WorldWideScience

Sample records for vaccine development progress

  1. Progress in Brucella vaccine development

    Science.gov (United States)

    YANG, Xinghong; SKYBERG, Jerod A.; CAO, Ling; CLAPP, Beata; THORNBURG, Theresa; PASCUAL, David W.

    2012-01-01

    Brucella spp. are zoonotic, facultative intracellular pathogens, which cause animal and human disease. Animal disease results in abortion of fetuses; in humans, it manifests flu-like symptoms with an undulant fever, with osteoarthritis as a common complication of infection. Antibiotic regimens for human brucellosis patients may last several months and are not always completely effective. While there are no vaccines for humans, several licensed live Brucella vaccines are available for use in livestock. The performance of these animal vaccines is dependent upon the host species, dose, and route of immunization. Newly engineered live vaccines, lacking well-defined virulence factors, retain low residual virulence, are highly protective, and may someday replace currently used animal vaccines. These also have possible human applications. Moreover, due to their enhanced safety and efficacy in animal models, subunit vaccines for brucellosis show great promise for their application in livestock and humans. This review summarizes the progress of brucellosis vaccine development and presents an overview of candidate vaccines. PMID:23730309

  2. Progress and controversies in developing cancer vaccines

    Directory of Open Access Journals (Sweden)

    Speiser Daniel E

    2005-04-01

    Full Text Available Abstract Immunotherapy has become a standard approach for cancer management, through the use of cytokines (eg: interleukin-2 and monoclonal antibodies. Cancer vaccines hold promise as another form of immunotherapy, and there has been substantial progress in identifying shared antigens recognized by T cells, in developing vaccine approaches that induce antigen-specific T cell responses in cancer patients, and in developing new technology for monitoring immune responses in various human tissue compartments. Dramatic clinical regressions of human solid tumors have occurred with some cancer vaccines, but the rate of those responses remains low. This article is part of a 2-part point:counterpoint series on peptide vaccines and adoptive therapy approaches for cancer. The current status of cancer vaccination, and associated challenges, are discussed. Emphasis is placed on the need to increase our knowledge of cancer immunobiology, as well as to improve monitoring of cellular immune function after vaccination. Progress in both areas will facilitate development of effective cancer vaccines, as well as of adoptive therapy. Effective cancer vaccines promise to be useful for treatment and prevention of cancer at low cost and with low morbidity.

  3. Tularemia vaccine development: paralysis or progress?

    Directory of Open Access Journals (Sweden)

    Sunagar R

    2016-05-01

    Full Text Available Raju Sunagar, Sudeep Kumar, Brian J Franz, Edmund J Gosselin Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA Abstract: Francisella tularensis (Ft is a gram-negative intercellular pathogen and category A biothreat agent. However, despite 15 years of strong government investment and intense research focused on the development of a US Food and Drug Administration-approved vaccine against Ft, the primary goal remains elusive. This article reviews research efforts focused on developing an Ft vaccine, as well as a number of important factors, some only recently recognized as such, which can significantly impact the development and evaluation of Ft vaccine efficacy. Finally, an assessment is provided as to whether a US Food and Drug Administration-approved Ft vaccine is likely to be forthcoming and the potential means by which this might be achieved. Keywords: Sex bias, media impact, differential protection, cellular immunity, humoral immunity

  4. Progress toward Development of a Vaccine against Congenital Cytomegalovirus Infection

    Science.gov (United States)

    Permar, Sallie R.; Plotkin, Stanley A.

    2017-01-01

    ABSTRACT A vaccine against congenital human cytomegalovirus (CMV) infection is a major public health priority. Congenital CMV causes substantial long-term morbidity, particularly sensorineural hearing loss (SNHL), in newborns, and the public health impact of this infection on maternal and child health is underrecognized. Although progress toward development of a vaccine has been limited by an incomplete understanding of the correlates of protective immunity for the fetus, knowledge about some of the key components of the maternal immune response necessary for preventing transplacental transmission is accumulating. Moreover, although there have been concerns raised about observations indicating that maternal seropositivity does not fully prevent recurrent maternal CMV infections during pregnancy, it is becoming increasing clear that preconception immunity does confer some measure of protection against both CMV transmission and CMV disease (if transmission occurs) in the newborn infant. Although the immunity to CMV conferred by both infection and vaccination is imperfect, there are encouraging data emerging from clinical trials demonstrating the immunogenicity and potential efficacy of candidate CMV vaccines. In the face of the knowledge that between 20,000 and 30,000 infants are born with congenital CMV in the United States every year, there is an urgent and compelling need to accelerate the pace of vaccine trials. In this minireview, we summarize the status of CMV vaccines in clinical trials and provide a perspective on what would be required for a CMV immunization program to become incorporated into clinical practice. PMID:29046308

  5. Progress towards development of an HIV vaccine: report of the AIDS Vaccine 2009 Conference.

    Science.gov (United States)

    Ross, Anna Laura; Bråve, Andreas; Scarlatti, Gabriella; Manrique, Amapola; Buonaguro, Luigi

    2010-05-01

    The search for an HIV/AIDS vaccine is steadily moving ahead, generating and validating new concepts in terms of novel vectors for antigen delivery and presentation, new vaccine and adjuvant strategies, alternative approaches to design HIV-1 antigens for eliciting protective cross-neutralising antibodies, and identification of key mechanisms in HIV infection and modulation of the immune system. All these different perspectives are contributing to the unprecedented challenge of developing a protective HIV-1 vaccine. The high scientific value of this massive effort is its great impact on vaccinology as a whole, providing invaluable scientific information for the current and future development of new preventive vaccine as well as therapeutic knowledge-based infectious-disease and cancer vaccines. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. RTS,S malaria vaccine development: progress and considerations for postapproval introduction

    Directory of Open Access Journals (Sweden)

    Asante KP

    2016-06-01

    Full Text Available Kwaku Poku Asante, George Adjei, Yeetey Enuameh, Seth Owusu-Agyei Kintampo Health Research Centre, Kintampo, Brong Ahafo Region, Ghana Abstract: Though the burden of malaria has decreased in the last decade in some sub-Saharan African countries, it is still high in others, and there is no malaria vaccine in use. The development of malaria vaccines in combination with current control programs could be effective in reducing the malaria burden. In this paper, we review and discuss the progress made in the RTS,S malaria vaccine development and considerations for its postapproval process. We conclude that the development of malaria vaccines has been a long process confronted with challenges of funding, difficulty in identifying malaria antigens that correlate with protection, and development of adjuvant systems among others. The scientific approval of the vaccine by the European Medicines Agency in July 2015 and subsequent recommendations for pilot implementation studies by the World Health Organization made history as the first human parasite vaccine. It is also a major public health achievement as the vaccine has the potential to prevent thousands of malaria cases. However, there are implementation challenges such as cold chain systems, community acceptance, and monitoring of adverse events post-licensure that need to be carefully addressed. Keywords: malaria, vaccines, challenges, introduction, Africa, implementation considerations 

  7. Peptide Vaccine: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Weidang Li

    2014-07-01

    Full Text Available Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.

  8. Development of inactivated poliovirus vaccine from Sabin strains: A progress report.

    Science.gov (United States)

    Okayasu, Hiromasa; Sein, Carolyn; Hamidi, Ahd; Bakker, Wilfried A M; Sutter, Roland W

    2016-11-01

    The Global Polio Eradication Initiative (GPEI) has seen significant progress since it began in 1988, largely due to the worldwide use of oral poliovirus vaccine (OPV). In order to achieve polio eradication the global cessation of OPV is necessary because OPV contains live attenuated poliovirus, which in rare circumstances could re-gain wild poliovirus (WPV) characteristics with potential to establish transmission. The GPEI endgame strategy for the period 2013-2018 recommends the globally synchronised sequential cessation of the Sabin strains contained in the OPV, starting with type 2 Sabin. The withdrawal of Sabin type 2 took place in April 2016, with the introduction of at least one dose of inactivated poliovirus vaccine (IPV) as a risk mitigation strategy. The introduction of IPV into 126 countries since 2013 has required a rapid scale-up of IPV production by the two manufacturers supplying the global public sector market. This scale-up has been fraught with challenges, resulting in reductions of 40-50% of initial supply commitments. Consequently, 22 countries will not be supplied until 2018, and another 23 countries will experience serious stock-outs. In the last decade repeated calls-for-action were made to the global community to invigorate their vision and investment in developing "new poliovirus vaccines" including the development of IPV from less-virulent strains, such as Sabin-IPV (S-IPV). The conventional Salk-IPV production is limited to high-income industrialized-country manufacturers due to the containment requirements (i.e., high sanitation, low force-of-poliovirus-infection, and high population immunity). The use of Sabin strains in the production of S-IPV carries a lower biosafety risk, and was determined to be suitable for production in developing countries, expanding the manufacturing base and making IPV more affordable and accessible in the long term. Significant progress in the S-IPV has been made since 2006. S-IPV is now licensed as S-IPV in

  9. Progress towards a Leishmania vaccine.

    Science.gov (United States)

    Tabbara, Khaled S

    2006-07-01

    Leishmaniasis is a vector-born protozoan disease. Approximately 12 million individuals are affected worldwide with an estimated annual incidence of 1.5-2 million. Two clinical manifestations are recognized, cutaneous, and visceral, both of which are common in the Middle East. In both forms, infection is chronic, with potential deformities, persistence following cure, and lifelong risk of reactivation. Attempts to develop an effective human Leishmania vaccine have not yet succeeded. Leishmanization, a crude form of live vaccination historically originated in this part of the world. Experimental vaccination has been extensively studied in model animals in the past 2 decades. In this review, major human killed vaccine trials are surveyed, and modern trends in Leishmania vaccine development, including subunit vaccines, naked DNA vaccines, and transmission blocking vaccines are explored. Recent findings of a link between persistence of live parasites, and maintenance of long-term immunity suggest live vaccination with attenuated strains, as a future vaccination strategy.

  10. Progress and pitfalls in Shigella vaccine research

    Science.gov (United States)

    Barry, Eileen M.; Pasetti, Marcela F.; Sztein, Marcelo B.; Fasano, Alessio; Kotloff, Karen L.; Levine, Myron M.

    2013-01-01

    Renewed awareness of the significant morbidity and mortality that Shigella causes among young children in developing countries combined with technological innovations in vaccinology has led to the development of novel vaccine strategies in the past five years. Along with advancement of classical vaccines in clinical trials and new sophisticated measurements of immunological responses, much new data has been produced lending promise to the potential for production of safe and effective Shigella vaccines. Herein we review the recent progress in Shigella vaccine development within the framework of persistent obstacles. PMID:23419287

  11. Progress in the development of subunit vaccines for gastrointestinal nematodes of ruminants.

    Science.gov (United States)

    Matthews, J B; Geldhof, P; Tzelos, T; Claerebout, E

    2016-12-01

    The global increase in anthelmintic resistant nematodes of ruminants, together with consumer concerns about chemicals in food, necessitates the development of alternative methods of control for these pathogens. Subunit recombinant vaccines are ideally placed to fill this gap. Indeed, they are probably the only valid option for the long-term control of ruminant parasitic nematodes given the increasing ubiquity of multidrug resistance in a range of worm species across the world. The development of a subunit multicellular parasite vaccine to the point of practical application would be a groundbreaking step in the control of these important endemic infections of livestock. This review summarizes the current status of subunit vaccine development for a number of important gastrointestinal nematodes of cattle and sheep, with a focus on the limitations and problems encountered thus far, and suggestions as to how these hurdles might be overcome. © 2016 John Wiley & Sons Ltd.

  12. Steady progress toward a malaria vaccine.

    Science.gov (United States)

    Lyke, Kirsten E

    2017-10-01

    Great progress has been made in reducing malaria morbidity and mortality, yet the parasite continues to cause a startling 200 million infections and 500 000 deaths annually. Malaria vaccine development is pushing new boundaries by steady advancement toward a licensed product. Despite 50 years of research, the complexity of Plasmoidum falciparum confounds all attempts to eradicate the organism. This very complexity has pushed the boundaries of vaccine development to new heights, yet it remains to be seen if an affordable vaccine can provide durable and high-level protection. Novel vaccines such as RTS,S/AS01E are on the edge of licensure, but old techniques have resurged with the ability to deliver vialed, whole organism vaccines. Novel adjuvants, multistage/multiantigen approaches and transmission blocking vaccines all contribute to a multipronged battle plan to conquer malaria. Vaccines are the most cost-effective tools to control infectious diseases, yet the complexity of malaria has frustrated all attempts to develop an effective product. This review concentrates on recent advances in malaria vaccine development that lend hope that a vaccine can be produced and malaria eradicated.

  13. Progress and novel strategies in vaccine development and treatment of anthrax.

    Science.gov (United States)

    Chitlaru, Theodor; Altboum, Zeev; Reuveny, Shaul; Shafferman, Avigdor

    2011-01-01

    The lethal anthrax disease is caused by spores of the gram-positive Bacillus anthracis, a member of the cereus group of bacilli. Although the disease is very rare in the Western world, development of anthrax countermeasures gains increasing attention due to the potential use of B. anthracis spores as a bio-terror weapon. Protective antigen (PA), the non-toxic subunit of the bacterial secreted exotoxin, fulfills the role of recognizing a specific receptor and mediating the entry of the toxin into the host target cells. PA elicits a protective immune response and represents the basis for all current anthrax vaccines. Anti-PA neutralizing antibodies are useful correlates for protection and for vaccine efficacy evaluation. Post exposure anti-toxemic and anti-bacteremic prophylactic treatment of anthrax requires prolonged antibiotic administration. Shorter efficient postexposure treatments may require active or passive immunization, in addition to antibiotics. Although anthrax is acknowledged as a toxinogenic disease, additional factors, other than the bacterial toxin, may be involved in the virulence of B. anthracis and may be needed for the long-lasting protection conferred by PA immunization. The search for such novel factors is the focus of several high throughput genomic and proteomic studies that are already leading to identification of novel targets for therapeutics, for vaccine candidates, as well as biomarkers for detection and diagnosis. © 2010 John Wiley & Sons A/S.

  14. The recent progress in RSV vaccine technology.

    Science.gov (United States)

    Fretzayas, Andrew; Papadopoulou, Anna; Kotzia, Doxa; Moustaki, Maria

    2012-12-01

    The most effective way to control RSV infection would be the development of an expedient and safe vaccine. Subunit vaccines, live attenuated RSV vaccines, plasmid DNA vaccines have been tested either in human or in mouse models without reaching the ultimate goal of efficacy and safety, at least in humans. Viruses such as adenovirus, sendai virus, measles virus were also used as vectors for the generation of RSV vaccines with promising results in animal models. Recent patents describe new techniques for the generation of candidate vaccines. These patents include virus like particles as vaccine platforms, recombinant RSVs or modified RSV F protein as component of the vaccine. Despite the number of the candidate vaccines, the new RSV vaccines should overcome many obstacles before being established as effective vaccines for the control of RSV infections especially for the young infants who are more susceptible to the virus.

  15. Nanotechnology and vaccine development

    Directory of Open Access Journals (Sweden)

    Mi-Gyeong Kim

    2014-10-01

    Full Text Available Despite the progress of conventional vaccines, improvements are clearly required due to concerns about the weak immunogenicity of these vaccines, intrinsic instability in vivo, toxicity, and the need for multiple administrations. To overcome such problems, nanotechnology platforms have recently been incorporated into vaccine development. Nanocarrier-based delivery systems offer an opportunity to enhance the humoral and cellular immune responses. This advantage is attributable to the nanoscale particle size, which facilitates uptake by phagocytic cells, the gut-associated lymphoid tissue, and the mucosa-associated lymphoid tissue, leading to efficient antigen recognition and presentation. Modifying the surfaces of nanocarriers with a variety of targeting moieties permits the delivery of antigens to specific cell surface receptors, thereby stimulating specific and selective immune responses. In this review, we introduce recent advances in nanocarrier-based vaccine delivery systems, with a focus on the types of carriers, including liposomes, emulsions, polymer-based particles, and carbon-based nanomaterials. We describe the remaining challenges and possible breakthroughs, including the development of needle-free nanotechnologies and a fundamental understanding of the in vivo behavior and stability of the nanocarriers in nanotechnology-based delivery systems.

  16. Progress toward development of photodynamic vaccination against infectious/malignant diseases and photodynamic mosquitocides

    Science.gov (United States)

    Chang, Kwang Poo; Kolli, Bala K.; Fan, Chia-Kwung; Ng, Dennis K. P.; Wong, Clarence T. T.; Manna, Laura; Corso, Raffaele; Shih, Neng-Yao; Elliott, Robert; Jiang, X. P.; Shiao, Shin-Hong; Fu, Guo-Liang

    2018-02-01

    Photodynamic therapy (PDT) uses photosensitizers (PS) that are excited with light to generate ROS in the presence of oxygen for treating various diseases. PS also has the potential use as photodynamic insecticides (PDI) and for light-inactivation of Leishmania for photodynamic vaccination (PDV). PDT-inactivated Leishmania are non-viable, but remain immunologically competent as whole-cell vaccines against leishmaniasis, and as a universal carrier for delivery of add-on vaccines against other infectious and malignant diseases. We have screened novel PS, including Zn- and Si-phthalocyanines (PC) for differential PDT activities against Leishmania, insect and mammalian cells in vitro to assess their PDI and PDV potential. Here, Zn-PC were conjugated with various functional groups. The conjugates were examined for uptake by cells as a prerequisite for their susceptibility to light-inactivation. PDT sensitivity was found to vary with cell types and PS used. PDI potential of several PS was demonstrated by their mosquito larvicidal PDT activities in vitro. PDT-inactivated Leishmania were stored frozen for PDV in several ongoing studies: [1] Open label trial with 20 sick dogs for immunotherapy of canine leishmaniasis after chemotherapy in Naples, Italy. Clinical follow-up for >3 years indicate that the PDV prolongs their survival; [2] PDV of murine models with a human lung cancer vaccine showed dramatic tumor suppression; [3] Open label trial of multiple PDV via compassionate access to 4 advanced cancer patients showed no clinically adverse effects. Two subjects remain alive. Genetic modifications of Leishmania are underway to further enhance their safety and efficacy for PDV by installation of activable mechanisms for self-destruction and spontaneous light-emission.

  17. Vaccine development for syphilis.

    Science.gov (United States)

    Lithgow, Karen V; Cameron, Caroline E

    2017-01-01

    Syphilis, caused by the spirochete Treponema pallidum subspecies pallidum, continues to be a globally prevalent disease despite remaining susceptible to penicillin treatment. Syphilis vaccine development is a viable preventative approach that will serve to complement public health-oriented syphilis prevention, screening and treatment initiatives to deliver a two-pronged approach to stemming disease spread worldwide. Areas covered: This article provides an overview of the need for development of a syphilis vaccine, summarizes significant information that has been garnered from prior syphilis vaccine studies, discusses the critical aspects of infection that would have to be targeted by a syphilis vaccine, and presents the current understanding within the field of the correlates of protection needed to be achieved through vaccination. Expert commentary: Syphilis vaccine development should be considered a priority by industry, regulatory and funding agencies, and should be appropriately promoted and supported.

  18. Vaccine development against Leishmania donovani

    Directory of Open Access Journals (Sweden)

    Amrita eDas

    2012-05-01

    Full Text Available Visceral leishmaniasis (VL caused by Leishmania donovani and Leishmania infantum/ chagasi represents the second most challenging infectious disease worldwide, affecting nearly 500,000 people and 60,000 deaths annually. Zoonotic VL (ZVL caused by L. infantum is re-emergent canid zoonoses which represents a complex epidemiological cycle in New world where domestic dogs serve as reservoir host responsible for potentially fatal human infection where dog culling is the only control measure for eliminating reservoir host. Lifelong immunity in human against reinfection has motivated several attempts in developing prophylactic vaccines against the disease but very few have progressed beyond experimental stage. Absence of any licensed vaccine along with high toxicity and increasing resistance to the current chemotherapeutic drugs has further complicated the situation in endemic regions of the world. Advances in vaccinology, including recombinant proteins, novel antigen-delivery systems/adjuvants, heterologous prime-boost regimens and strategies for intracellular antigen presentation, have contributed to recent advances in vaccine development against VL. Attempts to develop an effective vaccine for use in domestic dogs in areas of canine VL should be pursued for preventing human infection. Studies in animal models and human patients have revealed the pathogenic mechanisms of disease progression and features of protective immunity. This review will summarize the accumulated knowledge about pathogenesis, immune response and prerequisites for protective immunity against human VL. Authors will discuss promising vaccine targets, their developmental status and future prospects in a quest for rational vaccine development against VL. In addition, several challenges such as safety issues, a renewed and coordinated commitment to basic research, preclinical studies and trial design will be addressed to overcome the problems faced in developing effective vaccines

  19. The development of flavivirus vaccines | Pulmanausahakul | African ...

    African Journals Online (AJOL)

    Vaccine development to eliminate flaviviral infections has been marked by uneven progress and a large number of setbacks. To date, no single approach has proved successful in leading to vaccine development against a wide range of flaviviruses, but the application of modern techniques to the problem is opening up new ...

  20. Laser vaccine adjuvants. History, progress, and potential.

    Science.gov (United States)

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines.

  1. [Development of new vaccines].

    Science.gov (United States)

    González-Romo, Fernando; Picazo, Juan J

    2015-10-01

    Recent and important advances in the fields of immunology, genomics, functional genomics, immunogenetics, immunogenomics, bioinformatics, microbiology, genetic engineering, systems biology, synthetic biochemistry, proteomics, metabolomics and nanotechnology, among others, have led to new approaches in the development of vaccines. The better identification of ideal epitopes, the strengthening of the immune response due to new adjuvants, and the search of new routes of vaccine administration, are good examples of advances that are already a reality and that will favour the development of more vaccines, their use in indicated population groups, or its production at a lower cost. There are currently more than 130 vaccines are under development against the more wished (malaria or HIV), difficult to get (CMV or RSV), severe re-emerging (Dengue or Ebola), increasing importance (Chagas disease or Leishmania), and nosocomial emerging (Clostridium difficile or Staphylococcus aureus) infectious diseases. Copyright © 2015. Published by Elsevier España, S.L.U.

  2. Clinical development of Ebola vaccines

    Science.gov (United States)

    Sridhar, Saranya

    2015-01-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  3. Progress on adenovirus-vectored universal influenza vaccines.

    Science.gov (United States)

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.

  4. Research progress of therapeutic vaccines for treating chronic hepatitis B.

    Science.gov (United States)

    Li, Jianqiang; Bao, Mengru; Ge, Jun; Ren, Sulin; Zhou, Tong; Qi, Fengchun; Pu, Xiuying; Dou, Jia

    2017-05-04

    Hepatitis B virus (HBV) is a member of Hepadnavirus family, which leads to chronic infection in around 5% of patients with a high risk of developing liver cirrhosis, liver failure, and hepatocellular carcinoma. 1 Despite the availability of prophylactic vaccines against hepatitis B for over 3 decades, there are still more than 2 billion people have been infected and 240 million of them were chronic. Antiviral therapies currently used in the treatment of CHB (chronic hepatitis B) infection include peg-interferon, standard α-interferon and nucleos/tide analogs (NAs), but none of them can provide sustained control of viral replication. As an alternative strategy, therapeutic vaccines for CHB patients have been widely studied and showed some promising efficacies in dozens of preclinical and clinical trials. In this article, we review current research progress in several types of therapeutic vaccines for CHB treatment, including protein-based vaccines, DNA-based vaccines, live vector-based vaccines, peptide-based vaccines and cell-based therapies. These researches may provide some clues for developing new treatments in CHB infection.

  5. Sustainable vaccine development: a vaccine manufacturer's perspective.

    Science.gov (United States)

    Rappuoli, Rino; Hanon, Emmanuel

    2018-05-08

    Vaccination remains the most cost-effective public health intervention after clean water, and the benefits impressively outweigh the costs. The efforts needed to fulfill the steadily growing demands for next-generation and novel vaccines designed for emerging pathogens and new indications are only realizable in a sustainable business model. Vaccine development can be fast-tracked through strengthening international collaborations, and the continuous innovation of technologies to accelerate their design, development, and manufacturing. However, these processes should be supported by a balanced project portfolio, and by managing sustainable vaccine procurement strategies for different types of markets. Collectively this will allow a gradual shift to a more streamlined and profitable vaccine production, which can significantly contribute to the worldwide effort to shape global health. Copyright © 2018 GlaxoSmithKine Biologicals SA. Published by Elsevier Ltd.. All rights reserved.

  6. Efforts to monitor Global progress on individual and community demand for immunization: Development of definitions and indicators for the Global Vaccine Action Plan Strategic Objective 2.

    Science.gov (United States)

    Hickler, Benjamin; MacDonald, Noni E; Senouci, Kamel; Schuh, Holly B

    2017-06-16

    The Second Strategic Objective of the Global Vaccine Action Plan, "individuals and communities understand the value of vaccines and demand immunization as both their right and responsibility", differs from the other five in that it does not focus on supply-side aspects of immunization programs but rather on public demand for vaccines and immunization services. This commentary summarizes the work (literature review, consultations with experts, and with potential users) and findings of the UNICEF/World Health Organization Strategic Objective 2 informal Working Group on Vaccine Demand, which developed a definition for demand and indicators related to Strategic Objective 2. Demand for vaccines and vaccination is a complex concept that is not external to supply systems but rather encompasses the interaction between human behaviors and system structure and dynamics. Copyright © 2017. Published by Elsevier Ltd.

  7. HIV vaccines: new frontiers in vaccine development.

    Science.gov (United States)

    Duerr, Ann; Wasserheit, Judith N; Corey, Lawrence

    2006-08-15

    A human immunodeficiency virus (HIV) vaccine is the most promising and feasible strategy to prevent the events during acute infection that simultaneously set the course of the epidemic in the community and the course of the disease for the individual. Because safety concerns limit the use of live, attenuated HIV and inactivated HIV, a variety of alternate approaches is being investigated. Traditional antibody-mediated approaches using recombinant HIV envelope proteins have shown no efficacy in 2 phase III trials. Current HIV vaccine trials are focusing primarily on cytotoxic T lymphocyte-mediated products that use viral vectors, either alone or as boosts to DNA plasmids that contain viral genes. The most immunogenic of these products appear to be the recombinant adenovirus vector vaccines, 2 of which are now in advanced clinical development.

  8. Impact of BRICS' investment in vaccine development on the global vaccine market.

    Science.gov (United States)

    Kaddar, Miloud; Milstien, Julie; Schmitt, Sarah

    2014-06-01

    Brazil, the Russian Federation, India, China and South Africa--the countries known as BRICS--have made considerable progress in vaccine production, regulation and development over the past 20 years. In 1993, all five countries were producing vaccines but the processes used were outdated and non-standardized, there was little relevant research and there was negligible international recognition of the products. By 2014, all five countries had strong initiatives for the development of vaccine technology and had greatly improved their national regulatory capacity. South Africa was then the only BRICS country that was not completely producing vaccines. South Africa is now in the process of re-establishing its own vaccine production and passing beyond the stage of simply importing, formulating and filling vaccine bulks. Changes in the public sector's price per dose of selected vaccines, the global market share represented by products from specific manufacturers, and the attractiveness, for multinational companies, of partnership and investment opportunities in BRICS companies have all been analysed. The results indicate that the BRICS countries have had a major impact on vaccine price and availability, with much of that impact attributable to the output of Indian vaccine manufacturers. China is expected to have a greater impact soon, given the anticipated development of Chinese vaccine manufacturers in the near future. BRICS' accomplishments in the field of vaccine development are expected to reshape the global vaccine market and accelerate access to vaccines in the developing world. The challenge is to turn these expectations into strategic actions and practical outcomes.

  9. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    Science.gov (United States)

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD. © 2015 The Author(s) Published by S. Karger AG, Basel.

  10. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Wu

    2015-11-01

    Full Text Available Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD in humans and non-human primates (NHPs. Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs, vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirus∆VP30, recombinant cytomegalovirus (CMV-based vaccines, recombinant rabies virus (RABV-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD.

  11. Progress towards meningitis prevention in the conjugate vaccines era

    Directory of Open Access Journals (Sweden)

    Cristina Aparecida Borges Laval

    Full Text Available Acute bacterial meningitis is an important cause of morbidity and mortality among children less than five years old. Haemophilus influenzae, Streptococcus pneumoniae and Neisseria meningitidis are the most important agents of bacterial meningitis in developing countries. The development of the conjugate vaccines in the beginning of the 90's, especially type b H. influenzae (Hib, and more recently the heptavalent pneumococcal and the serogroup C meningococcal vaccines, have contributed directly to changes in the epidemiological profile of these invasive diseases (direct effect and of their carriage status (indirect effect. We review the impact of the Hib conjugate vaccine in Latin American countries, where this vaccine has been implemented, and the potential of pneumococcal and meningococcal conjugate vaccines for the reduction of meningitis worldwide. We also address constraints for the development and delivery of these vaccines and review new candidate state-of-the-art vaccines. The greatest challenge, undoubtedly, is to implement these vaccines worldwide, especially in the developing regions.

  12. Review: New Vaccine Against Tuberculosis: Current Developments and Future Challenges

    Science.gov (United States)

    Liu, Jun

    2009-04-01

    Tuberculosis (TB) continues to be a global health threat. BCG was developed as an attenuated live vaccine for tuberculosis control nearly a century ago. Despite being the most widely used vaccine in human history, BCG is not an ideal vaccine and has two major limitations: its poor efficacy against adult pulmonary TB and its disconcerting safety in immunocompromised individuals. A safer and more effective TB vaccine is urgently needed. This review article discusses current strategies to develop the next generation of TB vaccines to replace BCG. While some progresses have been made in the past decade, significant challenges lie ahead.

  13. Review Article: Prospect and Progress of Malaria Vaccine ...

    African Journals Online (AJOL)

    Malaria kills one child every 30 seconds in Africa. The development of a safe vaccine remains an urgent unmet need which could greatly control and even lead to the eradication of the disease. The success recorded in the recent vaccine trials have given some ray of hope that a safe and effective vaccine against malaria will ...

  14. Vaccine prophylaxis: achievements, problems, perspectives of development

    Directory of Open Access Journals (Sweden)

    Mavrutenkov V.V.

    2016-09-01

    Full Text Available The article presents medical and social aspects of immune prophylaxis of infectious diseases; the history of vaccines and vaccination is presented, as well as perspectives of development of vaccine prophylaxis.

  15. Global Vaccine and Immunization Research Forum: Opportunities and challenges in vaccine discovery, development, and delivery.

    Science.gov (United States)

    Ford, Andrew Q; Touchette, Nancy; Hall, B Fenton; Hwang, Angela; Hombach, Joachim

    2016-03-18

    The World Health Organization, the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, and the Bill & Melinda Gates Foundation convened the first Global Vaccine and Immunization Research Forum (GVIRF) in March 2014. This first GVIRF aimed to track recent progress of the Global Vaccine Action Plan research and development agenda, identify opportunities and challenges, promote partnerships in vaccine research, and facilitate the inclusion of all stakeholders in vaccine research and development. Leading scientists, vaccine developers, and public health officials from around the world discussed scientific and technical challenges in vaccine development, research to improve the impact of immunization, and regulatory issues. This report summarizes the discussions and conclusions from the forum participants. Copyright © 2016. Published by Elsevier Ltd.. All rights reserved.

  16. Zika Vaccine Development: Flavivirus Foils

    Science.gov (United States)

    2016-09-01

    Martins, Bavari, Zika Vaccine Development 1 Zika Vaccine Development: Flavivirus Foils Martins KAO, Bavari S. The current Zika virus...States government. The rapid response to Zika is perhaps the first of its kind, and it undoubtedly has been made possible by the lessons learned from...the response to the 2014 Ebola virus outbreak in West Africa. However, Zika virus is not Ebola virus. As of February 2016 there were only 296

  17. Collaborative vaccine development: partnering pays.

    Science.gov (United States)

    Ramachandra, Rangappa

    2008-01-01

    Vaccine development, supported by infusions of public and private venture capital, is re-entering a golden age as one of the fastest growing sectors in the life-sciences industry. Demand is driven by great unmet need in underdeveloped countries, increased resistance to current treatments, bioterrorism, and for prevention indications in travelers, pediatric, and adult diseases. Production systems are becoming less reliant on processes such as egg-based manufacturing, while new processes can help to optimize vaccines. Expeditious development hinges on efficient study conduct, which is greatly enhanced through research partnerships with specialized contract research organizations (CROs) that are licensed and knowledgeable in the intricacies of immunology and with the technologic and scientific foundation to support changing timelines and strategies inherent to vaccine development. The CRO often brings a more objective assessment for probability of success and may offer alternative development pathways. Vaccine developers are afforded more flexibility and are free to focus on innovation and internal core competencies. Functions readily outsourced to a competent partner include animal model development, safety and efficacy studies, immunotoxicity and immunogenicity, dose response studies, and stability and potency testing. These functions capitalize on the CRO partner's regulatory and scientific talent and expertise, and reduce infrastructure expenses for the vaccine developer. Successful partnerships result in development efficiencies, elimination or reduced redundancies, and improved time to market. Keys to success include honest communications, transparency, and flexibility.

  18. Dengue vaccines: Challenges, development, current status and prospects

    Directory of Open Access Journals (Sweden)

    A Ghosh

    2015-01-01

    Full Text Available Infection with dengue virus (DENV is the most rapidly spreading mosquito-borne viral disease in the world. The clinical spectrum of dengue, caused by any of the four serotypes of DENV, ranges from mild self-limiting dengue fever to severe dengue, in the form dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS. Increased rates of hospitalization due to severe dengue, during outbreaks, result in massive economic losses and strained health services. In the absence of specific antiviral therapy, control of transmission of DENV by vector management is the sole method available for decreasing dengue-associated morbidity. Since vector control strategies alone have not been able to satisfactorily achieve reduction in viral transmission, the implementation of a safe, efficacious and cost-effective dengue vaccine as a supplementary measure is a high public health priority. However, the unique and complex immunopathology of dengue has complicated vaccine development. Dengue vaccines have also been challenged by critical issues like lack of animal models for the disease and absence of suitable markers of protective immunity. Although no licensed dengue vaccine is yet available, several vaccine candidates are under phases of development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, subunit vaccines, DNA vaccines and viral-vectored vaccines. Although some vaccine candidates have progressed from animal trials to phase II and III in humans, a number of issues regarding implementation of dengue vaccine in countries like India still need to be addressed. Despite the current limitations, collaborative effects of regulatory bodies like World Health Organization with vaccine manufacturers and policy makers, to facilitate vaccine development and standardize field trials can make a safe and efficacious dengue vaccine a reality in near future.

  19. Plague history: Yersin's discovery of the causative bacterium in 1894 enabled, in the subsequent century, scientific progress in understanding the disease and the development of treatments and vaccines.

    Science.gov (United States)

    Butler, T

    2014-03-01

    The causative bacterium of plague was described and cultured by Alexandre Yersin in Hong Kong in 1894, after which transmission of bacteria from rodents by flea bites was discovered by Jean-Paul Simond in 1898. Effective treatment with antiserum was initiated in 1896, but this therapy was supplanted by sulphonamides in the 1930s and by streptomycin starting in 1947. India suffered an estimated 6 million deaths in 1900-1909, and Vietnam, during its war in 1965-1975, accounted for approximately 80% of the world's cases; since then, African countries have dominated, with >90% of the world's cases in the 1990s and early 21st century. Serological diagnosis with fraction 1 antigen to detect anti-plague antibodies was developed in the 1950s. Vaccine development started in 1897 with killed whole bacterial cells, and this was followed by a live attenuated bacterial vaccine, leading to millions of persons receiving injections, but the benefits of these vaccines remain clouded by controversy. Plasmid-mediated virulence was established in 1981, and this was followed by specific DNA methods that have allowed detection of plague genes in skeletal specimens from European graves of the sixth to 17th centuries. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  20. Strategies for Cancer Vaccine Development

    Directory of Open Access Journals (Sweden)

    Matteo Vergati

    2010-01-01

    Full Text Available Treating cancer with vaccines has been a challenging field of investigation since the 1950s. Over the years, the lack of effective active immunotherapies has led to the development of numerous novel strategies. However, the use of therapeutic cancer vaccines may be on the verge of becoming an effective modality. Recent phase II/III clinical trials have achieved hopeful results in terms of overall survival. Yet despite these encouraging successes, in general, very little is known about the basic immunological mechanisms involved in vaccine immunotherapy. Gaining a better understanding of the mechanisms that govern the specific immune responses (i.e., cytotoxic T lymphocytes, CD4 T helper cells, T regulatory cells, cells of innate immunity, tumor escape mechanisms elicited by each of the various vaccine platforms should be a concern of cancer vaccine clinical trials, along with clinical benefits. This review focuses on current strategies employed by recent clinical trials of therapeutic cancer vaccines and analyzes them both clinically and immunologically.

  1. Impact of BRICS’ investment in vaccine development on the global vaccine market

    Science.gov (United States)

    Milstien, Julie; Schmitt, Sarah

    2014-01-01

    Abstract Brazil, the Russian Federation, India, China and South Africa – the countries known as BRICS – have made considerable progress in vaccine production, regulation and development over the past 20 years. In 1993, all five countries were producing vaccines but the processes used were outdated and non-standardized, there was little relevant research and there was negligible international recognition of the products. By 2014, all five countries had strong initiatives for the development of vaccine technology and had greatly improved their national regulatory capacity. South Africa was then the only BRICS country that was not completely producing vaccines. South Africa is now in the process of re-establishing its own vaccine production and passing beyond the stage of simply importing, formulating and filling vaccine bulks. Changes in the public sector’s price per dose of selected vaccines, the global market share represented by products from specific manufacturers, and the attractiveness, for multinational companies, of partnership and investment opportunities in BRICS companies have all been analysed. The results indicate that the BRICS countries have had a major impact on vaccine price and availability, with much of that impact attributable to the output of Indian vaccine manufacturers. China is expected to have a greater impact soon, given the anticipated development of Chinese vaccine manufacturers in the near future. BRICS’ accomplishments in the field of vaccine development are expected to reshape the global vaccine market and accelerate access to vaccines in the developing world. The challenge is to turn these expectations into strategic actions and practical outcomes. PMID:24940018

  2. Development of Streptococcus agalactiae vaccines for tilapia.

    Science.gov (United States)

    Liu, Guangjin; Zhu, Jielian; Chen, Kangming; Gao, Tingting; Yao, Huochun; Liu, Yongjie; Zhang, Wei; Lu, Chengping

    2016-12-21

    Vaccination is a widely accepted and effective method to prevent most pathogenic diseases in aquaculture. Various species of tilapia, especially Nile tilapia Oreochromis niloticus, are farmed worldwide because of their high consumer demand. Recently, the tilapia-breeding industry has been hampered by outbreaks of Streptococcus agalactiae infection, which cause high mortality and huge economic losses. Many researchers have attempted to develop effective S. agalactiae vaccines for tilapia. This review provides a summary of the different kinds of S. agalactiae vaccines for tilapia that have been developed recently. Among the various vaccine types, inactivated S. agalactiae vaccines showed superior protection efficiency when compared with live attenuated, recombinant and DNA vaccines. With respect to vaccination method, injecting the vaccine into tilapia provided the most effective immunoprotection. Freund's incomplete adjuvant appeared to be suitable for tilapia vaccines. Other factors, such as immunization duration and number, fish size and challenge dose, also influenced the vaccine efficacy.

  3. Application of radiation technology in vaccines development.

    Science.gov (United States)

    Seo, Ho Seong

    2015-07-01

    One of the earliest methods used in the manufacture of stable and safe vaccines is the use of chemical and physical treatments to produce inactivated forms of pathogens. Although these types of vaccines have been successful in eliciting specific humoral immune responses to pathogen-associated immunogens, there is a large demand for the development of fast, safe, and effective vaccine manufacturing strategies. Radiation sterilization has been used to develop a variety of vaccine types, because it can eradicate chemical contaminants and penetrate pathogens to destroy nucleic acids without damaging the pathogen surface antigens. Nevertheless, irradiated vaccines have not widely been used at an industrial level because of difficulties obtaining the necessary equipment. Recent successful clinical trials of irradiated vaccines against pathogens and tumors have led to a reevaluation of radiation technology as an alternative method to produce vaccines. In the present article, we review the challenges associated with creating irradiated vaccines and discuss potential strategies for developing vaccines using radiation technology.

  4. Efficacy of a novel Pasteurella multocida vaccine against progressive atrophic rhinitis of swine

    Science.gov (United States)

    Hsuan, Shih-Ling; Liao, Chih-Ming; Huang, Chienjin; Winton, James R.; Chen, Zeng-Weng; Lee, Wei-Cheng; Liao, Jiunn-Wang; Chen, Ter-Hsin; Chiou, Chwei-Jang; Yeh, Kuang-Sheng; Chien, Maw-Sheng

    2009-01-01

    The efficacy of a novel vaccine composed of three short recombinant subunit Pasteurella multocida toxin (PMT) proteins in combination with a bi-valent P. multocida whole-cell bacterin (rsPMT–PM) was evaluated in field studies for prevention and control of progressive atrophic rhinitis (PAR) of swine at 15 conventional farrow-to-finish farms. Experimental piglets that were immunized twice with the rsPMT–PM vaccine developed detectable titers of neutralizing antibodies (greater than 1:8) that prevented the growth retardation and pathological lesions typically observed following challenge with authentic PMT. A total of 542 sows were vaccinated once or twice prior to parturition and serum neutralizing antibody titers were evaluated. Both single and double vaccination protocols induced neutralizing antibody titers of 1:16 or higher in 62% and 74% of sows, respectively. Notably, neither sows nor piglets at a farm experiencing a severe outbreak of PAR at the time of the vaccination trial had detectable antibody titers, but antibody titers increased significantly to 1:16 or higher in 40% of sows following double vaccination. During the year after vaccination, clinical signs of PAR decreased in fattening pigs and growth performance improved sufficiently to reduce the rearing period until marketing by 2 weeks. Collectively, these results indicate that the rsPMT–PM vaccine could be used to provide protective immunity for controlling the prevalence and severity of PAR among farm-raised swine.

  5. Development and trial of vaccines against Brucella.

    Science.gov (United States)

    Lalsiamthara, Jonathan; Lee, John Hwa

    2017-08-31

    The search for ideal brucellosis vaccines remains active today. Currently, no licensed human or canine anti-brucellosis vaccines are available. In bovines, the most successful vaccine (S19) is only used in calves, as adult vaccination results in orchitis in male, prolonged infection, and possible abortion complications in pregnant female cattle. Another widely deployed vaccine (RB51) has a low protective efficacy. An ideal vaccine should exhibit a safe profile as well as enhance protective efficacy. However, currently available vaccines exhibit one or more major drawbacks. Smooth live attenuated vaccines suffer shortcomings such as residual virulence and serodiagnostic interference. Inactivated vaccines, in general, confer relatively low levels of protection. Recent developments to improve brucellosis vaccines include generation of knockout mutants by targeting genes involved in metabolism, virulence, and the lipopolysaccharide synthesis pathway, as well as generation of DNA vaccines, mucosal vaccines, and live vectored vaccines, have all produced varying degrees of success. Herein, we briefly review the bacteriology, pathogenesis, immunological implications, candidate vaccines, vaccinations, and models related to Brucella .

  6. Development of a vaccine for bacterial kidney disease in salmon

    International Nuclear Information System (INIS)

    Kaatari, S.; Turaga, P.; Wiens, G.

    1989-08-01

    This document is the executive summary and background review for the final report of ''Development of a Vaccine for Bacterial Kidney Disease in Salmon''. A description of the disease is provided, with microbiological characterization of the infective agent. A brief discussion of attempts to eradicate the disease is included. Recent progress in vaccine development and attempts to control the disease through pharmacological means are described, along with potential ways to break the cycle of infection. 80 refs

  7. New developments and concepts related to biomarker application to vaccines

    Science.gov (United States)

    Ahmed, S. Sohail; Black, Steve; Ulmer, Jeffrey

    2012-01-01

    Summary This minireview will provide a perspective on new developments and concepts related to biomarker applications for vaccines. In the context of preventive vaccines, biomarkers have the potential to predict adverse events in select subjects due to differences in genetic make‐up/underlying medical conditions or to predict effectiveness (good versus poor response). When expanding them to therapeutic vaccines, their utility in identification of patients most likely to respond favourably (or avoid potentially negative effects of treatment) becomes self‐explanatory. Despite the progress made so far on dissection of various pathways of biological significance in humans, there is still plenty to unravel about the mysteries related to the quantitative and qualitative aspects of the human host response. This review will provide a focused overview of new concepts and developments in the field of vaccine biomarkers including (i) vaccine‐dependent signatures predicting subject response and safety, (ii) predicting therapeutic vaccine efficacy in chronic diseases, (iii) exploring the genetic make‐up of the host that may modulate subject‐specific adverse events or affect the quality of immune responses, and (iv) the topic of volunteer stratification as a result of biomarker screening (e.g. for therapeutic vaccines but also potentially for preventive vaccines) or as a reflection of an effort to compare select groups (e.g. vaccinated subjects versus patients recovering from infection) to enable the discovery of clinically relevant biomarkers for preventive vaccines. PMID:21895991

  8. [Development of current smallpox vaccines].

    Science.gov (United States)

    Maksiutov, R A; Gavrilova, E V; Shchelkunov, S N

    2011-01-01

    The review gives data on the history of smallpox vaccination and shows the high topicality of designing the current safe vaccines against orthopoxviruses. Four generations of live smallpox, protein subunit, and DNA vaccines are considered. Analysis of the data published leads to the conclusion that it is promising to use the up-to-date generations of safe smallpox subunit or DNA vaccines for mass primary immunization with possible further revaccination with classical live vaccine.

  9. Advances and challenges in malaria vaccine development.

    Science.gov (United States)

    Crompton, Peter D; Pierce, Susan K; Miller, Louis H

    2010-12-01

    Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.

  10. Conjugate Meningococcal Vaccines Development: GSK Biologicals Experience

    Science.gov (United States)

    Miller, Jacqueline M.; Mesaros, Narcisa; Van Der Wielen, Marie; Baine, Yaela

    2011-01-01

    Meningococcal diseases are serious threats to global health, and new vaccines specifically tailored to meet the age-related needs of various geographical areas are required. This paper focuses on the meningococcal conjugate vaccines developed by GSK Biologicals. Two combined conjugate vaccines were developed to help protect infants and young children in countries where the incidence of meningococcal serogroup C or serogroup C and Y disease is important: Hib-MenC-TT vaccine, which offers protection against Haemophilus influenzae type b and Neisseria meningitidis serogroup C diseases, is approved in several countries; and Hib-MenCY-TT vaccine, which adds N. meningitidis serogroup Y antigen, is currently in the final stages of development. Additionally, a tetravalent conjugate vaccine (MenACWY-TT) designed to help protect against four meningococcal serogroups is presently being evaluated for global use in all age groups. All of these vaccines were shown to be highly immunogenic and to have clinically acceptable safety profiles. PMID:21991444

  11. Conjugate Meningococcal Vaccines Development: GSK Biologicals Experience

    Directory of Open Access Journals (Sweden)

    Jacqueline M. Miller

    2011-01-01

    Full Text Available Meningococcal diseases are serious threats to global health, and new vaccines specifically tailored to meet the age-related needs of various geographical areas are required. This paper focuses on the meningococcal conjugate vaccines developed by GSK Biologicals. Two combined conjugate vaccines were developed to help protect infants and young children in countries where the incidence of meningococcal serogroup C or serogroup C and Y disease is important: Hib-MenC-TT vaccine, which offers protection against Haemophilus influenzae type b and Neisseria meningitidis serogroup C diseases, is approved in several countries; and Hib-MenCY-TT vaccine, which adds N. meningitidis serogroup Y antigen, is currently in the final stages of development. Additionally, a tetravalent conjugate vaccine (MenACWY-TT designed to help protect against four meningococcal serogroups is presently being evaluated for global use in all age groups. All of these vaccines were shown to be highly immunogenic and to have clinically acceptable safety profiles.

  12. Large animal models for vaccine development and testing.

    Science.gov (United States)

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Mucosal vaccines: recent progress in understanding the natural barriers.

    Science.gov (United States)

    Borges, Olga; Lebre, Filipa; Bento, Dulce; Borchard, Gerrit; Junginger, Hans E

    2010-02-01

    It has long been known that protection against pathogens invading the organism via mucosal surfaces correlates better with the presence of specific antibodies in local secretions than with serum antibodies. The most effective way to induce mucosal immunity is to administer antigens directly to the mucosal surface. The development of vaccines for mucosal application requires antigen delivery systems and immunopotentiators that efficiently facilitate the presentation of the antigen to the mucosal immune system. This review provides an overview of the events within mucosal tissues that lead to protective mucosal immune responses. The understanding of those biological mechanisms, together with knowledge of the technology of vaccines and adjuvants, provides guidance on important technical aspects of mucosal vaccine design. Not being exhaustive, this review also provides information related to modern adjuvants, including polymeric delivery systems and immunopotentiators.

  14. Lactobacilli as live vaccine delivery vectors: Progress and prospects

    NARCIS (Netherlands)

    Seegers, J.F.M.L.

    2002-01-01

    Evidence is accumulating that lactobacilli influence the immune response in a strain-dependent manner. This immunomodulatory capacity is important for the development of the immune response, and also identifies Lactobacillus as a potent oral vaccine carrier. Most of our current knowledge of the use

  15. Status of vaccine research and development of vaccines for leishmaniasis.

    Science.gov (United States)

    Gillespie, Portia M; Beaumier, Coreen M; Strych, Ulrich; Hayward, Tara; Hotez, Peter J; Bottazzi, Maria Elena

    2016-06-03

    A number of leishmaniasis vaccine candidates are at various stages of pre-clinical and clinical development. Leishmaniasis is a vector-borne neglected tropical disease (NTD) caused by a protozoan parasite of the genus Leishmania and transmitted to humans by the bite of a sand fly. Visceral leishmaniasis (VL, kala-azar) is a high mortality NTD found mostly in South Asia and East Africa, while cutaneous leishmaniasis (CL) is a disfiguring NTD highly endemic in the Middle East, Central Asia, North Africa, and the Americas. Estimates attribute 50,000 annual deaths and 3.3 million disability-adjusted life years to leishmaniasis. There are only a few approved drug treatments, no prophylactic drug and no vaccine. Ideally, an effective vaccine against leishmaniasis will elicit long-lasting immunity and protect broadly against VL and CL. Vaccines such as Leish-F1, F2 and F3, developed at IDRI and designed based on selected Leishmania antigen epitopes, have been in clinical trials. Other groups, including the Sabin Vaccine Institute in collaboration with the National Institutes of Health are investigating recombinant Leishmania antigens in combination with selected sand fly salivary gland antigens in order to augment host immunity. To date, both VL and CL vaccines have been shown to be cost-effective in economic modeling studies. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  16. Development of Mycoplasma hyopneumoniae Recombinant Vaccines.

    Science.gov (United States)

    Marchioro, Silvana Beutinger; Simionatto, Simone; Dellagostin, Odir

    2016-01-01

    Mycoplasma hyopneumoniae is the etiological agent of swine enzootic pneumonia (EP), a disease that affects swine production worldwide. Vaccination is the most cost-effective strategy for the control and prevention of the disease. Research using genome-based approach has the potential to elucidate the biology and pathogenesis of M. hyopneumoniae and contribute to the development of more effective vaccines. Here, we describe the protocol for developing M. hyopneumoniae recombinant vaccines using reverse vaccinology approaches.

  17. Dengue, zika, chikungunya and the development of vaccines

    Directory of Open Access Journals (Sweden)

    Isabel N. Kantor

    2018-01-01

    Full Text Available Dengue (DENV, zika (ZIKV and chikungunya (CHIKV, three arbovirosis transmitted by Aedes mosquitoes, have spread in recent decades in humid tropical and subtropical zones. Dengue is epidemic in subtropical areas of Argentina. DENV infection confers lasting immunity against the infecting serotype but increases the risk of serious disease upon reinfection by any of the other three. The recombinant tetravalent vaccine Dengvaxia® prevents severe dengue and hospitalization in seropositive subjects. In 2017, Dengvaxia was approved in Argentina, for ages 9 to 45, but is not included in the national vaccination calendar. Two other vaccines are in Phase III evaluation: one developed by NIAID / Instituto Butantan and the other by Takeda. ZIKV, a virus associated with microcephaly in newborns in Brazil, circulates since 2016 in Argentina. There is still not effective treatment nor vaccine with proven activity against ZIKV. There has been no active circulation of CHIKV in Argentina in 2017. Outbreaks of CHIKV fever have a complication: the development of chronic post-disease rheumatism. There are not approved vaccines for humans nor effective antiviral therapies. The seriousness of these virosis has contributed to a rapid progress in the knowledge of the infection processes and the immune response. For now, Aedes aegypti and A. albopictus vectors continue to expand, suggesting that the vaccine will be the most effective means of controlling these viruses. Here we summarize information about these arbovirosis in Argentina and Brazil and describe advances in the development and evaluation of vaccines.

  18. [Dengue, zika, chikungunya and the development of vaccines].

    Science.gov (United States)

    Kantor, Isabel N

    2018-01-01

    Dengue (DENV), zika (ZIKV) and chikungunya (CHIKV), three arbovirosis transmitted by Aedes mosquitoes, have spread in recent decades in humid tropical and subtropical zones. Dengue is epidemic in subtropical areas of Argentina. DENV infection confers lasting immunity against the infecting serotype but increases the risk of serious disease upon reinfection by any of the other three. The recombinant tetravalent vaccine Dengvaxia® prevents severe dengue and hospitalization in seropositive subjects. In 2017, Dengvaxia was approved in Argentina, for ages 9 to 45, but is not included in the national vaccination calendar. Two other vaccines are in Phase III evaluation: one developed by NIAID / Instituto Butantan and the other by Takeda. ZIKV, a virus associated with microcephaly in newborns in Brazil, circulates since 2016 in Argentina. There is still not effective treatment nor vaccine with proven activity against ZIKV. There has been no active circulation of CHIKV in Argentina in 2017. Outbreaks of CHIKV fever have a complication: the development of chronic post-disease rheumatism. There are not approved vaccines for humans nor effective antiviral therapies. The seriousness of these virosis has contributed to a rapid progress in the knowledge of the infection processes and the immune response. For now, Aedes aegypti and A. albopictus vectors continue to expand, suggesting that the vaccine will be the most effective means of controlling these viruses. Here we summarize information about these arbovirosis in Argentina and Brazil and describe advances in the development and evaluation of vaccines.

  19. [The development of therapeutic vaccine for hepatitis C virus].

    Science.gov (United States)

    Kimura, Kiminori; Kohara, Michinori

    2012-10-01

    Chronic hepatitis C caused by infection with the hepatitis C virus(HCV)is a global health problem. HCV causes persistent infection that can lead to chronic liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The therapeutic efficacy of antiviral drugs is not optimal in patients with chronic infection; furthermore, an effective vaccine has not yet been developed. To design an effective HCV vaccine, generation of a convenient animal model of HCV infection is necessary. Recently, we used the Cre/loxP switching system to generate an immunocompetent mouse model of HCV expression, thereby enabling the study of host immune responses against HCV proteins. At present vaccine has not yet been shown to be therapeutically effective against chronic HCV infection. We examined the therapeutic effects of a recombinant vaccinia virus(rVV)encoding HCV protein in a mouse model. we generated rVVs for 3 different HCV proteins and found that one of the recombinant viruses encoding a nonstructural protein(rVV-N25)resolved pathological chronic hepatitis C symptoms in the liver. We propose the possibility that rVV-N25 immunization has the potential for development of an effective therapeutic vaccine for HCV induced chronic hepatitis. The utilization of the therapeutic vaccine can protect progress to chronic hepatitis, and as a consequence, leads to eradication of hepatocellular carcinoma. In this paper, we summarized our current study for HCV therapeutic vaccine and review the vaccine development to date.

  20. Development of respiratory syncytial virus (RSV) vaccines for infants.

    Science.gov (United States)

    Gerretsen, Hannah E; Sande, Charles J

    2017-06-01

    2017 will mark the 60 th anniversary since the first isolation of RSV in children. In spite of concerted efforts over all these years, the goal of developing an effective vaccine against paediatric RSV disease has remained elusive. One of the main hurdles standing in the way of an effective vaccine is the fact that the age incidence of severe disease peaks within the first 3 months of life, providing limited opportunity for intervention. In addition to this complexity, the spectre of failed historical vaccines, which increased the risk of illness and death upon subsequent natural infection, has substantially increased the safety criteria against which modern vaccines will be assessed. This review traces the history of RSV vaccine development for young infants and analyses the potential reasons for the failure of historic vaccines. It also discusses recent breakthroughs in vaccine antigen design and the progressive evolution of platforms for the delivery of these antigens to seronegative infants. © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  1. Development of Novel Vaccines against Enterovirus-71

    Science.gov (United States)

    Yee, Pinn Tsin Isabel; Poh, Chit Laa

    2015-01-01

    The hand, foot and mouth disease is caused by a group of Enteroviruses such as Enterovirus 71 (EV-A71) and Coxsackievirus CV-A5, CV-A8, and CV-A16. Mild symptoms of EV-A71 infection in children range from high fever, vomiting, rashes and ulcers in mouth but can produce more severe symptoms such as brainstem and cerebellar encephalitis, leading up to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents against EV-A71 to prevent further fatalities. Research groups have developed experimental inactivated vaccines, recombinant Viral Protein 1 (VP1) vaccine and virus-like particles (VLPs). The inactivated EV-A71 vaccine is considered the safest viral vaccine, as there will be no reversion to the infectious wild type strain. The recombinant VP1 vaccine is a cost-effective immunogen, while VLPs contain an arrangement of epitopes that can elicit neutralizing antibodies against the virus. As each type of vaccine has its advantages and disadvantages, increased studies are required in the development of such vaccines, whereby high efficacy, long-lasting immunity, minimal risk to those vaccinated, safe and easy production, low cost, dispensing the need for refrigeration and convenient delivery are the major goals in their design. PMID:26729152

  2. DENGUE VACCINE, CHALLENGES, DEVELOPMENT AND STRATEGIES

    Directory of Open Access Journals (Sweden)

    Dewi Marbawati

    2014-08-01

    Full Text Available ABSTRAKPenyakit demam Dengue endemik di lebih dari 100 negara di dunia. Obat anti virus Dengue efektif belum ditemukan danpengendalian vektor dinilai kurang efektif, sehingga diperlukan upaya pencegahan dengan vaksinasi. Vaksin Dengue yangideal adalah murah, mencakup 4 serotipe, efektif dalam memberikan kekebalan, cukup diberikan sekali seumur hidup, aman,memberi kekebalan jangka panjang, stabil dalam penyimpanan dan stabil secara genetis (tidak bermutasi. Beberapakandidat vaksin yang telah dan sedang dikembangkan oleh para peneliti di seluruh dunia adalah tetravalent live attenuatedvaccine, vaksin Chimera (ChimeriVax, vaksin subunit dan vaksin DNA. Vaksin Dengue dipandang sebagai pendekatan yangefektif dan berkesinambungan dalam mengendalikan penyakit Dengue. Tahun 2003 telah terbentuk Pediatric DengueVaccine Initiative (PDVI, yaitu sebuah konsorsium internasional yang bergerak dalam advokasi untuk meyakinkanmasyarakat internasional akan penting dan mendesaknya vaksin Dengue. Konsorsium vaksin Dengue Indonesia saat iniberupaya mengembangkan vaksin Dengue dengan menggunakan strain virus lokal.Kata kunci: Dengue, virus, vaksinABSTRACTDengue fever is endemic in more than 100 countries in the world. The effective dengue antiviral drug has not been found yet,and vector control is considered less effective. Prevention program by vaccination is needed. An ideal dengue vaccine shouldbe inexpensive, covering four serotypes (tetravalent, effective in providing immunity, given once a lifetime, safe, stable instorage and genetically. Several vaccine candidates have been and are being developed included attenuated tetravalentvaccine, ChimeriVax, sub- unit vaccines and DNA vaccines. Dengue vaccine is seen as an effective and sustainable approachto controll Dengue infection. In 2003, Pediatric Dengue Vaccine Initiative (PDVI has been formed as an internationalconsortium involved in advocacy to convince the international community about the essence and urgency

  3. Development of improved pertussis vaccine.

    Science.gov (United States)

    Rumbo, Martin; Hozbor, Daniela

    2014-01-01

    Rates of infection with Bordetella pertussis, the gram-negative bacterium that causes the respiratory disease called whooping cough or pertussis, have not abated and 16 million cases with almost 200,000 deaths are estimated by the WHO to have occurred worldwide in 2008. Despite relatively high vaccination rates, the disease has come back in recent years to afflict people in numbers not seen since the pre-vaccine days. Indeed, pertussis is now recognized as a frequent infection not only in newborn and infants but also in adults. The disease symptoms also can be induced by the non-vaccine-preventable infection with the close species B. parapertussis for which an increasing number of cases have been reported. The epidemiologic situation and current knowledge of the limitations of pertussis vaccine point out the need to design improved vaccines. Several alternative approaches and their challenges are summarized.

  4. Human capital gaps in vaccine development: an issue for global vaccine development and global health.

    Science.gov (United States)

    Cawein, Andrea; Emini, Emilio; Watson, Michael; Dailey, Joanna; Donnelly, John; Tresnan, Dina; Evans, Tom; Plotkin, Stanley; Gruber, William

    2017-05-01

    Despite the success of vaccines in reducing the morbidity and mortality associated with infectious diseases, many infectious diseases, both newly emerging and well known, lack vaccines. The global capability for beginning-to-end vaccine development has become limited, primarily owing to a scarcity of human capital necessary to guide the development of novel vaccines from the laboratory to the marketplace. Here, we identify and discuss the gaps in human capital necessary for robust vaccine development and make recommendations to begin to address these deficiencies. © 2017 New York Academy of Sciences.

