demonstrates that DNA vaccination in the skin using microneedles induces higher humoral and cellular immune responses as well as improves protective immunity compared to conventional IM injection of HA DNA vaccine. PMID:22508490

  20. [Aluminium allergy and granulomas induced by vaccinations for children].

    Science.gov (United States)

    Andersen, Rosa Marie Ø; Zachariae, Claus; Johansen, Jeanne Duus

    2015-04-27

    Vaccination with aluminium-adsorbed vaccines can induce aluminium allergy with persistent itching subcutaneous nodules at the injection site – vaccination granulomas. In this article we give an overview of childhood aluminium-adsorbed vaccines available in Denmark. Through literature studies we examine the incidence, the symptoms and the prognosis for the vaccination granulomas and the allergy. Finally we discuss the status in Denmark.

  1. Aluminium allergy and granulomas induced by vaccinations for children

    DEFF Research Database (Denmark)

    Andersen, Rosa Marie O; Zachariae, Claus; Johansen, Jeanne Duus

    2014-01-01

    Vaccination with aluminium-adsorbed vaccines can induce aluminium allergy with persistent itching subcutaneous nodules at the injection site - vaccination granulomas. In this article we give an overview of childhood aluminium-adsorbed vaccines available in Denmark. Through literature studies we...... examine the incidence, the symptoms and the prognosis for the vaccination granulomas and the allergy. Finally we discuss the status in Denmark....

  2. Different immunization routes induce protection against Aeromonas salmonicida through different immune mechanisms in rainbow trout

    DEFF Research Database (Denmark)

    Villumsen, Kasper Rømer; Raida, Martin Kristian

    induced by immersion vaccination of rainbow trout against A. salmonicida, including an ELISA protocol investigating the antibody levels from vaccination until challenge. Here we present data showing that rainbow trout immunized via a mucosal route induce a high level of protection, similar...... in fish immunology and vaccinology, resulting in the development of both oral, immersion and injectable vaccine strategies over time. Applying mineral oil adjuvants, injectable vaccines inducing high levels of protection in salmon (Salmo salar) rose to prominence in the 1990’s. In general injectable......, adjuvanted vaccines have been shown to induce long-lasting increases in specific antibody levels. In general the majority of the published work concerning vaccination against A. salmonicida has been conducted on salmon. Using injectable oil-adjuvanted vaccines, we have previously shown that the induced level...

  3. Replication-defective virus vaccine-induced protection of mice from genital herpes simplex virus 2 requires CD4 T cells

    Science.gov (United States)

    Morrison, Lynda A.

    2008-01-01

    Replication-defective herpes simplex virus 2 (HSV-2), used as an immunization strategy, protects against HSV-2 challenge in animal models. The roles of replication-defective virus-induced T cell subsets in control of HSV-2 infection have not been established. Mice lacking B cells (μMT) were immunized, depleted of CD4 or CD8 T cells, and then challenged intravaginally with HSV-2 to elucidate T cell subset contributions in the absence of virus-specific antibody. Immunized, CD4-depleted μMT mice developed severe infection of the genital tract and nervous system. In contrast, depletion of CD8 T cells from μMT mice did not attenuate protection. Immunized wild-type mice depleted of CD4 T cells also developed more severe HSV-2 infection than mice from which CD8 T cells were depleted. Thus, immunization with replication-defective virus induces T cell responses that effectively control HSV-2 infection in the absence of HSV-immune antibody, and CD4 T cells play the predominant role in this protective effect. PMID:18410949

  4. A Cholera Conjugate Vaccine Containing O-specific Polysaccharide (OSP) of V. cholerae O1 Inaba and Recombinant Fragment of Tetanus Toxin Heavy Chain (OSP:rTTHc) Induces Serum, Memory and Lamina Proprial Responses against OSP and Is Protective in Mice.

    Science.gov (United States)

    Sayeed, Md Abu; Bufano, Meagan Kelly; Xu, Peng; Eckhoff, Grace; Charles, Richelle C; Alam, Mohammad Murshid; Sultana, Tania; Rashu, Md Rasheduzzaman; Berger, Amanda; Gonzalez-Escobedo, Geoffrey; Mandlik, Anjali; Bhuiyan, Taufiqur Rahman; Leung, Daniel T; LaRocque, Regina C; Harris, Jason B; Calderwood, Stephen B; Qadri, Firdausi; Vann, W F; Kováč, Pavol; Ryan, Edward T

    2015-01-01

    Vibrio cholerae is the cause of cholera, a severe watery diarrhea. Protection against cholera is serogroup specific. Serogroup specificity is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). Here we describe a conjugate vaccine for cholera prepared via squaric acid chemistry from the OSP of V. cholerae O1 Inaba strain PIC018 and a recombinant heavy chain fragment of tetanus toxin (OSP:rTTHc). We assessed a range of vaccine doses based on the OSP content of the vaccine (10-50 μg), vaccine compositions varying by molar loading ratio of OSP to rTTHc (3:1, 5:1, 10:1), effect of an adjuvant, and route of immunization. Immunized mice developed prominent anti-OSP and anti-TT serum IgG responses, as well as vibriocidal antibody and memory B cell responses following intramuscular or intradermal vaccination. Mice did not develop anti-squarate responses. Intestinal lamina proprial IgA responses targeting OSP occurred following intradermal vaccination. In general, we found comparable immune responses in mice immunized with these variations, although memory B cell and vibriocidal responses were blunted in mice receiving the highest dose of vaccine (50 μg). We found no appreciable change in immune responses when the conjugate vaccine was administered in the presence or absence of immunoadjuvant alum. Administration of OSP:rTTHc resulted in 55% protective efficacy in a mouse survival cholera challenge model. We report development of an Inaba OSP:rTTHc conjugate vaccine that induces memory responses and protection against cholera in mice. Development of an effective cholera conjugate vaccine that induces high level and long-term immune responses against OSP would be beneficial, especially in young children who respond poorly to polysaccharide antigens.

  5. A Cholera Conjugate Vaccine Containing O-specific Polysaccharide (OSP of V. cholerae O1 Inaba and Recombinant Fragment of Tetanus Toxin Heavy Chain (OSP:rTTHc Induces Serum, Memory and Lamina Proprial Responses against OSP and Is Protective in Mice.

    Directory of Open Access Journals (Sweden)

    Md Abu Sayeed

    Full Text Available Vibrio cholerae is the cause of cholera, a severe watery diarrhea. Protection against cholera is serogroup specific. Serogroup specificity is defined by the O-specific polysaccharide (OSP component of lipopolysaccharide (LPS.Here we describe a conjugate vaccine for cholera prepared via squaric acid chemistry from the OSP of V. cholerae O1 Inaba strain PIC018 and a recombinant heavy chain fragment of tetanus toxin (OSP:rTTHc. We assessed a range of vaccine doses based on the OSP content of the vaccine (10-50 μg, vaccine compositions varying by molar loading ratio of OSP to rTTHc (3:1, 5:1, 10:1, effect of an adjuvant, and route of immunization.Immunized mice developed prominent anti-OSP and anti-TT serum IgG responses, as well as vibriocidal antibody and memory B cell responses following intramuscular or intradermal vaccination. Mice did not develop anti-squarate responses. Intestinal lamina proprial IgA responses targeting OSP occurred following intradermal vaccination. In general, we found comparable immune responses in mice immunized with these variations, although memory B cell and vibriocidal responses were blunted in mice receiving the highest dose of vaccine (50 μg. We found no appreciable change in immune responses when the conjugate vaccine was administered in the presence or absence of immunoadjuvant alum. Administration of OSP:rTTHc resulted in 55% protective efficacy in a mouse survival cholera challenge model.We report development of an Inaba OSP:rTTHc conjugate vaccine that induces memory responses and protection against cholera in mice. Development of an effective cholera conjugate vaccine that induces high level and long-term immune responses against OSP would be beneficial, especially in young children who respond poorly to polysaccharide antigens.

  6. IMMUNE SUPPRESSION OF CHALLENGED VACCINATES AS A RIGOROUS ASSESSMENT OF STERILE PROTECTION BY LENTIVIRAL VACCINES

    OpenAIRE

    Craigo, Jodi K.; Durkin, Shannon; Sturgeon, Timothy J.; Tagmyer, Tara; Cook, Sheila J.; Issel, Charles J.; Montelaro, Ronald C.

    2006-01-01

    We previously reported that an experimental live-attenuated equine infectious anemia virus (EIAV) vaccine, containing a mutated S2 accessory gene, provided protection from disease and detectable infection after virulent virus (EIAVPV) challenge [1,2]. To determine if attenuated EIAV vaccines actually prevent persistent infection by challenge virus, we employed a 14-day dexamethasone treatment of vaccinated horses post-challenge to suppress host immunity and amplify replication levels of any i...

  7. A whole virus pandemic influenza H1N1 vaccine is highly immunogenic and protective in active immunization and passive protection mouse models.

    Science.gov (United States)

    Kistner, Otfried; Crowe, Brian A; Wodal, Walter; Kerschbaum, Astrid; Savidis-Dacho, Helga; Sabarth, Nicolas; Falkner, Falko G; Mayerhofer, Ines; Mundt, Wolfgang; Reiter, Manfred; Grillberger, Leopold; Tauer, Christa; Graninger, Michael; Sachslehner, Alois; Schwendinger, Michael; Brühl, Peter; Kreil, Thomas R; Ehrlich, Hartmut J; Barrett, P Noel

    2010-02-23

    The recent emergence and rapid spread of a novel swine-derived H1N1 influenza virus has resulted in the first influenza pandemic of this century. Monovalent vaccines have undergone preclinical and clinical development prior to initiation of mass immunization campaigns. We have carried out a series of immunogenicity and protection studies following active immunization of mice, which indicate that a whole virus, nonadjuvanted vaccine is immunogenic at low doses and protects against live virus challenge. The immunogenicity in this model was comparable to that of a whole virus H5N1 vaccine, which had previously been demonstrated to induce high levels of seroprotection in clinical studies. The efficacy of the H1N1 pandemic vaccine in protecting against live virus challenge was also seen to be equivalent to that of the H5N1 vaccine. The protective efficacy of the H1N1 vaccine was also confirmed using a severe combined immunodeficient (SCID) mouse model. It was demonstrated that mouse and guinea pig immune sera elicited following active H1N1 vaccination resulted in 100% protection of SCID mice following passive transfer of immune sera and lethal challenge. The immune responses to a whole virus pandemic H1N1 and a split seasonal H1N1 vaccine were also compared in this study. It was demonstrated that the whole virus vaccine induced a balanced Th-1 and Th-2 response in mice, whereas the split vaccine induced mainly a Th-2 response and only minimal levels of Th-1 responses. These data supported the initiation of clinical studies with the same low doses of whole virus vaccine that had previously been demonstrated to be immunogenic in clinical studies with a whole virus H5N1 vaccine.

  8. A whole virus pandemic influenza H1N1 vaccine is highly immunogenic and protective in active immunization and passive protection mouse models.

    Directory of Open Access Journals (Sweden)

    Otfried Kistner

    Full Text Available The recent emergence and rapid spread of a novel swine-derived H1N1 influenza virus has resulted in the first influenza pandemic of this century. Monovalent vaccines have undergone preclinical and clinical development prior to initiation of mass immunization campaigns. We have carried out a series of immunogenicity and protection studies following active immunization of mice, which indicate that a whole virus, nonadjuvanted vaccine is immunogenic at low doses and protects against live virus challenge. The immunogenicity in this model was comparable to that of a whole virus H5N1 vaccine, which had previously been demonstrated to induce high levels of seroprotection in clinical studies. The efficacy of the H1N1 pandemic vaccine in protecting against live virus challenge was also seen to be equivalent to that of the H5N1 vaccine. The protective efficacy of the H1N1 vaccine was also confirmed using a severe combined immunodeficient (SCID mouse model. It was demonstrated that mouse and guinea pig immune sera elicited following active H1N1 vaccination resulted in 100% protection of SCID mice following passive transfer of immune sera and lethal challenge. The immune responses to a whole virus pandemic H1N1 and a split seasonal H1N1 vaccine were also compared in this study. It was demonstrated that the whole virus vaccine induced a balanced Th-1 and Th-2 response in mice, whereas the split vaccine induced mainly a Th-2 response and only minimal levels of Th-1 responses. These data supported the initiation of clinical studies with the same low doses of whole virus vaccine that had previously been demonstrated to be immunogenic in clinical studies with a whole virus H5N1 vaccine.

  9. Augmented particle trapping and attenuated inflammation in the liver by protective vaccination against Plasmodium chabaudi malaria

    Directory of Open Access Journals (Sweden)

    Dkhil Mohamed A

    2009-04-01

    Full Text Available Abstract Background To date all efforts to develop a malaria vaccine have failed, reflecting the still fragmentary knowledge about protective mechanisms against malaria. In order to evaluate if vaccination changes responses of the anti-malaria effectors spleen and liver to blood stage malaria, BALB/c mice succumbing to infection with Plasmodium chabaudi were compared to those surviving after vaccination. Methods Mice were vaccinated with host cell plasma membranes isolated from P. chabaudi-infected erythrocytes. Hepatic and splenic capacity to trap particulate material was determined after injection of fluorescent polystyrol beads. Hepatic gene expression was measured using real-time RT-PCR and Northern blotting. Results Survival of BALB/c mice was raised from 0% to 80% and peak parasitaemia was decreased by about 30% by vaccination. Vaccination boosted particle trapping capacity of the liver during crisis when splenic trapping is minimal due to spleen 'closing'. It also attenuated malaria-induced inflammation, thus diminishing severe damages and hence liver failure. Vaccination increased hepatic IFN-γ production but mitigated acute phase response. Vaccination has a complex influence on infection-induced changes in expression of hepatic nuclear receptors (CAR, FXR, RXR, and PXR and of the metabolic enzymes Sult2a and Cyp7a1. Although vaccination decreased CAR mRNA levels and prevented Cyp7a1 suppression by the CAR ligand 1,2-bis [2-(3,5-dichloropyridyloxy]benzene (TCPOBOP on day 8 p.i., Sult2a-induction by TCPOBOP was restored. Conclusion These data support the view that the liver is an essential effector site for a vaccine against blood stage malaria: vaccination attenuates malaria-induced inflammation thus improving hepatic metabolic activity and particle trapping activity of the liver.

  10. Influenza vaccination in the elderly: seeking new correlates of protection and improved vaccines.

    Science.gov (United States)

    McElhaney, Janet E

    2008-12-01

    Influenza is foremost among all infectious diseases for an age-related increase in risk for serious complications and death. Determining the benefit of current influenza vaccines is largely limited to epidemiologic studies, since placebo-controlled trials of influenza vaccines are no longer considered ethical in the older adult population. Vaccine effectiveness is calculated from the relative reduction in influenza outcomes in individuals who elect to be vaccinated compared with those who do not, the assumptions for which are diverse and have led to considerable controversy as to the exact benefit of influenza vaccination in older adults. In spite of this controversy, there is no doubt that new influenza vaccine technologies are needed to improve protection and reverse the trend of rising hospitalization and death rates related to influenza in older adults despite widespread influenza vaccination programs. This article will review the challenges to new vaccine development, explore the potential correlates of protection against influenza, and describe how new vaccine technologies may improve protection against complicated influenza illness in the older adult population.

  11. Persistence of T-cell immune response induced by two acellular pertussis vaccines in children five years after primary vaccination.

    Science.gov (United States)

    Palazzo, Raffaella; Carollo, Maria; Bianco, Manuela; Fedele, Giorgio; Schiavoni, Ilaria; Pandolfi, Elisabetta; Villani, Alberto; Tozzi, Alberto E; Mascart, Françoise; Ausiello, Clara M

    2016-01-01

    The resurgence of pertussis suggests the need for greater efforts to understand the long-lasting protective responses induced by vaccination. In this paper we dissect the persistence of T memory responses induced by primary vaccination with two different acellular pertussis (aP) vaccines, hexavalent Hexavac® vaccine (Hexavac) (Sanofi Pasteur MSD) and Infanrix hexa® (Infanrix) (Glaxo-SmithKline Biologicals). We evaluated magnitude and duration of T-cell responses to pertussis toxin (PT) by measuring T-cell proliferation, cytokines (IL-2 and IFNγ) production and memory subsets in two groups of children 5 years after primary vaccination. Some of the enrolled children received only primary vaccination, while others had the pre-school boost dose. Positive T-cell responses to PT were detected in 36% of children. Percentage of responsive children, T-cell proliferation and CD4IL-2+ cells were significantly higher in the children primed with Hexavac than in those who received Infanrix vaccine. No major effects of the boost on PT-specific proliferation were observed. Overall, our data documented a persistence of T-cell memory against PT in a minor fraction of children 5 years after primary vaccination. The different responses induced by Hexavac and Infanrix vaccine could rely on differences in PT inactivation process or excipients/adjuvants formulations.

  12. A DNA Vaccine Encoding a Fatty Acid‐Binding Protein of Clonorchis sinensis Induces Protective Immune Response in Sprague–Dawley Rats

    National Research Council Canada - National Science Library

    Lee, J.‐S; Kim, I. S; Sohn, W.‐M; Lee, J; Yong, T.‐S

    2006-01-01

    ..., there is need for alternative, cost‐effective and sustainable strategies, such as a vaccine, for the control of clonorchiasis. Protein‐based vaccines are usually coadministered with immunologic adjuvants which deposit the antigen and stimulate a nonspecific inflammatory response. The most effective adjuvants are often unsuitable for human use because of their to...

  13. Seropositivity to non-vaccine incorporated genotypes induced by the bivalent and quadrivalent HPV vaccines: A systematic review and meta-analysis.

    Science.gov (United States)

    Bissett, Sara L; Godi, Anna; Jit, Mark; Beddows, Simon

    2017-07-13

    Human papillomavirus vaccines have demonstrated remarkable efficacy against persistent infection and disease associated with vaccine-incorporated genotypes and a degree of efficacy against some genetically related, non-vaccine-incorporated genotypes. The vaccines differ in the extent of cross-protection against these non-vaccine genotypes. Data supporting the role for neutralizing antibodies as a correlate or surrogate of cross-protection are lacking, as is a robust assessment of the seroconversion rates against these non-vaccine genotypes. We performed a systematic review and meta-analysis of available data on vaccine-induced neutralizing antibody seropositivity to non-vaccine incorporated HPV genotypes. Of 304 articles screened, 9 were included in the analysis representing ca. 700 individuals. The pooled estimate for seropositivity against HPV31 for the bivalent vaccine (86%; 95%CI 78-91%) was higher than that for the quadrivalent vaccine (61%; 39-79%; p=0.011). The pooled estimate for seropositivity against HPV45 for the bivalent vaccine (50%; 37-64%) was also higher than that for the quadrivalent vaccine (16%; 6-36%; p=0.007). Seropositivity against HPV33, HPV52 and HPV58 were similar between the vaccines. Mean seropositivity rates across non-vaccine genotypes were positively associated with the corresponding vaccine efficacy data reported from vaccine trials. These data improve our understanding of vaccine-induced functional antibody specificity against non-vaccine incorporated genotypes and may help to parameterize vaccine-impact models and improve patient management in a post-vaccine setting. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. Obesity Outweighs Protection Conferred by Adjuvanted Influenza Vaccination.

    Science.gov (United States)

    Karlsson, Erik A; Hertz, Tomer; Johnson, Cydney; Mehle, Andrew; Krammer, Florian; Schultz-Cherry, Stacey

    2016-08-02

    Obesity is a risk factor for developing severe influenza virus infection, making vaccination of utmost importance for this high-risk population. However, vaccinated obese animals and adults have decreased neutralizing antibody responses. In these studies, we tested the hypothesis that the addition of either alum or a squalene-based adjuvant (AS03) to an influenza vaccine would improve neutralizing antibody responses and protect obese mice from challenge. Our studies demonstrate that adjuvanted vaccine does increase both neutralizing and nonneutralizing antibody levels compared to vaccine alone. Although obese mice mount significantly decreased virus-specific antibody responses, both the breadth and the magnitude of the responses against hemagglutinin (HA) and neuraminidase (NA) are decreased compared to the responses in lean mice. Importantly, even with a greater than fourfold increase in neutralizing antibody levels, obese mice are not protected against influenza virus challenge and viral loads remain elevated in the respiratory tract. Increasing the antigen dose affords no added protection, and a decreasing viral dose did not fully mitigate the increased mortality seen in obese mice. Overall, these studies highlight that, while the use of an adjuvant does improve seroconversion, vaccination does not fully protect obese mice from influenza virus challenge, possibly due to the increased sensitivity of obese animals to infection. Given the continued increase in the global obesity epidemic, our findings have important implications for public health. Vaccination is the most effective strategy for preventing influenza virus infection and is a key component for pandemic preparedness. However, vaccines may fail to provide optimal protection in high-risk groups, including overweight and obese individuals. Given the worldwide obesity epidemic, it is imperative that we understand and improve vaccine efficacy. No work to date has investigated whether adjuvants increase the

  15. Schistosome syntenin partially protects vaccinated mice against Schistosoma mansoni infection.

    Directory of Open Access Journals (Sweden)

    Barbara C Figueiredo

    2014-08-01

    Full Text Available Schistosomiasis is a neglected tropical disease caused by several species of trematode of the genus Schistosoma. The disease affects more than 200 million people in the world and causes up to 280,000 deaths per year, besides having high morbidity due to chronic illness that damages internal organs. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control disease is a combination of drug treatment and immunization with an anti-schistosome vaccine. Among the most promising molecules as vaccine candidates are the proteins present in the tegument and digestive tract of the parasite.In this study, we describe for the first time Schistosoma mansoni syntenin (SmSynt and we evaluate its potential as a recombinant vaccine. We demonstrate by real-time PCR that syntenin is mainly expressed in intravascular life stages (schistosomula and adult worms of the parasite life cycle and, by confocal microscopy, we localize it in digestive epithelia in adult worms and schistosomula. Administration of siRNAs targeting SmSynt leads to the knock-down of syntenin gene and protein levels, but this has no demonstrable impact on parasite morphology or viability, suggesting that high SmSynt gene expression is not essential for the parasites in vitro. Mice immunization with rSmSynt, formulated with Freund's adjuvant, induces a Th1-type response, as suggested by the production of IFN-γ and TNF-α by rSmSynt-stimulated cultured splenocytes. The protective effect conferred by vaccination with rSmSynt was demonstrated by 30-37% reduction of worm burden, 38-43% reduction in the number, and 35-37% reduction in the area, of liver granulomas.Our report is the first characterization of syntenin in Schistosoma mansoni and our data suggest that this protein is a potential candidate for the development of a multi-antigen vaccine to control schistosomiasis.

  16. Novel vaccine development strategies for inducing mucosal immunity

    Science.gov (United States)

    Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro

    2012-01-01

    To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed. PMID:22380827

  17. Human T cell responses induced by vaccination with Mycobacterium bovis bacillus Calmette-Guérin

    DEFF Research Database (Denmark)

    Ravn, P; Boesen, H; Pedersen, B K

    1997-01-01

    Many aspects of the widely used bacillus Calmette-Guérin (BCG) vaccine against tuberculosis are still the subject of controversy. There is a huge variation in efficacy from one clinical trial to another and no relationship between vaccine-induced skin test conversion and subsequent protection. We...

  18. A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice.

    Directory of Open Access Journals (Sweden)

    Viswanathan Ramasamy

    2018-01-01

    Full Text Available Dengue is one of the fastest spreading vector-borne diseases, caused by four antigenically distinct dengue viruses (DENVs. Antibodies against DENVs are responsible for both protection as well as pathogenesis. A vaccine that is safe for and efficacious in all people irrespective of their age and domicile is still an unmet need. It is becoming increasingly apparent that vaccine design must eliminate epitopes implicated in the induction of infection-enhancing antibodies.We report a Pichia pastoris-expressed dengue immunogen, DSV4, based on DENV envelope protein domain III (EDIII, which contains well-characterized serotype-specific and cross-reactive epitopes. In natural infection, <10% of the total neutralizing antibody response is EDIII-directed. Yet, this is a functionally relevant domain which interacts with the host cell surface receptor. DSV4 was designed by in-frame fusion of EDIII of all four DENV serotypes and hepatitis B surface (S antigen and co-expressed with unfused S antigen to form mosaic virus-like particles (VLPs. These VLPs displayed EDIIIs of all four DENV serotypes based on probing with a battery of serotype-specific anti-EDIII monoclonal antibodies. The DSV4 VLPs were highly immunogenic, inducing potent and durable neutralizing antibodies against all four DENV serotypes encompassing multiple genotypes, in mice and macaques. DSV4-induced murine antibodies suppressed viremia in AG129 mice and conferred protection against lethal DENV-4 virus challenge. Further, neither murine nor macaque anti-DSV4 antibodies promoted mortality or inflammatory cytokine production when passively transferred and tested in an in vivo dengue disease enhancement model of AG129 mice.Directing the immune response to a non-immunodominant but functionally relevant serotype-specific dengue epitope of the four DENV serotypes, displayed on a VLP platform, can help minimize the risk of inducing disease-enhancing antibodies while eliciting effective tetravalent

  19. Vaccination of HIV-infected pregnant women: implications for protection of their young infants.

    Science.gov (United States)

    Dangor, Ziyaad; Nunes, Marta C; Kwatra, Gaurav; Lala, Sanjay G; Madhi, Shabir A

    2017-01-01

    The prevention of mother to child transmission of HIV has resulted in reduced burden of pediatric HIV-infection, but the prevalence of maternal HIV infection remains high in sub-Saharan African countries. HIV-exposed-uninfected infants have an increased risk of morbidity and mortality due to infectious diseases than HIV-unexposed infants, particularly during the first six months of life, which in part might be due to lower levels of pathogen-specific protective antibodies acquired transplacentally from their mothers. This could be mitigated by vaccinating pregnant women to boost antibody levels; although vaccine responses among HIV-infected pregnant women might differ compared to HIV-uninfected women. We reviewed studies that compared natural and vaccine-induced antibody levels to different epitopes between HIV-infected and HIV-uninfected pregnant women. Most studies reported lower baseline/pre-vaccination antibody levels in HIV-infected pregnant women, which may not be reversed by antiretroviral therapy during pregnancy. There were only few studies on vaccination of HIV-infected pregnant women, mainly on influenza virus and group B Streptococcus (GBS) vaccines. Immunogenicity studies on influenza vaccines indicated that HIV-infected pregnant women had lower vaccine induced hemagglutination inhibition antibody titers and a decreased likelihood of seroconversion compared to HIV-uninfected women; and while higher CD4+ T-lymphocyte levels were associated with better immune responses to vaccination, HIV viral load was not associated with responses. Furthermore, infants born to influenza vaccinated HIV-infected pregnant women also had lower antibody levels and a lower proportion of HIV-exposed infants had titers above the putative correlate of protection compared to HIV-unexposed infants. The immunogenicity of a CRM197-conjugated trivalent GBS vaccine was also lower in HIV-infected pregnant women compared to HIV-uninfected women, irrespective of CD4+ T-lymphocyte counts

  20. Protective Effector Cells of the Recombinant Asp f3 Anti-Aspergillosis Vaccine.

    Science.gov (United States)

    Diaz-Arevalo, Diana; Ito, James I; Kalkum, Markus

    2012-01-01

    An Aspergillus fumigatus vaccine based on recombinant Asp f3-protein has the potential to prevent aspergillosis in humans, a devastating fungal disease that is the prime obstacle to the success of hematopoietic cell transplantation. This vaccine protects cortisone acetate (CA)-immunosuppressed mice from invasive pulmonary aspergillosis via CD4(+) T cell mediators. Aside from these mediators, the nature of downstream fungicidal effectors is not well understood. Neutrophils and macrophages protect immunocompetent individuals from invasive fungal infections, and selective neutrophil depletion rendered mice susceptible to aspergillosis whereas macrophage depletion failed to increase fungal susceptibility. We investigated the effect of neutrophil depletion on rAsp f3-vaccine protection, and explored differences in pathophysiology and susceptibility between CA-immunosuppression and neutrophil depletion. In addition to being protective under CA-immunosuppression, the vaccine also had a protective effect in neutrophil-depleted mice. However, in non-immunized mice, a 10-fold higher conidial dose was required to induce similar susceptibility to infection with neutrophil depletion than with CA-immunosuppression. The lungs of non-immunized neutrophil-depleted mice became invaded by a patchy dense mycelium with highly branched hyphae, and the peribronchial inflammatory infiltrate consisted mainly of CD3(+) T cells and largely lacked macrophages. In contrast, lungs of non-immunized CA-immunosuppressed mice were more evenly scattered with short hyphal elements. With rAsp f3-vaccination, the lungs were largely clear of fungal burden under either immunosuppressive condition. We conclude that neutrophils, although important for innate antifungal protection of immunocompetent hosts, are not the relevant effectors for rAsp f3-vaccine derived protection of immunosuppressed hosts. It is therefore more likely that macrophages represent the crucial effectors of the rAsp f3-based vaccine.