  5. Progress in Childhood Vaccination Data in Immunization Information Systems - United States, 2013-2016.

    Science.gov (United States)

    Murthy, Neil; Rodgers, Loren; Pabst, Laura; Fiebelkorn, Amy Parker; Ng, Terence

    2017-11-03

    In 2016, 55 jurisdictions in 49 states and six cities in the United States* used immunization information systems (IISs) to collect and manage immunization data and support vaccination providers and immunization programs. To monitor progress toward achieving IIS program goals, CDC surveys jurisdictions through an annual self-administered IIS Annual Report (IISAR). Data from the 2013-2016 IISARs were analyzed to assess progress made in four priority areas: 1) data completeness, 2) bidirectional exchange of data with electronic health record systems, 3) clinical decision support for immunizations, and 4) ability to generate childhood vaccination coverage estimates. IIS participation among children aged 4 months through 5 years increased from 90% in 2013 to 94% in 2016, and 33 jurisdictions reported ≥95% of children aged 4 months through 5 years participating in their IIS in 2016. Bidirectional messaging capacity in IISs increased from 25 jurisdictions in 2013 to 37 in 2016. In 2016, nearly all jurisdictions (52 of 55) could provide automated provider-level coverage reports, and 32 jurisdictions reported that their IISs could send vaccine forecasts to providers via Health Level 7 (HL7) messaging, up from 17 in 2013. Incremental progress was made in each area since 2013, but continued effort is needed to implement these critical functionalities among all IISs. Success in these priority areas, as defined by the IIS Functional Standards (1), bolsters clinicians' and public health practitioners' ability to attain high vaccination coverage in pediatric populations, and prepares IISs to develop more advanced functionalities to support state/local immunization services. Success in these priority areas also supports the achievement of federal immunization objectives, including the use of IISs as supplemental sampling frames for vaccination coverage surveys like the National Immunization Survey (NIS)-Child, reducing data collection costs, and supporting increased precision

  6. Recent progress in West Nile virus diagnosis and vaccination

    Directory of Open Access Journals (Sweden)

    De Filette Marina

    2012-03-01

    Full Text Available Abstract West Nile virus (WNV is a positive-stranded RNA virus belonging to the Flaviviridae family, a large family with 3 main genera (flavivirus, hepacivirus and pestivirus. Among these viruses, there are several globally relevant human pathogens including the mosquito-borne dengue virus (DENV, yellow fever virus (YFV, Japanese encephalitis virus (JEV and West Nile virus (WNV, as well as tick-borne viruses such as tick-borne encephalitis virus (TBEV. Since the mid-1990s, outbreaks of WN fever and encephalitis have occurred throughout the world and WNV is now endemic in Africa, Asia, Australia, the Middle East, Europe and the Unites States. This review describes the molecular virology, epidemiology, pathogenesis, and highlights recent progress regarding diagnosis and vaccination against WNV infections.

  7. Microneedle patches for vaccination in developing countries.

    Science.gov (United States)

    Arya, Jaya; Prausnitz, Mark R

    2016-10-28

    Millions of people die of infectious diseases each year, mostly in developing countries, which could largely be prevented by the use of vaccines. While immunization rates have risen since the introduction of the Expanded Program on Immunization (EPI), there remain major challenges to more effective vaccination in developing countries. As a possible solution, microneedle patches containing an array of micron-sized needles on an adhesive backing have been developed to be used for vaccine delivery to the skin. These microneedle patches can be easily and painlessly applied by pressing against the skin and, in some designs, do not leave behind sharps waste. The patches are single-dose, do not require reconstitution, are easy to administer, have reduced size to simplify storage, transportation and waste disposal, and offer the possibility of improved vaccine immunogenicity, dose sparing and thermostability. This review summarizes vaccination challenges in developing countries and discusses advantages that microneedle patches offer for vaccination to address these challenges. We conclude that microneedle patches offer a powerful new technology that can enable more effective vaccination in developing countries. Copyright © 2015. Published by Elsevier B.V.

  8. Recombinant vaccines and the development of new vaccine strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, I.P.; Leite, L.C.C. [Centro de Biotecnologia, Instituto Butantan, São Paulo, SP (Brazil)

    2012-09-07

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  9. Recombinant vaccines and the development of new vaccine strategies

    Directory of Open Access Journals (Sweden)

    I.P. Nascimento

    2012-12-01

    Full Text Available Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  10. Recombinant vaccines and the development of new vaccine strategies

    International Nuclear Information System (INIS)

    Nascimento, I.P.; Leite, L.C.C.

    2012-01-01

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks

  11. Current strategic thinking for the development of a trivalent alphavirus vaccine for human use.

    Science.gov (United States)

    Wolfe, Daniel N; Heppner, D Gray; Gardner, Shea N; Jaing, Crystal; Dupuy, Lesley C; Schmaljohn, Connie S; Carlton, Kevin

    2014-09-01

    Vaccinations against the encephalitic alphaviruses (western, eastern, and Venezuelan equine encephalitis virus) are of significant interest to biological defense, public health, and agricultural communities alike. Although vaccines licensed for veterinary applications are used in the Western Hemisphere and attenuated or inactivated viruses have been used under Investigational New Drug status to protect at-risk personnel, there are currently no licensed vaccines for use in humans. Here, we will discuss the need for a trivalent vaccine that can protect humans against all three viruses, recent progress to such a vaccine, and a strategy to continue development to Food and Drug Administration licensure. © The American Society of Tropical Medicine and Hygiene.

  12. Malnutrition and vaccination in developing countries

    Science.gov (United States)

    Prendergast, Andrew J.

    2015-01-01

    Malnutrition contributes to an estimated 45% of deaths among children under 5 years of age in developing countries, predominantly due to infections. Malnourished children therefore stand to benefit hugely from vaccination, but malnutrition has been described as the most common immunodeficiency globally, suggesting that they may not be able to respond effectively to vaccines. The immunology of malnutrition remains poorly characterized, but is associated with impairments in mucosal barrier integrity, and innate and adaptive immune dysfunction. Despite this, the majority of malnourished children can mount a protective immune response following vaccination, although the timing, quality and duration of responses may be impaired. This paper reviews the evidence for vaccine immunogenicity in malnourished children, discusses the importance of vaccination in prevention of malnutrition and highlights evidence gaps in our current knowledge. PMID:25964453

  13. Vaccines in Development against West Nile Virus

    Directory of Open Access Journals (Sweden)

    Frederic Tangy

    2013-09-01

    Full Text Available West Nile encephalitis emerged in 1999 in the United States, then rapidly spread through the North American continent causing severe disease in human and horses. Since then, outbreaks appeared in Europe, and in 2012, the United States experienced a new severe outbreak reporting a total of 5,387 cases of West Nile virus (WNV disease in humans, including 243 deaths. So far, no human vaccine is available to control new WNV outbreaks and to avoid worldwide spreading. In this review, we discuss the state-of-the-art of West Nile vaccine development and the potential of a novel safe and effective approach based on recombinant live attenuated measles virus (MV vaccine. MV vaccine is a live attenuated negative-stranded RNA virus proven as one of the safest, most stable and effective human vaccines. We previously described a vector derived from the Schwarz MV vaccine strain that stably expresses antigens from emerging arboviruses, such as dengue, West Nile or chikungunya viruses, and is strongly immunogenic in animal models, even in the presence of MV pre-existing immunity. A single administration of a recombinant MV vaccine expressing the secreted form of WNV envelope glycoprotein elicited protective immunity in mice and non-human primates as early as two weeks after immunization, indicating its potential as a human vaccine.

  14. RDBE Development and Progress

    Science.gov (United States)

    Niell, A.; Bark, M.; Beaudoin, C.; Brisken, W.; Frej, H. Ben; Doeleman, S.; Durand, S.; Guerra, M.; Hinton, A.; Luce, M.; hide

    2010-01-01

    A digital backend based on the ROACH board has been developed jointly by the National Radio Astronomy Observatory and MIT Haystack Observatory. The RDBE will have both Polyphase Filterbank and Digital Downconverter personalities. The initial configuration outputs sixteen 32-MHz channels, comprised of half the channels from the PFB processing of the two IF inputs, for use in the VLBI2010 geodetic system and in the VLBA sensitivity upgrade project. The output rate is 2x109 bits/second (1x10(exp 9) bits/sec = 1 Gbps) over a 10 GigE connection to the Mark 5C with the data written in Mark 5B format on disk.

  15. RDBE Development and Progress

    Science.gov (United States)

    Neill, A.; Bark, M.; Beaudoin, C.; Brisken, W.; Ben Frej, H.; Doeleman, S.; Durand, S.; Guerra, Ml; Hinton, A.; Luce, M.; McWhirter, R.; Morris, K.; Peck, G.; Revnell, M.; Rogers, A.; Romney, J.; Ruszczyk, C; Taveniku, M.; Walker, R.; Whitney, A.

    2010-12-01

    A digital backend based on the ROACH board has been developed jointly by the National Radio Astronomy Observatory and MIT Haystack Observatory. The RDBE will have both Polyphase Filterbank and Digital Downconverter personalities. The initial configuration outputs sixteen 32-MHz channels, comprised of half the channels from the PFB processing of the two IF inputs, for use in the VLBI2010 geodetic system and in the VLBA sensitivity upgrade project. The output rate is 2x10^9 bits/second (1x10^9 bits/sec = 1 Gbps) over a 10 GigE connection to the Mark 5C with the data written in Mark 5B format on disk.

  16. Development of Antibody-Based Vaccines Targeting the Tumor Vasculature.

    Science.gov (United States)

    Zhuang, Xiaodong; Bicknell, Roy

    2016-01-01

    A functional vasculature is essential for tumor progression and malignant cell metastasis. Endothelial cells lining blood vessels in the tumor are exposed to a unique microenvironment, which in turn induces expression of specific proteins designated as tumor endothelial markers (TEMs). TEMs either localized at the plasma membrane or secreted into the extracellular matrix are accessible for antibody targeting, which can be either infused or generated de novo via vaccination. Recent studies have demonstrated vaccines against several TEMs can induce a strong antibody response accompanied by a potent antitumor effect in animal models. These findings present an exciting field for novel anticancer therapy development. As most of the TEMs are self-antigens, breaking tolerance is necessary for a successful vaccine. This chapter describes approaches to efficiently induce a robust antibody response against the tumor vasculature.

  17. The Progress of Therapeutic Vaccination with Regard to Tuberculosis.

    Science.gov (United States)

    Cardona, Pere-Joan

    2016-01-01

    A major problem with tuberculosis (TB) control is the long duration of drug therapy-both for latent and for active TB. Therapeutic vaccination has been postulated to improve this situation, and to this end there are several candidates already in clinical phases of development. These candidates follow two main designs, namely bacilli-directed therapy based on inactivated -whole or -fragmented bacillus ( Mycobacterium w and RUTI) or fusion proteins that integrate non-replicating bacilli -related antigens (H56 vaccine), and host-directed therapy to reduce the tissue destruction. The administration of inactivated Mycobacterium vaccae prevents the "Koch phenomenon" response, and oral administration of heat-killed Mycobacterium manresensis prevents excessive neutrophilic infiltration of the lesions. This review also tries to explain the success of Mycobacterium tuberculosis by reviewing its evolution from infection to disease, and highlights the lack of a definitive understanding of the natural history of TB pathology and the need to improve our knowledge on TB immunology and pathogenesis.

  18. Development of a Vaccine against Escherichia coli Urinary Tract Infections

    Directory of Open Access Journals (Sweden)

    Harry L. T. Mobley

    2015-12-01

    Full Text Available Urinary tract infection (UTI is the second most common infection in humans after those involving the respiratory tract. This results not only in huge annual economic costs, but in decreased workforce productivity and high patient morbidity. Most infections are caused by uropathogenic Escherichia coli (UPEC. Antibiotic treatment is generally effective for eradication of the infecting strain; however, documentation of increasing antibiotic resistance, allergic reaction to certain pharmaceuticals, alteration of normal gut flora, and failure to prevent recurrent infections represent significant barriers to treatment. As a result, approaches to prevent UTI such as vaccination represent a gap that must be addressed. Our laboratory has made progress toward development of a preventive vaccine against UPEC. The long-term research goal is to prevent UTIs in women with recurrent UTIs. Our objective has been to identify the optimal combination of protective antigens for inclusion in an effective UTI vaccine, optimal adjuvant, optimal dose, and optimal route of delivery. We hypothesized that a multi-subunit vaccine elicits antibody that protects against experimental challenge with UPEC strains. We have systematically identified four antigens that can individually protect experimentally infected mice from colonization of the bladder and/or kidneys by UPEC when administered intranasally with cholera toxin (CT as an adjuvant. To advance the vaccine for utility in humans, we will group the individual antigens, all associated with iron acquisition (IreA, Hma, IutA, FyuA, into an effective combination to establish a multi-subunit vaccine. We demonstrated for all four vaccine antigens that antigen-specific serum IgG represents a strong correlate of protection in vaccinated mice. High antibody titers correlate with low colony forming units (CFUs of UPEC following transurethral challenge of vaccinated mice. However, the contribution of cell-mediated immunity cannot

  19. [HPV Vaccination Program - The History and Recent Progress].

    Science.gov (United States)

    Yoshikawa, Hiroyuki

    2017-09-01

    Four years have passed since HPV vaccination "crisis" occurred in June 2013. In Japan,a publicly funded HPV vaccination program for adolescent females aged 12-16 years began in December 2010. However,the Japanese government withdrew its recommendation for HPV vaccination in June, 2013 because news reports on potential adverse effects of HPV vaccines without any medical evidence appeared repeatedly. The vaccination coverage among adolescent females decreased quickly from around 70%in females born between 1994 and 1999 to only 1%in females born since 2001 over the country. The suspension of recommendation for vaccination has continued to the present,though there is no scientific or epidemiologic evidence to demonstrate the causal linkage between post-vaccination symptoms and the HPV vaccines. Very recently,an ecological investigation reported that similar symptoms also occur in unvaccinated adolescents in Japan. Medical organizations in Japan are also calling for a resumption of the HPV vaccination program. Now,the resumption of the recommendation needs a political judgment.

  20. Gammasphere software development. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Piercey, R.B.

    1994-01-01

    This report describes the activities of the nuclear physics group at Mississippi State University which were performed during 1993. Significant progress has been made in the focus areas: chairing the Gammasphere Software Working Group (SWG); assisting with the porting and enhancement of the ORNL UPAK histogramming software package; and developing standard formats for Gammasphere data products. In addition, they have established a new public ftp archive to distribute software and software development tools and information.

  1. Progress toward implementation of human papillomavirus vaccination--the Americas, 2006-2010.

    Science.gov (United States)

    2011-10-14

    Cervical cancer is a major cause of morbidity and mortality in the Americas, where an estimated 80,574 new cases and 36,058 deaths were reported in 2008, with 85% of this burden occurring in Latin America and the Caribbean. Two oncogenic human papillomavirus (HPV) types (16 and 18) cause approximately 70% of cervical cancers and a substantial proportion of other HPV-related cancers. HPV vaccination provides an opportunity to greatly reduce cervical cancer burden through primary prevention of HPV infection. This report summarizes the progress toward HPV vaccine introduction in the Americas, focusing on countries that have introduced the vaccine in national or regional immunization programs. As of January 2011, four countries in the Americas had introduced HPV vaccine. Overcoming issues related to financing and delivery of HPV vaccine remains a key public health challenge to more widespread implementation of HPV vaccination in the Americas.

  2. Vaccine development for emerging virulent infectious diseases.

    Science.gov (United States)

    Maslow, Joel N

    2017-10-04

    The recent outbreak of Zaire Ebola virus in West Africa altered the classical paradigm of vaccine development and that for emerging infectious diseases (EIDs) in general. In this paper, the precepts of vaccine discovery and advancement through pre-clinical and clinical assessment are discussed in the context of the recent Ebola virus, Middle East Respiratory Syndrome coronavirus (MERS-CoV), and Zika virus outbreaks. Clinical trial design for diseases with high mortality rates and/or high morbidity in the face of a global perception of immediate need and the factors that drive design in the face of a changing epidemiology are presented. Vaccines for EIDs thus present a unique paradigm to standard development precepts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Quality vaccines for all people: Report on the 16th annual general meeting of the Developing Countries Vaccine Manufacturers' Network, 05-07th October 2015, Bangkok, Thailand.

    Science.gov (United States)

    Pagliusi, Sonia; Ting, Ching-Chia; Khomvilai, Sumana

    2016-06-30

    The Developing Countries Vaccine Manufacturers Network (DCVMN) assembled high-profile leaders from global health organisations and vaccine manufactures for its 16th Annual General Meeting to work towards a common goal: providing quality vaccines for all people. Vaccines contribute to a healthy community and robust health system; the Ebola outbreak has raised awareness of the threat and damage one single infectious disease can make, and it is clear that the world was not prepared. However, more research to better understand emerging infectious agents might lead to suitable vaccines which help prevent future outbreaks. DCVMN members presented their progress in developing novel vaccines against Dengue, HPV, Chikungunya, Cholera, cell-based influenza and other vaccines, demonstrating the commitment towards eliminating and eradicating preventable diseases worldwide through global collaboration and technology transfer. The successful introduction of novel Sabin-IPV and Oral Cholera vaccine in China and Korea respectively in 2015 was highlighted. In order to achieve global immunisation, local authorities and community leaders play an important role in the decision-making in vaccine introduction and uptake, based on the ability of vaccines to protect vaccinated people and protect non-vaccinated in the community through herd immunity. Reducing the risk of vaccine shortages can also be achieved by increasing regulatory convergence at regional and international levels. Combatting preventable diseases remains challenging, and collective efforts for improving multi-centre clinical trials, creating regional vaccine security strategies, fostering developing vaccine markets and procurement, and building trust in vaccines were discussed. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Multi-stage subunit vaccine development against Mycobacterium paratuberculosis and Johne’s disease in ruminants

    DEFF Research Database (Denmark)

    Jungersen, Gregers

    paratuberculosis provide only partial protection and interfere with diagnostic tests for JD and surveillance for bovine TB. In contrast, recombinant subunit vaccines can be designed to be used without compromising control of bTB and Map. Taking advantage of data from mouse TB studies, and early Map vaccination...... in macrophages. The disease progression is very slow with neonatal animals being the most susceptible to infection, but without development of detectable IFN-γ responses for months after infection and rarely with clinical disease before the second or third year of life. Available whole cell vaccines against......- and field-studies we developed a vaccine with a single recombinant fusion protein comprising four acute-stage antigens (Ags) and one latent-stage Ag formulated in adjuvant (FET-vaccine). In post-exposure vaccination of calves and goats with necropsy 8-12 months post inoculation, we determined...

  5. Development of Burkholderia mallei and pseudomallei vaccines

    Science.gov (United States)

    Silva, Ediane B.; Dow, Steven W.

    2013-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit

  6. Progress on adenovirus-vectored universal influenza vaccines

    OpenAIRE

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8+ T cell responses targeting viral internal proteins nucleoprotein ...

  7. Bovine rotavirus pentavalent vaccine development in India.

    Science.gov (United States)

    Zade, Jagdish K; Kulkarni, Prasad S; Desai, Sajjad A; Sabale, Rajendra N; Naik, Sameer P; Dhere, Rajeev M

    2014-08-11

    A bovine rotavirus pentavalent vaccine (BRV-PV) containing rotavirus human-bovine (UK) reassortant strains of serotype G1, G2, G3, G4 and G9 has been developed by the Serum Institute of India Ltd, in collaboration with the National Institute of Allergy and Infectious Diseases (NIAID), USA. The vaccine underwent animal toxicity studies and Phase I and II studies in adults, toddlers and infants. It has been found safe and immunogenic and will undergo a large Phase III study to assess efficacy against severe rotavirus gastroenteritis. Copyright © 2014. Published by Elsevier Ltd.

  8. Next-Generation Dengue Vaccines: Novel Strategies Currently Under Development

    OpenAIRE

    Anna P. Durbin; Stephen S. Whitehead

    2011-01-01

    Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Past...

  9. Organizing the HIV vaccine development effort.

    Science.gov (United States)

    Voronin, Yegor; Snow, William

    2013-09-01

    To describe and compare the diverse organizational structures and funding mechanisms applied to advance HIV preventive vaccine research and development and to help explain and inform evolving infrastructures and collaborative funding models. On the basis of models that have been tried, improved or abandoned over three decades, the field seems to have settled into a relatively stable set of diverse initiatives, each with its own organizational signature. At the same time, this set of organizations is forging cross-organizational collaborations, which promise to acquire newly emergent beneficial properties. Strong motivation to expedite HIV vaccine R&D has driven a diversity of customized and inventive organizational approaches, largely government and foundation funded. Although no one approach has proven a panacea, the field has evolved into a constellation of often overlapping organizations that complement or reinforce one another. The Global HIV Vaccine Enterprise, a responsive, rapidly evolving loose infrastructure, is an innovative collaboration to catalyze that evolution.

  10. Methods and Protocols for Developing Prion Vaccines.

    Science.gov (United States)

    Marciniuk, Kristen; Taschuk, Ryan; Napper, Scott

    2016-01-01

    Prion diseases denote a distinct form of infectivity that is based in the misfolding of a self-protein (PrP(C)) into a pathological, infectious conformation (PrP(Sc)). Efforts to develop vaccines for prion diseases have been complicated by the potential dangers that are associated with induction of immune responses against a self-protein. As a consequence, there is considerable appeal for vaccines that specifically target the misfolded prion conformation. Such conformation-specific immunotherapy is made possible through the identification of vaccine targets (epitopes) that are exclusively presented as a consequence of misfolding. An immune response directed against these targets, termed disease-specific epitopes (DSEs), has the potential to spare the function of the native form of the protein while clearing, or neutralizing, the infectious isomer. Although identification of DSEs represents a critical first step in the induction of conformation-specific immune responses, substantial efforts are required to translate these targets into functional vaccines. Due to the poor immunogenicity that is inherent to self-proteins, and that is often associated with short peptides, substantial efforts are required to overcome tolerance-to-self and maximize the resultant immune response following DSE-based immunization. This often includes optimization of target sequences in terms of immunogenicity and development of effective formulation and delivery strategies for the associated peptides. Further, these vaccines must satisfy additional criteria from perspectives of specificity (PrP(C) vs. PrP(Sc)) and safety (antibody-induced template-driven misfolding of PrP(C)). The emphasis of this report is on the steps required to translate DSEs into prion vaccines and subsequent evaluation of the resulting immune responses.

  11. Regulatory pathways for vaccines for developing countries.

    Science.gov (United States)

    Milstien, Julie; Belgharbi, Lahouari

    2004-01-01

    Vaccines that are designed for use only in developing countries face regulatory hurdles that may restrict their use. There are two primary reasons for this: most regulatory authorities are set up to address regulation of products for use only within their jurisdictions and regulatory authorities in developing countries traditionally have been considered weak. Some options for regulatory pathways for such products have been identified: licensing in the country of manufacture, file review by the European Medicines Evaluation Agency on behalf of WHO, export to a country with a competent national regulatory authority (NRA) that could handle all regulatory functions for the developing country market, shared manufacturing and licensing in a developing country with competent manufacturing and regulatory capacity, and use of a contracted independent entity for global regulatory approval. These options have been evaluated on the basis of five criteria: assurance of all regulatory functions for the life of the product, appropriateness of epidemiological assessment, applicability to products no longer used in the domestic market of the manufacturing country, reduction of regulatory risk for the manufacturer, and existing rules and regulations for implementation. No one option satisfies all criteria. For all options, national infrastructures (including the underlying regulatory legislative framework, particularly to formulate and implement local evidence-based vaccine policy) must be developed. WHO has led work to develop this capacity with some success. The paper outlines additional areas of action required by the international community to assure development and use of vaccines needed for the developing world. PMID:15042235

  12. Establishing the pig as a large animal model for vaccine development against human cancer

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr; Frøsig, Thomas Mørch; Welner, Simon

    2015-01-01

    Immunotherapy has increased overall survival of metastatic cancer patients, and cancer antigens are promising vaccine targets. To fulfill the promise, appropriate tailoring of the vaccine formulations to mount in vivo cytotoxic T cell (CTL) responses toward co-delivered cancer antigens is essential...... and the porcine immunome is closer related to the human counterpart, we here introduce pigs as a supplementary large animal model for human cancer vaccine development. IDO and RhoC, both important in human cancer development and progression, were used as vaccine targets and 12 pigs were immunized with overlapping......C-derived peptides across all groups with no adjuvant being superior. These findings support the further use of pigs as a large animal model for vaccine development against human cancer....

  13. Update on the Clinical Development of Candidate Malaria Vaccines

    National Research Council Canada - National Science Library

    Ballou, W. R; Arevalo-Herrera, Myriam; Carucci, Daniel; Richie, Thomas L; Corradin, Giampietro; Diggs, Carter; Druilhe, Pierre; Giersing, Birgitte K; Saul, Allan; Heppner, D. G

    2004-01-01

    ... powerful driver for stimulating clinical development of candidate vaccines for malaria. This new way forward promises to greatly increase the likelihood of bringing a safe and effective vaccine to licensure...

  14. A history of the development of Brucella vaccines.

    Science.gov (United States)

    Avila-Calderón, Eric Daniel; Lopez-Merino, Ahidé; Sriranganathan, Nammalwar; Boyle, Stephen M; Contreras-Rodríguez, Araceli

    2013-01-01

    Brucellosis is a worldwide zoonosis affecting animal and human health. In the last several decades, much research has been performed to develop safer Brucella vaccines to control the disease mainly in animals. Till now, no effective human vaccine is available. The aim of this paper is to review and discuss the importance of methodologies used to develop Brucella vaccines in pursuing this challenge.

  15. Model for product development of vaccines against neglected tropical diseases: a vaccine against human hookworm.

    Science.gov (United States)

    Bottazzi, Maria Elena; Brown, Ami Shah

    2008-12-01

    This article provides an overview of the advances in product development and technology transfer of the vaccine against human hookworm, with particular emphasis on the lessons learned and the challenges of developing a vaccine in the nonprofit sector. The comprehensive approach to vaccine development established by the Human Hookworm Vaccine Initiative (HHVI) identifies key operational and technical aspects that are essential for a successful partnership with a developing country vaccine manufacturer. This article also highlights the importance of a global access roadmap to guide the vaccine development program. The advancement of new products for the control of neglected tropical diseases portends great challenges for global access, including aspects related to vaccine design, product development and manufacture, vaccine introduction and distribution, financing, knowledge dissemination and intellectual property management. With only three vaccines for neglected tropical diseases in clinical trials - hookworm, leishmaniasis and schistosomiasis - we are at the nascent stages of developing vaccines for neglected populations. Product development public-private partnerships, such as the HHVI, continue to show great promise on this front and will eventually provide significant control tools for achieving millennium development goals related to poverty reduction, as well as child and maternal health.

  16. Progress in the developing countries

    International Nuclear Information System (INIS)

    Simnad, M.

    1981-01-01

    Nuclear programmes in selective developing countries are briefly discussed. The oil rich countries of Iraq, Libya and Iran all have reactors on order. Turkey has decided to purchase a PWR from the USSR and Egypt's programme anticipates a capacity of 6600 MWe by 2000. The current projections for India are 6000 MWe by 1990 and 20,000 MWe by 2000. The progress of Pakistan, South Korea and other Asian countries are discussed. The predicted growth in reactors and population in Latin America is considered - 17 reactors presently planned for a population of 340 million and 18-57 possible additions in 2000 for an estimated population of 600 million. The role of the IAEA and experience of some Western countries in technology transfer is discussed with the ambitious Spanish nuclear power programme and the experience of Argentina in purchasing Candu reactors. (author)

  17. Development of a Vaccine for Eradicating Contagious Bovine ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Since eventual success depends on the vaccine's acceptability by livestock keepers, the project involves them in field-testing and assesses their willingness to pay for the vaccine. The project also ... Outputs. Studies. Developing vaccines for animals, the case of Contagious Bovine Pleuropneumonia (CBPP) in Africa. 53232.

  18. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    Directory of Open Access Journals (Sweden)

    Samantha Sayers

    2012-01-01

    Full Text Available Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO in the Web Ontology Language (OWL format.

  19. Vaxjo: a web-based vaccine adjuvant database and its application for analysis of vaccine adjuvants and their uses in vaccine development.

    Science.gov (United States)

    Sayers, Samantha; Ulysse, Guerlain; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO) in the Web Ontology Language (OWL) format.

  20. Development of a thermostable microneedle patch for influenza vaccination

    Science.gov (United States)

    Mistilis, Matthew; Bommarius, Andreas S; Prausnitz, Mark R.

    2017-01-01

    The goal of this study is to develop thermostable microneedle patch formulations for influenza vaccine that can be partially or completely removed from the cold chain. During vaccine drying associated with microneedle patch manufacturing, ammonium acetate and HEPES buffer salts stabilized influenza vaccine, surfactants had little effect during drying, drying temperature had weak effects on vaccine stability, and drying on polydimethylsiloxane led to increased stability compared to drying on stainless steel. A number of excipients, mostly polysaccharides and some amino acids, further stabilized the influenza vaccine during drying. Over longer time scales of storage, combinations of stabilizers preserved the most vaccine activity. Finally, dissolving microneedle patches formulated with arginine and calcium heptagluconate had no significant activity loss for all three strains of seasonal influenza vaccine during storage at room temperature for six months. We conclude that appropriately formulated microneedle patches can exhibit remarkable thermostability that could enable storage and distribution of influenza vaccine outside the cold chain. PMID:25448542

  1. Immunoinformatics of Placental Malaria Vaccine Development

    DEFF Research Database (Denmark)

    Jessen, Leon Eyrich

    Malaria is an infectious disease caused by a protozoan parasite of the genus Plasmodium, which is transferred by female Anopheles mosquitos. WHO estimates that in 2012 there were 207 million cases of malaria, of which 627,000 were fatal. People living in malaria-endemic areas, gradually acquire...... immunity with multiple infections. Placental malaria (PM) is caused by P. falciparum sequestering in the placenta of pregnant women due to the presence of novel receptors in the placenta. An estimated 200,000 infants die a year as a result of PM. In 2004 the specific protein responsible...... and development in the field of placental malaria vaccine development....

  2. Development and validation of an attenuated Mycoplasma hyopneumoniae aerosol vaccine.

    Science.gov (United States)

    Feng, Zhi-Xin; Wei, Yan-Na; Li, Gui-Lan; Lu, Xiao-Ming; Wan, Xiu-Feng; Pharr, G Todd; Wang, Zhan-Wei; Kong, Meng; Gan, Yuan; Bai, Fang-Fang; Liu, Mao-Jun; Xiong, Qi-Yan; Wu, Xu-Su; Shao, Guo-Qing

    2013-12-27

    Mycoplasma hyopneumoniae (M. hyopneumoniae) causes a chronic respiratory disease with high morbidity and low mortality in swine, and has been presented as a major cause of growth retardation in the swine industry. Aerosol vaccination presents a needle free, high throughput, and efficient platform for vaccine delivery, and has been widely applied in poultry vaccination. However, aerosol vaccines have rarely been used in swine vaccination primarily because the long and curving respiratory track of swine presents a barrier for vaccine particle delivery. To develop an effective M. hyopneumoniae aerosol vaccine, three major barriers need to be overcome: to optimize particle size for aerosol delivery, to maintain the viability of mycoplasma cells in the vaccine, and to optimize the environmental conditions for vaccine delivery. In this study, an aerosol mycoplasma vaccine was successfully developed based on a conventional live attenuated M. hyopneumoniae vaccine. Specifically, the Pari LCD nebulizer was used to produce an aerosol vaccine particle size less than 5 μm; and a buffer with 5% glycerol was developed and optimized to prevent inactivation of M. hyopneumoniae caused by aerosolization and evaporation. Before nebulization, the room temperature and relative humidity were control to 20-25 °C and 70-75%, respectively, which helped maintain the viability of aerosol vaccine. Animal experiments demonstrated that this newly developed aerosol vaccine was effectively delivered to swine low respiratory track, being confirmed by nested-PCR, in situ hybridization and scanning electron microscope. Moreover, M. hyopneumoniae specific sIgA secretion was detected in the nasal swab samples at 14 days post-immunization. To our knowledge, this is the first report on a live M. hyopneumoniae aerosol vaccine. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Novel Platforms for the Development of a Universal Influenza Vaccine

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2018-03-01

    Full Text Available Despite advancements in immunotherapeutic approaches, influenza continues to cause severe illness, particularly among immunocompromised individuals, young children, and elderly adults. Vaccination is the most effective way to reduce rates of morbidity and mortality caused by influenza viruses. Frequent genetic shift and drift among influenza-virus strains with the resultant disparity between circulating and vaccine virus strains limits the effectiveness of the available conventional influenza vaccines. One approach to overcome this limitation is to develop a universal influenza vaccine that could provide protection against all subtypes of influenza viruses. Moreover, the development of a novel or improved universal influenza vaccines may be greatly facilitated by new technologies including virus-like particles, T-cell-inducing peptides and recombinant proteins, synthetic viruses, broadly neutralizing antibodies, and nucleic acid-based vaccines. This review discusses recent scientific advances in the development of next-generation universal influenza vaccines.

  4. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria.

    Science.gov (United States)

    Hoffman, Stephen L; Billingsley, Peter F; James, Eric; Richman, Adam; Loyevsky, Mark; Li, Tao; Chakravarty, Sumana; Gunasekera, Anusha; Chattopadhyay, Rana; Li, Minglin; Stafford, Richard; Ahumada, Adriana; Epstein, Judith E; Sedegah, Martha; Reyes, Sharina; Richie, Thomas L; Lyke, Kirsten E; Edelman, Robert; Laurens, Matthew B; Plowe, Christopher V; Sim, B Kim Lee

    2010-01-01

    Immunization of volunteers by the bite of mosquitoes carrying radiation-attenuated Plasmodium falciparum sporozoites protects greater than 90% of such volunteers against malaria, if adequate numbers of immunizing biting sessions and sporozoite-infected mosquitoes are used. Nonetheless, until recently it was considered impossible to develop, license and commercialize a live, whole parasite P. falciparum sporozoite (PfSPZ) vaccine. In 2003 Sanaria scientists reappraised the potential impact of a metabolically active, non-replicating PfSPZ vaccine, and outlined the challenges to producing such a vaccine. Six years later, significant progress has been made in overcoming these challenges. This progress has enabled the manufacture and release of multiple clinical lots of a 1(st) generation metabolically active, non-replicating PfSPZ vaccine, the Sanaria PfSPZ Vaccine, submission of a successful Investigational New Drug application to the US Food and Drug Administration, and initiation of safety, immunogenicity and protective efficacy studies in volunteers in MD, US. Efforts are now focused on how best to achieve submission of a successful Biologics License Application and introduce the vaccine to the primary target population of African children in the shortest possible period of time. This will require implementation of a systematic, efficient clinical development plan. Short term challenges include optimizing the (1) efficiency and scale up of the manufacturing process and quality control assays, (2) dosage regimen and method of administration, (3) potency of the vaccine, and (4) logistics of delivering the vaccine to those who need it most, and finalizing the methods for vaccine stabilization and attenuation. A medium term goal is to design and build a facility for manufacturing highly potent and stable vaccine for pivotal Phase 3 studies and commercial launch.

  5. HIV vaccine development: would more (public) money bring quicker results?

    Science.gov (United States)

    Winsbury, R

    1999-01-01

    Globally, $200-250 million/year are devoted to HIV vaccine research. Most of those funds pay for basic research rather than product development. Moreover, most of the funds are aimed at the HIV strain commonly found in the US and Europe, and not at the strains common to Africa and other developing countries. While US President Bill Clinton set in 1997 a 10-year target for the development of an HIV vaccine, that target date is looking increasingly unlikely. International vaccine and pharmaceutical companies typically drive vaccine research and development. However, concern over the ultimate profitability of developing and marketing an HIV vaccine, and the fear of major litigation should an eventual vaccine go awry have caused such firms to shy away from investing large amounts of money into HIV vaccine development. These companies somehow have to be attracted back into the field. A World Bank special task force is slated to present its report by mid-1999 on possible funding mechanisms to promote HIV vaccine development. It remains to be resolved whether public funds could and should be used, perhaps through a pooled international vaccine development fund. 2 new International AIDS Vaccine Initiative projects are described.

  6. Individual moral development and moral progress

    OpenAIRE

    Schinkel, Anders; de Ruyter, Doret J.

    2017-01-01

    At first glance, one of the most obvious places to look for moral progress is in individuals, in particular in moral development from childhood to adulthood. In fact, that moral progress is possible is a foundational assumption of moral education. Beyond the general agreement that moral progress is not only possible but even a common feature of human development things become blurry, however. For what do we mean by ‘progress’? And what constitutes moral progress? Does the idea of individual m...

  7. Guiding dengue vaccine development using knowledge gained from the success of the yellow fever vaccine.

    Science.gov (United States)

    Liang, Huabin; Lee, Min; Jin, Xia

    2016-01-01

    Flaviviruses comprise approximately 70 closely related RNA viruses. These include several mosquito-borne pathogens, such as yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), which can cause significant human diseases and thus are of great medical importance. Vaccines against both YFV and JEV have been used successfully in humans for decades; however, the development of a DENV vaccine has encountered considerable obstacles. Here, we review the protective immune responses elicited by the vaccine against YFV to provide some insights into the development of a protective DENV vaccine.

  8. Challenges and constraints to vaccination in developing countries.

    Science.gov (United States)

    Alders, R G; Bagnol, B; Young, M P; Ahlers, C; Brum, E; Rushton, J

    2007-01-01

    The challenges and constraints to vaccinating poultry in areas where adequate infrastructure and human resources are lacking are addressed in both a technical and a socioeconomic framework. The key issues discussed are: (1) selection of an appropriate vaccine and vaccination technique, including the advantages and disadvantages of a combined vaccine against highly pathogenic avian influenza (HPAI) and Newcastle disease and addressing the differences between endemic disease and emergency disease control; (2) vaccine conservation and distribution; (3) evaluation of the flocks to be vaccinated in terms of their disease status, immunocompetence and production systems; (4) design of effective information, education and communication materials and methods with and for veterinary and extension staff as well as commercial and smallholder producers and community vaccinators in rural areas; (5) evaluation and monitoring systems for technical and socioeconomic factors that affect vaccination; (6) support and coordination of and by relevant public and private agencies; (7) the role of simultaneous implementation of other control activities in addition to vaccination; (8) the importance of assessing the costs and cost-effectiveness of various approaches to the control of HPAI, including the prevention of other endemic killer diseases and options for cost-sharing; (9) evaluation of the incentives for poultry-holders, vaccinators and vaccine producers to contribute to and participate in effective vaccination campaigns; and (10) policy development and the organizational framework for short- and long-term implementation and communication to decision-makers.

  9. Protein carriers of conjugate vaccines: characteristics, development, and clinical trials.

    Science.gov (United States)

    Pichichero, Michael E

    2013-12-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products.

  10. Next-Generation Dengue Vaccines: Novel Strategies Currently Under Development

    Directory of Open Access Journals (Sweden)

    Anna P. Durbin

    2011-09-01

    Full Text Available Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Pasteur has recently entered Phase III evaluation in numerous dengue-endemic regions of the world. Viral interference between serotypes contained in live vaccines has required up to three doses of the vaccine be given over a 12-month period of time. For this reason, novel DENV candidate vaccines are being developed with the goal of achieving a protective immune response with an immunization schedule that can be given over the course of a few months. These next-generation candidates include DNA vaccines, recombinant adenovirus vectored vaccines, alphavirus replicons, and sub-unit protein vaccines. Several of these novel candidates will be discussed.

  11. Next-generation dengue vaccines: novel strategies currently under development.

    Science.gov (United States)

    Durbin, Anna P; Whitehead, Stephen S

    2011-10-01

    Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Pasteur has recently entered Phase III evaluation in numerous dengue-endemic regions of the world. Viral interference between serotypes contained in live vaccines has required up to three doses of the vaccine be given over a 12-month period of time. For this reason, novel DENV candidate vaccines are being developed with the goal of achieving a protective immune response with an immunization schedule that can be given over the course of a few months. These next-generation candidates include DNA vaccines, recombinant adenovirus vectored vaccines, alphavirus replicons, and sub-unit protein vaccines. Several of these novel candidates will be discussed.

  12. Leishmaniasis vaccine candidates for development: a global overview.

    Science.gov (United States)

    Khamesipour, Ali; Rafati, Sima; Davoudi, Noushin; Maboudi, Fereidoun; Modabber, Farrokh

    2006-03-01

    A vaccine against different forms of leishmaniasis should be feasible considering the wealth of information on genetics and biology of the parasite, clinical and experimental immunology of leishmaniasis, and the availability of vaccines that can protect experimental animals against challenge with different Leishmania species. However, there is no vaccine against any form of leishmaniasis for general human use. One major factor is the lack of a conceived market for human leishmaniasis vaccines. Hence pharmaceutical industries involved in vaccine development are not interested in investing millions of dollars and a decade that is required for developing a new vaccine. Besides, leishmaniasis is a local/regional problem and not a global one. According to the estimates of the World Health Organization, 90 per cent of visceral leishmaniasis occurs in five countries (Bangladesh, Brazil, India, Nepal and Sudan). Those in need are amongst the poorest people in these countries. It should therefore be the objectives of these countries to develop a vaccine. Fortunately, both Brazil and India have designated the control of visceral leishmaniasis as a top priority for their respective Ministries of Health. The purpose of this review is to present only the vaccines in use and those in development for use in dogs or humans. This is not an exhaustive review of vaccine discovery or the principles of clinical immunology underlying vaccine development.

  13. A brief history of the global effort to develop a preventive HIV vaccine.

    Science.gov (United States)

    Esparza, José

    2013-08-02

    Soon after HIV was discovered as the cause of AIDS in 1983-1984, there was an expectation that a preventive vaccine would be rapidly developed. In trying to achieve that goal, three successive scientific paradigms have been explored: induction of neutralizing antibodies, induction of cell mediated immunity, and exploration of combination approaches and novel concepts. Although major progress has been made in understanding the scientific basis for HIV vaccine development, efficacy trials have been critical in moving the field forward. In 2009, the field was reinvigorated with the modest results obtained from the RV144 trial conducted in Thailand. Here, we review those vaccine development efforts, with an emphasis on events that occurred during the earlier years. The goal is to provide younger generations of scientists with information and inspiration to continue the search for an HIV vaccine. Copyright © 2013 The Author. Published by Elsevier Ltd.. All rights reserved.

  14. Viral Vectors for Use in the Development of Biodefense Vaccines

    National Research Council Canada - National Science Library

    Lee, John S; Hadjipanayis, Angela G; Parker, Michael D

    2005-01-01

    .... DNA vectors, live-attenuated viruses and bacteria, recombinant proteins combined with adjuvant, and viral- or bacterial-vectored vaccines have been developed as countermeasures against many potential...

  15. Individual moral development and moral progress

    NARCIS (Netherlands)

    Schinkel, Anders; de Ruyter, Doret J.

    At first glance, one of the most obvious places to look for moral progress is in individuals, in particular in moral development from childhood to adulthood. In fact, that moral progress is possible is a foundational assumption of moral education. Beyond the general agreement that moral progress is

  16. Individual Moral Development and Moral Progress

    NARCIS (Netherlands)

    Schinkel, Anders; de Ruyter, Doret J.

    2017-01-01

    At first glance, one of the most obvious places to look for moral progress is in individuals, in particular in moral development from childhood to adulthood. In fact, that moral progress is possible is a foundational assumption of moral education. Beyond the general agreement that moral progress is

  17. Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects.

    Science.gov (United States)

    Dumonteil, Eric; Bottazzi, Maria Elena; Zhan, Bin; Heffernan, Michael J; Jones, Kathryn; Valenzuela, Jesus G; Kamhawi, Shaden; Ortega, Jaime; de Leon Rosales, Samuel Ponce; Lee, Bruce Y; Bacon, Kristina M; Fleischer, Bernhard; Slingsby, B T; Cravioto, Miguel Betancourt; Tapia-Conyer, Roberto; Hotez, Peter J

    2012-09-01

    Chagas disease is a leading cause of heart disease affecting approximately 10 million people in Latin America and elsewhere worldwide. The two major drugs available for the treatment of Chagas disease have limited efficacy in Trypanosoma cruzi-infected adults with indeterminate (patients who have seroconverted but do not yet show signs or symptoms) and determinate (patients who have both seroconverted and have clinical disease) status; they require prolonged treatment courses and are poorly tolerated and expensive. As an alternative to chemotherapy, an injectable therapeutic Chagas disease vaccine is under development to prevent or delay Chagasic cardiomyopathy in patients with indeterminate or determinate status. The bivalent vaccine will be comprised of two recombinant T. cruzi antigens, Tc24 and TSA-1, formulated on alum together with the Toll-like receptor 4 agonist, E6020. Proof-of-concept for the efficacy of these antigens was obtained in preclinical testing at the Autonomous University of Yucatan. Here the authors discuss the potential for a therapeutic Chagas vaccine as well as the progress made towards such a vaccine, and the authors articulate a roadmap for the development of the vaccine as planned by the nonprofit Sabin Vaccine Institute Product Development Partnership and Texas Children's Hospital Center for Vaccine Development in collaboration with an international consortium of academic and industrial partners in Mexico, Germany, Japan, and the USA.

  18. Complexity of Human Antibody Response to Dengue Virus: Implication for Vaccine Development.

    Science.gov (United States)

    Tsai, Wen-Yang; Lin, Hong-En; Wang, Wei-Kung

    2017-01-01

    The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in humans. Decades of efforts have made remarkable progress in dengue vaccine development. Despite the first dengue vaccine (dengvaxia from Sanofi Pasteur), a live-attenuated tetravalent chimeric yellow fever-dengue vaccine, has been licensed by several countries since 2016, its overall moderate efficacy (56.5-60.8%) in the presence of neutralizing antibodies during the Phase 2b and 3 trials, lower efficacy among dengue naïve compared with dengue experienced individuals, and increased risk of hospitalization among young children during the follow-up highlight the need for a better understanding of humoral responses after natural DENV infection. Recent studies of more than 300 human monoclonal antibodies (mAbs) against DENV have led to the discovery of several novel epitopes on the envelope protein recognized by potent neutralizing mAbs. This information together with in-depth studies on polyclonal sera and B-cells following natural DENV infection has tremendous implications for better immunogen design for a safe and effective dengue vaccine. This review outlines the progress in our understanding of mouse mAbs, human mAbs, and polyclonal sera against DENV envelope and precursor membrane proteins, two surface proteins involved in vaccine development, following natural infection; analyses of these discoveries have provided valuable insight into new strategies involving molecular technology to induce more potent neutralizing antibodies and less enhancing antibodies for next-generation dengue vaccine development.

  19. A History of the Development of Brucella Vaccines

    Directory of Open Access Journals (Sweden)

    Eric Daniel Avila-Calderón

    2013-01-01

    Full Text Available Brucellosis is a worldwide zoonosis affecting animal and human health. In the last several decades, much research has been performed to develop safer Brucella vaccines to control the disease mainly in animals. Till now, no effective human vaccine is available. The aim of this paper is to review and discuss the importance of methodologies used to develop Brucella vaccines in pursuing this challenge.

  20. A History of the Development of Brucella Vaccines

    OpenAIRE

    Avila-Calder?n, Eric Daniel; Lopez-Merino, Ahid?; Sriranganathan, Nammalwar; Boyle, Stephen M.; Contreras-Rodr?guez, Araceli

    2013-01-01

    Brucellosis is a worldwide zoonosis affecting animal and human health. In the last several decades, much research has been performed to develop safer Brucella vaccines to control the disease mainly in animals. Till now, no effective human vaccine is available. The aim of this paper is to review and discuss the importance of methodologies used to develop Brucella vaccines in pursuing this challenge. CONACYT CB-2011-01, 169259 SIP-IPN 20110891, 20134610 ICYTDF-IPN (Project of Investiga...

  1. A multilateral effort to develop DNA vaccines against falciparum malaria.

    Science.gov (United States)

    Kumar, Sanjai; Epstein, Judith E; Richie, Thomas L; Nkrumah, Francis K; Soisson, Lorraine; Carucci, Daniel J; Hoffman, Stephen L

    2002-03-01

    Scientists from several organizations worldwide are working together to develop a multistage, multigene DNA-based vaccine against Plasmodium falciparum malaria. This collaborative vaccine development effort is named Multi-Stage DNA-based Malaria Vaccine Operation. An advisory board of international experts in vaccinology, malariology and field trials provides the scientific oversight to support the operation. This article discusses the rationale for the approach, underlying concepts and the pre-clinical development process, and provides a brief outline of the plans for the clinical testing of a multistage, multiantigen malaria vaccine based on DNA plasmid immunization technology.

  2. VaxCelerate II: rapid development of a self-assembling vaccine for Lassa fever.

    Science.gov (United States)

    Leblanc, Pierre; Moise, Leonard; Luza, Cybelle; Chantaralawan, Kanawat; Lezeau, Lynchy; Yuan, Jianping; Field, Mary; Richer, Daniel; Boyle, Christine; Martin, William D; Fishman, Jordan B; Berg, Eric A; Baker, David; Zeigler, Brandon; Mais, Dale E; Taylor, William; Coleman, Russell; Warren, H Shaw; Gelfand, Jeffrey A; De Groot, Anne S; Brauns, Timothy; Poznansky, Mark C

    2014-01-01

    Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4(+) T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models.

  3. Establishing Correlates of Protection for Vaccine Development: Considerations for the Respiratory Syncytial Virus Vaccine Field.

    Science.gov (United States)

    Kulkarni, Prasad S; Hurwitz, Julia L; Simões, Eric A F; Piedra, Pedro A

    2018-03-01

    Correlates of protection (CoPs) can play a significant role in vaccine development by assisting the selection of vaccine candidates for clinical trials, supporting clinical trial design and implementation, and simplifying tests of vaccine modifications. Because of this important role in vaccine development, it is essential that CoPs be defined by well-designed immunogenicity and efficacy studies, with attention paid to benefits and limitations. The respiratory syncytial virus (RSV) field is unique in that a great deal of information about the humoral response is available from basic research and clinical studies. Polyclonal and monoclonal antibodies have been used routinely in the clinic to protect vulnerable infants from infection, providing a wealth of information about correlations between neutralizing antibodies and disease prevention. Considerations for the establishment of future CoPs to support RSV vaccine development in different populations are therefore discussed.

  4. Progression of rabbit haemorrhagic disease virus 2 upon vaccination in an industrial rabbitry: a laboratorial approach

    OpenAIRE

    C.L. Carvalho; E.L. Duarte; J.M. Monteiro; C. Afonso; J. Pacheco; P. Carvalho; P. Mendonça; A. Botelho; T. Albuquerque; P. Themudo; M. Fevereiro; A.M. Henriques; S.S. Santos Barros; M. Dias Duarte

    2017-01-01

    Rabbit haemorrhagic disease virus 2 (RHDV2) emerged recently in several European countries, leading to extensive economic losses in the industry. In response to this new infection, specific inactivated vaccines were developed in Europe and full and rapid setup of protective immunity induced by vaccination was reported. However, data on the efficacy of these vaccines in an ongoing-infection scenario is unavailable. In this study we investigated an infected RHDV2 indoor industrial meat rabbitry...

  5. Schistosomiasis vaccine development: approaches and prospects

    Directory of Open Access Journals (Sweden)

    N. R. Bergquist

    1995-04-01

    Full Text Available Mounting evidence for acquired immunity to schistosomiasis in humans supports the case for immunological intervention. On the other hand, rapid reinfection poses a threat to younger age groups due to the slow maturation of natural resistance. However, rational approaches, based on advances in immunology and molecular biology, have substantially increased the odds of producing an effective vaccine. Since the parasite cannot replicate in the human host and serious morbidity generally occurs only after a relatively long period of heavy worm burden, complete protection against infection is not essential. The chances of success would increase if more than one of the various host/parasite interphases were targeted, for example reducing morbidity through decreased worm loads as well as through suppression of egg production. Several promising schistosome antigens have now reached an advanced phase of development and are currently undergoing independent confirmatory testing according to a standardized protocol. A few molecules are being contemplated for scaled-up production but, so far, only one has reached the stage of industrial manufacture and safety testing. Since schistosomiasis cannot realistically be controlled by a single approach, vaccination is envisaged to be implemented in conjunction with other means of control, notably chemotherapy.

  6. Vaccines against enteric infections for the developing world.

    Science.gov (United States)

    Czerkinsky, Cecil; Holmgren, Jan

    2015-06-19

    Since the first licensure of the Sabin oral polio vaccine more than 50 years ago, only eight enteric vaccines have been licensed for four disease indications, and all are given orally. While mucosal vaccines offer programmatically attractive tools for facilitating vaccine deployment, their development remains hampered by several factors: -limited knowledge regarding the properties of the gut immune system during early life; -lack of mucosal adjuvants, limiting mucosal vaccine development to live-attenuated or killed whole virus and bacterial vaccines; -lack of correlates/surrogates of mucosal immune protection; and -limited knowledge of the factors contributing to oral vaccine underperformance in children from developing countries. There are now reasons to believe that the development of safe and effective mucosal adjuvants and of programmatically sound intervention strategies could enhance the efficacy of current and next-generation enteric vaccines, especially in lesser developed countries which are often co-endemic for enteric infections and malnutrition. These vaccines must be safe and affordable for the world's poorest, confer long-term protection and herd immunity, and must be able to contain epidemics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Vaccines against enteric infections for the developing world

    Science.gov (United States)

    Czerkinsky, Cecil; Holmgren, Jan

    2015-01-01

    Since the first licensure of the Sabin oral polio vaccine more than 50 years ago, only eight enteric vaccines have been licensed for four disease indications, and all are given orally. While mucosal vaccines offer programmatically attractive tools for facilitating vaccine deployment, their development remains hampered by several factors: —limited knowledge regarding the properties of the gut immune system during early life;—lack of mucosal adjuvants, limiting mucosal vaccine development to live-attenuated or killed whole virus and bacterial vaccines;—lack of correlates/surrogates of mucosal immune protection; and—limited knowledge of the factors contributing to oral vaccine underperformance in children from developing countries.There are now reasons to believe that the development of safe and effective mucosal adjuvants and of programmatically sound intervention strategies could enhance the efficacy of current and next-generation enteric vaccines, especially in lesser developed countries which are often co-endemic for enteric infections and malnutrition. These vaccines must be safe and affordable for the world's poorest, confer long-term protection and herd immunity, and must be able to contain epidemics. PMID:25964464

  8. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine

    DEFF Research Database (Denmark)

    Theisen, Michael; Jore, Matthijs M; Sauerwein, Robert

    2017-01-01

    : PubMed was searched to review the progress and future prospects for clinical development of a Pfs48/45-based subunit vaccine. We will focus on biological function, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production of recombinant protein...

  9. LIFE: Recent Developments and Progress

    International Nuclear Information System (INIS)

    Anklam, T.M.

    2011-01-01

    Test results from the NIF show excellent progress toward achieving ignition. Experiments designed to verify coupling of the laser energy to the fusion target have shown that the efficiency meets that needed for ignition. Several tests with the cryogenic targets needed for ignition have been performed, and world-record neutron output produced. The National Ignition Campaign is on schedule to meet its 2012 ignition milestone, with the next phase in the campaign due to start later this month. It has been a busy and very productive year. The NIF is in full 24/7 operations and has progressed markedly in the path toward ignition. The long-standing goal of the National Ignition Campaign to demonstrate ignition by the end of FY 2012 is on track. The LIFE plant design has matured considerably, and a delivery plan established based on close interactions with vendors. National-level reviews of fusion are underway, and are due to present initial findings later this year. A value proposition has been drafted for review. The LIFE project is ready to move into the delivery phase.

  10. WHO policy development processes for a new vaccine: case study of malaria vaccines

    Directory of Open Access Journals (Sweden)

    Cheyne James

    2010-06-01

    Full Text Available Abstract Background Recommendations from the World Health Organization (WHO are crucial to inform developing country decisions to use, or not, a new intervention. This article analysed the WHO policy development process to predict its course for a malaria vaccine. Methods The decision-making processes for one malaria intervention and four vaccines were classified through (1 consultations with staff and expert advisors to WHO's Global Malaria Programme (GMP and Immunization, Vaccines and Biologicals Department (IVB; (2 analysis of the procedures and recommendations of the major policy-making bodies of these groups; (3 interviews with staff of partnerships working toward new vaccine availability; and (4 review and analyses of evidence informing key policy decisions. Case description WHO policy formulation related to use of intermittent preventive treatment in infancy (IPTi and the following vaccine interventions: Haemophilus influenzae type b conjugate vaccine (Hib, pneumococcal conjugate vaccine (PCV, rotavirus vaccine (RV, and human papillomavirus vaccine (HPV, five interventions which had relatively recently been through systematic WHO policy development processes as currently constituted, was analysed. Required information was categorized in three areas defined by a recent WHO publication on development of guidelines: safety and efficacy in relevant populations, implications for costs and population health, and localization of data to specific epidemiological situations. Discussion and evaluation Data needs for a malaria vaccine include safety; the demonstration of efficacy in a range of epidemiological settings in the context of other malaria prevention interventions; and information on potential rebound in which disease increases subsequent to the intervention. In addition, a malaria vaccine would require attention to additional factors, such as costs and cost-effectiveness, supply and demand, impact of use on other interventions, and

  11. Killed oral cholera vaccines: history, development and implementation challenges.

    Science.gov (United States)

    Lopez, Anna Lena; Gonzales, Maria Liza Antoinette; Aldaba, Josephine G; Nair, G Balakrish

    2014-09-01

    Cholera is still a major global health problem, affecting mainly people living in unsanitary conditions and who are at risk for outbreaks of cholera. During the past decade, outbreaks are increasingly reported from more countries. From the early killed oral cholera vaccine, rapid improvements in vaccine development occurred as a result of a better understanding of the epidemiology of the disease, pathogenesis of cholera infection and immunity. The newer-generation oral killed cholera vaccines have been shown to be safe and effective in field trials conducted in cholera endemic areas. Likewise, they have been shown to be protective when used during outbreak settings. Aside from providing direct protection to vaccinated individuals, recent studies have demonstrated that these killed oral vaccines also confer indirect protection through herd immunity. Although new-generation oral cholera vaccines should not be considered in isolation from other preventive approaches in countries where they are most needed, especially improved water quality and sanitation, these vaccines serve as immediately available public health tools for preventing further morbidity and mortality from cholera. However, despite its availability for more than two decades, use of these vaccines has not been optimized. Although there are limitations of the currently available oral cholera vaccines, recent data show that the vaccines are safe, feasible to use even in difficult circumstances and able to provide protection in various settings. Clear identification of the areas and target population groups who will benefit from the use of the cholera vaccines will be required and strategies to facilitate accessibility and usage of these vaccines in these areas and population groups will need to be developed.

  12. Developing a vaccine for eradicating contagious bovine ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    sub-Saharan Africa. CBPP kills up to 50% of infected animals, when newly introduced into a population, and many ... animal and human diseases. While vaccines for CBPP are available, they have several ... project involves them in field testing and assesses their willingness to pay for the vaccine. The project also examines.

  13. Performance of rotavirus vaccines in developed and developing countries

    OpenAIRE

    Jiang, Victoria; Jiang, Baoming; Tate, Jacqueline; Parashar, Umesh D; Patel, Manish M

    2010-01-01

    The World Health Organization estimates that rotavirus diarrhea results in approximately half a million deaths and approximately 2.4 million hospitalizations in developing countries each year. Two live oral rotavirus vaccines, RotaTeq® (RV 5; Merck) and Rotarix® (RV 1; GlaxoSmithKline) with good efficacy against severe rotavirus disease and a reassuring safety profile could substantially impact the burden of rotavirus disease. In April 2009, WHO provided a recommendation for global introducti...