  1. Novel G3/DT adjuvant promotes the induction of protective T cells responses after vaccination with a seasonal trivalent inactivated split-virion influenza vaccine.

    Science.gov (United States)

    van de Sandt, Carolien E; Kreijtz, Joost H C M; Geelhoed-Mieras, Martina M; Vogelzang-van Trierum, Stella E; Nieuwkoop, Nella J; van de Vijver, David A M C; Fouchier, Ron A M; Osterhaus, Albert D M E; Morein, Bror; Rimmelzwaan, Guus F

    2014-09-29

    Vaccines used against seasonal influenza are poorly effective against influenza A viruses of novel subtypes that may have pandemic potential. Furthermore, pre(pandemic) influenza vaccines are poorly immunogenic, which can be overcome by the use of adjuvants. A limited number of adjuvants has been approved for use in humans, however there is a need for alternative safe and effective adjuvants that can enhance the immunogenicity of influenza vaccines and that promote the induction of broad-protective T cell responses. Here we evaluated a novel nanoparticle, G3, as an adjuvant for a seasonal trivalent inactivated influenza vaccine in a mouse model. The G3 adjuvant was formulated with or without steviol glycosides (DT, for diterpenoid). The use of both formulations enhanced the virus-specific antibody response to all three vaccine strains considerably. The adjuvants were well tolerated without any signs of discomfort. To assess the protective potential of the vaccine-induced immune responses, an antigenically distinct influenza virus strain, A/Puerto Rico/8/34 (A/PR/8/34), was used for challenge infection. The vaccine-induced antibodies did not cross-react with strain A/PR/8/34 in HI and VN assays. However, mice immunized with the G3/DT-adjuvanted vaccine were partially protected against A/PR/8/34 infection, which correlated with the induction of anamnestic virus-specific CD8(+) T cell responses that were not observed with the use of G3 without DT. Both formulations induced maturation of human dendritic cells and promoted antigen presentation to a similar extent. In conclusion, G3/DT is a promising adjuvant formulation that not only potentiates the antibody response induced by influenza vaccines, but also induces T cell immunity which could afford broader protection against antigenically distinct influenza viruses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Cross-protective vaccine efficacy of the bivalent HPV vaccine against HPV31 is associated with humoral immune responses: results from the Costa Rica Vaccine Trial.

    Science.gov (United States)

    Safaeian, Mahboobeh; Kemp, Troy J; Pan, David Yuanji; Porras, Carolina; Rodriguez, Ana Cecilia; Schiffman, Mark; Cortes, Bernal; Katki, Hormuzd; Wacholder, Sholom; Schiller, John T; Gonzalez, Paula; Penrose, Kerri; Lowy, Douglas R; Quint, Wim; van Doorn, Leen-Jan; Herrero, Rolando; Hildesheim, Allan; Pinto, Ligia A

    2013-07-01

    We investigated the role of antibody responses as potential mechanism for the cross-protective vaccine-efficacies (VE) observed from randomized clinical trials of the HPV16/18 bivalent vaccine. Results HPV31 cases had lower HPV16 antibody levels than controls (OR 4th quartile compared with 1st quartile = 0.63; 95%CI: 0.36-1.08; p-trend = 0.03). HPV31 cases were also less likely to have detectable HPV31 neutralization, and HPV16 avidity than controls. No statistically significant differences by HPV18 antibody or HPV45 neutralization were observed among HPV45 cases and controls. Protection against HPV58 was not associated with any of the markers, confirming the specificity of our findings. Samples are from three-dose HPV vaccine recipients from the Costa Rica HPV16/18 vaccine trial. Women with a new HPV31, HPV45, or HPV58 infections over four years of follow-up were compared with randomly selected control women--with no new infection with HPV31/45/58--with respect to HPV16 and HPV18 antibody, HPV31, HPV45, and HPV58 neutralization, and HPV16 avidity. High HPV16 levels and avidity, and the ability to neutralize HPV31 were associated with protection against newly detected HPV31 infections, suggesting that the partial VE demonstrated for HPV31 is likely to be mediated at least in part through antibodies induced by HPV16/18 vaccination.

  3. 1918 pandemic H1N1 DNA vaccine protects ferrets against 2007 H1N1 virus infection

    DEFF Research Database (Denmark)

    Bragstad, Karoline; Martel, Cyril Jean-Marie; Aasted, Bent

    Influenza vaccines with the ability to induce immune responses cross-reacting with drifted virus variants would be of great advantage for vaccine development against seasonal and emerging new strains. We demonstrate that gene gun administrated DNA vaccine encoding HA and NA and/or NP and M proteins...... of the H1N1 pandemic virus from 1918 induce protection in ferrets against infection with a H1N1 (A/New Caledonia/20/99(H1N1)) virus which was included in the conventional vaccine for the 2006-2007 season. The viruses are separated by a time interval of 89 years and differ by 21.2% in the HA1 protein....... These results suggest not only a unique ability of the DNA vaccines, but perhaps also natural infection, to induce cross-protective responses against even extremely drifted virus variants....

  4. Immune suppression of challenged vaccinates as a rigorous assessment of sterile protection by lentiviral vaccines.

    Science.gov (United States)

    Craigo, Jodi K; Durkin, Shannon; Sturgeon, Timothy J; Tagmyer, Tara; Cook, Sheila J; Issel, Charles J; Montelaro, Ronald C

    2007-01-15

    We previously reported that an experimental live-attenuated equine infectious anemia virus (EIAV) vaccine, containing a mutated S2 accessory gene, provided protection from disease and detectable infection after virulent virus (EIAV(PV)) challenge [Li F, Craigo JK, Howe L, Steckbeck JD, Cook S, Issel C, et al. A live-attenuated equine infectious anemia virus proviral vaccine with a modified S2 gene provides protection from detectable infection by intravenous virulent virus challenge of experimentally inoculated horses. J Virol 2003;77(13):7244-53; Craigo JK, Li F, Steckbeck JD, Durkin S, Howe L, Cook SJ, et al. Discerning an effective balance between equine infectious anemia virus attenuation and vaccine efficacy. J Virol 2005;79(5):2666-77]. To determine if attenuated EIAV vaccines actually prevent persistent infection by challenge virus, we employed a 14-day dexamethasone treatment of vaccinated horses post-challenge to suppress host immunity and amplify replication levels of any infecting EIAV. At 2 months post-challenge the horses were all protected from virulent-virus challenge, evidenced by a lack of EIA signs and detectable challenge plasma viral RNA. Upon immune suppression, 6/12 horses displayed clinical EIA. Post-immune suppression characterizations demonstrated that the attenuated vaccine evidently prevented detectable challenge virus infection in 50% of horses. These data highlight the utility of post-challenge immune suppression for evaluating persistent viral vaccine protective efficacy.

  5. Lack of cross-protection against Bordetella holmesii after pertussis vaccination.

    Science.gov (United States)

    Zhang, Xuqing; Weyrich, Laura S; Lavine, Jennie S; Karanikas, Alexia T; Harvill, Eric T

    2012-11-01

    Bordetella holmesii, a species closely related to B. pertussis, has been reported sporadically as a cause of whooping cough-like symptoms. To investigate whether B. pertussis-induced immunity is protective against infection with B. holmesii, we conducted an analysis using 11 human respiratory B. holmesii isolates collected during 2005-2009 from a highly B. pertussis-vaccinated population in Massachusetts. Neither whole-cell (wP) nor acellular (aP) B. pertussis vaccination conferred protection against these B. holmesii isolates in mice. Although T-cell responses induced by wP or aP cross-reacted with B. holmesii, vaccine-induced antibodies failed to efficiently bind B. holmesii. B. holmesii-specific antibodies provided in addition to wP were sufficient to rapidly reduce B. holmesii numbers in mouse lungs. Our findings suggest the established presence of B. holmesii in Massachusetts and that failure to induce cross-reactive antibodies may explain poor vaccine-induced cross-protection.

  6. Sm10.3, a member of the micro-exon gene 4 (MEG-4) family, induces erythrocyte agglutination in vitro and partially protects vaccinated mice against Schistosoma mansoni infection.

    Science.gov (United States)

    Martins, Vicente P; Morais, Suellen B; Pinheiro, Carina S; Assis, Natan R G; Figueiredo, Barbara C P; Ricci, Natasha D; Alves-Silva, Juliana; Caliari, Marcelo V; Oliveira, Sergio C

    2014-03-01

    The parasitic flatworm Schistosoma mansoni is a blood fluke that causes schistosomiasis. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control disease is a combination of drug treatment and immunization with an anti-schistosome vaccine. Numerous antigens that are expressed at the interface between the parasite and the mammalian host have been assessed. Among the most promising molecules are the proteins present in the tegument and digestive tract of the parasite. In this study, we evaluated the potential of Sm10.3, a member of the micro-exon gene 4 (MEG-4) family, for use as part of a recombinant vaccine. We confirmed by real-time PCR that Sm10.3 was expressed at all stages of the parasite life cycle. The localization of Sm10.3 on the surface and lumen of the esophageal and intestinal tract in adult worms and lung-stage schistosomula was confirmed by confocal microscopy. We also show preliminary evidence that rSm10.3 induces erythrocyte agglutination in vitro. Immunization of mice with rSm10.3 induced a mixed Th1/Th2-type response, as IFN-γ, TNF-α, and low levels of IL-5 were detected in the supernatant of cultured splenocytes. The protective effect conferred by vaccination with rSm10.3 was demonstrated by 25.5-32% reduction in the worm burden, 32.9-43.6% reduction in the number of eggs per gram of hepatic tissue, a 23.8% reduction in the number of granulomas, an 11.8% reduction in the area of the granulomas and a 39.8% reduction in granuloma fibrosis. Our data suggest that Sm10.3 is a potential candidate for use in developing a multi-antigen vaccine to control schistosomiasis and provide the first evidence for a possible role for Sm10.3 in the blood feeding process.

  7. Sm10.3, a member of the micro-exon gene 4 (MEG-4 family, induces erythrocyte agglutination in vitro and partially protects vaccinated mice against Schistosoma mansoni infection.

    Directory of Open Access Journals (Sweden)

    Vicente P Martins

    2014-03-01

    Full Text Available BACKGROUND: The parasitic flatworm Schistosoma mansoni is a blood fluke that causes schistosomiasis. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control disease is a combination of drug treatment and immunization with an anti-schistosome vaccine. Numerous antigens that are expressed at the interface between the parasite and the mammalian host have been assessed. Among the most promising molecules are the proteins present in the tegument and digestive tract of the parasite. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we evaluated the potential of Sm10.3, a member of the micro-exon gene 4 (MEG-4 family, for use as part of a recombinant vaccine. We confirmed by real-time PCR that Sm10.3 was expressed at all stages of the parasite life cycle. The localization of Sm10.3 on the surface and lumen of the esophageal and intestinal tract in adult worms and lung-stage schistosomula was confirmed by confocal microscopy. We also show preliminary evidence that rSm10.3 induces erythrocyte agglutination in vitro. Immunization of mice with rSm10.3 induced a mixed Th1/Th2-type response, as IFN-γ, TNF-α, and low levels of IL-5 were detected in the supernatant of cultured splenocytes. The protective effect conferred by vaccination with rSm10.3 was demonstrated by 25.5-32% reduction in the worm burden, 32.9-43.6% reduction in the number of eggs per gram of hepatic tissue, a 23.8% reduction in the number of granulomas, an 11.8% reduction in the area of the granulomas and a 39.8% reduction in granuloma fibrosis. CONCLUSIONS/SIGNIFICANCE: Our data suggest that Sm10.3 is a potential candidate for use in developing a multi-antigen vaccine to control schistosomiasis and provide the first evidence for a possible role for Sm10.3 in the blood feeding process.

  8. HPV vaccine cross-protection: Highlights on additional clinical benefit.

    Science.gov (United States)

    De Vincenzo, Rosa; Ricci, Caterina; Conte, Carmine; Scambia, Giovanni

    2013-09-01

    Prophylactic human papillomavirus (HPV) vaccines are administered in vaccination programs, targeted at young adolescent girls before sexual exposure, and in catch-up programs for young women in some countries. All the data indicate that HPV-virus-like particles (VLPs) effectively prevent papillomavirus infections with a high level of antibodies and safety. Since non-vaccine HPV types are responsible for about 30% of cervical cancers, cross-protection would potentially enhance primary cervical cancer prevention efforts. High levels of specific neutralizing antibodies can be generated after immunization with HPV VLPs. Immunity to HPV is type-specific. However, if we consider the phylogenetic tree including the different HPV types, we realize that a certain degree of cross-protection is possible, due to the high homology of some viral types with vaccine ones. The assessment of cross-protective properties of HPV vaccines is an extremely important matter, which has also increased public health implications and could add further value to their preventive potential. The impact of cross-protection is mostly represented by a reduction of cervical intraepithelial neoplasia CIN2-3 more than what expected. In this article we review the mechanisms and the effectiveness of Bivalent (HPV-16/-18) and Quadrivalent (HPV-6/-11/-16/-18) HPV vaccine cross-protection, focusing on the critical aspects and the potential biases in clinical trials, in order to understand how cross-protection could impact on clinical outcomes and on the new perspectives in post-vaccine era. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Dendritic cell targeted HIV-1 gag protein vaccine provides help to a recombinant Newcastle disease virus vectored vaccine including mobilization of protective CD8+T cells.

    Science.gov (United States)

    Ngu, Loveline N; Nji, Nadesh N; Ambada, Georgia; Ngoh, Apeh A; Njambe Priso, Ghislain D; Tchadji, Jules C; Lissom, Abel; Magagoum, Suzanne H; Sake, Carol N; Tchouangueu, Thibau F; Chukwuma, George O; Okoli, Arinze S; Sagnia, Bertrand; Chukwuanukwu, Rebecca; Tebit, Denis M; Esimone, Charles O; Waffo, Alain B; Park, Chae G; Überla, Klaus; Nchinda, Godwin W

    2018-03-01

    Recombinant Newcastle Disease virus (rNDV) vectored vaccines are safe mucosal applicable vaccines with intrinsic immune-modulatory properties for the induction of efficient immunity. Like all viral vectored vaccines repeated inoculation via mucosal routes invariably results to immunity against viral vaccine vectors. To obviate immunity against viral vaccine vectors and improve the ability of rNDV vectored vaccines in inducing T cell immunity in murine air way we have directed dendritic cell targeted HIV-1 gag protein (DEC-Gag) vaccine; for the induction of helper CD4 + T cells to a Recombinant Newcastle disease virus expressing codon optimized HIV-1 Gag P55 (rNDV-L-Gag) vaccine. We do so through successive administration of anti-DEC205-gagP24 protein plus polyICLC (DEC-Gag) vaccine and rNDV-L-Gag. First strong gag specific helper CD4 + T cells are induced in mice by selected targeting of anti-DEC205-gagP24 protein vaccine to dendritic cells (DC) in situ together with polyICLC as adjuvant. This targeting helped T cell immunity develop to a subsequent rNDV-L-Gag vaccine and improved both systemic and mucosal gag specific immunity. This sequential DEC-Gag vaccine prime followed by an rNDV-L-gag boost results to improved viral vectored immunization in murine airway, including mobilization of protective CD8 + T cells to a pathogenic virus infection site. Thus, complementary prime boost vaccination, in which prime and boost favor distinct types of T cell immunity, improves viral vectored immunization, including mobilization of protective CD8 + T cells to a pathogenic virus infection site such as the murine airway. © 2017 The Authors. Immunity, Inflammation and DiseasePublished by John Wiley & Sons Ltd.

  10. Recombinant raccoon pox vaccine protects mice against lethal plague

    Science.gov (United States)

    Osorio, J.E.; Powell, T.D.; Frank, R.S.; Moss, K.; Haanes, E.J.; Smith, S.R.; Rocke, T.E.; Stinchcomb, D.T.

    2003-01-01

    Using a raccoon poxvirus (RCN) expression system, we have developed new recombinant vaccines that can protect mice against lethal plague infection. We tested the effects of a translation enhancer (EMCV-IRES) in combination with a secretory (tPA) signal or secretory (tPA) and membrane anchoring (CHV-gG) signals on in vitro antigen expression of F1 antigen in tissue culture and the induction of antibody responses and protection against Yersinia pestis challenge in mice. The RCN vector successfully expressed the F1 protein of Y. pestis in vitro. In addition, the level of expression was increased by the insertion of the EMCV-IRES and combinations of this and the secretory signal or secretory and anchoring signals. These recombinant viruses generated protective immune responses that resulted in survival of 80% of vaccinated mice upon challenge with Y. pestis. Of the RCN-based vaccines we tested, the RCN-IRES-tPA-YpF1 recombinant construct was the most efficacious. Mice vaccinated with this construct withstood challenge with as many as 1.5 million colony forming units of Y. pestis (7.7??104LD50). Interestingly, vaccination with F1 fused to the anchoring signal (RCN-IRES-tPA-YpF1-gG) elicited significant anti-F1 antibody titers, but failed to protect mice from plague challenge. Our studies demonstrate, in vitro and in vivo, the potential importance of the EMCV-IRES and secretory signals in vaccine design. These molecular tools provide a new approach for improving the efficacy of vaccines. In addition, these novel recombinant vaccines could have human, veterinary, and wildlife applications in the prevention of plague. ?? 2002 Elsevier Science Ltd. All rights reserved.

  11. MDCK cell-cultured influenza virus vaccine protects mice from lethal challenge with different influenza viruses.

    Science.gov (United States)

    Liu, Kun; Yao, Zhidong; Zhang, Liangyan; Li, Junli; Xing, Li; Wang, Xiliang

    2012-06-01

    Influenza epidemics are major health concern worldwide. Vaccination is the major strategy to protect the general population from a pandemic. Currently, most influenza vaccines are manufactured using chicken embroynated eggs, but this manufacturing method has potential limitations, and cell-based vaccines offer a number of advantages over the traditional method. We reported here using the scalable bioreactor to produce pandemic influenza virus vaccine in a Madin-Darby canine kidney cell culture system. In the 7.5-L bioreactor, the cell concentration reached to 3.2 × 10(6) cells/mL and the highest virus titers of 256 HAU/50 μL and 1 × 10(7) TCID50/mL. The HA concentration was found to be 11.2 μg/mL. The vaccines produced by the cell-cultured system induced neutralization antibodies, cross-reactive T-cell responses, and were protective in a mouse model against different lethal influenza virus challenge. These data indicate that microcarrier-based cell-cultured influenza virus vaccine manufacture system in scalable bioreactor could be used to produce effective pandemic influenza virus vaccines.

  12. History of meningococcal vaccines and their serological correlates of protection.

    Science.gov (United States)

    Vipond, Caroline; Care, Rory; Feavers, Ian M

    2012-05-30

    For over a hundred years Neisseria meningitidis has been known to be one of the major causes of bacterial meningitis. However, effective vaccines were not developed until the latter part of the 20th century. The first of these were based on purified high molecular weight capsular polysaccharides and more recently the development of glycoconjugate vaccines has made paediatric immunisation programmes possible. The prevention of group B meningococcal disease has remained a challenge throughout this period. This review charts the history of the development of meningococcal vaccines and the importance of serological correlates of protection in their evaluation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Identification of protective antigens for vaccination against systemic salmonellosis

    Directory of Open Access Journals (Sweden)

    Dirk eBumann

    2014-08-01

    Full Text Available There is an urgent medical need for improved vaccines with broad serovar coverage and high efficacy against systemic salmonellosis. Subunit vaccines offer excellent safety profiles but require identification of protective antigens, which remains a challenging task. Here, I review crucial properties of Salmonella antigens that might help to narrow down the number of potential candidates from more than 4000 proteins encoded in Salmonella genomes, to a more manageable number of 50-200 most promising antigens. I also discuss complementary approaches for antigen identification and potential limitations of current pre-clinical vaccine testing.

  14. Antigen sparing and enhanced protection using a novel rOv-ASP-1 adjuvant in aqueous formulation with influenza vaccines.

    Science.gov (United States)

    Jiang, Jiu; Fisher, Erin M; Hensley, Scott E; Lustigman, Sara; Murasko, Donna M; Shen, Hao

    2014-05-13

    Influenza is one of the most common infectious diseases endangering the health of humans, especially young children and the elderly. Although vaccination is the most effective means of protection against influenza, frequent mutations in viral surface antigens, low protective efficacy of the influenza vaccine in the elderly, slow production process and the potential of vaccine supply shortage during a pandemic are significant limitations of current vaccines. Adjuvants have been used to enhance the efficacy of a variety of vaccines; however, no adjuvant is included in current influenza vaccines approved in the United States. In this study, we found that a novel adjuvant, rOv-ASP-1, co-administrated with inactivated influenza vaccine using an aqueous formulation, substantially improved the influenza-specific antibody response and protection against lethal infection in a mouse model. rOv-ASP-1 enhanced the magnitude of the specific antibody response after immunization with low doses of influenza vaccine, allowing antigen-sparring by 10-fold. The rOv-ASP-1 formulated vaccine induced a more rapid response and a stronger Th1-associated antibody response compared to vaccine alone and to the vaccine formulated with the adjuvant alum. Importantly, rOv-ASP-1 significantly enhanced cross-reactive antibody responses and protection against challenge with an antigenically distinct strain. These results demonstrate that rOv-ASP-1 is an effective adjuvant that: (1) accelerates and enhances the specific antibody response induced by influenza vaccine; (2) allows for antigen sparing; and (3) augments a Th1-biased and cross-reactive antibody response that confers protection against an antigenically distinct strain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Immune protection duration and efficacy stability of DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 against coccidiosis.

    Science.gov (United States)

    Song, Xiaokai; Zhao, Xiaofang; Xu, Lixin; Yan, Ruofeng; Li, Xiangrui

    2017-04-01

    In our previous study, an effective DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 was constructed. In the present study, the immunization dose of the DNA vaccine pVAX1.0-TA4-IL-2 was further optimized. With the optimized dose, the dynamics of antibodies induced by the DNA vaccine was determined using indirect ELISA. To evaluate the immune protection duration of the DNA vaccine, two-week-old chickens were intramuscularly immunized twice and the induced efficacy was evaluated by challenging with E. tenella at 5, 9, 13, 17 and 21weeks post the last immunization (PLI) separately. To evaluate the efficacy stability of the DNA vaccine, two-week-old chickens were immunized with 3 batches of the DNA vaccine, and the induced efficacy was evaluated by challenging with E. tenella. The results showed that the optimal dose was 25μg. The induced antibody level persisted until 10weeks PPI. For the challenge time of 5 and 9weeks PLI, the immunization resulted in ACIs of 182.28 and 162.23 beyond 160, showing effective protection. However, for the challenge time of 13, 17 and 21weeks PLI, the immunization resulted in ACIs below 160 which means poor protection. Therefore, the immune protection duration of the DNA vaccination was at least 9weeks PLI. DNA immunization with three batches DNA vaccine resulted in ACIs of 187.52, 191.57 and 185.22, which demonstrated that efficacies of the three batches DNA vaccine were effective and stable. Overall, our results indicate that DNA vaccine pVAX1.0-TA4-IL-2 has the potential to be developed as effective vaccine against coccidiosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Immunogenicity and protection efficacy of subunit-based smallpox vaccines using variola major antigens.

    Science.gov (United States)

    Sakhatskyy, Pavlo; Wang, Shixia; Zhang, Chuanyou; Chou, Te-Hui; Kishko, Michael; Lu, Shan

    2008-02-05

    The viral strain responsible for smallpox infection is variola major (VARV). As a result of the successful eradication of smallpox with the vaccinia virus (VACV), the general population is no longer required to receive a smallpox vaccine, and will have no protection against smallpox. This lack of immunity is a concern due to the potential for use of smallpox as a biological weapon. Considerable progress has been made in the development of subunit-based smallpox vaccines resulting from the identification of VACV protective antigens. It also offers the possibility of using antigens from VARV to formulate the next generation subunit-based smallpox vaccines. Here, we show that codon-optimized DNA vaccines expressing three VARV antigens (A30, B7 and F8) and their recombinant protein counterparts elicited high-titer, cross-reactive, VACV neutralizing antibody responses in mice. Vaccinated mice were protected from intraperitoneal and intranasal challenges with VACV. These results suggest the feasibility of a subunit smallpox vaccine based on VARV antigen sequences to induce immunity against poxvirus infection.

  17. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Directory of Open Access Journals (Sweden)

    Camila Figueiredo Pinzan

    Full Text Available Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6 or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6 to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  18. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Science.gov (United States)

    Pinzan, Camila Figueiredo; Sardinha-Silva, Aline; Almeida, Fausto; Lai, Livia; Lopes, Carla Duque; Lourenço, Elaine Vicente; Panunto-Castelo, Ademilson; Matthews, Stephen; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  19. Protective role of interferon against cytotoxcicity induced by rabies ...

    African Journals Online (AJOL)

    Protective role of interferon against cytotoxcicity induced by rabies virus in mice. AA Tohamy, AM Fahmy, MA Dkhil, MSM Diab. Abstract. Rabies remains an important public health problem in the world due to uncontrolled enzootic rabies, lack of safe efficient vaccines and poor information on the risk of contracting rabies ...

  20. Immunological and protective effects of diepitopic subunit dental caries vaccines.

    Science.gov (United States)

    Smith, Daniel J; King, William F; Rivero, Joy; Taubman, Martin A

    2005-05-01

    As a prelude to development of broader-spectrum vaccines for dental caries, we explored the immune potential of constructs combining epitopes from mutans streptococcal glucosyltransferases (GTF) and glucan binding protein B (GbpB). Two diepitopic peptide constructs were synthesized in a multiple antigenic peptide (MAP) format. Both constructs contained SYI, a 20-mer GbpB peptide that included a sequence having major histocompatibility complex class II binding characteristics. One diepitopic construct (SYI-CAT) also contained a 22-mer sequence from the catalytic domain of GTF. Another diepitopic construct (SYI-GLU) contained a 22-mer sequence from the glucan binding domain of GTF. To assess the ability of each construct to induce antibody reactive with GbpB and GTF native proteins, rats were injected subcutaneously with SYI-CAT, SYI-GLU, or the constituent monoepitopic constructs. Only the SYI-CAT construct induced significant levels of serum immunoglobulin G (IgG) and IgA antibody to both pathogenesis-associated proteins. Also, immunization with SYI-CAT significantly (P caries after immunization with SYI-CAT, SYI, or CAT MAP constructs, followed by infection with Streptococcus mutans strain SJr. Dental caries were lower in each peptide-immunized group than in the sham-injected group. The level of protection after SYI-CAT immunization was similar to that after immunization with constituent MAP constructs. In another experiment, rats were infected with Streptococcus sobrinus strain 6715 under an identical protocol. Significant protection was observed on buccal surfaces in both SYI-CAT and CAT construct-immunized, but not in the SYI construct-immunized, groups. Thus, addition of the GbpB-derived SYI peptide to the GTF-derived CAT peptide construct not only enhanced the immunological response to CAT and GTF epitopes, but also extended the protective effect of the construct to include both S. mutans and S. sobrinus.

  1. Immunological and Protective Effects of Diepitopic Subunit Dental Caries Vaccines

    Science.gov (United States)

    Smith, Daniel J.; King, William F.; Rivero, Joy; Taubman, Martin A.

    2005-01-01

    As a prelude to development of broader-spectrum vaccines for dental caries, we explored the immune potential of constructs combining epitopes from mutans streptococcal glucosyltransferases (GTF) and glucan binding protein B (GbpB). Two diepitopic peptide constructs were synthesized in a multiple antigenic peptide (MAP) format. Both constructs contained SYI, a 20-mer GbpB peptide that included a sequence having major histocompatibility complex class II binding characteristics. One diepitopic construct (SYI-CAT) also contained a 22-mer sequence from the catalytic domain of GTF. Another diepitopic construct (SYI-GLU) contained a 22-mer sequence from the glucan binding domain of GTF. To assess the ability of each construct to induce antibody reactive with GbpB and GTF native proteins, rats were injected subcutaneously with SYI-CAT, SYI-GLU, or the constituent monoepitopic constructs. Only the SYI-CAT construct induced significant levels of serum immunoglobulin G (IgG) and IgA antibody to both pathogenesis-associated proteins. Also, immunization with SYI-CAT significantly (P caries after immunization with SYI-CAT, SYI, or CAT MAP constructs, followed by infection with Streptococcus mutans strain SJr. Dental caries were lower in each peptide-immunized group than in the sham-injected group. The level of protection after SYI-CAT immunization was similar to that after immunization with constituent MAP constructs. In another experiment, rats were infected with Streptococcus sobrinus strain 6715 under an identical protocol. Significant protection was observed on buccal surfaces in both SYI-CAT and CAT construct-immunized, but not in the SYI construct-immunized, groups. Thus, addition of the GbpB-derived SYI peptide to the GTF-derived CAT peptide construct not only enhanced the immunological response to CAT and GTF epitopes, but also extended the protective effect of the construct to include both S. mutans and S. sobrinus. PMID:15845483

  2. A recombinant rabies vaccine expressing the trimeric form of the glycoprotein confers enhanced immunogenicity and protection in outbred mice.

    Science.gov (United States)

    Koraka, Penelope; Bosch, Berend-Jan; Cox, Manon; Chubet, Rick; Amerongen, Geert van; Lövgren-Bengtsson, Karen; Martina, Byron E E; Roose, Jouke; Rottier, Peter J M; Osterhaus, Albert D M E

    2014-08-06

    Rabies is a disease characterized by an invariably lethal encephalitis of viral origin that can be controlled by preventive vaccination programs of wildlife, domestic animals and humans in areas with a high risk of exposure. Currently available vaccines are expensive, cumbersome to produce and require intensive immunization and booster schemes to induce and maintain protective immunity. In the present study, we describe the development of candidate recombinant subunit rabies vaccines based on the glycoprotein G of the prototype rabies virus (RABV-G) expressed either as a monomer (RABV-mG) or in its native trimeric configuration (RABV-tG), with or without Matrix-M™ adjuvant. Immunogenicity and protective efficacy of the respective candidate vaccines were tested in outbred NIH Swiss albino mice. The RABV-tG candidate vaccine proved to be superior to the RABV-mG vaccine candidate both in terms of immunogenicity and efficacy. The relatively poor immunogenicity of the RABV-mG vaccine candidate was greatly improved by the addition of the adjuvant. A single, low dose of RABV-tG in combination with Matrix-M™ induced high levels of high avidity neutralizing antibodies and protected all mice against challenge with a lethal dose of RABV. Consequently RABV-tG used in combination with Matrix-M™ is a promising vaccine candidate that overcomes the limitations of currently used vaccines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Immunogenicity and protective effects of inactivated Singapore grouper iridovirus (SGIV) vaccines in orange-spotted grouper, Epinephelus coioides.

    Science.gov (United States)

    Ou-yang, Zhengliang; Wang, Peiran; Huang, Xiaohong; Cai, Jia; Huang, Youhua; Wei, Shina; Ji, Huasong; Wei, Jingguang; Zhou, Yongcan; Qin, Qiwei

    2012-10-01

    Vaccination is one of the best methods against viral diseases. In this study, experimental inactivated Singapore grouper iridovirus (SGIV) vaccines were prepared, and immunogenicity and protection against virus infection of the vaccines were investigated in orange-spotted grouper, Epinephelus coioides. Two kinds of vaccines, including β-propiolactone (BPL) inactivated virus at 4°C for 12 h and formalin inactivated virus at 4°C for 12 d, was highly protective against the challenge at 30-day post-vaccination and produced relative percent of survival rates of 91.7% and 100%, respectively. These effective vaccinations induced potent innate immune responses mediated by pro-inflammatory cytokines and type I interferon (IFN)-stimulated genes (ISGs). It is noteworthy that ISGs, such as Mx and ISG15, were up-regulated only in the effective vaccine groups, which suggested that type I IFN system may be the functional basis of early anti-viral immunity. Moreover, effective vaccination also significantly up-regulated of the expression of MHC class I gene and produced substantial amount of specific serum antibody at 4 weeks post-vaccination. Taken together, our results clearly demonstrated that effective vaccination in grouper induced an early, nonspecific antiviral immunity, and later, a specific immune response involving both humoral and cell-mediated immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Synergistic effect of embryo vaccination with Eimeria profilin and Clostridium perfringens NetB proteins on inducing protective immunity against necrotic enteritis in broiler chickens

    Science.gov (United States)

    The effects of embryo vaccination with Eimeria profilin plus Clostridium perfringens NetB toxin proteins in combination with the Montanide IMS-OVO adjuvant on the chicken immune response to necrotic enteritis were investigated using an E. maxima/C. perfringens co-infection model. Eighteen-day-old br...

  5. Efficacy of strain RB51 vaccine in protecting infection and vertical transmission against Brucella abortus in Sprague-Dawley rats.

    Science.gov (United States)

    Islam, Md Ariful; Khatun, Mst Minara; Baek, Byeong-Kirl; Lee, Sung-Il

    2009-09-01

    Immunizing animals in the wild against Brucella (B.) abortus is essential to control bovine brucellosis because cattle can get the disease through close contact with infected wildlife. The aim of this experiment was to evaluate the effectiveness of the B. abortus strain RB51 vaccine in protecting infection as well as vertical transmission in Sprague-Dawley (SD) rats against B. abortus biotype 1. Virgin female SD rats (n = 48) two months of age were divided into two groups: one group (n = 24) received RB51 vaccine intraperitoneally with 3 x 10(10) colony forming units (CFU) and the other group (n = 24) was used as non-vaccinated control. Non-vaccinated and RB51-vaccinated rats were challenged with 1.5 x 10(9) CFU of virulent B. abortus biotype 1 six weeks after vaccination. Three weeks after challenge, all rats were bred. Verification of RB51-vaccine induced protection in SD rats was determined by bacteriological, serological and molecular screening of maternal and fetal tissues at necropsy. The RB51 vaccine elicited 81.25% protection in SD rats against infection with B. abortus biotype 1. Offspring from rats vaccinated with RB51 had a decreased (p RB51 vaccination efficacy against the vertical transmission of B. abortus in the SD rat model.

  6. Active immunizations with peptide-DC vaccines and passive transfer with antibodies protect neutropenic mice against disseminated candidiasis.

    Science.gov (United States)

    Xin, Hong

    2016-01-04

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Protective Immunity and Vaccination Against Cutaneous Leishmaniasis

    OpenAIRE

    Okwor, Ifeoma; Mou, Zhirong; Liu, Dong; Uzonna, Jude

    2012-01-01

    Although a great deal of knowledge has been gained from studies on the immunobiology of leishmaniasis, there is still no universally acceptable, safe, and effective vaccine against the disease. This strongly suggests that we still do not completely understand the factors that control and/or regulate the development and sustenance of anti-Leishmania immunity, particularly those associated with secondary (memory) immunity. Such an understanding is critically important for designing safe, effect...

  8. Protective properties of vaccinia virus-based vaccines: skin scarification promotes a nonspecific immune response that protects against orthopoxvirus disease.

    Science.gov (United States)

    Rice, Amanda D; Adams, Mathew M; Lindsey, Scott F; Swetnam, Daniele M; Manning, Brandi R; Smith, Andrew J; Burrage, Andrew M; Wallace, Greg; MacNeill, Amy L; Moyer, Richard W

    2014-07-01

    The process of vaccination introduced by Jenner generated immunity against smallpox and ultimately led to the eradication of the disease. Procedurally, in modern times, the virus is introduced into patients via a process called scarification, performed with a bifurcated needle containing a small amount of virus. What was unappreciated was the role that scarification itself plays in generating protective immunity. In rabbits, protection from lethal disease is induced by intradermal injection of vaccinia virus, whereas a protective response occurs within the first 2 min after scarification with or without virus, suggesting that the scarification process itself is a major contributor to immunoprotection. importance: These results show the importance of local nonspecific immunity in controlling poxvirus infections and indicate that the process of scarification should be critically considered during the development of vaccination protocols for other infectious agents. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Genetic Immunization with CDR3-Based Fusion Vaccine Confers Protection and Long-Term Tumor-Free Survival in a Mouse Model of Lymphoma

    Directory of Open Access Journals (Sweden)

    Sandra Iurescia

    2010-01-01

    Full Text Available Therapeutic vaccination against idiotype is a promising strategy for immunotherapy of B-cell malignancies. We have previously shown that CDR3-based DNA immunization can induce immune response against lymphoma and explored this strategy to provide protection in a murine B-cell lymphoma model. Here we performed vaccination employing as immunogen a naked DNA fusion product. The DNA vaccine was generated following fusion of a sequence derived from tetanus toxin fragment C to the VHCDR3109−116 epitope. Induction of tumor-specific immunity as well as ability to inhibit growth of the aggressive 38C13 lymphoma and to prolong survival of vaccinated mice has been tested. We determined that DNA fusion vaccine induced immune response, elicited a strong protective antitumor immunity, and ensured almost complete long-term tumor-free survival of vaccinated mice. Our results show that CDR3-based DNA fusion vaccines hold promise for vaccination against lymphoma.

  10. Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus.

    Science.gov (United States)

    Sheahan, Timothy; Whitmore, Alan; Long, Kristin; Ferris, Martin; Rockx, Barry; Funkhouser, William; Donaldson, Eric; Gralinski, Lisa; Collier, Martha; Heise, Mark; Davis, Nancy; Johnston, Robert; Baric, Ralph S

    2011-01-01

    Newly emerging viruses often circulate as a heterogeneous swarm in wild animal reservoirs prior to their emergence in humans, and their antigenic identities are often unknown until an outbreak situation. The newly emerging severe acute respiratory syndrome coronavirus (SARS-CoV) and reemerging influenza virus cause disproportionate disease in the aged, who are also notoriously difficult to successfully vaccinate, likely due to immunosenescence. To protect against future emerging strains, vaccine platforms should induce broad cross-reactive immunity that is sufficient to protect from homologous and heterologous challenge in all ages. From initial studies, we hypothesized that attenuated Venezuelan equine encephalitis virus (VEE) replicon particle (VRP) vaccine glycoproteins mediated vaccine failure in the aged. We then compared the efficacies of vaccines bearing attenuated (VRP(3014)) or wild-type VEE glycoproteins (VRP(3000)) in young and aged mice within novel models of severe SARS-CoV pathogenesis. Aged animals receiving VRP(3000)-based vaccines were protected from SARS-CoV disease, while animals receiving the VRP(3014)-based vaccines were not. The superior protection for the aged observed with VRP(3000)-based vaccines was confirmed in a lethal influenza virus challenge model. While the VRP(3000) vaccine's immune responses in the aged were sufficient to protect against lethal homologous and heterologous challenge, our data suggest that innate defects within the VRP(3014) platform mediate vaccine failure. Exploration into the mechanism(s) of successful vaccination in the immunosenescent should aid in the development of successful vaccine strategies for other viral diseases disproportionately affecting the elderly, like West Nile virus, influenza virus, norovirus, or other emerging viruses of the future.

  11. Evaluation of the protective immunity of a novel subunit fusion vaccine in a murine model of systemic MRSA infection.

    Directory of Open Access Journals (Sweden)

    Qian-Fei Zuo

    Full Text Available Staphylococcus aureus is a common commensal organism in humans and a major cause of bacteremia and hospital acquired infection. Because of the spread of strains resistant to antibiotics, these infections are becoming more difficult to treat. Therefore, exploration of anti-staphylococcal vaccines is currently a high priority. Iron surface determinant B (IsdB is an iron-regulated cell wall-anchored surface protein of S. aureus. Alpha-toxin (Hla is a secreted cytolytic pore-forming toxin. Previous studies reported that immunization with IsdB or Hla protected animals against S. aureus infection. To develop a broadly protective vaccine, we constructed chimeric vaccines based on IsdB and Hla. Immunization with the chimeric bivalent vaccine induced strong antibody and T cell responses. When the protective efficacy of the chimeric bivalent vaccine was compared to that of individual proteins in a murine model of systemic S. aureus infection, the bivalent vaccine showed a stronger protective immune response than the individual proteins (IsdB or Hla. Based on the results presented here, the chimeric bivalent vaccine affords higher levels of protection against S. aureus and has potential as a more effective candidate vaccine.

  12. Superior protection elicited by live-attenuated vaccines in the murine model of paratuberculosis.

    Science.gov (United States)

    Ghosh, Pallab; Shippy, Daniel C; Talaat, Adel M

    2015-12-16

    Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) causes Johne's disease, a chronic enteric infection in ruminants with severe economic impact on the dairy industry in the USA and worldwide. Currently, available vaccines have limited protective efficacy against disease progression and does not prevent spread of the infection among animals. Because of their ability to elicit wide-spectrum immune responses, we adopted a live-attenuated vaccine approach based on a sigH knock-out strain of M. paratuberculosis (ΔsigH). Earlier analysis of the ΔsigH mutant in mice indicated their inadequate ability to colonize host tissues, unlike the isogenic wild-type strain, validating the role of this sigma factor in M. paratuberculosis virulence. In the present study, we evaluated the performance of the ΔsigH mutant compared to inactivated vaccine constructs in a vaccine/challenge model of murine paratuberculosis. The presented analysis indicated that ΔsigH mutant with or without QuilA adjuvant is capable of eliciting strong immune responses (such as interferon gamma-γ, IFN-γ) suggesting their immunogenicity and ability to potentially initiate effective vaccine-induced immunity. Following a challenge with virulent strains of M. paratuberculosis, ΔsigH conferred protective immunity as indicated by the reduced bacterial burden accompanied with reduced lesions in main body organs (liver, spleen and intestine) usually infected with M. paratuberculosis. More importantly, our data indicated better ability of the ΔsigH vaccine to confer protection compared to the inactivated vaccine constructs even with the presence of oil-adjuvant. Overall, our approach provides a rational basis for using live-attenuated mutant strains to develop improved vaccines that elicit robust immunity against this chronic infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Adenovirus-vectored drug-vaccine duo as a potential driver for conferring mass protection against infectious diseases.

    Science.gov (United States)

    Zhang, Jianfeng; Tarbet, E Bart; Toro, Haroldo; Tang, De-chu C

    2011-11-01

    The disease-fighting power of vaccines has been a public health bonanza credited with the worldwide reduction of mortality and morbidity. The goal to further amplify its power by boosting vaccine coverage requires the development of a new generation of rapid-response vaccines that can be mass produced at low costs and mass administered by nonmedical personnel. The new vaccines also have to be endowed with a higher safety margin than that of conventional vaccines. The nonreplicating adenovirus-vectored vaccine holds promise in boosting vaccine coverage because the vector can be rapidly manufactured in serum-free suspension cells in response to a surge in demand, and noninvasively administered by nasal spray into human subjects in compliance with evolutionary medicine. In contrast to parenteral injection, noninvasive mucosal vaccination minimizes systemic inflammation. Moreover, pre-existing adenovirus immunity does not interfere appreciably with the potency of an adenovirus-vectored nasal vaccine. Nasal administration of adenovirus vectors encoding pathogen antigens is not only fear-free and painless, but also confers rapid and sustained protection against mucosal pathogens as a drug-vaccine duo since adenovirus particles alone without transgene expression can induce an anti-influenza state in the airway. In addition to human vaccination, animals can also be mass immunized by this class of vectored vaccines.

  14. Vaccine-induced HIV seropositivity/reactivity in noninfected HIV vaccine recipients.

    Science.gov (United States)

    Cooper, Cristine J; Metch, Barbara; Dragavon, Joan; Coombs, Robert W; Baden, Lindsey R

    2010-07-21

    Induction of protective anti-human immunodeficiency virus (HIV) immune responses is the goal of an HIV vaccine. However, this may cause a reactive result in routine HIV testing in the absence of HIV infection. To evaluate the frequency of vaccine-induced seropositivity/reactivity (VISP) in HIV vaccine trial participants. Three common US Food and Drug Administration-approved enzyme immunoassay (EIA) HIV antibody kits were used to determine VISP, and a routine diagnostic HIV algorithm was used to evaluate VISP frequency in healthy, HIV-seronegative adults who completed phase 1 (n = 25) and phase 2a (n = 2) vaccine trials conducted from 2000-2010 in the United States, South America, Thailand, and Africa. Vaccine-induced seropositivity/reactivity, defined as reactive on 1 or more EIA tests and either Western blot-negative or Western blot-indeterminate/atypical positive (profile consistent with vaccine product) and HIV-1-negative by nucleic acid testing. Among 2176 participants free of HIV infection who received a vaccine product, 908 (41.7%; 95% confidence interval [CI], 39.6%-43.8%) had VISP, but the occurrence of VISP varied substantially across different HIV vaccine product types: 399 of 460 (86.7%; 95% CI, 83.3%-89.7%) adenovirus 5 product recipients, 295 of 552 (53.4%; 95% CI, 49.2%-57.7%) recipients of poxvirus alone or as a boost, and 35 of 555 (6.3%; 95% CI, 4.4%-8.7%) of DNA-alone product recipients developed VISP. Overall, the highest proportion of VISP (891/2176 tested [40.9%]) occurred with the HIV 1/2 (rDNA) EIA kit compared with the rLAV EIA (150/700 tested [21.4%]), HIV-1 Plus O Microelisa System (193/1309 tested [14.7%]), and HIV 1/2 Peptide and HIV 1/2 Plus O (189/2150 tested [8.8%]) kits. Only 17 of the 908 participants (1.9%) with VISP tested nonreactive using the HIV 1/2 (rDNA) kit. All recipients of a glycoprotein 140 vaccine (n = 70) had VISP, with 94.3% testing reactive with all 3 EIA kits tested. Among 901 participants with VISP and a Western

  15. Protective oral vaccination against infectious salmon anaemia virus in Salmo salar.

    Science.gov (United States)

    Caruffo, Mario; Maturana, Carlos; Kambalapally, Swetha; Larenas, Julio; Tobar, Jaime A

    2016-07-01

    Infectious salmon anemia (ISA) is a systemic disease caused by an orthomyxovirus, which has a significant economic impact on the production of Atlantic salmon (Salmo salar). Currently, there are several commercial ISA vaccines available, however, those products are applied through injection, causing stress in the fish and leaving them susceptible to infectious diseases due to the injection process and associated handling. In this study, we evaluated an oral vaccine against ISA containing a recombinant viral hemagglutinin-esterase and a fusion protein as antigens. Our findings indicated that oral vaccination is able to protect Atlantic salmon against challenge with a high-virulence Chilean isolate. The oral vaccination was also correlated with the induction of IgM-specific antibodies. On the other hand, the vaccine was unable to modulate expression of the antiviral related gene Mx, showing the importance of the humoral response to the disease survival. This study provides new insights into fish protection and immune response induced by an oral vaccine against ISA, but also promises future development of preventive solutions or validation of the current existing therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Prevention of infectious diseases by public vaccination and individual protection

    CERN Document Server

    Peng, Xiao-Long; Small, Michael; Fu, Xinchu; Jin, Zhen

    2016-01-01

    In the face of serious infectious diseases, governments endeavour to implement containment measures such as public vaccination at a macroscopic level. Meanwhile, individuals tend to protect themselves by avoiding contacts with infections at a microscopic level. However, a comprehensive understanding of how such combined strategy influences epidemic dynamics is still lacking. We study a susceptible-infected-susceptible epidemic model with imperfect vaccination on dynamic contact networks, where the macroscopic intervention is represented by random vaccination of the population and the microscopic protection is characterised by susceptible individuals rewiring contacts from infective neighbours. In particular, the model is formulated both in populations without and then with demographic effects. Using the pairwise approximation and the probability generating function approach, we investigate both dynamics of the epidemic and the underlying network. For populations without demography, the emerging degree correla...

  17. Use of an inactivated vaccine for prevention of parvovirus-induced reproductive failure in gilts.

    Science.gov (United States)

    Brown, T T; Whitacre, M D; Robison, O W

    1987-01-15

    Gilts from dams that had been inoculated with inactivated porcine parvovirus (PPV) vaccine before breeding became seronegative to PPV by 26 weeks of age. Vaccination of these gilts with inactivated PPV vaccine at 32 weeks of age resulted in an antibody response that peaked at about 2 weeks after vaccination, with -log10 mean hemagglutination inhibiting (HI) antibody titers of less than 2. In the first-year group (82 gilts), HI titers gradually decreased, 20% of the gilts being seronegative by 6 to 7 weeks after vaccination and 75% being seronegative by 16 weeks after vaccination. In the second-year group, 93 gilts were infected naturally by a field strain of PPV at about 11 weeks after single vaccination with inactivated PPV. Additionally, in the second year, 20 vaccinated and 6 nonvaccinated gilts were immune-challenged with virulent PPV at 10 to 12 weeks after vaccination. Neither field nor challenge PPV infection of vaccinated pregnant gilts caused reproductive failure, even though some of the gilts became seronegative for PPV before challenge. Our findings suggest that single vaccination of gilts with inactivated PPV vaccine should give adequate protection from PPV-induced reproductive failure, even though serum HI titers decrease to an undetectable level shortly before PPV infection.