  14. Preclinical development of a vaccine 'against smoking'.

    Science.gov (United States)

    Cerny, E H; Lévy, R; Mauel, J; Mpandi, M; Mutter, M; Henzelin-Nkubana, C; Patiny, L; Tuchscherer, G; Cerny, T

    2002-10-01

    Nicotine is the main culprit for dependence on tobacco-containing products, which in turn are a major etiologic factor for cardiovascular diseases and cancer. This publication describes a vaccine, which elicits antibodies against nicotine. The antibodies in the blood stream intercept the nicotine molecule on its way to its receptors and greatly diminish the nicotine influx to the brain shortly after smoking. The nicotine molecule is chemically linked to cholera toxin B as a carrier protein in order to induce antibodies. The potential to elicit antibodies after subcutaneous as well as intranasal immunization is evaluated. In order to simulate realistic conditions, nicotine pumps delivering the nicotine equivalent of 5 packages of cigarettes for 4 weeks are implanted into the mice 1 week prior to vaccination. The protective effect of the vaccine is measured 5 weeks after vaccination by comparing the influx of radiolabeled nicotine in the brains of vaccinated and non-vaccinated animals 5 min after challenge with the nicotine equivalent of 2 cigarettes. The polyclonal antibodies induced by the vaccine show a mean avidity of 1.8 x 10(7) l/Mol. Subcutaneous immunization elicits high antibody levels of the IgG class, and significant IgA antibody levels in the saliva of vaccinated mice can be found after intranasal vaccination. The protective effect also in the animals with implanted nicotine pumps is significant: less than 10% of radiolabeled nicotine found in the brains of non-vaccinated animals can be found in the brains of vaccinated animals. These data provide credible evidence that a vaccine can break the vicious circle between smoking and instant gratification by intercepting the nicotine molecule. Astonishingly, there is no sign of exhaustion of specific antibodies even under extreme conditions, which makes it highly unlikely that a smoker can overcome the protective effect of the vaccine by smoking more. Finally, the high titers of specific antibodies after 1 year

  15. Progression of rabbit haemorrhagic disease virus 2 upon vaccination in an industrial rabbitry: a laboratorial approach

    Directory of Open Access Journals (Sweden)

    C.L. Carvalho

    2017-03-01

    Full Text Available Rabbit haemorrhagic disease virus 2 (RHDV2 emerged recently in several European countries, leading to extensive economic losses in the industry. In response to this new infection, specific inactivated vaccines were developed in Europe and full and rapid setup of protective immunity induced by vaccination was reported. However, data on the efficacy of these vaccines in an ongoing-infection scenario is unavailable. In this study we investigated an infected RHDV2 indoor industrial meat rabbitry, where fatalities continued to occur after the implementation of the RHDV2 vaccination, introduced to control the disease. The aim of this study was to understand if these mortalities were RHDV2-related, to discover if the dead animals showed any common features such as age or time distance from vaccination, and to identify the source of the outbreak. Anatomo-pathological analysis of vaccinated animals with the virus showed lesions compatible with systemic haemorrhagic disease and RHDV2-RNA was detected in 85.7% of the animals tested. Sequencing of the vp60 gene amplified from liver samples led to the recognition of RHDV2 field strains demonstrating that after the implementation of vaccination, RHDV2 continued to circulate in the premises and to cause sporadic deaths. A nearby, semi-intensive, RHDV2 infected farm belonging to the same owner was identified as the most probable source of the virus. The main risk factors for virus introduction in these two industries were identified. Despite the virus being able to infect a few of the vaccinated rabbits, the significant decrease in mortality rate observed in vaccinated adult rabbits clearly reflects the efficacy of the vaccination. Nonetheless, the time taken to control the infection also highlights the importance of RHDV2 vaccination prior to the first contact with the virus, highly recommendable in endemic areas, to mitigate the infection’s impact on the industry.

  16. Efforts towards the development of recombinant Vaccines against ...

    African Journals Online (AJOL)

    Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida. In this review an ...

  17. Efforts Towards The Development Of Recombinant Vaccines Against

    African Journals Online (AJOL)

    ABSTRACT. Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida.

  18. Successes and failures in human tuberculosis vaccine development.

    Science.gov (United States)

    Zenteno-Cuevas, Roberto

    2017-12-01

    Tuberculosis (TB) is an infectious disease caused mainly by Mycobacterium tuberculosis. In 2016, the WHO estimated 10.5 million new cases and 1.8 million deaths, making this disease the leading cause of death by an infectious agent. The current and projected TB situation necessitates the development of new vaccines with improved attributes compared to the traditional BCG method. Areas covered: In this review, the authors describe the most promising candidate vaccines against TB and discuss additional key elements in vaccine development, such as animal models, new adjuvants and immunization routes and new strategies for the identification of candidate vaccines. Expert opinion: At present, around 13 candidate vaccines for TB are in the clinical phase of evaluation; however, there is still no substitute for the BCG vaccine. One major impediment to developing an effective vaccine is our lack of understanding of several of the mechanisms associated with infection and the immune response against TB. However, the recent implementation of an entirely new set of technological advances will facilitate the proposal of new candidates. Finally, development of a new vaccine will require a major coordination of effort in order to achieve its effective administration to the people most in need of it.

  19. Development of a Subunit Vaccine for Contagious Bovine ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Their work has set the stage for commercial development of a sub-unit vaccine. ... The sub-unit vaccine will be cost-effective, easy to produce, and safe. How it will make a ... IDRC invites applications for the IDRC Doctoral Research Awards.

  20. Recent advances in the development of vaccines for Ebola virus disease.

    Science.gov (United States)

    Ohimain, Elijah Ige

    2016-01-04

    Ebola virus is one of the most dangerous microorganisms in the world causing hemorrhagic fevers in humans and non-human primates. Ebola virus (EBOV) is a zoonotic infection, which emerges and re-emerges in human populations. The 2014 outbreak was caused by the Zaire strain, which has a kill rate of up to 90%, though 40% was recorded in the current outbreak. The 2014 outbreak is larger than all 20 outbreaks that have occurred since 1976, when the virus was first discovered. It is the first time that the virus was sustained in urban centers and spread beyond Africa into Europe and USA. Thus far, over 22,000 cases have been reported with about 50% mortality in one year. There are currently no approved therapeutics and preventive vaccines against Ebola virus disease (EVD). Responding to the devastating effe1cts of the 2014 outbreak and the potential risk of global spread, has spurred research for the development of therapeutics and vaccines. This review is therefore aimed at presenting the progress of vaccine development. Results showed that conventional inactivated vaccines produced from EBOV by heat, formalin or gamma irradiation appear to be ineffective. However, novel vaccines production techniques have emerged leading to the production of candidate vaccines that have been demonstrated to be effective in preclinical trials using small animal and non-human primates (NHP) models. Some of the promising vaccines have undergone phase 1 clinical trials, which demonstrated their safety and immunogenicity. Many of the candidate vaccines are vector based such as Vesicular Stomatitis Virus (VSV), Rabies Virus (RABV), Adenovirus (Ad), Modified Vaccinia Ankara (MVA), Cytomegalovirus (CMV), human parainfluenza virus type 3 (HPIV3) and Venezuelan Equine Encephalitis Virus (VEEV). Other platforms include virus like particle (VLP), DNA and subunit vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Business progress towards sustainable development

    International Nuclear Information System (INIS)

    Stigson, Bjorn

    1998-01-01

    The executive director of the World Business Council for Sustainable Development described the organisation, its membership and its objectives. The organisation believes nuclear energy is needed in support of the goal of eradicating poverty, but it must also make all-round financial sense. If the risks are perceived to be high then investors expect a high financial return. The argument is supported by discussions on: (i) industry and sustainable development; (ii) the driving process;(iii) the way ahead; (iv) the environment and shareholder value; (v) conclusions for business in general and (vi) conclusions for the nuclear industry.(UK)

  2. Development of the PANVAC-VF vaccine for pancreatic cancer.

    Science.gov (United States)

    Petrulio, Christian A; Kaufman, Howard L

    2006-02-01

    PANVAC-VF is a vaccine regimen composed of a priming dose of recombinant vaccinia virus and booster doses of recombinant fowlpox virus expressing carcinoembryonic antigen, mucin-1 and a triad of costimulatory molecules (TRICOM), which include B7.1, intercellular adhesion molecule-1 and leukocyte function-associated antigen-3. Vaccination is administered by subcutaneous injection followed by 4 days of local recombinant adjuvant granulocyte-macrophage colony-stimulating factor at the vaccination site. The vaccine has been developed for patients with advanced pancreatic cancer and has now entered a randomized Phase III clinical trial. This review will describe the background of recombinant poxvirus technology for tumor vaccine development, detail the key preclinical studies supporting the regimen, review the clinical trials supporting the current Phase III study, and highlight the key challenges and future obstacles to successful implementation of PANVAC-VF for pancreatic cancer.

  3. Novel Platforms for the Development of a Universal influenza vaccine

    DEFF Research Database (Denmark)

    Kumar, Arun; Meldgaard, Trine Sundebo; Bertholet, Sylvie

    2018-01-01

    Despite advancements in immunotherapeutic approaches, influenza continues to cause severe illness, particularly among immunocompromised individuals, young children, and elderly adults. Vaccination is the most effective way to reduce rates of morbidity and mortality caused by influenza viruses....... Frequent genetic shift and drift among influenzavirus strains with the resultant disparity between circulating and vaccine virus strains limits the effectiveness of the available conventional influenza vaccines. One approach to overcome this limitation is to develop a universal influenza vaccine that could...... provide protection against all subtypes of influenza viruses. Moreover, the development of a novel or improved universal influenza vaccines may be greatly facilitated by new technologies including virus-like particles, T-cell-inducing peptides and recombinant proteins, synthetic viruses, broadly...

  4. Status of vaccine research and development of vaccines for herpes simplex virus.

    Science.gov (United States)

    Johnston, Christine; Gottlieb, Sami L; Wald, Anna

    2016-06-03

    Herpes simplex virus type-1 (HSV-1) and -2 (HSV-2) are highly prevalent global pathogens which commonly cause recurrent oral and genital ulcerations. Less common but more serious complications include meningitis, encephalitis, neonatal infection, and keratitis. HSV-2 infection is a significant driver of the HIV epidemic, increasing the risk of HIV acquisition 3 fold. As current control strategies for genital HSV-2 infection, including antiviral therapy and condom use, are only partially effective, vaccines will be required to reduce infection. Both preventive and therapeutic vaccines for HSV-2 are being pursued and are in various stages of development. We will provide an overview of efforts to develop HSV-2 vaccines, including a discussion of the clinical need for an HSV vaccine, and status of research and development with an emphasis on recent insights from trials of vaccine candidates in clinical testing. In addition, we will touch upon aspects of HSV vaccine development relevant to low and middle income countries. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  5. Military Infectious Diseases Update on Vaccine Development

    Science.gov (United States)

    2011-01-24

    Licensed live vaccines (polio, MMR) - Radiation- attenuated sporozoites - Genetically- attenuated sporozoites 2011 MHS Conference Whole Organism...Not sufficiently attenuated Seattle Biomedical , Gates Foundation, WEHI and USMMVP 2011 MHS Conference Subunit approach- RTS,S Vaccine RTS,S is...Ad Boost  DNA plasmids [Prime] – Encoding malaria proteins CSP and AMA1  Adenovirus 5 ( attenuated )[Boost] – Encoding malaria proteins CSP and AMA1

  6. Status of vaccine research and development for Shigella.

    Science.gov (United States)

    Mani, Sachin; Wierzba, Thomas; Walker, Richard I

    2016-06-03

    Shigella are gram-negative bacteria that cause severe diarrhea and dysentery. In 2013, Shigella infections caused an estimated 34,400 deaths in children less than five years old and, in 2010, an estimated 40,000 deaths in persons older than five years globally. New disease burden estimates from newly deployed molecular diagnostic assays with increased sensitivity suggest that Shigella-associated morbidity may be much greater than previous disease estimates from culture-based methods. Primary prevention of this disease should be based on universal provision of potable water and sanitation methods and improved personal and food hygiene. However, an efficacious and low-cost vaccine would complement and accelerate disease reduction while waiting for universal access to water, sanitation, and hygiene improvements. This review article provides a landscape of Shigella vaccine development efforts. No vaccine is yet available, but human and animal challenge-rechallenge trials with virulent Shigella as well as observational studies in Shigella-endemic areas have shown that the incidence of disease decreases following Shigella infection, pointing to biological feasibility of a vaccine. Immunity to Shigella appears to be strain-specific, so a vaccine that covers the most commonly detected strains (i.e., S. flexneri 2a, 3a, 6, and S. sonnei) or a vaccine using cross-species conserved antigens would likely be most effective. Vaccine development and testing may be accelerated by use of animal models, such as the guinea pig keratoconjunctivitis or murine pneumonia models. Because there is no correlate of protection, however, human studies will be necessary to evaluate vaccine efficacy prior to deployment. A diversity of Shigella vaccine constructs are under development, including live attenuated, formalin-killed whole-cell, glycoconjugate, subunit, and novel antigen vaccines (e.g., Type III secretion system and outer membrane proteins). Copyright © 2016 World Health Organization

  7. Current state and challenges in developing oral vaccines.

    Science.gov (United States)

    Vela Ramirez, Julia E; Sharpe, Lindsey A; Peppas, Nicholas A

    2017-05-15

    While vaccination remains the most cost effective strategy for disease prevention, communicable diseases persist as the second leading cause of death worldwide. There is a need to design safe, novel vaccine delivery methods to protect against unaddressed and emerging diseases. Development of vaccines administered orally is preferable to traditional injection-based formulations for numerous reasons including improved safety and compliance, and easier manufacturing and administration. Additionally, the oral route enables stimulation of humoral and cellular immune responses at both systemic and mucosal sites to establish broader and long-lasting protection. However, oral delivery is challenging, requiring formulations to overcome the harsh gastrointestinal (GI) environment and avoid tolerance induction to achieve effective protection. Here we address the rationale for oral vaccines, including key biological and physicochemical considerations for next-generation oral vaccine design. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Challenges in the research and development of new human vaccines

    Directory of Open Access Journals (Sweden)

    T. Barbosa

    2013-02-01

    Full Text Available The field of vaccinology was born from the observations by the fathers of vaccination, Edward Jenner and Louis Pasteur, that a permanent, positive change in the way our bodies respond to life-threatening infectious diseases can be obtained by specific challenge with the inactivated infectious agent performed in a controlled manner, avoiding the development of clinical disease upon exposure to the virulent pathogen. Many of the vaccines still in use today were developed on an empirical basis, essentially following the paradigm established by Pasteur, “isolate, inactivate, and inject” the disease-causing microorganism, and are capable of eliciting uniform, long-term immune memory responses that constitute the key to their proven efficacy. However, vaccines for pathogens considered as priority targets of public health concern are still lacking. The literature tends to focus more often on vaccine research problems associated with specific pathogens, but it is increasingly clear that there are common bottlenecks in vaccine research, which need to be solved in order to advance the development of the field as a whole. As part of a group of articles, the objective of the present report is to pinpoint these bottlenecks, exploring the literature for common problems and solutions in vaccine research applied to different situations. Our goal is to stimulate brainstorming among specialists of different fields related to vaccine research and development. Here, we briefly summarize the topics we intend to deal with in this discussion.

  9. Varicella and herpes zoster vaccine development: lessons learned.

    Science.gov (United States)

    Warren-Gash, Charlotte; Forbes, Harriet; Breuer, Judith

    2017-12-01

    Before vaccination, varicella zoster virus (VZV), which is endemic worldwide, led to almost universal infection. This neurotropic virus persists lifelong by establishing latency in sensory ganglia, where its reactivation is controlled by VZV-specific T-cell immunity. Lifetime risk of VZV reactivation (zoster) is around 30%. Vaccine development was galvanised by the economic and societal burden of VZV, including debilitating zoster complications that largely affect older individuals. Areas covered: We describe the story of development, licensing and implementation of live attenuated vaccines against varicella and zoster. We consider the complex backdrop of VZV virology, pathogenesis and immune responses in the absence of suitable animal models and examine the changing epidemiology of VZV disease. We review the vaccines' efficacy, safety, effectiveness and coverage using evidence from trials, observational studies from large routine health datasets and clinical post-marketing surveillance studies and outline newer developments in subunit and inactivated vaccines. Expert commentary: Safe and effective, varicella and zoster vaccines have already made major inroads into reducing the burden of VZV disease globally. As these live vaccines have the potential to reactivate and cause clinical disease, developing alternatives that do not establish latency is an attractive prospect but will require better understanding of latency mechanisms.

  10. Vaccine procurement and self-sufficiency in developing countries.

    Science.gov (United States)

    Woodle, D

    2000-06-01

    This paper discusses the movement toward self-sufficiency in vaccine supply in developing countries (and countries in transition to new economic and political systems) and explains special supply concerns about vaccine as a product class. It traces some history of donor support and programmes aimed at self-financing, then continues with a discussion about self-sufficiency in terms of institutional capacity building. A number of deficiencies commonly found in vaccine procurement and supply in low- and middle-income countries are characterized, and institutional strengthening with procurement technical assistance is described. The paper also provides information about a vaccine procurement manual being developed by the United States Agency for International Development (USAID) and the World Health Organization (WHO) for use in this environment. Two brief case studies are included to illustrate the spectrum of existing capabilities and different approaches to technical assistance aimed at developing or improving vaccine procurement capability. In conclusion, the paper discusses the special nature of vaccine and issues surrounding potential integration and decentralization of vaccine supply systems as part of health sector reform.

  11. Advances in the development of vaccines for dengue fever

    Directory of Open Access Journals (Sweden)

    Simmons M

    2012-05-01

    Full Text Available Monika Simmons1, Nimfa Teneza-Mora1, Robert Putnak21Viral and Rickettsial Diseases Department, Naval Medical Research Center, 2Division of Viral Diseases, Walter Reed Army Institute of Research, Silver Spring, MD, USAAbstract: Dengue fever is caused by the mosquito-borne dengue virus (DENV serotypes 1–4, and is the most common arboviral infection of humans in subtropical and tropical regions of the world. There are currently no prophylaxis or treatment options in the form of vaccines or antivirals, leaving vector control the only method of prevention. A particular challenge with DENV is that a successful vaccine has to be effective against all four serotypes without predisposing for antibody-mediated enhanced disease. In this review, we discuss the current lead vaccine candidates in clinical trials, as well as some second-generation vaccine candidates undergoing preclinical evaluation. In addition, we discuss DENV epidemiology, clinical disease and strategies used for Flavivirus antivirals in the past, the development of new DENV therapeutics, and their potential usefulness for prophylaxis and treatment.Keywords: tetravalent dengue vaccine, live attenuated vaccine, purified inactivated vaccine, DNA vaccine, antibody-dependent enhancement, antivirals

  12. Novel adjuvants & delivery vehicles for vaccines development: a road ahead.

    Science.gov (United States)

    Mohan, Teena; Verma, Priyanka; Rao, D Nageswara

    2013-11-01

    The pure recombinant and synthetic antigens used in modern day vaccines are generally less immunogenic than older style live/attenuated and killed whole organism vaccines. One can improve the quality of vaccine production by incorporating immunomodulators or adjuvants with modified delivery vehicles viz. liposomes, immune stimulating complexes (ISCOMs), micro/nanospheres apart from alum, being used as gold standard. Adjuvants are used to augment the effect of a vaccine by stimulating the immune system to respond to the vaccine, more vigorously, and thus providing increased immunity to a particular disease. Adjuvants accomplish this task by mimicking specific sets of evolutionary conserved molecules which include lipopolysaccharides (LPS), components of bacterial cell wall, endocytosed nucleic acids such as dsRNA, ssDNA and unmethylated CpG dinucleotide containing DNA. This review provides information on various vaccine adjuvants and delivery vehicles being developed to date. From literature, it seems that the humoral immune responses have been observed for most adjuvants and delivery platforms while viral-vector, ISCOMs and Montanides have shown cytotoxic T-cell response in the clinical trials. MF59 and MPL® have elicited Th1 responses, and virus-like particles (VLPs), non-degradable nanoparticle and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical success reported for intranasal delivery of viral-vectors and proteosomes and oral delivery of VLP vaccines.

  13. Development of inactivated-local isolate vaccine for infectious bronchitis

    Directory of Open Access Journals (Sweden)

    Darminto

    1999-06-01

    Full Text Available Infectious bronchitis (IB is an acute highly contagious viral respiratory disease of poultry caused by coronavirus. The disease causes high mortality in young chicks, reduce body weight gain in broilers and remarkable drop in egg production. IB can only be controlled by vaccination, but due to the antigenic variation among serotypes of IB viruses, the effective IB vaccine should be prepared from local isolates. The aim of this research is to develop inactivated IB vaccine derived from local IB isolates. Local isolates of IB viruses designated as I-37, I-269 and PTS-III were propagated respectively in specific pathogen free (SPF chicken eggs, the viruses then were inactivated by formaline at final concentration of 1:1,000. Subsequently, the inactivated viruses were mixed and emulsified in oil emulsion adjuvant with sorbitant mono-oleic as an emulsifier. The vaccine then was tested for its safety, potency and efficacy in broiler chickens. Birds inoculated twice with a two-week interval by inactivated vaccine did not show any adverse reaction, either systemic or local reaction. The inoculated birds developed antibody responses with high titre, while antibody of the control birds remain negative. In addition, efficacy test which was conducted in broilers demonstrated that birds vaccinated by live-commercial vaccine and boosted three weeks later by Balitvet inactivated vaccine showed high level of antibody production which provided high level of protection against challenged virus (76% against I-37, 92% against I-269 and 68% against PTS-III challenge viruses. From this study, it can be concluded that inactivated local IB vaccine is considered to be safe, potent and efficacious. The vaccine stimulates high titre of antibody responses, which provide high level of protection against challenged viruses.

  14. Development and Regulation of Novel Influenza Virus Vaccines: A United States Young Scientist Perspective.

    Science.gov (United States)

    Khurana, Surender

    2018-04-27

    Vaccination against influenza is the most effective approach for reducing influenza morbidity and mortality. However, influenza vaccines are unique among all licensed vaccines as they are updated and administered annually to antigenically match the vaccine strains and currently circulating influenza strains. Vaccine efficacy of each selected influenza virus vaccine varies depending on the antigenic match between circulating strains and vaccine strains, as well as the age and health status of the vaccine recipient. Low vaccine effectiveness of seasonal influenza vaccines in recent years provides an impetus to improve current seasonal influenza vaccines, and for development of next-generation influenza vaccines that can provide broader, long-lasting protection against both matching and antigenically diverse influenza strains. This review discusses a perspective on some of the issues and formidable challenges facing the development and regulation of the next-generation influenza vaccines.

  15. The impact of globalization on vaccine development and availability.

    Science.gov (United States)

    Milstien, Julie B; Kaddar, Miloud; Kieny, Marie Paule

    2006-01-01

    Globalization is likely to affect many aspects of public health, one of which is vaccine-preventable communicable diseases. Important forces include increased funding initiatives supporting immunization at the global level; regulatory harmonization; widespread intellectual property rights provisions through the World Trade Organization agreements; the emergence of developing-country manufacturers as major players in vaccine supply; and the appearance of new communicable disease threats, including those potentially linked to bioterrorism. All of these forces can affect, either positively and negatively, the development and availability of vaccines. Harnessing these will be a challenge for policymakers and immunization stakeholders.

  16. Development of 2 multivalent RVF vaccines for improved uptake in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-04-06

    Apr 6, 2018 ... Home · Resources · Publications. Development of 2 multivalent RVF vaccines for improved uptake in cattle and in small ruminants ... concern in recent years, with an increasing number of human cases recorded in Mauritania, ...

  17. Nanotechnology Laboratory Collaborates with Army to Develop Botulism Vaccine | FNLCR

    Science.gov (United States)

    The Nanotechnology Characterization Laboratory (NCL) is collaborating with the Army to develop a candidate vaccine against botulism. Under a collaboration agreement between the National Cancer Institute and the U.S. Army Medical Research Institute of

  18. Options for improving effectiveness of rotavirus vaccines in developing countries.

    Science.gov (United States)

    Tissera, Marion S; Cowley, Daniel; Bogdanovic-Sakran, Nada; Hutton, Melanie L; Lyras, Dena; Kirkwood, Carl D; Buttery, Jim P

    2017-04-03

    Rotavirus gastroenteritis is a leading global cause of mortality and morbidity in young children due to diarrhea and dehydration. Over 85% of deaths occur in developing countries. In industrialised countries, 2 live oral rotavirus vaccines licensed in 2006 quickly demonstrated high effectiveness, dramatically reducing severe rotavirus gastroenteritis admissions in many settings by more than 90%. In contrast, the same vaccines reduced severe rotavirus gastroenteritis by only 30-60% in developing countries, but have been proven life-saving. Bridging this "efficacy gap" offers the possibility to save many more lives of children under the age of 5. The reduced efficacy of rotavirus vaccines in developing settings may be related to differences in transmission dynamics, as well as host luminal, mucosal and immune factors. This review will examine strategies currently under study to target the issue of reduced efficacy and effectiveness of oral rotavirus vaccines in developing settings.

  19. Cancer vaccines: the challenge of developing an ideal tumor killing system.

    Science.gov (United States)

    Mocellin, Simone

    2005-09-01

    Despite the evidence that the immune system plays a significant role in controlling tumor growth in natural conditions and in response to therapeutic vaccination, cancer cells can survive their attack as the disease progresses and no vaccination regimen should be currently proposed to patients outside experimental clinical trials. Clinical results show that the immune system can be actively polarized against malignant cells by means of a variety of vaccination strategies, and that in some cases this is associated with tumor regression. This implies that under some unique circumstances, the naturally "dormant" immune effectors can actually be put at work and used as endogenous weapons against malignant cells. Consequently, the main challenge of tumor immunologists appears to lie on the ability of reproducing those conditions in a larger set of patients. The complexity of the immune network and the still enigmatic host-tumor interactions make these tasks at the same time challenging and fascinating. Recent tumor immunology findings are giving new impetus to the development of more effective vaccination strategies and might revolutionize the way of designing the next generation of cancer vaccines. In the near future, the implementation of these insights in the clinical setting and the completion/conduction of comparative randomized phase III trials will allow oncologists to define the actual role of cancer vaccines in the fight against malignancy.

  20. Development of an anti-HIV vaccine eliciting broadly neutralizing antibodies.

    Science.gov (United States)

    Ahmed, Yousuf; Tian, Meijuan; Gao, Yong

    2017-09-12

    The extreme HIV diversity posts a great challenge on development of an effective anti-HIV vaccine. To solve this problem, it is crucial to discover an appropriate immunogens and strategies that are able to prevent the transmission of the diverse viruses that are circulating in the world. Even though there have been a number of broadly neutralizing anti-HIV antibodies (bNAbs) been discovered in recent years, induction of such antibodies to date has only been observed in HIV-1 infection. Here, in this mini review, we review the progress in development of HIV vaccine in eliciting broad immune response, especially production of bNAbs, discuss possible strategies, such as polyvalent sequential vaccination, that facilitates B cell maturation leading to bNAb response.

  1. Progress toward a universal H5N1 vaccine: a recombinant modified vaccinia virus Ankara-expressing trivalent hemagglutinin vaccine.

    Directory of Open Access Journals (Sweden)

    Mookkan Prabakaran

    Full Text Available The rapid evolution of new sublineages of H5N1 influenza poses the greatest challenge in control of H5N1 infection by currently existing vaccines. To overcome this, an MVAtor vector expressing three H5HA antigens A/Vietnam/1203/04, A/Indonesia/669/06 and A/Anhui/01/05 (MVAtor-tri-HA vector was developed to elicit broad cross-protection against diverse clades by covering amino acid variations in the major neutralizing epitopes of HA among H5N1 subtypes.BALB/c mice and guinea pigs were immunized i.m. with 8×107 TCID50/animal of MVAtor-tri-HA vector. The immunogenicity and cross-protective immunity of the MVAtor-tri-HA vector was evaluated against diverse clades of H5N1 strains.The results showed that mice immunized with MVAtor-tri-HA vector induced robust cross-neutralizing immunity to diverse H5N1 clades. In addition, the MVAtor-tri-HA vector completely protected against 10 MLD50 of a divergent clade of H5N1 infection (clade 7. Importantly, the serological surveillance of post-vaccinated guinea pig sera demonstrated that MVAtor-tri-HA vector was able to elicit strong cross-clade neutralizing immunity against twenty different H5N1 strains from six clades that emerged between 1997 and 2012.The present findings revealed that incorporation of carefully selected HA genes from divergent H5N1 strains within a single vector could be an effective approach in developing a vaccine with broad coverage to prevent infection during a pandemic situation.

  2. Live attenuated hepatitis A vaccines developed in China

    Science.gov (United States)

    Xu, Zhi-Yi; Wang, Xuan-Yi

    2014-01-01

    Two live, attenuated hepatitis A vaccines, H2 and LA-1 virus strains, were developed through serial passages of the viruses in cell cultures at 32 °C and 35 °C respectively. Both vaccines were safe and immunogenic, providing protection against clinical hepatitis A in 95% of the vaccinees, with a single dose by subcutaneous injection. The vaccine recipients were not protected from asymptomatic, subclinical hepatitis A virus (HAV) infection, which induced a similar antibody response as for unvaccinated subjects. A second dose caused anamnestic response and can be used for boosting. Oral immunization of human with H2 vaccine or of marmoset with LA-1 vaccine failed, and no evidence was found for person-to-person transmission of H2 strain or for marmoset-to-marmoset transmission of LA-1 strain by close contact. H2 strain was genetically stable when passaged in marmosets, humans or cell cultures at 37 °C; 3 consecutive passages of the virus in marmosets did not cause virulence mutation. The live vaccines offer the benefits of low cost, single dose injection, long- term protection, and increased duration of immunity through subclinical infection. Improved sanitation and administration of 150 million doses of the live vaccines to children had led to a 90% reduction in the annual national incidence rate of hepatitis A in China during the 16-year period, from 1991 to 2006. Hepatitis A (HA) immunization with both live and inactivated HA vaccines was implemented in the national routine childhood immunization program in 2008 and around 92% of the 16 million annual births received the affordable live, attenuated vaccines at 18 months of age. Near elimination of the disease was achieved in a county of China for 14 years following introduction of the H2 live vaccine into the Expanded Immunization Program (EPI) in 1992. PMID:24280971

  3. "Communicate to vaccinate": the development of a taxonomy of communication interventions to improve routine childhood vaccination.

    Science.gov (United States)

    Willis, Natalie; Hill, Sophie; Kaufman, Jessica; Lewin, Simon; Kis-Rigo, John; De Castro Freire, Sara Bensaude; Bosch-Capblanch, Xavier; Glenton, Claire; Lin, Vivian; Robinson, Priscilla; Wiysonge, Charles S

    2013-05-11

    Vaccination is a cost-effective public health measure and is central to the Millennium Development Goal of reducing child mortality. However, childhood vaccination coverage remains sub-optimal in many settings. While communication is a key feature of vaccination programmes, we are not aware of any comprehensive approach to organising the broad range of communication interventions that can be delivered to parents and communities to improve vaccination coverage. Developing a classification system (taxonomy) organised into conceptually similar categories will aid in: understanding the relationships between different types of communication interventions; facilitating conceptual mapping of these interventions; clarifying the key purposes and features of interventions to aid implementation and evaluation; and identifying areas where evidence is strong and where there are gaps. This paper reports on the development of the 'Communicate to vaccinate' taxonomy. The taxonomy was developed in two stages. Stage 1 included: 1) forming an advisory group; 2) searching for descriptions of interventions in trials (CENTRAL database) and general health literature (Medline); 3) developing a sampling strategy; 4) screening the search results; 5) developing a data extraction form; and 6) extracting intervention data. Stage 2 included: 1) grouping the interventions according to purpose; 2) holding deliberative forums in English and French with key vaccination stakeholders to gather feedback; 3) conducting a targeted search of grey literature to supplement the taxonomy; 4) finalising the taxonomy based on the input provided. The taxonomy includes seven main categories of communication interventions: inform or educate, remind or recall, teach skills, provide support, facilitate decision making, enable communication and enhance community ownership. These categories are broken down into 43 intervention types across three target groups: parents or soon-to-be-parents; communities, community

  4. Complexity of Human Antibody Response to Dengue Virus: Implication for Vaccine Development

    Directory of Open Access Journals (Sweden)

    Wen-Yang Tsai

    2017-07-01

    Full Text Available The four serotypes of dengue virus (DENV are the leading cause of arboviral diseases in humans. Decades of efforts have made remarkable progress in dengue vaccine development. Despite the first dengue vaccine (dengvaxia from Sanofi Pasteur, a live-attenuated tetravalent chimeric yellow fever-dengue vaccine, has been licensed by several countries since 2016, its overall moderate efficacy (56.5–60.8% in the presence of neutralizing antibodies during the Phase 2b and 3 trials, lower efficacy among dengue naïve compared with dengue experienced individuals, and increased risk of hospitalization among young children during the follow-up highlight the need for a better understanding of humoral responses after natural DENV infection. Recent studies of more than 300 human monoclonal antibodies (mAbs against DENV have led to the discovery of several novel epitopes on the envelope protein recognized by potent neutralizing mAbs. This information together with in-depth studies on polyclonal sera and B-cells following natural DENV infection has tremendous implications for better immunogen design for a safe and effective dengue vaccine. This review outlines the progress in our understanding of mouse mAbs, human mAbs, and polyclonal sera against DENV envelope and precursor membrane proteins, two surface proteins involved in vaccine development, following natural infection; analyses of these discoveries have provided valuable insight into new strategies involving molecular technology to induce more potent neutralizing antibodies and less enhancing antibodies for next-generation dengue vaccine development.

  5. Development of DNA vaccines for fish

    DEFF Research Database (Denmark)

    Heppell, Joël; Lorenzen, Niels; Armstrong, Neil K.

    1998-01-01

    Disease control is one of the major concerns in the aquaculture industry. However, there are no vaccines available for the prevention of many piscine infectious diseases, especially those of viral and parasitic origin. DNA-based vaccination could circumvent several problems associated with tradit......Disease control is one of the major concerns in the aquaculture industry. However, there are no vaccines available for the prevention of many piscine infectious diseases, especially those of viral and parasitic origin. DNA-based vaccination could circumvent several problems associated...... with traditional methods of immunization, but little is known on its efficacy in fish. The luciferase and lacZ reporter genes were used to characterize expression of plasmid-encoded genes in rainbow trout and zebra fish injected intramuscularly. For a given dose of DNA, the luciferase activity was higher in fish...... than in mouse muscle. The enzyme activity in fish peaked with 1 μg of DNA and remained constant for over 12 weeks, but it was not limited to the injected muscle since luciferase activity was also detected in the gills. Thin sections of rainbow trout muscle injected with the lacZ reporter gene showed...

  6. Considerations for sustainable influenza vaccine production in developing countries.

    Science.gov (United States)

    Nannei, Claudia; Chadwick, Christopher; Fatima, Hiba; Goldin, Shoshanna; Grubo, Myriam; Ganim, Alexandra

    2016-10-26

    Through its Global Action Plan for Influenza Vaccines (GAP), the World Health Organization (WHO) in collaboration with the United States Department of Health and Human Services has produced a checklist to support policy-makers and influenza vaccine manufacturers in identifying key technological, political, financial, and logistical issues affecting the sustainability of influenza vaccine production. This checklist highlights actions in five key areas that are beneficial for establishing successful local vaccine manufacturing. These five areas comprise: (1) the policy environment and health-care systems; (2) surveillance systems and influenza evidence; (3) product development and manufacturing; (4) product approval and regulation; and (5) communication to support influenza vaccination. Incorporating the checklist into national vaccine production programmes has identified the policy gaps and next steps for countries involved in GAP's Technology Transfer Initiative. Lessons learnt from country experiences provide context and insight that complement the checklist's goal of simplifying the complexities of influenza prevention, preparedness, and vaccine manufacturing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Clinical development of placental malaria vaccines and immunoassays harmonization

    DEFF Research Database (Denmark)

    Chêne, Arnaud; Houard, Sophie; Nielsen, Morten A

    2016-01-01

    Placental malaria caused by Plasmodium falciparum infection constitutes a major health problem manifesting as severe disease and anaemia in the mother, impaired fetal development, low birth weight or spontaneous abortion. Prevention of placental malaria currently relies on two key strategies...... that are losing efficacy due to spread of resistance: long-lasting insecticide-treated nets and intermittent preventive treatment during pregnancy. A placental malaria vaccine would be an attractive, cost-effective complement to the existing control tools. Two placental malaria vaccine candidates are currently...... in Phase Ia/b clinical trials. During two workshops hosted by the European Vaccine Initiative, one in Paris in April 2014 and the other in Brussels in November 2014, the main actors in placental malaria vaccine research discussed the harmonization of clinical development plans and of the immunoassays...

  8. Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy

    Science.gov (United States)

    Nau, Gerard J.; Ross, Ted M.; Evans, Thomas G.; Chakraborty, Krishnendu; Empey, Kerry M.; Flynn, JoAnne L.

    2014-01-01

    Pulmonary diseases and infections are among the top contributors to human morbidity and mortality worldwide, and despite the successful history of vaccines and antimicrobial therapeutics, infectious disease still presents a significant threat to human health. Effective vaccines are frequently unavailable in developing countries, and successful vaccines have yet to be developed for major global maladies, such as tuberculosis. Furthermore, antibiotic resistance poses a growing threat to human health. The “Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy” session of the 2013 Pittsburgh International Lung Conference highlighted several recent and current studies related to treatment and prevention of antibiotic-resistant bacterial infections, highly pathogenic influenza, respiratory syncytial virus, and tuberculosis. Research presented here focused on novel antimicrobial therapies, new vaccines that are either in development or currently in clinical trials, and the potential for immunomodulatory therapies. These studies are making important contributions to the areas of microbiology, virology, and immunology related to pulmonary diseases and infections and are paving the way for improvements in the efficacy of vaccines and antimicrobials. PMID:25148426

  9. Challenges and future in vaccines, drug development, and immunomodulatory therapy.

    Science.gov (United States)

    Kling, Heather M; Nau, Gerard J; Ross, Ted M; Evans, Thomas G; Chakraborty, Krishnendu; Empey, Kerry M; Flynn, JoAnne L

    2014-08-01

    Pulmonary diseases and infections are among the top contributors to human morbidity and mortality worldwide, and despite the successful history of vaccines and antimicrobial therapeutics, infectious disease still presents a significant threat to human health. Effective vaccines are frequently unavailable in developing countries, and successful vaccines have yet to be developed for major global maladies, such as tuberculosis. Furthermore, antibiotic resistance poses a growing threat to human health. The "Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy" session of the 2013 Pittsburgh International Lung Conference highlighted several recent and current studies related to treatment and prevention of antibiotic-resistant bacterial infections, highly pathogenic influenza, respiratory syncytial virus, and tuberculosis. Research presented here focused on novel antimicrobial therapies, new vaccines that are either in development or currently in clinical trials, and the potential for immunomodulatory therapies. These studies are making important contributions to the areas of microbiology, virology, and immunology related to pulmonary diseases and infections and are paving the way for improvements in the efficacy of vaccines and antimicrobials.

  10. Development of malaria transmission-blocking vaccines: from concept to product.

    Science.gov (United States)

    Wu, Yimin; Sinden, Robert E; Churcher, Thomas S; Tsuboi, Takafumi; Yusibov, Vidadi

    2015-06-01

    Despite decades of effort battling against malaria, the disease is still a major cause of morbidity and mortality. Transmission-blocking vaccines (TBVs) that target sexual stage parasite development could be an integral part of measures for malaria elimination. In the 1950s, Huff et al. first demonstrated the induction of transmission-blocking immunity in chickens by repeated immunizations with Plasmodium gallinaceum-infected red blood cells. Since then, significant progress has been made in identification of parasite antigens responsible for transmission-blocking activity. Recombinant technologies accelerated evaluation of these antigens as vaccine candidates, and it is possible to induce effective transmission-blocking immunity in humans both by natural infection and now by immunization with recombinant vaccines. This chapter reviews the efforts to produce TBVs, summarizes the current status and advances and discusses the remaining challenges and approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Progress in MELCOR development and assessment

    International Nuclear Information System (INIS)

    Summers, R.M.; Kmetyk, L.N.; Cole, R.K. Jr.; Smith, R.C.; Elsbernd, A.E.; Stuart, D.S.; Thompson, S.L.

    1995-01-01

    MELCOR models the progression of severe accidents in light water reactor nuclear power plants. Recent efforts in MELCOR development to incorporate CORCON-Mod3 models for core-concrete interactions, new models for advanced reactors, and improvements to several other existing models have resulted in release of MELCOR 1.8.3. In addition, continuing efforts to expand the code assessment database have filled in many of the gaps in phenomenological coverage. Efforts are now under way to develop models for chemical interactions of fission products with structural surfaces and for reactions of iodine in the presence of water, and work is also in progress to improve models for the scrubbing of fission products by water pools, the chemical reactions of boron carbide with steam, and the coupling of flow blockages with the hydrodynamics. Several code assessment analyses are in progress, and more are planned

  12. Ebola hemorrhagic Fever and the current state of vaccine development.

    Science.gov (United States)

    Hong, Joo Eun; Hong, Kee-Jong; Choi, Woo Young; Lee, Won-Ja; Choi, Yeon Hwa; Jeong, Chung-Hyeon; Cho, Kwang-Il

    2014-12-01

    Current Ebola virus outbreak in West Africa already reached the total number of 1,323 including 729 deaths by July 31st. the fatality is around 55% in the southeastern area of Guinea, Sierra Leone, Liberia, and Nigeria. The number of patients with Ebola Hemorrhagic Fever (EHF) was continuously increasing even though the any effective therapeutics or vaccines has not been developed yet. The Ebola virus in Guinea showed 98% homology with Zaire Ebola Virus. Study of the pathogenesis of Ebola virus infection and assess of the various candidates of vaccine have been tried for a long time, especially in United States and some European countries. Even though the attenuated live vaccine and DNA vaccine containing Ebola viral genes were tested and showed efficacy in chimpanzees, those candidates still need clinical tests requiring much longer time than the preclinical development to be approved for the practical treatment. It can be expected to eradicate Ebola virus by a safe and efficient vaccine development similar to the case of smallpox virus which was extinguished from the world by the variola vaccine.

  13. Heterogeneity of Rotavirus Vaccine Efficacy Among Infants in Developing Countries.

    Science.gov (United States)

    Gruber, Joann F; Hille, Darcy A; Liu, G Frank; Kaplan, Susan S; Nelson, Micki; Goveia, Michelle G; Mast, T Christopher

    2017-01-01

    Rotavirus is the leading cause of severe diarrhea worldwide in young children. Although rotavirus vaccine efficacy is high in developed countries, efficacy is lower in developing countries. Here, we investigated heterogeneity of rotavirus vaccine efficacy by infant characteristics in developing countries. An exploratory, post hoc analysis was conducted using randomized controlled trial data of the pentavalent rotavirus vaccine (RV5) conducted in Africa and Asia (NCT00362648). Infants received either 3 doses of vaccine/placebo and were followed for up to 2 years. Within subgroups, vaccine efficacies and 95% confidence intervals (CIs) against rotavirus gastroenteritis (RVGE) were estimated using Poisson regression. We assessed heterogeneity of efficacy by age at first dose, gender, breastfeeding status and nutrition status. African children receiving the first dose at efficacy (23.7%; 95% CI: -8.2%-46.3%) than those vaccinated at ≥8 weeks (59.1%; 95% CI: 34.0%-74.6%). Marginally statistically significant differences were observed by age at first dose, gender and underweight status in Ghana and gender in Asian countries. Heterogeneity of efficacy was observed for age at first dose in African countries. This was an exploratory analysis; additional studies are needed to validate these results.

  14. Dengue human infection models to advance dengue vaccine development.

    Science.gov (United States)

    Larsen, Christian P; Whitehead, Stephen S; Durbin, Anna P

    2015-12-10

    Dengue viruses (DENV) currently infect approximately 400 million people each year causing millions to seek care and overwhelming the health care infrastructure in endemic areas. Vaccines to prevent dengue and therapeutics to treat dengue are not currently available. The efficacy of the most advanced candidate vaccine against symptomatic dengue in general and DENV-2 in particular was much lower than expected, despite the ability of the vaccine to induce neutralizing antibody against all four DENV serotypes. Because seroconversion to the DENV serotypes following vaccination was thought to be indicative of induced protection, these results have made it more difficult to assess which candidate vaccines should or should not be evaluated in large studies in endemic areas. A dengue human infection model (DHIM) could be extremely valuable to down-select candidate vaccines or therapeutics prior to engaging in efficacy trials in endemic areas. Two DHIM have been developed to assess the efficacy of live attenuated tetravalent (LATV) dengue vaccines. The first model, developed by the Laboratory of Infectious Diseases at the U. S. National Institutes of Health, utilizes a modified DENV-2 strain DEN2Δ30. This virus was derived from the DENV-2 Tonga/74 that caused only very mild clinical infection during the outbreak from which it was recovered. DEN2Δ30 induced viremia in 100%, rash in 80%, and neutropenia in 27% of the 30 subjects to whom it was given. The Walter Reed Army Institute of Research (WRAIR) is developing a DHIM the goal of which is to identify DENV that cause symptomatic dengue fever. WRAIR has evaluated seven viruses and has identified two that meet dengue fever criteria. Both of these models may be very useful in the evaluation and down-selection of candidate dengue vaccines and therapeutics. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Design of clinical trials for therapeutic cancer vaccines development.

    Science.gov (United States)

    Mackiewicz, Jacek; Mackiewicz, Andrzej

    2009-12-25

    Advances in molecular and cellular biology as well as biotechnology led to definition of a group of drugs referred to as medicinal products of advanced technologies. It includes gene therapy products, somatic cell therapeutics and tissue engineering. Therapeutic cancer vaccines including whole cell tumor cells vaccines or gene modified whole cells belong to somatic therapeutics and/or gene therapy products category. The drug development is a multistep complex process. It comprises of two phases: preclinical and clinical. Guidelines on preclinical testing of cell based immunotherapy medicinal products have been defined by regulatory agencies and are available. However, clinical testing of therapeutic cancer vaccines is still under debate. It presents a serious problem since recently clinical efficacy of the number of cancer vaccines has been demonstrated that focused a lot of public attention. In general clinical testing in the current form is very expensive, time consuming and poorly designed what may lead to overlooking of products clinically beneficial for patients. Accordingly regulatory authorities and researches including Cancer Vaccine Clinical Trial Working Group proposed three regulatory solutions to facilitate clinical development of cancer vaccines: cost-recovery program, conditional marketing authorization, and a new development paradigm. Paradigm includes a model in which cancer vaccines are investigated in two types of clinical trials: proof-of-principle and efficacy. The proof-of-principle trial objectives are: safety; dose selection and schedule of vaccination; and demonstration of proof-of-principle. Efficacy trials are randomized clinical trials with objectives of demonstrating clinical benefit either directly or through a surrogate. The clinical end points are still under debate.

  16. Adaptive Immunity to Francisella tularensis and Considerations for Vaccine Development

    Directory of Open Access Journals (Sweden)

    Lydia M. Roberts

    2018-04-01

    Full Text Available Francisella tularensis is an intracellular bacterium that causes the disease tularemia. There are several subspecies of F. tularensis whose ability to cause disease varies in humans. The most virulent subspecies, tularensis, is a Tier One Select Agent and a potential bioweapon. Although considerable effort has made to generate efficacious tularemia vaccines, to date none have been licensed for use in the United States. Despite the lack of a tularemia vaccine, we have learned a great deal about the adaptive immune response the underlies protective immunity. Herein, we detail the animal models commonly used to study tularemia and their recapitulation of human disease, the field's current understanding of vaccine-mediated protection, and discuss the challenges associated with new vaccine development.

  17. Recent progress and future directions for reduction, refinement, and replacement of animal use in veterinary vaccine potency and safety testing: a report from the 2010 NICEATM-ICCVAM International Vaccine Workshop.

    Science.gov (United States)

    Stokes, W S; Kulpa-Eddy, J; Brown, K; Srinivas, G; McFarland, R

    2012-01-01

    Veterinary vaccines contribute to improved animal and human health and welfare by preventing infectious diseases. However, testing necessary to ensure vaccine effectiveness and safety can involve large numbers of animals and significant pain and distress. NICEATM and ICCVAM recently convened an international workshop to review the state of the science of human and veterinary vaccine potency and safety testing, and to identify priority activities to advance new and improved methods that can further reduce, refine and replace animal use. Rabies, Clostridium sp., and Leptospira sp. vaccines were identified as the highest priorities, while tests requiring live viruses and bacteria hazardous to laboratory workers, livestock, pets, and wildlife were also considered high priorities. Priority research, development and validation activities to address critical knowledge and data gaps were identified, including opportunities to apply new science and technology. Enhanced international harmonization and cooperation and closer collaborations between human and veterinary researchers were recommended to expedite progress. Implementation of the workshop recommendations is expected to advance new methods for vaccine testing that will benefit animal welfare and ensure continued and improved protection of human and animal health.

  18. Shigella vaccine development: prospective animal models and current status.

    Science.gov (United States)

    Kim, Yeon-Jeong; Yeo, Sang-Gu; Park, Jae-Hak; Ko, Hyun-Jeong

    2013-01-01

    Shigella was first discovered in 1897 and is a major causative agent of dysenteric diarrhea. The number of affected patients has decreased globally because of improved sanitary conditions; however, Shigella still causes serious problems in many subjects, including young children and the elderly, especially in developing countries. Although antibiotics may be effective, a vaccine would be the most powerful solution to combat shigellosis because of the emergence of drug-resistant strains. However, the development of a vaccine is hampered by several problems. First, there is no suitable animal model that can replace human-based studies for the investigation of the in vivo mechanisms of Shigella vaccines. Mouse, guinea pig, rat, rabbit, and nonhuman primates could be used as models for shigellosis, but they do not represent human shigellosis and each has its own weaknesses. However, a recent murine model based on peritoneal infection with virulent S. flexneri 2a is promising. Moreover, although the inflammatory responses and mechanisms such as pathogenassociated molecular patterns and danger-associated molecular patterns have been studied, the pathology and immunology of Shigella are still not clearly defined. Despite these obstacles, many vaccine candidates have been developed, including live attenuated, killed whole cells, conjugated, and subunit vaccines. The development of Shigella vaccines also demands considerations of the cost, routes of administration, ease of storage (stability), cross-reactivity, safety, and immunogenicity. The main aim of this review is to provide a detailed introduction to the many promising vaccine candidates and animal models currently available, including the newly developed mouse model.

  19. Malaria Vaccine Development: The Need for Novel Approach-es: A Review Article

    Directory of Open Access Journals (Sweden)

    Shima MAHMOUDI

    2018-03-01

    Full Text Available Background: Although rigorous efforts have substantially decreased the malaria burden through decades, it still threatens the lives of millions of children. Development of an effective vaccine can provide important approach in malaria control strategies. Unfortunately, development of an effective vaccine for falciparum malaria has been hindered by the extreme complexity of malaria parasite biology, complex and diverse parasite genomes, and immune evasion by the parasites as well as the intricate nature of the parasites infection cycle. The aim of this review was to discuss the different approaches to malaria vaccine development until now.Methods: Scientific databases, including MEDLINE (via PubMed and SCOPUS were searched up to 30 Jan 2017 and the articles regarding malaria vaccine development were taken into examination.Results: Several strategies for malaria vaccine development including pre-erythrocytic vaccines, antibody-based subunit vaccines, vectored vaccines, whole sporozoite vaccines, genetically Attenuated parasites and sporozoite subunit vaccine, erythrocytic vaccines, sexual stage vaccine, transmission-blocking vaccine as well as synthetic peptides and conjugate vaccine has been introduced. However, the success has been limited thus far.Conclusion: Although development of malaria vaccine over the past 70 year has been continued, the discovery, development, and licensing of a malaria vaccine formulation, which meets safety, affordability, accessibility, applicability, and efficacy has not yet been achieved.

  20. Current status of syphilis vaccine development: need, challenges, prospects.

    Science.gov (United States)

    Cameron, Caroline E; Lukehart, Sheila A

    2014-03-20

    Syphilis is a multistage disease caused by the invasive spirochete Treponema pallidum subsp. pallidum. Despite inexpensive and effective antibiotic therapy, syphilis remains a prevalent disease in developing countries and has re-emerged as a public health threat in developed nations. In addition to the medical burden imparted by infectious syphilis, congenital syphilis is considered the most significant infectious disease affecting fetuses and newborns worldwide, and individuals afflicted with syphilis have an enhanced risk for HIV transmission and acquisition. The global disease burden of syphilis and failure of decades of public health efforts to stem the incidence of disease highlight the need for an effective syphilis vaccine. Although challenges associated with T. pallidum research have impeded understanding of this pathogen, the existence of a relevant animal model has enabled insight into the correlates of disease protection. Complete protection against infection has been achieved in the animal model using an extended immunization regimen of γ-irradiated T. pallidum, demonstrating the importance of treponemal surface components in generation of protective immunity and the feasibility of syphilis vaccine development. Syphilis is a prime candidate for development of a successful vaccine due to the (1) research community's accumulated knowledge of immune correlates of protection; (2) existence of a relevant animal model that enables effective pre-clinical analyses; (3) universal penicillin susceptibility of T. pallidum which enhances the attractiveness of clinical vaccine trials; and (4) significant public health benefit a vaccine would have on reduction of infectious/congenital syphilis and HIV rates. Critical personnel, research and market gaps need to be addressed before the goal of a syphilis vaccine can be realized, including recruitment of additional researchers to the T. pallidum research field with a proportional increase in research funding

  1. Lock in, the state and vaccine development: lessons from the history of the polio vaccines

    NARCIS (Netherlands)

    Blume, S.S.

    2005-01-01

    Over the past two decades pharmaceutical industry interest in the development of vaccines against infectious diseases has grown. At the same time various partnerships and mechanisms have been established in order to reconcile the interests of private industry with the needs of public health systems

  2. The Capricious Nature of Bacterial Pathogens: Phasevarions and Vaccine Development

    Directory of Open Access Journals (Sweden)

    Aimee Tan

    2016-12-01

    Full Text Available Infectious diseases are a leading cause of morbidity and mortality worldwide, and vaccines are one of the most successful and cost-effective tools for disease prevention. One of the key considerations for rational vaccine development is the selection of appropriate antigens. Antigens must induce a protective immune response, and this response should be directed to stably expressed antigens so the target microbe can always be recognized by the immune system. Antigens with variable expression, due to environmental signals or phase variation (i.e., high frequency, random switching of expression, are not ideal vaccine candidates because variable expression could lead to immune evasion. Phase variation is often mediated by the presence of highly mutagenic simple tandem DNA repeats, and genes containing such sequences can be easily identified, and their use discounted as vaccine antigens reconsidered. Recent research has identified phase variably expressed DNA methyltransferases that act as global epigenetic regulators. These phase variable regulons, known as phasevarions, are associated with altered virulence phenotypes and/or expression of vaccine candidates. As such, genes encoding candidate vaccine antigens that have no obvious mechanism of phase variation may be subject to indirect, epigenetic control as part of a phasevarion. Bioinformatic and experimental studies are required to elucidate the distribution and mechanism of action of these DNA methyltransferases, and most importantly, whether they mediate epigenetic regulation of potential and current vaccine candidates. This process is essential to define the stably expressed antigen target profile of bacterial pathogens and thereby facilitate efficient, rational selection of vaccine antigens.

  3. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Science.gov (United States)

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  4. Developing VISO: Vaccine Information Statement Ontology for patient education.

    Science.gov (United States)

    Amith, Muhammad; Gong, Yang; Cunningham, Rachel; Boom, Julie; Tao, Cui

    2015-01-01

    To construct a comprehensive vaccine information ontology that can support personal health information applications using patient-consumer lexicon, and lead to outcomes that can improve patient education. The authors composed the Vaccine Information Statement Ontology (VISO) using the web ontology language (OWL). We started with 6 Vaccine Information Statement (VIS) documents collected from the Centers for Disease Control and Prevention (CDC) website. Important and relevant selections from the documents were recorded, and knowledge triples were derived. Based on the collection of knowledge triples, the meta-level formalization of the vaccine information domain was developed. Relevant instances and their relationships were created to represent vaccine domain knowledge. The initial iteration of the VISO was realized, based on the 6 Vaccine Information Statements and coded into OWL2 with Protégé. The ontology consisted of 132 concepts (classes and subclasses) with 33 types of relationships between the concepts. The total number of instances from classes totaled at 460, along with 429 knowledge triples in total. Semiotic-based metric scoring was applied to evaluate quality of the ontology.

  5. Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone.

    Science.gov (United States)

    Li, Xiao-Feng; Dong, Hao-Long; Wang, Hong-Jiang; Huang, Xing-Yao; Qiu, Ye-Feng; Ji, Xue; Ye, Qing; Li, Chunfeng; Liu, Yang; Deng, Yong-Qiang; Jiang, Tao; Cheng, Gong; Zhang, Fu-Chun; Davidson, Andrew D; Song, Ya-Jun; Shi, Pei-Yong; Qin, Cheng-Feng

    2018-02-14

    The global spread of Zika virus (ZIKV) and its unexpected association with congenital defects necessitates the rapid development of a safe and effective vaccine. Here we report the development and characterization of a recombinant chimeric ZIKV vaccine candidate (termed ChinZIKV) that expresses the prM-E proteins of ZIKV using the licensed Japanese encephalitis live-attenuated vaccine SA14-14-2 as the genetic backbone. ChinZIKV retains its replication activity and genetic stability in vitro, while exhibiting an attenuation phenotype in multiple animal models. Remarkably, immunization of mice and rhesus macaques with a single dose of ChinZIKV elicits robust and long-lasting immune responses, and confers complete protection against ZIKV challenge. Significantly, female mice immunized with ChinZIKV are protected against placental and fetal damage upon ZIKV challenge during pregnancy. Overall, our study provides an alternative vaccine platform in response to the ZIKV emergency, and the safety, immunogenicity, and protection profiles of ChinZIKV warrant further clinical development.

  6. Gene-based vaccine development for improving animal production in developing countries. Possibilities and constraints

    International Nuclear Information System (INIS)

    Egerton, J.R.

    2005-01-01

    For vaccine production, recombinant antigens must be protective. Identifying protective antigens or candidate antigens is an essential precursor to vaccine development. Even when a protective antigen has been identified, cloning of its gene does not lead directly to vaccine development. The fimbrial protein of Dichelobacter nodosus, the agent of foot-rot in ruminants, was known to be protective. Recombinant vaccines against this infection are ineffective if expressed protein subunits are not assembled as mature fimbriae. Antigenic competition between different, but closely related, recombinant antigens limited the use of multivalent vaccines based on this technology. Recombinant antigens may need adjuvants to enhance response. DNA vaccines, potentiated with genes for different cytokines, may replace the need for aggressive adjuvants, and especially where cellular immunity is essential for protection. The expression of antigens from animal pathogens in plants and the demonstration of some immunity to a disease like rinderpest after ingestion of these, suggests an alternative approach to vaccination by injection. Research on disease pathogenesis and the identification of candidate antigens is specific to the disease agent. The definition of expression systems and the formulation of a vaccine for each disease must be followed by research to establish safety and efficacy. Where vaccines are based on unique gene sequences, the intellectual property is likely to be protected by patent. Organizations, licensed to produce recombinant vaccines, expect to recover their costs and to make a profit. The consequence is that genetically-derived vaccines are expensive. The capacity of vaccines to help animal owners of poorer countries depends not only on quality and cost but also on the veterinary infrastructure where they are used. Ensuring the existence of an effective animal health infrastructure in developing countries is as great a challenge for the developed world as

  7. Vaccine Development against Zoonotic Hepatitis E Virus: Open Questions and Remaining Challenges

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2018-02-01

    Full Text Available Hepatitis E virus (HEV is a fecal-orally transmitted foodborne viral pathogen that causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the discovery of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. Recently, a subunit HEV vaccine developed for the prevention of human disease was approved in China, but is not yet available to the rest of the world. Meanwhile, notable progress and knowledge has been made and revealed in recent years to better understand HEV biology and infection, including discoveries of quasi-enveloped HEV virions and of a new function of the HEV-ORF3 product. However, the impact of these new findings on the development of a protective vaccine against zoonotic HEV infection requires further discussion. In this review, hallmark characteristics of HEV zoonosis, the history of HEV vaccine development, and recent discoveries in HEV virology are described. Moreover, special attention is focused on quasi-enveloped HEV virions and the potential role of the HEV-ORF3 product as antibody-neutralization target on the surface of quasi-enveloped HEV virions to provide new insights for the future development of improved vaccines against zoonotic HEV infection.

  8. Vaccine Development against Zoonotic Hepatitis E Virus: Open Questions and Remaining Challenges

    Science.gov (United States)

    Nan, Yuchen; Wu, Chunyan; Zhao, Qin; Sun, Yani; Zhang, Yan-Jin; Zhou, En-Min

    2018-01-01

    Hepatitis E virus (HEV) is a fecal-orally transmitted foodborne viral pathogen that causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the discovery of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. Recently, a subunit HEV vaccine developed for the prevention of human disease was approved in China, but is not yet available to the rest of the world. Meanwhile, notable progress and knowledge has been made and revealed in recent years to better understand HEV biology and infection, including discoveries of quasi-enveloped HEV virions and of a new function of the HEV-ORF3 product. However, the impact of these new findings on the development of a protective vaccine against zoonotic HEV infection requires further discussion. In this review, hallmark characteristics of HEV zoonosis, the history of HEV vaccine development, and recent discoveries in HEV virology are described. Moreover, special attention is focused on quasi-enveloped HEV virions and the potential role of the HEV-ORF3 product as antibody-neutralization target on the surface of quasi-enveloped HEV virions to provide new insights for the future development of improved vaccines against zoonotic HEV infection. PMID:29520257

  9. Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition.

    Science.gov (United States)

    Mukherjee, Pinku; Basu, Gargi D; Tinder, Teresa L; Subramani, Durai B; Bradley, Judy M; Arefayene, Million; Skaar, Todd; De Petris, Giovanni

    2009-01-01

    With a 5-year survival rate of <5%, pancreatic cancer is one of the most rapidly fatal malignancies. Current protocols for the treatment of pancreas cancer are not as effective as we desire. In this study, we show that a novel Mucin-1 (MUC1)-based vaccine in combination with a cyclooxygenase-2 inhibitor (celecoxib), and low-dose chemotherapy (gemcitabine) was effective in preventing the progression of preneoplastic intraepithelial lesions to invasive pancreatic ductal adenocarcinomas. The study was conducted in an appropriate triple transgenic model of spontaneous pancreatic cancer induced by the KRAS(G12D) mutation and that expresses human MUC1 as a self molecule. The combination treatment elicited robust antitumor cellular and humoral immune responses and was associated with increased apoptosis in the tumor. The mechanism for the increased immune response was attributed to the down-regulation of circulating prostaglandin E(2) and indoleamine 2, 3,-dioxygenase enzymatic activity, as well as decreased levels of T regulatory and myeloid suppressor cells within the tumor microenvironment. The preclinical data provide the rationale to design clinical trials with a combination of MUC1-based vaccine, celecoxib, and gemcitabine for the treatment of pancreatic cancer.