  18. Immunogenicity and protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Shufang Fan

    2009-05-01

    Full Text Available The continued spread of highly pathogenic H5N1 influenza viruses among poultry and wild birds, together with the emergence of drug-resistant variants and the possibility of human-to-human transmission, has spurred attempts to develop an effective vaccine. Inactivated subvirion or whole-virion H5N1 vaccines have shown promising immunogenicity in clinical trials, but their ability to elicit protective immunity in unprimed human populations remains unknown. A cold-adapted, live attenuated vaccine with the hemagglutinin (HA and neuraminidase (NA genes of an H5N1 virus A/VN/1203/2004 (clade 1 was protective against the pulmonary replication of homologous and heterologous wild-type H5N1 viruses in mice and ferrets. In this study, we used reverse genetics to produce a cold-adapted, live attenuated H5N1 vaccine (AH/AAca that contains HA and NA genes from a recent H5N1 isolate, A/Anhui/2/05 virus (AH/05 (clade 2.3, and the backbone of the cold-adapted influenza H2N2 A/AnnArbor/6/60 virus (AAca. AH/AAca was attenuated in chickens, mice, and monkeys, and it induced robust neutralizing antibody responses as well as HA-specific CD4+ T cell immune responses in rhesus macaques immunized twice intranasally. Importantly, the vaccinated macaques were fully protected from challenge with either the homologous AH/05 virus or a heterologous H5N1 virus, A/bar-headed goose/Qinghai/3/05 (BHG/05; clade 2.2. These results demonstrate for the first time that a cold-adapted H5N1 vaccine can elicit protective immunity against highly pathogenic H5N1 virus infection in a nonhuman primate model and provide a compelling argument for further testing of double immunization with live attenuated H5N1 vaccines in human trials.

  19. Long-term protection of hepatitis B vaccination among Egyptian ...

    African Journals Online (AJOL)

    EL-HAKIM

    INTRODUCTION. Immunization is the most effective way to prevent transmission of hepatitis B virus (HBV) and, hence, the development of acute and chronic hepatitis B. Sero-protection after vaccination, defined as. HBsAb ≥ 10 mIU/mL, is achieved in over 95% of all vaccinees1. Ideally, the antibody response is determined ...

  20. Cancer testis antigen vaccination affords long-term protection in a murine model of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Maurizio Chiriva-Internati

    Full Text Available Sperm protein (Sp17 is an attractive target for ovarian cancer (OC vaccines because of its over-expression in primary as well as in metastatic lesions, at all stages of the disease. Our studies suggest that a Sp17-based vaccine can induce an enduring defense against OC development in C57BL/6 mice with ID8 cells, following prophylactic and therapeutic treatments. This is the first time that a mouse counterpart of a cancer testis antigen (Sp17 was shown to be expressed in an OC mouse model, and that vaccination against this antigen significantly controlled tumor growth. Our study shows that the CpG-adjuvated Sp17 vaccine overcomes the issue of immunologic tolerance, the major barrier to the development of effective immunotherapy for OC. Furthermore, this study provides a better understanding of OC biology by showing that Th-17 cells activation and contemporary immunosuppressive T-reg cells inhibition is required for vaccine efficacy. Taken together, these results indicate that prophylactic and therapeutic vaccinations can induce long-standing protection against OC and delay tumor growth, suggesting that this strategy may provide additional treatments of human OC and the prevention of disease onset in women with a family history of OC.

  1. Targeted expression of anthrax protective antigen by Lactobacillus gasseri as an anthrax vaccine.

    Science.gov (United States)

    Mohamadzadeh, Mansour; Durmaz, Evelyn; Zadeh, Mojgan; Pakanati, Krishna Chaitanya; Gramarossa, Matthew; Cohran, Valeria; Klaenhammer, Todd R

    2010-08-01

    Induction of protective immunity against pathogenic microbes, including Bacillus anthracis, requires efficient vaccines that potentiate antibody avidity and increase T-cell longevity. We recently reported that the delivery of targeted B. anthracis protective antigen (PA) genetically fused to a DC-binding peptide (DCpep) by Lactobacillus acidophilus induced mucosal and systemic immunity against B. anthracis challenge in mice. Improvement of this oral vaccine strategy was attempted by use of the high copy and genetically stable q-replicating vector, pTRKH2, for expression of the targeted PA fusion protein in Lactobacillus gasseri, a common human commensal microbe, to vaccinate animals against anthrax Sterne infection. Oral application of L. gasseri expressing the PA-DCpep fusion proteins elicited robust PA-neutralizing antibody and T-cell mediated immune responses against anthrax Sterne challenge, resulting in complete animal survival. Collectively, this improved expression vaccine strategy reduced the number of inoculations and length of the boosting period, leading to animal protection via efficacious bacterial adjuvanticity and safe oral delivery of this vaccine to mucosal immune cells, including dendritic cells. Lactobacillus-based delivery offers tremendous practical advantages. Recombinant antigens such as PA would not require chemical coupling agents, and the recombinant bacteria can be administered orally where upon both mucosal and systemic immune responses are elicited.

  2. Vaccination of piglets up to 1 week of age with a single-dose Mycoplasma hyopneumoniae vaccine induces protective immunity within 2 weeks against virulent challenge in the presence of maternally derived antibodies.

    Science.gov (United States)

    Wilson, Stephen; Van Brussel, Leen; Saunders, Gillian; Runnels, Paul; Taylor, Lucas; Fredrickson, Dan; Salt, Jeremy

    2013-05-01

    Enzootic pneumonia, resulting from infection with Mycoplasma hyopneumoniae, is of considerable economic importance to the pig industry and normally is controlled through active vaccination of piglets. We have demonstrated that administration of an inactivated Mycoplasma hyopneumoniae vaccine to piglets less than 1 week old is efficacious under field conditions and reduces the level of lung lesions observed in comparison to that in control pigs. Here, the results of two separate studies, one in piglets with and the second one in piglets without maternal antibodies, conducted to satisfy the requirements of the European Pharmacopoeia (monograph no. 07/2009:2448), are reported. Piglets received either minimal titer Suvaxyn MH-One or saline at less than 1 week of age and were challenged with Mycoplasma hyopneumoniae 2 weeks later. The number of lung lesions was recorded 4 weeks after challenge, and bronchial swab and lung tissue specimens were analyzed for quantification of Mycoplasma hyopneumoniae DNA. In the presence and absence of maternal antibodies, vaccination of piglets at less than 1 week of age was efficacious, with vaccinated piglets having significantly lower percentages of lung with lesions and lower Mycoplasma hyopneumoniae counts detected in bronchial swab and lung tissue specimens at necropsy. In conclusion, the vaccination of piglets at 1 week of age with Suvaxyn MH-One is efficacious in the presence of high levels of maternal antibodies.

  3. Vaccination with the recombinant chimeric antigen recNcMIC3-1-R induces a non-protective Th2-type immune response in the pregnant mouse model for N. caninum infection.

    Science.gov (United States)

    Monney, Thierry; Debache, Karim; Grandgirard, Denis; Leib, Stephen L; Hemphill, Andrew

    2012-10-12

    The major route of transmission of Neospora caninum in cattle is transplacentally from an infected cow to its progeny. Therefore, a vaccine should be able to prevent both the horizontal transmission from contaminated food or water and the vertical transmission. We have previously shown that a chimeric vaccine composed of predicted immunogenic epitopes of NcMIC3, NcMIC1 and NcROP2 (recNcMIC3-1-R) significantly reduced the cerebral infection in BALB/c mice. In this study, mice were first vaccinated, then mated and pregnant mice were challenged with 2×10(6)N. caninum tachyzoites at day 7-9 of pregnancy. Partial protection was only observed in the mice vaccinated with a tachyzoite crude protein extract but no protection against vertical transmission or cerebral infection in the dams was observed in the group vaccinated with recNcMIC3-1-R. Serological and cytokine analysis showed an overall lower cytokine level in sera associated with a dominant IL-4 expression and high IgG1 titers. Thus, the Th2-type immune response observed in the pregnant mice was not protective against experimental neosporosis, in contrary to the mixed Th1-/Th2-type immune response observed in the non-pregnant mouse model. These results demonstrate that the immunomodulation that occurs during pregnancy was not favorable for the protection against N. caninum infection conferred by vaccination with recNcMIC3-1-R. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge.

    Directory of Open Access Journals (Sweden)

    Alex J Mann

    Full Text Available We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI intratracheal and intranasal challenge in a ferret model. Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments or intranasally (CSN adjuvanted and placebo treatments only with clade 1 HPAI A/Vietnam/1194/2004 (H5N1 virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings. In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals. This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant

  5. SLA-PGN-primed dendritic cell-based vaccination induces Th17-mediated protective immunity against experimental visceral leishmaniasis: a crucial role of PKCβ.

    Science.gov (United States)

    Jawed, Junaid Jibran; Majumder, Saikat; Bandyopadhyay, Syamdas; Biswas, Satabdi; Parveen, Shabina; Majumdar, Subrata

    2016-07-01

    Emergence of drug resistance during visceral leishmaniasis (VL) is a major obstacle imposed during successful therapy. An effective vaccine strategy against this disease is therefore necessary. Our present study exploited the SLA (soluble leishmanial antigen) and PGN (peptidoglycan) stimulated bone marrow-derived dendritic cells (DCs) as a suitable vaccine candidate during experimental VL. SLA-PGN-stimulated DCs showed a significant decrease in hepatic and splenic parasite burden, which were associated with increased production of nitric oxide and pro-inflammatory cytokines such as IL-12, IFN-γ and IL-17. Elevated level of IL-17 was accompanied with the generation of more Th17 cells. Further studies on DC provided the evidence that these SLA-PGN-stimulated DCs played an important role in providing necessary cytokines such as IL-6, IL-23 and TGF-β for the generation of Th17 cells. Interestingly, inhibition of protein kinase C-β (PKCβ) in DCs led to decreased production of Th17 polarizing cytokines, causing reduction of the Th17 population size. Altogether, our finding highlighted the important role of DC-based PKCβ in regulation of the function and generation of Th17 cells. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Intranasal nanoemulsion-based inactivated respiratory syncytial virus vaccines protect against viral challenge in cotton rats.

    Science.gov (United States)

    O'Konek, Jessica J; Makidon, Paul E; Landers, Jeffrey J; Cao, Zhengyi; Malinczak, Carrie-Anne; Pannu, Jessie; Sun, Jennifer; Bitko, Vira; Ciotti, Susan; Hamouda, Tarek; Wojcinski, Zbigniew W; Lukacs, Nicholas W; Fattom, Ali; Baker, James R

    2015-01-01

    Respiratory Syncytial Virus is a leading cause of bronchiolitis and pneumonia in infants, the elderly and individuals with compromised immune systems. Despite decades of research, there is currently no available vaccine for RSV. Our group has previously demonstrated that intranasal immunization of mice with RSV inactivated by and adjuvanted with W805EC nanoemulsion elicits robust humoral and cellular immune responses, resulting in protection against RSV infection. This protection was achieved without the induction of airway hyper-reactivity or a Th2-skewed immune response. The cotton rat Sigmodon hispidus has been used for years as an excellent small animal model of RSV disease. Thus, we extended these rodent studies to the more permissive cotton rat model. Intranasal immunization of the nanoemulsion-adjuvanted RSV vaccines induced high antibody titers and a robust Th1-skewed cellular response. Importantly, vaccination provided sterilizing cross-protective immunity against a heterologous RSV challenge and did not induce marked or severe histological effects or eosinophilia in the lung after viral challenge. Overall, these data demonstrate that nanoemulsion-formulated whole RSV vaccines are both safe and effective for immunization in multiple animal models.

  7. Genetic vaccine for respiratory syncytial virus provides protection without disease potentiation.

    Science.gov (United States)

    Johnson, Teresa R; Rangel, David; Graham, Barney S; Brough, Douglas E; Gall, Jason G

    2014-01-01

    Respiratory syncytial virus (RSV) is a major cause of infectious lower respiratory disease in infants and the elderly. As there is no vaccine for RSV, we developed a genetic vaccine approach that induced protection of the entire respiratory tract from a single parenteral administration. The approach was based on adenovirus vectors derived from newly isolated nonhuman primate viruses with low seroprevalence. We show for the first time that a single intramuscular (IM) injection of the replication-deficient adenovirus vectors expressing the RSV fusion (F0) glycoprotein induced immune responses that protected both the lungs and noses of cotton rats and mice even at low doses and for several months postimmunization. The immune response included high titers of neutralizing antibody that were maintained ≥ 24 weeks and RSV-specific CD8+ and CD4+ T cells. The vectors were as potently immunogenic as a human adenovirus 5 vector in these two key respiratory pathogen animal models. Importantly, there was minimal alveolitis and granulocytic infiltrates in the lung, and type 2 cytokines were not produced after RSV challenge even under conditions of partial protection. Overall, this genetic vaccine is highly effective without potentiating immunopathology, and the results support development of the vaccine candidate for human testing.

  8. Roles of adjuvant and route of vaccination in antibody response and protection engendered by a synthetic matrix protein 2-based influenza A virus vaccine in the mouse

    Directory of Open Access Journals (Sweden)

    Cudic Mare

    2007-10-01

    Full Text Available Abstract Background The M2 ectodomain (M2e of influenza A virus (IAV strains that have circulated in humans during the past 90 years shows remarkably little structural diversity. Since M2e-specific antibodies (Abs are capable of restricting IAV replication in vivo but are present only at minimal concentration in human sera, efforts are being made to develop a M2e-specific vaccine. We are exploring a synthetic multiple antigenic peptide (MAP vaccine and here report on the role of adjuvants (cholera toxin and immunostimulatory oligodeoxynucleotide and route of immunization on Ab response and strength of protection. Results Independent of adjuvants and immunization route, on average 87% of the M2e-MAP-induced Abs were specific for M2e peptide and a variable fraction of these M2e(pep-specific Abs (average 15% cross-reacted with presumably native M2e expressed by M2-transfected cells. The titer of these cross-reactive M2e(pep-nat-specific Abs in sera of parenterally immunized mice displayed a sigmoidal relation to level of protection, with EC50 of ~20 μg Ab/ml serum, though experiments with passive M2e(pep-nat Abs indicated that serum Abs did not fully account for protection in parenterally vaccinated mice, particularly in upper airways. Intranasal vaccination engendered stronger protection and a higher proportion of G2a Abs than parenteral vaccination, and the strength of protection failed to correlate with M2e(pep-nat-specific serum Ab titers, suggesting a role of airway-associated immunity in protection of intranasally vaccinated mice. Intranasal administration of M2e-MAP without adjuvant engendered no response but coadministration with infectious IAV slightly enhanced the M2e(pep-nat Ab response and protection compared to vaccination with IAV or adjuvanted M2e-MAP alone. Conclusion M2e-MAP is an effective immunogen as ~15% of the total M2e-MAP-induced Ab response is of desired specificity. While M2e(pep-nat-specific serum Abs have an important

  9. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity.

    Directory of Open Access Journals (Sweden)

    Natalija Budimir

    Full Text Available BACKGROUND: The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV vaccine, that can target conserved internal antigens such as the nucleoprotein (NP and/or matrix protein (M1 need to be explored. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs, protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. CONCLUSION/SIGNIFICANCE: The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane

  10. Mycobacterium bovis BCG vaccine induces non-specific immune responses in Japanese flounder against Nocardia seriolae.

    Science.gov (United States)

    Kato, Goshi; Kondo, Hidehiro; Aoki, Takashi; Hirono, Ikuo

    2012-08-01

    Nocardiosis caused by Nocardia seriolae has been causing severe loss of fish production, so that an effective vaccine is urgently needed. Mycobacterium bovis BCG (BCG) is a live attenuated vaccine for tuberculosis, which is effective against various infectious diseases including nocardiosis in mammals. In this study, the protective efficacy of BCG against N. seriolae was evaluated in Japanese flounder Paralichthys olivaceus and antigen-specific immune responses induced in BCG vaccinated fish were investigated. Cumulative mortality of BCG-vaccinated fish was 21.4% whereas that of PBS-injected fish was 56.7% in N. seriolae challenge. However, gene expression level of IFN-γ was only slightly up-regulated in BCG-vaccinated fish after injection of N. seriolae antigen. In order to reveal non-specific immune responses induced by BCG vaccination, transcriptome of the kidney after BCG vaccination was investigated using oligo DNA microarray. Gene expression levels of antimicrobial peptides such as C-type and G-type lysozyme were significantly up-regulated after BCG vaccination. Consistently, BCG vaccination appeared to increase the bacteriolysis activity of the serum against Micrococcus luteus and N. seriolae. These results suggest that BCG-vaccinated Japanese flounder fight N. seriolae infection mainly by non-specific immune responses such as by the production of bacteriolytic lysozymes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination.

    Directory of Open Access Journals (Sweden)

    Anne Derbise

    Full Text Available No efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably.The caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1-Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50 caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50. Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1- Y. pestis.VTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection against the two forms of plague after a single

  12. Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination.

    Science.gov (United States)

    Derbise, Anne; Hanada, Yuri; Khalifé, Manal; Carniel, Elisabeth; Demeure, Christian E

    2015-01-01

    No efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably. The caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1-Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU) of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50) caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50). Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1-) Y. pestis. VTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative) Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection against the two forms of plague after a single oral

  13. A vaccine combining two Leishmania braziliensis proteins offers heterologous protection against Leishmania infantum infection.

    Science.gov (United States)

    Duarte, Mariana C; Lage, Daniela P; Martins, Vívian T; Costa, Lourena E; Lage, Letícia M R; Carvalho, Ana Maria R S; Ludolf, Fernanda; Santos, Thaís T O; Roatt, Bruno M; Menezes-Souza, Daniel; Fernandes, Ana Paula; Tavares, Carlos A P; Coelho, Eduardo A F

    2016-08-01

    In the present study, two Leishmania braziliensis proteins, one hypothetical and the eukaryotic initiation factor 5a (EiF5a), were cloned and used as a polyproteins vaccine for the heterologous protection of BALB/c mice against infantum infection. Animals were immunized with the antigens separately or in association, and in both cases saponin was used as an adjuvant. In the results, spleen cells from mice inoculated with the individual or polyproteins vaccine and lately challenged produced significantly higher levels of protein- and parasite-specific IFN-γ, IL-12, and GM-CSF, when both a capture ELISA and flow cytometry assays were performed. Evaluating the parasite load by a limiting dilution as well as by RT-PCR, these animals presented significant reductions in the parasite number in all evaluated organs, when compared to the control (saline and saponin) groups. The best protection was reached when the polyproteins vaccine was employed. Protection was associated with the IFN-γ production against parasite extracts, which was mediated by both CD4(+) and CD8(+) T cells and correlated with the antileishmanial nitrite production. In this context, this vaccine combining two L. braziliensis proteins was able to induce a heterologous protection against VL, and could be considered in future studies to be tested against other Leishmania species or in other mammalian hosts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Protective immunization against melanoma by gp100 DNA-HVJ-liposome vaccine.

    Science.gov (United States)

    Zhou, W Z; Kaneda, Y; Huang, S; Morishita, R; Hoon, D

    1999-10-01

    DNA-based vaccine immunization effectively induces both humoral and cell-mediated immunity to antigens and can confer protection against numerous infectious diseases as well as some cancers. Human and mouse melanomas consistently express the tumor-associated antigen interacted with the melanogenesis pathway. Gp100 is immunogenic and has been shown to induce both antibody and cytotoxic T cell (CTL) responses in humans. To explore the potential use of DNA immunization to induce melanoma-specific immune responses, we assessed HVJ-AVE liposome incorporated with plasmid DNA encoding human gp100. The gp100 DNA vaccine was used in a mouse melanoma model to assess immunity against the B16 melanoma of C57BL/6 mice. Intramuscular injection of the DNA-HVJ-AVE liposomes induced both anti-gp100 antibody and CTL responses. Gp100 DNA-HVJ-AVE liposome immunization significantly delayed tumor development in mice challenged with B16 melanoma cells. Mice immunized with gp100 DNA-HVJ-AVE liposomes survived longer compared with control mice immunized with HVJ-AVE liposome alone. These results indicate that immunization with human gp100 DNA by HVJ-AVE liposomes can induce protective immunity against melanoma in this pre-clinical mouse model. This strategy may provide an effective approach for vaccine therapy with tumor-associated antigens against human melanoma.

  15. Vaccination with IL-6 analogues induces autoantibodies to IL-6 and influences experimentally induced inflammation

    DEFF Research Database (Denmark)

    Galle, Pia; Jensen, Lene; Andersson, Christina

    2007-01-01

    ; yet they appear healthy and do not exhibit overt clinical or laboratory abnormalities. We induced comparable levels of aAb-IL-6 in different mouse strains by vaccination with immunogenic IL-6 analogues. We observed that the induced aAb-IL-6 protected against collagen-induced arthritis and experimental...... allergic encephalitis. Furthermore, aAb-IL-6 carrying mice displayed increased plasma TNFalpha concentrations upon challenge with LPS. Taken together, induction of IL-6 autoantibodies was possible in different mouse strains. The autoantibodies influenced experimental inflammation. This immunotherapeutic...

  16. Biomarkers of safety and immune protection for genetically modified live attenuated Leishmania vaccines against visceral leishmaniasis-Discovery and implications

    Directory of Open Access Journals (Sweden)

    Sreenivas eGannavaram

    2014-05-01

    Full Text Available Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, sub-unit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in L. donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen1-/- in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated

  17. Comparative protection of two different commercial vaccines against Yersinia ruckeri serotype O1 and biotype 2 in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Deshmukh, S.; Raida, M. K.; Dalsgaard, Inger

    2012-01-01

    Differentially extended specific protection by two commercial vaccines against Yersinia ruckeri serotype O1 biotype 2 was studied following 30s immersion exposure. Rainbow trout were challenged intra-peritoneally (i.p.) with Y. ruckeri serotype O1, biotype 2 (≈106 to 107CFU/fish) at 4, 6 and 8...... months after vaccination with vaccines containing either biotype 1 (AquaVac® ERM) or both biotypes 1 and 2 (AquaVac® RELERA™). The specific pattern of vaccine-mediated protection was evaluated by relative percentage survival (RPS) analysis at 4 and 6 months post-vaccination and by obtaining gross...... months without any booster vaccination. A specific and adaptive response induced by AquaVac® RELERA™ vaccine against Y. ruckeri biotype 2 was clearly indicated. In addition, some degree of cross protection rendered by AquaVac® ERM containing biotype 1 during infection with Y. ruckeri biotype 2 was also...

  18. Mucosal Vaccination with Recombinant Lactobacillus casei-Displayed CTA1-Conjugated Consensus Matrix Protein-2 (sM2) Induces Broad Protection against Divergent Influenza Subtypes in BALB/c Mice

    Science.gov (United States)

    Chowdhury, Mohammed Y. E.; Li, Rui; Kim, Jae-Hoon; Park, Min-Eun; Kim, Tae-Hwan; Pathinayake, Prabuddha; Weeratunga, Prasanna; Song, Man Ki; Son, Hwa-Young; Hong, Seung-Pyo; Sung, Moon-Hee; Lee, Jong-Soo; Kim, Chul-Joong

    2014-01-01

    To develop a safe and effective mucosal vaccine against pathogenic influenza viruses, we constructed recombinant Lactobacillus casei strains that express conserved matrix protein 2 with (pgsA-CTA1-sM2/L. casei) or without (pgsA-sM2/L. casei) cholera toxin subunit A1 (CTA1) on the surface. The surface localization of the fusion protein was verified by cellular fractionation analyses, flow cytometry and immunofluorescence microscopy. Oral and nasal inoculations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and mucosal IgA. However, the conjugation of cholera toxin subunit A1 induced more potent mucosal, humoral and cell-mediated immune responses. In a challenge test with 10 MLD50 of A/EM/Korea/W149/06(H5N1), A/Puerto Rico/8/34(H1N1), A/Aquatic bird /Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005(H7N3), and A/Chicken/Korea/116/2004(H9N2) viruses, the recombinant pgsA-CTA1-sM2/L. casei provided better protection against lethal challenges than pgsA-sM2/L. casei, pgsA/L. casei and PBS in mice. These results indicate that mucosal immunization with recombinant L. casei expressing CTA1-conjugated sM2 protein on its surface is an effective means of eliciting protective immune responses against diverse influenza subtypes. PMID:24714362

  19. A semisynthetic carbohydrate-lipid vaccine that protects against S. pneumoniae in mice.

    Science.gov (United States)

    Cavallari, Marco; Stallforth, Pierre; Kalinichenko, Artem; Rathwell, Dominea C K; Gronewold, Thomas M A; Adibekian, Alexander; Mori, Lucia; Landmann, Regine; Seeberger, Peter H; De Libero, Gennaro

    2014-11-01

    Severe forms of pneumococcal meningitis, bacteraemia and pneumonia result in more than 1 million deaths each year despite the widespread introduction of carbohydrate-protein conjugate vaccines against Streptococcus pneumoniae. Here we describe a new and highly efficient antipneumococcal vaccine design based on synthetic conjugation of S. pneumoniae capsule polysaccharides to the potent lipid antigen α-galactosylceramide, which stimulates invariant natural killer T (iNKT) cells when presented by the nonpolymorphic antigen-presenting molecule CD1d. Mice injected with the new lipid-carbohydrate conjugate vaccine produced high-affinity IgG antibodies specific for pneumococcal polysaccharides. Vaccination stimulated germinal center formation; accumulation of iNKT cells with a T follicular helper cell phenotype; and increased frequency of carbohydrate-specific, long-lived memory B cells and plasmablasts. This new lipid-carbohydrate vaccination strategy induced potent antipolysaccharide immunity that protected against pneumococcal disease in mice and may also prove effective for the design of carbohydrate-based vaccines against other major bacterial pathogens.