  10. Experimental animal modelling for TB vaccine development

    Directory of Open Access Journals (Sweden)

    Pere-Joan Cardona

    2017-03-01

    Full Text Available Research for a novel vaccine to prevent tuberculosis is an urgent medical need. The current vaccine, BCG, has demonstrated a non-homogenous efficacy in humans, but still is the gold standard to be improved upon. In general, the main indicator for testing the potency of new candidates in animal models is the reduction of the bacillary load in the lungs at the acute phase of the infection. Usually, this reduction is similar to that induced by BCG, although in some cases a weak but significant improvement can be detected, but none of candidates are able to prevent establishment of infection. The main characteristics of several laboratory animals are reviewed, reflecting that none are able to simulate the whole characteristics of human tuberculosis. As, so far, no surrogate of protection has been found, it is important to test new candidates in several models in order to generate convincing evidence of efficacy that might be better than that of BCG in humans. It is also important to investigate the use of “in silico” and “ex vivo” models to better understand experimental data and also to try to replace, or at least reduce and refine experimental models in animals.

  11. Recent progress in fusion gyrotron development

    International Nuclear Information System (INIS)

    Shively, J.F.; Stone, D.S.

    1981-01-01

    The gyrotron, a microwave tube capable of producing high power output at millimeter wavelengths, has recently found applications for electron cyclotron resonance heating of plasmas in controlled thermonuclear fusion reactor experiments. This paper describes work in progress to develop a gyrotron oscillator to deliver 200 kW CW at 60 GHz (/lambda/sub //. 5 mm). A pulsed oscillator is described which produced over 200 kw peak power. A CW oscillator is under construction. The latest experimental results are presented

  12. Development of replication-deficient adenovirus malaria vaccines.

    Science.gov (United States)

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  13. Impact of an HPV6/11/16/18 L1 virus-like particle vaccine on progression to cervical intraepithelial neoplasia in seropositive women with HPV16/18 infection

    DEFF Research Database (Denmark)

    Haupt, Richard M; Wheeler, Cosette M; Brown, Darron R

    2011-01-01

    The impact of a human papillomavirus (HPV) vaccine on development of cervical intraepithelial neoplasia grade 2-3 or adenocarcinoma in situ (CIN2-3/AIS) in women with ongoing HPV16 or 18 infections prevaccination is reported. Seventeen thousand six-hundred and twenty-two women aged 16-26 were.......9). These data suggest HPV vaccination neither reduces nor enhances progression to HPV16/18-related high grade cervical lesions, and cervical cytology screening and corresponding management should continue as per local recommendations. Ultimately, population-based surveillance of vaccinated individuals beyond...

  14. Botulinum neurotoxin vaccines: Past history and recent developments.

    Science.gov (United States)

    Rusnak, Janice M; Smith, Leonard A

    2009-12-01

    Botulinum toxin may cause a neuroparalytic illness that may result in respiratory failure and require prolonged mechanical ventilation. As medical resources needed for supportive care of botulism in a bioterrorist event may quickly overwhelm the local healthcare systems, biodefense research efforts have been directed towards the development of a vaccine to prevent botulism. While human botulism has been caused only by toxin serotypes A, B, and E (rarely serotype F), all seven known immunologically distinct toxin serotypes (A - G) may potentially cause intoxication in humans from a bioterrorist event. A pentavalent (ABCDE) botulinum toxoid (PBT) has been administered as an investigation new drug (IND) to at-risk individuals for nearly 50 years. Due to declining immunogenicity of the PBT, research efforts have been directed at development of both improved (less local reactogenicity) botulinum toxoids and recombinant vaccines as potential vaccine candidates to replace the PBT.

  15. Progress of dendritic cell-based cancer vaccines for patients with hematological malignancies.

    Science.gov (United States)

    Ni, Ming; Hoffmann, Jean-Marc; Schmitt, Michael; Schmitt, Anita

    2016-09-01

    Dendritic cells (DCs) are the most professional antigen-presenting cells eliciting cellular and humoral immune responses against cancer cells by expressing these antigens on MHC class I/II complexes to T cells. Therefore, they have been employed in many clinical trials as cancer vaccines for patients with cancer. This review focuses on the use of DCs in leukemia patients expressing leukemia-associated antigens (LAAs). The contribution of both stimulating vs. tolerogenic DCs as well as of other factors to the milieu of anti-leukemia immune responses are discussed. Several DC vaccination strategies like leukemia lysate, proteins and peptides have been developed. Next generation DC vaccines comprise transduction of DCs with retroviral vectors encoding for LAAs, cytokines and costimulatory molecules as well as transfection of DCs with naked RNA encoding for LAAs. Published as well as ongoing clinical trials are reported and critically reviewed. Future results will demonstrate whether next-generation DCs are really superior to conventional pulsing with peptide, protein or tumor lysate. However, currently available methods based on nucleic acid transfection/transduction are tempting in terms of material production costs and time for clinical application according to good manufacturing practice (GMP).

  16. AECL's progress in DUPIC fuel development

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Ryz, M.A.; Lee, J.W.

    1997-01-01

    Previous papers described progress in choosing a fabrication route for the DUPIC (Direct Use of Spent PWR Fuel in CANDU) fuel cycle [1], details of the OREOX (Oxidation Reduction of Oxide fuel) process, and preliminary results of out-cell and small-scale in-cell experiments [2]. AECL's project to develop the DUPIC fuel cycle has now progressed to the stage of fabricating DUPIC fuel elements for irradiation testing in a research reactor. Because of the high radiation fields around the spent PWR fuel, all work is being done in hot cells. The equipment used for fabrication of the DUPIC fuel elements is described in this paper. The commissioning, in-cell installation and current status of the fabrication process are also described and plans for the completion of this phase of the DUPIC project are outlined. The goal of this phase of the project is demonstration of the technical feasibility of the DUPIC fuel cycle. (author)

  17. Recent advances in canine leptospirosis: focus on vaccine development

    Directory of Open Access Journals (Sweden)

    Klaasen HLBM

    2015-06-01

    Full Text Available Henricus LBM (Eric Klaasen,1 Ben Adler2 1Global Companion Animals Research and Development, Merck Sharp and Dohme Animal Health, Boxmeer, the Netherlands; 2Department of Microbiology, Monash University, Clayton, VIC, Australia Abstract: Leptospirosis is a global infection of humans and animals caused by pathogenic Leptospira spp. Leptospirosis is a major zoonosis, with infection acquired from wild and domestic animals. It is also a significant cause of morbidity, mortality, and economic loss in production and companion animals. Leptospirosis in dogs is prevalent worldwide and as well as a cause of canine disease, it presents a zoonotic risk to human contacts. Canine leptospirosis does not differ greatly from the syndromes seen in other animal species, with hepatic, renal, and pulmonary involvement being the main manifestations. While the pathogenesis of disease is well documented at the whole animal level, the cellular and molecular basis remains obscure. Killed, whole-cell bacterin vaccines are licensed worldwide and have not changed greatly over the past several decades. Vaccine-induced immunity is restricted to serologically related serovars and is generally short-lived, necessitating annual revaccination. The appearance of new serovars as causes of canine leptospirosis requires constant epidemiological surveillance and tailoring of vaccines to cover emerging serovars. At the present time, there is no realistic prospect of alternative, non-bacterin vaccines in the foreseeable future. Keywords: canine leptospirosis, vaccines, diagnosis, epidemiology, pathogenesis

  18. Development of an Integrated Immunology and Vaccines Pharmacy Elective

    Directory of Open Access Journals (Sweden)

    Stephanie F James

    2017-07-01

    Full Text Available Objective: To describe an elective course on immunology and vaccines for pharmacy students that extends beyond basic immunization training. Design: A three credit-hour Immunology and Vaccines elective was developed and taught by an immunologist, policy research expert, and pharmacist. The learning objectives of the course included: understanding how the immune system works with vaccines to provide protection against infectious diseases, the history and policies involved in immunization practice, and how to counsel the vaccine hesitant individual. Classes were conducted using a variety of formats; group projects, lectures, films, literature reviews and guest speakers. An end-of-course evaluation was used to gauge student opinion on course value. Students were evaluated by four exams and a final group presentation. Conclusion: Students indicated that this course was valuable to their future pharmacy careers and provided insight into why people choose not to vaccinate and how they could use the course insight to properly educate such individuals. Conflict of Interest We declare no conflicts of interest or financial interests that the authors or members of their immediate families have in any product or service discussed in the manuscript, including grants (pending or received, employment, gifts, stock holdings or options, honoraria, consultancies, expert testimony, patents and royalties   Type: Note

  19. Virulence determinants of Moraxella catarrhalis: distribution and considerations for vaccine development.

    Science.gov (United States)

    Blakeway, Luke V; Tan, Aimee; Peak, Ian R A; Seib, Kate L

    2017-10-01

    Moraxella catarrhalis is a human-restricted opportunistic bacterial pathogen of the respiratory mucosa. It frequently colonizes the nasopharynx asymptomatically, but is also an important causative agent of otitis media (OM) in children, and plays a significant role in acute exacerbations of chronic obstructive pulmonary disease (COPD) in adults. As the current treatment options for M. catarrhalis infection in OM and exacerbations of COPD are often ineffective, the development of an efficacious vaccine is warranted. However, no vaccine candidates for M. catarrhalis have progressed to clinical trials, and information regarding the distribution of M. catarrhalis virulence factors and vaccine candidates is inconsistent in the literature. It is largely unknown if virulence is associated with particular strains or subpopulations of M. catarrhalis, or if differences in clinical manifestation can be attributed to the heterogeneous expression of specific M. catarrhalis virulence factors in the circulating population. Further investigation of the distribution of M. catarrhalis virulence factors in the context of carriage and disease is required so that vaccine development may be targeted at relevant antigens that are conserved among disease-causing strains. The challenge of determining which of the proposed M. catarrhalis virulence factors are relevant to human disease is amplified by the lack of a standardized M. catarrhalis typing system to facilitate direct comparisons of worldwide isolates. Here we summarize and evaluate proposed relationships between M. catarrhalis subpopulations and specific virulence factors in the context of colonization and disease, as well as the current methods used to infer these associations.

  20. Recent advances in vaccine development against Ebola threat as bioweapon.

    Science.gov (United States)

    Gera, Prachi; Gupta, Ankit; Verma, Priyanka; Singh, Joginder; Gupta, Jeena

    2017-09-01

    With the increasing rate of Ebola virus appearance, with multiple natural outbreaks of Ebola hemorrhagic fever, it is worthy of consideration as bioweapon by anti-national groups. Further, with the non-availability of the vaccines against Ebola virus, concerns about the public health emerge. In this regard, this review summarizes the structure, genetics and potential of Ebola virus to be used as a bioweapon. We highlight the recent advances in the treatment strategies and vaccine development against Ebola virus. The understanding of these aspects might lead to effective treatment practices which can be applied during the future outbreaks of Ebola.

  1. Progress in FMIT test assembly development

    International Nuclear Information System (INIS)

    Opperman, E.K.; Vogel, M.A.; Shen, E.J.; Trego, A.L.

    1983-08-01

    Research and development supporting the completed design of the Fusion Materials Irradiation Test (FMIT) Facility is continuing at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington. The FMIT, a deuteron accelerator based (d + Li) neutron source, will produce an intense flux of high energy neutrons for use in radiation damage studies of fusion reactor materials. The most intense flux magnitude of greater than 10 15 n/cm 2 -s is located close to the neutron producing lithium target and is distributed within a volume about the size of an American football. The conceptual design and development of FMIT experiments called Test Assemblies has progressed over the past five years in parallel with the design of the FMIT. The paper will describe the recent accomplishments made in developing test assemblies appropriate for use in the limited volume close to the FMIT target where high neutron flux and heating rates and the associated spacial gradients significantly impact design considerations

  2. Animal models for dengue vaccine development and testing.

    Science.gov (United States)

    Na, Woonsung; Yeom, Minjoo; Choi, Il-Kyu; Yook, Heejun; Song, Daesub

    2017-07-01

    Dengue fever is a tropical endemic disease; however, because of climate change, it may become a problem in South Korea in the near future. Research on vaccines for dengue fever and outbreak preparedness are currently insufficient. In addition, because there are no appropriate animal models, controversial results from vaccine efficacy assessments and clinical trials have been reported. Therefore, to study the mechanism of dengue fever and test the immunogenicity of vaccines, an appropriate animal model is urgently needed. In addition to mouse models, more suitable models using animals that can be humanized will need to be constructed. In this report, we look at the current status of model animal construction and discuss which models require further development.

  3. [VACCINES].

    Science.gov (United States)

    Bellver Capella, Vincente

    2015-10-01

    Vaccines are an extraordinary instrument of immunization of the population against infectious diseases. Around them there are many ethical issues. One of the most debated is what to do with certain groups opposition to vaccination of their children. States have managed in different ways the conflict between the duty of vaccination and the refusal to use vaccines: some impose the vaccination and others simply promote it. In this article we deal with which of these two approaches is the most suitable from an ethical and legal point of view. We stand up for the second option, which is the current one in Spain, and we propose some measures which should be kept in mind to improve immunization programs.

  4. The Feasibility of Gamma Irradiation for Developing Malaria Vaccine

    International Nuclear Information System (INIS)

    Syaifudin, M.; Tetriana, D.; Darlina; Nurhayati, S.

    2011-01-01

    Malaria, a plasmodial disease, causes more than one million deaths per year and has a significant public health impact. Improved access to prompt treatment with effective antimalarial drugs need to be conducted for prevention of infection in high risk groups. However, the parasite as causal agent has exhibited a potential danger of wide-spread resistances. This warning has directed attention to the study of alternative methods of protection against the disease, among them is to do the immunization. A deeper understanding of the nature and regulation of protective immune mechanisms against this parasite will facilitate the development of much needed vaccines. Developing a malaria vaccine remains an enormous scientific, technical, and financial challenge. Currently a vaccine is not fully available. Among the practical applications of radiobiological techniques that may be of considerable interest for public health is the use of ionizing radiation in the preparation of vaccines. Convincing data were reported that sporozoites of Plasmodium berghei irradiated with X- or gamma-rays, provide an antigenic stimulus effective to induce a protective immune response in mice and rats against subsequent sporozoite infection. Irradiated parasites are better immunogens than killed ones and although non-infective they are still metabolically active, as shown by continued protein and nucleic acid synthesis. There is a substantial number of data from human studies demonstrating that sporozoites attenuated by radiation are potent inducer of protective immunity and that they are safe and do not give rise to the asexual erythrocytic infections that cause malaria. This vaccine is relatively inexpensive to produce, easy to store, and transportable without refrigeration. A long-term effort and commitment to providing resources must be maintained and increased to achieve the goal of a malaria vaccine candidate where ionizing radiation as a tool to prepare is seemingly feasible. (author)

  5. Live bacterial delivery systems for development of mucosal vaccines

    NARCIS (Netherlands)

    Thole, J.E.R.; Dalen, P.J. van; Havenith, C.E.G.; Pouwels, P.H.; Seegers, J.F.M.L.; Tielen, F.D.; Zee, M.D. van der; Zegers, N.D.; Shaw, M.

    2000-01-01

    By expression of foreign antigens in attenuated strains derived from bacterial pathogens and in non-pathogenic commensal bacteria, recombinant vaccines are being developed that aim to stimulate mucosal immunity. Recent advances in the pathogenesis and molecular biology of these bacteria have allowed

  6. Viral Vectors for Use in the Development of Biodefense Vaccines

    National Research Council Canada - National Science Library

    Lee, John S; Hadjipanayis, Angela G; Parker, Michael D

    2005-01-01

    ... agents of bioterrorism or biowarfare. The use of viruses, for example adenovirus, vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine-vectors has enabled researchers to develop effective means for countering the threat of bioterrorism and biowarfare. An overview of the different viral vectors and the threats they counter will be discussed.

  7. Nanostructures for the development of vaccines against avian ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    State-of-the-art technologies developed in two laboratories will be combined: nanotechnology and a new adjuvant. These approaches will allow simple production of nanoparticles that do not require any special containment, as opposed to traditional vaccines produced in embryonated eggs. This project is a collaboration ...

  8. Development of novel vaccines using DNA shuffling and screening strategies.

    Science.gov (United States)

    Locher, Christopher P; Soong, Nay Wei; Whalen, Robert G; Punnonen, Juha

    2004-02-01

    DNA shuffling and screening technologies recombine and evolve genes in vitro to rapidly obtain molecules with improved biological activity and fitness. In this way, genes from related strains are bred like plants or livestock and their successive progeny are selected. These technologies have also been called molecular breeding-directed molecular evolution. Recent developments in bioinformatics-assisted computer programs have facilitated the design, synthesis and analysis of DNA shuffled libraries of chimeric molecules. New applications in vaccine development are among the key features of DNA shuffling and screening technologies because genes from several strains or antigenic variants of pathogens can be recombined to create novel molecules capable of inducing immune responses that protect against infections by multiple strains of pathogens. In addition, molecules such as co-stimulatory molecules and cytokines have been evolved to have improved T-cell proliferation and cytokine production compared with the wild-type human molecules. These molecules can be used to immunomodulate vaccine responsiveness and have multiple applications in infectious diseases, cancer, allergy and autoimmunity. Moreover, DNA shuffling and screening technologies can facilitate process development of vaccine manufacturing through increased expression of recombinant polypeptides and viruses. Therefore, DNA shuffling and screening technologies can overcome some of the challenges that vaccine development currently faces.

  9. [Overview of the Ebola vaccines in pre-clinical and clinical development].

    Science.gov (United States)

    Buchy, P

    2016-10-01

    The Ebola epidemic that occurred in West Africa between 2013-2016 significantly accelerated the research and development of Ebola vaccines. Few dozens of clinical trials have been recently conducted leading to opportunities to test several new vaccine candidates. Other vaccines are still in early development phases (table 1). This paper provides an overview of the new developments in that area.

  10. Developing whole mycobacteria cell vaccines for tuberculosis: Workshop proceedings, Max Planck Institute for Infection Biology, Berlin, Germany, July 9, 2014.

    Science.gov (United States)

    2015-06-12

    On July 9, 2014, Aeras and the Max Planck Institute for Infection Biology convened a workshop entitled "Whole Mycobacteria Cell Vaccines for Tuberculosis" at the Max Planck Institute for Infection Biology on the grounds of the Charité Hospital in Berlin, Germany, close to the laboratory where, in 1882, Robert Koch first identified Mycobacterium tuberculosis (Mtb) as the pathogen responsible for tuberculosis (TB). The purpose of the meeting was to discuss progress in the development of TB vaccines based on whole mycobacteria cells. Live whole cell TB vaccines discussed at this meeting were derived from Mtb itself, from Bacille Calmette-Guérin (BCG), the only licensed vaccine against TB, which was genetically modified to reduce pathogenicity and increase immunogenicity, or from commensal non-tuberculous mycobacteria. Inactivated whole cell TB and non-tuberculous mycobacterial vaccines, intended as immunotherapy or as safer immunization alternatives for HIV+ individuals, also were discussed. Workshop participants agreed that TB vaccine development is significantly hampered by imperfect animal models, unknown immune correlates of protection and the absence of a human challenge model. Although a more effective TB vaccine is needed to replace or enhance the limited effectiveness of BCG in all age groups, members of the workshop concurred that an effective vaccine would have the greatest impact on TB control when administered to adolescents and adults, and that use of whole mycobacteria cells as TB vaccine candidates merits greater support, particularly given the limited understanding of the specific Mtb antigens necessary to generate an immune response capable of preventing Mtb infection and/or disease. Copyright © 2015. Published by Elsevier Ltd.. All rights reserved.

  11. Apicomplexan profilins in vaccine development applied to bovine neosporosis.

    Science.gov (United States)

    Mansilla, Florencia C; Capozzo, Alejandra V

    2017-12-01

    Neospora caninum, an intracellular protozoan parasite from the phylum Apicomplexa, is the etiologic agent of neosporosis, a disease considered as a major cause of reproductive loss in cattle and neuromuscular disease in dogs. Bovine neosporosis has a great economic impact in both meat and dairy industries, related to abortion, premature culling and reduced milk yields. Although many efforts have been made to restrain bovine neosporosis, there are still no efficacious control methods. Many vaccine-development studies focused in the apicomplexan proteins involved in the adhesion and invasion of the host cell. Among these proteins, profilins have recently emerged as potential vaccine antigens or even adjuvant candidates for several diseases caused by apicomplexan parasites. Profilins bind Toll-like receptors 11 and 12 initiating MyD88 signaling, that triggers IL-12 and IFN-γ production, which may promote protection against infection. Here we summarized the state-of-the-art of novel vaccine development based on apicomplexan profilins applied as antigens or adjuvants, and delved into recent advances on N. caninum vaccines using profilin in the mouse model and in cattle. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Ebola virus: immune mechanisms of protection and vaccine development.

    Science.gov (United States)

    Nyamathi, Adeline M; Fahey, John L; Sands, Heather; Casillas, Adrian M

    2003-04-01

    Vaccination is one of our most powerful antiviral strategies. Despite the emergence of deadly viruses such as Ebola virus, vaccination efforts have focused mainly on childhood communicable diseases. Although Ebola virus was once believed to be limited to isolated outbreaks in distant lands, forces of globalization potentiate outbreaks anywhere in the world through incidental transmission. Moreover, since this virus has already been transformed into weapon-grade material, the potential exists for it to be used as a biological weapon with catastrophic consequences for any population vulnerable to attack. Ebola hemorrhagic fever (EHF) is a syndrome that can rapidly lead to death within days of symptom onset. The disease directly affects the immune system and vascular bed, with correspondingly high mortality rates. Patients with severe disease produce dangerously high levels of inflammatory cytokines, which destroy normal tissue and microcirculation, leading to profound capillary leakage, renal failure, and disseminated intravascular coagulation. Vaccine development has been fraught with obstacles, primarily of a biosafety nature. Case reports of acutely ill patients with EHF showing improvement with the transfusion of convalescent plasma are at odds with animal studies demonstrating further viral replication with the same treatment. Using mRNA extracted from bone marrow of Ebola survivors, human monoclonal antibodies against Ebola virus surface protein have been experimentally produced and now raise the hope for the development of a safe vaccine.

  13. Development, Production, and Postmarketing Surveillance of Hepatitis A Vaccines in China

    Science.gov (United States)

    Cui, Fuqiang; Liang, Xiaofeng; Wang, Fuzhen; Zheng, Hui; Hutin, Yvan J; Yang, Weizhong

    2014-01-01

    China has long experience using live attenuated and inactivated vaccines against hepatitis A virus (HAV) infection. We summarize this experience and provide recent data on adverse events after immunization (AEFIs) with hepatitis A vaccines in China. We reviewed the published literature (in Chinese and English) and the published Chinese regulatory documents on hepatitis A vaccine development, production, and postmarketing surveillance of AEFI. We described the safety, immunogenicity, and efficacy of hepatitis A vaccines and horizontal transmission of live HAV vaccine in China. In clinical trials, live HAV vaccine was associated with fever (0.4%–5% of vaccinees), rash (0%–1.1%), and elevated alanine aminotransferase (0.015%). Inactivated HAV vaccine was associated with fever (1%–8%), but no serious AEFIs were reported. Live HAV vaccine had seroconversion rates of 83% to 91%, while inactivated HAV vaccine had seroconversion rates of 95% to 100%. Community trials showed efficacy rates of 90% to 95% for live HAV and 95% to 100% for inactivated HAV vaccine. Postmarketing surveillance showed that HAV vaccination resulted in an AEFI incidence rate of 34 per million vaccinees, which accounted for 0.7% of adverse events reported to the China AEFI monitoring system. There was no difference in AEFI rates between live and inactivated HAV vaccines. Live and inactivated HAV vaccines manufactured in China were immunogenic, effective, and safe. Live HAV vaccine had substantial horizontal transmission due to vaccine virus shedding; thus, further monitoring of the safety of virus shedding is warranted. PMID:24681843

  14. Animal Models for Influenza Viruses: Implications for Universal Vaccine Development

    Directory of Open Access Journals (Sweden)

    Irina Margine

    2014-10-01

    Full Text Available Influenza virus infections are a significant cause of morbidity and mortality in the human population. Depending on the virulence of the influenza virus strain, as well as the immunological status of the infected individual, the severity of the respiratory disease may range from sub-clinical or mild symptoms to severe pneumonia that can sometimes lead to death. Vaccines remain the primary public health measure in reducing the influenza burden. Though the first influenza vaccine preparation was licensed more than 60 years ago, current research efforts seek to develop novel vaccination strategies with improved immunogenicity, effectiveness, and breadth of protection. Animal models of influenza have been essential in facilitating studies aimed at understanding viral factors that affect pathogenesis and contribute to disease or transmission. Among others, mice, ferrets, pigs, and nonhuman primates have been used to study influenza virus infection in vivo, as well as to do pre-clinical testing of novel vaccine approaches. Here we discuss and compare the unique advantages and limitations of each model.

  15. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases.

    Science.gov (United States)

    Kaslow, David C

    2004-10-01

    Vaccine development requires an amalgamation of disparate disciplines and has unique economic and regulatory drivers. Non-viral gene-based delivery systems, such as formulated plasmid DNA, are new and potentially disruptive technologies capable of providing 'cheaper, simpler, and more convenient-to-use' vaccines. Typically and somewhat ironically, disruptive technologies have poorer product performance, at least in the near-term, compared with the existing conventional technologies. Because successful product development requires that the product's performance must meet or exceed the efficacy threshold for a desired application, the appropriate selection of the initial product applications for a disruptive technology is critical for its successful evolution. In this regard, the near-term successes of gene-based vaccines will likely be for protection against bacterial toxins and acute viral and bacterial infections. Recent breakthroughs, however, herald increasing rather than languishing performance improvements in the efficacy of gene-based vaccines. Whether gene-based vaccines ultimately succeed in eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria and tuberculosis, for which the conventional vaccine technologies have failed, remains to be determined. A success against any one of the persistent intracellular pathogens would be sufficient proof that gene-based vaccines represent a disruptive technology against which future vaccine technologies will be measured.

  16. The pig as a model for therapeutic human anti-cancer vaccine development, elucidating the T-cell reactivity against IDO and RhoC

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr; Frøsig, Thomas Mørch; Welner, Simon

    is important. Previous development of therapeutic cancer vaccines has largely been based on studies in mice and the majority of these candidate vaccines failed to establish therapeutic responses in subsequent human clinical trials. Since the porcine immunome is more closely related to the human counterpart, we...... here introduce pigs as a superior large animal model for human cancer vaccine development via the use of our unique technology for swine leukocyte antigen (SLA) production. IDO and RhoC, both known to be important in human cancer development and progression, were used as vaccine targets. Pigs were......, and peptide-SLA complex stability measurements revealed 89 stable (t½ ≥ 0.5 hour) complexes. Vaccine-induced peptide-specific CTL responses were monitored using IFN-γ release as a read out. We found responses to IDO- and RhoC-derived peptides across all groups; surprisingly non-stably binding peptides also...

  17. [Landscape classification: research progress and development trend].

    Science.gov (United States)

    Liang, Fa-Chao; Liu, Li-Ming

    2011-06-01

    Landscape classification is the basis of the researches on landscape structure, process, and function, and also, the prerequisite for landscape evaluation, planning, protection, and management, directly affecting the precision and practicability of landscape research. This paper reviewed the research progress on the landscape classification system, theory, and methodology, and summarized the key problems and deficiencies of current researches. Some major landscape classification systems, e. g. , LANMAP and MUFIC, were introduced and discussed. It was suggested that a qualitative and quantitative comprehensive classification based on the ideology of functional structure shape and on the integral consideration of landscape classification utility, landscape function, landscape structure, physiogeographical factors, and human disturbance intensity should be the major research directions in the future. The integration of mapping, 3S technology, quantitative mathematics modeling, computer artificial intelligence, and professional knowledge to enhance the precision of landscape classification would be the key issues and the development trend in the researches of landscape classification.

  18. 76 FR 49776 - The Development and Evaluation of Next-Generation Smallpox Vaccines; Public Workshop

    Science.gov (United States)

    2011-08-11

    ...] The Development and Evaluation of Next-Generation Smallpox Vaccines; Public Workshop AGENCY: Food and... Evaluation of Next-Generation Smallpox Vaccines.'' The purpose of the public workshop is to identify and discuss the key issues related to the development and evaluation of next-generation smallpox vaccines. The...

  19. Vaccine development: From concept to early clinical testing.

    Science.gov (United States)

    Cunningham, Anthony L; Garçon, Nathalie; Leo, Oberdan; Friedland, Leonard R; Strugnell, Richard; Laupèze, Béatrice; Doherty, Mark; Stern, Peter

    2016-12-20

    In the 21st century, an array of microbiological and molecular allow antigens for new vaccines to be specifically identified, designed, produced and delivered with the aim of optimising the induction of a protective immune response against a well-defined immunogen. New knowledge about the functioning of the immune system and host pathogen interactions has stimulated the rational design of vaccines. The design toolbox includes vaccines made from whole pathogens, protein subunits, polysaccharides, pathogen-like particles, use of viral/bacterial vectors, plus adjuvants and conjugation technology to increase and broaden the immune response. Processes such as recombinant DNA technology can simplify the complexity of manufacturing and facilitate consistent production of large quantities of antigen. Any new vaccine development is greatly enhanced by, and requires integration of information concerning: 1. Pathogen life-cycle & epidemiology. Knowledge of pathogen structure, route of entry, interaction with cellular receptors, subsequent replication sites and disease-causing mechanisms are all important to identify antigens suitable for disease prevention. The demographics of infection, specific risk groups and age-specific infection rates determine which population to immunise, and at what age. 2. Immune control & escape. Interactions between the host and pathogen are explored, with determination of the relative importance of antibodies, T-cells of different types and innate immunity, immune escape strategies during infection, and possible immune correlates of protection. This information guides identification and selection of antigen and the specific immune response required for protection. 3. Antigen selection & vaccine formulation. The selected antigen is formulated to remain suitably immunogenic and stable over time, induce an immune response that is likely to be protective, plus be amenable to eventual scale-up to commercial production. 4. Vaccine preclinical

  20. Progress in quantitative GPR development at CNDE

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, David; Margetan, F. J.; Chiou, C.-P.; Roberts, Ron; Wendt, Scott [Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, Ames, IA 50011-3042 (United States)

    2014-02-18

    Ground penetrating radar (GPR) uses electromagnetic (EM) radiation pulses to locate and map embedded objects. Commercial GPR instruments are generally geared toward producing images showing the location and extent of buried objects, and often do not make full use of available absolute amplitude information. At the Center for Nondestructive Evaluation (CNDE) at Iowa State University efforts are underway to develop a more quantitative approach to GPR inspections in which absolute amplitudes and spectra of measured signals play a key role. Guided by analogous work in ultrasonic inspection, there are three main thrusts to the effort. These focus, respectively, on the development of tools for: (1) analyzing raw GPR data; (2) measuring the EM properties of soils and other embedding media; and (3) simulating GPR inspections. This paper reviews progress in each category. The ultimate goal of the work is to develop model-based simulation tools that can be used assess the usefulness of GPR for a given inspection scenario, to optimize inspection choices, and to determine inspection reliability.

  1. Progress in quantitative GPR development at CNDE

    Science.gov (United States)

    Eisenmann, David; Margetan, F. J.; Chiou, C.-P.; Roberts, Ron; Wendt, Scott

    2014-02-01

    Ground penetrating radar (GPR) uses electromagnetic (EM) radiation pulses to locate and map embedded objects. Commercial GPR instruments are generally geared toward producing images showing the location and extent of buried objects, and often do not make full use of available absolute amplitude information. At the Center for Nondestructive Evaluation (CNDE) at Iowa State University efforts are underway to develop a more quantitative approach to GPR inspections in which absolute amplitudes and spectra of measured signals play a key role. Guided by analogous work in ultrasonic inspection, there are three main thrusts to the effort. These focus, respectively, on the development of tools for: (1) analyzing raw GPR data; (2) measuring the EM properties of soils and other embedding media; and (3) simulating GPR inspections. This paper reviews progress in each category. The ultimate goal of the work is to develop model-based simulation tools that can be used assess the usefulness of GPR for a given inspection scenario, to optimize inspection choices, and to determine inspection reliability.

  2. Progress in quantitative GPR development at CNDE

    International Nuclear Information System (INIS)

    Eisenmann, David; Margetan, F. J.; Chiou, C.-P.; Roberts, Ron; Wendt, Scott

    2014-01-01

    Ground penetrating radar (GPR) uses electromagnetic (EM) radiation pulses to locate and map embedded objects. Commercial GPR instruments are generally geared toward producing images showing the location and extent of buried objects, and often do not make full use of available absolute amplitude information. At the Center for Nondestructive Evaluation (CNDE) at Iowa State University efforts are underway to develop a more quantitative approach to GPR inspections in which absolute amplitudes and spectra of measured signals play a key role. Guided by analogous work in ultrasonic inspection, there are three main thrusts to the effort. These focus, respectively, on the development of tools for: (1) analyzing raw GPR data; (2) measuring the EM properties of soils and other embedding media; and (3) simulating GPR inspections. This paper reviews progress in each category. The ultimate goal of the work is to develop model-based simulation tools that can be used assess the usefulness of GPR for a given inspection scenario, to optimize inspection choices, and to determine inspection reliability

  3. Business models and opportunities for cancer vaccine developers.

    Science.gov (United States)

    Kudrin, Alex

    2012-10-01

    Despite of growing oncology pipeline, cancer vaccines contribute only to a minor share of total oncology-attributed revenues. This is mainly because of a limited number of approved products and limited sales from products approved under compassionate or via early access entry in smaller and less developed markets. However revenue contribution from these products is extremely limited and it remains to be established whether developers are breaking even or achieving profitability with existing sales. Cancer vaccine field is well recognized for high development costs and risks, low historical rates of investment return and high probability of failures arising in ventures, partnerships and alliances. The cost of reimbursement for new oncology agents is not universally acceptable to payers limiting the potential for a global expansion, market access and reducing probability of commercial success. In addition, the innovation in cancer immunotherapy is currently focused in small and mid-size biotech companies and academic institutions struggling for investment. Existing R&D innovation models are deemed unsustainable in current "value-for-money" oriented healthcare environment. New business models should be much more open to collaborative, networked and federated styles, which could help to outreach global, markets and increase cost-efficiencies across an entire value chain. Lessons learned from some developing countries and especially from South Korea illustrate that further growth of cancer vaccine industry will depends not only on new business models but also will heavily rely on regional support and initiatives from different bodies, such as governments, payers and regulatory bodies.

  4. Comparative Pathogenesis and Systems Biology for Biodefense Virus Vaccine Development

    Directory of Open Access Journals (Sweden)

    Gavin C. Bowick

    2010-01-01

    Full Text Available Developing vaccines to biothreat agents presents a number of challenges for discovery, preclinical development, and licensure. The need for high containment to work with live agents limits the amount and types of research that can be done using complete pathogens, and small markets reduce potential returns for industry. However, a number of tools, from comparative pathogenesis of viral strains at the molecular level to novel computational approaches, are being used to understand the basis of viral attenuation and characterize protective immune responses. As the amount of basic molecular knowledge grows, we will be able to take advantage of these tools not only to rationally attenuate virus strains for candidate vaccines, but also to assess immunogenicity and safety in silico. This review discusses how a basic understanding of pathogenesis, allied with systems biology and machine learning methods, can impact biodefense vaccinology.

  5. INTERNATIONAL EXPERIENCE OF ADMINISTRATION OF PNEUMOCOCCAL CONJUGATED VACCINES: PROBLEMS, PROGRESS, PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    M.V. Fedoseenko

    2009-01-01

    Full Text Available This article presents the review of results of International conference on pneumococcal conjugated vaccines. Main results of international experience in the field of control of pneumococcal infection spreading are analyzed. Authors present modern data of clinical and economic effectiveness and safety of pneumococcal conjugated vaccine RCV-7, and describe experience of administration of vaccines of next generation – PCV-10 and PCV-13.Key words: children, pneumococcal infections, prophylaxis, vaccines.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2009;8(1:130-134

  6. Intestinal Pathogenic Escherichia coli: Insights for Vaccine Development

    Directory of Open Access Journals (Sweden)

    Maricarmen Rojas-Lopez

    2018-03-01

    Full Text Available Diarrheal diseases are one of the major causes of mortality among children under five years old and intestinal pathogenic Escherichia coli (InPEC plays a role as one of the large causative groups of these infections worldwide. InPECs contribute significantly to the burden of intestinal diseases, which are a critical issue in low- and middle-income countries (Asia, Africa and Latin America. Intestinal pathotypes such as enteropathogenic E. coli (EPEC and enterotoxigenic E. coli (ETEC are mainly endemic in developing countries, while ETEC strains are the major cause of diarrhea in travelers to these countries. On the other hand, enterohemorrhagic E. coli (EHEC are the cause of large outbreaks around the world, mainly affecting developed countries and responsible for not only diarrheal disease but also severe clinical complications like hemorrhagic colitis and hemolytic uremic syndrome (HUS. Overall, the emergence of antibiotic resistant strains, the annual cost increase in the health care system, the high incidence of traveler diarrhea and the increased number of HUS episodes have raised the need for effective preventive treatments. Although the use of antibiotics is still important in treating such infections, non-antibiotic strategies are either a crucial option to limit the increase in antibiotic resistant strains or absolutely necessary for diseases such as those caused by EHEC infections, for which antibiotic therapies are not recommended. Among non-antibiotic therapies, vaccine development is a strategy of choice but, to date, there is no effective licensed vaccine against InPEC infections. For several years, there has been a sustained effort to identify efficacious vaccine candidates able to reduce the burden of diarrheal disease. The aim of this review is to summarize recent milestones and insights in vaccine development against InPECs.

  7. Viral Vectors for Use in the Development of Biodefense Vaccines

    Science.gov (United States)

    2005-06-17

    Shigella species Dengue Salmonella Filoviruses Listeria monocytogenes Ebola Campylobacter jejuni Marburg Yersinia entercolitica Viruses (Caliciviruses...Orthopoxvirus genus containing the monkey - J.S. Lee et al. / Advanced Drug Delivery Reviews 57 (2005) 1293–1314 1297 Approved for public release. Distribution...four monkeys vaccinated with V-LSGPC produced antibodies specific for LSV. After challenge, the four monkeys developed a febrile illness with low

  8. Controlled human infection models for vaccine development: Zika virus debate.

    Science.gov (United States)

    Gopichandran, Vijayaprasad

    2018-01-01

    An ethics panel, convened by the National Institute of Health and other research bodies in the USA, disallowed researchers from the Johns Hopkins University and University of Vermont from performing controlled human infection of healthy volunteers to develop a vaccine against Zika virus infection. The members published their ethical analysis and recommendations in February 2017. They have elaborated on the risks posed by human challenge with Zika virus to the volunteers and other uninvolved third parties and have systematically analysed the social value of such a human challenge experiment. They have also posited some mandatory ethical requirements which should be met before allowing the infection of healthy volunteers with the Zika virus. This commentary elaborates on the debate on the ethics of the human challenge model for the development of a Zika virus vaccine and the role of systematic ethical analysis in protecting the interests of research participants. It further analyses the importance of this debate to the development of a Zika vaccine in India.

  9. Intellectual property rights and challenges for development of affordable human papillomavirus, rotavirus and pneumococcal vaccines: Patent landscaping and perspectives of developing country vaccine manufacturers.

    Science.gov (United States)

    Chandrasekharan, Subhashini; Amin, Tahir; Kim, Joyce; Furrer, Eliane; Matterson, Anna-Carin; Schwalbe, Nina; Nguyen, Aurélia

    2015-11-17

    The success of Gavi, the Vaccine Alliance depends on the vaccine markets providing appropriate, affordable vaccines at sufficient and reliable quantities. Gavi's current supplier base for new and underutilized vaccines, such as the human papillomavirus (HPV), rotavirus, and the pneumococcal conjugate vaccine is very small. There is growing concern that following globalization of laws on intellectual property rights (IPRs) through trade agreements, IPRs are impeding new manufacturers from entering the market with competing vaccines. This article examines the extent to which IPRs, specifically patents, can create such obstacles, in particular for developing country vaccine manufacturers (DCVMs). Through building patent landscapes in Brazil, China, and India and interviews with manufacturers and experts in the field, we found intense patenting activity for the HPV and pneumococcal vaccines that could potentially delay the entry of new manufacturers. Increased transparency around patenting of vaccine technologies, stricter patentability criteria suited for local development needs and strengthening of IPRs management capabilities where relevant, may help reduce impediments to market entry for new manufacturers and ensure a competitive supplier base for quality vaccines at sustainably low prices. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations.

    Directory of Open Access Journals (Sweden)

    Bonnie M Slike

    Full Text Available Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb responses to vaccinia waned after 5-10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT of 250 to baseline (30 years with a GMT of 210 (range 112-3234. This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program.

  11. Developing Anti-HER2 Vaccines: Breast Cancer Experience.

    Science.gov (United States)

    Al-Awadhi, Aydah; Murray, James Lee; Ibrahim, Nuhad K

    2018-04-25

    Breast cancer accounts for more than one million new cases annually and is the leading cause of death in women globally. HER2 overexpression induces cellular and humoral immune responses against the HER2 protein and is associated with higher tumour proliferation rates. Trastuzumab-based therapies are effectively and widely used as standard of care in HER2-amplified/overexpressed breast cancer patients; one cited mechanism of action is the induction of passive immunity and antibody-dependent cellular cytotoxicity against malignant breast cancer cells. These findings drove the efforts to generate antigen-specific immunotherapy to trigger the patient's immune system to target HER2-overexpressing tumour cells, which led to the development of various vaccines against the HER2 antigen. This manuscript discusses the various anti-HER2 vaccine formulations and strategies and their potential role in the metastatic and adjuvant settings. This article is protected by copyright. All rights reserved. © 2018 UICC.

  12. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines.

    Science.gov (United States)

    Surenaud, Mathieu; Lacabaratz, Christine; Zurawski, Gérard; Lévy, Yves; Lelièvre, Jean-Daniel

    2017-10-01

    Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.

  13. Intracellular Bacterial Infections: A Challenge for Developing Cellular Mediated Immunity Vaccines for Farmed Fish

    Directory of Open Access Journals (Sweden)

    Hetron Mweemba Munang’andu

    2018-04-01

    Full Text Available Aquaculture is one of the most rapidly expanding farming systems in the world. Its rapid expansion has brought with it several pathogens infecting different fish species. As a result, there has been a corresponding expansion in vaccine development to cope with the increasing number of infectious diseases in aquaculture. The success of vaccine development for bacterial diseases in aquaculture is largely attributed to empirical vaccine designs based on inactivation of whole cell (WCI bacteria vaccines. However, an upcoming challenge in vaccine design is the increase of intracellular bacterial pathogens that are not responsive to WCI vaccines. Intracellular bacterial vaccines evoke cellular mediated immune (CMI responses that “kill” and eliminate infected cells, unlike WCI vaccines that induce humoral immune responses whose protective mechanism is neutralization of extracellular replicating pathogens by antibodies. In this synopsis, I provide an overview of the intracellular bacterial pathogens infecting different fish species in aquaculture, outlining their mechanisms of invasion, replication, and survival intracellularly based on existing data. I also bring into perspective the current state of CMI understanding in fish together with its potential application in vaccine development. Further, I highlight the immunological pitfalls that have derailed our ability to produce protective vaccines against intracellular pathogens for finfish. Overall, the synopsis put forth herein advocates for a shift in vaccine design to include CMI-based vaccines against intracellular pathogens currently adversely affecting the aquaculture industry.

  14. Green revolution vaccines, edible vaccines

    African Journals Online (AJOL)

    Admin

    of development. Food vaccines may also help to suppress autoimmunity disorders such as Type-1. Diabetes. Key words: Edible vaccines, oral vaccines, antigen expression, food vaccines. INTRODUCTION. Vaccination involves the stimulation of the immune system to prepare it for the event of an invasion from a particular ...

  15. Development of marker vaccines for rinderpest virus using reverse genetics technology

    International Nuclear Information System (INIS)

    Parida, S.; Walsh, E.P.; Anderson, J.; Baron, M.D.; Barrett, T.

    2005-01-01

    Rinderpest is an economically devastating disease of cattle (cattle plague), but a live-attenuated vaccine has been very successfully used in a global rinderpest eradication campaign. As a consequence, the endemic focus of the virus has been reduced to an area in eastern Africa known as the Kenya-Somali ecosystem. Although the vaccine is highly effective, it has a drawback in that vaccinated animals are serologically indistinguishable from those that have recovered from natural infection. In the final stages of the eradication campaign, when vaccination to control the spread of disease will only be used in emergencies to contain an outbreak, a marker vaccine would be a very useful tool to monitor possible wild virus spread outside the vaccination area. Marker vaccines for rinderpest, and other viruses with negative-sense RNA genomes, can now be produced using reverse genetics, and the development of such marker vaccines for rinderpest virus is described. (author)

  16. Immunogenicity of HPV prophylactic vaccines: Serology assays and their use in HPV vaccine evaluation and development.

    Science.gov (United States)

    Pinto, Ligia A; Dillner, Joakim; Beddows, Simon; Unger, Elizabeth R

    2018-01-17

    When administered as standard three-dose schedules, the licensed HPV prophylactic vaccines have demonstrated extraordinary immunogenicity and efficacy. We summarize the immunogenicity of these licensed vaccines and the most commonly used serology assays, with a focus on key considerations for one-dose vaccine schedules. Although immune correlates of protection against infection are not entirely clear, both preclinical and clinical evidence point to neutralizing antibodies as the principal mechanism of protection. Thus, immunogenicity assessments in vaccine trials have focused on measurements of antibody responses to the vaccine. Non-inferiority of antibody responses after two doses of HPV vaccines separated by 6 months has been demonstrated and this evidence supported the recent WHO recommendations for two-dose vaccination schedules in both boys and girls 9-14 years of age. There is also some evidence suggesting that one dose of HPV vaccines may provide protection similar to the currently recommended two-dose regimens but robust data on efficacy and immunogenicity of one-dose vaccine schedules are lacking. In addition, immunogenicity has been assessed and reported using different methods, precluding direct comparison of results between different studies and vaccines. New head-to-head vaccine trials evaluating one-dose immunogenicity and efficacy have been initiated and an increase in the number of trials relying on immunobridging is anticipated. Therefore, standardized measurement and reporting of immunogenicity for the up to nine HPV types targeted by the current vaccines is now critical. Building on previous HPV serology assay standardization and harmonization efforts initiated by the WHO HPV LabNet in 2006, new secondary standards, critical reference reagents and testing guidelines will be generated as part of a new partnership to facilitate harmonization of the immunogenicity testing in new HPV vaccine trials. Copyright © 2018 Elsevier Ltd. All rights

  17. Developing Universal Influenza Vaccines: Hitting the Nail, Not Just on the Head

    Directory of Open Access Journals (Sweden)

    Lidewij C. M. Wiersma

    2015-03-01

    Full Text Available Influenza viruses have a huge impact on public health. Current influenza vaccines need to be updated annually and protect poorly against antigenic drift variants or novel emerging subtypes. Vaccination against influenza can be improved in two important ways, either by inducing more broadly protective immune responses or by decreasing the time of vaccine production, which is relevant especially during a pandemic outbreak. In this review, we outline the current efforts to develop so-called “universal influenza vaccines”, describing antigens that may induce broadly protective immunity and novel vaccine production platforms that facilitate timely availability of vaccines.

  18. Vaccine process technology.

    Science.gov (United States)

    Josefsberg, Jessica O; Buckland, Barry

    2012-06-01

    The evolution of vaccines (e.g., live attenuated, recombinant) and vaccine production methods (e.g., in ovo, cell culture) are intimately tied to each other. As vaccine technology has advanced, the methods to produce the vaccine have advanced and new vaccine opportunities have been created. These technologies will continue to evolve as we strive for safer and more immunogenic vaccines and as our understanding of biology improves. The evolution of vaccine process technology has occurred in parallel to the remarkable growth in the development of therapeutic proteins as products; therefore, recent vaccine innovations can leverage the progress made in the broader biotechnology industry. Numerous important legacy vaccines are still in use today despite their traditional manufacturing processes, with further development focusing on improving stability (e.g., novel excipients) and updating formulation (e.g., combination vaccines) and delivery methods (e.g., skin patches). Modern vaccine development is currently exploiting a wide array of novel technologies to create safer and more efficacious vaccines including: viral vectors produced in animal cells, virus-like particles produced in yeast or insect cells, polysaccharide conjugation to carrier proteins, DNA plasmids produced in E. coli, and therapeutic cancer vaccines created by in vitro activation of patient leukocytes. Purification advances (e.g., membrane adsorption, precipitation) are increasing efficiency, while innovative analytical methods (e.g., microsphere-based multiplex assays, RNA microarrays) are improving process understanding. Novel adjuvants such as monophosphoryl lipid A, which acts on antigen presenting cell toll-like receptors, are expanding the previously conservative list of widely accepted vaccine adjuvants. As in other areas of biotechnology, process characterization by sophisticated analysis is critical not only to improve yields, but also to determine the final product quality. From a regulatory

  19. Accelerating vaccine development for African swine fever virus ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-01-12

    Jan 12, 2018 ... Engineering a wild fast-growing Mycoplasma bacterium to generate a novel vaccine for contagious caprine ... Engineering vaccines against hemorrhagic septicemia in ruminants ... Solutions. Careers · Contact Us · Site map.

  20. Nanostructures for the development of vaccines against avian ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-01-12

    Jan 12, 2018 ... Engineering a wild fast-growing Mycoplasma bacterium to generate a novel vaccine for contagious caprine ... Engineering vaccines against hemorrhagic septicemia in ruminants ... Solutions. Careers · Contact Us · Site map.

  1. Development of antifertility vaccine using sperm specific proteins

    Directory of Open Access Journals (Sweden)

    A H Bandivdekar

    2014-01-01

    Full Text Available Sperm proteins are known to be associated with normal fertilization as auto- or iso-antibodies to these proteins may cause infertility. Therefore, sperm proteins have been considered to be the potential candidate for the development of antifertility vaccine. Some of the sperm proteins proved to be promising antigens for contraceptive vaccine includes lactate dehydrogenase (LDH-C4, protein hyaluronidase (PH-20, and Eppin. Immunization with LDH-C4 reduced fertility in female baboons but not in female cynomolgus macaques. Active immunization with PH-20 resulted in 100 per cent inhibition of fertility in male guinea pigs but it induced autoimmune orchitis. Immunization with Eppin elicited high antibody titres in 78 per cent of immunized monkeys and induced infertility but the immunopathological effect of immunization was not examined. Human sperm antigen (80kDa HSA is a sperm specific, highly immunogenic and conserved sperm protein. Active immunization with 80kDa HSA induced immunological infertility in male and female rats. Partial N-terminal amino acid sequence of 80kDa HSA (Peptide NT and its peptides (Peptides 1, 2, 3 and 4 obtained by enzymatic digestion did not show homology with any of the known proteins in gene bank. Peptides NT, 1, 2 and 4 were found to mimic immunobiological activity of native protein. Passive administration of antibodies to peptides NT, 1, 2 and 4 induced infertility in male and female rats and peptide 1 was found to be most effective in suppressing fertility. Active immunization with keyhole limpet haemocynin (KLH conjugated synthetic peptide 1 impaired fertility in all the male rabbits and six of the seven male marmosets. The fertility was restored following decline in antibody titre. All these findings on 80kDA HAS suggest that the synthetic Peptide-1 of 80kDa HSA is the promising candidate for development of male contraceptive vaccine.

  2. The clinical development process for a novel preventive vaccine: An overview

    Directory of Open Access Journals (Sweden)

    K Singh

    2016-01-01

    Full Text Available Each novel vaccine candidate needs to be evaluated for safety, immunogenicity, and protective efficacy in humans before it is licensed for use. After initial safety evaluation in healthy adults, each vaccine candidate follows a unique development path. This article on clinical development gives an overview on the development path based on the expectations of various guidelines issued by the World Health Organization (WHO, the European Medicines Agency (EMA, and the United States Food and Drug Administration (USFDA. The manuscript describes the objectives, study populations, study designs, study site, and outcome(s of each phase (Phase I-III of a clinical trial. Examples from the clinical development of a malaria vaccine candidate, a rotavirus vaccine, and two vaccines approved for human papillomavirus (HPV have also been discussed. The article also tabulates relevant guidelines, which can be referred to while drafting the development path of a novel vaccine candidate.

  3. Development of hypertrophic osteodystrophy and antibody response in a litter of vaccinated Weimaraner puppies.

    Science.gov (United States)

    Harrus, S; Waner, T; Aizenberg; Safra, N; Mosenco, A; Radoshitsky, M; Bark, H

    2002-01-01

    Two different vaccination protocols were compared with regard to the development of hypertrophic osteodystrophy (HOD) (also termed metaphyseal osteopathy) and effectiveness of immunisation in a litter of 10 Weimaraner puppies. Five puppies (group 1) were vaccinated with a modified live canine parvovirus vaccine (CPV) and then two weeks later with a trivalent vaccine containing modified live canine distemper virus and adenovirus type 2 combined with a Leptospira bacterin (DHL). The CPV and DHL vaccine protocols were administered a further two times, at two-week intervals. Group 2 was vaccinated with three consecutive multivalent vaccines containing modified live canine distemper virus, canine parvovirus, parainfluenza and adenovirus type 2 combined with a Leptospira bacterin, at four-week intervals. All puppies were first vaccinated at the age of eight weeks. Three dogs in group 1 developed HOD, while all five dogs in group 2 developed HOD during the study period. Dogs in group 2 had more episodes of HOD than those in group 1. Dogs in group 1 developed higher antibody titres to canine distemper virus and parvovirus compared with those in group 2. Only two out of the 10 dogs developed protective antibody titres to parvovirus. The results of this study suggest that the two different vaccination protocols affected the pattern of appearance of HOD and immunisation in this litter of Weimaraner puppies. The results obtained and the previously reported data suggest that a larger controlled study is needed to further elucidate the effect of different vaccination protocols on HOD and immunisation in Weimaraner puppies.

  4. Development of stable influenza vaccine powder formulations : Challenges and possibilities

    NARCIS (Netherlands)

    Amorij, J-P; Huckriede, A; Wilschut, J; Frijlink, H W; Hinrichs, W L J

    2008-01-01

    Influenza vaccination represents the cornerstone of influenza prevention. However, today all influenza vaccines are formulated as liquids that are unstable at ambient temperatures and have to be stored and distributed under refrigeration. In order to stabilize influenza vaccines, they can be brought

  5. Advances in development and evaluation of bovine herpesvirus 1 vaccines

    NARCIS (Netherlands)

    Oirschot, van J.T.; Kaashoek, M.J.; Rijsewijk, F.A.M.

    1996-01-01

    This review deals with conventional and modern bovine herpesvirus 1 (BHV1) vaccines. Conventional vaccines are widely used to prevent clinical signs of infectious bovine rhinotracheitis. The use of conventional vaccines, however, does not appear to have resulted in reduction of the prevalence of

  6. Development of indigenous irradiator - current progress and challenges

    International Nuclear Information System (INIS)

    Anwar A Rahman; Mohd Arif Hamzah; Muhd Nor Atan; Aznor Hassan; Fadil Ismail; Julia A Karim; Rosli Darmawan

    2009-01-01

    The development of indigenous irradiator is one of Prototype Development Center main project to support Nuclear Malaysia services. Three (3) projects have been identified and currently the status is in final stage of design. There are some issues and challenges encountered, which delayed the project progress. The paper will discuss the current progress of development and challenges faced in designing the irradiator. (Author)

  7. 76 FR 69743 - The Development and Evaluation of Human Cytomegalovirus Vaccines; Public Workshop

    Science.gov (United States)

    2011-11-09

    ... of knowledge about HCMV biology and epidemiology and on vaccine development strategies. Topics for discussion will include: (1) HCMV epidemiology and diagnosis, (2) HCMV immunology and virology, (3...

  8. How influenza vaccination policy may affect vaccine logistics.

    Science.gov (United States)

    Assi, Tina-Marie; Rookkapan, Korngamon; Rajgopal, Jayant; Sornsrivichai, Vorasith; Brown, Shawn T; Welling, Joel S; Norman, Bryan A; Connor, Diana L; Chen, Sheng-I; Slayton, Rachel B; Laosiritaworn, Yongjua; Wateska, Angela R; Wisniewski, Stephen R; Lee, Bruce Y

    2012-06-22

    When policymakers make decision about the target populations and timing of influenza vaccination, they may not consider the impact on the vaccine supply chains, which may in turn affect vaccine availability. Our goal is to explore the effects on the Thailand vaccine supply chain of introducing influenza vaccines and varying the target populations and immunization time-frames. We Utilized our custom-designed software HERMES (Highly Extensible Resource for Modeling Supply Chains), we developed a detailed, computational discrete-event simulation model of the Thailand's National Immunization Program (NIP) supply chain in Trang Province, Thailand. A suite of experiments simulated introducing influenza vaccines for different target populations and over different time-frames prior to and during the annual influenza season. Introducing influenza vaccines creates bottlenecks that reduce the availability of both influenza vaccines as well as the other NIP vaccines, with provincial to district transport capacity being the primary constraint. Even covering only 25% of the Advisory Committee on Immunization Practice-recommended population while administering the vaccine over six months hinders overall vaccine availability so that only 62% of arriving patients can receive vaccines. Increasing the target population from 25% to 100% progressively worsens these bottlenecks, while increasing influenza vaccination time-frame from 1 to 6 months decreases these bottlenecks. Since the choice of target populations for influenza vaccination and the time-frame to deliver this vaccine can substantially affect the flow of all vaccines, policy-makers may want to consider supply chain effects when choosing target populations for a vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Simian virus 40, poliovirus vaccines, and human cancer: research progress versus media and public interests

    Science.gov (United States)

    Butel, J. S.

    2000-01-01

    From 1955 through early 1963, millions of people were inadvertently exposed to simian virus 40 (SV40) as a contaminant of poliovirus vaccines; the virus had been present in the monkey kidney cultures used to prepare the vaccines and had escaped detection. SV40 was discovered in 1960 and subsequently eliminated from poliovirus vaccines. This article reviews current knowledge about SV40 and considers public responses to reports in the media. SV40 is a potent tumour virus with broad tissue tropism that induces tumours in rodents and transforms cultured cells from many species. It is also an important laboratory model for basic studies of molecular processes in eukaryotic cells and mechanisms of neoplastic transformation. SV40 neutralizing antibodies have been detected in individuals not exposed to contaminated poliovirus vaccines. There have been many reports of detection of SV40 DNA in human tumours, especially mesotheliomas, brain tumours and osteosarcomas; and DNA sequence analyses have ruled out the possibility that the viral DNA in tumours was due to laboratory contamination or that the virus had been misidentified. However, additional studies are necessary to prove that SV40 is the cause of certain human cancers. A recently published review article evaluated the status of the field and received much media attention. The public response emphasized that there is great interest in the possibility of health risks today from vaccinations received in the past.

  10. Technology Resource, Distribution, and Development Characteristics of Global Influenza Virus Vaccine: A Patent Bibliometric Analysis

    Science.gov (United States)

    Liu, Long; Yan, Zhe; Tao, Lixin; Guo, Xiuhua; Luo, Yanxia; Yan, Aoshuang

    2015-01-01

    Influenza virus vaccine (IVV) is a promising research domain that is closely related to global health matters, which has been acknowledged not only by scientists and technology developers, but also by policy-makers. Meanwhile, patents encompass valuable technological information and reflect the latest technological inventions as well as the innovative capability of a nation. However, little research has examined this up-and-coming research field using patent bibliometric method. Thus, this paper (a) designs the technology classification system and search strategy for the identification of IVV; and (b) presents a longitudinal analysis of the global IVV development based on the European Patent Office (EPO) patents. Bibliometric analysis is used to rank countries, institutions, inventors and technology subfields contributing to IVV technical progress. The results show that the global trends of IVV are a multi-developing feature of variety but an uneven technical resource distribution. Although the synthetic peptide vaccine is a comparatively young field, it already demonstrates the powerful vitality and the enormous development space. With the worldwide competition increasing, all nations especially China should be looking to increase devotion, enhance capability and regard effectiveness of technological innovation. PMID:26372160

  11. Technology Resource, Distribution, and Development Characteristics of Global Influenza Virus Vaccine: A Patent Bibliometric Analysis.

    Science.gov (United States)

    Chen, Ning; Liu, Yun; Cheng, Yijie; Liu, Long; Yan, Zhe; Tao, Lixin; Guo, Xiuhua; Luo, Yanxia; Yan, Aoshuang

    2015-01-01

    Influenza virus vaccine (IVV) is a promising research domain that is closely related to global health matters, which has been acknowledged not only by scientists and technology developers, but also by policy-makers. Meanwhile, patents encompass valuable technological information and reflect the latest technological inventions as well as the innovative capability of a nation. However, little research has examined this up-and-coming research field using patent bibliometric method. Thus, this paper (a) designs the technology classification system and search strategy for the identification of IVV; and (b) presents a longitudinal analysis of the global IVV development based on the European Patent Office (EPO) patents. Bibliometric analysis is used to rank countries, institutions, inventors and technology subfields contributing to IVV technical progress. The results show that the global trends of IVV are a multi-developing feature of variety but an uneven technical resource distribution. Although the synthetic peptide vaccine is a comparatively young field, it already demonstrates the powerful vitality and the enormous development space. With the worldwide competition increasing, all nations especially China should be looking to increase devotion, enhance capability and regard effectiveness of technological innovation.

  12. Technology Resource, Distribution, and Development Characteristics of Global Influenza Virus Vaccine: A Patent Bibliometric Analysis.

    Directory of Open Access Journals (Sweden)

    Ning Chen

    Full Text Available Influenza virus vaccine (IVV is a promising research domain that is closely related to global health matters, which has been acknowledged not only by scientists and technology developers, but also by policy-makers. Meanwhile, patents encompass valuable technological information and reflect the latest technological inventions as well as the innovative capability of a nation. However, little research has examined this up-and-coming research field using patent bibliometric method. Thus, this paper (a designs the technology classification system and search strategy for the identification of IVV; and (b presents a longitudinal analysis of the global IVV development based on the European Patent Office (EPO patents. Bibliometric analysis is used to rank countries, institutions, inventors and technology subfields contributing to IVV technical progress. The results show that the global trends of IVV are a multi-developing feature of variety but an uneven technical resource distribution. Although the synthetic peptide vaccine is a comparatively young field, it already demonstrates the powerful vitality and the enormous development space. With the worldwide competition increasing, all nations especially China should be looking to increase devotion, enhance capability and regard effectiveness of technological innovation.

  13. Rotavirus vaccines

    Directory of Open Access Journals (Sweden)

    Kang G

    2006-01-01

    Full Text Available Rotavirus, the most common cause of severe diarrhea and a leading cause of mortality in children, has been a priority target for vaccine development for the past several years. The first rotavirus vaccine licensed in the United States was withdrawn because of an association of the vaccine with intussusception. However, the need for a vaccine is greatest in the developing world, because the benefits of preventing deaths due to rotavirus disease are substantially greater than the risk of intussusception. Early vaccines were based on animal strains. More recently developed and licenced vaccines are either animal-human reassortants or are based on human strains. In India, two candidate vaccines are in the development process, but have not yet reached efficacy trials. Many challenges regarding vaccine efficacy and safety remain. In addition to completing clinical evaluations of vaccines in development in settings with the highest disease burden and virus diversity, there is also a need to consider alternative vaccine development strategies.

  14. Cancer vaccine development: Designing tumor cells for greater immunogenicity

    Science.gov (United States)

    Bozeman, Erica N.; Shashidharamurthy, Rangaiah; Paulos, Simon A.; Palaniappan, Ravi; D’Souza, Martin; Selvaraj, Periasamy

    2014-01-01

    Cancer vaccine development is one of the most hopeful and exhilarating areas in cancer research. For this reason, there has been a growing interest in the development and application of novel immunotherapies for the treatment of cancer with the focus being on stimulating the immune system to target tumor cells specifically while leaving normal cells unharmed. From such research has emerged a host of promising immunotherapies such as dendritic cell-based vaccines, cytokine therapies and gene transfer technology. These therapies seek to counteract the poor immunogenicity of tumors by augmenting the host’s immune system with a variety of immunostimulatory proteins such as cytokines and costimulatory molecules. While such therapies have proven effective in the induction of anti-tumor immunity in animal models, they are less than optimal and pose a high risk of clinical infeasibility. Herein, we further discuss these immunotherapies as well as a feasible and efficient alternative that, in pre-clinical animal models, allows for the expression of specific immunostimulatory molecules on the surface of tumor cells by a novel protein transfer technology. PMID:20036822

  15. Developments in the formulation and delivery of spray dried vaccines.

    Science.gov (United States)

    Kanojia, Gaurav; Have, Rimko Ten; Soema, Peter C; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-10-03

    Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery.

  16. Developments in the formulation and delivery of spray dried vaccines

    Science.gov (United States)

    Kanojia, Gaurav; Have, Rimko ten; Soema, Peter C.; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-01-01

    ABSTRACT Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery. PMID:28925794

  17. CURRENT DEVELOPMENT STRATEGIES FOR VACCINES AND THE ROLE OF REVERSE VACCINOLOGY

    OpenAIRE

    RAJU.S , UMA MAHESHWARA RAO.V

    2013-01-01

    The concept of vaccination has been around forcenturies .Vaccines constitutes cost-effective measures forpreventing disease. Advances in biotechnology and anunderstanding of the inductive and effector components ofimmune responses have ushered in a „golden age‟ ofvaccine development and implementation. Many licensedvaccines have one or more ideal characteristics, but nonemanifests them all. Of the generic vaccine technologies andvaccination strategies in different stages of development,some h...

  18. [Introduction of vaccination against human papillomavirus in developing countries: update and perspectives].

    Science.gov (United States)

    Hessel, L

    2009-08-01

    Cervical cancer and other diseases related to human papillomavirus (HPV) represent a global public health problem. Safe and effective vaccines are now available and already used in many industrialized countries. Immunization offers the best hope for protecting the population against a disease that is the second most deadly cancer in the developing world and the first most deadly in Africa. The World Health Organization currently recommends introduction of HVP vaccination in developing countries. Widespread vaccination could be beneficial in numerous domains other than primary prevention of cervical cancer. Efforts to overcome the numerous obstacles and speed up implementation of HVP vaccination programs are now underway in many areas ranging from related scientific issues such as epidemiology and clinical research to administrative concerns such as healthcare economics, vaccination guidelines, public acceptation, program funding, and universal access. Vaccine manufacturers have committed themselves to working in partnership with national and international organizations to ensure access to HPV vaccine for all countries regardless of economic level, Although numerous issues must be resolved to optimize the use of HPV vaccines and ensure synergistic integration of vaccination, screening and treatment, current initiatives and efforts should allow introduction of HPV vaccination in developing countries in a not too distant future.

  19. Development of vaccines against Plasmodium falciparum malaria: taking lessons from naturally acquired protective immunity

    DEFF Research Database (Denmark)

    Hviid, Lars

    2007-01-01

    The acquisition of substantial anti-malarial protection in people naturally exposed to P. falciparum is often cited as evidence that malaria vaccines can be developed, but is rarely used to guide the development. We are pursuing the development of vaccines based on antigens and immune responses...

  20. High Throughput T Epitope Mapping and Vaccine Development

    Directory of Open Access Journals (Sweden)

    Giuseppina Li Pira

    2010-01-01

    Full Text Available Mapping of antigenic peptide sequences from proteins of relevant pathogens recognized by T helper (Th and by cytolytic T lymphocytes (CTL is crucial for vaccine development. In fact, mapping of T-cell epitopes provides useful information for the design of peptide-based vaccines and of peptide libraries to monitor specific cellular immunity in protected individuals, patients and vaccinees. Nevertheless, epitope mapping is a challenging task. In fact, large panels of overlapping peptides need to be tested with lymphocytes to identify the sequences that induce a T-cell response. Since numerous peptide panels from antigenic proteins are to be screened, lymphocytes available from human subjects are a limiting factor. To overcome this limitation, high throughput (HTP approaches based on miniaturization and automation of T-cell assays are needed. Here we consider the most recent applications of the HTP approach to T epitope mapping. The alternative or complementary use of in silico prediction and experimental epitope definition is discussed in the context of the recent literature. The currently used methods are described with special reference to the possibility of applying the HTP concept to make epitope mapping an easier procedure in terms of time, workload, reagents, cells and overall cost.

  1. Pharmacoeconomic spotlight on rotavirus vaccine RIX4414 (Rotarix™) in developed countries.

    Science.gov (United States)

    Plosker, Greg L

    2012-12-01

    The most common cause of severe diarrhea in infants and young children is rotavirus gastroenteritis (RVGE), which is associated with significant morbidity, healthcare resource use, and direct and indirect costs in industrialized nations. The monovalent rotavirus vaccine RIX4414 (Rotarix™) is administered as a two-dose oral series in infants and has demonstrated protective efficacy against RVGE in clinical trials conducted in developed countries. In addition, various naturalistic studies have demonstrated 'real-world' effectiveness after the introduction of widespread rotavirus vaccination programs in the community setting. Numerous cost-effectiveness analyses have been conducted in developed countries in which a universal rotavirus vaccination program using RIX4414 was compared with no universal rotavirus vaccination program. There was a high degree of variability in base-case results across studies even when the studies were conducted in the same country, often reflecting differences in the selection of data sources or assumptions used to populate the models. In addition, results were sensitive to plausible changes in a number of key input parameters. As such, it is not possible to definitively state whether a universal rotavirus vaccination program with RIX4414 is cost effective in developed countries, although results of some analyses in some countries suggest this is the case. In addition, international guidelines advocate universal vaccination of infants and children against rotavirus. It is also difficult to draw conclusions regarding the cost effectiveness of rotavirus vaccine RIX4414 relative to that of the pentavalent rotavirus vaccine, which is administered as a three-dose oral series. Although indirect comparisons in cost-effectiveness analyses indicate that RIX4414 provided more favorable incremental cost-effectiveness ratios when each vaccine was compared with no universal rotavirus vaccination program, results were generally sensitive to vaccine

  2. Further progress on defining highly conserved immunogenic epitopes for a global HIV vaccine

    DEFF Research Database (Denmark)

    De Groot, Anne S; Levitz, Lauren; Ardito, Matthew T

    2012-01-01

    Two major obstacles confronting HIV vaccine design have been the extensive viral diversity of HIV-1 globally and viral evolution driven by escape from CD8(+) cytotoxic T-cell lymphocyte (CTL)-mediated immune pressure. Regions of the viral genome that are not able to escape immune response...

  3. Mucosal vaccines: a paradigm shift in the development of mucosal adjuvants and delivery vehicles.

    Science.gov (United States)

    Srivastava, Atul; Gowda, Devegowda Vishakante; Madhunapantula, SubbaRao V; Shinde, Chetan G; Iyer, Meenakshi

    2015-04-01

    Mucosal immune responses are the first-line defensive mechanisms against a variety of infections. Therefore, immunizations of mucosal surfaces from which majority of infectious agents make their entry, helps to protect the body against infections. Hence, vaccinization of mucosal surfaces by using mucosal vaccines provides the basis for generating protective immunity both in the mucosal and systemic immune compartments. Mucosal vaccines offer several advantages over parenteral immunization. For example, (i) ease of administration; (ii) non-invasiveness; (iii) high-patient compliance; and (iv) suitability for mass vaccination. Despite these benefits, to date, only very few mucosal vaccines have been developed using whole microorganisms and approved for use in humans. This is due to various challenges associated with the development of an effective mucosal vaccine that can work against a variety of infections, and various problems concerned with the safe delivery of developed vaccine. For instance, protein antigen alone is not just sufficient enough for the optimal delivery of antigen(s) mucosally. Hence, efforts have been made to develop better prophylactic and therapeutic vaccines for improved mucosal Th1 and Th2 immune responses using an efficient and safe immunostimulatory molecule and novel delivery carriers. Therefore, in this review, we have made an attempt to cover the recent advancements in the development of adjuvants and delivery carriers for safe and effective mucosal vaccine production. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  4. Epidemiological Studies to Support the Development of Next Generation Influenza Vaccines.

    Science.gov (United States)

    Petrie, Joshua G; Gordon, Aubree

    2018-03-26

    The National Institute of Allergy and Infectious Diseases recently published a strategic plan for the development of a universal influenza vaccine. This plan focuses on improving understanding of influenza infection, the development of influenza immunity, and rational design of new vaccines. Epidemiological studies such as prospective, longitudinal cohort studies are essential to the completion of these objectives. In this review, we discuss the contributions of epidemiological studies to our current knowledge of vaccines and correlates of immunity, and how they can contribute to the development and evaluation of the next generation of influenza vaccines. These studies have been critical in monitoring the effectiveness of current influenza vaccines, identifying issues such as low vaccine effectiveness, reduced effectiveness among those who receive repeated vaccination, and issues related to egg adaptation during the manufacturing process. Epidemiological studies have also identified population-level correlates of protection that can inform the design and development of next generation influenza vaccines. Going forward, there is an enduring need for epidemiological studies to continue advancing knowledge of correlates of protection and the development of immunity, to evaluate and monitor the effectiveness of next generation influenza vaccines, and to inform recommendations for their use.

  5. Replacement of glycoprotein B in alcelaphine herpesvirus 1 by its ovine herpesvirus 2 homolog: Implications in vaccine development for sheep-associated malignant catarrhal fever

    Science.gov (United States)

    Vaccine development is a top priority in malignant catarrhal fever (MCF) research. In the case of sheep-associated MCF (SA-MCF), caused by ovine herpesvirus 2 (OvHV-2), progress towards this objective has been hindered by the absence of methods to attenuate or modify the virus, since it cannot be pr...

  6. [Historical development of vaccines. Introduction: Hazards and rationality in the vaccinal approach].

    Science.gov (United States)

    Moulin, A M

    1995-01-01

    The aim of this paper is to introduce the one hundred years of vaccination that has passed since Louis Pasteur first coined this generic term. According to the late Jonas Salk, vaccinology is a science encompassing all aspects of vaccine from its conception in the laboratory to its production by companies and its application and distribution in the field. In this historical survey I explore how vaccination never consisted of a simple and uniform application of a rational model, but rather diverged along various pathways, several of which were discarded in retrospect as being hazardous, and I analyse the ongoing interplay between rational and inventive thinking.

  7. The Current Status of the Disease Caused by Enterovirus 71 Infections: Epidemiology, Pathogenesis, Molecular Epidemiology, and Vaccine Development.

    Science.gov (United States)

    Chang, Ping-Chin; Chen, Shou-Chien; Chen, Kow-Tong

    2016-09-09

    Enterovirus 71 (EV71) infections have a major public health impact in the Asia-Pacific region. We reviewed the epidemiology, pathogenesis, and molecular epidemiology of EV71 infection as well as EV71 vaccine development. Previous studies were found using the search terms "enterovirus 71" and "epidemiology" or "pathogenesis" or "molecular epidemiology" or "vaccine" in Medline and PubMed. Articles that were not published in the English language, manuscripts without an abstract, and opinion articles were excluded from the review. The reported epidemiology of cases caused by EV71 infection varied from country to country; seasonal variations in incidence were observed. Most cases of EV71 infection that resulted in hospitalization for complications occurred in children less than five years old. The brainstem was the most likely major target of EV71 infection. The emergence of the EV71 epidemic in the Asia-Pacific region has been associated with the circulation of different genetic lineages (genotypes B3, B4, C1, C2, and C4) that appear to be undergoing rapid evolutionary changes. The relationship between the gene structure of the EV71 virus and the factors that ensure its survival, circulation, and evasion of immunity is still unknown. EV71 infection has emerged as an important global public health problem. Vaccine development, including the development of inactivated whole-virus live attenuated, subviral particles, and DNA vaccines, has been progressing.

  8. The Effect of Oral Vaccination with Mycobacterium bovis BCG on the Development of Tuberculosis in Captive European Badgers (Meles meles).

    Science.gov (United States)

    Chambers, Mark A; Aldwell, Frank; Williams, Gareth A; Palmer, Si; Gowtage, Sonya; Ashford, Roland; Dalley, Deanna J; Davé, Dipesh; Weyer, Ute; Salguero, Francisco J; Nunez, Alejandro; Nadian, Allan K; Crawshaw, Timothy; Corner, Leigh A L; Lesellier, Sandrine

    2017-01-01

    The European badger ( Meles meles ) is a reservoir host of Mycobacterium bovis and responsible for a proportion of the tuberculosis (TB) cases seen in cattle in the United Kingdom and Republic of Ireland. An injectable preparation of the bacillus Calmette-Guérin (BCG) vaccine is licensed for use in badgers in the UK and its use forms part of the bovine TB eradication plans of England and Wales. However, there are practical limitations to the widespread application of an injectable vaccine for badgers and a research priority is the development of an oral vaccine deliverable to badgers in bait. Previous studies reported the successful vaccination of badgers with oral preparations of 10 8 colony forming units (CFU) of both Pasteur and Danish strains of BCG contained within a lipid matrix composed of triglycerides of fatty acids. Protection against TB in these studies was expressed as a reduction in the number and apparent progression of visible lesions, and reductions in the bacterial load and dissemination of infection. To reduce the cost of an oral vaccine and reduce the potential for environmental contamination with BCG, it is necessary to define the minimal efficacious dose of oral BCG for badgers. The objectives of the two studies reported here were to compare the efficacy of BCG Danish strain in a lipid matrix with unformulated BCG given orally, and to evaluate the efficacy of BCG Danish in a lipid matrix at a 10-fold lower dose than previously evaluated in badgers. In the first study, both BCG unformulated and in a lipid matrix reduced the number and apparent progression of visible lesions and the dissemination of infection from the lung. In the second study, vaccination with BCG in the lipid matrix at a 10-fold lower dose produced a similar outcome, but with greater intra-group variability than seen with the higher dose in the first study. Further research is needed before we are able to recommend a final dose of BCG for oral vaccination of badgers against TB

  9. The introduction of new vaccines into developing countries. IV: Global Access Strategies.

    Science.gov (United States)

    Mahoney, Richard T; Krattiger, Anatole; Clemens, John D; Curtiss, Roy

    2007-05-16

    This paper offers a framework for managing a comprehensive Global Access Strategy for new vaccines in developing countries. It is aimed at strengthening the ability of public-sector entities to reach their goals. The Bill and Melinda Gates Foundation and The Rockefeller Foundation have been leaders in stimulating the creation of new organizations - public/private product development partnerships (PDPs) - that seek to accelerate vaccine development and distribution to meet the health needs of the world's poor. Case studies of two of these PDPs - the Salmonella Anti-pneumococcal Vaccine Program and the Pediatric Dengue Vaccine Initiative - examine development of such strategies. Relying on the application of innovation theory, the strategy leads to the identification of six Components of Innovation which cover all aspects of the vaccine innovation process. Appropriately modified, the proposed framework can be applied to the development and introduction of other products in developing countries including drugs, and nutritional and agricultural products.

  10. Varicella zoster vaccines and their implications for development of HSV vaccines

    International Nuclear Information System (INIS)

    Gershon, Anne A.

    2013-01-01

    Live attenuated vaccines to prevent varicella and zoster have been available in the US for the past 17 years, with a resultant dramatic decrease in varicella incidence and a predicted future decrease in the incidence of zoster. The pathogenesis and immune responses to varicella zoster virus (VZV) as well as the safety and effectiveness of VZV vaccines are reviewed. The lack of sterilizing immunity provided by VZV vaccines has not prevented them from being safe and effective. Virological and pathological information concerning parallels and differences between VZV and herpes simplex virus (HSV) are highlighted. Although VZV and HSV are distinct pathogens, they appear to have similarities in target organs and immunity that provide an expectation of a high likelihood for the success of vaccination against HSV, and predicted to be similar to that of VZV.

  11. Varicella zoster vaccines and their implications for development of HSV vaccines

    Energy Technology Data Exchange (ETDEWEB)

    Gershon, Anne A., E-mail: aag1@columbia.edu [Department of Pediatrics, Columbia University College of Physicians and Surgeons, 620W. 168th Street, NY, NY 10032 (United States)

    2013-01-05

    Live attenuated vaccines to prevent varicella and zoster have been available in the US for the past 17 years, with a resultant dramatic decrease in varicella incidence and a predicted future decrease in the incidence of zoster. The pathogenesis and immune responses to varicella zoster virus (VZV) as well as the safety and effectiveness of VZV vaccines are reviewed. The lack of sterilizing immunity provided by VZV vaccines has not prevented them from being safe and effective. Virological and pathological information concerning parallels and differences between VZV and herpes simplex virus (HSV) are highlighted. Although VZV and HSV are distinct pathogens, they appear to have similarities in target organs and immunity that provide an expectation of a high likelihood for the success of vaccination against HSV, and predicted to be similar to that of VZV.

  12. Phage display as a promising approach for vaccine development

    OpenAIRE

    Aghebati-Maleki, Leili; Bakhshinejad, Babak; Baradaran, Behzad; Motallebnezhad, Morteza; Aghebati-Maleki, Ali; Nickho, Hamid; Yousefi, Mehdi; Majidi, Jafar

    2016-01-01

    Bacteriophages are specific antagonists to bacterial hosts. These viral entities have attracted growing interest as optimal vaccine delivery vehicles. Phages are well-matched for vaccine design due to being highly stable under harsh environmental conditions, simple and inexpensive large scale production, and potent adjuvant capacities. Phage vaccines have efficient immunostimulatory effects and present a high safety profile because these viruses have made a constant relationship with the mamm...

  13. Development of Cytomegalovirus-Based Vaccines Against Melanoma

    Science.gov (United States)

    2016-10-01

    Efficacy will be examined in mice by vaccination at 7, 14, and 21 days after tumor induction through monitoring tumor incidence, size, survival...intradermal B16 solid tumor model. Mice were inoculated with B16F10 and 3 days later were vaccinated with MCMVgp100KGP. For one experiment, mice were...We are now comparing the efficacy of this new vaccine to other single epitope virus vectors. Q6. can you please also clarify the AIMS of the SPARK

  14. Financing children's vaccines.

    Science.gov (United States)

    Nelson, E Anthony S; Sack, David; Wolfson, Lara; Walker, Damian G; Seng, Lim Fong; Steele, Duncan

    2009-11-20

    A 2006 Commonwealth Association of Paediatric Gastroenterology and Nutrition workshop on financing children's vaccines highlighted the potential for vaccines to control diarrhoea and other diseases as well as spur economic development through better health. Clear communication of vaccination value to decision-makers is required, together with sustainable funding mechanisms. GAVI and partners have made great progress providing funding for vaccines for children in the poorest countries but other solutions may be required to achieve the same gains in middle- and high-income countries. World Health Organization has a wealth of freely available country-level data on immunisation that academics and advocates can use to communicate the economic and health benefits of vaccines to decision-makers.

  15. Health workers and vaccination coverage in developing countries: an econometric analysis.

    Science.gov (United States)

    Anand, Sudhir; Bärnighausen, Till

    2007-04-14

    Vaccine-preventable diseases cause more than 1 million deaths among children in developing countries every year. Although health workers are needed to do vaccinations, the role of human resources for health as a determinant of vaccination coverage at the population level has not been investigated. Our aim was to test whether health worker density was positively associated with childhood vaccination coverage in developing countries. We did cross-country multiple regression analyses with coverage of three vaccinations--measles-containing vaccine (MCV); diphtheria, tetanus, and pertussis (DTP3); and poliomyelitis (polio3)--as dependent variables. Aggregate health worker density was an independent variable in one set of regressions; doctor and nurse densities were used separately in another set. We controlled for national income per person, female adult literacy, and land area. Health worker density was significantly associated with coverage of all three vaccinations (MCV p=0.0024; DTP3 p=0.0004; polio3 p=0.0008). However, when the effects of doctors and nurses were assessed separately, we found that nurse density was significantly associated with coverage of all three vaccinations (MCV p=0.0097; DTP3 p=0.0083; polio3 p=0.0089), but doctor density was not (MCV p=0.7953; DTP3 p=0.7971; polio3 p=0.7885). Female adult literacy was positively associated, and land area negatively associated, with vaccination coverage. National income per person had no effect on coverage. A higher density of health workers (nurses) increases the availability of vaccination services over time and space, making it more likely that children will be vaccinated. After controlling for other determinants, the level of income does not contribute to improved immunisation coverage. Health workers can be a major constraining factor on vaccination coverage in developing countries.

  16. Studies in development immunogenetics. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Owen, R D

    1975-03-26

    This contract provides the research support for a group concerned with a relatively large range of problems. The integrating thread that runs through it is that of an interest in development and its genetic regulation, mainly in complex organisms and with an emphasis on the immune system as a model for developmental analysis and as a tool for following the development of other systems, especially the brain. It includes studies of biochemical genetics, primarily from a developmental viewpoint and with particular regard to defense mechanisms, and cellular aspects of the immune system. It extends into the area of cancer immunology and cell specificities as related to tumor systems, primarily from an immunogenetic viewpoint and with particular reference to leukemias in the mouse, and to disruptions of genetic control mechanisms in tumor development, especially as approached through the reappearance of fetal antigens associated with tumor development.

  17. Gut-associated lymphoid tissues for the development of oral vaccines.

    Science.gov (United States)

    Kunisawa, Jun; Kurashima, Yosuke; Kiyono, Hiroshi

    2012-05-01

    Oral vaccine has been considered to be a prospective vaccine against many pathogens especially invading across gastrointestinal tracts. One key element of oral vaccine is targeting efficient delivery of antigen to gut-associated lymphoid tissue (GALT), the inductive site in the intestine where antigen-specific immune responses are initiated. Various chemical and biological antigen delivery systems have been developed and some are in clinical trials. In this review, we describe the immunological features of GALT and the current status of antigen delivery system candidates for successful oral vaccine. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Development and progress: advancing towards environmental crisis

    International Nuclear Information System (INIS)

    Gomez G, Luis Jair

    2011-01-01

    Physical, biological and social evolution is doubtless. One of its first manifestations is the arrival of technique when hominids emerge from pre-hominids. Those first technical developments implied a new relation man/environment that was expressed in three components that appeared successively and pushed each other in time and space like this: dominion over nature, population concentration (urbanism), and population growth. Techniques are to generate three notorious effects on the relation man/nature: 1. Deep intervention on the physical environment: mining and industrial transformation processes; 2. Deep intervention on the biological environment: development of agriculture with a decrease in biodiversity; and 3. Deep intervention on the social environment: going from a pre-modern communitarian world, to the individualism of modernity; and from the agrarian field to the big city. All these technical developments boosted dominion of the technosphere over the ecosphere, which led to the appearance of the Environmental Crisis, whose most notable manifestation is Climatic Change.

  19. R&D in Vaccines Targeting Neglected Diseases: An Exploratory Case Study Considering Funding for Preventive Tuberculosis Vaccine Development from 2007 to 2014.

    Science.gov (United States)

    Costa Barbosa Bessa, Theolis; Santos de Aragão, Erika; Medeiros Guimarães, Jane Mary; de Araújo Almeida, Bethânia

    2017-01-01

    Based on an exploratory case study regarding the types of institutions funding the research and development to obtain new tuberculosis vaccines, this article intends to provoke discussion regarding the provision of new vaccines targeting neglected disease. Although our findings and discussion are mainly relevant to the case presented here, some aspects are more generally applicable, especially regarding the dynamics of development in vaccines to prevent neglected diseases. Taking into account the dynamics of innovation currently seen at work in the vaccine sector, a highly concentrated market dominated by few multinational pharmaceutical companies, we feel that global PDP models can play an important role throughout the vaccine development cycle. In addition, the authors call attention to issues surrounding the coordination of actors and resources in the research, development, manufacturing, and distribution processes of vaccine products arising from PDP involvement.

  20. Strategies & recent development of transmission-blocking vaccines against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Neha Chaturvedi

    2016-01-01

    Full Text Available Transmission blocking malaria vaccines are aimed to block the development and maturity of sexual stages of parasite within mosquitoes. The vaccine candidate antigens (Pfs25, Pfs48/45, Pfs230 that have shown transmission blocking immunity in model systems are in different stages of development. These antigens are immunogenic with limited genetic diversity. Pfs25 is a leading candidate and currently in phase I clinical trial. Efforts are now focused on the cost-effective production of potent antigens using safe adjuvants and optimization of vaccine delivery system that are capable of inducing strong immune responses. This review addresses the potential usefulness, development strategies, challenges, clinical trials and current status of Plasmodium falciparum sexual stage malaria vaccine candidate antigens for the development of transmission-blocking vaccines.

  1. Scaling up development, production of CBPP vaccine for cattle in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will allow researchers from Canada and Kenya to field trial a vaccine for contagious bovine pleuropneumonia. This endemic livestock disease affects the livelihoods of more than 24 million cattle producers and results in annual losses estimated at US$1 billion across sub-Saharan Africa. About the vaccine Using ...

  2. Developments in the formulation and delivery of spray dried vaccines

    NARCIS (Netherlands)

    Kanojia, Gaurav; Have, Rimko Ten; Soema, Peter C; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-01-01

    Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this

  3. Recent Developments in Livestock and Wildlife Brucellosis Vaccination

    Science.gov (United States)

    Live attenuated brucellosis vaccines have been available for protecting domestic livestock against B. melitensis or B. abortus for more than 60 years. Current vaccines are effective in preventing abortion and transmission of brucellosis, but poor at preventing infection or seroconversion. In addit...

  4. UCLA accelerator research ampersand development. Progress report

    International Nuclear Information System (INIS)

    1997-01-01

    This report discusses work on advanced accelerators and beam dynamics at ANL, BNL, SLAC, UCLA and Pulse Sciences Incorporated. Discussed in this report are the following concepts: Wakefield acceleration studies; plasma lens research; high gradient rf cavities and beam dynamics studies at the Brookhaven accelerator test facility; rf pulse compression development; and buncher systems for high gradient accelerator and relativistic klystron applications

  5. Mycobacterium tuberculosis: approach to development of improved strategies for disease control through vaccination and immunodiagnosis.

    Science.gov (United States)

    Mirlekar, B; Pathak, S; Pathade, G

    2013-01-01

    Tuberculosis is a major health problem throughout the world causing large number of deaths, more than that from any other single infectious disease. Estimates till date ascertain the fact that Tuberculosis (TB) is continuing to be the leading cause of death worldwide. The infection from single infectious agent Mycobacterium tuberculosis is killing about 3 million individuals every year and accounts for around 18.5% of all deaths in adults between the age group of 15 and 65. An average of 1.79 billion people, which constitutes roughly one-third of the world's population, is infected with the causative agent M. tuberculosis and is at risk of developing the disease. This situation highlights the relative shortcomings of the current treatment and diagnosis strategies for TB and the limited effectiveness of public health systems, particularly in resource-poor countries where the main TB burden lies. The timely identification of persons infected with Mycobacterium tuberculosis and rapid laboratory confirmation of tuberculosis are two key factors for the treatment and prevention of the disease. Novel molecular assays for diagnosis and drug susceptibility testing offer several potential advantages over the above methods including faster turnaround times, very sensitive and specific detection of nucleic acids, and minimal, or possibly no, prior culture. The need for new technologies for rapid diagnosis of tuberculosis is clear. Most studies of mycobacterial immunity attributes focus on proliferation of T cells, production of cytokines and cytolytic activity. A proper vaccine for tuberculosis can be developed by using a combination of antigens and adjuvants capable of inducing appropriate and long-lasting T cell immunity. Development of new vaccines against TB should include some important aspects learned from BCG use such as mucosal routes of immunization; revaccination of BCG immunized subjects, booster immunization and prime-boost strategy with wild-type BCG, and other

  6. Development of vaccines and their use in the prevention of fungal infections.

    Science.gov (United States)

    Dixon, D M; Casadevall, A; Klein, B; Mendoza, L; Travassos, L; Deepe, G S

    1998-01-01

    Vaccine approaches to infectious diseases are widely applied and appreciated. Disciplines such as bacteriology and virology have a rich history of successful vaccine development. The complexity of eukaryotic systems presents additional challenges to the development of vaccines against them. These challenges are being met in the fields of parasitology, and are being revisited for application in oncology. Vaccine opportunities exist in medical mycology. The National Institute of Allergy and Infectious Diseases has held a series of workshops in medical mycology where the need to develop vaccines for fungal diseases was noted and where important opportunities were discussed. Major advances in vaccinology and the technology of antigen preparation and delivery have increased feasibility and heightened interest. The recent epidemic of coccidioidomycosis in the American Southwest has demonstrated the need for developing a vaccine as an effective preventive measure for those living in and for those who subsequently move into regions with the endemic mycoses. The XIIth Congress of the International Society for Human and Animal Mycology included a symposium that summarized new vaccination strategies for selected fungi: Candida albicans, Coccidioides immitis, and Trichophyton verrucosum. The goal of the present summary is to provide representative examples of continuing efforts relating to vaccine development within the medical mycological community highlighting Blastomyces dermatidis, Cryptococcus neoformans, Histoplasma capsulatum, Paracoccidioides brasiliensis, and Pythiumn insidiosum.

  7. Hepatitis Vaccines

    OpenAIRE

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B ...

  8. Recent development and progress of IBA cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Kleeven, W., E-mail: Willem.Kleeven@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Abs, M., E-mail: Michel.Abs@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Delvaux, J.L., E-mail: Jean-Luc.Delvaux@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Forton, E., E-mail: Eric.Forton@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Jongen, Y., E-mail: Yves.Jongen@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Medeiros Romao, L., E-mail: Luis.MedeirosRomao@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Nactergal, B., E-mail: Benoit.Nactergal@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Nuttens, V., E-mail: Vincent.Nuttens@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Servais, T., E-mail: Thomas.Servais@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Vanderlinden, T., E-mail: Thierry.Vanderlinden@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Zaremba, S., E-mail: Simon.Zaremba@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium)

    2011-12-15

    Several cyclotron development projects were recently realized by Ion Beam Applications S.A. (IBA). This contribution presents three of them: (i) the intensity enhancement of the Cyclone 30 cyclotron, a machine mainly used for the production of SPECT isotopes. This project is related with the increased demand for {sup 201}Tl because of the shortage of Mo/Tc generators from nuclear reactors, (ii) development of a new versatile multiple-particle K = 30 isotope-production cyclotron (the Cyclone 30XP) being able to accelerate H{sup -}, D{sup -} and also {alpha}-particles. The {alpha}-beam of this cyclotron will allow the production of new therapeutic isotopes (e.g. {sup 211}At) and (iii) commissioning of the Cyclone 70 cyclotron installed for Arronax in France. This machine is similar to the C30XP but provides higher energy (K = 70) and allows research on new types of medical isotopes.

  9. Progress in CPI Microwave Tube Development

    Science.gov (United States)

    Wright, Edward L.; Bohlen, Heinz

    2006-01-01

    CPI continues its role as a leading supplier of state-of-the-art, high-power microwave tubes; from linear beam, velocity- and density-modulated devices, to high frequency gyro-devices. Klystrons are the device-of-choice for many high-power microwave applications, and can provide multi-megawatts to multi-kilowatts of power from UHF to W-band, respectively. A number of recent and on-going developments will be described. At UHF frequencies, the inductive output tube (IOT) has replaced the klystron for terrestrial NTSC and HDTV broadcast, due to its high efficiency and linearity, and is beginning to see use in scientific applications requiring 300 kW or less. Recent advances have enabled use well into L-band. CPI has developed a number of multiple-beam amplifiers. The VKL-8301 multiple-beam klystron (MBK) was built for the TESLA V/UV and x-ray FEL projects, and is a candidate RF source for the International Linear Collider (ILC). We have also contributed to the development of the U.S. Naval Research Laboratory (NRL) high-power fundamental-mode S-band MBK. The VHP-8330B multiple-beam, high-order mode (HOM) IOT shows great promise as a compact, CW UHF source for high power applications. These topics will be discussed, along with CPI's development capabilities for new and novel applications. Most important is our availability to provide design and fabrication services to organizations requiring CPI's manufacturing and process control infrastructure to build and test state-of-the-art devices.

  10. Progress in development of iron base alloys

    International Nuclear Information System (INIS)

    Zackay, V.V.; Parker, E.R.

    1980-01-01

    The ways of development of new iron base high-strength alloys are considered. Perspectiveness of ferritic steel strengthening with intermetallides (TaFe 2 , for instance) is shown. Favourable combination of plasticity, strength and fracture toughness in nickel-free iron-manganese alloys (16-20%) is also pointed out. A strength level of alloyed maraging steels can be achieved by changes in chemical composition and by proper heat treatments of low- and medium-alloyed steels

  11. Recent Progress in Perennial Buckwheat Development

    Directory of Open Access Journals (Sweden)

    Qing-Fu Chen

    2018-02-01

    Full Text Available Grains in the genus Fagopyrum have benefits to human health and are an excellent gluten-free raw material. Of all cereal foods, this genus has the highest total content of amino-acid nutrients necessary for humans; nutrients that are resistant to digestion (protein and starch resulting in their sustained release; higher dietary fiber content than key cereals, and is rich in a special healthy ingredient (flavonoids. Fagopyrum includes 24 species of which five are perennial. Among them, golden buckwheat (F.cymosum complex is the most important perennial buckwheat, which is not only used in Chinese medicine, but also has great potential in healthy food crop. In order to provide some clues for perennial crop studies and their industry development, this paper presents the state of perennial buckwheat research in terms of taxonomy; natural chemical products and pharmacological and health functions; genetics and evolution; breeding; and product development and utilization. The great advances such as successful interspecific crossing and its subsequent new perennial buckwheat varieties will speed up the development of the perennial buckwheat industry.

  12. Progress on development of SPIDER diagnostics

    Science.gov (United States)

    Pasqualotto, R.; Agostini, M.; Barbisan, M.; Bernardi, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Palma, M. Dalla; Delogu, R. S.; Gorini, G.; Lotto, L.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rizzolo, A.; Serianni, G.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.

    2017-08-01

    SPIDER experiment, the full size prototype of the beam source for the ITER heating neutral beam injector, has to demonstrate extraction and acceleration to 100 kV of a large negative ion hydrogen or deuterium beam with co-extracted electron fraction e-/D- SPIDER plant systems are being installed, the different diagnostic systems are in the procurement phase. Their final design is described here with a focus on some key solutions and most original and cost effective implementations. Thermocouples used to measure the power load distribution in the source and over the beam dump front surface will be efficiently fixed with proven technique and acquired through commercial and custom electronics. Spectroscopy needs to use well collimated lines of sight and will employ novel design spectrometers with higher efficiency and resolution and filtered detectors with custom built amplifiers. The electrostatic probes will be operated through electronics specifically developed to cope with the challenging environment of the RF source. The instrumented calorimeter STRIKE will use new CFC tiles, still under development. Two linear cameras, one built in house, have been tested as suitable for optical beam tomography. Some diagnostic components are off the shelf, others are custom developed: some of these are being prototyped or are under test before final production and installation, which will be completed before start of SPIDER operation.

  13. Status of progress in IFR development

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1994-01-01

    The author touches on a number of the issues being addressed in work on the IFR reactor concept development at this time. This technology offers the opportunity to achieve a much more efficient utilization of uranium resources in the process of energy generation. Liquid metal coolant is likely to be a design feature of this type reactor, in part due to the passive safety of this design. Fuel reprocessing, and waste management issues are discussed. This reactor design has the advantage of being much better positioned to minimize concerns about nuclear proliferation issues

  14. Biologic interactions between HSV-2 and HIV-1 and possible implications for HSV vaccine development.

    Science.gov (United States)

    Schiffer, Joshua T; Gottlieb, Sami L

    2017-09-25

    Development of a safe and effective vaccine against herpes simplex virus type 2 (HSV-2) has the potential to limit the global burden of HSV-2 infection and disease, including genital ulcer disease and neonatal herpes, and is a global sexual and reproductive health priority. Another important potential benefit of an HSV-2 vaccine would be to decrease HIV infections, as HSV-2 increases the risk of HIV-1 acquisition several-fold. Acute and chronic HSV-2 infection creates ulcerations and draws dendritic cells and activated CD4+ T cells into genital mucosa. These cells are targets for HIV entry and replication. Prophylactic HSV-2 vaccines (to prevent infection) and therapeutic vaccines (to modify or treat existing infections) are currently under development. By preventing or modifying infection, an effective HSV-2 vaccine could limit HSV-associated genital mucosal inflammation and thus HIV risk. However, a vaccine might have competing effects on HIV risk depending on its mechanism of action and cell populations generated in the genital mucosa. In this article, we review biologic interactions between HSV-2 and HIV-1, consider HSV-2 vaccine development in the context of HIV risk, and discuss implications and research needs for future HSV vaccine development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Adjuvants are key factors for the development of future vaccines: Lessons from the Finlay Adjuvant platform

    Directory of Open Access Journals (Sweden)

    Oliver ePérez

    2013-12-01

    Full Text Available The development of effective vaccines against neglected diseases, especially those associated with poverty and social deprivation, is urgently needed. Modern vaccine technologies and a better understanding of the immune response have provided scientists with the tools for rational and safer design of subunit vaccines. Often, however, subunit vaccines do not elicit strong immune responses, highlighting the need to incorporate better adjuvants; this step therefore becomes a key factor for vaccine development. In this review we outline some key features of modern vaccinology that are linked with the development of better adjuvants. In line with the increased desire to obtain novel adjuvants for future vaccines, the Finlay Adjuvant Platform offers a novel approach for the development of new and effective adjuvants. The Finlay Adjuvants (AFs, AFPL (proteoliposome and AFCo (cochleate, were initially designed for parenteral and mucosal applications, and constitute potent adjuvants for the induction of Th1 responses against several antigens. This review summarizes the status of the Finlay technology in producing promising adjuvants for unsolved-vaccine diseases including mucosal approaches and therapeutic vaccines. Ideas related to adjuvant classification, adjuvant selection, and their possible influence on innate recognition via multiple toll-like receptors are also discussed.

  16. Clinical development of a novel inactivated poliomyelitis vaccine based on attenuated Sabin poliovirus strains.

    Science.gov (United States)

    Verdijk, Pauline; Rots, Nynke Y; Bakker, Wilfried A M

    2011-05-01

    Following achievement of polio eradication, the routine use of all live-attenuated oral poliovirus vaccines should be discontinued. However, the costs per vaccine dose for the alternative inactivated poliovirus vaccine (IPV) are significantly higher and the current production capacity is not sufficient for worldwide distribution of the vaccine. In order to achieve cost-prize reduction and improve affordability, IPV production processes and dose-sparing strategies should be developed to facilitate local manufacture at a relatively lower cost. The use of attenuated Sabin instead of wild-type polio strains will provide additional safety during vaccine production and permits production in low-cost settings. Sabin-IPV is under development by several manufacturers. This article gives an overview of results from clinical trials with Sabin-IPV and discusses the requirements and challenges in the clinical development of this novel IPV.

  17. Vaccines for bovine neosporosis: current status and key aspects for development.

    Science.gov (United States)

    Horcajo, P; Regidor-Cerrillo, J; Aguado-Martínez, A; Hemphill, A; Ortega-Mora, L M

    2016-12-01

    Bovine neosporosis is a worldwide concern due to its global distribution and great economic impact. Reproductive failure in cattle due to abortion leads to major economic losses associated with the disease. Currently, there is no treatment or vaccine available against abortion or transmission caused by Neospora caninum infection in cattle. However, vaccination is considered the best measure of control against bovine neosporosis. Several host and parasite factors can influence the dynamics of the infection in bovines. Moreover, the availability of well-defined infection models is a key factor for the evaluation of vaccine candidates. However, working with cattle is not easy due to difficult handling, facilities and costs, and therefore, 'more affordable' models could be used for screening of promising vaccines to establish proof of concept. So far, live-attenuated vaccines have shown good efficacy against exogenous transplacental transmission; however, they have relevant disadvantages and associated risks, which render inactivated or subunit vaccines the best way forward. The identification of novel potential targets and vaccines, and the application of innovative vaccine technologies in harmonized experimental animal models, will accelerate the development of an effective vaccine against bovine neosporosis. © 2016 John Wiley & Sons Ltd.

  18. Progression of Pancreatic Adenocarcinoma Is Significantly Impeded with a Combination of Vaccine and COX-2 Inhibition1

    Science.gov (United States)

    Mukherjee, Pinku; Basu, Gargi D.; Tinder, Teresa L.; Subramani, Durai B.; Bradley, Judy M.; Arefayene, Million; Skaar, Todd; De Petris, Giovanni

    2013-01-01

    With a 5-year survival rate of <5%, pancreatic cancer is one of the most rapidly fatal malignancies. Current protocols for the treatment of pancreas cancer are not as effective as we desire. In this study, we show that a novel Mucin-1 (MUC1)-based vaccine in combination with a cyclooxygenase-2 inhibitor (celecoxib), and low-dose chemotherapy (gemcitabine) was effective in preventing the progression of preneoplastic intraepithelial lesions to invasive pancreatic ductal adenocarcinomas. The study was conducted in an appropriate triple transgenic model of spontaneous pancreatic cancer induced by the KRASG12D mutation and that expresses human MUC1 as a self molecule. The combination treatment elicited robust antitumor cellular and humoral immune responses and was associated with increased apoptosis in the tumor. The mechanism for the increased immune response was attributed to the down-regulation of circulating prostaglandin E2 and indoleamine 2, 3,-dioxygenase enzymatic activity, as well as decreased levels of T regulatory and myeloid suppressor cells within the tumor microenvironment. The preclinical data provide the rationale to design clinical trials with a combination of MUC1-based vaccine, celecoxib, and gemcitabine for the treatment of pancreatic cancer. PMID:19109152

  19. Vaccines, inspiring innovation in health.

    Science.gov (United States)

    Pagliusi, Sonia; Dennehy, Maureen; Kim, Hun

    2018-05-19

    This report covers the topics of pandemics, epidemics and partnerships, including regulatory convergence initiatives, new technologies and novel vaccines, discussed by leading public and private sector stakeholders at the 18th Annual General Meeting (AGM) of the Developing Countries Vaccine Manufacturers' Network (DCVMN). Contributions of Gavi and the vaccine industry from emerging countries to the growing global vaccine market, by improving the supply base from manufacturers in developing countries and contributing to 58% of doses, were highlighted. The Coalition for Epidemic Preparedness Innovations (CEPI), the International Vaccine Institute (IVI) and others reported on new strategies to ensure speedy progress in preclinical and clinical development of innovative vaccines for future MERS, Zika or other outbreak response. Priorities for vaccine stockpiling, to assure readiness during emergencies and to prevent outbreaks due to re-emerging diseases such as yellow fever, cholera and poliomyelitis, were outlined. The role of partnerships in improving global vaccine access, procurement and immunization coverage, and shared concerns were reviewed. The World Health Organization (WHO) and other international collaborating partners provided updates on the Product, Price and Procurement database, the prequalification of vaccines, the control of neglected tropical diseases, particularly the new rabies elimination initiative, and regulatory convergence proposals to accelerate vaccine registration in developing countries. Updates on supply chain innovations and novel vaccine platforms were presented. The discussions enabled members and partners to reflect on efficiency of research & development, supply chain tools and trends in packaging technologies improving delivery of existing vaccines, and allowing a deeper understanding of the current public-health objectives, industry financing, and global policies, required to ensure optimal investments, alignment and stability of

  20. Progress on Fast Reactor Development in Japan

    International Nuclear Information System (INIS)

    Ohira, Hiroaki; Uto, Nariaki

    2012-01-01

    Situation of National Policy Making and FaCT Project: On July 19, 2011, JAEC decided to continue the FR cycle technology development program in the limited range of activities to contribute to international standardization (ex. safety criteria) and to maintain the technology base level until the determination of new nuclear energy policy. On Sept. 27, 2011, JAEC restarted the deliberation process for new Framework for Nuclear Energy Policy. - The process was suspended after the Fukushima NPS accidents. - Major issues: Safety, Cost, Nuclear Power and Fuel Cycle Options, Waste Management, International Perspectives, R&D planning, etc. - The process has been carried out to determine the new Framework with the relationship to new governmental energy/environmental policy making. On Dec. 21, 2011, Energy and Environment Council complied Basic guideline toward Presentation of Alternatives regarding the Strategy for Energy and the Environment. In the FaCT project, focus has been on further improvement on safety of next generation SFRs based on lessons learned from the Fukushima NPS accidents

  1. Meningococcal vaccination for international travellers from Greece visiting developing countries.

    Science.gov (United States)

    Pavli, Androula; Katerelos, Panagiotis; Smeti, Paraskevi; Maltezou, Helena C

    2016-01-01

    Meningococcal meningitis is a serious disease. Travel-associated infection for the general traveller is low; however regular epidemics in indigenous population, particularly in sub-Saharan Africa are responsible for significant morbidity and mortality. Our aim was to assess meningococcal vaccination for international travellers from Greece. A prospective questionnaire-based study was conducted during 2009-2013. A total of 5283 travellers were studied (median age: 39.2 years); Meningococcal tetravalent vaccine (A,C,W135,Y) was delivered to 1150 (21.8%) of them. Of those who travelled to the Middle East and sub-Saharan Africa, 73.1% and 21.2% received meningococcal vaccine, respectively. Of those travellers who travelled to sub-Saharan Africa from November to June and from July to October, 22.1% and 20.6% were vaccinated with meningococcal vaccine, respectively. Of all travellers who travelled for travelled for recreation, and 13.8% of those who travelled for work. Of travellers who stayed in urban, in rural, and in urban and rural areas, 32%, 11.6% and 12.7% were vaccinated, respectively. Meningococcal vaccine was delivered to 29.2%, 21.1%, 19.4% and 5.1% of those who stayed in hotels, at local people's home, in camps, and on ships, respectively. The association of meningococcal vaccine administration with the destination, duration and purpose of travel, area of stay and type of accommodation was statistically significant. There is a need to improve meningococcal vaccine recommendations for travellers from Greece, particularly for high risk populations, such as VFRs, business travellers and those visiting sub-Saharan Africa especially during the dry season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Clinical development and regulatory points for consideration for second-generation live attenuated dengue vaccines.

    Science.gov (United States)

    Vannice, Kirsten S; Wilder-Smith, Annelies; Barrett, Alan D T; Carrijo, Kalinka; Cavaleri, Marco; de Silva, Aravinda; Durbin, Anna P; Endy, Tim; Harris, Eva; Innis, Bruce L; Katzelnick, Leah C; Smith, Peter G; Sun, Wellington; Thomas, Stephen J; Hombach, Joachim

    2018-03-07

    Licensing and decisions on public health use of a vaccine rely on a robust clinical development program that permits a risk-benefit assessment of the product in the target population. Studies undertaken early in clinical development, as well as well-designed pivotal trials, allow for this robust characterization. In 2012, WHO published guidelines on the quality, safety and efficacy of live attenuated dengue tetravalent vaccines. Subsequently, efficacy and longer-term follow-up data have become available from two Phase 3 trials of a dengue vaccine, conducted in parallel, and the vaccine was licensed in December 2015. The findings and interpretation of the results from these trials released both before and after licensure have highlighted key complexities for tetravalent dengue vaccines, including concerns vaccination could increase the incidence of dengue disease in certain subpopulations. This report summarizes clinical and regulatory points for consideration that may guide vaccine developers on some aspects of trial design and facilitate regulatory review to enable broader public health recommendations for second-generation dengue vaccines. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Approaches and Perspectives for Development of African Swine Fever Virus Vaccines

    Directory of Open Access Journals (Sweden)

    Marisa Arias

    2017-10-01

    Full Text Available African swine fever (ASF is a complex disease of swine, caused by a large DNA virus belonging to the family Asfarviridae. The disease shows variable clinical signs, with high case fatality rates, up to 100%, in the acute forms. ASF is currently present in Africa and Europe where it circulates in different scenarios causing a high socio-economic impact. In most affected regions, control has not been effective in part due to lack of a vaccine. The availability of an effective and safe ASFV vaccines would support and enforce control–eradication strategies. Therefore, work leading to the rational development of protective ASF vaccines is a high priority. Several factors have hindered vaccine development, including the complexity of the ASF virus particle and the large number of proteins encoded by its genome. Many of these virus proteins inhibit the host’s immune system thus facilitating virus replication and persistence. We review previous work aimed at understanding ASFV–host interactions, including mechanisms of protective immunity, and approaches for vaccine development. These include live attenuated vaccines, and “subunit” vaccines, based on DNA, proteins, or virus vectors. In the shorter to medium term, live attenuated vaccines are the most promising and best positioned candidates. Gaps and future research directions are evaluated.

  4. Clinical trials for vaccine development in registry of Korea Food and Drug Administration.

    Science.gov (United States)

    Kang, Seog-Youn

    2013-01-01

    Based on the action plan "Ensuring a stable supply of National Immunization Program vaccines and sovereignty of biopharmaceutical products," Korea Food and Drug Administration (KFDA) has made efforts to develop vaccines in the context of self reliance and to protect public health. Along with the recognized infrastructures for clinical trials, clinical trials for vaccines have also gradually been conducted at multinational sites as well as at local sites. KFDA will support to expand six to eleven kinds of vaccines by 2017. In accordance with integrated regulatory system, KFDA has promoted clinical trials, established national lot release procedure, and strengthened good manufacturing practices inspection and post marketing surveillance. Against this backdrop, KFDA will support the vaccine development and promote excellent public health protection.

  5. Progress toward an enhanced vaccine: Eight marked attenuated viruses to porcine reproductive and respiratory disease virus.

    Science.gov (United States)

    Spear, Allyn; Wang, Feng-Xue; Kappes, Matthew A; Das, Phani B; Faaberg, Kay S

    2018-03-01

    Recombinant viruses of strain Ingelvac® PRRS porcine reproductive and respiratory syndrome virus (PRRSV) modified live virus vaccine were produced with two individual small in-frame deletions in nonstructural protein 2 (nsp2; Δ23 and Δ87) and also the same deletions supplanted with foreign tags (Δ23-V5, Δ23-FLAG, Δ23-S, Δ87-V5, Δ87-FLAG, Δ87-S). The viruses, but one (Δ87-FLAG), were stable for 10 passages and showed minimal effects on in vitro growth. Northern hybridization showed that the Δ23-tagged probe detected intracellular viral genome RNA as well as shorter RNAs that may represent heteroclite species, while the Δ87-tagged probe detected predominantly only genome length RNAs. When the tagged viruses were used to probe nsp2 protein in infected cells, perinuclear localization similar to native nsp2 was seen. Dual infection of Δ23-S and Δ87-S viruses allowed some discrimination of individual tagged nsp2 protein, facilitating future research. The mutants could potentially also be used to differentiate infected from vaccinated animals. Published by Elsevier Inc.

  6. Current barriers, challenges and opportunities for the development of effective STI vaccines: point of view of vaccine producers, biotech companies and funding agencies.

    Science.gov (United States)

    Dodet, Betty

    2014-03-20

    Several barriers limit the development of vaccines against sexually transmitted diseases (STIs). Critical scientific information is missing that makes the feasibility and the likelihood of success of vaccines against genital herpes, chlamydia, gonorrhea and trichomonas uncertain: the immunity induced by natural infection is absent or imperfect which seriously limits the capacity to define the types of immune responses that an effective vaccine must induce. Reliable animal models are lacking and a number of crucial clinical questions are still unanswered about the goal of these vaccines and definition of endpoints for clinical trials. In the absence of a clear recognition of the need for vaccines against these diseases, there is no motivation for public or private research and industry to invest in the development of vaccines against STIs. The STI burden should be evaluated not only in terms of mortality and morbidity, but also in terms of economic and psycho-social impact. A global public-private consortium could mobilize the joint efforts of all stakeholders involved in the research, development and implementation of STI vaccines of the public and private sectors; ensure that sufficient resources are applied to R&D of vaccines against these STIs; and provide the pull-push forces that are necessary to overcome the barriers to develop safe and effective vaccines against these diseases. Copyright © 2014. Published by Elsevier Ltd.

  7. Development of a rotavirus vaccine: clinical safety, immunogenicity, and efficacy of the pentavalent rotavirus vaccine, RotaTeq.

    Science.gov (United States)

    Ciarlet, Max; Schödel, Florian

    2009-12-30

    Initial approaches for rotavirus vaccines were based on the classical "Jennerian" approach and utilized simian and bovine rotavirus strains, which provided cross-protection against human rotavirus strains but did not cause illness in infants and young children because of their species-specific tropism. The demonstrated efficacy of these vaccines was not consistent across studies. Thus, human-animal reassortants containing an animal rotavirus backbone with human rotavirus surface G and/or P proteins were developed, which demonstrated more consistent efficacy than that observed with the non-reassortant rotavirus strains. The pentavalent rotavirus vaccine, RotaTeq, contains 5 human-bovine reassortant rotaviruses consisting of a bovine (WC3) backbone with human rotavirus surface proteins representative of the most common G (G1, G2, G3, G4) or P (P1A[8]) types worldwide. The present review focuses on the development of the pentavalent rotavirus vaccine RotaTeq. Results of a large-scale Phase III clinical study showed that three doses of RotaTeq were immunogenic, efficacious, and well tolerated with no increased clinical risk of intussusception. RotaTeq was efficacious against rotavirus gastroenteritis of any severity (74%) and severe disease (98-100%), using a validated clinical scoring system. Reductions in rotavirus-associated hospitalizations and emergency department (ED) visits, for up to 2 years post-vaccination, were 95% in Europe, 97% in the United States, and 90% in the Latin American/Caribbean regions. RotaTeq was recently shown to be up to 100% effective in routine use in the US in reducing hospitalizations and ED visits and 96% effective in reducing physician visits. Additional studies in 8 different locations in the US have shown 85-95% reduction in rotavirus-associated hospitalizations and/or ED visits in the first 2-2.5 years of routine use.

  8. "cART intensification by the HIV-1 Tat B clade vaccine: progress to phase III efficacy studies".

    Science.gov (United States)

    Cafaro, Aurelio; Sgadari, Cecilia; Picconi, Orietta; Tripiciano, Antonella; Moretti, Sonia; Francavilla, Vittorio; Pavone Cossut, Maria Rosaria; Buttò, Stefano; Cozzone, Giovanni; Ensoli, Fabrizio; Monini, Paolo; Ensoli, Barbara

    2018-02-01

    In spite of its success at suppressing HIV replication, combination antiretroviral therapy (cART) only partially reduces immune dysregulation and loss of immune functions. These cART-unmet needs appear to be due to persistent virus replication and cell-to-cell transmission in reservoirs, and are causes of increased patients' morbidity and mortality. Up to now, therapeutic interventions aimed at cART-intensification by attacking the virus reservoir have failed. Areas covered: We briefly review the rationale and clinical development of Tat therapeutic vaccine in cART-treated subjects in Italy and South Africa (SA). Vaccination with clade-B Tat induced cross-clade neutralizing antibodies, immune restoration, including CD4 + T cell increase particularly in low immunological responders, and reduction of proviral DNA. Phase III efficacy trials in SA are planned both in adult and pediatric populations. Expert commentary: We propose the Tat therapeutic vaccine as a pathogenesis-driven intervention that effectively intensifies cART and may lead to a functional cure and provide new perspectives for prevention and virus eradication strategies.

  9. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases.

    Science.gov (United States)

    Barrett, P Noel; Terpening, Sara J; Snow, Doris; Cobb, Ronald R; Kistner, Otfried

    2017-09-01

    Rapid development and production of vaccines against emerging diseases requires well established, validated, robust technologies to allow industrial scale production and accelerated licensure of products. Areas covered: A versatile Vero cell platform has been developed and utilized to deliver a wide range of candidate and licensed vaccines against emerging viral diseases. This platform builds on the 35 years' experience and safety record with inactivated whole virus vaccines such as polio vaccine. The current platform has been optimized to include a novel double inactivation procedure in order to ensure a highly robust inactivation procedure for novel emerging viruses. The utility of this platform in rapidly developing inactivated whole virus vaccines against pandemic (-like) influenza viruses and other emerging viruses such as West Nile, Chikungunya, Ross River and SARS is reviewed. The potential of the platform for development of vaccines against other emerging viruses such as Zika virus is described. Expert commentary: Use of this platform can substantially accelerate process development and facilitate licensure because of the substantial existing data set available for the cell matrix. However, programs to provide vaccines against emerging diseases must allow alternative clinical development paths to licensure, without the requirement to carry out large scale field efficacy studies.

  10. Development of recombinant vaccine candidate molecule against Shigella infection.

    Science.gov (United States)

    Chitradevi, S T S; Kaur, G; Sivaramakrishna, U; Singh, D; Bansal, A

    2016-10-17

    Shigellosis is an acute bacillary diarrheal disease caused by the gram negative bacillus Shigella. The existence of multiple Shigella serotypes and their growing resistance to antibiotics stress the urgent need for the development of vaccine that is protective across all serotypes. Shigella's IpaB antigen is involved in translocon pore formation, promotes bacterial invasion and induces apoptosis in macrophages. S. Typhi GroEL (Hsp 60) is the immunodominant antigen inducing both arms of immunity and has been explored as adjuvant in this study. The present study evaluates the immunogenicity and protective efficacy of recombinant IpaB domain-GroEL fusion protein in mice against lethal Shigella infection. The IpaB domain and GroEL genes were fused using overlap extension PCR and cloned in pRSETA expression vector. Fused gene was expressed in Escherichia coli BL-21 cells and the resulting 90 KDa fusion protein was purified by affinity chromatography. Intranasal (i.n.) immunization of mice with fusion protein increased the IgG and IgA antibody titers as compared to the group immunized with IpaB and GroEL and control PBS immunized group. Also IgG1 and IgG2a antibodies induced in fusion protein immunized mice were higher than co-immunized group. Significant increase in lymphocyte proliferation and cytokine levels (IFN-γ, IL-4 and IL-10), indicates induction of both Th1 and Th2 immune responses in both immunized groups. Immunization with fusion protein protected 90-95% of mice whereas 80-85% survivability was observed in co-immunized group against lethal challenge with S. flexneri, S. boydii and S. sonnei. Passive immunization conferred 60-70% protection in mice against all these Shigella species. Organ burden and histopathology studies also revealed significant decrease in lung infection as compared to the co-immunized group. Since IpaB is the conserved dominant molecule in all Shigella species, this study will lead to an ideal platform for the development of safe

  11. Development of an attenuated live heartwater vaccine for use in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... it requires ultra-cold storage (-196° C), intravenous administration by veterinary health professionals, ... It is expected that by the end of the project, the production process of the new heartwater vaccine will ... Agricultural Research Council.