  20. Protective Efficacy in Sheep of Adenovirus-Vectored Vaccines against Bluetongue Virus Is Associated with Specific T Cell Responses

    Science.gov (United States)

    Martín, Verónica; Pascual, Elena; Avia, Miguel; Peña, Lourdes; Valcárcel, Félix; Sevilla, Noemí

    2015-01-01

    Bluetongue virus (BTV) is an economically important Orbivirus of the Reoviridae family that causes a hemorrhagic disease in ruminants. Its control has been achieved by inactivated-vaccines that have proven to protect against homologous BTV challenge although unable to induce long-term immunity. Therefore, a more efficient control strategy needs to be developed. Recombinant adenovirus vectors are lead vaccine candidates for protection of several diseases, mainly because of their potency to induce potent T cell immunity. Here we report the induction of humoral and T-cell mediated responses able to protect animals against BTV challenge by recombinant replication-defective human adenovirus serotype 5 (Ad5) expressing either VP7, VP2 or NS3 BTV proteins. First we used the IFNAR(-/-) mouse model system to establish a proof of principle, and afterwards we assayed the protective efficacy in sheep, the natural host of BTV. Mice were completely protected against BTV challenge, developing humoral and BTV-specific CD8+- and CD4+-T cell responses by vaccination with the different rAd5. Sheep vaccinated with Ad5-BTV-VP2 and Ad5-BTV-VP7 or only with Ad5-BTV-VP7 and challenged with BTV showed mild disease symptoms and reduced viremia. This partial protection was achieved in the absence of neutralizing antibodies but strong BTV-specific CD8+ T cell responses in those sheep vaccinated with Ad5-BTV-VP7. These data indicate that rAd5 is a suitable vaccine vector to induce T cell immunity during BTV vaccination and provide new data regarding the relevance of T cell responses in protection during BTV infection. PMID:26619062

  1. Coinjection of a vaccine and anti-viral agents can provide fast-acting protection from foot-and-mouth disease.

    Science.gov (United States)

    You, Su-Hwa; Kim, Taeseong; Choi, Joo-Hyung; Park, Gundo; Lee, Kwang-Nyeong; Kim, Byounghan; Lee, Myoung-Heon; Kim, Hyun-Soo; Kim, Su-Mi; Park, Jong-Hyeon

    2017-07-01

    Foot-and-mouth disease (FMD) is the cause of an economically devastating animal disease. With commercial inactivated FMD vaccines, the protection against FMD virus (FMDV) begins a minimum of 4 days post vaccination (dpv). Therefore, antiviral agents could be proposed for rapid protection and to reduce the spread of FMDV during outbreaks until vaccine-induced protective immunity occurs. In previous studies, we have developed two recombinant adenoviruses that simultaneously express porcine interferon-α and interferon-γ (Ad-porcine IFN-αγ) and multiple siRNAs that target the non-structural protein-regions of FMDV (Ad-3siRNA), and we have shown that the combination of the two antiviral agents (referred to here as Ad combination) induced robust protection against FMDV in pigs. In an attempt to provide complete protection against FMDV, we co-administered Ad combination and the FMD vaccine to mice and pigs. In the C57BL/6 mice model, we observed rapid and continuous protection against homologous FMDV challenge from 1 to 3 dpv-the period in which vaccine-mediated immunity is absent. In the pig experiments, we found that most of the pigs (five out of six) that received vaccine + Ad combination and were challenged with FMDV at 1 or 2 dpv were clinically protected from FMDV. In addition, most of the pigs that received vaccine + Ad combination and all pigs inoculated with the vaccine only were clinically protected from an FMDV challenge at 7 dpv. We believe that the antiviral agent ensures early protection from FMDV, and the vaccine participates in protection after 7 dpv. Therefore, we can say that the combination of the FMD vaccine and effective antiviral agents may offer both fast-acting and continuous protection against FMDV. In further studies, we plan to design coadministration of Ad combination and novel vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Incompletely matched influenza vaccine still provides protection in frail elderly.

    Science.gov (United States)

    Dean, Anna S; Moffatt, Cameron R M; Rosewell, Alexander; Dwyer, Dominic E; Lindley, Richard I; Booy, Robert; MacIntyre, C Raina

    2010-01-08

    A cluster-randomised controlled trial of antiviral treatment to control influenza outbreaks in aged-care facilities (ACFs) provided an opportunity to assess VE in the frail, institutionalised elderly. Data were pooled from five influenza outbreaks in 2007. Rapid testing methods for influenza were used to confirm outbreaks and/or identify further cases. Vaccination coverage among ACF residents ranged from 59% to 100%, whereas it was consistently low in staff (11-33%). The attack rates for laboratory-confirmed influenza in residents ranged from 9% to 24%, with the predominate strain determined to be influenza A. Sequencing of the hemagglutinin gene from a sub-sample demonstrated an incomplete match with the 2007 southern hemisphere influenza vaccine. Influenza VE was estimated to be 61% (95%CI 6%, 84%) against laboratory-confirmed influenza, 51% (95%CI -16%, 79%) against influenza-like illness, 82% (95%CI 27%, 96%) against pneumonia-related and influenza-related hospitalisations and 71% (95%CI -28%, 95%) against death from all causes. This supports the continued policy of targeted vaccination of the institutionalised, frail elderly. There is also reassurance that influenza vaccine can be effective against disease and severe outcomes, despite an incomplete vaccine match. This benefit is additional to protection from antivirals.

  3. Protection Induced by Simultaneous Subcutaneous and Endobronchial Vaccination with BCG/BCG and BCG/Adenovirus Expressing Antigen 85A against Mycobacterium bovis in Cattle.

    Directory of Open Access Journals (Sweden)

    Gillian S Dean

    Full Text Available The incidence of bovine tuberculosis (bTB in the GB has been increasing since the 1980s. Immunisation, alongside current control measures, has been proposed as a sustainable measure to control bTB. Immunisation with Mycobacterium bovis bacillus Calmette-Guerin (BCG has been shown to protect against bTB. Furthermore, much experimental data indicates that pulmonary local immunity is important for protection against respiratory infections including Mycobacterium tuberculosis and that pulmonary immunisation is highly effective. Here, we evaluated protection against M. bovis, the main causative agent of bTB, conferred by BCG delivered subcutaneously, endobronchially or by the new strategy of simultaneous immunisation by both routes. We also tested simultaneous subcutaneous immunisation with BCG and endobronchial delivery of a recombinant type 5 adenovirus expressing mycobacterial antigen 85A. There was significantly reduced visible pathology in animals receiving the simultaneous BCG/BCG or BCG/Ad85 treatment compared to naïve controls. Furthermore, there were significantly fewer advanced microscopic granulomata in animals receiving BCG/Ad85A compared to naive controls. Thus, combining local and systemic immunisation limits the development of pathology, which in turn could decrease bTB transmission.

  4. Maximizing protection from use of oral cholera vaccines in developing country settings

    Science.gov (United States)

    Desai, Sachin N; Cravioto, Alejandro; Sur, Dipika; Kanungo, Suman

    2014-01-01

    When oral vaccines are administered to children in lower- and middle-income countries, they do not induce the same immune responses as they do in developed countries. Although not completely understood, reasons for this finding include maternal antibody interference, mucosal pathology secondary to infection, malnutrition, enteropathy, and previous exposure to the organism (or related organisms). Young children experience a high burden of cholera infection, which can lead to severe acute dehydrating diarrhea and substantial mortality and morbidity. Oral cholera vaccines show variations in their duration of protection and efficacy between children and adults. Evaluating innate and memory immune response is necessary to understand V. cholerae immunity and to improve current cholera vaccine candidates, especially in young children. Further research on the benefits of supplementary interventions and delivery schedules may also improve immunization strategies. PMID:24861554

  5. Antibody quality and protection from lethal Ebola virus challenge in nonhuman primates immunized with rabies virus based bivalent vaccine.

    Directory of Open Access Journals (Sweden)

    Joseph E Blaney

    Full Text Available We have previously described the generation of a novel Ebola virus (EBOV vaccine platform based on (a replication-competent rabies virus (RABV, (b replication-deficient RABV, or (c chemically inactivated RABV expressing EBOV glycoprotein (GP. Mouse studies demonstrated safety, immunogenicity, and protective efficacy of these live or inactivated RABV/EBOV vaccines. Here, we evaluated these vaccines in nonhuman primates. Our results indicate that all three vaccines do induce potent immune responses against both RABV and EBOV, while the protection of immunized animals against EBOV was largely dependent on the quality of humoral immune response against EBOV GP. We also determined if the induced antibodies against EBOV GP differ in their target, affinity, or the isotype. Our results show that IgG1-biased humoral responses as well as high levels of GP-specific antibodies were beneficial for the control of EBOV infection after immunization. These results further support the concept that a successful EBOV vaccine needs to induce strong antibodies against EBOV. We also showed that a dual vaccine against RABV and filoviruses is achievable; therefore addressing concerns for the marketability of this urgently needed vaccine.

  6. Protective value of immune responses developed in goats vaccinated with insoluble proteins from Sarcoptes Scabiei

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    2005-06-01

    Full Text Available Vaccines developed from certain membrane proteins lining the lumen of arthropod’s gut have been demonstrated effective in the control of some arthropod ectoparasites. A similar approach could also be applied to Sarcoptes scabiei since this parasite also ingests its host immunoglobulins. To evaluate immune protection of the membrane proteins, insoluble mite proteins were fractionated by successive treatment in the solutions of 1.14 M NaCl, 2% SB 3-14 Zwitterion detergent, 6 M urea, 6 M guanidine-HCl and 5% SDS. Five groups of goats (6 or 7 goats per group were immunised respectively with the protein fractions. Vaccination was performed 6 times, each with a dosage of 250 μg proteins, and 3 week intervals between vaccination. Group 6 (7 goats received PBS and adjuvant only, and served as an unvaccinated control. One week after the last vaccination, all goats were challenged with 2000 live mites on the auricles. The development of lesions were examined at 1 day, 2 days, and then every week from week 1 to 8. All animals were bled and weighed every week, and at the end of the experiment, skin scrapings were collected to determine the mite burden. Antibody responses induced by vaccination and challenge were examined by ELISA and Western blotting. This experiment showed that vaccination with the insoluble-protein fractions resulted in the development of high level of specific antibodies but the responses did not have any protective value. The severity of lesions and mite burden in the vaccinated animals were not different from those in the unvaccinated control.

  7. Dissection of antibody specificities induced by yellow fever vaccination.

    Directory of Open Access Journals (Sweden)

    Oksana Vratskikh

    Full Text Available The live attenuated yellow fever (YF vaccine has an excellent record of efficacy and one dose provides long-lasting immunity, which in many cases may last a lifetime. Vaccination stimulates strong innate and adaptive immune responses, and neutralizing antibodies are considered to be the major effectors that correlate with protection from disease. Similar to other flaviviruses, such antibodies are primarily induced by the viral envelope protein E, which consists of three distinct domains (DI, II, and III and is presented at the surface of mature flavivirions in an icosahedral arrangement. In general, the dominance and individual variation of antibodies to different domains of viral surface proteins and their impact on neutralizing activity are aspects of humoral immunity that are not well understood. To gain insight into these phenomena, we established a platform of immunoassays using recombinant proteins and protein domains that allowed us to dissect and quantify fine specificities of the polyclonal antibody response after YF vaccination in a panel of 51 vaccinees as well as determine their contribution to virus neutralization by serum depletion analyses. Our data revealed a high degree of individual variation in antibody specificities present in post-vaccination sera and differences in the contribution of different antibody subsets to virus neutralization. Irrespective of individual variation, a substantial proportion of neutralizing activity appeared to be due to antibodies directed to complex quaternary epitopes displayed on the virion surface only but not on monomeric E. On the other hand, DIII-specific antibodies (presumed to have the highest neutralizing activity as well as broadly flavivirus cross-reactive antibodies were absent or present at very low titers. These data provide new information on the fine specificity as well as variability of antibody responses after YF vaccination that are consistent with a strong influence of individual

  8. Intranasal vaccination with leishmanial antigens protects golden hamsters (Mesocricetus auratus) against Leishmania (Viannia) Braziliensis infection.

    Science.gov (United States)

    da Silva-Couto, Luzinei; Ribeiro-Romão, Raquel Peralva; Saavedra, Andrea Franco; da Silva Costa Souza, Beatriz Lilian; Moreira, Otacílio Cruz; Gomes-Silva, Adriano; Rossi-Bergmann, Bartira; Da-Cruz, Alda Maria; Pinto, Eduardo Fonseca

    2015-01-01

    Previous results have shown that oral and intranasal administration of particulate Leishmania (Leishmania) amazonensis antigens (LaAg) partially protects mice against L. amazonensis infection. However, vaccination studies on species of the subgenus Viannia, the main causative agent of cutaneous and mucosal leishmaniasis in the Americas, have been hampered by the lack of easy-to-handle bio-models that accurately mimic the human disease. Recently, we demonstrated that the golden hamster is an appropriate model for studying the immunopathogenesis of cutaneous leishmaniasis caused by L. (Viannia) braziliensis. Using the golden hamster model, our current study investigated whether the protective effect of intranasal immunisation with LaAg can be extended to L. braziliensis infection. Golden hamsters vaccinated with either two intranasal (IN) doses of LaAg (10 µg) or two intramuscular doses of LaAg (20 µg) were challenged 2 weeks post-vaccination with L. braziliensis. The results showed that IN immunisation with LaAg significantly reduced lesion growth and parasitic load as well as serum IgG and IgG2 levels. At the experimental endpoint on day 114 post-infection, IN-immunised hamsters that were considered protected expressed IFN-γ and IL10 mRNA levels that returned to uninfected skin levels. In contrast to the nasal route, intramuscular (IM) immunisation failed to provide protection. These results demonstrate for the first time that the nasal route of immunisation can induce cross protection against L. braziliensis infection.

  9. Major role for CD8 T cells in the protection against Toxoplasma gondii following dendritic cell vaccination.

    Science.gov (United States)

    Guiton, R; Zagani, R; Dimier-Poisson, I

    2009-10-01

    Toxoplasma gondii is the causative agent of toxoplasmosis, a worldwide zoonosis for which an effective vaccine is needed. Vaccination with pulsed dendritic cells is very efficient but their use in a vaccination protocol is unconceivable. Nevertheless, unravelling the induced effector mechanisms is crucial to design new vaccine strategies. We vaccinated CBA/J mice with parasite extract-pulsed dendritic cells, challenged them with T. gondii cysts and carried out in vivo depletion of CD4(+) or CD8(+) T lymphocytes to study the subsequent cellular immune response and protective mechanisms. CD4(+) lymphocytes were poorly implicated either in spleen and mesenteric lymph node (MLN) cytokine secretion or in mice protection. By contrast, the increasing number of intracerebral cysts and depletion of CD8(+) cells were strongly correlated, revealing a prominent role for CD8(+) lymphocytes in the protection of mice. Splenic CD8(+) lymphocytes induce a strong Th1 response controlled by a Th2 response whereas CD8(+) cells from MLNs inhibit both Th1 and Th2 responses. CD8(+) cells are the main effectors following dendritic cell vaccination and Toxoplasma infection while CD4(+) T cells only play a minor role. This contrasts with T. gondii infection which elicits the generation of CD4(+) and CD8(+) T cells that provide protective immunity.

  10. Intradermal vaccination with un-adjuvanted sub-unit vaccines triggers skin innate immunity and confers protective respiratory immunity in domestic swine.

    Science.gov (United States)

    Le Luduec, Jean-Benoît; Debeer, Sabine; Piras, Fabienne; Andréoni, Christine; Boudet, Florence; Laurent, Philippe; Kaiserlian, Dominique; Dubois, Bertrand

    2016-02-10

    Intradermal (ID) vaccination constitutes a promising approach to induce anti-infectious immunity. This route of immunization has mostly been studied with influenza split-virion vaccines. However, the efficacy of ID vaccination for sub-unit vaccines in relation to underlying skin innate immunity remains to be explored for wider application in humans. Relevant animal models that more closely mimic human skin immunity than the widely used mouse models are therefore necessary. Here, we show in domestic swine, which shares striking anatomic and functional properties with human skin, that a single ID delivery of pseudorabies virus (PRV) glycoproteins without added adjuvant is sufficient to trigger adaptive cellular and humoral immune responses, and to confer protection from a lethal respiratory infection with PRV. Analysis of early events at the skin injection site revealed up-regulation of pro-inflammatory cytokine and chemokine genes, recruitment of neutrophils and monocytes and accumulation of inflammatory DC. We further show that the sustained induction of pro-inflammatory cytokine genes results from the combined effects of skin puncture, liquid injection in the dermis and viral antigens. These data highlight that immune protection against respiratory infection can be induced by ID vaccination with a subunit vaccine and reveal that adjuvant requirements are circumvented by the mechanical and antigenic stress caused by ID injection, which triggers innate immunity and mobilization of inflammatory DC at the immunization site. ID vaccination with sub-unit vaccines may thus represent a safe and efficient solution for protection against respiratory infections in swine and possibly also in humans, given the similarity of skin structure and function in both species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Protection against infectious bursal disease virulent challenge conferred by a recombinant avian adeno-associated virus vaccine.

    Science.gov (United States)

    Perozo, F; Villegas, P; Estevez, C; Alvarado, I R; Purvis, L B; Williams, S

    2008-06-01

    The development and use of recombinant vaccine vectors for the expression of poultry pathogens proteins is an active research field. The adeno-associated virus (AAV) is a replication-defective virus member of the family Parvoviridae that has been successfully used for gene delivery in humans and other species. In this experiment, an avian adeno-associated virus (AAAV) expressing the infectious bursal disease virus (IBDV) VP2 protein (rAAAV-VP2) was evaluated for protection against IBDV-virulent challenge. Specific pathogen free (SPF) birds were inoculated with rAAAV-VP2 or with a commercial intermediate IBDV vaccine and then challenged with the Edgar strain. IBDV-specific antibody levels were observed in all vaccinated groups; titers were higher for the commercial vaccine group. The live, commercial vaccine induced adequate protection against morbidity and mortality; nevertheless, initial lymphoid depletion and follicular atrophy related to active viral replication was observed as early as day 14 and persisted up to day 28, when birds were challenged. No bursal tissue damage due to rAAAV-VP2 vaccination was observed. Eight-out-of-ten rAAAV-VP2-vaccinated birds survived the challenge and showed no clinical signs. The bursa:body weight ratio and bursa lesion scores in the rAAAV-VP2 group indicated protection against challenge. Therefore, transgenic expression of the VP2 protein after rAAAV-VP2 vaccination induced protective immunity against IBDV challenge in 80% of the birds, without compromising the bursa of Fabricius. The use of rAAAV virions for gene delivery represents a novel approach to poultry vaccination.

  12. Highly immunogenic prime–boost DNA vaccination protects chickens against challenge with homologous and heterologous H5N1 virus

    Directory of Open Access Journals (Sweden)

    Anna Stachyra

    2014-01-01

    Full Text Available Highly pathogenic avian influenza viruses (HPAIVs cause huge economic losses in the poultry industry because of high mortality rate in infected flocks and trade restrictions. Protective antibodies, directed mainly against hemagglutinin (HA, are the primary means of protection against influenza outbreaks. A recombinant DNA vaccine based on the sequence of H5 HA from the H5N1/A/swan/Poland/305-135V08/2006 strain of HPAIV was prepared. Sequence manipulation included deletion of the proteolytic cleavage site to improve protein stability, codon usage optimization to improve translation and stability of RNA in host cells, and cloning into a commercially available vector to enable expression in animal cells. Naked plasmid DNA was complexed with a liposomal carrier and the immunization followed the prime–boost strategy. The immunogenic potential of the DNA vaccine was first proved in broilers in near-to-field conditions resembling a commercial farm. Next, the protective activity of the vaccine was confirmed in SPF layer-type chickens. Experimental infections (challenge experiments indicated that 100% of vaccinated chickens were protected against H5N1 of the same clade and that 70% of them were protected against H5N1 influenza virus of a different clade. Moreover, the DNA vaccine significantly limited (or even eliminated transmission of the virus to contact control chickens. Two intramuscular doses of DNA vaccine encoding H5 HA induced a strong protective response in immunized chicken. The effective protection lasted for a minimum 8 weeks after the second dose of the vaccine and was not limited to the homologous H5N1 virus. In addition, the vaccine reduced shedding of the virus.

  13. Chimeric avian paramyxovirus-based vector immunization against highly pathogenic avian influenza followed by conventional Newcastle disease vaccination eliminates lack of protection from virulent ND virus

    OpenAIRE

    Steglich, C.; Grund, C.; A. Röder; Zhao, N.; Mettenleiter, T C; Römer-Oberdörfer, A.

    2014-01-01

    Recently, we described a chimeric, hemagglutinin of highly pathogenic avian influenza virus (HPAIV) H5 expressing Newcastle disease virus (NDV)-based vector vaccine (chNDVFHNPMV8H5) in which NDV envelope glycoproteins were replaced by those of avian paramyxovirus-8 (APMV-8). This chimeric vaccine induced solid protection against lethal HPAIV H5N1 even in chickens with maternal antibodies against NDV (MDA+). However, due to the absence of the major NDV immunogens it failed to induce protection...

  14. Anti-Glycoprotein G Antibodies of Herpes Simplex Virus 2 Contribute to Complete Protection after Vaccination in Mice and Induce Antibody-Dependent Cellular Cytotoxicity and Complement-Mediated Cytolysis

    Directory of Open Access Journals (Sweden)

    Staffan Görander

    2014-11-01

    Full Text Available We investigated the role of antibodies against the mature portion of glycoprotein G (mgG-2 of herpes simplex virus 2 (HSV-2 in protective immunity after vaccination. Mice were immunized intramuscularly with mgG-2 and oligodeoxynucleotides containing two CpG motifs plus alum as adjuvant. All C57BL/6 mice survived and presented no genital or systemic disease. High levels of immunoglobulin G subclass 1 (IgG1 and IgG2 antibodies were detected and re-stimulated splenic CD4+ T cells proliferated and produced IFN-γ. None of the sera from immunized mice exhibited neutralization, while all sera exerted antibody-dependent cellular cytotoxicity (ADCC and complement-mediated cytolysis (ACMC activity. Passive transfer of anti-mgG-2 monoclonal antibodies, or immune serum, to naive C57BL/6 mice did not limit disease progression. Immunized B‑cell KO mice presented lower survival rate and higher vaginal viral titers, as compared with vaccinated B-cell KO mice after passive transfer of immune serum and vaccinated C57BL/6 mice. Sera from mice that were vaccinated subcutaneously and intranasally with mgG-2 presented significantly lower titers of IgG antibodies and lower ADCC and ACMC activity. We conclude that anti-mgG-2 antibodies were of importance to limit genital HSV‑2 infection. ADCC and ACMC activity are potentially important mechanisms in protective immunity, and could tentatively be evaluated in future animal vaccine studies and in clinical trials.

  15. Protection against bubonic and pneumonic plague with a single dose microencapsulated sub-unit vaccine.

    Science.gov (United States)

    Elvin, Stephen J; Eyles, James E; Howard, Kenneth A; Ravichandran, Easwaran; Somavarappu, Satyanarayan; Alpar, H Oya; Williamson, E Diane

    2006-05-15

    Protection against virulent plague challenge by the parenteral and aerosol routes was afforded by a single administration of microencapsulated Caf1 and LcrV antigens from Yersinia pestis in BALB/c mice. Recombinant Caf1 and LcrV were individually encapsulated in polymeric microspheres, to the surface of which additional antigen was adsorbed. The microspheres containing either Caf1 or LcrV were blended and used to immunise mice on a single occasion, by either the intra-nasal or intra-muscular route. Both routes of immunisation induced systemic and local immune responses, with high levels of serum IgG being developed in response to both vaccine antigens. In Elispot assays, secretion of cytokines by spleen and draining lymph node cells was demonstrated, revealing activation of both Th1 and Th2 associated cytokines; and spleen cells from animals immunised by either route were found to proliferate in vitro in response to both vaccine antigens. Virulent challenge experiments demonstrated that non-invasive immunisation by intra-nasal instillation can provide strong systemic and local immune responses and protect against high level challenge. Microencapsulation of these vaccine antigens has the added advantage that controlled release of the antigens occurs in vivo, so that protective immunity can be induced after only a single immunising dose.

  16. Chimeric Hemagglutinin Constructs Induce Broad Protection against Influenza B Virus Challenge in the Mouse Model.

    Science.gov (United States)

    Ermler, Megan E; Kirkpatrick, Ericka; Sun, Weina; Hai, Rong; Amanat, Fatima; Chromikova, Veronika; Palese, Peter; Krammer, Florian

    2017-06-15

    Seasonal influenza virus epidemics represent a significant public health burden. Approximately 25% of all influenza virus infections are caused by type B viruses, and these infections can be severe, especially in children. Current influenza virus vaccines are an effective prophylaxis against infection but are impacted by rapid antigenic drift, which can lead to mismatches between vaccine strains and circulating strains. Here, we describe a broadly protective vaccine candidate based on chimeric hemagglutinins, consisting of globular head domains from exotic influenza A viruses and stalk domains from influenza B viruses. Sequential vaccination with these constructs in mice leads to the induction of broadly reactive antibodies that bind to the conserved stalk domain of influenza B virus hemagglutinin. Vaccinated mice are protected from lethal challenge with diverse influenza B viruses. Results from serum transfer experiments and antibody-dependent cell-mediated cytotoxicity (ADCC) assays indicate that this protection is antibody mediated and based on Fc effector functions. The present data suggest that chimeric hemagglutinin-based vaccination is a viable strategy to broadly protect against influenza B virus infection.IMPORTANCE While current influenza virus vaccines are effective, they are affected by mismatches between vaccine strains and circulating strains. Furthermore, the antiviral drug oseltamivir is less effective for treating influenza B virus infections than for treating influenza A virus infections. A vaccine that induces broad and long-lasting protection against influenza B viruses is therefore urgently needed. Copyright © 2017 American Society for Microbiology.

  17. Role of pro-inflammatory cytokine IL-17 in Leishmania pathogenesis and in protective immunity by Leishmania vaccines.

    Science.gov (United States)

    Banerjee, Antara; Bhattacharya, Parna; Joshi, Amritanshu B; Ismail, Nevien; Dey, Ranadhir; Nakhasi, Hira L

    2016-11-01

    The clinical outcome of Leishmania pathogenesis ranges from active skin lesions to fatal visceral dissemination and severely impaired T cell immunity. It is well established that a strong Th1 immune response is protective against cutaneous forms of the disease, however a mixed Th1/Th2 response is most commonly observed against visceral infections as evident from previous studies. Aside from Th1/Th2 cytokines, the pro-inflammatory IL-17 cytokine family plays an important role in the clearance of intracellular pathogens. In Leishmania induced skin lesions, IL-17 produced by Th17 cells is shown to exacerbate the disease, suggesting a role in pathogenesis. However, a protective role for IL-17 is indicated by the expansion of IL-17 producing cells in vaccine-induced immunity. In human visceral leishmaniasis (VL) it has been demonstrated that IL-17 and IL-22 are associated with protection against re-exposure to Leishmania, which further suggests the involvement of IL-17 in vaccine induced protective immunity. Although there is no vaccine against any form of leishmaniasis, the development of genetically modified live attenuated parasites as vaccine candidates prove to be promising, as they successfully induce a robust protective immune response in various animal models. However, the role of IL-17 producing cells and Th17 cells in response to these vaccine candidates remains unexplored. In this article, we review the role of IL-17 in Leishmania pathogenesis and the potential impact on vaccine induced immunity, with a special focus on live attenuated Leishmania parasites. Published by Elsevier Inc.

  18. Protective efficacy and immunogenicity of a combinatory DNA vaccine against Influenza A Virus and the Respiratory Syncytial Virus.

    Directory of Open Access Journals (Sweden)

    Viktoria Stab

    Full Text Available The Respiratory Syncytial Virus (RSV and Influenza A Virus (IAV are both two major causative agents of severe respiratory tract infections in humans leading to hospitalization and thousands of deaths each year. In this study, we evaluated the immunogenicity and efficacy of a combinatory DNA vaccine in comparison to the single component vaccines against both diseases in a mouse model. Intramuscular electroporation with plasmids expressing the hemagglutinin (HA of IAV and the F protein of RSV induced strong humoral immune responses regardless if they were delivered in combination or alone. In consequence, high neutralizing antibody titers were detected, which conferred protection against a lethal challenge with IAV. Furthermore, the viral load in the lungs after a RSV infection could be dramatically reduced in vaccinated mice. Concurrently, substantial amounts of antigen-specific, polyfunctional CD8⁺ T-cells were measured after vaccination. Interestingly, the cellular response to the hemagglutinin was significantly reduced in the presence of the RSV-F encoding plasmid, but not vice versa. Although these results indicate a suppressive effect of the RSV-F protein, the protective efficacy of the combinatory vaccine was comparable to the efficacy of both single-component vaccines. In conclusion, the novel combinatory vaccine against RSV and IAV may have great potential to reduce the rate of severe respiratory tract infections in humans without increasing the number of necessary vaccinations.

  19. Protective efficacy and immunogenicity of a combinatory DNA vaccine against Influenza A Virus and the Respiratory Syncytial Virus.

    Science.gov (United States)

    Stab, Viktoria; Nitsche, Sandra; Niezold, Thomas; Storcksdieck Genannt Bonsmann, Michael; Wiechers, Andrea; Tippler, Bettina; Hannaman, Drew; Ehrhardt, Christina; Uberla, Klaus; Grunwald, Thomas; Tenbusch, Matthias

    2013-01-01

    The Respiratory Syncytial Virus (RSV) and Influenza A Virus (IAV) are both two major causative agents of severe respiratory tract infections in humans leading to hospitalization and thousands of deaths each year. In this study, we evaluated the immunogenicity and efficacy of a combinatory DNA vaccine in comparison to the single component vaccines against both diseases in a mouse model. Intramuscular electroporation with plasmids expressing the hemagglutinin (HA) of IAV and the F protein of RSV induced strong humoral immune responses regardless if they were delivered in combination or alone. In consequence, high neutralizing antibody titers were detected, which conferred protection against a lethal challenge with IAV. Furthermore, the viral load in the lungs after a RSV infection could be dramatically reduced in vaccinated mice. Concurrently, substantial amounts of antigen-specific, polyfunctional CD8⁺ T-cells were measured after vaccination. Interestingly, the cellular response to the hemagglutinin was significantly reduced in the presence of the RSV-F encoding plasmid, but not vice versa. Although these results indicate a suppressive effect of the RSV-F protein, the protective efficacy of the combinatory vaccine was comparable to the efficacy of both single-component vaccines. In conclusion, the novel combinatory vaccine against RSV and IAV may have great potential to reduce the rate of severe respiratory tract infections in humans without increasing the number of necessary vaccinations.

  20. Diversion of HIV-1 Vaccine-induced Immunity by gp41-Microbiota Cross-reactive Antibodies

    Science.gov (United States)

    Williams, Wilton B; Liao, Hua-Xin; Moody, M. Anthony; Kepler, Thomas B.; Alam, S Munir; Gao, Feng; Wiehe, Kevin; Trama, Ashley M.; Jones, Kathryn; Zhang, Ruijun; Song, Hongshuo; Marshall, Dawn J; Whitesides, John F; Sawatzki, Kaitlin; Hua, Axin; Liu, Pinghuang; Tay, Matthew Z; Seaton, Kelly; Shen, Xiaoying; Foulger, Andrew; Lloyd, Krissey E.; Parks, Robert; Pollara, Justin; Ferrari, Guido; Yu, Jae-Sung; Vandergrift, Nathan; Montefiori, David C.; Sobieszczyk, Magdalena E; Hammer, Scott; Karuna, Shelly; Gilbert, Peter; Grove, Doug; Grunenberg, Nicole; McElrath, Julie; Mascola, John R.; Koup, Richard A; Corey, Lawrence; Nabel, Gary J.; Morgan, Cecilia; Churchyard, Gavin; Maenza, Janine; Keefer, Michael; Graham, Barney S.; Baden, Lindsey R.; Tomaras, Georgia D.; Haynes, Barton F.

    2015-01-01

    A HIV-1 DNA prime-recombinant Adenovirus Type 5 (rAd5) boost vaccine failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells was to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies (mAbs) were non-neutralizing, and frequently polyreactive with host and environmental antigens including intestinal microbiota (IM). Next generation sequencing of an IGHV repertoire prior to vaccination revealed an Env-IM cross-reactive Ab that was clonally-related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy. PMID:26229114

  1. Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein.

    Science.gov (United States)

    Escriou, Nicolas; Callendret, Benoît; Lorin, Valérie; Combredet, Chantal; Marianneau, Philippe; Février, Michèle; Tangy, Frédéric

    2014-03-01

    The recent identification of a novel human coronavirus responsible of a SARS-like illness in the Middle-East a decade after the SARS pandemic, demonstrates that reemergence of a SARS-like coronavirus from an animal reservoir remains a credible threat. Because SARS is contracted by aerosolized contamination of the respiratory tract, a vaccine inducing mucosal long-term protection would be an asset to control new epidemics. To this aim, we generated live attenuated recombinant measles vaccine (MV) candidates expressing either the membrane-anchored SARS-CoV spike (S) protein or its secreted soluble ectodomain (Ssol). In mice susceptible to measles virus, recombinant MV expressing the anchored full-length S induced the highest titers of neutralizing antibodies and fully protected immunized animals from intranasal infectious challenge with SARS-CoV. As compared to immunization with adjuvanted recombinant Ssol protein, recombinant MV induced stronger and Th1-biased responses, a hallmark of live attenuated viruses and a highly desirable feature for an antiviral vaccine. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Virus-like particle vaccines containing F or F and G proteins confer protection against respiratory syncytial virus without pulmonary inflammation in cotton rats.

    Science.gov (United States)

    Hwang, Hye Suk; Kim, Ki-Hye; Lee, Youri; Lee, Young-Tae; Ko, Eun-Ju; Park, SooJin; Lee, Jong Seok; Lee, Byung-Cheol; Kwon, Young-Man; Moore, Martin L; Kang, Sang-Moo

    2017-05-04

    Vaccine-enhanced disease has been a major obstacle in developing a safe vaccine against respiratory syncytial virus (RSV). This study demonstrates the immunogenicity, efficacy, and safety of virus-like particle (VLP) vaccines containing RSV F (F VLP), G (G VLP), or F and G proteins (FG VLP) in cotton rats. RSV specific antibodies were effectively induced by vaccination of cotton rats with F VLP or FG VLP vaccines. After challenge, lung RSV clearance was observed with RSV F, G, FG VLP, and formalin inactivated RSV (FI-RSV) vaccines. Upon RSV infection, cotton rats with RSV VLP vaccines were protected against airway hyper-responsiveness and weight loss, which are different from FI-RSV vaccination exhibiting vaccine-enhanced disease of airway obstruction, weight loss, and severe histopathology with eosinophilia and mucus production. FG VLP and F VLP vaccines did not cause pulmonary inflammation whereas G VLP induced moderate lung inflammation with eosinophilia and mucus production. In particular, F VLP and FG VLP vaccines were found to be effective in inducing antibody secreting cell responses in bone marrow and lymphoid organs as well as avoiding the induction of T helper type 2 cytokines. These results provide further evidence to develop a safe RSV vaccine based on VLP platforms.

  3. Human T cell responses induced by vaccination with Mycobacterium bovis bacillus Calmette-Guérin

    DEFF Research Database (Denmark)

    Ravn, P; Boesen, H; Pedersen, B K

    1997-01-01

    depending on the prevaccination sensitivity to PPD. Previously sensitized donors mounted a potent and highly accelerated recall response within the first week of BCG vaccination. Nonsensitized donors, in contrast, exhibited a gradually increasing responsiveness to mycobacterial Ags, reaching maximal levels......Many aspects of the widely used bacillus Calmette-Guérin (BCG) vaccine against tuberculosis are still the subject of controversy. There is a huge variation in efficacy from one clinical trial to another and no relationship between vaccine-induced skin test conversion and subsequent protection. We...... have studied in vitro cell-mediated immune responses primed by BCG vaccination in 22 healthy Danish donors with different levels of in vitro purified protein derivative (PPD) reactivity before vaccination. The study demonstrated a markedly different development of reactivity to mycobacterial Ags...

  4. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis

    Directory of Open Access Journals (Sweden)

    Rolf Billeskov

    2018-01-01

    Full Text Available Mycobacterium tuberculosis (Mtb, the etiologic agent of tuberculosis (TB, causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world’s population with latent Mtb infection (LTBI, and 5–10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660 TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.

  5. Oral Vaccination with Lipid-Formulated BCG Induces a Long-lived, Multifunctional CD4+ T Cell Memory Immune Response

    Science.gov (United States)

    Ancelet, Lindsay R.; Aldwell, Frank E.; Rich, Fenella J.; Kirman, Joanna R.

    2012-01-01

    Oral delivery of BCG in a lipid formulation (Liporale™-BCG) targets delivery of viable bacilli to the mesenteric lymph nodes and confers protection against an aerosol Mycobacterium tuberculosis challenge. The magnitude, quality and duration of the effector and memory immune response induced by Liporale™-BCG vaccination is unknown. Therefore, we compared the effector and memory CD4+ T cell response in the spleen and lungs of mice vaccinated with Liporale™-BCG to the response induced by subcutaneous BCG vaccination. Liporale™-BCG vaccination induced a long-lived CD4+ T cell response, evident by the detection of effector CD4+ T cells in the lungs and a significant increase in the number of Ag85B tetramer-specific CD4+ T cells in the spleen up to 30 weeks post vaccination. Moreover, following polyclonal stimulation, Liporale™-BCG vaccination, but not s.c. BCG vaccination, induced a significant increase in both the percentage of CD4+ T cells in the lungs capable of producing IFNγ and the number of multifunctional CD4+ T cells in the lungs at 30 weeks post vaccination. These results demonstrate that orally delivered Liporale™-BCG vaccine induces a long-lived multifunctional immune response, and could therefore represent a practical and effective means of delivering novel BCG-based TB vaccines. PMID:23049885

  6. Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge.

    Directory of Open Access Journals (Sweden)

    Misako Yoneda

    Full Text Available Nipah virus (NiV is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G. Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi. Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans.

  7. Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge.

    Science.gov (United States)

    Yoneda, Misako; Georges-Courbot, Marie-Claude; Ikeda, Fusako; Ishii, Miho; Nagata, Noriyo; Jacquot, Frederic; Raoul, Hervé; Sato, Hiroki; Kai, Chieko

    2013-01-01

    Nipah virus (NiV) is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G). Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi). Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans.

  8. Vaccination of mice with plasmids expressing processed capsid protein of foot-and-mouth disease virus - Importance of dominant and subdominant epitopes for antigenicity and protection

    DEFF Research Database (Denmark)

    Frimann, Tine; Barfoed, Annette Malene; Aasted, Bent

    2007-01-01

    example of a dominant and variable site. This variability is a problem when designing vaccines against this disease, because it necessitates a close match between vaccine strain and virus in an outbreak. We have introduced a series of mutations into viral capsid proteins with the aim of selectively...... as compared to mice vaccinated with wild type epitopes. Most of the modifications did not adversely affect the ability of the plasmids to induce complete protection of mice against homologous challenge....

  9. Biomarkers of safety and immune protection for genetically modified live attenuated leishmania vaccines against visceral leishmaniasis - discovery and implications.

    Science.gov (United States)

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen(-/-) in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  10. Biomarkers of Safety and Immune Protection for Genetically Modified Live Attenuated Leishmania Vaccines Against Visceral Leishmaniasis – Discovery and Implications

    Science.gov (United States)

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L.

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen−/− in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  11. The HyVac4 subunit vaccine efficiently boosts BCG-primed anti-mycobacterial protective immunity.

    Directory of Open Access Journals (Sweden)

    Rolf Billeskov

    Full Text Available BACKGROUND: The current vaccine against tuberculosis (TB, BCG, has failed to control TB worldwide and the protective efficacy is moreover limited to 10-15 years. A vaccine that could efficiently boost a BCG-induced immune response and thus prolong protective immunity would therefore have a significant impact on the global TB-burden. METHODS/FINDINGS: In the present study we show that the fusion protein HyVac4 (H4, consisting of the mycobacterial antigens Ag85B and TB10.4, given in the adjuvant IC31® or DDA/MPL effectively boosted and prolonged immunity induced by BCG, leading to improved protection against infection with virulent M. tuberculosis (M.tb. Increased protection correlated with an increased percentage of TB10.4 specific IFNγ/TNFα/IL-2 or TNFα/IL-2 producing CD4 T cells at the site of infection. Moreover, this vaccine strategy did not compromise the use of ESAT-6 as an accurate correlate of disease development/vaccine efficacy. Indeed both CD4 and CD8 ESAT-6 specific T cells showed significant correlation with bacterial levels. CONCLUSIONS/SIGNIFICANCE: H4-IC31® can efficiently boost BCG-primed immunity leading to an increased protective anti-M.tb immune response dominated by IFNγ/TNFα/IL-2 or TNFα/IL2 producing CD4 T cells. H4 in the CD4 T cell inducing adjuvant IC31® is presently in clinical trials.

  12. Immunogenicity, safety and protective efficacy of one dose of the rhesus rotavirus vaccine and serotype 1 and 2 human-rhesus rotavirus reassortants in children from Lima, Peru.

    Science.gov (United States)

    Lanata, C F; Black, R E; Flores, J; Lazo, F; Butron, B; Linares, A; Huapaya, A; Ventura, G; Gil, A; Kapikian, A Z

    1996-02-01

    rotavirus vaccine failed to induce either an adequate serotype-specific seroresponse or serotype-specific protection in children immunized at 2 months of age. Only the RRV vaccine induced a low level of protection against rotavirus diarrhea mainly of serotype G1 specificity. Future studies need to explore whether higher vaccine dose and/or more than one dose would increase the immunogenicity and efficacy of the rotavirus vaccine, especially in developing countries with a high level of baseline rotavirus antibodies.

  13. Virus-Like Particle Vaccination Protects Nonhuman Primates from Lethal Aerosol Exposure with Marburgvirus (VLP Vaccination Protects Macaques against Aerosol Challenges).

    Science.gov (United States)

    Dye, John M; Warfield, Kelly L; Wells, Jay B; Unfer, Robert C; Shulenin, Sergey; Vu, Hong; Nichols, Donald K; Aman, M Javad; Bavari, Sina

    2016-04-08

    Marburg virus (MARV) was the first filovirus to be identified following an outbreak of viral hemorrhagic fever disease in Marburg, Germany in 1967. Due to several factors inherent to filoviruses, they are considered a potential bioweapon that could be disseminated via an aerosol route. Previous studies demonstrated that MARV virus-like particles (VLPs) containing the glycoprotein (GP), matrix protein VP40 and nucleoprotein (NP) generated using a baculovirus/insect cell expression system could protect macaques from subcutaneous (SQ) challenge with multiple species of marburgviruses. In the current study, the protective efficacy of the MARV VLPs in conjunction with two different adjuvants: QS-21, a saponin derivative, and poly I:C against homologous aerosol challenge was assessed in cynomolgus macaques. Antibody responses against the GP antigen were equivalent in all groups receiving MARV VLPs irrespective of the adjuvant; adjuvant only-vaccinated macaques did not demonstrate appreciable antibody responses. All macaques were subsequently challenged with lethal doses of MARV via aerosol or SQ as a positive control. All MARV VLP-vaccinated macaques survived either aerosol or SQ challenge while animals administered adjuvant only exhibited clinical signs and lesions consistent with MARV disease and were euthanized after meeting the predetermined criteria. Therefore, MARV VLPs induce IgG antibodies recognizing MARV GP and VP40 and protect cynomolgus macaques from an otherwise lethal aerosol exposure with MARV.

  14. Virus-Like Particle Vaccination Protects Nonhuman Primates from Lethal Aerosol Exposure with Marburgvirus (VLP Vaccination Protects Macaques against Aerosol Challenges

    Directory of Open Access Journals (Sweden)

    John M. Dye

    2016-04-01

    Full Text Available Marburg virus (MARV was the first filovirus to be identified following an outbreak of viral hemorrhagic fever disease in Marburg, Germany in 1967. Due to several factors inherent to filoviruses, they are considered a potential bioweapon that could be disseminated via an aerosol route. Previous studies demonstrated that MARV virus-like particles (VLPs containing the glycoprotein (GP, matrix protein VP40 and nucleoprotein (NP generated using a baculovirus/insect cell expression system could protect macaques from subcutaneous (SQ challenge with multiple species of marburgviruses. In the current study, the protective efficacy of the MARV VLPs in conjunction with two different adjuvants: QS-21, a saponin derivative, and poly I:C against homologous aerosol challenge was assessed in cynomolgus macaques. Antibody responses against the GP antigen were equivalent in all groups receiving MARV VLPs irrespective of the adjuvant; adjuvant only-vaccinated macaques did not demonstrate appreciable antibody responses. All macaques were subsequently challenged with lethal doses of MARV via aerosol or SQ as a positive control. All MARV VLP-vaccinated macaques survived either aerosol or SQ challenge while animals administered adjuvant only exhibited clinical signs and lesions consistent with MARV disease and were euthanized after meeting the predetermined criteria. Therefore, MARV VLPs induce IgG antibodies recognizing MARV GP and VP40 and protect cynomolgus macaques from an otherwise lethal aerosol exposure with MARV.

  15. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies.

    Science.gov (United States)

    Ricklin, Meret E; Vielle, Nathalie J; Python, Sylvie; Brechbühl, Daniel; Zumkehr, Beatrice; Posthaus, Horst; Zimmer, Gert; Summerfield, Artur

    2016-01-01

    This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4(+) T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value.

  16. Targeting Vaccine-Induced Extrafollicular Pathway of B Cell Differentiation Improves Rabies Postexposure Prophylaxis.

    Science.gov (United States)

    Haley, Shannon L; Tzvetkov, Evgeni P; Meuwissen, Samantha; Plummer, Joseph R; McGettigan, James P

    2017-04-15

    Vaccine-induced B cells differentiate along two pathways. The follicular pathway gives rise to germinal centers (GCs) that can take weeks to fully develop. The extrafollicular pathway gives rise to short-lived plasma cells (PCs) that can rapidly secrete protective antibodies within days of vaccination. Rabies virus (RABV) postexposure prophylaxis (PEP) requires rapid vaccine-induced humoral immunity for protection. Therefore, we hypothesized that targeting extrafollicular B cell responses for activation would improve the speed and magnitude of RABV PEP. To test this hypothesis, we constructed, recovered, and characterized a recombinant RABV-based vaccine expressing murine B cell activating factor (BAFF) (rRABV-mBAFF). BAFF is an ideal molecule to improve early pathways of B cell activation, as it links innate and adaptive immunity, promoting potent B cell responses. Indeed, rRABV-mBAFF induced a faster, higher antibody response in mice and enhanced survivorship in PEP settings compared to rRABV. Interestingly, rRABV-mBAFF and rRABV induced equivalent numbers of GC B cells, suggesting that rRABV-mBAFF augmented the extrafollicular B cell pathway. To confirm that rRABV-mBAFF modulated the extrafollicular pathway, we used a signaling lymphocytic activation molecule (SLAM)-associated protein (SAP)-deficient mouse model. In response to antigen, SAP-deficient mice form extrafollicular B cell responses but do not generate GCs. rRABV-mBAFF induced similar anti-RABV antibody responses in SAP-deficient and wild-type mice, demonstrating that BAFF modulated immunity through the extrafollicular and not the GC B cell pathway. Collectively, strategies that manipulate pathways of B cell activation may facilitate the development of a single-dose RABV vaccine that replaces current complicated and costly RABV PEP. IMPORTANCE Effective RABV PEP is currently resource- and cost-prohibitive in regions of the world where RABV is most prevalent. In order to diminish the requirements for

  17. CD4+ T cells mediate the protective effect of the recombinant Asp f3-based anti-aspergillosis vaccine.

    Science.gov (United States)

    Diaz-Arevalo, Diana; Bagramyan, Karine; Hong, Teresa B; Ito, James I; Kalkum, Markus

    2011-06-01

    The mortality and morbidity caused by invasive aspergillosis present a major obstacle to the successful treatment of blood cancers with hematopoietic cell transplants. Patients who receive hematopoietic cell transplants are usually immunosuppressed for extended periods, and infection with the ubiquitous mold Aspergillus fumigatus is responsible for most cases of aspergillosis. Previously, we demonstrated that vaccination with recombinant forms of the A. fumigatus protein Asp f3 protected cortisone acetate-immunosuppressed mice from experimentally induced pulmonary aspergillosis. Here, we investigated the vaccine's protective mechanism and evaluated in particular the roles of antibodies and T cells. After vaccination, Asp f3-specific preinfection IgG titers did not significantly differ between surviving and nonsurviving mice, and passive transfer of anti-Asp f3 antibodies did not protect immunosuppressed recipients from aspergillosis. We experimentally confirmed Asp f3's predicted peroxisomal localization in A. fumigatus hyphae. We found that fungal Asp f3 is inaccessible to antibodies, unless both cell walls and membranes have been permeabilized. Antibody-induced depletion of CD4+ T cells reduced the survival of recombinant Asp f3 (rAsp f3)-vaccinated mice to nonimmune levels, and transplantation of purified CD4+ T cells from rAsp f3-vaccinated mice into nonimmunized recipients transferred antifungal protection. In addition, residues 60 to 79 and 75 to 94 of Asp f3 contain epitopes that induce proliferation of T cells from vaccinated survivors. Vaccine-primed CD4+ T cells are not expected to clear the fungal pathogen directly; however, they may locally activate immunosuppressed phagocytes that elicit the antifungal effect.

  18. CD4+ T Cells Mediate the Protective Effect of the Recombinant Asp f3-Based Anti-Aspergillosis Vaccine

    Science.gov (United States)

    Diaz-Arevalo, Diana; Bagramyan, Karine; Hong, Teresa B.; Ito, James I.; Kalkum, Markus

    2011-01-01

    The mortality and morbidity caused by invasive aspergillosis present a major obstacle to the successful treatment of blood cancers with hematopoietic cell transplants. Patients who receive hematopoietic cell transplants are usually immunosuppressed for extended periods, and infection with the ubiquitous mold Aspergillus fumigatus is responsible for most cases of aspergillosis. Previously, we demonstrated that vaccination with recombinant forms of the A. fumigatus protein Asp f3 protected cortisone acetate-immunosuppressed mice from experimentally induced pulmonary aspergillosis. Here, we investigated the vaccine's protective mechanism and evaluated in particular the roles of antibodies and T cells. After vaccination, Asp f3-specific preinfection IgG titers did not significantly differ between surviving and nonsurviving mice, and passive transfer of anti-Asp f3 antibodies did not protect immunosuppressed recipients from aspergillosis. We experimentally confirmed Asp f3's predicted peroxisomal localization in A. fumigatus hyphae. We found that fungal Asp f3 is inaccessible to antibodies, unless both cell walls and membranes have been permeabilized. Antibody-induced depletion of CD4+ T cells reduced the survival of recombinant Asp f3 (rAsp f3)-vaccinated mice to nonimmune levels, and transplantation of purified CD4+ T cells from rAsp f3-vaccinated mice into nonimmunized recipients transferred antifungal protection. In addition, residues 60 to 79 and 75 to 94 of Asp f3 contain epitopes that induce proliferation of T cells from vaccinated survivors. Vaccine-primed CD4+ T cells are not expected to clear the fungal pathogen directly; however, they may locally activate immunosuppressed phagocytes that elicit the antifungal effect. PMID:21422177

  19. Vaccinations

    Science.gov (United States)

    ... disease — reinforcing the importance of vaccines in your pet's preventive health care program. Are there risks? Any treatment carries some risk, but these risks should be weighed against the benefits of protecting your pet from potentially fatal diseases. ...

  20. Challenge of Pigs with Classical Swine Fever Viruses after C-Strain Vaccination Reveals Remarkably Rapid Protection and Insights into Early Immunity

    Science.gov (United States)

    Haines, Felicity J.; Johns, Helen L.; Sosan, Olubukola A.; Salguero, Francisco J.; Clifford, Derek J.; Steinbach, Falko; Drew, Trevor W.; Crooke, Helen R.