  12. Development of a novel vaccine for contagious caprine ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Global Alliance for Livestock Veterinary Medicines estimates that every year, ... because antibiotic treatment does not eliminate the bacterium and sanitary ... protective Mccp antigens, and be used either as a live or inactivated vaccine.

  13. Prospects and perspectives for development of a vaccine against herpes simplex virus infections.

    Science.gov (United States)

    McAllister, Shane C; Schleiss, Mark R

    2014-11-01

    Herpes simplex viruses 1 and 2 are human pathogens that lead to significant morbidity and mortality in certain clinical settings. The development of effective antiviral medications, however, has had little discernible impact on the epidemiology of these pathogens, largely because the majority of infections are clinically silent. Decades of work have gone into various candidate HSV vaccines, but to date none has demonstrated sufficient efficacy to warrant licensure. This review examines developments in HSV immunology and vaccine development published since 2010, and assesses the prospects for improved immunization strategies that may result in an effective, licensed vaccine in the near future.

  14. Buccal and sublingual vaccine delivery.

    Science.gov (United States)

    Kraan, Heleen; Vrieling, Hilde; Czerkinsky, Cecil; Jiskoot, Wim; Kersten, Gideon; Amorij, Jean-Pierre

    2014-09-28

    Because of their large surface area and immunological competence, mucosal tissues are attractive administration and target sites for vaccination. An important characteristic of mucosal vaccination is its ability to elicit local immune responses, which act against infection at the site of pathogen entry. However, mucosal surfaces are endowed with potent and sophisticated tolerance mechanisms to prevent the immune system from overreacting to the many environmental antigens. Hence, mucosal vaccination may suppress the immune system instead of induce a protective immune response. Therefore, mucosal adjuvants and/or special antigen delivery systems as well as appropriate dosage forms are required in order to develop potent mucosal vaccines. Whereas oral, nasal and pulmonary vaccine delivery strategies have been described extensively, the sublingual and buccal routes have received considerably less attention. In this review, the characteristics of and approaches for sublingual and buccal vaccine delivery are described and compared with other mucosal vaccine delivery sites. We discuss recent progress and highlight promising developments in the search for vaccine formulations, including adjuvants and suitable dosage forms, which are likely critical for designing a successful sublingual or buccal vaccine. Finally, we outline the challenges, hurdles to overcome and formulation issues relevant for sublingual or buccal vaccine delivery. Copyright © 2014. Published by Elsevier B.V.

  15. Ebola Virus: Immune Mechanisms of Protection and Vaccine Development

    OpenAIRE

    Nyamathi, AM; Fahey, JL; Sands, H; Casillas, AM

    2003-01-01

    Vaccination is one of our most powerful antiviral strategies. Despite the emergence of deadly viruses such as Ebola virus, vaccination efforts have focused mainly on childhood communicable diseases. Although Ebola virus was once believed to be limited to isolated outbreaks in distant lands, forces of globalization potentiate outbreaks anywhere in the world through incidental transmission. Moreover, since this virus has already been transformed into weapongrade material, the potential exists f...

  16. TSOL18 Vaccine Antigen of Taenia solium: Development of Monoclonal Antibodies and Field Testing of the Vaccine in Cameroon

    Directory of Open Access Journals (Sweden)

    Assana, E.

    2010-01-01

    necropsy at the end of the trial (110 vaccinated; 102 controls. Viable T. solium cysticerci were identified in 20 control pigs (prevalence 19.6%, including 14 animals that had estimated total body burdens of > 1000 cysticerci. No cysticerci were found in any of the vaccinated animals indicating that the vaccine provided a very high level of protection (P< 0.0001 against naturally acquired infection with T. solium in pigs. Combined application of TSOL18 vaccination and a single oxfendazole treatment in pigs is a simple and relatively sustainable procedure that has the potential to control T. solium transmission in endemic areas and, indirectly, reduce the number of new cases of neurocysticercosis in humans. In chapter 6, the similarity of the antibody responses of pigs and mice to TSOL18 antigen is highlighted. Four IgG1 monoclonal antibodies (MoAb were produced against the conformational epitopes of TSOL18. It was shown that pig antisera inhibit the binding of these MoAbs in a competition ELISA, indicating that pig and mouse antibodies against TSOL18 vaccine react with the same conformational epitopes. For this reason, monoclonal antibodies raised in mice immunized with TSOL18 could be a valuable source of antibodies for further characterisation of the host-protective epitopes of the vaccine. A monoclonal antibody-based inhibitive enzyme-linked immunosorbent assay (mi-ELISA was developed. Serum samples of TSOL18-vaccinated and non-vaccinated pigs were used. In all the vaccinated and protected pigs screened at necropsy, anti-TSOL18 antibodies inhibited the binding of a monoclonal antibody (Mab25D12C1 specific to the conformational epitopes of TSOL18 antigen, suggesting an immune response that correlates with protection. This result was in agreement with the results obtained in an indirect ELISA, which showed that all the vaccinated and protected pigs had developed antibodies to the TSOL18 vaccine. In chapter 7 the efficacy of the TSOL18 vaccine is compared with that of

  17. Development of a new live rough vaccine against bovine brucellosis

    International Nuclear Information System (INIS)

    Comerci, D.J.; Ugalde, J.E.; Ugalde, R.A.

    2005-01-01

    Brucella abortus S19 is the most commonly used attenuated live vaccine to prevent bovine brucellosis. In spite of its advantages, S19 has several drawbacks: it is abortive for pregnant cattle, is virulent for humans, and re-vaccination is not advised due to the persistence of anti-lipopolysaccharide (LPS) antibodies that hamper the immunoscreening procedures. For these reasons, there is a continuous search for new bovine vaccine candidates. We have previously characterized the phenotype of the phosphoglucomutase (pgm) gene disruption in Brucella abortus S2308, as well as the possible role for the smooth LPS in virulence and intracellular multiplication. Here we evaluate the vaccine properties of an unmarked deletion mutant of pgm. Western blot analysis of purified lipopolysaccharide and whole-cell extract from Δpgm indicate that it synthesizes O-antigen but is incapable of assembling a complete LPS. In consequence Δpgm has a rough phenotype. Experimental infections of mice indicate that Δpgm is avirulent. Vaccination with Δpgm induces protection levels comparable to those induced by S19, and generates a splenocyte proliferative response and cytokines profile typical of a Th-1 response. The ability of the mutant to generate a strong cellular Th-1 response without eliciting specific O-antigen antibodies highlights the potential use of this mutant as a new live vaccine for cattle. (author)

  18. Effect of preventive Chlamydia abortus vaccination in offspring development in sheep challenged experimentally

    Directory of Open Access Journals (Sweden)

    Teresa García-Seco

    2016-08-01

    Full Text Available Ovine enzootic abortion, caused by Chlamydia abortus, leads to important economic losses worldwide. In addition to reproductive failures, infection may impact lamb growth during the first weeks after birth, yet this effect has not been well characterized. Vaccination can help to control the disease but variable efficacy values have been described, possibly related with factors associated with the host, the vaccine, the parameter used for efficacy determination and the challenge conditions. In this context, we evaluated the efficacy of an inactivated standard commercial vaccine and a 1/2 diluted dose in pregnant sheep challenged with C. abortus by examining multiple indicators ofvaccine effect (including incidence of reproductive failures, bacterial excretion, and evolution of weight gain of viable lambs during the first month of life. Three groups of ewes [control non-vaccinated, C (n = 18; vaccinated with standard dose, SV (n = 16 and vaccinated with 1/2 dose, DV (n = 17], were challenged approximately 90 days post-mating and tested using direct PCR (tissue samples and vaginal swabs and ELISA (serum until 31 days post-reproductive outcome. There were not significant differences in the proportions of reproductive failures or bacterial shedding after birth/abortion regardless the vaccination protocol. However, a beneficial effect of vaccination on offspring growth was detected in both vaccinated groups compared with the controls, with a mean increase in weight measured at 30 days of life of 1.5 and 2.5 Kg (p = 0.056 and an increase in the geometric mean of the daily gain of 8.4 and 9.7% in lambs born from DV and SV ewes compared to controls, respectively. Our results demonstrate the effect of an inactivated vaccine in the development of the offspring of C. abortus-infected ewes at a standard and a diluted dose, an interesting finding given the difficulty in achieving sufficient antigen concentration in the production of EAE-commercial vaccines.

  19. Progress in the introduction of the rotavirus vaccine in Latin America and the Caribbean: four years of accumulated experience.

    Science.gov (United States)

    de Oliveira, Lucia Helena; Danovaro-Holliday, M Carolina; Sanwogou, N Jennifer; Ruiz-Matus, Cuauhtemoc; Tambini, Gina; Andrus, Jon Kim

    2011-01-01

    Two effective and safe rotavirus vaccines became available in 2006 and have been recommended for use in all countries by the World Health Organization. This article provides an update on the use of rotavirus vaccine in Latin American and Caribbean (LAC) countries. Data reported by LAC countries to the Pan American Health Organization (PAHO) were reviewed. As of May 2010, 14 LAC countries and 1 territory have introduced the rotavirus vaccine into their national expanded program on immunization (EPI). Reported coverage levels for rotavirus vaccine are lower than those for other EPI vaccines recommended at the same age. A total of 15 LAC countries are part of the PAHO's LAC rotavirus surveillance network; 12 of them are using the vaccine. LAC countries are conducting several studies on rotavirus vaccine effectiveness, cost-effectiveness, and monitoring safety. Also, LAC countries are generating lessons learned on the public health implications of introducing a new vaccine into the EPI. Nine countries and the Cayman Islands pay for the entire cost of the vaccine using government funds. All but 2 countries purchase their rotavirus vaccine through PAHO's Revolving Fund. Rotavirus vaccine introduction in LAC has been faster than for other new vaccines, but coverage levels need to increase to maximize the effect of the intervention. Rotavirus surveillance needs to expand and be strengthened to better assess the effect of vaccine use. LAC countries will continue to provide useful data to monitor rotavirus trends and vaccine effect.

  20. The Equity Impact Vaccines May Have On Averting Deaths And Medical Impoverishment In Developing Countries.

    Science.gov (United States)

    Chang, Angela Y; Riumallo-Herl, Carlos; Perales, Nicole A; Clark, Samantha; Clark, Andrew; Constenla, Dagna; Garske, Tini; Jackson, Michael L; Jean, Kévin; Jit, Mark; Jones, Edward O; Li, Xi; Suraratdecha, Chutima; Bullock, Olivia; Johnson, Hope; Brenzel, Logan; Verguet, Stéphane

    2018-02-01

    With social policies increasingly directed toward enhancing equity through health programs, it is important that methods for estimating the health and economic benefits of these programs by subpopulation be developed, to assess both equity concerns and the programs' total impact. We estimated the differential health impact (measured as the number of deaths averted) and household economic impact (measured as the number of cases of medical impoverishment averted) of ten antigens and their corresponding vaccines across income quintiles for forty-one low- and middle-income countries. Our analysis indicated that benefits across these vaccines would accrue predominantly in the lowest income quintiles. Policy makers should be informed about the large health and economic distributional impact that vaccines could have, and they should view vaccination policies as potentially important channels for improving health equity. Our results provide insight into the distribution of vaccine-preventable diseases and the health benefits associated with their prevention.

  1. Challenges and opportunities in developing and marketing vaccines for OIE List A and emerging animal diseases.

    Science.gov (United States)

    Gay, C G; Salt, J; Balaski, C

    2003-01-01

    Veterinary pharmaceutical products generated 14.5 billion U.S. Dollars (USD) in worldwide sales in 2000, with biological products contributing 16.2 percent or 2.3 billion USD. The leading biological products were foot-and-mouth disease (FMD) vaccines, with 284 million USD in sales, representing 26.4 percent of the entire livestock biological business. Despite the potential opportunities for the biologicals industry, non-vaccination policies and undefined control and eradication strategies have deterred the private sector from significant investments in the research and development of vaccines against List A diseases. The primary research focus remains vaccines for infectious diseases that have an impact on current domestic herd health management systems. Changing the vaccine paradigm, investing in new technologies, and creating the future by integrating into key alliances with producers and regulatory authorities will be paramount in protecting our poultry and livestock industries against highly infectious diseases and potential acts of bioterrorism.

  2. TRANSVAC research infrastructure - Results and lessons learned from the European network of vaccine research and development.

    Science.gov (United States)

    Geels, Mark J; Thøgersen, Regitze L; Guzman, Carlos A; Ho, Mei Mei; Verreck, Frank; Collin, Nicolas; Robertson, James S; McConkey, Samuel J; Kaufmann, Stefan H E; Leroy, Odile

    2015-10-05

    TRANSVAC was a collaborative infrastructure project aimed at enhancing European translational vaccine research and training. The objective of this four year project (2009-2013), funded under the European Commission's (EC) seventh framework programme (FP7), was to support European collaboration in the vaccine field, principally through the provision of transnational access (TNA) to critical vaccine research and development (R&D) infrastructures, as well as by improving and harmonising the services provided by these infrastructures through joint research activities (JRA). The project successfully provided all available services to advance 29 projects and, through engaging all vaccine stakeholders, successfully laid down the blueprint for the implementation of a permanent research infrastructure for early vaccine R&D in Europe. Copyright © 2015. Published by Elsevier Ltd.

  3. Immunogenic Apoptosis as a Novel Tool for Anticancer Vaccine Development

    Directory of Open Access Journals (Sweden)

    Barbara Montico

    2018-02-01

    Full Text Available Immunogenic apoptosis, or more appropriately called immunogenic cell death (ICD, is a recently described form of apoptosis induced by a specific set of chemotherapeutic drugs or by physical therapeutic modalities, such as ionizing irradiation and photodynamic therapy. The peculiar characteristic of ICD is the ability to favor recognition and elimination of dying tumor cells by phagocytes in association with the release of pro-inflammatory molecules (such as cytokines and high-mobility group box-1. While in vitro and animal models pointed to ICD as one of the molecular mechanisms mediating the clinical efficacy of some anticancer agents, it is hard to clearly demonstrate its contribution in cancer patients. Clinical evidence suggests that the induction of ICD alone is possibly not sufficient to fully subvert the immunosuppressive tumor microenvironment. However, interesting results from recent studies contemplate the exploitation of ICD for improving the immunogenicity of cancer cells to use them as an antigen cargo in the development of dendritic cell (DC vaccines. Herein, we discuss the effects of danger signals expressed or released by cancer cells undergoing ICD on the maturation and activation of immature and mature DC, highlighting the potential added value of ICD in adoptive immunotherapy protocols.

  4. Endogenous and Exogenous Natural Adjuvants for Vaccine Development.

    Science.gov (United States)

    Bolhassani, Azam; Talebi, Somayeh; Anvar, Ali

    2017-01-01

    Objective & Background: Various adjuvants are usually co-injected with an antigen for stimulation of effective immune responses. Adjuvants are able to elicit innate immune responses at the injection site. Depending on the activated type of innate responses, adjuvants can modify the quality and quantity of adaptive immune responses. Their mechanisms of action in vaccine development include: a) enhancement of the total antibody titers; b) reduction of the antigen dose; c) induction of potent cell-mediated immunity; d) increase in the speed and duration of the protective response; e) stimulation of mucosal immunity; and f) cross-protection. Up to now, different exogenous adjuvants have been identified to boost immune responses including inorganic compounds, mineral oil, bacterial products, non-bacterial organics, detergents or Quil A, plant saponins, Freund's complete or incomplete adjuvants, and delivery systems. However, some immune responses can be generated in the absence of the exogenous adjuvants. Indeed, endogenous adjuvants released from the cells were known as the danger signals and immunogenic compounds. Several main endogenous adjuvants contain cytokines, chemokines, alarmins, dendritic cells (DCs), toll like receptor (TLR) ligands or agonists, and antibodies. In this review, the immune activities of the natural adjuvants especially endogenous adjuvants and their mechanisms of action are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. A New Scientific Paradigm may be Needed to Finally Develop an HIV Vaccine.

    Science.gov (United States)

    Esparza, José

    2015-01-01

    The bulk of current HIV vaccine research is conducted within the infectious disease paradigm that has been very successful in developing vaccines against many other viral diseases. Different HIV vaccine concepts, based on the induction of neutralizing antibodies and/or cell mediated immunity, have been developed and clinically tested over the last 30 years, resulting in a few small successes and many disappointments. As new scientific knowledge is obtained, HIV vaccine concepts are constantly modified with the hope that the newly introduced tweaks (or paradigm drifts) will provide the solution to one of the most difficult challenges that modern biomedical research is confronting. Efficacy trials have been critical in guiding HIV vaccine development. However, from the five phase III efficacy trials conducted to date, only one (RV144) resulted in modest efficacy. The results from RV144 were surprising in many ways, including the identified putative correlates of protection (or risk), which did not include neutralizing antibodies or cytotoxic T-cells. The solution to the HIV vaccine challenge may very well come from approaches based on the current paradigm. However, at the same time, out-of-the-paradigm ideas should be systematically explored to complement the current efforts. New mechanisms are needed to identify and support the innovative research that will hopefully accelerate the development of an urgently needed HIV vaccine.

  6. Development and initial feedback about a human papillomavirus (HPV) vaccine comic book for adolescents.

    Science.gov (United States)

    Katz, Mira L; Oldach, Benjamin R; Goodwin, Jennifer; Reiter, Paul L; Ruffin, Mack T; Paskett, Electra D

    2014-06-01

    Human papillomavirus (HPV) vaccination rates do not meet the Healthy People 2020 objective of 80% coverage among adolescent females. We describe the development and initial feedback about an HPV vaccine comic book for young adolescents. The comic book is one component of a multilevel intervention to improve HPV vaccination rates among adolescents. Parents suggested and provided input into the development of a HPV vaccine comic book. Following the development of the comic book, we conducted a pilot study to obtain initial feedback about the comic book among parents (n = 20) and their adolescents ages 9 to 14 (n = 17) recruited from a community-based organization. Parents completed a pre-post test including items addressing HPV knowledge, HPV vaccine attitudes, and about the content of the comic book. Adolescents completed a brief interview after reading the comic book. After reading the comic book, HPV knowledge improved (2.7 to 4.6 correct answers on a 0-5 scale; p book's content was acceptable and adolescents liked the story, found it easy to read, and thought the comic book was a good way to learn about being healthy. Parents provided valuable information in the development of a theoretically-based comic book and the comic book appears to be an acceptable format for providing HPV vaccine information to adolescents. Future research will include the comic book in an intervention study to improve HPV vaccination rates.

  7. Inactivated yellow fever 17D vaccine: development and nonclinical safety, immunogenicity and protective activity.

    Science.gov (United States)

    Monath, Thomas P; Lee, Cynthia K; Julander, Justin G; Brown, Alicja; Beasley, David W; Watts, Douglas M; Hayman, Edward; Guertin, Patrick; Makowiecki, Joseph; Crowell, Joseph; Levesque, Philip; Bowick, Gavin C; Morin, Merribeth; Fowler, Elizabeth; Trent, Dennis W

    2010-05-14

    In the last 10 years new concerns have arisen about safety of the live, attenuated yellow fever (YF) 17D vaccine, in particular viscerotropic adverse events, which have a case-fatality rate of 64%. A non-replicating cell culture-based vaccine would not cause these adverse events, and potentially could be used in persons with precautions or contraindications to use of the live vaccine, including age 60 years, egg allergy, immune suppression, and pregnancy. We developed a whole virion vaccine from the 17D strain inactivated with beta-propiolactone, and adsorbed to aluminum hydroxide. The inactivated vaccine was highly immunogenic in mice, hamsters, and cynomolgus macaques. After a single dose in hamsters and macaques, neutralizing antibody titers were similar to those elicited by the live 17D vaccine (YF-VAX, Sanofi Pasteur). After two doses of inactivated vaccine, neutralizing antibody titers in hamsters were significantly higher than after a single dose of YF-VAX [geometric mean titer (GMT) 20,480 vs. 1940, respectively (Pvaccine or a single dose of YF-VAX were fully protected against hepatitis, viremia, weight loss and death after challenge with YF virus (Jimenez strain). A clinical trial of the inactivated vaccine (XRX-001) has been initiated. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Engineering Foot-and-Mouth Disease Viruses with Improved Growth Properties for Vaccine Development

    Science.gov (United States)

    Zheng, Haixue; Guo, Jianhong; Jin, Ye; Yang, Fan; He, Jijun; Lv, Lv; Zhang, Kesan; Wu, Qiong; Liu, Xiangtao; Cai, Xuepeng

    2013-01-01

    Background No licensed vaccine is currently available against serotype A foot-and-mouth disease (FMD) in China, despite the isolation of A/WH/CHA/09 in 2009, partly because this strain does not replicate well in baby hamster kidney (BHK) cells. Methodology/Principal Findings A novel plasmid-based reverse genetics system was used to construct a chimeric strain by replacing the P1 gene in the vaccine strain O/CHA/99 with that from the epidemic stain A/WH/CHA/09. The chimeric virus displayed growth kinetics similar to those of O/CHA/99 and was selected for use as a candidate vaccine strain after 12 passages in BHK cells. Cattle were vaccinated with the inactivated vaccine and humoral immune responses were induced in most of the animals on day 7. A challenge infection with A/WH/CHA/09 on day 28 indicated that the group given a 4-µg dose was fully protected and neither developed viremia nor seroconverted to a 3ABC antigen. Conclusions/Significance Our data demonstrate that the chimeric virus not only propagates well in BHK cells and has excellent antigenic matching against serotype A FMD, but is also a potential marker vaccine to distinguish infection from vaccination. These results suggest that reverse genetics technology is a useful tool for engineering vaccines for the prevention and control of FMD. PMID:23372840

  9. The Current Status of the Disease Caused by Enterovirus 71 Infections: Epidemiology, Pathogenesis, Molecular Epidemiology, and Vaccine Development

    Science.gov (United States)

    Chang, Ping-Chin; Chen, Shou-Chien; Chen, Kow-Tong

    2016-01-01

    Enterovirus 71 (EV71) infections have a major public health impact in the Asia-Pacific region. We reviewed the epidemiology, pathogenesis, and molecular epidemiology of EV71 infection as well as EV71 vaccine development. Previous studies were found using the search terms “enterovirus 71” and “epidemiology” or “pathogenesis” or “molecular epidemiology” or “vaccine” in Medline and PubMed. Articles that were not published in the English language, manuscripts without an abstract, and opinion articles were excluded from the review. The reported epidemiology of cases caused by EV71 infection varied from country to country; seasonal variations in incidence were observed. Most cases of EV71 infection that resulted in hospitalization for complications occurred in children less than five years old. The brainstem was the most likely major target of EV71 infection. The emergence of the EV71 epidemic in the Asia-Pacific region has been associated with the circulation of different genetic lineages (genotypes B3, B4, C1, C2, and C4) that appear to be undergoing rapid evolutionary changes. The relationship between the gene structure of the EV71 virus and the factors that ensure its survival, circulation, and evasion of immunity is still unknown. EV71 infection has emerged as an important global public health problem. Vaccine development, including the development of inactivated whole-virus live attenuated, subviral particles, and DNA vaccines, has been progressing. PMID:27618078

  10. A DNA vaccine against yellow fever virus: development and evaluation.

    Directory of Open Access Journals (Sweden)

    Milton Maciel

    2015-04-01

    Full Text Available Attenuated yellow fever (YF virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE, aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  11. A DNA vaccine against yellow fever virus: development and evaluation.

    Science.gov (United States)

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T A; Dhalia, Rafael

    2015-04-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  12. A DNA Vaccine against Yellow Fever Virus: Development and Evaluation

    Science.gov (United States)

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T. A.; Dhalia, Rafael

    2015-01-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies. PMID:25875109

  13. Development of a recombinant toxin fragment vaccine for Clostridium difficile infection.

    Science.gov (United States)

    Karczewski, Jerzy; Zorman, Julie; Wang, Su; Miezeiewski, Matthew; Xie, Jinfu; Soring, Keri; Petrescu, Ioan; Rogers, Irene; Thiriot, David S; Cook, James C; Chamberlin, Mihaela; Xoconostle, Rachel F; Nahas, Debbie D; Joyce, Joseph G; Bodmer, Jean-Luc; Heinrichs, Jon H; Secore, Susan

    2014-05-19

    Clostridium difficile infection (CDI) is the major cause of antibiotic-associated diarrhea and pseudomembranous colitis, a disease associated with significant morbidity and mortality. The disease is mostly of nosocomial origin, with elderly patients undergoing anti-microbial therapy being particularly at risk. C. difficile produces two large toxins: Toxin A (TcdA) and Toxin B (TcdB). The two toxins act synergistically to damage and impair the colonic epithelium, and are primarily responsible for the pathogenesis associated with CDI. The feasibility of toxin-based vaccination against C. difficile is being vigorously investigated. A vaccine based on formaldehyde-inactivated Toxin A and Toxin B (toxoids) was reported to be safe and immunogenic in healthy volunteers and is now undergoing evaluation in clinical efficacy trials. In order to eliminate cytotoxic effects, a chemical inactivation step must be included in the manufacturing process of this toxin-based vaccine. In addition, the large-scale production of highly toxic antigens could be a challenging and costly process. Vaccines based on non-toxic fragments of genetically engineered versions of the toxins alleviate most of these limitations. We have evaluated a vaccine assembled from two recombinant fragments of TcdB and explored their potential as components of a novel experimental vaccine against CDI. Golden Syrian hamsters vaccinated with recombinant fragments of TcdB combined with full length TcdA (Toxoid A) developed high titer IgG responses and potent neutralizing antibody titers. We also show here that the recombinant vaccine protected animals against lethal challenge with C. difficile spores, with efficacy equivalent to the toxoid vaccine. The development of a two-segment recombinant vaccine could provide several advantages over toxoid TcdA/TcdB such as improvements in manufacturability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Exosomes Enter Vaccine Development: Strategies Meeting Global Challenges of Emerging Infections.

    Science.gov (United States)

    Jungbauer, Alois

    2018-04-01

    New approaches for vaccination must be developed in order to meet the grand challenges for emerging infectious diseases. Exosomes now enter vaccine development and these are strategies are meeting these global challenges, as demonstrated by Anticoli et al., in this issue of Biotechnology Journal. Using exosome vaccines has been now been demonstrated in vivo for several viruses such as Ebola Virus VP24, VP40, and NP, Influenza Virus NP, Crimean-Congo Hemorrhagic Fever NP, West Nile Virus NS3, and Hepatitis C Virus NS3. Now this technology must be tested in clinics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Rotavirus vaccines

    Science.gov (United States)

    Yen, Catherine; Tate, Jacqueline E; Hyde, Terri B; Cortese, Margaret M; Lopman, Benjamin A; Jiang, Baoming; Glass, Roger I; Parashar, Umesh D

    2014-01-01

    Rotavirus is the leading cause of severe diarrhea among children rotavirus vaccines have been efficacious and effective, with many countries reporting substantial declines in diarrheal and rotavirus-specific morbidity and mortality. However, the full public health impact of these vaccines has not been realized. Most countries, including those with the highest disease burden, have not yet introduced rotavirus vaccines into their national immunization programs. Research activities that may help inform vaccine introduction decisions include (1) establishing effectiveness, impact, and safety for rotavirus vaccines in low-income settings; (2) identifying potential strategies to improve performance of oral rotavirus vaccines in developing countries, such as zinc supplementation; and (3) pursuing alternate approaches to oral vaccines, such as parenteral immunization. Policy- and program-level barriers, such as financial implications of new vaccine introductions, should be addressed to ensure that countries are able to make informed decisions regarding rotavirus vaccine introduction. PMID:24755452

  16. Progressive decrease in the potential usefulness of meningococcal serogroup B vaccine (4CMenB, Bexsero® in Gipuzkoa, Northern Spain.

    Directory of Open Access Journals (Sweden)

    Emilio Pérez-Trallero

    Full Text Available The effectiveness of a vaccine is determined not only by the immunogenicity of its components, but especially by how widely it covers the disease-causing strains circulating in a given region. Because vaccine coverage varies over time, this study aimed to detect possible changes that could affect vaccine protection during a specific period in a southern European region. The 4CMenB vaccine is licensed for use in Europe, Canada, and Australia and is mainly directed against Neisseria meningitidis serogroup B. This vaccine contains four main immunogenic components: three recombinant proteins, FHbp, Nhba and NadA, and an outer membrane vesicle [PorA P1.4]. The allelic distribution of FHbp, Nhba, NadA, and PorA antigens in 82 invasive isolates (B and non-B serogroups isolated from January 2008 to December 2013 were analyzed. 4CMenB was likely protective against 61.8% and 50% of serogroup B and non-B meningococci, respectively, in the entire period, but between 2012 and 2013, the predicted protection fell below 45% (42.1% for serogroup B isolates.The observed decreasing trend in the predicted protection during the 6 years of the study (Χ2 for trend  = 4.68, p = 0.03 coincided with a progressive decrease of several clonal complexes (e.g., cc11, cc32 and cc41/44, which had one or more antigens against which the vaccine would offer protection.

  17. Workforce Training and Economic Development Fund: 2015 Annual Progress Report

    Science.gov (United States)

    Iowa Department of Education, 2015

    2015-01-01

    The Department of Education, Division of Community Colleges, will annually provide the State Board of Education with The Workforce Training and Economic Development (WTED) Fund Annual Progress Report. Administration and oversight responsibility for the fund was transferred from the Iowa Economic Development Authority to the Iowa Department of…

  18. The Progressive Development of Environmental Education in Sweden and Denmark

    Science.gov (United States)

    Breiting, Soren; Wickenberg, Per

    2010-01-01

    Our paper traces the history and progressive development of environmental education and education for sustainable development (ESD) in Sweden and Denmark. Our main focus is on work in primary and lower secondary schools as part of a search for trends of international interest related to the conceptualisation and practice of environmental education…

  19. Chemistry research and development. Progress report, December 1978-May 1979

    International Nuclear Information System (INIS)

    Miner, F.J.

    1980-01-01

    Progress and activities are reported on component development, pilot plant development, and instrumentation and statistical systems. Specific items studied include processing of pond sludge, transport of radioactive materials and wastes, corrosion, decontamination and cleaning, fluidized-bed incineration, Pu contamination of soils, chemical analysis, radiometric analysis, security

  20. The pharmaceuticalization of sexual risk: vaccine development and the new politics of cancer prevention.

    Science.gov (United States)

    Mamo, Laura; Epstein, Steven

    2014-01-01

    Vaccine development is a core component of pharmaceutical industry activity and a key site for studying pharmaceuticalization processes. In recent decades, two so-called cancer vaccines have entered the U.S. medical marketplace: a vaccine targeting hepatitis B virus (HBV) to prevent liver cancers and a vaccine targeting human papillomavirus (HPV) to prevent cervical and other cancers. These viruses are two of six sexually transmissible infectious agents (STIs) that are causally linked to the development of cancers; collectively they reference an expanding approach to apprehending cancer that focuses attention simultaneously "inward" toward biomolecular processes and "outward" toward risk behaviors, sexual practices, and lifestyles. This paper juxtaposes the cases of HBV and HPV and their vaccine trajectories to analyze how vaccines, like pharmaceuticals more generally, are emblematic of contemporary pharmaceuticalization processes. We argue that individualized risk, in this case sexual risk, is produced and treated by scientific claims of links between STIs and cancers and through pharmaceutical company and biomedical practices. Simultaneous processes of sexualization and pharmaceuticalization mark these cases. Our comparison demonstrates that these processes are not uniform, and that the production of risks, subjects, and bodies depends not only on the specificities of vaccine development but also on the broader political and cultural frames within which sexuality is understood. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A fuzzy MICMAC analysis for improving supply chain performance of basic vaccines in developing countries.

    Science.gov (United States)

    Chandra, Dheeraj; Kumar, Dinesh

    2018-03-01

    In recent years, demand to improve child immunization coverage globally, and the development of the latest vaccines and technology has made the vaccine market very complex. The rise in such complexities often gives birth to numerous issues in the vaccine supply chain, which are the primary cause of its poor performance. Figuring out the cause of the performance problem can help you decide how to address it. The goal of the present study is to identify and analyze important issues in the supply chain of basic vaccines required for child immunization in the developing countries. Twenty-five key issues as various factors of the vaccine supply chain have been presented in this paper. Fuzzy MICMAC analysis has been carried out to classify the factors based on their driving and dependence power and to develop a hierarchy based model. Further, the findings have been discussed with the field experts to identify the critical factors. Three factors: better demand forecast, communication between the supply chain members, and proper planning and scheduling have been identified as the critical factors of vaccine supply chain. These factors should be given special care to improve vaccine supply chain performance.

  2. Evolution of Live-Attenuated HIV Vaccines

    NARCIS (Netherlands)

    Berkhout, Ben

    2011-01-01

    Despite intensive research since the viral pathogen was discovered some 25 years ago, not much progress has been reported on the development of a safe vaccine that protects against human immunodeficiency virus type 1. A vaccine approach that has been abandoned because its safety cannot be guaranteed

  3. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: Linking systems biology with vaccine development

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Leslie G.; Khare, Sangeeta; Lawhon, Sara D.; Rossetti, Carlos A.; Lewin, Harris A.; Lipton, Mary S.; Turse, Joshua E.; Wylie, Dennis C.; Bai, Yu; Drake, Kenneth L.

    2011-09-22

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic *sipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host

  4. Comparative study on three locally developed live orf virus vaccines for sheep in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Fahdel M. Housawi

    2012-02-01

    Full Text Available The epidemiology of orf virus infection in Saudi Arabia (SA has been researched since 1990. The results obtained during this period indicate that the disease is widespread, has great economic impact and that no vaccine has been used against it. The present study compares the immunogenicity and protective efficacy of three locally developed live orf virus vaccines. Two of them differ in their passage history in Vero cell culture and the third was used as a virulent virus in glycerine buffer. To the best of the authors’ knowledge, no similar comparative study has been conducted in the Middle East utilising three types of vaccines prepared from the same virus strain. Selection of the candidate seed orf virus and performance of the quality control tests were as laid out by the OIE for veterinary vaccine production. The vaccine seed virus was a field orf virus isolated from a previous orf outbreak in Saudi Arabia. A simple novel formula was developed to calculate the rate of reduction in the healing time (RHT % in the challenged sheep. This allowed direct comparison of the efficacy of the three types of vaccines employed in the present study. The efficacy of each vaccine was tested on a cohort of local Noemi sheep.

  5. Adjuvants and alternative routes of administration towards the development of the ideal influenza vaccine.

    Science.gov (United States)

    Durando, Paolo; Iudici, Rocco; Alicino, Cristiano; Alberti, Marisa; de Florentis, Daniela; Ansaldi, Filippo; Icardi, Giancarlo

    2011-01-01

    Vaccination is universally considered as the principal measure for the control of influenza, which represents a significant burden worldwide, both from a health-care and a socio-economic viewpoint. Conventional non-adjuvanted trivalent influenza vaccines (TIVs) have been recognized as having some deficiencies, such as suboptimal immunogenicity particularly in the elderly, in patients with severe chronic diseases and immunocompromized, indeed, those groups of the population at higher risk of developing severe complications following influenza infection, when compared to healthy adults. Moreover, the protection offered by conventional vaccines may be reduced by periodic antigenic drifts, resulting in a mismatch between the circulating and vaccinal viral strains. Another gap regarding currently available vaccines is related to the egg-based manufacturing system for their production: not only the length of time involved with the latter but also the limited capacity of this platform technology represent a major limitation for the active prevention of influenza, which is particularly important in the case of a new pandemic strain. New technologies used in vaccine composition, administration and manufacture have led to major advances during the last few years, and clinical researchers have continued to work hard, investigating several different strategies to improve the performance of influenza vaccines: namely, the addition of different adjuvants (i.e., MF59- and AS03-vaccines, virosomal formulations), the use of alternative routes of administration or manufacture (i.e., intradermal, nasal and oral vaccines and cell culture- and reverse genetic-based vaccines) or of high doses of antigen, and the development of DNA-vaccines, or the use of conserved viral epitopes (i.e., the extracellular portion of the M2 protein, the nucleoprotein and some domains of the hemagglutinin), in the attempt to produce a "universal target" antigen vaccine. The knowledge acquired represents a

  6. Pre-clinical and clinical development of the first placental malaria vaccine

    DEFF Research Database (Denmark)

    Pehrson, Caroline; Salanti, Ali; Theander, Thor G

    2017-01-01

    the condition.  Areas covered: Pub Med was searched using the broad terms 'malaria parasite placenta' to identify studies of interactions between parasite and host, 'prevention of placental malaria' to identify current strategies to prevent placental malaria, and 'placental malaria vaccine' to identify pre-clinical...... vaccine development. However, all papers from these searches were not systematically included.  Expert commentary: The first phase I clinical trials of vaccines are well underway. Trials testing efficacy are more complicated to carry out as only women that are exposed to parasites during pregnancy...

  7. Prophylactic and Therapeutic Vaccination against Hepatitis C Virus (HCV: Developments and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Marian E. Major

    2009-08-01

    Full Text Available Studies in patients and chimpanzees that spontaneously clear Hepatitis C Virus (HCV have demonstrated that natural immunity to the virus is induced during primary infections and that this immunity can be cross protective. These discoveries led to optimism regarding prophylactic HCV vaccines and a number of studies in the chimpanzee model have been performed, all of which resulted in modified infections after challenge but did not always prevent persistence of the virus. Therapeutic vaccine strategies have also been pursued in an effort to reduce the costs and side effects associated with anti-viral drug treatment. This review summarizes the studies performed thus far in both patients and chimpanzees for prophylactic and therapeutic vaccination, assesses the progress made and future perspectives.

  8. Advances in neglected tropical disease vaccines: Developing relative potency and functional assays for the Na-GST-1/Alhydrogel hookworm vaccine

    Science.gov (United States)

    Brelsford, Jill B.; Plieskatt, Jordan L.; Yakovleva, Anna; Jariwala, Amar; Keegan, Brian P.; Peng, Jin; Xia, Pengjun; Li, Guangzhao; Campbell, Doreen; Periago, Maria Victoria; Correa-Oliveira, Rodrigo; Bottazzi, Maria Elena; Hotez, Peter J.

    2017-01-01

    A new generation of vaccines for the neglected tropical diseases (NTDs) have now advanced into clinical development, with the Na-GST-1/Alhydrogel Hookworm Vaccine already being tested in Phase 1 studies in healthy adults. The current manuscript focuses on the often overlooked critical aspects of NTD vaccine product development, more specifically, vaccine stability testing programs. A key measure of vaccine stability testing is "relative potency" or the immunogenicity of the vaccine during storage. As with most NTD vaccines, the Na-GST-1/Alhydrogel Hookworm Vaccine was not developed by attenuation or inactivation of the pathogen (Necator americanus), so conventional methods for measuring relative potency are not relevant for this investigational product. Herein, we describe a novel relative potency testing program and report for the first time on the clinical lot of this NTD vaccine during its first 60 months of storage at 2–8°C. We also describe the development of a complementary functional assay that measures the ability of IgG from animals or humans immunized with Na-GST-1/Alhydrogel to neutralize this important hookworm enzyme. While 90% inhibition of the catalytic activity of Na-GST-1 was achieved in animals immunized with Na-GST-1/Alhydrogel, lower levels of inhibition were observed in immunized humans. Moreover, anti-Na-GST-1 antibodies from volunteers in non-hookworm endemic areas were better able to inhibit catalytic activity than anti-Na-GST-1 antibodies from volunteers resident in hookworm endemic areas. The results described herein provide the critical tools for the product development of NTD vaccines. PMID:28192438

  9. Advances in neglected tropical disease vaccines: Developing relative potency and functional assays for the Na-GST-1/Alhydrogel hookworm vaccine.

    Directory of Open Access Journals (Sweden)

    Jill B Brelsford

    2017-02-01

    Full Text Available A new generation of vaccines for the neglected tropical diseases (NTDs have now advanced into clinical development, with the Na-GST-1/Alhydrogel Hookworm Vaccine already being tested in Phase 1 studies in healthy adults. The current manuscript focuses on the often overlooked critical aspects of NTD vaccine product development, more specifically, vaccine stability testing programs. A key measure of vaccine stability testing is "relative potency" or the immunogenicity of the vaccine during storage. As with most NTD vaccines, the Na-GST-1/Alhydrogel Hookworm Vaccine was not developed by attenuation or inactivation of the pathogen (Necator americanus, so conventional methods for measuring relative potency are not relevant for this investigational product. Herein, we describe a novel relative potency testing program and report for the first time on the clinical lot of this NTD vaccine during its first 60 months of storage at 2-8°C. We also describe the development of a complementary functional assay that measures the ability of IgG from animals or humans immunized with Na-GST-1/Alhydrogel to neutralize this important hookworm enzyme. While 90% inhibition of the catalytic activity of Na-GST-1 was achieved in animals immunized with Na-GST-1/Alhydrogel, lower levels of inhibition were observed in immunized humans. Moreover, anti-Na-GST-1 antibodies from volunteers in non-hookworm endemic areas were better able to inhibit catalytic activity than anti-Na-GST-1 antibodies from volunteers resident in hookworm endemic areas. The results described herein provide the critical tools for the product development of NTD vaccines.

  10. Modelling efforts needed to advance herpes simplex virus (HSV) vaccine development: Key findings from the World Health Organization Consultation on HSV Vaccine Impact Modelling.

    Science.gov (United States)

    Gottlieb, Sami L; Giersing, Birgitte; Boily, Marie-Claude; Chesson, Harrell; Looker, Katharine J; Schiffer, Joshua; Spicknall, Ian; Hutubessy, Raymond; Broutet, Nathalie

    2017-06-21

    Development of a vaccine against herpes simplex virus (HSV) is an important goal for global sexual and reproductive health. In order to more precisely define the health and economic burden of HSV infection and the theoretical impact and cost-effectiveness of an HSV vaccine, in 2015 the World Health Organization convened an expert consultation meeting on HSV vaccine impact modelling. The experts reviewed existing model-based estimates and dynamic models of HSV infection to outline critical future modelling needs to inform development of a comprehensive business case and preferred product characteristics for an HSV vaccine. This article summarizes key findings and discussions from the meeting on modelling needs related to HSV burden, costs, and vaccine impact, essential data needs to carry out those models, and important model components and parameters. Copyright © 2017. Published by Elsevier Ltd.

  11. Recent advances in vaccine development for herpes simplex virus types I and II.

    Science.gov (United States)

    Coleman, Jeffrey L; Shukla, Deepak

    2013-04-01

    Despite recent advances in vaccine design and strategies, latent infection with herpes simplex virus (HSV) remains a formidable challenge. Approaches involving live-attenuated viruses and inactivated viral preparations were popular throughout the twentieth century. In the past ten years, many vaccine types, both prophylactic or therapeutic, have contained a replication-defective HSV, viral DNA or glycoproteins. New research focused on the mechanism of immune evasion by the virus has involved developing vaccines with various gene deletions and manipulations combined with the use of new and more specific adjuvants. In addition, new "prime-boost" methods of strengthening the vaccine efficacy have proven effective, but there have also been flaws with some recent strategies that appear to have compromised vaccine efficacy in humans. Given the complicated lifecycle of HSV and its unique way of spreading from cell-to-cell, it can be concluded that the development of an ideal vaccine needs new focus on cell-mediated immunity, better understanding of the latent viral genome and serious consideration of gender-based differences in immunity development among humans. This review summarizes recent developments made in the field and sheds light on some potentially new ways to conquer the problem including development of dual-action prophylactic microbicides that prohibit viral entry and, in addition, induce a strong antigen response.

  12. A national multicenter phase 2 study of prostate-specific antigen (PSA) pox virus vaccine with sequential androgen ablation therapy in patients with PSA progression: ECOG 9802.

    Science.gov (United States)

    DiPaola, Robert S; Chen, Yu-Hui; Bubley, Glenn J; Stein, Mark N; Hahn, Noah M; Carducci, Michael A; Lattime, Edmund C; Gulley, James L; Arlen, Philip M; Butterfield, Lisa H; Wilding, George

    2015-09-01

    E9802 was a phase 2 multi-institution study conducted to evaluate the safety and effectiveness of vaccinia and fowlpox prostate-specific antigen (PSA) vaccine (step 1) followed by combination with androgen ablation therapy (step 2) in patients with PSA progression without visible metastasis. To test the hypothesis that vaccine therapy in this early disease setting will be safe and have a biochemical effect that would support future studies of immunotherapy in patients with minimal disease burden. Patients who had PSA progression following local therapy were treated with PROSTVAC-V (vaccinia)/TRICOM on cycle 1 followed by PROSTVAC-F (fowlpox)/TRICOM for subsequent cycles in combination with granulocyte-macrophage colony-stimulating factor (step 1). Androgen ablation was added on progression (step 2). Step 1 primary end points included progression at 6 mo and characterization of change in PSA velocity pretreatment to post-treatment. Step 2 end points included PSA response with combined vaccine and androgen ablation. In step 1, 25 of 40 eligible patients (63%) were progression free at 6 mo after registration (90% confidence interval [CI], 48-75). The median pretreatment PSA velocity was 0.13 log(PSA)/mo, in contrast to median postregistration velocity of 0.09 log(PSA)/mo (p=0.02), which is an increase in median PSA doubling time from 5.3 mo to 7.7 mo. No grade ≥4 treatment-related toxicity was observed. In the 27 patients eligible and treated for step 2, 20 patients achieved a complete response (CR) at 7 mo (CR rate: 74%; 90% CI, 57-87). Although supportive of larger studies in the cooperative group setting, this study is limited by the small number of patients and the absence of a control group as in a phase 3 study. A viral PSA vaccine can be administered safely in the multi-institutional cooperative group setting to patients with minimal disease volume alone and combined with androgen ablation, supporting the feasibility of future phase 3 studies in this

  13. Animal models for development of therapeutic HPV16 vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2002-01-01

    Roč. 20, č. 1 (2002), s. 207-212 ISSN 1019-6439 Institutional research plan: CEZ:AV0Z5052915 Keywords : human papilloma viruses * tumour vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.931, year: 2002

  14. Vaccinations in Paediatric Rheumatology : an Update on Current Developments

    NARCIS (Netherlands)

    Groot, Noortje; Heijstek, Marloes W.; Wulffraat, NM

    In 2011, the European League Against Rheumatism (EULAR) published recommendations regarding the vaccination of children with rheumatic diseases. These recommendations were based on a systematic literature review published in that same year. Since then, the evidence body on this topic has grown

  15. Vaccinations in Paediatric Rheumatology: an Update on Current Developments

    NARCIS (Netherlands)

    N. Groot (Noortje); M.W. Heijstek (Marloes); N.M. Wulffraat (Nico)

    2015-01-01

    textabstractIn 2011, the European League Against Rheumatism (EULAR) published recommendations regarding the vaccination of children with rheumatic diseases. These recommendations were based on a systematic literature review published in that same year. Since then, the evidence body on this topic has

  16. Efficacy of Killed Adjuvanted FMD Vaccine Developed with ...

    African Journals Online (AJOL)

    In this study the potency of killed Foot and Mouth Disease (FMD) vaccines serotypes SAT1 (Nig 1/98) and SAT 2 (Nig 2/97) virus isolates, formulated with montanide ISA 206 adjuvant was determined in guinea pigs and cattle by antibody assay using Complement Fixation and Serum Neutralization tests. The antibody titres ...

  17. Prospect of Developing Local Vaccines against Foot-And-Mouth ...

    African Journals Online (AJOL)

    The antigen was clarified by simple centrifugation, adjuvated with saponin and aluminium hydroxide gel and 3 ml dose was used to vaccinate animals. The gel was prepared by simple procedure that required no special installation. No advise effects were observed in inoculated calves following 2-3 doses of the antigen in ...

  18. The Chip-Scale Atomic Clock - Recent Development Progress

    Science.gov (United States)

    2004-09-01

    35th Annual Precise Time and Time Interval (PTTI) Meeting 467 THE CHIP-SCALE ATOMIC CLOCK – RECENT DEVELOPMENT PROGRESS R. Lutwak ...1] R. Lutwak , et al., 2003, “The Chip-Scale Atomic Clock – Coherent Population Trapping vs. Conventional Interrogation,” in

  19. Bacterial superglue enables easy development of efficient virus-like particle based vaccines

    DEFF Research Database (Denmark)

    Thrane, Susan; Janitzek, Christoph M; Matondo, Sungwa

    2016-01-01

    BACKGROUND: Virus-like particles (VLPs) represent a significant advance in the development of subunit vaccines, combining high safety and efficacy. Their particulate nature and dense repetitive subunit organization makes them ideal scaffolds for display of vaccine antigens. Traditional approaches...... for VLP-based antigen display require labor-intensive trial-and-error optimization, and often fail to generate dense antigen display. Here we utilize the split-intein (SpyTag/SpyCatcher) conjugation system to generate stable isopeptide bound antigen-VLP complexes by simply mixing of the antigen and VLP......). CONCLUSIONS: The spy-VLP system constitutes a versatile and rapid method to develop highly immunogenic VLP-based vaccines. Our data provide proof-of-concept for the technology's ability to present complex vaccine antigens to the immune system and elicit robust functional antibody responses as well...

  20. Development of a novel oral vaccine against Mycobacterium avium paratuberculosis and Johne disease

    Science.gov (United States)

    Johnston, C; Coffey, A; Sleator, RD

    2010-01-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Johne disease, a granulomatous enteritis of cattle and other domesticated and wild ruminant species. Johne disease is prevalent worldwide and has a significant impact on the global agricultural economy. Current vaccines against Johne are insufficient in stemming its spread, and associated side-effects prevent their widespread use in control programs. Effective and safe vaccine strategies are needed. The main purpose of this paper is to propose and evaluate the development of a novel oral subunit-vaccine using a patho-biotechnological approach. This novel strategy, which harnesses patho-genetic elements from the intracellular pathogen Listeria monocytogenes, may provide a realistic route towards developing an effective next generation subunit vaccine against Johne disease and paratuberculosis. PMID:21326921

  1. A Perspective on the Development of Plant-Made Vaccines in the Fight against Ebola Virus

    Science.gov (United States)

    Rosales-Mendoza, Sergio; Nieto-Gómez, Ricardo; Angulo, Carlos

    2017-01-01

    The Ebola virus (EBOV) epidemic indicated a great need for prophylactic and therapeutic strategies. The use of plants for the production of biopharmaceuticals is a concept being adopted by the pharmaceutical industry, with an enzyme for human use currently commercialized since 2012 and some plant-based vaccines close to being commercialized. Although plant-based antibodies against EBOV are under clinical evaluation, the development of plant-based vaccines against EBOV essentially remains an unexplored area. The current technologies for the production of plant-based vaccines include stable nuclear expression, transient expression mediated by viral vectors, and chloroplast expression. Specific perspectives on how these technologies can be applied for developing anti-EBOV vaccines are provided, including possibilities for the design of immunogens as well as the potential of the distinct expression modalities to produce the most relevant EBOV antigens in plants considering yields, posttranslational modifications, production time, and downstream processing. PMID:28344580

  2. Deinococcus Mn2+ -Peptide Complex: A Novel Approach to Alphavirus Vaccine Development

    Science.gov (United States)

    2016-08-05

    vaccines, ionizing radiation (IR)-induced destruction of a virus’ genome is desired, while radiation - induced damage to epitopes is...development of irradiation-based approaches to vaccine production [1-3]. During ionizing radiation (IR) exposure, the energy of the photons induces direct...specifically protect proteins from the far more damaging indirect effects of gamma (γ)-rays in aqueous preparations. Mn2+-peptide antioxidants that

  3. Development of an Aotus nancymaae Model for Shigella Vaccine Immunogenicity and Efficacy Studies

    OpenAIRE

    Gregory, Michael; Kaminski, Robert W.; Lugo-Roman, Luis A.; Galvez Carrillo, Hugo; Tilley, Drake Hamilton; Baldeviano, Christian; Simons, Mark P.; Reynolds, Nathanael D.; Ranallo, Ryan T.; Suvarnapunya, Akamol E.; Venkatesan, Malabi M.; Oaks, Edwin V.

    2014-01-01

    Several animal models exist to evaluate the immunogenicity and protective efficacy of candidate Shigella vaccines. The two most widely used nonprimate models for vaccine development include a murine pulmonary challenge model and a guinea pig keratoconjunctivitis model. Nonhuman primate models exhibit clinical features and gross and microscopic colonic lesions that mimic those induced in human shigellosis. Challenge models for enterotoxigenic Escherichia coli (ETEC) and Campylobacter spp. have...

  4. The development of vaccines: how the past led to the future.

    Science.gov (United States)

    Plotkin, Stanley A; Plotkin, Susan L

    2011-10-03

    The history of vaccine development has seen many accomplishments, but there are still many diseases that are difficult to target, and new technologies are being brought to bear on them. Past successes have been largely due to elicitation of protective antibodies based on predictions made from the study of animal models, natural infections and seroepidemiology. Those predictions have often been correct, as indicated by the decline of many infections for which vaccines have been made over the past 200 years.

  5. Cost-effectiveness of introducing a rotavirus vaccine in developing countries: The case of Mexico

    Science.gov (United States)

    Valencia-Mendoza, Atanacio; Bertozzi, Stefano M; Gutierrez, Juan-Pablo; Itzler, Robbin

    2008-01-01

    Background In developing countries rotavirus is the leading cause of severe diarrhoea and diarrhoeal deaths in children under 5. Vaccination could greatly alleviate that burden, but in Mexico as in most low- and middle-income countries the decision to add rotavirus vaccine to the national immunisation program will depend heavily on its cost-effectiveness and affordability. The objective of this study was to assess the cost-effectiveness of including the pentavalent rotavirus vaccine in Mexico's national immunisation program. Methods A cost-effectiveness model was developed from the perspective of the health system, modelling the vaccination of a hypothetical birth cohort of 2 million children monitored from birth through 60 months of age. It compares the cost and disease burden of rotavirus in an unvaccinated cohort of children with one vaccinated as recommended at 2, 4, and 6 months. Results Including the pentavalent vaccine in the national immunisation program could prevent 71,464 medical visits (59%), 5,040 hospital admissions (66%), and 612 deaths from rotavirus gastroenteritis (70%). At US$10 per dose and a cost of administration of US$13.70 per 3-dose regimen, vaccination would cost US$122,058 per death prevented, US$4,383 per discounted life-year saved, at a total net cost of US$74.7 million dollars to the health care system. Key variables influencing the results were, in order of importance, case fatality, vaccine price, vaccine efficacy, serotype prevalence, and annual loss of efficacy. The results are also very sensitive to the discount rate assumed when calculated per life-year saved. Conclusion At prices below US $15 per dose, the cost per life-year saved is estimated to be lower than one GNP per capita and hence highly cost effective by the WHO Commission on Macroeconomics and Health criteria. The cost-effectiveness estimates are highly dependent upon the mortality in the absence of the vaccine, which suggests that the vaccine is likely to be

  6. Cost-effectiveness of introducing a rotavirus vaccine in developing countries: The case of Mexico

    Directory of Open Access Journals (Sweden)

    Gutierrez Juan-Pablo

    2008-07-01

    Full Text Available Abstract Background In developing countries rotavirus is the leading cause of severe diarrhoea and diarrhoeal deaths in children under 5. Vaccination could greatly alleviate that burden, but in Mexico as in most low- and middle-income countries the decision to add rotavirus vaccine to the national immunisation program will depend heavily on its cost-effectiveness and affordability. The objective of this study was to assess the cost-effectiveness of including the pentavalent rotavirus vaccine in Mexico's national immunisation program. Methods A cost-effectiveness model was developed from the perspective of the health system, modelling the vaccination of a hypothetical birth cohort of 2 million children monitored from birth through 60 months of age. It compares the cost and disease burden of rotavirus in an unvaccinated cohort of children with one vaccinated as recommended at 2, 4, and 6 months. Results Including the pentavalent vaccine in the national immunisation program could prevent 71,464 medical visits (59%, 5,040 hospital admissions (66%, and 612 deaths from rotavirus gastroenteritis (70%. At US$10 per dose and a cost of administration of US$13.70 per 3-dose regimen, vaccination would cost US$122,058 per death prevented, US$4,383 per discounted life-year saved, at a total net cost of US$74.7 million dollars to the health care system. Key variables influencing the results were, in order of importance, case fatality, vaccine price, vaccine efficacy, serotype prevalence, and annual loss of efficacy. The results are also very sensitive to the discount rate assumed when calculated per life-year saved. Conclusion At prices below US $15 per dose, the cost per life-year saved is estimated to be lower than one GNP per capita and hence highly cost effective by the WHO Commission on Macroeconomics and Health criteria. The cost-effectiveness estimates are highly dependent upon the mortality in the absence of the vaccine, which suggests that the vaccine

  7. Baseline Gas Turbine Development Program. Fourteenth quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, F W; Wagner, C E

    1976-04-30

    Progress is reported for a Baseline Gas Turbine Development Program sponsored by the Heat Engine Systems Branch, Division of Transportation Energy Conservation (TEC) of the Energy Research and Development Administration (ERDA). Structurally, this program is made up of three parts: (1) documentation of the existing automotive gas turbine state-of-the-art; (2) conduction of an extensive component improvement program; and (3) utilization of the improvements in the design, and building of an Upgraded Engine capable of demonstrating program goals.

  8. Development and introduction of inactivated poliovirus vaccines derived from Sabin strains in Japan.

    Science.gov (United States)

    Shimizu, Hiroyuki

    2016-04-07

    During the endgame of global polio eradication, the universal introduction of inactivated poliovirus vaccines is urgently required to reduce the risk of vaccine-associated paralytic poliomyelitis and polio outbreaks due to wild and vaccine-derived polioviruses. In particular, the development of inactivated poliovirus vaccines (IPVs) derived from the attenuated Sabin strains is considered to be a highly favorable option for the production of novel IPV that reduce the risk of facility-acquired transmission of poliovirus to the communities. In Japan, Sabin-derived IPVs (sIPVs) have been developed and introduced for routine immunization in November 2012. They are the first licensed sIPVs in the world. Consequently, trivalent oral poliovirus vaccine was used for polio control in Japan for more than half a century but has now been removed from the list of vaccines licensed for routine immunization. This paper reviews the development, introduction, characterization, and global status of IPV derived from attenuated Sabin strains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis

    Directory of Open Access Journals (Sweden)

    Mariana Costa Duarte

    Full Text Available Abstract: Visceral leishmaniasis (VL is one of the most important tropical diseases worldwide. Although chemotherapy has been widely used to treat this disease, problems related to the development of parasite resistance and side effects associated with the compounds used have been noted. Hence, alternative approaches for VL control are desirable. Some methods, such as vector control and culling of infected dogs, are insufficiently effective, with the latter not ethically recommended. The development of vaccines to prevent VL is a feasible and desirable measure for disease control; for example, some vaccines designed to protect dogs against VL have recently been brought to market. These vaccines are based on the combination of parasite fractions or recombinant proteins with adjuvants that are able to induce cellular immune responses; however, their partial efficacy and the absence of a vaccine to protect against human leishmaniasis underline the need for characterization of new vaccine candidates. This review presents recent advances in control measures for VL based on vaccine development, describing extensively studied antigens, as well as new antigenic proteins recently identified using immuno-proteomic techniques.

  10. User-Centered Design for Developing Interventions to Improve Clinician Recommendation of Human Papillomavirus Vaccination.

    Science.gov (United States)

    Henninger, Michelle L; Mcmullen, Carmit K; Firemark, Alison J; Naleway, Allison L; Henrikson, Nora B; Turcotte, Joseph A

    2017-01-01

    Human papillomavirus (HPV) is the most common sexually transmitted infection in the US and is associated with multiple types of cancer. Although effective HPV vaccines have been available since 2006, coverage rates in the US remain much lower than with other adolescent vaccinations. Prior research has shown that a strong recommendation from a clinician is a critical determinant in HPV vaccine uptake and coverage. However, few published studies to date have specifically addressed the issue of helping clinicians communicate more effectively with their patients about the HPV vaccine. To develop one or more novel interventions for helping clinicians make strong and effective recommendations for HPV vaccination. Using principles of user-centered design, we conducted qualitative interviews, interviews with persons from analogous industries, and a data synthesis workshop with multiple stakeholders. Five potential intervention strategies targeted at health care clinicians, youth, and their parents were developed. The two most popular choices to pursue were a values-based communication strategy and a puberty education workbook. User-centered design is a useful strategy for developing potential interventions to improve the rate and success of clinicians recommending the HPV vaccine. Further research is needed to test the effectiveness and acceptability of these interventions in clinical settings.

  11. Reduced Incidence of Slowly Progressive Heymann Nephritis in Rats Immunized With a Modified Vaccination Technique

    Directory of Open Access Journals (Sweden)

    Arpad Z. Barabas

    2006-01-01

    Full Text Available A slowly progressive Heymann nephritis (SPHN was induced in three groups of rats by weekly injections of a chemically modified renal tubular antigen in an aqueous medium. A control group of rats received the chemically unmodified version of the antigen in an aqueous solution. One group of SPHN rats were pre- and post-treated with weekly injections of IC made up of rKF3 and rarKF3 IgM antibody at antigen excess (MIC (immune complexes [ICs] containing sonicated ultracentrifuged [u/c] rat kidney fraction 3 [rKF3] antigen and IgM antibodies specific against the antigen, at slight antigen excess. One group of SPHN rats were post-treated with MIC 3 weeks after the induction of the disease and one group of SPHN animals received no treatment. The control group of rats received pre- and post-treatment with sonicated u/c rKF3.

  12. Development of a Multivalent Subunit Vaccine against Tularemia Using Tobacco Mosaic Virus (TMV Based Delivery System.