    2012-01-01

    Pre-emptive culling is becoming increasingly questioned as a means of controlling animal diseases, including classical swine fever (CSF). This has prompted discussions on the use of emergency vaccination to control future CSF outbreaks in domestic pigs. Despite a long history of safe use in endemic areas, there is a paucity of data on aspects important to emergency strategies, such as how rapidly CSFV vaccines would protect against transmission, and if this protection is equivalent for all viral genotypes, including highly divergent genotype 3 strains. To evaluate these questions, pigs were vaccinated with the Riemser® C-strain vaccine at 1, 3 and 5 days prior to challenge with genotype 2.1 and 3.3 challenge strains. The vaccine provided equivalent protection against clinical disease caused by for the two challenge strains and, as expected, protection was complete at 5 days post-vaccination. Substantial protection was achieved after 3 days, which was sufficient to prevent transmission of the 3.3 strain to animals in direct contact. Even by one day post-vaccination approximately half the animals were partially protected, and were able to control the infection, indicating that a reduction of the infectious potential is achieved very rapidly after vaccination. There was a close temporal correlation between T cell IFN-γ responses and protection. Interestingly, compared to responses of animals challenged 5 days after vaccination, challenge of animals 3 or 1 days post-vaccination resulted in impaired vaccine-induced T cell responses. This, together with the failure to detect a T cell IFN-γ response in unprotected and unvaccinated animals, indicates that virulent CSFV can inhibit the potent antiviral host defences primed by C-strain in the early period post vaccination. PMID:22235283

  1. RiVax, a recombinant ricin subunit vaccine, protects mice against ricin delivered by gavage or aerosol

    Science.gov (United States)

    Smallshaw, Joan E.; Richardson, James A.; Vitetta, Ellen S.

    2007-01-01

    Ricin is a plant toxin that is a CDC level B biothreat. Our recombinant ricin A chain vaccine (RiVax), which contains mutations in both known toxic sites, has no residual toxicity at doses at least 800 times the immunogenic dose. RiVax without adjuvant given intramuscularly (i.m.) protected mice against intraperitoneally administered ricin. Furthermore the vaccine without alum was safe and immunogenic in human volunteers. Here we describe the development of gavage and aerosol ricin challenge models in mice and demonstrate that i.m. vaccination protects mice against ricin delivered by either route. Also RiVax protects against aerosol-induced lung damage as determined by histology and lung function tests. PMID:17875350

  2. A safe vaccine (DV-STM-07) against Salmonella infection prevents abortion and confers protective immunity to the pregnant and new born mice.

    Science.gov (United States)

    Negi, Vidya Devi; Nagarajan, Arvindhan G; Chakravortty, Dipshikha

    2010-02-10

    Pregnancy is a transient immuno-compromised condition which has evolved to avoid the immune rejection of the fetus by the maternal immune system. The altered immune response of the pregnant female leads to increased susceptibility to invading pathogens, resulting in abortion and congenital defects of the fetus and a subnormal response to vaccination. Active vaccination during pregnancy may lead to abortion induced by heightened cell mediated immune response. In this study, we have administered the highly attenuated vaccine strain DeltapmrG-HM-D (DV-STM-07) in female mice before the onset of pregnancy and followed the immune reaction against challenge with virulent S. Typhimurium in pregnant mice. Here we demonstrate that DV-STM-07 vaccine gives protection against Salmonella in pregnant mice and also prevents Salmonella induced abortion. This protection is conferred by directing the immune response towards Th2 activation and Th1 suppression. The low Th1 response prevents abortion. The use of live attenuated vaccine just before pregnancy carries the risk of transmission to the fetus. We have shown that this vaccine is safe as the vaccine strain is quickly eliminated from the mother and is not transmitted to the fetus. This vaccine also confers immunity to the new born mice of vaccinated mothers. Since there is no evidence of the vaccine candidate reaching the new born mice, we hypothesize that it may be due to trans-colostral transfer of protective anti-Salmonella antibodies. These results suggest that our vaccine DV-STM-07 can be very useful in preventing abortion in the pregnant individuals and confer immunity to the new born. Since there are no such vaccine candidates which can be given to the new born and to the pregnant women, this vaccine holds a very bright future to combat Salmonella induced pregnancy loss.

  3. A safe vaccine (DV-STM-07 against Salmonella infection prevents abortion and confers protective immunity to the pregnant and new born mice.

    Directory of Open Access Journals (Sweden)

    Vidya Devi Negi

    Full Text Available Pregnancy is a transient immuno-compromised condition which has evolved to avoid the immune rejection of the fetus by the maternal immune system. The altered immune response of the pregnant female leads to increased susceptibility to invading pathogens, resulting in abortion and congenital defects of the fetus and a subnormal response to vaccination. Active vaccination during pregnancy may lead to abortion induced by heightened cell mediated immune response. In this study, we have administered the highly attenuated vaccine strain DeltapmrG-HM-D (DV-STM-07 in female mice before the onset of pregnancy and followed the immune reaction against challenge with virulent S. Typhimurium in pregnant mice. Here we demonstrate that DV-STM-07 vaccine gives protection against Salmonella in pregnant mice and also prevents Salmonella induced abortion. This protection is conferred by directing the immune response towards Th2 activation and Th1 suppression. The low Th1 response prevents abortion. The use of live attenuated vaccine just before pregnancy carries the risk of transmission to the fetus. We have shown that this vaccine is safe as the vaccine strain is quickly eliminated from the mother and is not transmitted to the fetus. This vaccine also confers immunity to the new born mice of vaccinated mothers. Since there is no evidence of the vaccine candidate reaching the new born mice, we hypothesize that it may be due to trans-colostral transfer of protective anti-Salmonella antibodies. These results suggest that our vaccine DV-STM-07 can be very useful in preventing abortion in the pregnant individuals and confer immunity to the new born. Since there are no such vaccine candidates which can be given to the new born and to the pregnant women, this vaccine holds a very bright future to combat Salmonella induced pregnancy loss.

  4. Transcriptional profiling of mycobacterial antigen-induced responses in infants vaccinated with BCG at birth

    Directory of Open Access Journals (Sweden)

    Hill Adrian VS

    2009-02-01

    Full Text Available Abstract Background Novel tuberculosis (TB vaccines recently tested in humans have been designed to boost immunity induced by the current vaccine, Mycobacterium bovis Bacille Calmette-Guérin (BCG. Because BCG vaccination is used extensively in infants, this population group is likely to be the first in which efficacy trials of new vaccines will be conducted. However, our understanding of the complexity of immunity to BCG in infants is inadequate, making interpretation of vaccine-induced immune responses difficult. Methods To better understand BCG-induced immunity, we performed gene expression profiling in five 10-week old infants routinely vaccinated with BCG at birth. RNA was extracted from 12 hour BCG-stimulated or purified protein derivative of tuberculin (PPD-stimulated PBMC, isolated from neonatal blood collected 10 weeks after vaccination. RNA was hybridised to the Sentrix® HumanRef-8 Expression BeadChip (Illumina to measure expression of >16,000 genes. Results We found that ex vivo stimulation of PBMC with PPD and BCG induced largely similar gene expression profiles, except that BCG induced greater macrophage activation. The peroxisome proliferator-activated receptor (PPAR signaling pathway, including PPAR-γ, involved in activation of the alternative, anti-inflammatory macrophage response was down-regulated following stimulation with both antigens. In contrast, up-regulation of genes associated with the classic, pro-inflammatory macrophage response was noted. Further analysis revealed a decrease in the expression of cell adhesion molecules (CAMs, including integrin alpha M (ITGAM, which is known to be important for entry of mycobacteria into the macrophage. Interestingly, more leukocyte genes were down-regulated than up-regulated. Conclusion Our results suggest that a combination of suppressed and up-regulated genes may be key in determining development of protective immunity to TB induced by vaccination with BCG.

  5. Low Protective Efficacy of the Current Japanese Encephalitis Vaccine against the Emerging Genotype 5 Japanese Encephalitis Virus.

    Science.gov (United States)

    Cao, Lei; Fu, Shihong; Gao, Xiaoyan; Li, Minghua; Cui, Shiheng; Li, Xiaolong; Cao, Yuxi; Lei, Wenwen; Lu, Zhi; He, Ying; Wang, Huanyu; Yan, Jinghua; Gao, George Fu; Liang, Guodong

    2016-05-01

    The current Japanese encephalitis (JE) vaccine derived from G3 JE virus (JEV) can induce protective immunity against G1-G4 JEV genotypes. However, protective efficacy against the emerging G5 genotype has not been reported. Using in vitro and in vivo tests, biological phenotype and cross-immunoreactions were compared between G3 JEV and G5 JEV (wild strains). The PRNT90 method was used to detect neutralizing antibodies against different genotypes of JEV in JE vaccine-immunized subjects and JE patients. In JE vaccine-immunized mice, the lethal challenge protection rates against G3 and G5 JEV wild strains were 100% and 50%, respectively. The seroconversion rates (SCRs) of virus antibodies against G3 and G5 JEV among vaccinated healthy subjects were 100% and 35%, respectively. All clinically identified JE patients showed high levels of G3 JEV neutralizing antibodies (≥1:10-1280) with positive serum geometric mean titers (GMTs) of 43.2, while for G5 JEV, neutralizing antibody conversion rates were only 64% with positive serum GMTs of 11.14. Moreover, the positive rate of JEV neutralizing antibodies against G5 JEV in pediatric patients was lower than in adults. Low levels of neutralizing/protective antibodies induced by the current JE vaccine, based on the G3 genotype, were observed against the emerging G5 JEV genotype. Our results demonstrate the need for more detailed studies to reevaluate whether or not the apparent emergence of G5 JEV can be attributed to failure of the current vaccine to induce appropriate immune protectivity against this genotype of JEV.

  6. Evaluation of Recombinant Attenuated Salmonella Vaccine Strains for Broad Protection against Extraintestinal Pathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jacob T. Maddux

    2017-10-01

    Full Text Available Antibiotic-resistant bacterial infections are difficult to treat, producing a burden on healthcare and the economy. Extraintestinal pathogenic Escherichia coli (ExPEC strains frequently carry antibiotic resistance genes, cause infections outside of the intestine, and are causative agents of hospital-acquired infections. Developing a prevention strategy against this pathogen is challenging due to its antibiotic resistance and antigenic diversity. E. coli common pilus (ECP is frequently found in ExPEC strains and may serve as a common antigen to induce protection against several ExPEC serotypes. In addition, live recombinant attenuated Salmonella vaccine (RASV strains have been used to prevent Salmonella infection and can also be modified to deliver foreign antigens. Thus, the objective of this study was to design a RASV to produce ECP on its surface and assess its ability to provide protection against ExPEC infections. To constitutively display ECP in a RASV strain, we genetically engineered a vector (pYA4428 containing aspartate-β-semialdehyde dehydrogenase and E. coli ecp genes and introduced it into RASV χ9558. RASV χ9558 containing an empty vector (pYA3337 was used as a control to assess protection conferred by the RASV strain without ECP. We assessed vaccine efficacy in in vitro bacterial inhibition assays and mouse models of ExPEC-associated human infections. We found that RASV χ9558(pYA4428 synthesized the major pilin (EcpA and tip pilus adhesin (EcpD on the bacterial surface. Mice orally vaccinated with RASV χ9558(pYA3337 without ECP or χ9558(pYA4428 with ECP, produced anti-Salmonella LPS and anti-E. coli EcpA and EcpD IgG and IgA antibodies. RASV strains showed protective potential against some E. coli and Salmonella strains as assessed using in vitro assays. In mouse sepsis and urinary tract infection challenge models, both vaccines had significant protection in some internal organs. Overall, this work showed that RASVs can elicit

  7. Vaccine-induced canine distemper in European mink, Mustela lutreola.

    Science.gov (United States)

    Sutherland-Smith, M R; Rideout, B A; Mikolon, A B; Appel, M J; Morris, P J; Shima, A L; Janssen, D J

    1997-09-01

    This report describes vaccine-induced canine distemper virus (CDV) infection in four European mink (Mustela lutreola) induced by the administration of a multivalent, avian-origin vaccine. Clinical signs consisting of seizures, ataxia, facial twitching, oculonasal discharge, hyperkeratosis of footpads, and anorexia developed 16-20 days postvaccination. Conjunctival smears from one animal were positive for CDV antigen by direct fluorescent antibody testing, confirming the clinical diagnosis. The four mink died 16-26 days postvaccination. Gross and microscopic lesions that were diagnostic for CDV infection included interstitial pneumonia, lymphoid depletion, nonsuppurative encephalitis, and dermatitis. Vaccine-strain virus was isolated from tissues of three animals. Cases of vaccine-induced distemper in mustelids using avian-origin vaccine have seldom been reported.

  8. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model.

    Science.gov (United States)

    Cervantes-Villagrana, Alberto R; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2013-01-11

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0-89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Development of fowl cholera vaccine: I. Protection of Pasteurella multocida local isolate vaccine against challenge of homologous and heterologous strains.

    Directory of Open Access Journals (Sweden)

    Supar

    2001-03-01

    Full Text Available Pasteurella multocida locally isolated from chicken and ducks (BCC 299, BCC 2331, DY1, DY2, 12TG, 15TG andimported strains (BCC 1359, 1362; HEDDLESTON group 1 and 6 respectively had been tested for its pathogenicity in theprevious study. The aims of this experiment were to study the preparation of local isolate pasteurellosis vaccines and to determine the protective effect of that vaccines in chicken against the highly pathogenic local isolates of P. multocida. Killed monovalent, bivalent and polyvalent pasteurellosis vaccines were prepared and each was adjunvanted with aluminum hydroxide gel at a final concentration of 1.5% and the cell concentration was equal to the No 10 of MacFarland tube standard. Each of the vaccine prepared was used to vaccinated on a group of six week old of layer chicken (8 per group. Each chicken was subcutaneously injected with 0.2 ml of vaccine, four weeks later each was boostered with similar vaccine with the same dose. Two weeks after giving the boostered vaccine each group of chicken were challenged, half with life bacterium of P. Multocida BCC 2331 and other with DY2. Any chick which survive after challenge was designated as protected by vaccination. Before vaccination 1 ml of blood was drawn from each of chicken and then two weeks apart up to challenge. Serum from each sample was separated and kept in deep freeze until tested by enzyme-linked immunosorbent assay (ELISA. Chicken vaccinated with killed whole cell P. multocida vaccines of monovalent (BCC 2331 or DY2 and bivalent (BCC 2331 + DY2 were protected against challenge with live bacterium of either BCC 2331 or DY2 at rate 67-100%. There was no protection in chicken vaccinated with either BCC 299, DY1, 12TG, 15TG, BCC 1359, or 1362 killed vaccine. Similarly no protection of chicken vaccinated with either DY1 + BCC299, 12TG + 15TG or BCC 1359 + BCC 1362 bivalent vaccines. The protection rate of the polyvalent local isolate vaccine was at average 50-75%. All

  10. An attenuated LC16m8 smallpox vaccine: analysis of full-genome sequence and induction of immune protection.

    Science.gov (United States)

    Morikawa, Shigeru; Sakiyama, Tokuki; Hasegawa, Hideki; Saijo, Masayuki; Maeda, Akihiko; Kurane, Ichiro; Maeno, Go; Kimura, Junko; Hirama, Chie; Yoshida, Teruhiko; Asahi-Ozaki, Yasuko; Sata, Tetsutaro; Kurata, Takeshi; Kojima, Asato

    2005-09-01

    The potential threat of smallpox bioterrorism has made urgent the development of lower-virulence vaccinia virus vaccines. An attenuated LC16m8 (m8) vaccine was developed in 1975 from the Lister strain used in the World Health Organization smallpox eradication program but was not used against endemic smallpox. Today, no vaccines can be tested with variola virus for efficacy in humans, and the mechanisms of immune protection against the major intracellular mature virion (IMV) and minor extracellular enveloped virion (EEV) populations of poxviruses are poorly understood. Here, we determined the full-genome sequences of the m8, parental LC16mO (mO), and grandparental Lister (LO) strains and analyzed their evolutionary relationships. Sequence data and PCR analysis indicated that m8 was a progeny of LO and that m8 preserved almost all of the open reading frames of vaccinia virus except for the disrupted EEV envelope gene B5R. In accordance with this genomic background, m8 induced 100% protection against a highly pathogenic vaccinia WR virus in mice by a single vaccination, despite the lack of anti-B5R and anti-EEV antibodies. The immunogenicity and priming efficacy with the m8 vaccine consisting mainly of IMV were as high as those with the intact-EEV parental mO and grandparental LO vaccines. Thus, mice vaccinated with 10(7) PFU of m8 produced low levels of anti-B5R antibodies after WR challenge, probably because of quick clearance of B5R-expressing WR EEV by strong immunity induced by the vaccination. These results suggest that priming with m8 IMV provides efficient protection despite undetectable levels of immunity against EEV.

  11. Preclinical development of a dengue tetravalent recombinant subunit vaccine: Immunogenicity and protective efficacy in nonhuman primates.

    Science.gov (United States)

    Govindarajan, Dhanasekaran; Meschino, Steven; Guan, Liming; Clements, David E; ter Meulen, Jan H; Casimiro, Danilo R; Coller, Beth-Ann G; Bett, Andrew J

    2015-08-07

    We describe here the preclinical development of a dengue vaccine composed of recombinant subunit carboxy-truncated envelope (E) proteins (DEN-80E) for each of the four dengue serotypes. Immunogenicity and protective efficacy studies in Rhesus monkeys were conducted to evaluate monovalent and tetravalent DEN-80E vaccines formulated with ISCOMATRIX™ adjuvant. Three different doses and two dosing regimens (0, 1, 2 months and 0, 1, 2, and 6 months) were evaluated in these studies. We first evaluated monomeric (DEN4-80E) and dimeric (DEN4-80EZip) versions of DEN4-80E, the latter generated in an attempt to improve immunogenicity. The two antigens, evaluated at 6, 20 and 100 μg/dose formulated with ISCOMATRIX™ adjuvant, were equally immunogenic. A group immunized with 20 μg DEN4-80E and Alhydrogel™ induced much weaker responses. When challenged with wild-type dengue type 4 virus, all animals in the 6 and 20 μg groups and all but one in the DEN4-80EZip 100 μg group were protected from viremia. Two out of three monkeys in the Alhydrogel™ group had breakthrough viremia. A similar study was conducted to evaluate tetravalent formulations at low (3, 3, 3, 6 μg of DEN1-80E, DEN2-80E, DEN3-80E and DEN4-80E respectively), medium (10, 10, 10, 20 μg) and high (50, 50, 50, 100 μg) doses. All doses were comparably immunogenic and induced high titer, balanced neutralizing antibodies against all four DENV. Upon challenge with the four wild-type DENV, all animals in the low and medium dose groups were protected against viremia while two animals in the high-dose group exhibited breakthrough viremia. Our studies also indicated that a 0, 1, 2 and 6 month vaccination schedule is superior to the 0, 1, and 2 month schedule in terms of durability. Overall, the subunit vaccine was demonstrated to induce strong neutralization titers resulting in protection against viremia following challenge even 8-12 months after the last vaccine dose. Copyright © 2015 Elsevier Ltd. All rights

  12. Presentation of peptides from Bacillus anthracis protective antigen on Tobacco Mosaic Virus as an epitope targeted anthrax vaccine.

    Science.gov (United States)

    McComb, Ryan C; Ho, Chi-Lee; Bradley, Kenneth A; Grill, Laurence K; Martchenko, Mikhail

    2015-11-27

    The current anthrax vaccine requires improvements for rapidly invoking longer-lasting neutralizing antibody responses with fewer doses from a well-defined formulation. Designing antigens that target neutralizing antibody epitopes of anthrax protective antigen, a component of anthrax toxin, may offer a solution for achieving a vaccine that can induce strong and long lasting antibody responses with fewer boosters. Here we report implementation of a strategy for developing epitope focused virus nanoparticle vaccines against anthrax by using immunogenic virus particles to present peptides derived from anthrax toxin previously identified in (1) neutralizing antibody epitope mapping studies, (2) toxin crystal structure analyses to identify functional regions, and (3) toxin mutational analyses. We successfully expressed two of three peptide epitopes from anthrax toxin that, in previous reports, bound antibodies that were partially neutralizing against toxin activity, discovered cross-reactivity between vaccine constructs and toxin specific antibodies raised in goats against native toxin and showed that antibodies induced by our vaccine constructs also cross-react with native toxin. While protection against intoxication in cellular and animal studies were not as effective as in previous studies, partial toxin neutralization was observed in animals, demonstrating the feasibility of using plant-virus nanoparticles as a platform for epitope defined anthrax vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The protective effect of a DNA vaccine encoding the Toxoplasma gondii cyclophilin gene in BALB/c mice.

    Science.gov (United States)

    Gong, P; Huang, X; Yu, Q; Li, Y; Huang, J; Li, J; Yang, J; Li, H; Zhang, G; Ren, W; Zhang, X

    2013-01-01

    Toxoplasmosis is a world-wide zoonosis that causes significant public health and veterinary problems. The study of vaccines remains the most promising method for the future prevention and control of toxoplasmosis. Recombinant Toxoplasma gondii cyclophilin has been shown to have potent PPIase and IL-12-inducing activities, thus promoting the stabilization of T. gondii's life cycle and maintaining the survival of its host during evolution. In this study, the T. gondii cyclophilin gene was used to construct a DNA vaccine (pVAX1-TgCyP). The immune response and protective efficacy of the vaccine against T. gondii infection in BALB/c mice were evaluated. All BALB/c mice that were vaccinated with pVAX1-TgCyP developed a high response with TgCyP-specific antibodies, and significant splenocyte proliferation (P < 0·05) compared with pVAX1 vector and PBS groups. pVAX1-TgCyP also induced a significant Th1 type immune response, indicated by the higher production of IL-2 and IFN-γ (P < 0·05). The survival rate of BALB/c mice increased significantly after vaccination with pVAX1-TgCyP (37·5%) (P < 0·05). These results indicate that TgCyP is a highly efficacious vaccine candidate that can generate protective immunity against T. gondii infection in BALB/c mice. © 2012 Blackwell Publishing Ltd.

  14. Francisella tularensis Live Vaccine Strain deficient in capB and overexpressing the fusion protein of IglA, IglB, and IglC from the bfr promoter induces improved protection against F. tularensis respiratory challenge.

    Science.gov (United States)

    Jia, Qingmei; Bowen, Richard; Lee, Bai-Yu; Dillon, Barbara Jane; Masleša-Galić, Saša; Horwitz, Marcus A

    2016-09-22

    A safer and more effective vaccine than the unlicensed Francisella tularensis Live Vaccine Strain (LVS) is needed to protect against the biowarfare agent F. tularensis. Previously, we developed an LVS ΔcapB mutant that is significantly safer than LVS and provides potent protective immunity against F. tularensis respiratory challenge when administered intranasally but limited protection when administered intradermally unless as part of a prime-boost vaccination strategy. To improve the immunogenicity and efficacy of LVS ΔcapB, we developed recombinant LVS ΔcapB (rLVS ΔcapB) strains overexpressing various F. tularensis Francisella Pathogenicity Island (FPI) proteins - IglA, IglB and IglC, and a fusion protein (IglABC) comprising immunodominant epitopes of IglA, IglB, and IglC downstream of different Francisella promoters, including the bacterioferritin (bfr) promoter. We show that rLVS ΔcapB/bfr-iglA, iglB, iglC, and iglABC express more IglA, IglB, IglC or IglABC than parental LVS ΔcapB in broth and in human macrophages, and stably express FPI proteins in macrophages and mice absent antibiotic selection. In response to IglC and heat-inactivated LVS, spleen cells from mice immunized intradermally with rLVS ΔcapB/bfr-iglC or bfr-iglABC secrete greater amounts of interferon-gamma and/or interleukin-17 than those from mice immunized with LVS ΔcapB, comparable to those from LVS-immunized mice. Mice immunized with rLVS ΔcapB/bfr-iglA, iglB, iglC or iglABC produce serum antibodies at levels similar to LVS-immunized mice. Mice immunized intradermally with rLVS ΔcapB/bfr-iglABC and challenged intranasally with virulent F. tularensis Schu S4 survive longer than sham- and LVS ΔcapB-immunized mice. Mice immunized intranasally with rLVS ΔcapB/bfr-iglABC - but not with LVS - just before or after respiratory challenge with F. tularensis Schu S4 are partially protected; protection is correlated with induction of a strong innate immune response. Thus, rLVS

  15. A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus.

    Science.gov (United States)

    Tsuda, Yoshimi; Caposio, Patrizia; Parkins, Christopher J; Botto, Sara; Messaoudi, Ilhem; Cicin-Sain, Luka; Feldmann, Heinz; Jarvis, Michael A

    2011-08-01

    Human outbreaks of Ebola virus (EBOV) are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees) are an important source of EBOV transmission to humans due to increased hunting of wildlife including the 'bush-meat' trade. Cytomegalovirus (CMV) is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes. We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a 'proof-of-concept' for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV) vector expressing a CD8+ T cell epitope from the nucleoprotein (NP) of Zaire ebolavirus (ZEBOV) (MCMV/ZEBOV-NP(CTL)). MCMV/ZEBOV-NP(CTL) induced high levels of long-lasting (>8 months) CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection. This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for 'disseminating' CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.

  16. A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus.

    Directory of Open Access Journals (Sweden)

    Yoshimi Tsuda

    2011-08-01

    Full Text Available Human outbreaks of Ebola virus (EBOV are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees are an important source of EBOV transmission to humans due to increased hunting of wildlife including the 'bush-meat' trade. Cytomegalovirus (CMV is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes.We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a 'proof-of-concept' for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV vector expressing a CD8+ T cell epitope from the nucleoprotein (NP of Zaire ebolavirus (ZEBOV (MCMV/ZEBOV-NP(CTL. MCMV/ZEBOV-NP(CTL induced high levels of long-lasting (>8 months CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection.This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for 'disseminating' CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.

  17. Rapid production of a H₉ N₂ influenza vaccine from MDCK cells for protecting chicken against influenza virus infection.