    Directory of Open Access Journals (Sweden)

    Sukalyani Banik

    Full Text Available Francisella tularensis is a facultative intracellular pathogen, and is the causative agent of a fatal human disease known as tularemia. F. tularensis is classified as a Category A Biothreat agent by the CDC based on its use in bioweapon programs by several countries in the past and its potential to be used as an agent of bioterrorism. No licensed vaccine is currently available for prevention of tularemia. In this study, we used a novel approach for development of a multivalent subunit vaccine against tularemia by using an efficient tobacco mosaic virus (TMV based delivery platform. The multivalent subunit vaccine was formulated to contain a combination of F. tularensis protective antigens: OmpA-like protein (OmpA, chaperone protein DnaK and lipoprotein Tul4 from the highly virulent F. tularensis SchuS4 strain. Two different vaccine formulations and immunization schedules were used. The immunized mice were challenged with lethal (10xLD100 doses of F. tularensis LVS on day 28 of the primary immunization and observed daily for morbidity and mortality. Results from this study demonstrate that TMV can be used as a carrier for effective delivery of multiple F. tularensis antigens. TMV-conjugate vaccine formulations are safe and multiple doses can be administered without causing any adverse reactions in immunized mice. Immunization with TMV-conjugated F. tularensis proteins induced a strong humoral immune response and protected mice against respiratory challenges with very high doses of F. tularensis LVS. This study provides a proof-of-concept that TMV can serve as a suitable platform for simultaneous delivery of multiple protective antigens of F. tularensis. Refinement of vaccine formulations coupled with TMV-targeting strategies developed in this study will provide a platform for development of an effective tularemia subunit vaccine as well as a vaccination approach that may broadly be applicable to many other bacterial pathogens.

  13. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development.

    Science.gov (United States)

    Volz, A; Sutter, G

    2017-01-01

    Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology. © 2017 Elsevier Inc. All rights reserved.

  14. Effect of Preventive Chlamydia abortus Vaccination in Offspring Development in Sheep Challenged Experimentally.

    Science.gov (United States)

    García-Seco, Teresa; Pérez-Sancho, Marta; Salinas, Jesús; Navarro, Alejandro; Díez-Guerrier, Alberto; García, Nerea; Pozo, Pilar; Goyache, Joaquín; Domínguez, Lucas; Álvarez, Julio

    2016-01-01

    Ovine enzootic abortion, caused by Chlamydia abortus, leads to important economic losses worldwide. In addition to reproductive failures, infection may impact lamb growth during the first weeks after birth, yet this effect has not been well characterized. Vaccination can help to control the disease but variable efficacy values have been described, possibly related with factors associated with the host, the vaccine, the parameter used for efficacy determination, and the challenge conditions. In this context, we evaluated the efficacy of an inactivated standard commercial vaccine and a 1/2 diluted dose in pregnant sheep challenged with C. abortus by examining multiple indicators of vaccine effect (including incidence of reproductive failures, bacterial excretion, and evolution of weight gain of viable lambs during the first month of life). Three groups of ewes [control non-vaccinated, C (n = 18); vaccinated with standard dose, SV (n = 16); and vaccinated with 1/2 dose, DV (n = 17)], were challenged approximately 90 days post-mating and tested using direct PCR (tissue samples and vaginal swabs) and ELISA (serum) until 31 days post-reproductive outcome. There were not significant differences in the proportions of reproductive failures or bacterial shedding after birth/abortion regardless the vaccination protocol. However, a beneficial effect of vaccination on offspring growth was detected in both vaccinated groups compared with the controls, with a mean increase in weight measured at 30 days of life of 1.5 and 2.5 kg (p = 0.056) and an increase in the geometric mean of the daily gain of 8.4 and 9.7% in lambs born from DV and SV ewes compared with controls, respectively. Our results demonstrate the effect of an inactivated vaccine in the development of the offspring of C. abortus-infected ewes at a standard and a diluted dose, an interesting finding given the difficulty in achieving sufficient antigen concentration in the production of enzootic

  15. Identification and development of a promising novel mumps vaccine candidate strain.

    Science.gov (United States)

    Liang, Yan; Ma, Shaohui; Liu, Longding; Zhao, Hongling; Wang, Lichun; Jiang, Li; Xie, Zhongping; Dong, Chenghong; Li, Qihan

    2010-12-01

    Mumps epidemics are usually caused by airborne transmission of mumps virus (MuV) and have high morbidity in non-immunized children. Epidemiological studies in many regions of China show that the genotype F viral strain is the most prevalent. However, the genotype A strain is currently used to prepare vaccines. Regional epidemiological MuV data suggest a significant application for the development of live attenuated mumps vaccines targeting specific genotypes. This article reports the isolation and culture of a genotype F MuV candidate strain that could be used to prepare a live attenuated mumps vaccine. This strain is shown to have good immunological efficacy and stability in neurovirulence evaluations. This work should facilitate the implementation of mumps vaccination in mainland China by targeting the most prevalent MuV genotype, genotype F. Copyright © 2010 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  16. Design and development of progressive tool for manufacturing washer

    Science.gov (United States)

    Annigeri, Ulhas K.; Raghavendra Ravi Kiran, K.; Deepthi, Y. P.

    2017-07-01

    In a progressive tool the raw material is worked at different station to finally fabricate the component. A progressive tool is a lucrative tool for mass production of components. A lot of automobile and other transport industries develop progressive tool for the production of components. The design of tool involves lot of planning and the same amount of skill of process planning is required in the fabrication of the tool. The design also involves use of thumb rules and standard elements as per experience gained in practice. Manufacturing the press tool is a laborious task as special jigs and fixtures have to be designed for the purpose. Assembly of all the press tool elements is another task where use of accurate measuring instruments for alignment of various tool elements is important. In the present study, design and fabrication of progressive press tool for production of washer has been developed and the press tool has been tried out on a mechanical type of press. The components produced are to dimensions.

  17. Dengue, zika, chikungunya and the development of vaccines

    OpenAIRE

    Isabel N. Kantor

    2018-01-01

    Dengue (DENV), zika (ZIKV) and chikungunya (CHIKV), three arbovirosis transmitted by Aedes mosquitoes, have spread in recent decades in humid tropical and subtropical zones. Dengue is epidemic in subtropical areas of Argentina. DENV infection confers lasting immunity against the infecting serotype but increases the risk of serious disease upon reinfection by any of the other three. The recombinant tetravalent vaccine Dengvaxia® prevents severe dengue and hospitalization in seropositive subjec...

  18. Tocotrienols are good adjuvants for developing cancer vaccines

    International Nuclear Information System (INIS)

    Abdul Hafid, Sitti Rahma; Radhakrishnan, Ammu Kutty; Nesaretnam, Kalanithi

    2010-01-01

    Dendritic cells (DCs) have the potential for cancer immunotherapy due to their ability to process and present antigens to T-cells and also in stimulating immune responses. However, DC-based vaccines have only exhibited minimal effectiveness against established tumours in mice and humans. The use of appropriate adjuvant enhances the efficacy of DC based cancer vaccines in treating tumours. In this study we have used tocotrienol-rich fraction (TRF), a non-toxic natural compound, as an adjuvant to enhance the effectiveness of DC vaccines in treating mouse mammary cancers. In the mouse model, six-week-old female BALB/c mice were injected subcutaneously with DC and supplemented with oral TRF daily (DC+TRF) and DC pulsed with tumour lysate from 4T1 cells (DC+TL). Experimental mice were also injected with DC pulsed with tumour lysate and supplemented daily with oral TRF (DC+TL+TRF) while two groups of animal which were supplemented daily with carrier oil (control) and with TRF (TRF). After three times vaccination, mice were inoculated with 4T1 cells in the mammary breast pad to induce tumour. Our study showed that TRF in combination with DC pulsed with tumour lysate (DC+TL+TRF) injected subcutaneously significantly inhibited the growth of 4T1 mammary tumour cells as compared to control group. Analysis of cytokines production from murine splenocytes showed significant increased productions of IFN-γ and IL-12 in experimental mice (DC+TL+TRF) compared to control, mice injected with DC without TRF, mice injected with DC pulsed with tumour lysate and mice supplemented with TRF alone. Higher numbers of cytotoxic T cells (CD8) and natural killer cells (NK) were observed in the peripheral blood of TRF adjuvanted DC pulsed tumour lysate mice. Our study show that TRF has the potential to be an adjuvant to augment DC based immunotherapy

  19. Tocotrienols are good adjuvants for developing cancer vaccines

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Ammu

    2010-01-01

    Full Text Available Abstract Background Dendritic cells (DCs have the potential for cancer immunotherapy due to their ability to process and present antigens to T-cells and also in stimulating immune responses. However, DC-based vaccines have only exhibited minimal effectiveness against established tumours in mice and humans. The use of appropriate adjuvant enhances the efficacy of DC based cancer vaccines in treating tumours. Methods In this study we have used tocotrienol-rich fraction (TRF, a non-toxic natural compound, as an adjuvant to enhance the effectiveness of DC vaccines in treating mouse mammary cancers. In the mouse model, six-week-old female BALB/c mice were injected subcutaneously with DC and supplemented with oral TRF daily (DC+TRF and DC pulsed with tumour lysate from 4T1 cells (DC+TL. Experimental mice were also injected with DC pulsed with tumour lysate and supplemented daily with oral TRF (DC+TL+TRF while two groups of animal which were supplemented daily with carrier oil (control and with TRF (TRF. After three times vaccination, mice were inoculated with 4T1 cells in the mammary breast pad to induce tumour. Results Our study showed that TRF in combination with DC pulsed with tumour lysate (DC+TL+TRF injected subcutaneously significantly inhibited the growth of 4T1 mammary tumour cells as compared to control group. Analysis of cytokines production from murine splenocytes showed significant increased productions of IFN-γ and IL-12 in experimental mice (DC+TL+TRF compared to control, mice injected with DC without TRF, mice injected with DC pulsed with tumour lysate and mice supplemented with TRF alone. Higher numbers of cytotoxic T cells (CD8 and natural killer cells (NK were observed in the peripheral blood of TRF adjuvanted DC pulsed tumour lysate mice. Conclusion Our study show that TRF has the potential to be an adjuvant to augment DC based immunotherapy.

  20. Clinical Development of a Cytomegalovirus DNA Vaccine: From Product Concept to Pivotal Phase 3 Trial.

    Science.gov (United States)

    Smith, Larry R; Wloch, Mary K; Chaplin, Jennifer A; Gerber, Michele; Rolland, Alain P

    2013-09-25

    2013 marks a milestone year for plasmid DNA vaccine development as a first-in-class cytomegalovirus (CMV) DNA vaccine enters pivotal phase 3 testing. This vaccine consists of two plasmids expressing CMV antigens glycoprotein B (gB) and phosphoprotein 65 (pp65) formulated with a CRL1005 poloxamer and benzalkonium chloride (BAK) delivery system designed to enhance plasmid expression. The vaccine's planned initial indication under investigation is for prevention of CMV reactivation in CMV-seropositive (CMV⁺) recipients of an allogeneic hematopoietic stem cell transplant (HCT). A randomized, double-blind placebo-controlled phase 2 proof-of-concept study provided initial evidence of the safety of this product in CMV⁺ HCT recipients who underwent immune ablation conditioning regimens. This study revealed a significant reduction in viral load endpoints and increased frequencies of pp65-specific interferon-γ-producing T cells in vaccine recipients compared to placebo recipients. The results of this endpoint-defining trial provided the basis for defining the primary and secondary endpoints of a global phase 3 trial in HCT recipients. A case study is presented here describing the development history of this vaccine from product concept to initiation of the phase 3 trial.

  1. Applying Mathematical Tools to Accelerate Vaccine Development: Modeling Shigella Immune Dynamics

    Science.gov (United States)

    Davis, Courtney L.; Wahid, Rezwanul; Toapanta, Franklin R.; Simon, Jakub K.

    2013-01-01

    We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella’s outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design. PMID:23589755

  2. New Approaches to Attenuated Hepatitis a Vaccine Development: Cloning and Sequencing of Cell-Culture Adapted Viral cDNA.

    Science.gov (United States)

    1987-10-13

    after multiple passages in vivo and in vitro. J. Gen. Virol. 67, 1741- 1744. Sabin , A.B. (1985). Oral poliovirus vaccine : history of its development...IN (N NEW APPROACHES TO ATTENUATED HEPATITIS A VACCINE DEVELOPMENT: Q) CLONING AND SEQUENCING OF CELL-CULTURE ADAPTED VIRAL cDNA I ANNUAL REPORT...6ll02Bsl0 A 055 11. TITLE (Include Security Classification) New Approaches to Attenuated Hepatitis A Vaccine Development: Cloning and Sequencing of Cell

  3. Progress towards sustainable development : 1997 sustainable development report

    International Nuclear Information System (INIS)

    1998-01-01

    The ways in which Shell Canada has been able to incorporate sustainable development concepts into the Company's business strategies were highlighted. The report describes Shell Canada's plans for protecting the air, water, wilderness, wildlife, soil and groundwater. Land reclamation of abandoned well sites, building a solid capability in emergency preparedness and a strong program to ensure health and safety, are also high on Shell Canada's priorities list. Achievements in 1997, led by the completion of environmental and socio-economic impact assessment of the Sable Offshore Energy Project and the announcement of plans for the construction of a mine and extraction plant north of Fort McMurray (Musked River Mine) Alberta, were reviewed. An ambitious list of objectives and targets for 1998 were also outlined. While in 1997 improvements in safety and sustainable development performance were impressive, financial results were also gratifying, with the Company reporting its best financial results ever. tabs., figs

  4. FY2012 Progress Report for Energy Storage Research & Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-01-01

    FY 2012 annual report of the energy storage research and development effort within the VT Office. An important step for the electrification of the nation’s light duty transportation sector is the development of more cost-effective, long lasting, and abuse-tolerant PEV batteries. In fiscal year 2012, battery R&D work continued to focus on the development of high-energy batteries for PEVs and very high power devices for hybrid vehicles. This document provides a summary and progress update of the VTP battery R&D projects that were supported in 2012.

  5. Exploring the Climate Literacy Development Utilizing a Learning Progressions Approach

    Science.gov (United States)

    Drewes, A.; Breslyn, W.; McGinnis, J. R.; Hestness, E.; Mouza, C.

    2017-12-01

    Climate change encompasses a broad and complex set of concepts that is often challenging for students and educators. Using a learning progressions framework, in this exploratory study we report our efforts to identify, describe, and organize the development of learners' understanding of climate change in an empirically supported learning progression (LP). The learning progression framework is a well suited analytical tool for investigating how student thinking develops over time (Duschl et al., 2007). Our primary research question is "How do learners progress over time from an initial to a more sophisticated understanding of climate change?"We followed a development process that involved drafting a hypothetical learning progression based on the science education research literature, consensus documents such as the Next Generation Science Standards and the Atlas of Science Literacy. Additionally, we conducted expert reviews with both climate scientists and educational researchers on the content and pedagogical expectations. Data are then collected from learners, which are used to modify the hypothetical learning progression based on how well it describes actual student learning. In this current analysis, we present findings from written assessments (N=294) and in-depth interviews (n=27) with middle school students in which we examine their understanding of the role of human activity, the greenhouse effect as the mechanism of climate change, local and global impacts, and strategies for the adaptation and mitigation of climate change. The culmination of our research is a proposed, empirically supported LP for climate change. Our LP is framed by consideration of four primary constructs: Human Activity, Mechanism, Impacts, and Mitigation and Adaptation. The conditional LP provides a solid foundation for continued research as well as providing urgently needed guidance to the education community on climate change education (for curriculum, instruction, and assessment

  6. FY2011 Progress Report for Energy Storage Research & Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-01-31

    The FY 2011 Progress Report for Energy Storage R&D focuses on advancing the development of batteries to enable a large market penetration of hybrid and electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.

  7. Development of oral cancer vaccine using recombinant Bifidobacterium displaying Wilms' tumor 1 protein.

    Science.gov (United States)

    Kitagawa, Koichi; Oda, Tsugumi; Saito, Hiroki; Araki, Ayame; Gonoi, Reina; Shigemura, Katsumi; Hashii, Yoshiko; Katayama, Takane; Fujisawa, Masato; Shirakawa, Toshiro

    2017-06-01

    Several types of vaccine-delivering tumor-associated antigens (TAAs) have been developed in basic and clinical research. Wilms' tumor 1 (WT1), identified as a gene responsible for pediatric renal neoplasm, is one of the most promising TAA for cancer immunotherapy. Peptide and dendritic cell-based WT1 cancer vaccines showed some therapeutic efficacy in clinical and pre-clinical studies but as yet no oral WT1 vaccine can be administrated in a simple and easy way. In the present study, we constructed a novel oral cancer vaccine using a recombinant Bifidobacterium longum displaying WT1 protein. B. longum 420 was orally administered into mice inoculated with WT1-expressing tumor cells for 4 weeks to examine anti-tumor effects. To analyze the WT1-specific cellular immune responses to oral B. longum 420, mice splenocytes were isolated and cytokine production and cytotoxic activities were determined. Oral administrations of B. longum 420 significantly inhibited WT1-expressing tumor growth and prolonged survival in mice. Immunohistochemical study and immunological assays revealed that B. longum 420 substantially induced tumor infiltration of CD4 + T and CD8 + T cells, systemic WT1-specific cytokine production, and cytotoxic activity mediated by WT1-epitope specific cytotoxic T lymphocytes, with no apparent adverse effects. Our novel oral cancer vaccine safely induced WT1-specific cellular immunity via activation of the gut mucosal immune system and achieved therapeutic efficacy with several practical advantages over existing non-oral vaccines.

  8. Development and progress of the South African uranium enrichment project

    International Nuclear Information System (INIS)

    Roux, A.J.A.; Grant, W.L.; Barbour, R.A.; Loubser, R.S.; Wannenburg, J.J.

    1977-01-01

    The earlier development of the project is briefly reviewed, and some of the salient features of the South African process are touched upon. Development of the separation element in the last 18 months is discussed, as well as further work on the helikon cascade process. A brief description of the helikon cascade operation is given by means of diagrams. Because of time limitations, the complete helikon theory is not presented, but only some examples shown. Experimental work done to verify the helikon concept, as well as theoretical treatment, is presented. A brief report of the progress made on the experimental module of 6 t/a separative work capacity is given. This module, known as Mini-Z, is well advanced and details of its features and construction are shown. A short discussion of progress on the full-scale prototype module, known as Proto-Z, is next presented. The flexibility of such a design to fit a wide range of cascade sizes is considered, as well as cost implications of various approaches to design. Apart from progress on the development of the commercial plant, a brief review is given of the present state of the pilot plant at Valindaba. Some of the information obtained is mentioned. In conclusion, some information is given in regard to further planning and other work on the commercial plant at present being undertaken. Projected operation of the plant and some nuclear fuel service aspects are touched on

  9. Development of a Preventive HIV Vaccine Requires Solving Inverse Problems Which Is Unattainable by Rational Vaccine Design

    Directory of Open Access Journals (Sweden)

    Marc H. V. Van Regenmortel

    2018-01-01

    Full Text Available Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly

  10. The association between Bacillus Calmette-Guérin vaccination (1331 SSI) skin reaction and subsequent scar development in infants

    DEFF Research Database (Denmark)

    Birk, Nina Marie; Nissen, Thomas Nørrelykke; Ladekarl, Monica

    2017-01-01

    BACKGROUND: The Bacillus Calmette-Guérin vaccine (BCG) against tuberculosis is administered intradermally, and vaccination is often followed by a scar at the injection site. Among BCG-vaccinated individuals, having a scar has been associated with lower mortality. We aimed to examine the impact...... of vaccination technique for scarring in a high income setting, by assessing the associations between the post injection reaction, the wheal size, and the probability of developing a scar, and scar size. METHODS: This study was nested within a clinical multicenter study randomizing 4262 infants to either BCG...... vaccination (BCG 1331 SSI) or no intervention. In this substudy, including 492 vaccinated infants, the immediate post BCG vaccination reaction was registered as either wheal (a raised, blanched papule at the injection site), bulge (a palpable element at the injection site), or no reaction. The presence...

  11. Vaccination: Developing and implementing a competency-based-curriculum at the Medical Faculty of LMU Munich

    Directory of Open Access Journals (Sweden)

    Vogel, B.

    2016-02-01

    Full Text Available Background: In Germany medical students should gain proficiency and specific skills in the vaccination field. Especially important is the efficient communication of scientific results about vaccinations to the community, in order to give professional counseling with a complete overview about therapeutic options.Aim of the project: The aim of this project is to set up a vaccination-related curriculum in the Medical Faculty at the Ludwig-Maximilians-University in Munich. The structure of the curriculum is based on the National catalogue for competency-based learning objectives in the field of vaccination (Nationaler Kompetenzbasierter Lernzielekatalog Medizin NKLM. Through this curriculum, the students will not only acquire the classical educational skills concerning vaccination in theory and practice, but they will also learn how to become independent in the decision-making process and counseling. Moreover, the students will become aware of consequences of action related to this specific topic.Methods: According to defined guidelines, an analysis was performed on courses, which are currently offered by the university. A separate analysis of the NKLM was carried out. Both analyses identified the active courses related to the topic of vaccination as well as the NKLM learning objectives. The match between the topics taught in current courses and the NKLM learning objectives identified gaps concerning the teaching of specific content. Courses were modified in order to implement the missing NKLM learning objectives.Results: These analyses identified 24 vaccination-related courses, which are currently taught at the University. Meanwhile, 35 learning objectives on vaccination were identified in the NKLM catalogue. Four of which were identified as not yet part of the teaching program. In summary, this interdisciplinary work enabled the development of a new vaccination-related curriculum, including 35 learning objectives, which are now implemented in

  12. Protective value of immune responses developed in goats vaccinated with insoluble proteins from Sarcoptes Scabiei

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    2005-06-01

    Full Text Available Vaccines developed from certain membrane proteins lining the lumen of arthropod’s gut have been demonstrated effective in the control of some arthropod ectoparasites. A similar approach could also be applied to Sarcoptes scabiei since this parasite also ingests its host immunoglobulins. To evaluate immune protection of the membrane proteins, insoluble mite proteins were fractionated by successive treatment in the solutions of 1.14 M NaCl, 2% SB 3-14 Zwitterion detergent, 6 M urea, 6 M guanidine-HCl and 5% SDS. Five groups of goats (6 or 7 goats per group were immunised respectively with the protein fractions. Vaccination was performed 6 times, each with a dosage of 250 μg proteins, and 3 week intervals between vaccination. Group 6 (7 goats received PBS and adjuvant only, and served as an unvaccinated control. One week after the last vaccination, all goats were challenged with 2000 live mites on the auricles. The development of lesions were examined at 1 day, 2 days, and then every week from week 1 to 8. All animals were bled and weighed every week, and at the end of the experiment, skin scrapings were collected to determine the mite burden. Antibody responses induced by vaccination and challenge were examined by ELISA and Western blotting. This experiment showed that vaccination with the insoluble-protein fractions resulted in the development of high level of specific antibodies but the responses did not have any protective value. The severity of lesions and mite burden in the vaccinated animals were not different from those in the unvaccinated control.

  13. Progress in Development of Kharkov X-Ray Generator Nestor

    CERN Document Server

    Androsov, V; Botman, J I M; Bulyak, V; Dovbnya, A; Drebot, I; Gladkikh, P; Grevtsev, V; Grigorev, Yu; Gvozd, A; Ivashchenko, V; Karnaukhov, I; Kovalyova, N; Kozin, V; Lapshin, V; Lebedev, A; Lyashchenko, V; Markov, V; Mocheshnikov, N; Molodkin, V; Mytsykov, A; Neklyudov, I; Peev, F; Rezaev, A; Shcherbakov, A; Shpak, A; Skirda, V; Skomorovsky, V I; Tatchyn, R; Telegin, Yu P; Trotsenko, V; Zelinsky, A; Zvonarova, O

    2005-01-01

    The sources of the X-rays based on Compton scattering of intense Nd:YAG laser beam on electron beam circulating in a storage ring with beam energy 43 - 225 MeV is under construction in NSC KIPT. In the paper the progress in development and construction of Kharkov X-ray generator NESTOR is presented. The current status of the main facility system design and development are described. New scheme and main parameters of injection system are presented. The facility is going to be in operation in the middle of 2007 and generated X-rays flux is expected to be of about 10(13) phot/s.

  14. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  15. Stromal Androgen Receptor in Prostate Cancer Development and Progression

    Science.gov (United States)

    Leach, Damien A.; Buchanan, Grant

    2017-01-01

    Prostate cancer development and progression is the result of complex interactions between epithelia cells and fibroblasts/myofibroblasts, in a series of dynamic process amenable to regulation by hormones. Whilst androgen action through the androgen receptor (AR) is a well-established component of prostate cancer biology, it has been becoming increasingly apparent that changes in AR signalling in the surrounding stroma can dramatically influence tumour cell behavior. This is reflected in the consistent finding of a strong association between stromal AR expression and patient outcomes. In this review, we explore the relationship between AR signalling in fibroblasts/myofibroblasts and prostate cancer cells in the primary site, and detail the known functions, actions, and mechanisms of fibroblast AR signaling. We conclude with an evidence-based summary of how androgen action in stroma dramatically influences disease progression. PMID:28117763

  16. Visceral Leishmaniasis: Advancements in vaccine development via classical and molecular approaches

    Directory of Open Access Journals (Sweden)

    Sumit eJoshi

    2014-08-01

    Full Text Available Visceral Leishmaniasis (VL or kala-azar, a vector-borne protozoan disease, shows endemicity in larger areas of the tropical, subtropical and the Mediterranean countries. WHO report suggested that nearly 500,000 new cases of VL occur annually, including 100,000 cases from India itself. Treatment with available anti-leishmanial drugs are not cost effective, with varied efficacies and higher relapse rate, which poses a major challenge to current kala-azar control program in Indian subcontinent. Therefore, a vaccine against VL is imperative and knowing the fact that recovered individuals developed lifelong immunity against re-infection, it is feasible. Vaccine development program, though time taking, has recently gained momentum with the emergence of omic era i.e. from genomics to immunomics. Classical as well as molecular methodologies has been overtaken with alternative strategies wherein proteomics based knowledge combined with computational techniques (immunoinformatics speed up the identification and detailed characterization of new antigens for potential vaccine candidates. This may eventually help in the designing of polyvalent synthetic and recombinant chimeric vaccines as an effective intervention measures to control the disease in endemic areas. This review focuses on such newer approaches being utilized for vaccine development against VL.

  17. Geneva-Seattle collaboration in support of developing country vaccine manufacturing.

    Science.gov (United States)

    Stevenson, Michael A

    2018-04-01

    Vaccines were once produced almost exclusively by state-supported entities. While they remain essential tools for public health protection, the majority of the world's governments have allowed industry to assume responsibility for this function. This is significant because while the international harmonisation of quality assurance standards have effectively increased vaccine safety, they have also reduced the number of developing country vaccine producers, and Northern multinational pharmaceutical companies have shown little interest in offering the range of low-priced products needed in low and middle-income-country contexts. This article examines how public-private collaboration is relevant to contemporary efforts aimed at strengthening developing country manufacturers' capacity to produce high-quality, low-priced vaccines. Specifically, it casts light on the important and largely complimentary roles of the World Health Organization, The Bill and Melinda Gates Foundation, and the Seattle-based non-profit PATH, in this process. The take away message is that external support remains critical to ensuring that developing country vaccine manufacturers have the tools needed to produce for both domestic and global markets, and the United Nations supply chain, and collaboration at the public-private interface is driving organisational innovation focused on meeting these goals.

  18. Meningococcal group B vaccines.

    Science.gov (United States)

    Findlow, Jamie

    2013-06-01

    Meningococcal disease remains a devastating and feared infection with a significant morbidity and mortality profile. The successful impact of meningococcal capsular group C glyconconjugate vaccines introduced into the UK infant immunization schedule in 1999, has resulted in >80% of disease now being attributable to meningococcal capsular group B (MenB). MenB glyconconjugate vaccines are not immunogenic and hence, vaccine design has focused on sub-capsular antigens. Recently, a four component vaccine to combat MenB disease (4CMenB) has progressed through clinical development and was approved by the European Medicines Agency at the end of 2012. This vaccine has proven safe and immunogenic and has been predicted to provide protection against ~73% of the MenB disease from England and Wales. Recommendation/implementation of the vaccine into the UK infant schedule is currently being evaluated. 4CMenB has the potential to provide protection against a significant proportion of MenB disease in the UK which is currently unpreventable.

  19. Genome-derived vaccines.

    Science.gov (United States)

    De Groot, Anne S; Rappuoli, Rino

    2004-02-01

    Vaccine research entered a new era when the complete genome of a pathogenic bacterium was published in 1995. Since then, more than 97 bacterial pathogens have been sequenced and at least 110 additional projects are now in progress. Genome sequencing has also dramatically accelerated: high-throughput facilities can draft the sequence of an entire microbe (two to four megabases) in 1 to 2 days. Vaccine developers are using microarrays, immunoinformatics, proteomics and high-throughput immunology assays to reduce the truly unmanageable volume of information available in genome databases to a manageable size. Vaccines composed by novel antigens discovered from genome mining are already in clinical trials. Within 5 years we can expect to see a novel class of vaccines composed by genome-predicted, assembled and engineered T- and Bcell epitopes. This article addresses the convergence of three forces--microbial genome sequencing, computational immunology and new vaccine technologies--that are shifting genome mining for vaccines onto the forefront of immunology research.

  20. Development of live attenuated sparfloxacin-resistant Streptococcus agalactiae polyvalent vaccines to protect Nile tilapia

    Science.gov (United States)

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resi...

  1. Human papillomavirus vaccine motivators and barriers among community college students: Considerations for development of a successful vaccination program.

    Science.gov (United States)

    Hirth, Jacqueline M; Batuuka, Denise N; Gross, Tyra T; Cofie, Leslie; Berenson, Abbey B

    2018-02-14

    Previous interventions in colleges to improve human papillomavirus (HPV) vaccination have not been highly successful. Although barriers have been assessed in traditional colleges, less is known about vaccination barriers in community colleges. We approached students aged 18-26 years old enrolled at a community college for an in-person semi-structured qualitative interview on HPV vaccination and health, with questions guided by the Theory of Planned Behavior. Data collection took place between April 2015 and December 2015. Thematic analysis techniques were used to analyze the data. During interviews with 19 students, 4 themes emerged, including: general vaccine attitudes, barriers to HPV vaccination, motivators to HPV vaccination, and social influences. Participants felt that vaccines were beneficial, but were concerned about side effects. They felt that getting the HPV vaccine would be inconvenient, and they did not know enough about it to decide. Most would not trust their friends' opinions, but would want to know about side effects that their vaccinated friends experienced. Successful interventions at community colleges should include several components to increase convenience as well as utilize interactive methods to promote HPV vaccine awareness. Copyright © 2018. Published by Elsevier Ltd.

  2. Veterinary vaccines against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Elisabeth A Innes

    2009-03-01

    Full Text Available Toxoplasma gondii has a very wide intermediate host range and is thought to be able to infect all warm blooded animals. The parasite causes a spectrum of different diseases and clinical symptoms within the intermediate hosts and following infection most animals develop adaptive humoral and cell-mediated immune responses. The development of protective immunity to T. gondii following natural infection in many host species has led researchers to look at vaccination as a strategy to control disease, parasite multiplication and establishment in animal hosts. A range of different veterinary vaccines are required to help control T. gondii infection which include vaccines to prevent congenital toxoplasmosis, reduce or eliminate tissue cysts in meat producing animals and to prevent oocyst shedding in cats. In this paper we will discuss some of the history, challenges and progress in the development of veterinary vaccines against T. gondii.

  3. Scenario development and analysis in JNC'S second progress report

    International Nuclear Information System (INIS)

    Umeki, H.; Makino, H.; Miyahara, K.; Naito, M.

    2001-01-01

    Scenario development and analysis is an integral part of the performance assessment in the JNC's second progress report which will be issued by the end of November 1999. A systematic approach has been elaborated to ensure traceability and transparency in overall context of the scenario development and set up of calculation cases for assessment of the repository performance. In this approach, the hierarchical FEP matrix was designed to flexibly identify FEPs at different level of detail. The reasoned argument with clearly defined criteria was then applied for screening and grouping of FEPs to define scenarios in the form of influence diagrams. Scenarios and calculation cases were developed based on the expected safety functions of disposal system and relationships with potential detrimental/favorable factors and perturbation factors. The process to develop scenarios and calculation cases are recorded and managed in a computer system. (authors)

  4. Clinical Development of a Cytomegalovirus DNA Vaccine: From Product Concept to Pivotal Phase 3 Trial

    Directory of Open Access Journals (Sweden)

    Michele Gerber

    2013-09-01

    Full Text Available 2013 marks a milestone year for plasmid DNA vaccine development as a first-in-class cytomegalovirus (CMV DNA vaccine enters pivotal phase 3 testing. This vaccine consists of two plasmids expressing CMV antigens glycoprotein B (gB and phosphoprotein 65 (pp65 formulated with a CRL1005 poloxamer and benzalkonium chloride (BAK delivery system designed to enhance plasmid expression. The vaccine’s planned initial indication under investigation is for prevention of CMV reactivation in CMV-seropositive (CMV+ recipients of an allogeneic hematopoietic stem cell transplant (HCT. A randomized, double-blind placebo-controlled phase 2 proof-of-concept study provided initial evidence of the safety of this product in CMV+ HCT recipients who underwent immune ablation conditioning regimens. This study revealed a significant reduction in viral load endpoints and increased frequencies of pp65-specific interferon-γ-producing T cells in vaccine recipients compared to placebo recipients. The results of this endpoint-defining trial provided the basis for defining the primary and secondary endpoints of a global phase 3 trial in HCT recipients. A case study is presented here describing the development history of this vaccine from product concept to initiation of the phase 3 trial.

  5. GeVaDSs – decision support system for novel Genetic Vaccine development process

    Directory of Open Access Journals (Sweden)

    Blazewicz Jacek

    2012-05-01

    Full Text Available Abstract Background The lack of a uniform way for qualitative and quantitative evaluation of vaccine candidates under development led us to set up a standardized scheme for vaccine efficacy and safety evaluation. We developed and implemented molecular and immunology methods, and designed support tools for immunization data storage and analyses. Such collection can create a unique opportunity for immunologists to analyse data delivered from their laboratories. Results We designed and implemented GeVaDSs (Genetic Vaccine Decision Support system an interactive system for efficient storage, integration, retrieval and representation of data. Moreover, GeVaDSs allows for relevant association and interpretation of data, and thus for knowledge-based generation of testable hypotheses of vaccine responses. Conclusions GeVaDSs has been tested by several laboratories in Europe, and proved its usefulness in vaccine analysis. Case study of its application is presented in the additional files. The system is available at: http://gevads.cs.put.poznan.pl/preview/(login: viewer, password: password.

  6. Development of novel double-decker microneedle patches for transcutaneous vaccine delivery.

    Science.gov (United States)

    Ono, Akihiko; Azukizawa, Hiroaki; Ito, Sayami; Nakamura, Yuki; Asada, Hideo; Quan, Ying-Shu; Kamiyama, Fumio; Katayama, Ichiro; Hirobe, Sachiko; Okada, Naoki

    2017-10-30

    Microneedle (MN) patches have great potential as transcutaneous vaccine delivery devices because MNs can effectively deliver vaccine antigen into the skin through the micropores formed in the stratum corneum by low-invasive and painless skin puncturing. This study aims to develop novel double-decker MN patches which have not only high safety and efficacy but also broad applicability to various vaccine antigens. We developed two types of MN patches (PGA-MN and Nylon-MN) that are made from polyglycolic acid and Nylon-6. In pre-clinical studies, both MN patches could demonstrably deliver antigens into resected human dermal tissue, prolong antigen deposition and increase antigen-specific IgG levels after vaccination compared with conventional injections. We demonstrated both MN patches could be safely applied to human skin because no broken MNs or significant skin irritation were observed after applications in the clinical research. PGA-MN was suggested to be superior to Nylon-MN regarding human skin puncturability based on measurements of transepidermal water loss and needle failure force. A high content of tetravalent influenza hemagglutinin antigens loaded on PGA-MN could stably maintain HA titers at 35°C for 1year. Overall, double-decker MN patches can reliably and safely puncture human skin and are promising as effective transcutaneous vaccine delivery devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hypertension Vaccine may be a boon to millions in developing world.

    Science.gov (United States)

    Bairwa, Mohan; Pilania, Manju; Gupta, Vivek; Yadav, Kapil

    2014-01-01

    Hypertension affects around 40% adults aged 25 years and more worldwide, and accounts for 7% of total disability-adjusted life-years. A simple algorithmic program is required to manage hypertension consisting of screening, life style measures, treatment and follow-up, a reliable drug supply and distribution system, and a credible health information system. Despite availability of effective antihypertensive drugs, long term treatment is still costly, tedious, and at the population level rather unsuccessful. Hypertension leaves patients and families with an avoidable heavy economic burden due to failure to control blood pressure. Health policy needs to address gross imbalance between prevention and management by increasing contribution to the preventive programs. During 21st century, the risk factors for morbidity and mortality have been changed, and researchers have started to work upon vaccines against lifestyle diseases like hypertension, diabetes etc. Researchers began experimenting with vaccines against the renin-angiotensin system to control hypertension around six decades ago. The vaccine candidates against hypertension namely ATR12181, pHAV-4Ang IIs, CYT006-AngQb, AngI-R, ATRQβ-001 have shown promising results. A candidate vaccine, CYT006-AngQb, has crossed initial phase and moved into phase 2 trials. However, more human studies in subsequent phases of trials are required to establish the safety and efficacy of anti-hypertensive vaccine. If proved safe and cost effective, a vaccine even with 50% efficacy against hypertension may protect about 90 million people from hypertension and its heavy economic burden. It can be an appropriate solution for low compliance to antihypertensive drug therapy as well as an avalanche to induce efforts on various chronic disease vaccine development programs.

  8. Application of a scalable plant transient gene expression platform for malaria vaccine development

    Directory of Open Access Journals (Sweden)

    Holger eSpiegel

    2015-12-01

    Full Text Available Despite decades of intensive research efforts there is currently no vaccine that provides sustained sterile immunity against malaria. In this context, a large number of targets from the different stages of the Plasmodium falciparum life cycle have been evaluated as vaccine candidates. None of these candidates has fulfilled expectations, and as long as we lack a single target that induces strain-transcending protective immune responses, combining key antigens from different life cycle stages seems to be the most promising route towards the development of efficacious malaria vaccines. After the identification of potential targets using approaches such as omics-based technology and reverse immunology, the rapid expression, purification and characterization of these proteins, as well as the generation and analysis of fusion constructs combining different promising antigens or antigen domains before committing to expensive and time consuming clinical development, represents one of the bottlenecks in the vaccine development pipeline. The production of recombinant proteins by transient gene expression in plants is a robust and versatile alternative to cell-based microbial and eukaryotic production platforms. The transfection of plant tissues and/or whole plants using Agrobacterium tumefaciens offers a low technical entry barrier, low costs and a high degree of flexibility embedded within a rapid and scalable workflow. Recombinant proteins can easily be targeted to different subcellular compartments according to their physicochemical requirements, including post-translational modifications, to ensure optimal yields of high quality product, and to support simple and economical downstream processing. Here we demonstrate the use of a plant transient expression platform based on transfection with A. tumefaciens as essential component of a malaria vaccine development workflow involving screens for expression, solubility and stability using fluorescent fusion

  9. Progress on development of nuclear power in Japan

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Since three Laws on the nuclear power were published 45 years has passed. Now, development on nuclear power in Japan is at an emergent state. In Japan, 51 units of commercial nuclear reactors with 44.917 GW are in operation, occupy about 37% of total electric power generation, and is positioned at an essential basic energy source supporting economical society in Japan. However, an accident occurred at Tokai Works of the JCO Co., Ltd., one of the uranium reconversion company, on September 30, 1999, was the first critical accident in Japan, and became the worst case in history on development of nuclear power in Japan, because of forming three heavy radiation disabled persons (One of them was dead) in its operators. This was a big crisis with relation to existence on development of nuclear power in Japan, by which anxiety and distrust of the Japanese against the nuclear power were amplified rapidly. On the other side, for Japan short in energy sources and of a big energy consumption, in order to intend for a long term to carry out energy security, global environmental conservation, and sustainable maintenance of essential growth, it remains to be one of important optional methods to further promote nuclear power generation and to establish nuclear fuel cycle. Here were described on progress on peaceful applications of nuclear power in Japan, progress on the field of nuclear power in Japan (from 1955 to 1999), progress on Tokai nuclear power station, introduction of nuclear power generation and effort on its domestic production. (G.K.)

  10. Artificial intelligence systems based on texture descriptors for vaccine development.

    Science.gov (United States)

    Nanni, Loris; Brahnam, Sheryl; Lumini, Alessandra

    2011-02-01

    The aim of this work is to analyze and compare several feature extraction methods for peptide classification that are based on the calculation of texture descriptors starting from a matrix representation of the peptide. This texture-based representation of the peptide is then used to train a support vector machine classifier. In our experiments, the best results are obtained using local binary patterns variants and the discrete cosine transform with selected coefficients. These results are better than those previously reported that employed texture descriptors for peptide representation. In addition, we perform experiments that combine standard approaches based on amino acid sequence. The experimental section reports several tests performed on a vaccine dataset for the prediction of peptides that bind human leukocyte antigens and on a human immunodeficiency virus (HIV-1). Experimental results confirm the usefulness of our novel descriptors. The matlab implementation of our approaches is available at http://bias.csr.unibo.it/nanni/TexturePeptide.zip.

  11. A real options approach to biotechnology investment policy-the case of developing a Campylobacter vaccine to poultry.

    Science.gov (United States)

    Lund, Mogens; Jensen, Jørgen Dejgård

    2016-06-01

    The aim of the article is to identify and analyse public-private incentives for the development and marketing of new animal vaccines within a real options methodological framework, and to investigate how real options methodology can be utilized to support economic incentives for vaccine development in a cost-effective way. The development of a vaccine against Campylobacter jejuni in poultry is applied as a case study. Employing the real options methodology, the net present value of the vaccine R&D project becomes larger than a purely probabilistic expected present value throughout the different stages of the project - and the net present value becomes larger, when more types of real options are taken into consideration. The insight from the real options analysis reveals opportunities for new policies to promote the development of animal vaccines. One such approach might be to develop schemes combining stage-by-stage optimized subsidies in the individual development stages, with proper account taken of investors'/developers' economic incentives to proceed, sell or cancel the project in the respective stages. Another way of using the real options approach to support the development of desirable animal vaccines could be to issue put options for the vaccine candidate, enabling vaccine developers to hedge against the economic risk from market volatility. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Progressive development of a digital cadastral data base

    OpenAIRE

    Thompson, R.J.

    2013-01-01

    A Digital Cadastral Data Base (DCDB) is a big investment for a jurisdiction tasked with the administration of land boundaries. In the past, the development of such a database produced no real pay-back on investment until many years, and millions of dollars had been committed. The Land Administration Domain Model (LADM) (ISO-TC211 2012) provides a model of a schema in which a progressive creation and improvement of a DCDB is possible, to allow benefits to be obtained even in the early stages o...

  13. Assessing progress in the development of safety culture

    International Nuclear Information System (INIS)

    Rotaru, I.; Ghita, S.; Biro, L.

    2002-01-01

    This paper is focussed on the organizational culture and learning processes required for the implementation of all aspects of safety culture. There is no prescriptive formula for improving safety culture. However, some common characteristics and practices are emerging that can be adopted by organizations in order to make progress. The paper refers to some approaches that have been successful in a number of countries. The experience of the international nuclear industry in the development and improvement of safety culture could be extended and found useful in other nuclear activities, irrespective of scale. The examples given of specific practice cover a wide range of activities including analysis of events, the regulatory approach on safety culture, employee participation and safety performance measures. Many of these practices may be relevant to smaller organizations and could contribute to improving safety culture, whatever the size of the organization. The most effective approach is to pursue a range of practices that can be mutually supportive in the development of a progressive safety culture, supported by professional standards, organizational and management commitment. Some guidance is also given on the assessment of safety culture and on the detection of a weakening safety culture. Few suggestions for accelerating the safety culture development and improvement process are also provided. (author)

  14. Baseline gas turbine development program. Eighteenth quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, F W; Wagner, C E [comps.

    1977-04-30

    Progress is reported for a program whose goals are to demonstrate an experimental upgraded gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, compact-size American automobile. Initial running of the upgraded engine took place on July 13, 1976. The engine proved to be mechanically sound, but was also 43% deficient in power. A continuing corrective development effort has to date reduced the power deficiency to 32%. Compressor efficiency was increased 2 points by changing to a 28-channel diffuser and tandem deswirl vanes; improved processing of seals has reduced regenerator leakage from about 5 to 2.5% of engine flow; a new compressor turbine nozzle has increased compressor turbine stage efficiency by about 1 point; and adjustments to burner mixing ports has reduced pressure drop from 2.8 to 2.1% of engine pressure. Key compressor turbine component improvements are scheduled for test during the next quarterly period. During the quarter, progress was also made on development of the Upgraded Vehicle control system; and instrumentation of the fourth program engine was completed by NASA. The engine will be used for development efforts at NASA LeRC.

  15. Cryobiotechnology of apple (Malus spp.): development, progress and future prospects.

    Science.gov (United States)

    Wang, Min-Rui; Chen, Long; Teixeira da Silva, Jaime A; Volk, Gayle M; Wang, Qiao-Chun

    2018-05-01

    Cryopreservation provides valuable genes for further breeding of elite cultivars, and cryotherapy improves the production of virus-free plants in Malus spp., thus assisting the sustainable development of the apple industry. Apple (Malus spp.) is one of the most economically important temperate fruit crops. Wild Malus genetic resources and existing cultivars provide valuable genes for breeding new elite cultivars and rootstocks through traditional and biotechnological breeding programs. These valuable genes include those resistant to abiotic factors such as drought and salinity, and to biotic factors such as fungi, bacteria and aphids. Over the last three decades, great progress has been made in apple cryobiology, making Malus one of the most extensively studied plant genera with respect to cryopreservation. Explants such as pollen, seeds, in vivo dormant buds, and in vitro shoot tips have all been successfully cryopreserved, and large Malus cryobanks have been established. Cryotherapy has been used for virus eradication, to obtain virus-free apple plants. Cryopreservation provided valuable genes for further breeding of elite cultivars, and cryotherapy improved the production of virus-free plants in Malus spp., thus assisting the sustainable development of the apple industry. This review provides updated and comprehensive information on the development and progress of apple cryopreservation and cryotherapy. Future research will reveal new applications and uses for apple cryopreservation and cryotherapy.

  16. The yellow fever 17D vaccine virus as a vector for the expression of foreign proteins: development of new live flavivirus vaccines

    Directory of Open Access Journals (Sweden)

    Myrna C Bonaldo

    2000-01-01

    Full Text Available The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF, dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain.

  17. A mammalian cell based FACS-panning platform for the selection of HIV-1 envelopes for vaccine development.

    Directory of Open Access Journals (Sweden)

    Tim-Henrik Bruun

    Full Text Available An increasing number of broadly neutralizing monoclonal antibodies (bnMAb against the HIV-1 envelope (Env protein has been discovered recently. Despite this progress, vaccination efforts with the aim to re-elicit bnMAbs that provide protective immunity have failed so far. Herein, we describe the development of a mammalian cell based FACS-panning method in which bnMAbs are used as tools to select surface-exposed envelope variants according to their binding affinity. For that purpose, an HIV-1 derived lentiviral vector was developed to infect HEK293T cells at low multiplicity of infection (MOI in order to link Env phenotype and genotype. For proof of principle, a gp145 Env model-library was established in which the complete V3 domain was substituted by five strain specific V3 loop sequences with known binding affinities to nMAb 447-52D, respectively. Env genes were recovered from selected cells by PCR, subcloned into a lentiviral vector (i to determine and quantify the enrichment nMAb binders and (ii to generate a new batch of transduction competent particles. After 2 selection cycles the Env variant with highest affinity was enriched 20-fold and represented 80% of the remaining Env population. Exploiting the recently described bnMAbs, this procedure might prove useful in selecting Env proteins from large Env libraries with the potential to elicit bnMAbs when used as vaccine candidates.

  18. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  19. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  20. Use of ERC-1671 Vaccine in a Patient with Recurrent Glioblastoma Multiforme after Progression during Bevacizumab Therapy: First Published Report.

    Science.gov (United States)

    Bota, Daniela A; Alexandru-Abrams, Daniela; Pretto, Chrystel; Hofman, Florence M; Chen, Thomas C; Fu, Beverly; Carrillo, Jose A; Schijns, Virgil Ejc; Stathopoulos, Apostolos

    2015-01-01

    Glioblastoma multiforme is a highy aggressive tumor that recurs despite resection, focal beam radiation, and temozolamide chemotherapy. ERC-1671 is an experimental treatment strategy that uses the patient's own immune system to attack the tumor cells. The authors report preliminary data on the first human administration of ERC-1671 vaccination under a single-patient, compassionate-use protocol. The patient survived for ten months after the vaccine administration without any other adjuvant therapy and died of complications related to his previous chemotherapies.

  1. Common vaccinations among adults do not increase the risk of developing rheumatoid arthritis: results from the Swedish EIRA study.

    Science.gov (United States)

    Bengtsson, Camilla; Kapetanovic, Meliha C; Källberg, Henrik; Sverdrup, Berit; Nordmark, Birgitta; Klareskog, Lars; Alfredsson, Lars

    2010-10-01

    To investigate the association between vaccinations in adults and the risk of developing rheumatoid arthritis (RA). Data from the Swedish population-based Epidemiological Investigation of RA case-control study encompassing 1998 incident cases of RA aged 18-70 years and 2252 randomly selected controls matched for age, sex and residency were analysed. Those vaccinated within 5 years before disease onset were compared with those not vaccinated by calculating OR with 95% CI. Vaccinations neither increased the risk of RA overall (OR 1.0, 95% CI 0.9 to 1.1) nor the risk of two major subgroups of RA (antibodies to citrullinated peptide-positive (ACPA-positive) and ACPA-negative disease). Furthermore, vaccinations did not increase the risk of RA in smokers or carriers of HLA-DRB1 shared epitope alleles, two groups with established risk factors for RA. In this case-control study of incident cases of newly diagnosed RA, no increased risk of RA following immunisation was observed for vaccinations overall or for any specific vaccination. This indicates that immunological provocation of adults with commonly used vaccines in their present form carries no risk of RA. These findings should be implemented among public healthcare providers in order to encourage vaccinations according to recommended national vaccination schedules.

  2. Using Community Engagement to Develop a Web-Based Intervention for Latinos about the HPV Vaccine.

    Science.gov (United States)

    Maertens, Julie A; Jimenez-Zambrano, Andrea M; Albright, Karen; Dempsey, Amanda F

    2017-04-01

    Human papillomavirus (HPV) infection is pervasive among sexually active women and men, and Hispanic women are at particularly high risk as they have higher rates of invasive cervical cancer compared to other racial or ethnic groups in the United States. There is a need for interventions to increase HPV vaccination among this high-risk population. This study investigated how to modify a previously developed web-based intervention that provided individually tailored information about HPV to improve its use among the Latino population. A community-oriented modification approach incorporated feedback from a community advisory committee, and focus groups among the Latino population, to modify the intervention. Several themes emerged including a need for basic information about HPV and HPV vaccination, changes to make the intervention appear less clinical, and incorporation of information addressing barriers specific to the Latino community. This work was done in preparation for a randomized trial to assess the impact of this modified intervention on HPV vaccination attitudes and uptake among Latino young adults and parents of adolescents. If effective, our intervention could be a resource for reducing HPV vaccination concerns, improving immunization rates, and educating Latinos about HPV and the HPV vaccine outside of the time boundaries of the traditional clinical encounter.

  3. Assessing the Potential Cost-Effectiveness of Microneedle Patches in Childhood Measles Vaccination Programs: The Case for Further Research and Development.

    Science.gov (United States)

    Adhikari, Bishwa B; Goodson, James L; Chu, Susan Y; Rota, Paul A; Meltzer, Martin I

    2016-12-01

    Currently available measles vaccines are administered by subcutaneous injections and require reconstitution with a diluent and a cold chain, which is resource intensive and challenging to maintain. To overcome these challenges and potentially increase vaccination coverage, microneedle patches are being developed to deliver the measles vaccine. This study compares the cost-effectiveness of using microneedle patches with traditional vaccine delivery by syringe-and-needle (subcutaneous vaccination) in children's measles vaccination programs. We built a simple spreadsheet model to compute the vaccination costs for using microneedle patch and syringe-and-needle technologies. We assumed that microneedle vaccines will be, compared with current vaccines, more heat stable and require less expensive cool chains when used in the field. We used historical data on the incidence of measles among communities with low measles vaccination rates. The cost of microneedle vaccination was estimated at US$0.95 (range US$0.71-US$1.18) for the first dose, compared with US$1.65 (range US$1.24-US$2.06) for the first dose delivered by subcutaneous vaccination. At 95 % vaccination coverage, microneedle patch vaccination was estimated to cost US$1.66 per measles case averted (range US$1.24-US$2.07) compared with an estimated cost of US$2.64 per case averted (range US$1.98-US$3.30) using subcutaneous vaccination. Use of microneedle patches may reduce costs; however, the cost-effectiveness of patches would depend on the vaccine recipients' acceptability and vaccine effectiveness of the patches relative to the existing conventional vaccine-delivery method. This study emphasizes the need to continue research and development of this vaccine-delivery method that could boost measles elimination efforts through improved access to vaccines and increased vaccination coverage.

  4. The receptor binding domain of MERS-CoV: The dawn of vaccine and treatment development

    Directory of Open Access Journals (Sweden)

    Nan Zhou

    2014-03-01

    Full Text Available The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV is becoming another “SARS-like” threat to the world. It has an extremely high death rate (∼50% as there is no vaccine or efficient therapeutics. The identification of the structures of both the MERS-CoV receptor binding domain (RBD and its complex with dipeptidyl peptidase 4 (DPP4, raises the hope of alleviating this currently severe situation. In this review, we examined the molecular basis of the RBD-receptor interaction to outline why/how could we use MERS-CoV RBD to develop vaccines and antiviral drugs.

  5. Investigations on the development of an irradiated vaccine for animal schistosomiasis

    International Nuclear Information System (INIS)

    Hussein, M.F.; Bushara, H.O.

    1976-01-01

    The results are summarized of preliminary experiments on the development of an irradiated larval vaccine for Schistosoma bovis, an important trematode of domestic ruminants in the Sudan. Initial studies on mice demonstrated the inhibitory effects of irradiation on the development of S. bovis, S. mansoni and S. mattheei, and also suggested that irradiated cercariae were highly immunogenic. In calves, it was shown that a single exposure to irradiated S. mansoni cercariae induced a strong partial resistance against S. bovis, even though no adult parasites of the former were produced. The experiment also showed that a stronger immunity occurred at 24 weeks than at 8 weeks post-immunization, indicating the long duration of the immunity produced by these short-lived cercariae. Another experiment, involving sheep, was made using irradiated S. bovis cercariae as the immunizing agents. Marked reduction in worm and especially in tissue egg counts were also reported following challenge infections 37 weeks later with normal S. bovis cercariae. Because of the fragility of the cercariae and difficulties in their administration and storage, trials are being carried out using another larval stage, the schistosomule, as an immunizing agent. In these trials various methods for the transformation of cercariae into schistosomules were evaluated, and the immunogenicity of irradiated schistosomules administered intra-muscularly into animals is now being investigated. At the same time, attempts are in progress to maintain the schistosomules by cryopreservation techniques for a period long enough to ensure an adequate shelf-life before conducting a field test on naturally infected animals in the Sudan. (author)

  6. Development of an inactivated candidate vaccine against Chandipura virus (Rhabdoviridae: Vesiculovirus).

    Science.gov (United States)

    Jadi, R S; Sudeep, A B; Barde, P V; Arankalle, V A; Mishra, A C

    2011-06-20

    A Vero cell based vaccine candidate against Chandipura (CHP) virus (Rhabdoviridae: Vesiculovirus), was developed and evaluated for immunogenicity in mice. Virus was purified by ultracentrifugation on 30% glycerol cushion followed by differential centrifugation on 10-60% sucrose gradient and inactivated with β-propio lactone at a concentration of 1:3500. The inactivated product was blended with aluminium phosphate (3%) and immunized 4-week-old Swiss albino mice. Neutralizing antibodies in the range of 1:10 to 160 and 1:80 to 1:320 was detected with 85% and 100% sero-conversion after 2nd and 3rd dose, respectively. All the immunized mice with antibody titer above 1:20 survived live virus challenge. The vaccine candidate has potential to be an efficient vaccine against CHP virus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Maximizing protection from use of oral cholera vaccines in developing country settings

    Science.gov (United States)

    Desai, Sachin N; Cravioto, Alejandro; Sur, Dipika; Kanungo, Suman

    2014-01-01

    When oral vaccines are administered to children in lower- and middle-income countries, they do not induce the same immune responses as they do in developed countries. Although not completely understood, reasons for this finding include maternal antibody interference, mucosal pathology secondary to infection, malnutrition, enteropathy, and previous exposure to the organism (or related organisms). Young children experience a high burden of cholera infection, which can lead to severe acute dehydrating diarrhea and substantial mortality and morbidity. Oral cholera vaccines show variations in their duration of protection and efficacy between children and adults. Evaluating innate and memory immune response is necessary to understand V. cholerae immunity and to improve current cholera vaccine candidates, especially in young children. Further research on the benefits of supplementary interventions and delivery schedules may also improve immunization strategies. PMID:24861554

  8. [PERSPECTIVES OF DEVELOPMENT OF LIVE RECOMBINANT ANTHRAX VACCINES BASED ON OPPORTUNISTIC AND APATHOGENIC MICROORGANISMS].

    Science.gov (United States)

    Popova, P Yu; Mikshis, N I

    2016-01-01

    Live genetic engineering anthrax vaccines on the platform of avirulent and probiotic micro-organisms are a safe and adequate alternative to preparations based on attenuated Bacillus anthracis strains. Mucosal application results in a direct contact of the vaccine preparations with mucous membranes in those organs arid tissues of the macro-organisms, that are exposed to the pathogen in the first place, resulting in a development of local and systemic immune response. Live recombinant anthrax vaccines could be used both separately as well as in a prime-boost immunization scheme. The review focuses on immunogenic and protective properties of experimental live genetic engineering prearations, created based on members of geni of Salmonella, Lactobacillus and adenoviruses.

  9. Vector Development for the Expression of Foreign Proteins in the Vaccine Strain Brucella abortus S19

    Science.gov (United States)

    Comerci, Diego J.; Pollevick, Guido D.; Vigliocco, Ana M.; Frasch, Alberto C. C.; Ugalde, Rodolfo A.

    1998-01-01

    A vector for the expression of foreign antigens in the vaccine strain Brucella abortus S19 was developed by using a DNA fragment containing the regulatory sequences and the signal peptide of the Brucella bcsp31 gene. This fragment was cloned in broad-host-range plasmid pBBR4MCS, resulting in plasmid pBEV. As a reporter protein, a repetitive antigen of Trypanosoma cruzi was used. The recombinant fusion protein is stably expressed and secreted into the Brucella periplasmic space, inducing a good antibody response against the T. cruzi antigen. The expression of the repetitive antigen in Brucella neither altered its growth pattern nor generated a toxic or lethal effect during experimental infection. The application of this strategy for the generation of live recombinant vaccines and the tagging of B. abortus S19 vaccine is discussed. This is the first time that a recombinant protein has been expressed in the periplasm of brucellae. PMID:9673273

  10. Development of fowl cholera vaccine: I. Protection of Pasteurella multocida local isolate vaccine against challenge of homologous and heterologous strains.

    Directory of Open Access Journals (Sweden)

    Supar

    2001-03-01

    Full Text Available Pasteurella multocida locally isolated from chicken and ducks (BCC 299, BCC 2331, DY1, DY2, 12TG, 15TG andimported strains (BCC 1359, 1362; HEDDLESTON group 1 and 6 respectively had been tested for its pathogenicity in theprevious study. The aims of this experiment were to study the preparation of local isolate pasteurellosis vaccines and to determine the protective effect of that vaccines in chicken against the highly pathogenic local isolates of P. multocida. Killed monovalent, bivalent and polyvalent pasteurellosis vaccines were prepared and each was adjunvanted with aluminum hydroxide gel at a final concentration of 1.5% and the cell concentration was equal to the No 10 of MacFarland tube standard. Each of the vaccine prepared was used to vaccinated on a group of six week old of layer chicken (8 per group. Each chicken was subcutaneously injected with 0.2 ml of vaccine, four weeks later each was boostered with similar vaccine with the same dose. Two weeks after giving the boostered vaccine each group of chicken were challenged, half with life bacterium of P. Multocida BCC 2331 and other with DY2. Any chick which survive after challenge was designated as protected by vaccination. Before vaccination 1 ml of blood was drawn from each of chicken and then two weeks apart up to challenge. Serum from each sample was separated and kept in deep freeze until tested by enzyme-linked immunosorbent assay (ELISA. Chicken vaccinated with killed whole cell P. multocida vaccines of monovalent (BCC 2331 or DY2 and bivalent (BCC 2331 + DY2 were protected against challenge with live bacterium of either BCC 2331 or DY2 at rate 67-100%. There was no protection in chicken vaccinated with either BCC 299, DY1, 12TG, 15TG, BCC 1359, or 1362 killed vaccine. Similarly no protection of chicken vaccinated with either DY1 + BCC299, 12TG + 15TG or BCC 1359 + BCC 1362 bivalent vaccines. The protection rate of the polyvalent local isolate vaccine was at average 50-75%. All

  11. Progress towards the development of SH2 domain inhibitors.

    Science.gov (United States)

    Kraskouskaya, Dziyana; Duodu, Eugenia; Arpin, Carolynn C; Gunning, Patrick T

    2013-04-21

    Src homology 2 (SH2) domains are 100 amino acid modular units, which recognize and bind to tyrosyl-phosphorylated peptide sequences on their target proteins, and thereby mediate intracellular protein-protein interactions. This review summarizes the progress towards the development of synthetic agents that disrupt the function of the SH2 domains in different proteins as well as the clinical relevance of targeting a specific SH2 domain. Since 1986, SH2 domains have been identified in over 110 human proteins, including kinases, transcription factors, and adaptor proteins. A number of these proteins are over-activated in many diseases, including cancer, and their function is highly dependent on their SH2 domain. Thus, inhibition of a protein's function through disrupting that of its SH2 domain has emerged as a promising approach towards the development of novel therapeutic modalities. Although targeting the SH2 domain is a challenging task in molecular recognition, the progress reported here demonstrates the feasibility of such an approach.

  12. Architectural Insight into Inovirus-Associated Vectors (IAVs and Development of IAV-Based Vaccines Inducing Humoral and Cellular Responses: Implications in HIV-1 Vaccines

    Directory of Open Access Journals (Sweden)

    Kyriakos A. Hassapis

    2014-12-01

    Full Text Available Inovirus-associated vectors (IAVs are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.

  13. Developing and Validating a Predictive Model for Stroke Progression

    Directory of Open Access Journals (Sweden)

    L.E. Craig

    2011-12-01

    Full Text Available Background: Progression is believed to be a common and important complication in acute stroke, and has been associated with increased mortality and morbidity. Reliable identification of predictors of early neurological deterioration could potentially benefit routine clinical care. The aim of this study was to identify predictors of early stroke progression using two independent patient cohorts. Methods: Two patient cohorts were used for this study – the first cohort formed the training data set, which included consecutive patients admitted to an urban teaching hospital between 2000 and 2002, and the second cohort formed the test data set, which included patients admitted to the same hospital between 2003 and 2004. A standard definition of stroke progression was used. The first cohort (n = 863 was used to develop the model. Variables that were statistically significant (p 0.1 in turn. The second cohort (n = 216 was used to test the performance of the model. The performance of the predictive model was assessed in terms of both calibration and discrimination. Multiple imputation methods were used for dealing with the missing values. Results: Variables shown to be significant predictors of stroke progression were conscious level, history of coronary heart disease, presence of hyperosmolarity, CT lesion, living alone on admission, Oxfordshire Community Stroke Project classification, presence of pyrexia and smoking status. The model appears to have reasonable discriminative properties [the median receiver-operating characteristic curve value was 0.72 (range 0.72–0.73] and to fit well with the observed data, which is indicated by the high goodness-of-fit p value [the median p value from the Hosmer-Lemeshow test was 0.90 (range 0.50–0.92]. Conclusion: The predictive model developed in this study contains variables that can be easily collected in practice therefore increasing its usability in clinical practice. Using this analysis approach, the

  14. Developing and validating a predictive model for stroke progression.

    Science.gov (United States)

    Craig, L E; Wu, O; Gilmour, H; Barber, M; Langhorne, P

    2011-01-01

    Progression is believed to be a common and important complication in acute stroke, and has been associated with increased mortality and morbidity. Reliable identification of predictors of early neurological deterioration could potentially benefit routine clinical care. The aim of this study was to identify predictors of early stroke progression using two independent patient cohorts. Two patient cohorts were used for this study - the first cohort formed the training data set, which included consecutive patients admitted to an urban teaching hospital between 2000 and 2002, and the second cohort formed the test data set, which included patients admitted to the same hospital between 2003 and 2004. A standard definition of stroke progression was used. The first cohort (n = 863) was used to develop the model. Variables that were statistically significant (p p > 0.1) in turn. The second cohort (n = 216) was used to test the performance of the model. The performance of the predictive model was assessed in terms of both calibration and discrimination. Multiple imputation methods were used for dealing with the missing values. Variables shown to be significant predictors of stroke progression were conscious level, history of coronary heart disease, presence of hyperosmolarity, CT lesion, living alone on admission, Oxfordshire Community Stroke Project classification, presence of pyrexia and smoking status. The model appears to have reasonable discriminative properties [the median receiver-operating characteristic curve value was 0.72 (range 0.72-0.73)] and to fit well with the observed data, which is indicated by the high goodness-of-fit p value [the median p value from the Hosmer-Lemeshow test was 0.90 (range 0.50-0.92)]. The predictive model developed in this study contains variables that can be easily collected in practice therefore increasing its usability in clinical practice. Using this analysis approach, the discrimination and calibration of the predictive model appear

  15. Developing and Validating a Predictive Model for Stroke Progression

    Science.gov (United States)

    Craig, L.E.; Wu, O.; Gilmour, H.; Barber, M.; Langhorne, P.

    2011-01-01

    Background Progression is believed to be a common and important complication in acute stroke, and has been associated with increased mortality and morbidity. Reliable identification of predictors of early neurological deterioration could potentially benefit routine clinical care. The aim of this study was to identify predictors of early stroke progression using two independent patient cohorts. Methods Two patient cohorts were used for this study – the first cohort formed the training data set, which included consecutive patients admitted to an urban teaching hospital between 2000 and 2002, and the second cohort formed the test data set, which included patients admitted to the same hospital between 2003 and 2004. A standard definition of stroke progression was used. The first cohort (n = 863) was used to develop the model. Variables that were statistically significant (p 0.1) in turn. The second cohort (n = 216) was used to test the performance of the model. The performance of the predictive model was assessed in terms of both calibration and discrimination. Multiple imputation methods were used for dealing with the missing values. Results Variables shown to be significant predictors of stroke progression were conscious level, history of coronary heart disease, presence of hyperosmolarity, CT lesion, living alone on admission, Oxfordshire Community Stroke Project classification, presence of pyrexia and smoking status. The model appears to have reasonable discriminative properties [the median receiver-operating characteristic curve value was 0.72 (range 0.72–0.73)] and to fit well with the observed data, which is indicated by the high goodness-of-fit p value [the median p value from the Hosmer-Lemeshow test was 0.90 (range 0.50–0.92)]. Conclusion The predictive model developed in this study contains variables that can be easily collected in practice therefore increasing its usability in clinical practice. Using this analysis approach, the discrimination and

  16. Development of an Aotus nancymaae Model for Shigella Vaccine Immunogenicity and Efficacy Studies

    Science.gov (United States)

    Gregory, Michael; Lugo-Roman, Luis A.; Galvez Carrillo, Hugo; Tilley, Drake Hamilton; Baldeviano, Christian; Simons, Mark P.; Reynolds, Nathanael D.; Ranallo, Ryan T.; Suvarnapunya, Akamol E.; Venkatesan, Malabi M.; Oaks, Edwin V.

    2014-01-01

    Several animal models exist to evaluate the immunogenicity and protective efficacy of candidate Shigella vaccines. The two most widely used nonprimate models for vaccine development include a murine pulmonary challenge model and a guinea pig keratoconjunctivitis model. Nonhuman primate models exhibit clinical features and gross and microscopic colonic lesions that mimic those induced in human shigellosis. Challenge models for enterotoxigenic Escherichia coli (ETEC) and Campylobacter spp. have been successfully developed with Aotus nancymaae, and the addition of a Shigella-Aotus challenge model would facilitate the testing of combination vaccines. A series of experiments were designed to identify the dose of Shigella flexneri 2a strain 2457T that induces an attack rate of 75% in the Aotus monkey. After primary challenge, the dose required to induce an attack rate of 75% was calculated to be 1 × 1011 CFU. Shigella-specific immune responses were low after primary challenge and subsequently boosted upon rechallenge. However, preexisting immunity derived from the primary challenge was insufficient to protect against the homologous Shigella serotype. A successive study in A. nancymaae evaluated the ability of multiple oral immunizations with live-attenuated Shigella vaccine strain SC602 to protect against challenge. After three oral immunizations, animals were challenged with S. flexneri 2a 2457T. A 70% attack rate was demonstrated in control animals, whereas animals immunized with vaccine strain SC602 were protected from challenge (efficacy of 80%; P = 0.05). The overall study results indicate that the Shigella-Aotus nancymaae challenge model may be a valuable tool for evaluating vaccine efficacy and investigating immune correlates of protection. PMID:24595138

  17. History of vaccination.

    Science.gov (United States)

    Plotkin, Stanley

    2014-08-26

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  18. History of vaccination

    OpenAIRE

    Plotkin, Stanley

    2014-01-01

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  19. Genome-wide screening and identification of antigens for rickettsial vaccine development

    Science.gov (United States)

    The capacity to identify immunogens for vaccine development by genome-wide screening has been markedly enhanced by the availability of complete microbial genome sequences coupled to rapid proteomic and bioinformatic analysis. Critical to this genome-wide screening is in vivo testing in the context o...

  20. Clinical development of a VAR2CSA-based placental malaria vaccine PAMVAC

    DEFF Research Database (Denmark)

    Gbédandé, Komi; Fievet, Nadine; Viwami, Firmine

    2017-01-01

    Background  The antigen VAR2CSA plays a pivotal role in the pathophysiology of pregnancy-associated malaria (PAM) caused by Plasmodium falciparum. A VAR2CSA-based vaccine candidate, PAMVAC, is under development by an EU-funded multi-country consortium (PlacMalVac project). As part of PAMVAC...

  1. Developing a HER3 Vaccine to Prevent Resistance to Endocrine Therapy

    Science.gov (United States)

    2014-10-01

    the vaccine include anaphylaxis, fever, skin reaction, autoimmunity ( colitis ), and hepatic insufficiency. Number of Patients Planned: 18 evaluable...could lead to developing an infection, skin rash, joint swelling, intestinal inflammation (chronic colitis ), or fluid around the heart and lungs...flu-like symptoms , anorexia, chills, nausea, and headache. These symptoms were also self-limiting and did not require intervention other than

  2. The Historical Development of Vaccine Technology: Exploring the Relationship between Science and Technology

    Science.gov (United States)

    Lee, Yeung Chung; Kwok, Ping Wai

    2017-01-01

    This paper examines the feasibility of using historical case studies to contextualise the learning of the nature of science and technology in a biology lesson. Through exploring the historical development of vaccine technology, students were expected to understand the complexity of the relationships between technology and science beyond the…

  3. Development of an Interactive Social Media Tool for Parents with Concerns about Vaccines

    Science.gov (United States)

    Shoup, Jo Ann; Wagner, Nicole M.; Kraus, Courtney R.; Narwaney, Komal J.; Goddard, Kristin S.; Glanz, Jason M.

    2015-01-01

    Objective: Describe a process for designing, building, and evaluating a theory-driven social media intervention tool to help reduce parental concerns about vaccination. Method: We developed an interactive web-based tool using quantitative and qualitative methods (e.g., survey, focus groups, individual interviews, and usability testing). Results:…

  4. Recent progress at NASA in LISA formulation and technology development

    International Nuclear Information System (INIS)

    Stebbins, R T

    2008-01-01

    Over the last year, the NASA half of the joint LISA project has focused its efforts on responding to a major review, and advancing the formulation and technology development of the mission. The NAS/NRC Beyond Einstein program assessment review will be described, including the outcome. The basis of the LISA science requirements has changed from detection determined by integrated signal-to-noise ratio to observation determined by uncertainty in the estimation of astrophysical source parameters. The NASA team has further defined the spacecraft bus design, participated in many design trade studies and advanced the requirements flow down and the associated current best estimates of performance. Recent progress in technology development is also summarized

  5. Progress in the development of a tracking transition radiation detector

    International Nuclear Information System (INIS)

    Whitaker, J.S.; Beatty, J.; Shank, J.T.; Wilson, R.J.; Polychronakos, V.A.; Radeka, V.; Stephani, D.; Beker, H.; Bock, R.K.; Botlo, M.; Fabjan, C.W.; Pfennig, J.; Price, M.J.; Willis, W.J.; Akesson, T.; Chernyatin, V.; Dolgoshein, B.; Nevsky, P.; Potekhin, M.; Romanjuk, A.; Sosnovtsev, V.; Gavrilenko, I.; Maiburov, S.; Muravjev, S.; Shmeleva, A.

    1990-01-01

    The purpose of the TRD/Tracker is to provide charged particle tracking in the r-z plane and to provide particle identification capabilities that are independent of and complementary to calorimetric methods. The tracking goals include observation of the charged particle multiplicity and topology, reconstruction of the primary vertex or vertices, and assignment of charged particles to the correct vertex. Particle identification goals include the independent validation of electron candidates selected by calorimetric signatures, the rejection of false electron candidates that rise from accidental overlaps of low momentum charged particles with photon-induced electromagnetic showers in the calorimeter, and the identification of electrons arising from Dalitz decays or from photon conversions. The authors report on progress towards the development of an integrated transition radiation detector and charged particle tracker. Mechanical design and simulation of a detector has been pursued; a prototype device with 240 channels has been constructed and tested. Innovative construction techniques have been developed

  6. Progress in Development of I2S-LWR Concept

    International Nuclear Information System (INIS)

    Petrovic, Bojan

    2014-01-01

    The paper will present the progress in developing the Integral Inherently Safe Light Water Reactor (12S-LWR) concept. This new concept aims to combine the competitive economics of a large nuclear power plant, with enhanced safety achieved by the integral primary circuit configuration (previously considered only for PWRs with power levels not exceeding several hundred MWc), and with enhanced accident tolerance (to address concerns after the Fukushima Dai-lchi accidents). Several new technologies are being developed to enable this concept, including novel silicide fuel and micro-channel primary heat exchangers. This project is performed by a multi-disciplinary multi-organization team led by Georgia Tech, including academia, a national laboratory, nuclear industry, and a power utility, wit expected participation of the University of Zagreb. (author)

  7. Progress in Development of Kharkov X-Ray Generator Nestor

    Energy Technology Data Exchange (ETDEWEB)

    Androsov, V.; Bulyak, V.; Dovbnya, A.; Drebot, I.; Gladkikh, P.; Grevtsev, V.; Grigorev, Yu.; Gvozd, A.; Ivashchenko, V.; Karnaukhov, I.; Kovalyova, N.; Kozin, V.; Lapshin, V.; Lyashchenko, V.; Markov, V.; Mocheshnikov, N.; Mytsykov, A.; Neklyudov, I.; Peev, F.; Rezaev, A.; Shcherbakov, A.; /Kharkov, KIPT /SLAC, SSRL /Eindhoven, Tech. U.

    2005-09-14

    The sources of the X-rays based on Compton scattering of intense Nd:YAG laser beam on electron beam circulating in a storage ring with beam energy 43-225 MeV is under construction in NSC KIPT. In the paper the progress in development and construction of Kharkov X-ray generator NESTOR is presented. The current status of the main facility system design and development are described. New scheme and main parameters of injection system are presented. The status of power supply system and control system is described. The facility is going to be in operation in the middle of 2007 and generated X-rays flux is expected to be of about 10{sup 13} phot/s.

  8. Hepatitis Vaccines

    Directory of Open Access Journals (Sweden)

    Sina Ogholikhan

    2016-03-01

    Full Text Available Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver.

  9. Hepatitis Vaccines

    Science.gov (United States)

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  10. Development of a Pharmacy Technician-Driven Program to Improve Vaccination Rates at an Academic Medical Center.

    Science.gov (United States)

    Hill, John D; Anderegg, Sammuel V; Couldry, Rick J

    2017-10-01

    Background: Influenza and pneumococcal disease contribute substantially to the burden of preventable disease in the United States. Despite quality measures tied to immunization rates, health systems have struggled to achieve these targets in the inpatient setting. Pharmacy departments have had success through implementation of pharmacist standing order programs (SOP); however, these initiatives are labor-intensive and have not resulted in 100% immunization rates. Objective: The objective of this study was to evaluate a pilot utilizing pharmacy technician interventions, in combination with a nursing SOP, to improve vaccination rates of hospitalized patients for influenza and pneumococcal disease. Methods: A process was developed for pharmacy technicians to identify patients who were not previously screened or immunized during the weekend days on the Cardiovascular Progressive Care unit at the University of Kansas Health-System. Targeted pharmacy technician interventions consisted of phone call reminders and face-to-face discussions with nursing staff. The primary study outcome was the change in immunization compliance rates between the control and intervention groups. Results: Influenza vaccine rates showed a statistically significant increase from 72.2% (52 of 72) of patients during the control group to 92.9% (65 of 70, P = .001) of patients during the intervention group. A pneumococcal vaccination rate of 81.3% (61 of 75) was observed in the control group, compared with 84.3% (59 of 70) of patients in the intervention group ( P = .638). Conclusion: An improvement in inpatient influenza immunization rates can be achieved through targeted follow-up performed by pharmacy technicians, in combination with a nursing-driven SOP.

  11. Meningococcal Vaccine (For Parents)

    Science.gov (United States)

    ... previous dose of meningococcal vaccine, to the DTaP vaccine , or to latex If your child has a history of Guillain-Barré syndrome (a disease of the nervous system that causes progressive weakness), talk to your doctor about whether the vaccines are a good idea. Caring for Your Child ...

  12. The US Military Commitment to Vaccine Development: A Century of Successes and Challenges

    Directory of Open Access Journals (Sweden)

    Silvia Ratto-Kim

    2018-06-01

    Full Text Available The US military has been a leading proponent of vaccine development since its founding. General George Washington ordered the entire American army to be variolated against smallpox after recognizing the serious threat that it posed to military operations. He did this on the recommendation from Dr. John Morgan, the physician-in-chief of the American army, who wrote a treatise on variolation in 1776. Although cases of smallpox still occurred, they were far fewer than expected, and it is believed that the vaccination program contributed to victory in the War of Independence. Effective military force requires personnel who are healthy and combat ready for worldwide deployment. Given the geography of US military operations, military personnel should also be protected against diseases that are endemic in potential areas of conflict. For this reason, and unknown to many, the US military has strongly supported vaccine research and development. Four categories of communicable infectious diseases threaten military personnel: (1 diseases that spread easily in densely populated areas (respiratory and dysenteric diseases; (2 vector-borne diseases (disease carried by mosquitoes and other insects; (3 sexually transmitted diseases (hepatitis, HIV, and gonorrhea; and (4 diseases associated with biological warfare. For each category, the US military has supported research that has provided the basis for many of the vaccines available today. Although preventive measures and the development of drugs have provided some relief from the burden of malaria, dengue, and HIV, the US military continues to fund research and development of prophylactic vaccines that will contribute to force health protection and global health. In the past few years, newly recognized infections with Zika, severe acute respiratory syndrome, Middle East respiratory syndrome viruses have pushed the US military to fund research and fast track clinical trials to quickly and effectively develop

  13. Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome

    Science.gov (United States)

    Jiang, Shibo; Bottazzi, Maria Elena; Du, Lanying; Lustigman, Sara; Tseng, Chien-Te Kent; Curti, Elena; Jones, Kathryn; Zhan, Bin; Hotez, Peter J

    2013-01-01

    A subunit vaccine, RBD-S, is under development to prevent severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV), which is classified by the US NIH as a category C pathogen. This vaccine is comprised of a recombinant receptor-binding domain (RBD) of the SARS-CoV spike (S) protein and formulated on alum, together with a synthetic glucopyranosyl lipid A. The vaccine would induce neutralizing antibodies without causing Th2-type immunopathology. Vaccine development is being led by the nonprofit product development partnership; Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development in collaboration with two academic partners (the New York Blood Center and University of Texas Medical Branch); an industrial partner (Immune Design Corporation); and Walter Reed Army Institute of Research. A roadmap for the product development of the RBD-S SARS vaccine is outlined with a goal to manufacture the vaccine for clinical testing within the next 5 years. PMID:23252385

  14. An updated methodology to review developing-country vaccine manufacturer viability.

    Science.gov (United States)

    Luter, Nicholas; Kumar, Ritu; Hozumi, Dai; Lorenson, Tina; Larsen, Shannon; Gowda, Bhavya; Batson, Amie

    2017-07-05

    In 1997, Milstien, Batson, and Meaney published "A Systematic Method for Evaluating the Potential Viability of Local Vaccine Producers." The paper identified characteristics of successful vaccine manufacturers and developed a viability framework to evaluate their performance. This paper revisits the original study after two decades to determine the ability of the framework to predict manufacturer success. By reconstructing much of the original dataset and conducting in-depth interviews, the authors developed informed views on the continued viability of manufacturers in low- and middle-income country markets. Considering the marked changes in the market and technology landscape since 1997, the authors find the viability framework to be predictive and a useful lens through which to evaluate manufacturer success or failure. Of particular interest is how incumbent and potentially new developing-country vaccine manufacturers enter and sustain production in competitive international markets and how they integrate (or fail to integrate) new technology into the production process. Ultimately, most manufacturers will need to meet global quality standards to be viable. As governments and donors consider investments in vaccine producers, the updated viability factors will be a useful tool in evaluating the prospects of manufacturers over the mid to long term. The paper emphasizes that while up-front investments are important, other critical factors-including investments in a national regulatory authority, manufacturer independence, and ability to adapt and adopt new technology-are necessary to ensure viability. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Induction of systemic CTL responses in melanoma patients by dendritic cell vaccination: Cessation of CTL responses is associated with disease progression

    DEFF Research Database (Denmark)

    Andersen, M.H.; Keikavoussi, P.; Brocker, E.B.

    2001-01-01

    Two HLA-A2-positive patients with advanced stage IV melanoma were treated with monocyte-derived dendritic cells (DC) pulsed with either tumor peptide antigens from gp100, MART-1 and MAGE- 3 alone or in combination with autologous oncolysates. Clinically, the rapid progression of disease...... by Western blotting was decreased in PBL at this time. In summary, our data confirm that DC-based vaccinations induce peptide-specific T cells in the peripheral blood of advanced-stage melanoma patients. Although successful induction of systemic tumor antigen-specific CTL may not lead to objective clinical...

  16. Vaccines for preventing infection with Pseudomonas aeruginosa in cystic fibrosis

    DEFF Research Database (Denmark)

    Johansen, Helle Krogh; Gøtzsche, Peter C

    2013-01-01

    Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed.......Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed....

  17. State of development progress of advanced boiling water reactors

    International Nuclear Information System (INIS)

    Tomono, Katsuya

    1982-01-01

    Advanced BWRs being developed at present are those aiming at the improvement of reliability and safety, the reduction of radiation exposure, the improvement of operation performance and capacity ratio of plants, and the heightening of economical efficiency by concentrating the experience and excellent technology of BWR manufacturers in the world. Now in Japan, the independence with Japanese technology is possible in almost all fields of nuclear power generation, and the improvement and standardization project is in progress to obtain the steady results. However, in order to pursue the most desirable BWRs conceivable at present, five BWR manufacturers in the world organized the Advanced Engineering Team in July, 1978, and performed the feasibility study of advanced BWRs for more than one year. Tokyo Electric Power Co., Inc., evaluated the report on the results, and judged that it is desirable to advance into the next stage aiming at the practical use of advanced BWRs. For the purpose, the electric power common research on advanced BWRs has been in progress, and the A-BWR project is to be examined in the third improvement and standardization project of MITI. The main technical features such as the coolant recirculation system of internal pump type, reinforced concrete containment vessels, fine motion control rod drive, improved core and fuel and others are explained. (Kako, I.)

  18. Progress in High Power Free-Piston Stirling Convertor Development

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Kirby, Raymond L.; Chapman, Peter A.; Walter, Thomas J.

    2008-09-01

    The U.S. Space Exploration Policy has established a vision for human exploration of the moon and Mars. One option for power for future outposts on the lunar and Martian surfaces is a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kWe. A 25 kW convertor was developed in the 1990s under the SP-100 program. This system consisted of two 12.5 kWe engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA began a new project with Auburn University to develop a 5 kWe, single convertor for use in such a possible lunar power system. Goals of this development program include a specific power in excess of 140 We/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Foster-Miller, Inc. is developing the 5 kWe Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  19. Assessing progress in the development of safety culture

    International Nuclear Information System (INIS)

    Rotaru, Ioan; Ghita, Sorin

    1999-01-01

    visible prescriptive formula for developing a strong safety culture. However, a prerequisite is genuine and consistent commitment by the top management of an organization to improving safety . Providing this commitment exists, the best recommendation is to due something tangible and visible to improve safety, preferably involving employees from the outset. The choice of practices for developing an improved safety culture should take account of the existing national and organizational culture in order to ensure effective implementation. The importance of the learning process has been emphasized. A mechanism is necessary to ensure that international experience of practices to develop a strong safety culture is shared on a regular and frequent basis. The maintenance and improvement of a safety culture is a process of continuous evolution. Indicators are available to assess positive progress in this evolution and to detect a weakening safety culture. (authors)

  20. Prediction of linear B-cell epitopes of hepatitis C virus for vaccine development

    Science.gov (United States)

    2015-01-01

    Background High genetic heterogeneity in the hepatitis C virus (HCV) is the major challenge of the development of an effective vaccine. Existing studies for developing HCV vaccines have mainly focused on T-cell immune response. However, identification of linear B-cell epitopes that can stimulate B-cell response is one of the major tasks of peptide-based vaccine development. Owing to the variability in B-cell epitope length, the prediction of B-cell epitopes is much more complex than that of T-cell epitopes. Furthermore, the motifs of linear B-cell epitopes in different pathogens are quite different (e. g. HCV and hepatitis B virus). To cope with this challenge, this work aims to propose an HCV-customized sequence-based prediction method to identify B-cell epitopes of HCV. Results This work establishes an experimentally verified dataset comprising the B-cell response of HCV dataset consisting of 774 linear B-cell epitopes and 774 non B-cell epitopes from the Immune Epitope Database. An interpretable rule mining system of B-cell epitopes (IRMS-BE) is proposed to select informative physicochemical properties (PCPs) and then extracts several if-then rule-based knowledge for identifying B-cell epitopes. A web server Bcell-HCV was implemented using an SVM with the 34 informative PCPs, which achieved a training accuracy of 79.7% and test accuracy of 70.7% better than the SVM-based methods for identifying B-cell epitopes of HCV and the two general-purpose methods. This work performs advanced analysis of the 34 informative properties, and the results indicate that the most effective property is the alpha-helix structure of epitopes, which influences the connection between host cells and the E2 proteins of HCV. Furthermore, 12 interpretable rules are acquired from top-five PCPs and achieve a sensitivity of 75.6% and specificity of 71.3%. Finally, a conserved promising vaccine candidate, PDREMVLYQE, is identified for inclusion in a vaccine against HCV. Conclusions This work

  1. The Development of Vaccination Perspectives among Chiropractic, Naturopathic and Medical Students: A Case Study of Professional Enculturation

    Science.gov (United States)

    McMurtry, Angus; Wilson, Kumanan; Clarkin, Chantalle; Walji, Rishma; Kilian, Brendan C.; Kilian, Carney C.; Lohfeld, Lynne; Alolabi, Bashar; Hagino, Carol; Busse, Jason W.

    2015-01-01

    An important influence on parents' decisions about pediatric vaccination (children under 6 years of age) is the attitude of their health care providers, including complementary and alternative medicine (CAM) providers. Very limited qualitative research exists, however, on how attitudes towards vaccination develop among healthcare professionals…

  2. Use of recombinant capsid proteins in the development of a vaccine against foot-and-mouth disease virus (FMDV)

    DEFF Research Database (Denmark)

    Belsham, Graham; Bøtner, Anette

    2015-01-01

    -scale culling of infected, and potentially infected, animals there has been significant effort to develop new vaccines against this disease which avoid some, or all, of the deficiencies of current vaccines. A major focus has been on the use of systems that express the structural proteins of the virus that self...

  3. A real options approach to biotechnology Investment policy - the case of developing a Campylobacter vaccine to poultry

    DEFF Research Database (Denmark)

    Lund, Mogens; Jensen, Jørgen Dejgård

    2016-01-01

    The aim of the article is to identify and analyse public-private incentives for the development and marketing of new animal vaccines within a real options methodological framework, and to investigate how real options methodology can be utilized to support economic incentives for vaccine developme...

  4. Research progress in roles of gut microbiota and bile acid metabolism in development and progression of NAFLD

    Directory of Open Access Journals (Sweden)

    LU Xu

    2014-11-01

    Full Text Available With the prevalence of obesity and metabolic syndrome, the incidence of nonalcoholic fatty liver disease (NAFLD is increasing year by year. Studies have uncovered the important roles of gut microbiota and bile acid metabolism in the development and progression of NAFLD. The roles of gut microbiota, as well bile acid and bile acid receptors, in the development and progression of NAFLD are highlighted.

  5. Points to consider in the development of a surrogate for efficacy of novel Japanese encephalitis virus vaccines.

    Science.gov (United States)

    Markoff, L

    2000-05-26

    Although an effective killed virus vaccine to prevent illness due to Japanese encephalitis virus (JEV) infection exists, many authorities recognize that a safe, effective live JEV vaccine is desirable in order to reduce the cost and the number of doses of vaccine required per immunization. A large-scale clinical efficacy trail for such a vaccine would be both unethical and impractical. Therefore, a surrogate for the efficacy of JE vaccines should be established. Detection of virus-neutralizing antibodies in sera of vaccinees could constitute such a surrogate for efficacy. Field studies of vaccinees in endemic areas and studies done in mice already exist to support this concept. Also, titers of virus-neutralizing antibodies are already accepted as a surrogate for the efficacy of yellow fever virus vaccines and for the efficacy of other viral vaccines as well. In developing a correlation between N antibody titers and protection from JEV infection, standard procedures must be validated and adopted for both measuring N antibodies and for testing in animals. A novel live virus vaccine could be tested in the mouse and/or the monkey model of JEV infection to establish a correlation between virus-neutralizing antibodies elicited by the vaccines and protection from encephalitis. In addition, sera of subjects receiving the novel live JEV vaccine in early clinical trials could be passively transferred to mice or monkeys in order to establish the protective immunogenicity of the vaccine in humans. A monkey model for JEV infection was recently established by scientists at WRAIR in the US. From this group, pools of JEV of known infectivity for Rhesus macaques may be obtained for testing of immunity elicited by live JE vaccine virus.

  6. Chemistry research and development progress report, May-October, 1978

    International Nuclear Information System (INIS)

    Miner, F.J.

    1979-01-01

    Work in progress includes: calorimetry and thermodynamics of nuclear materials; americium recovery and purification; optimization of the cation exchange process for recovering americium and plutonium from molten salt extraction residues, photochemical separations of actinides; advanced ion exchange materials and techniques; secondary actinide recovery; removal of plutonium from lathe coolant oil; evaluation of tributyl phosphate-impregnated sorbent for plutonium-uranium separations; plutonium recovery in advance size reduction facility; plutonium peroxide precipitation; decontamination of Rocky Flats soil; soil decontamination at other Department of Energy sites; recovery of actinides from combustible wastes; induction-heated, tilt-pour furnace; vacuum melting; determination of plutonium and americium in salts and alloys by calorimetry; plutonium peroxide precipitation process; silica removal study; a comparative study of annular and Raschig ring-filled tanks; recovery of plutonium and americium from a salt cleanup alloy; and process development for recovery of americium from vacuum melt furnace crucibles

  7. Progress in development of MOSART concept with Th support

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V.; Feynberg, O.; Merzlyakov, A.; Surenkov, A.; Zagnitko, A. [National Research Center, Kurchatov Inst., Moscow (Russian Federation); Afonichkin, V.; Bovet, A.; Khokhlov, V. [Inst. of High Temperature Electrochemisty, Ekaterinburg (Russian Federation); Subbotin, V.; Fazilov, R.; Gordeev, M.; Panov, A.; Toropov, A. [Inst. of Technical Physics, Snezhinsk (Russian Federation)

    2012-07-01

    A study is under progress to examine the feasibility of Molten Salt Actinide Recycler and Transmuter system with U-Th support (MOSART+Th) fuelled with different compositions of actinide tri-fluorides (AnF{sub 3}) from used LWR fuel. New fast-spectrum design options with homogeneous core and fuel salt with high enough solubility for AnF{sub 3} are being examined because of new goals. Experimental data base created was used for further development of MOSART+Th technology as applied to consumption of AnF{sub 3} while extracting their energy. The flexibility of single fluid MOSART+Th concept fuel cycle is underlined, particularly, possibility of its operation in self-sustainable mode (CR=1) using different loadings and make up. The paper summarizes the current status of the design data for the MOSART+Th concept received within ISTC 3749 Task. (authors)

  8. Technology development, evaluation, and application (TDEA) FY 1997 progress report

    International Nuclear Information System (INIS)

    Hoffman, L.G.

    1998-05-01

    The public expects that the Los Alamos National Laboratory (LANL) will operate in a manner that prevents negative impacts to the environment and protects the safety and health of its employees and the public. To achieve this goal within budget, the Department of Energy (DOE) and LANL must develop new and improved environment, safety, and health (ES and H) technologies and implement innovative, more cost-effective ES and H approaches to operations. In FY95, the Environment, Safety, and Health (ESH) Division initiated a Technology Development, Evaluation, and Application (TDEA) program. The purpose of this unique program is to test and develop technologies that solve LANL ES and H problems and improve the safety of LANL operations. This progress report presents the results of 10 projects funded in FY97 by the TDEA Committee of the Environment, Safety, and Health Division. Products generated from the projects funded in FY97 included implementation of radiation worker dosimetric monitoring systems (two); evaluation and validation of cost-effective animal-tracking systems for environmental studies (two); evaluation of personal protective equipment (two); and development of a method for optimal placement of continuous air monitors in the workplace

  9. Technology development, evaluation, and application (TDEA) FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, L.G.

    1998-05-01

    The public expects that the Los Alamos National Laboratory (LANL) will operate in a manner that prevents negative impacts to the environment and protects the safety and health of its employees and the public. To achieve this goal within budget, the Department of Energy (DOE) and LANL must develop new and improved environment, safety, and health (ES and H) technologies and implement innovative, more cost-effective ES and H approaches to operations. In FY95, the Environment, Safety, and Health (ESH) Division initiated a Technology Development, Evaluation, and Application (TDEA) program. The purpose of this unique program is to test and develop technologies that solve LANL ES and H problems and improve the safety of LANL operations. This progress report presents the results of 10 projects funded in FY97 by the TDEA Committee of the Environment, Safety, and Health Division. Products generated from the projects funded in FY97 included implementation of radiation worker dosimetric monitoring systems (two); evaluation and validation of cost-effective animal-tracking systems for environmental studies (two); evaluation of personal protective equipment (two); and development of a method for optimal placement of continuous air monitors in the workplace.

  10. Progress report on fast breeder reactor development in Japan

    International Nuclear Information System (INIS)

    1976-05-01

    Following the completion of the in-argon, high temperature test, the in-sodium functional test of Joyo has set in. The fabrication of the equipments for monitoring the flow rate and temperature in the center channel and the power distribution was finished. The modification of design of the prototype fast breeder reactor Monju came into its phase 3. The interim report on the check-up and review of the Monju project by the Government is now ready. Various calculation codes were developed or are in development stage. The mock-up assembly FCA 7-1 has been built, which consists of the Pu-fueled sector region simulating the Monju core and the U-235-fueled driver region. Various reactor physics experiments have been carried out in this assembly. Also, the calculation methods for reactor physics parameters have been developed, and the detailed calculation on the main shield of Joyo was performed. The situation of the developments of the components for Joyo and Monju and the measuring and control systems is shown. Almost all the existing sodium test facilities in Oarai Engineering Center were in service without any trouble, and the new test facility named ''Carbon transfer test loop'' was commissioned. The progress in the fields of sodium technology, fuel and material, safety and steam generators is reported. (Kako, I.)

  11. VACCINES AND IMMUNIZATION: WORLD SITUATION

    Directory of Open Access Journals (Sweden)

    G.H. Brundtland

    2007-01-01

    Full Text Available The last issue of the report «vaccines and immunization: world situation» stresses considerable success in immunization at the global level since the mid 90 s — completely total eradication of poliomyelitis across the world, as well as the drastic reduction of the new measles and tetanus cases among mothers and newborns in some poor countries. The report also briefly describes the progress in the development and implementation of the new life saving vaccines, which may save millions of lives annually. The authors have explained some of the reasons, why the global community should invest in immunization, as well as the perspectives for the use of vaccines and immunization in future.Key words: vaccine, immunization, children.

  12. What Has 30 Years of HIV Vaccine Research Taught Us?

    Directory of Open Access Journals (Sweden)

    José Esparza

    2013-10-01

    Full Text Available When HIV was discovered and established as the cause of AIDS in 1983–1984, many people believed that a vaccine would be rapidly developed. However, 30 years have passed and we are still struggling to develop an elusive vaccine. In trying to achieve that goal, different scientific paradigms have been explored. Although major progress has been made in understanding the scientific basis for HIV vaccine development, efficacy trials have been critical in moving the field forward. Major lessons learned are: the development of an HIV vaccine is an extremely difficult challenge; the temptation of just following the fashion should be avoided; clinical trials are critical, especially large-scale efficacy trials; HIV vaccine research will require long-term commitment; and sustainable collaborations are needed to accelerate the development of an HIV vaccine. Concrete actions must be implemented with the sense of urgency imposed by the severity of the AIDS epidemic.

  13. Worldwide genetic variability of the Duffy binding protein: insights into Plasmodium vivax vaccine development.

    Directory of Open Access Journals (Sweden)

    Taís Nóbrega de Sousa

    Full Text Available The dependence of Plasmodium vivax on invasion mediated by Duffy binding protein (DBP makes this protein a prime candidate for development of a vaccine. However, the development of a DBP-based vaccine might be hampered by the high variability of the protein ligand (DBP(II, known to bias the immune response toward a specific DBP variant. Here, the hypothesis being investigated is that the analysis of the worldwide DBP(II sequences will allow us to determine the minimum number of haplotypes (MNH to be included in a DBP-based vaccine of broad coverage. For that, all DBP(II sequences available were compiled and MNH was based on the most frequent nonsynonymous single nucleotide polymorphisms, the majority mapped on B and T cell epitopes. A preliminary analysis of DBP(II genetic diversity from eight malaria-endemic countries estimated that a number between two to six DBP haplotypes (17 in total would target at least 50% of parasite population circulating in each endemic region. Aiming to avoid region-specific haplotypes, we next analyzed the MNH that broadly cover worldwide parasite population. The results demonstrated that seven haplotypes would be required to cover around 60% of DBP(II sequences available. Trying to validate these selected haplotypes per country, we found that five out of the eight countries will be covered by the MNH (67% of parasite populations, range 48-84%. In addition, to identify related subgroups of DBP(II sequences we used a Bayesian clustering algorithm. The algorithm grouped all DBP(II sequences in six populations that were independent of geographic origin, with ancestral populations present in different proportions in each country. In conclusion, in this first attempt to undertake a global analysis about DBP(II variability, the results suggest that the development of DBP-based vaccine should consider multi-haplotype strategies; otherwise a putative P. vivax vaccine may not target some parasite populations.

  14. Worldwide genetic variability of the Duffy binding protein: insights into Plasmodium vivax vaccine development.

    Science.gov (United States)

    Nóbrega de Sousa, Taís; Carvalho, Luzia Helena; Alves de Brito, Cristiana Ferreira

    2011-01-01

    The dependence of Plasmodium vivax on invasion mediated by Duffy binding protein (DBP) makes this protein a prime candidate for development of a vaccine. However, the development of a DBP-based vaccine might be hampered by the high variability of the protein ligand (DBP(II)), known to bias the immune response toward a specific DBP variant. Here, the hypothesis being investigated is that the analysis of the worldwide DBP(II) sequences will allow us to determine the minimum number of haplotypes (MNH) to be included in a DBP-based vaccine of broad coverage. For that, all DBP(II) sequences available were compiled and MNH was based on the most frequent nonsynonymous single nucleotide polymorphisms, the majority mapped on B and T cell epitopes. A preliminary analysis of DBP(II) genetic diversity from eight malaria-endemic countries estimated that a number between two to six DBP haplotypes (17 in total) would target at least 50% of parasite population circulating in each endemic region. Aiming to avoid region-specific haplotypes, we next analyzed the MNH that broadly cover worldwide parasite population. The results demonstrated that seven haplotypes would be required to cover around 60% of DBP(II) sequences available. Trying to validate these selected haplotypes per country, we found that five out of the eight countries will be covered by the MNH (67% of parasite populations, range 48-84%). In addition, to identify related subgroups of DBP(II) sequences we used a Bayesian clustering algorithm. The algorithm grouped all DBP(II) sequences in six populations that were independent of geographic origin, with ancestral populations present in different proportions in each country. In conclusion, in this first attempt to undertake a global analysis about DBP(II) variability, the results suggest that the development of DBP-based vaccine should consider multi-haplotype strategies; otherwise a putative P. vivax vaccine may not target some parasite populations.

  15. Update on the current status of cytomegalovirus vaccines.

    Science.gov (United States)

    Sung, Heungsup; Schleiss, Mark R

    2010-11-01

    Human cytomegalovirus (HCMV) is ubiquitous in all populations, and is the most commonly recognized cause of congenital viral infection in developed countries. On the basis of the economic costs saved and the improvement in quality of life that could potentially be conferred by a successful vaccine for prevention of congenital HCMV infection, the Institute of Medicine has identified HCMV vaccine development as a major public health priority. An effective vaccine could potentially also be beneficial in preventing or ameliorating HCMV disease in immunocompromised individuals. Although there are no licensed HCMV vaccines currently available, enormous progress has been made in the last decade, as evidenced by the recently reported results of a Phase II trial of a glycoprotein B vaccine for the prevention of HCMV infection in seronegative women of childbearing age. HCMV vaccines currently in clinical trials include: glycoprotein B subunit vaccines; alphavirus replicon particle vaccines; DNA vaccines; and live-attenuated vaccines. A variety of vaccine strategies are also being examined in preclinical systems and animal models of infection. These include: recombinant vesicular stomatitis virus vaccines; recombinant modified vaccinia virus Ankara; replication-deficient adenovirus-vectored vaccines; and recombinant live-attenuated virus vaccines generated by mutagenesis of cloned rodent CMV genomes maintained as bacterial artificial chromosomes in Escherichia coli. In this article, we provide an overview of the current state of clinical trials and preclinical development of vaccines against HCMV, with an emphasis on studies that have been conducted in the past 5 years. We also summarize a number of recent advances in the study of the biology of HCMV, particularly with respect to epithelial and endothelial cell entry of the virus, which have implications for future vaccine design.

  16. Progress and Overview on Neutronics Modelling Development in RTP

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Muhammad Rawi Mohamed Zin; Julia Abdul Karim

    2016-01-01

    Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as k_e_f_f, reactivity, neutron flux, power distribution, B_e_f_f, and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP behaviour. (author)

  17. Progress in integrated energy-economy-environment model system development

    International Nuclear Information System (INIS)

    Yasukawa, Shigeru; Mankin, Shuichi; Sato, Osamu; Tadokoro, Yoshihiro; Nakano, Yasuyuki; Nagano, Takao

    1987-11-01

    The Integrated Energy-Economy-Environment Model System has been developed for providing analytical tools for the system analysis and technology assessments in the field of nuclear research and development. This model system consists of the following four model groups. The first model block installs 5 models and can serve to analyze and generate long-term scenarios on economy-energy-environment evolution. The second model block installs 2 models and can serve to analyze the structural transition phenomena in energy-economy-environment interactions. The third model block installs 2 models and can handle power reactor installation strategy problem and long-term fuel cycle analysis. The fourth model block installs 5 models and codes and can treats cost-benefit-risk analysis and assessments. This report describes mainly the progress and the outlines of application of the model system in these years after the first report on the research and development of the model system (JAERI-M 84 - 139). (author)

  18. Rotavirus vaccine a€“ What are the concerns of the developing countries?

    OpenAIRE

    SHAH, Nitin K

    2010-01-01

    It is estimated that 0.6 million children die annually due to rotavirus diarrhea under the age of 5 years world over. 90% of these deaths occur in developing countries. Western data suggests that current rotavirus vaccines have 85-95% efficacy against severe rotavirus gastroenteritis (RVGE). There are concerns while using the same in developing countries. Data from African trial has shown 76% efficacy against severe RVGE. Efficacy in malnourished children has been found to be 73% as against 7...

  19. Poverty and progress: choices for the developing world.

    Science.gov (United States)

    Chenery, H B

    1980-06-01

    Some development strategists equate progress with economic growth and others consider increased equity in income distribution or a reduction in poverty as indicators of progress. This report examined the empirical relationship between economic growth and income distribution using data derived from a number of recent comparative studies. Various studies supported the Kuznets hypothesis, which states that during the early phases of development income distribution worsens and improves during the later phases. These studies demonstrated that as per capita income increases in poor countries, income distribution worsens until the per capita income reaches the $800 level. After that level is reached, income distribution generally improves. In a study of 11 countries, the relationship, in recent years, between income growth for the rich and for the poor, and income growth for the country as a whole was examined. Of the 11 countries, Taiwan, Yugoslavia, Sri Lanka, Korea, and Costa Rica were ranked as good performers, since more than 30% of the increment in national income was allocated to the poorest 60% of the population. The countries of India, Philippines, Turkey, and Colombia were ranked as intermediate performers since 20-30% of the increment in national income went to the poorest 60%. Poor performance countries were Brazil, Mexico, and Peru. In these countries less than 20% of the income increment was allocated to the poorest 60%. A table provided comparative national income and income distribution data for the 11 countries. These findings did not permit an assessment of different development strategies; however, they did indicate that: 1) some countries, such as Taiwan, Yugoslavia, and Korea, achieved both rapid growth and greater income distribution equity; and that 2) although some countires, such as Sri Lanka, which stressed equity, grew less rapidly than other countries, such as Mexico, which stressed economic growth, the poor fared much better in the former

  20. DNA Vaccines

    Indian Academy of Sciences (India)

    diseases. Keywords. DNA vaccine, immune response, antibodies, infectious diseases. GENERAL .... tein vaccines require expensive virus/protein purification tech- niques as ... sphere continue to remain major health hazards in developing nations. ... significance since it can be produced at a very low cost and can be stored ...

  1. PERSPECTIVES OF THE DEVELOPMENT OF MUCOSAL VACCINES AGAINST DANGEROUS INFECTIONS ON THE BASE OF TRANSGENIC PLANTS

    Directory of Open Access Journals (Sweden)

    A.V. Tretyakova

    2012-08-01

    Full Text Available Mucosal vaccines created on the base of transgenic plants reacting with mucosal layers of the intestines and other organs are considered to be the perspective method of the vaccination. These vaccines induce both mucosal and general humoral immunogenicity after the peroral administration. The folding of antigenic proteins synthesizing in plants occurs via eukaryotic type and has advantages before yeast and prokaryotic platforms. This feature results to more adequate synthesis of antibodies against pathogens and to the interaction with effector molecules of complement. Earlier we together with The State Scientific Center “Vector”, Institute of chemical biology and fundamental medicine SB RAS and Dr R.Hammond from Laboratory of Plant Pathology (Maryland, USA created two candidate vaccines : one of them against AIDS (HIV-1 and hepatitis B on the base of the chimeric gene TBI-HBS, encoding simultaneously 9 antigenic determinants of HIV-1 and the main surface antigen of hepatitis B (HBsAg. The second candidate vaccine was created against hepatitis B on the base of the genetic construct with the gene preS2-S encoding the synthesis of two subunits of the main surface antigen of hepatitis B and the signal peptide HDEL which directed antigens for the accumulation on ER. Both vaccines were tested on mice and confirmed their immunogenicity as the pronounced antibodies response. Twice vaccinated mice maintained the antibodies response during 11 months after there was little tendency to lowering. It was established that transgenic plants – vaccines (tomato kept the capability to the synthesis of antigenic determinants in seven seed generations during 7 years. The results of the development of the mucosal vaccine against cervical carcinoma (carcinoma of uterine cervix evoked by human papillomaviruses of high oncogenic risks were presented in this report. We created the genetic construct consisting of 35S CaMV promoter, Ώ (omega leader of TMV, the

  2. Oral vaccination: where we are?

    Science.gov (United States)

    Silin, Dmytro S; Lyubomska, Oksana V; Jirathitikal, Vichai; Bourinbaiar, Aldar S

    2007-07-01

    As early as 900 years ago, the Bedouins of the Negev desert were reported to kill a rabid dog, roast its liver and feed it to a dog-bitten person for three to five days according to the size and number of bites [1] . In sixteenth century China, physicians routinely prescribed pills made from the fleas collected from sick cows, which purportedly prevented smallpox. One may dismiss the wisdom of the Bedouins or Chinese but the Nobel laureate, Charles Richet, demonstrated in 1900 that feeding raw meat can cure tuberculous dogs - an approach he termed zomotherapy. Despite historical clues indicating the feasibility of oral vaccination, this particular field is notoriously infamous for the abundance of dead-end leads. Today, most commercial vaccines are delivered by injection, which has the principal limitation that recipients do not like needles. In the last few years, there has been a sharp increase in interest in needle-free vaccine delivery; new data emerges almost daily in the literature. So far, there are very few licensed oral vaccines, but many more vaccine candidates are in development. Vaccines delivered orally have the potential to take immunization to a fundamentally new level. In this review, the authors summarize the recent progress in the area of oral vaccines.

  3. Development of live attenuated Streptococcus agalactiae as potential vaccines by selecting for resistance to sparfloxacin.

    Science.gov (United States)

    Pridgeon, Julia W; Klesius, Phillip H

    2013-05-31

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resistant S. agalactiae isolates were tested in 10-12g Nile tilapia by intraperitoneal injection at dose of 2×10(7)CFU/fish, 31 were found to be avirulent to fish. Of the 31 avirulent sparfloxacin-resistant S. agalactiae isolates, 30 provided 75-100% protection to 10-12g Nile tilapia against challenges with a virulent S. agalactiae isolate Sag 50. When the virulence of the 30 sparfloxacin-resistant S. agalactiae isolates was tested in 3-5g Nile tilapia by intraperitoneal injection at dose of 2×10(7)CFU/fish, six were found to be avirulent to 3-5g Nile tilapia. Of the six avirulent sparfloxacin-resistant S. agalactiae isolates, four provided 3-5g Nile tilapia 100% protection against challenges with homologous isolates, including Sag 97-spar isolate that was non-hemolytic. However, Sag 97-spar failed to provide broad cross-protection against challenges with heterologous isolates. When Nile tilapia was vaccinated with a polyvalent vaccine consisting of 30 sparfloxacin-resistant S. agalactiae isolates at dose of 2×10(6)CFU/fish, the polyvalent vaccine provided significant (PS. agalactiae. Taken together, our results suggest that a polyvalent vaccine consisting of various strains of S. agalactiae might be essential to provide broader protection to Nile tilapia against infections caused by S. agalactiae. Published by Elsevier Ltd.

  4. Development of the novel coating formulations for skin vaccination using stainless steel microneedle.

    Science.gov (United States)

    Kim, Seong-Jin; Shin, Ju-Hyung; Noh, Jin-Yong; Song, Chang-Seon; Kim, Yeu-Chun

    2016-10-01

    This study focused on the development of novel coating formulations for stainless steel microneedles against influenza A virus. With in vitro studies, various viscosity enhancers and stabilizers were screened based on the hemagglutination activity of the vaccine, which was coated and dried onto a stainless steel chip at room temperature for 1 day. Following the long-term storage test, the hemagglutination activity and particle size of the vaccine, which was formulated with conventional or methylcellulose or hydroxyethyl cellulose and dried onto the microneedle, were monitored. Next, to evaluate the in vivo immunogenicity and protection effect of each dried vaccine formulation, mice were immunized by the antigen-coated microneedle, which had either the conventional or the proposed formulation. Two novel formulations were chosen in the preliminary screening, and in further evaluations, they exhibited a 20 % higher HA activity during storage for 3 months, and no aggregation was observed during storage after drying. In a mouse model, the microneedle with the novel formulation elicited a higher level of IgG and IgG2a was more prevalent in the IgG isotype profile. In addition, mice immunized with the HEC-coated microneedle survived with small weight loss (>90 %) against lethal challenge infection. Overall, the novel formulation hydroxyethyl cellulose preserved significantly higher HA activity during the production and storage of the microneedle as well as improved the in vivo immunogenicity of the vaccine.

  5. Development of Novel Faster-Dissolving Microneedle Patches for Transcutaneous Vaccine Delivery.

    Science.gov (United States)

    Ono, Akihiko; Ito, Sayami; Sakagami, Shun; Asada, Hideo; Saito, Mio; Quan, Ying-Shu; Kamiyama, Fumio; Hirobe, Sachiko; Okada, Naoki

    2017-08-03

    Microneedle (MN) patches are promising for transcutaneous vaccination because they enable vaccine antigens to physically penetrate the stratum corneum via low-invasive skin puncturing, and to be effectively delivered to antigen-presenting cells in the skin. In second-generation MN patches, the dissolving MNs release the loaded vaccine antigen into the skin. To shorten skin application time for clinical practice, this study aims to develop novel faster-dissolving MNs. We designed two types of MNs made from a single thickening agent, carboxymethylcellulose (CMC) or hyaluronan (HN). Both CMC-MN and HN-MN completely dissolved in rat skin after a 5-min application. In pre-clinical studies, both MNs could demonstrably increase antigen-specific IgG levels after vaccination and prolong antigen deposition compared with conventional injections, and deliver antigens into resected human dermal tissue. In clinical research, we demonstrated that both MNs could reliably and safely puncture human skin without any significant skin irritation from transepidermal water loss measurements and ICDRG (International Contact Dermatitis Research Group) evaluation results.

  6. Isolation, Specification, Molecular Biology Assessment and Vaccine Development of Clostridium in Iran: A Review

    Directory of Open Access Journals (Sweden)

    Reza Pilehchian Langroudi

    2015-11-01

    Full Text Available Context: The genus Clostridium, which consists of spore-forming anaerobes, can cause different diseases in domestic animals and human and some of them are serious and fatal. According to the increasing economic value of the meat and milk-producing animals, the importance of a certain number of such diseases in Iran is unquestionable. Evidence Acquisition: In Iran, and probably in other Near East countries, much attention was formerly paid to control more serious contagious diseases, such as rinderpest, anthrax, etc. resulting in the negligence of diseases such as enterotoxaemia. The epizootiological position has now changed whereby some of the contagious diseases are eradicated or are being methodically controlled.Now it is time to care about the other problems such as clostridial diseases, which threaten the health of the sheep and cattle. It is impossible to eradicate these infectious microorganisms, since they are normally found in the soil and the intestinal contents of apparently healthy animals. Therefore, it is necessary to resort to vaccination which in some cases has given encouraging results. To avoid the losses from such infections it is necessary to have the best possible vaccination information, methodically and regularity of the susceptible animals. Conclusions: This review refers to the veterinary aspects of the anaerobic clostridial diseases and vaccine development concerning the works carried out in Iran and especially at the Razi Serum and Vaccine Research Institute in the last eight decades.

  7. Vaccines licensed and in clinical trials for the prevention of dengue.

    Science.gov (United States)

    Torresi, J; Ebert, G; Pellegrini, M

    2017-05-04

    Dengue has become a major global public health threat with almost half of the world's population living in at-risk areas. Vaccination would likely represent an effective strategy for the management of dengue disease in endemic regions, however to date there is only one licensed preventative vaccine for dengue infection. The development of a vaccine against dengue virus (DENV) has been hampered by an incomplete understanding of protective immune responses against DENV. The most clinically advanced dengue vaccine is the chimeric yellow fever-dengue vaccine (CYD) that employs the yellow fever virus 17D strain as the replication backbone (Chimerivax-DEN; CYD-TDV). This vaccine had an overall pooled protective efficacy of 65.6% but was substantially more effective against severe dengue and dengue hemorrhagic fever. Several other vaccine approaches have been developed including live attenuated chimeric dengue vaccines (DENVax and LAV Delta 30), DEN protein subunit V180 vaccine (DEN1-80E) and DENV DNA vaccines. These vaccines have been shown to be immunogenic in animals and also safe and immunogenic in humans. However, these vaccines are yet to progress to phase III trials to determine their protective efficacy against dengue. This review will summarize the details of vaccines that have progressed to clinical trials in humans.

  8. Deinococcus Mn2+-peptide complex: A novel approach to alphavirus vaccine development.

    Science.gov (United States)

    Gayen, Manoshi; Gupta, Paridhi; Morazzani, Elaine M; Gaidamakova, Elena K; Knollmann-Ritschel, Barbara; Daly, Michael J; Glass, Pamela J; Maheshwari, Radha K

    2017-06-22

    Over the last ten years, Chikungunya virus (CHIKV), an Old World alphavirus has caused numerous outbreaks in Asian and European countries and the Americas, making it an emerging pathogen of great global health importance. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, on the other hand, has been developed as a bioweapon in the past due to its ease of preparation, aerosol dispersion and high lethality in aerosolized form. Currently, there are no FDA approved vaccines against these viruses. In this study, we used a novel approach to develop inactivated vaccines for VEEV and CHIKV by applying gamma-radiation together with a synthetic Mn-decapeptide-phosphate complex (MnDpPi), based on manganous-peptide-orthophosphate antioxidants accumulated in the extremely radiation-resistant bacterium Deinococcus radiodurans. Classical gamma-irradiated vaccine development approaches are limited by immunogenicity-loss due to oxidative damage to the surface proteins at the high doses of radiation required for complete virus-inactivation. However, addition of MnDpPi during irradiation process selectively protects proteins, but not the nucleic acids, from the radiation-induced oxidative damage, as required for safe and efficacious vaccine development. Previously, this approach was used to develop a bacterial vaccine. In the present study, we show that this approach can successfully be applied to protecting mice against viral infections. Irradiation of VEEV and CHIKV in the presence of MnDpPi resulted in substantial epitope preservation even at supra-lethal doses of gamma-rays (50,000Gy). Irradiated viruses were found to be completely inactivated and safe in vivo (neonatal mice). Upon immunization, VEEV inactivated in the presence of MnDpPi resulted in drastically improved protective efficacy. Thus, the MnDpPi-based gamma-inactivation approach described here can readily be applied to developing vaccines against any pathogen of interest in a fast and cost

  9. The Ebola Outbreak of 2014-2015: From Coordinated Multilateral Action to Effective Disease Containment, Vaccine Development, and Beyond.

    Science.gov (United States)

    Wojda, Thomas R; Valenza, Pamela L; Cornejo, Kristine; McGinley, Thomas; Galwankar, Sagar C; Kelkar, Dhanashree; Sharpe, Richard P; Papadimos, Thomas J; Stawicki, Stanislaw P

    2015-01-01

    The Ebola outbreak of 2014-2015 exacted a terrible toll on major countries of West Africa. Latest estimates from the World Health Organization indicate that over 11,000 lives were lost to the deadly virus since the first documented case was officially recorded. However, significant progress in the fight against Ebola was made thanks to a combination of globally-supported containment efforts, dissemination of key information to the public, the use of modern information technology resources to better track the spread of the outbreak, as well as more effective use of active surveillance, targeted travel restrictions, and quarantine procedures. This article will outline the progress made by the global public health community toward containing and eventually extinguishing this latest outbreak of Ebola. Economic consequences of the outbreak will be discussed. The authors will emphasize policies and procedures thought to be effective in containing the outbreak. In addition, we will outline selected episodes that threatened inter-continental spread of the disease. The emerging topic of post-Ebola syndrome will also be presented. Finally, we will touch on some of the diagnostic (e.g., point-of-care [POC] testing) and therapeutic (e.g., new vaccines and pharmaceuticals) developments in the fight against Ebola, and how these developments may help the global public health community fight future epidemics.

  10. Lack of a Negative Effect of BCG-Vaccination on Child Psychomotor Development

    DEFF Research Database (Denmark)

    Kjærgaard, Jesper; Stensballe, Lone Graff; Birk, Nina Marie

    2016-01-01

    MEASURES: Psychomotor development measured using Ages and Stages Questionnaire (ASQ) completed by the parents at 12 months. Additionally, parents of premature children (gestational age Developmental assessment was available for 3453/4262 (81%). RESULTS......OBJECTIVES: To assess the non-specific effect of Bacillus Calmette-Guérin (BCG) vaccination at birth on psychomotor development. DESIGN: This is a pre-specified secondary outcome from a randomised, clinical trial. SETTING: Maternity units and paediatric wards at three university hospitals...... was -7.8 points (-20.6 to 5.0, p = 0.23), d = -0.23 (-0.62 to 0.15). CONCLUSIONS: A negative non-specific effect of BCG vaccination at birth on psychomotor development was excluded in term children. TRIAL REGISTRATION: ClinicalTrials.gov NCT01694108....

  11. Zika Virus: Recent Advances towards the Development of Vaccines and Therapeutics.

    Science.gov (United States)

    McArthur, Monica A

    2017-06-13

    Zika is a rapidly emerging public health threat. Although clinical infection is frequently mild, significant neurological manifestations have been demonstrated in infants born to Zika virus (ZIKV) infected mothers. Due to the substantial ramifications of intrauterine infection, effective counter-measures are urgently needed. In order to develop effective anti-ZIKV vaccines and therapeutics, improved animal models and a better understanding of immunological correlates of protection against ZIKV are required. This review will summarize what is currently known about ZIKV, the clinical manifestations and epidemiology of Zika as well as, the development of animal models to study ZIKV infection, host immune responses against ZIKV, and the current state of development of vaccines and therapeutics against ZIKV.

  12. New progressive technology of flat gears processing devel