    Science.gov (United States)

    Ren, Zhenghua; Lu, Zhongzheng; Wang, Lei; Huo, Zeren; Cui, Jianhua; Zheng, Tingting; Dai, Qing; Chen, Cuiling; Qin, Mengying; Chen, Meihua; Yang, Rirong

    2015-04-01

    H9N2 subtype avian influenza viruses are widespread in domestic poultry, and vaccination remains the most effective way to protect the chicken population from avian influenza pandemics. Currently, egg-based H9N2 influenza vaccine production has several disadvantages and mammalian MDCK cells are being investigated as candidates for influenza vaccine production. However, little research has been conducted on low pathogenic avian influenza viruses (LPAIV) such as H9N2 replicating in mammalian cells using microcarrier beads in a bioreactor. In this study, we present a systematic analysis of a safe H9N2 influenza vaccine derived from MDCK cells for protecting chickens against influenza virus infection. In 2008, we isolated two novel H9N2 influenza viruses from chickens raised in southern China, and these H9N2 viruses were adapted to MDCK cells. The H9N2 virus was produced in MDCK cells in a scalable bioreactor, purified, inactivated, and investigated for use as a vaccine. The MDCK-derived H9N2 vaccine was able to induce high titers of neutralizing antibodies in chickens of different ages. Histopathological examination, direct immunofluorescence, HI assay, CD4(+)/CD8(+) ratio test, and cytokine evaluation indicated that the MDCK-derived H9N2 vaccine evoked a rapid and effective immune response to protect chickens from influenza infection. High titers of H9N2-specific antibodies were maintained in chickens for 5 months, and the MDCK-derived H9N2 vaccine had no effects on chicken growth. The use of MDCK cells in bioreactors for LPAIV vaccine production is an attractive option to prevent outbreaks of LPAIV in poultry.

  18. Efficacy of chimeric Pestivirus vaccine candidates against Classical Swine Fever: protection and DIVA characteristics

    NARCIS (Netherlands)

    Eble, P.L.; Geurts, Y.; Quak, J.; Moonen-Leusen, H.W.M.; Blome, S.; Hofmann, M.A.; Koenen, F.; Beer, M.; Loeffen, W.L.A.

    2013-01-01

    Currently no live DIVA (Differentiating Infected from Vaccinated Animals) vaccines against classical swine fever (CSF) are available. The aim of this study was to investigate whether chimeric pestivirus vaccine candidates (CP7_E2alf, Flc11 and Flc9) are able to protect pigs against clinical signs,

  19. A novel inactivated enterovirus 71 vaccine can elicit cross-protective immunity against coxsackievirus A16 in mice.

    Science.gov (United States)

    Yang, Lisheng; Liu, Yajing; Li, Shuxuan; Zhao, Huan; Lin, Qiaona; Yu, Hai; Huang, Xiumin; Zheng, Qingbing; Cheng, Tong; Xia, Ningshao

    2016-11-21

    Hand, foot, and mouth disease (HFMD) is a highly contagious disease that mainly affects infants and children. Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the major pathogens of HFMD. Two EV71 vaccines were recently licensed in China and the administration of the EV71 vaccines is believed to significantly reduce the number of HFMD-related severe or fatal cases. However, a monovalent EV71 vaccine cannot cross-protect against CA16 infection, this may result in that it cannot effectively control the overall HFMD epidemic. In this study, a chimeric EV71, whose VP1/210-225 epitope was replaced by that of CA16, was constructed using a reverse genetics technique to produce a candidate EV71/CA16 bivalent vaccine strain. The chimeric EV71 was infectious and showed similar growth characteristics as its parental strain. The replacement of the VP1/210-225 epitope did not significantly affect the antigenicity and immunogenicity of EV71. More importantly, the chimeric EV71 could induce protective immunity against both EV71 and CA16, and protect neonatal mice against either EV71 or CA16 lethal infections, the chimeric EV71 constructed in this study was shown to be a feasible and promising candidate bivalent vaccine against both EV71 and CA16. The construction of a chimeric enterovirus also provides an alternative platform for broad-spectrum HFMD vaccines development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Gentamicin-Attenuated Leishmania infantum Vaccine: Protection of Dogs against Canine Visceral Leishmaniosis in Endemic Area of Southeast of Iran

    Science.gov (United States)

    Daneshvar, Hamid; Namazi, Mohammad Javad; Kamiabi, Hossein; Burchmore, Richard; Cleaveland, Sarah; Phillips, Stephen

    2014-01-01

    An attenuated line of Leishmania infantum (L. infantum H-line) has been established by culturing promastigotes in vitro under gentamicin pressure. A vaccine trial was conducted using 103 naive dogs from a leishmaniosis non-endemic area (55 vaccinated and 48 unvaccinated) brought into an endemic area of southeast Iran. No local and/or general indications of disease were observed in the vaccinated dogs immediately after vaccination. The efficacy of the vaccine was evaluated after 24 months (4 sandfly transmission seasons) by serological, parasitological analyses and clinical examination. In western blot analysis of antibodies to L. infantum antigens, sera from 10 out of 31 (32.2%) unvaccinated dogs, but none of the sera from vaccinated dogs which were seropositive at >100, recognized the 21 kDa antigen of L. infantum wild-type (WT). Nine out of 31 (29%) unvaccinated dogs, but none of vaccinated dogs, were positive for the presence of Leishmania DNA. One out of 46 (2.2%) vaccinated dogs and 9 out of 31 (29%) unvaccinated dogs developed clinical signs of disease. These results suggest that gentamicin-attenuated L. infantum induced a significant and strong protective effect against canine visceral leishmaniosis in the endemic area. PMID:24743691

  1. Immunoinformatics Approach in Designing Epitope-based Vaccine Against Meningitis-inducing Bacteria (Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae Type b)

    OpenAIRE

    Hilyatuz Zahroh; Ahmad Ma’rup; Usman Sumo Friend Tambunan; Arli Aditya Parikesit

    2016-01-01

    Meningitis infection is one of the major threats during Hajj season in Mecca. Meningitis vaccines are available, but their uses are limited in some countries due to religious reasons. Furthermore, they only give protection to certain serogroups, not to all types of meningitis-inducing bacteria. Recently, research on epitope-based vaccines has been developed intensively. Such vaccines have potential advantages over conventional vaccines in that they are safer to use and well responded to the a...

  2. Study of the humoral immunological response after vaccination with a Staphylococcus aureus biofilm-embedded bacterin in dairy cows: possible role of the exopolysaccharide specific antibody production in the protection from Staphylococcus aureus induced mastitis.

    Science.gov (United States)

    Prenafeta, Antoni; March, Ricard; Foix, Antoni; Casals, Isidre; Costa, Llorenç

    2010-04-15

    The objective of the present study was to analyze an extracellular component from Staphylococcus aureus (S. aureus), which we refer to as slime associated antigenic complex (SAAC), and to investigate the role of SAAC-specific antibody production in protection from S. aureus bovine mastitis. Twelve primiparous gestating cows were randomly assigned to one of the three groups: Group 1 was vaccinated with a S. aureus bacterin with very limited SAAC content; Group 2 received a S. aureus bacterin with high SAAC content and Group 3 served as unvaccinated controls. Animals were vaccinated at 45 days before the expected parturition date and revaccinated 35 days later. All groups were challenged by intramammary infusion with a virulent heterologous strain of S. aureus 23 days after calving. Antibody response against SAAC in serum and in milk, general clinical signs, mastitis score, somatic cell count (SCC) and count of S. aureus in milk were evaluated before and after challenge. Immunization with a high SAAC content in the S. aureus bacterin (Group 2) significantly enhanced antibody titers against SAAC (in serum and milk) and reduced the S. aureus concentration in milk during the post-challenge period compared to Group 1 and Group 3. Moreover, a significant negative correlation was observed between SAAC antibody production on the day of the challenge and the S. aureus count in milk by 1 day after challenge. However, there was no evidence of a difference between vaccinated and control groups with regard to clinical signs of mastitis following the challenge. Nevertheless, the SAAC antibody concentration on the day of the challenge negatively correlated with the mastitis score in quarters infected with S. aureus at 2 days post-challenge. These results indicate that the vaccines did not prevent S. aureus intramammary infection (IMI) after the experimental challenge, but immunization with a S. aureus bacterin with high SAAC content was able to reduce S. aureus multiplication in

  3. Epitope analysis and protection by a ROP19 DNA vaccine against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Zhou Jian

    2016-01-01

    Full Text Available We used bioinformatics approaches to identify B-cell and T-cell epitopes on the ROP19 protein of Toxoplasma gondii. Then, we constructed plasmids with ROP19 (pEGFP-C1-ROP19 and injected them into BALB/c mice to test the immunoprotection induced by this vaccine candidate. The results showed that immunization with pEGFP-C1-ROP19 induced effective cellular and humoral immune responses in mice; specifically, high serum levels of T. gondii-specific IgG and increased interferon-gamma production by splenocytes. Furthermore, the mice vaccinated with pROP19 had significantly fewer brain cysts (583 ± 160 than the mice injected with phosphate-buffered saline (1350 ± 243 or with the control plasmid, pEGFP-C1 (1300 ± 167. Compared with PBS-treated mice, those immunized with pROP19 had only 43% of the number of brain cysts. These results suggest that the DNA vaccine encoding ROP19 induced a significant immune response and provided protection against a challenge with T. gondii strain PRU cysts.

  4. Vaccine Protection of Leukopenic Mice against Staphylococcus aureus Bloodstream Infection

    Science.gov (United States)

    Rauch, Sabine; Gough, Portia; Kim, Hwan Keun; Schneewind, Olaf

    2014-01-01

    The risk for Staphylococcus aureus bloodstream infection (BSI) is increased in immunocompromised individuals, including patients with hematologic malignancy and/or chemotherapy. Due to the emergence of antibiotic-resistant strains, designated methicillin-resistant S. aureus (MRSA), staphylococcal BSI in cancer patients is associated with high mortality; however, neither a protective vaccine nor pathogen-specific immunotherapy is currently available. Here, we modeled staphylococcal BSI in leukopenic CD-1 mice that had been treated with cyclophosphamide, a drug for leukemia and lymphoma patients. Cyclophosphamide-treated mice were highly sensitive to S. aureus BSI and developed infectious lesions lacking immune cell infiltrates. Virulence factors of S. aureus that are key for disease establishment in immunocompetent hosts—α-hemolysin (Hla), iron-regulated surface determinants (IsdA and IsdB), coagulase (Coa), and von Willebrand factor binding protein (vWbp)—are dispensable for the pathogenesis of BSI in leukopenic mice. In contrast, sortase A mutants, which cannot assemble surface proteins, display delayed time to death and increased survival in this model. A vaccine with four surface antigens (ClfA, FnBPB, SdrD, and SpAKKAA), which was identified by genetic vaccinology using sortase A mutants, raised antigen-specific immune responses that protected leukopenic mice against staphylococcal BSI. PMID:25183728

  5. Duration of protective immunity and antibody responses in cattle immunised against alcelaphine herpesvirus-1-induced malignant catarrhal fever

    Directory of Open Access Journals (Sweden)

    Russell George C

    2012-06-01

    Full Text Available Abstract Protection of cattle from alcelaphine herpesvirus-1 (AlHV-1-induced malignant catarrhal fever (MCF has been described previously, using an attenuated virus vaccine in an unlicensed adjuvant. The vaccine was hypothesised to induce a protective barrier of virus-neutralising antibody in the oro-nasal region, supported by the observation of high titre neutralising antibodies in nasal secretions of protected animals. Here we describe further analysis of this vaccine strategy, studying the effectiveness of the vaccine formulated with a licensed adjuvant; the duration of immunity induced; and the virus-specific antibody responses in plasma and nasal secretions. The results presented here show that the attenuated AlHV-1 vaccine in a licensed adjuvant protected cattle from fatal intranasal challenge with pathogenic AlHV-1 at three or six months. In addition, animals protected from MCF had significantly higher initial anti-viral antibody titres than animals that succumbed to disease; and these antibody titres remained relatively stable after challenge, while titres in vaccinated animals with MCF increased significantly prior to the onset of clinical disease. These data support the view that a mucosal barrier of neutralising antibody blocks infection of vaccinated animals and suggests that the magnitude of the initial response may correlate with long-term protection. Interestingly, the high titre virus-neutralising antibody responses seen in animals that succumbed to MCF after vaccination were not protective.

  6. [Developments in HPV vaccination].

    Science.gov (United States)

    de Melker, Hester; Kenter, Gemma; van Rossum, Tekla; Conyn-van Spaendonck, Marina

    2012-01-01

    Vaccination against the human papilloma virus (HPV) has been included in the national Vaccination Programme of the Netherlands for 12-year-old girls since 2010. Vaccination coverage for the birth cohort of 1997 was 56.; there is a gradual increase in uptake. Continuous safety monitoring brought no new unknown serious side effects to light; many girls suffered from transient symptoms such as painful arm, fatigue and headache. After the current vaccines that protect against HPV types 2 and 4 types, respectively and induce some cross protection, vaccines are being developed that can induce broader protection. HPV vaccination of 12-year-old girls is cost-effective, even for relatively low vaccination coverage. The potential protection of HPV vaccination extends beyond prevention of cervical cancer by preventing other oncological manifestations of HPV infection in women as well as men and genital warts. The preventive HPV vaccines do not appear to be effective in treating existing abnormalities.

  7. Early biodistribution and persistence of a protective live attenuated SIV vaccine elicits localised innate responses in multiple lymphoid tissues.

    Directory of Open Access Journals (Sweden)

    Deborah Ferguson

    Full Text Available Vaccination of Mauritian cynomolgus macaques with the attenuated nef-truncated C8 variant of SIVmac251/32H (SIVmacC8 induces early, potent protection against pathogenic, heterologous challenge before the maturation of cognate immunity. To identify processes that contribute to early protection in this model the pathogenesis, anatomical distribution and viral vaccine kinetics were determined in relation to localised innate responses triggered by vaccination. The early biodistribution of SIVmacC8 was defined by rapid, widespread dissemination amongst multiple lymphoid tissues, detectable after 3 days. Cell-associated viral RNA dynamics identified mesenteric lymph nodes (MLN and spleen, as well as the gut mucosae, as early major contributors of systemic virus burden. Rapid, localised infection was populated by discrete foci of persisting virus-infected cells. Localised productive infection triggered a broad innate response, with type-1 interferon sensitive IRF-7, STAT-1, TRIM5α and ApoBEC3G genes all upregulated during the acute phase but induction did not prevent viral persistence. Profound changes in vaccine-induced cell-surface markers of immune activation were detected on macrophages, B-cells and dendritic cells (DC-SIGN, S-100, CD40, CD11c, CD123 and CD86. Notably, high DC-SIGN and S100 staining for follicular and interdigitating DCs respectively, in MLN and spleen were detected by 3 days, persisting 20 weeks post-vaccination. Although not formally evaluated, the early biodistribution of SIVmacC8 simultaneously targets multiple lymphoid tissues to induce strong innate immune responses coincident at the same sites critical for early protection from wild-type viruses. HIV vaccines which stimulate appropriate innate, as well as adaptive responses, akin to those generated by live attenuated SIV vaccines, may prove the most efficacious.

  8. A genetically engineered live attenuated vaccine of Coccidioides posadasii protects BALB/c mice against coccidioidomycosis.

    Science.gov (United States)

    Xue, Jianmin; Chen, Xia; Selby, Dale; Hung, Chiung-Yu; Yu, Jieh-Juen; Cole, Garry T

    2009-08-01

    Coccidioidomycosis (also known as San Joaquin Valley fever) is an occupational disease. Workers exposed to outdoor dust which contains spores of the soil-inhabiting fungus have a significantly increased risk of respiratory infection. In addition, people with compromised T-cell immunity, the elderly, and certain racial groups, particularly African-Americans and Filipinos, who live in regions of endemicity in the southwestern United States have an elevated incidence of symptomatic infection caused by inhalation of spores of Coccidioides posadasii or Coccidioides immitis. Recurring epidemics and escalation of medical costs have helped to motivate production of a vaccine against valley fever. The major focus has been the development of a defined, T-cell-reactive, recombinant protein vaccine. However, none of the products described to date have provided full protection to coccidioidal disease-susceptible BALB/c mice. Here we describe the first genetically engineered, live, attenuated vaccine that protects both BALB/c and C57BL/6 mice against coccidioidomycosis. Two chitinase genes (CTS2 and CTS3) were disrupted to yield the attenuated strain, which was unable to endosporulate and was no longer infectious. Vaccinated survivors mounted an immune response characterized by production of both T-helper-1- and T-helper-2-type cytokines. Histology revealed well-formed granulomas and markedly diminished inflammation. Significantly fewer organisms were observed in the lungs of survivors than in those of nonvaccinated mice. Additional investigations are required to further define the nature of the live, attenuated vaccine-induced immunity against Coccidioides infection.

  9. Trivalent pneumococcal protein recombinant vaccine protects against lethal Streptococcus pneumoniae pneumonia and correlates with phagocytosis by neutrophils during early pathogenesis.

    Science.gov (United States)

    Xu, Qingfu; Surendran, Naveen; Verhoeven, David; Klapa, Jessica; Ochs, Martina; Pichichero, Michael E

    2015-02-18

    Due to the fact that current polysaccharide-based pneumococcal vaccines have limited serotype coverage, protein-based vaccine candidates have been sought for over a decade to replace or complement current vaccines. We previously reported that a trivalent Pneumococcal Protein recombinant Vaccine (PPrV), showed protection against pneumonia and sepsis in an infant murine model. Here we investigated immunological correlates of protection of PPrV in the same model. C57BL/6J infant mice were intramuscularly vaccinated at age 1-3 weeks with 3 doses of PPrV, containing pneumococcal histidine triad protein D (PhtD), pneumococcal choline binding protein A (PcpA), and detoxified pneumolysin mutant PlyD1. 3-4 weeks after last vaccination, serum and lung antibody levels to PPrV components were measured, and mice were intranasally challenged with a lethal dose of Streptococcus pneumoniae (Spn) serotype 6A. Lung Spn bacterial burden, number of neutrophils and alveolar macrophages, phagocytosed Spn by granulocytes, and levels of cytokines and chemokines were determined at 6, 12, 24, and 48h after challenge. PPrV vaccination conferred 83% protection against Spn challenge. Vaccinated mice had significantly elevated serum and lung antibody levels to three PPrV components. In the first stage of pathogenesis of Spn induced pneumonia (6-24h after challenge), vaccinated mice had lower Spn bacterial lung burdens and more phagocytosed Spn in the granulocytes. PPrV vaccination led to lower levels of pro-inflammatory cytokines IL-6, IL-1β, and TFN-α, and other cytokines and chemokines (IL-12, IL-17, IFN-γ, MIP-1b, MIP-2 and KC, and G-CSF), presumably due to a lower lung bacterial burden. Trivalent PPrV vaccination results in increased serum and lung antibody levels to the vaccine components, a reduction in Spn induced lethality, enhanced early clearance of Spn in lungs due to more rapid and thorough phagocytosis of Spn by neutrophils, and correspondingly a reduction in lung inflammation

  10. TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA enhances CD8+ T Cell responses providing protection against Leishmania (Viannia.

    Directory of Open Access Journals (Sweden)

    Asha Jayakumar

    2011-06-01

    Full Text Available Leishmania (Viannia parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective.Using a newly developed mouse model of chronic L. (Viannia panamensis infection and the heterologous DNA prime - modified vaccinia virus Ankara (MVA boost vaccination modality, we examined whether the conserved vaccine candidate antigen tryparedoxin peroxidase (TRYP could provide protection against infection/disease.Heterologous prime - boost (DNA/MVA vaccination utilizing TRYP antigen can provide protection against disease caused by L. (V. panamensis. However, protection is dependent on modulating the innate immune response using the TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection protectively vaccinated mice exhibit augmented CD4 and CD8 IFNγ and memory responses as well as decreased IL-10 and IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses.Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia to vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these results suggest that

  11. Needle-free jet injection of small doses of Japanese encephalitis DNA and inactivated vaccine mixture induces neutralizing antibodies in miniature pigs and protects against fetal death and mummification in pregnant sows.

    Science.gov (United States)

    Imoto, Jun-ichi; Ishikawa, Tomohiro; Yamanaka, Atsushi; Konishi, Misako; Murakami, Kenji; Shibahara, Tomoyuki; Kubo, Masanori; Lim, Chang-Kweng; Hamano, Masataka; Takasaki, Tomohiko; Kurane, Ichiro; Udagawa, Haruhide; Mukuta, Yoshihiro; Konishi, Eiji

    2010-10-28

    Japanese encephalitis (JE) virus causes abortion and stillbirth in swine, and encephalitis in humans and horses. We have previously reported that immunogenicity of a DNA vaccine against JE was synergistically enhanced in mice by co-immunization with a commercial inactivated JE vaccine (JEVAX) under a needle-free injection system. Here, we found that this immunization strategy was also effective in miniature pigs. Because of the synergism, miniature pigs immunized twice with a mixture of 10 μg of DNA and a 1/100 dose of JEVAX developed a high neutralizing antibody titer (1:190 at 90% plaque reduction assay). Even using 1 μg of DNA, 3 of 4 pigs developed neutralizing antibodies. Following challenge, all miniature pigs with detectable neutralizing antibodies were protected against viremia. Pregnant sows inoculated with 10 or 1 μg of DNA mixed with JEVAX (1/100 dose) developed antibody titers of 1:40-1:320. Following challenge, fetal death and mummification were protected against in DNA/JEVAX-immunized sows. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Vesicular stomatitis virus-based vaccines protect nonhuman primates against Bundibugyo ebolavirus.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available Ebola virus (EBOV causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs. Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV or Zaire ebolavirus (ZEBOV challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d'Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV, or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29-36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine

  13. Genetic Diversity and Protective Efficacy of the RTS,S/AS01 Malaria Vaccine

    DEFF Research Database (Denmark)

    Neafsey, Daniel E; Juraska, Michal; Bedford, Trevor

    2015-01-01

    Background The RTS,S/AS01 vaccine targets the circumsporozoite protein of Plasmodium falciparum and has partial protective efficacy against clinical and severe malaria disease in infants and children. We investigated whether the vaccine efficacy was specific to certain parasite genotypes...... efficacy. Conclusions These results suggest that among children 5 to 17 months of age, the RTS,S vaccine has greater activity against malaria parasites with the matched circumsporozoite protein allele than against mismatched malaria. The overall vaccine efficacy in this age category will depend...... protein had on vaccine efficacy against first episodes of clinical malaria within 1 year after vaccination. Results In the per-protocol group of 4577 RTS,S/AS01-vaccinated participants and 2335 control-vaccinated participants who were 5 to 17 months of age, the 1-year cumulative vaccine efficacy was 50...

  14. Chimeric avian paramyxovirus-based vector immunization against highly pathogenic avian influenza followed by conventional Newcastle disease vaccination eliminates lack of protection from virulent ND virus

    Directory of Open Access Journals (Sweden)

    C. Steglich

    2014-01-01

    Full Text Available Recently, we described a chimeric, hemagglutinin of highly pathogenic avian influenza virus (HPAIV H5 expressing Newcastle disease virus (NDV-based vector vaccine (chNDVFHNPMV8H5 in which NDV envelope glycoproteins were replaced by those of avian paramyxovirus-8 (APMV-8. This chimeric vaccine induced solid protection against lethal HPAIV H5N1 even in chickens with maternal antibodies against NDV (MDA+. However, due to the absence of the major NDV immunogens it failed to induce protection against Newcastle disease (ND. Here, we report on protection of MDA+ chickens against HPAI H5N1 and ND, by vaccination with chNDVFHNPMV8H5 either on day 1 or day seven after hatch, and subsequent immunization with live attenuated NDV seven days later. Vaccination was well tolerated and three weeks after immunization, challenge infections with highly pathogenic NDV as well as HPAIV H5N1 were carried out. All animals remained healthy without exhibiting any clinical signs, whereas non-vaccinated animals showed morbidity and mortality. Therefore, vaccination with chNDVFHNPMV8H5 can be followed by NDV vaccination to protect chickens from HPAIV as well as NDV, indicating that the antibody response against chNDVFHNPMV8H5 does not interfere with live ND vaccination.

  15. Positive correlation between Aeromonas salmonicida vaccine antigen concentration and protection in vaccinated rainbow trout Oncorhynchus mykiss evaluated by a tail fin infection model

    DEFF Research Database (Denmark)

    Marana, M. H.; Skov, J.; Chettri, Jiwan Kumar

    2017-01-01

    Rainbow trout, Oncorhynchus mykiss (Walbaum), are able to raise a protective immune response against Aeromonas salmonicida subsp. salmonicida (AS) following injection vaccination with commercial vaccines containing formalin-killed bacteria, but the protection is often suboptimal under Danish mari...... bacteria. The infection method proved to be efficient and could differentiate efficacies of different vaccines. It was shown that protection and antibody production in exposed fish were positively correlated to the AS antigen concentration in the vaccine.......Rainbow trout, Oncorhynchus mykiss (Walbaum), are able to raise a protective immune response against Aeromonas salmonicida subsp. salmonicida (AS) following injection vaccination with commercial vaccines containing formalin-killed bacteria, but the protection is often suboptimal under Danish...... mariculture conditions. We elucidated whether protection can be improved by increasing the concentration of antigen (formalin-killed bacteria) in the vaccine. Rainbow trout juveniles were vaccinated by intraperitoneal (i.p.) injection with a bacterin of Aeromonas salmonicida subsp. salmonicida strain 090710...

  16. Critical role of perforin-dependent CD8+ T cell immunity for rapid protective vaccination in a murine model for human smallpox.

    Directory of Open Access Journals (Sweden)

    Melanie Kremer

    Full Text Available Vaccination is highly effective in preventing various infectious diseases, whereas the constant threat of new emerging pathogens necessitates the development of innovative vaccination principles that also confer rapid protection in a case of emergency. Although increasing evidence points to T cell immunity playing a critical role in vaccination against viral diseases, vaccine efficacy is mostly associated with the induction of antibody responses. Here we analyze the immunological mechanism(s of rapidly protective vaccinia virus immunization using mousepox as surrogate model for human smallpox. We found that fast protection against lethal systemic poxvirus disease solely depended on CD4 and CD8 T cell responses induced by vaccination with highly attenuated modified vaccinia virus Ankara (MVA or conventional vaccinia virus. Of note, CD4 T cells were critically required to allow for MVA induced CD8 T cell expansion and perforin-mediated cytotoxicity was a key mechanism of MVA induced protection. In contrast, selected components of the innate immune system and B cell-mediated responses were fully dispensable for prevention of fatal disease by immuniza