WorldWideScience

Sample records for vaccine confers adaptive

  1. Enhanced vaccine control of epidemics in adaptive networks

    Science.gov (United States)

    Shaw, Leah B.; Schwartz, Ira B.

    2010-04-01

    We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.

  2. International Conference on Climate Change Adaptation Assessments: Conference summary and statement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The International Conference on Climate Change Adaptation Assessments was held in St. Petersburg, Russian Federation, from May 22--25, 1995. Sponsored by the Russian Federal Service for Hydrometeorology and Environmental Monitoring, the US Country Studies Program, and the directorate General for International Cooperation of the Netherlands Government, it was the first international conference focusing exclusively on adaptation to climate change. More than 100 people from 29 countries on five continents participated. The conference primarily addressed measures to anticipate the potential effects of climate change to minimize negative effects and take advantage of any positive effects. The focus was on what governments, institutions, and individuals can do to prepare for climate change. The conference dealt with two major topics: What adaptation options are most effective and efficient in anticipating climate change and what methods should be used to assess the effectiveness and efficiency of adaptation options. Brief summaries are given from the following sessions on agriculture; Water resources; coastal resources; ecosystems and forests; fisheries; human settlements; water and agriculture; and the panel session on international adaptation in national communications and other development plans and needs for technical assistance.

  3. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin

    International Nuclear Information System (INIS)

    Lee, Yoon Jae; Jang, Yo Han; Kim, Paul; Lee, Yun Ha; Lee, Young Jae; Byun, Young Ho; Lee, Kwang-Hee; Kim, Kyusik; Seong, Baik Lin

    2016-01-01

    In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response. - Highlights: • Cold-adaptation process induced four amino acid mutations in the HA of X-31 virus. • The four mutations in the HA also contributed to attenuation of the X-31ca virus • N81K mutation was the most significant marker for the attenuation of X-31ca virus. • Introduction of N81K mutation into H3N2 LAIV further attenuated the vaccine. • This approach provides a useful guideline for enhancing the safety of the LAIVs.

  4. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Jae [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Jang, Yo Han [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Kim, Paul; Lee, Yun Ha; Lee, Young Jae [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Byun, Young Ho; Lee, Kwang-Hee; Kim, Kyusik [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Seong, Baik Lin, E-mail: blseong@yonsei.ac.kr [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of)

    2016-04-15

    In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response. - Highlights: • Cold-adaptation process induced four amino acid mutations in the HA of X-31 virus. • The four mutations in the HA also contributed to attenuation of the X-31ca virus • N81K mutation was the most significant marker for the attenuation of X-31ca virus. • Introduction of N81K mutation into H3N2 LAIV further attenuated the vaccine. • This approach provides a useful guideline for enhancing the safety of the LAIVs.

  5. Adaptation research meets adaptation decision-making. Second Nordic international conference on climate change adaption. Programme and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Nearly two years have passed since a small team of researchers began a new chapter in Nordic co-operation on climate change by organising a conference in Stockholm, Sweden. The conference, entitled Climate Adaptation in the Nordic Countries - Science, Practice, Policy, co-ordinated by the Stockholm Environment Institute and hosted by Stockholm University in November 2010, was the first of its kind in the Nordic region. Since the European Commission adopted its White Paper on adaptation to climate change in 2009, many of that document's 33 actions have been implemented, a climate change adaptation platform, Climate-ADAPT, was launched at the European Environment Agency in March this year, and just a week before this conference the Commission concluded a public consultation of stakeholders and experts in member states designed to feed into the preparation of a European Union adaptation strategy. The 2012 conference therefore presents an ideal opportunity to take stock of ongoing efforts and to consider how adaptation research efforts are keeping pace with policy demands as well as the needs of public and private decision-makers operating at a range of scales. It brings together researchers, public and private decision- makers, as well as those who plan and realize adaptation plans. Session themes include, among others: national and local adaptation plans, climate portals and climate services, adaptation in developing countries, legal aspects of adaptation, economic appraisal of adaptation, analysing and handling risk and uncertainty, urban planning and scenarios. The contributors have very diverse backgrounds, ranging from biosciences to social sciences, economics to geo-sciences, and engineering to architecture. Interest in climate change adaptation in the Nordic region is clearly high, with over 70% of our participants drawn from the five Nordic countries, but the conference has also managed to attract participation from further afield, with registrations

  6. Rational design of HIV vaccine and microbicides: report of the EUROPRISE annual conference.

    Science.gov (United States)

    Wahren, Britta; Biswas, Priscilla; Borggren, Marie; Coleman, Adam; Da Costa, Kelly; De Haes, Winni; Dieltjens, Tessa; Dispinseri, Stefania; Grupping, Katrijn; Hallengärd, David; Hornig, Julia; Klein, Katja; Mainetti, Lara; Palma, Paolo; Reudelsterz, Marc; Seifried, Janna; Selhorst, Philippe; Sköld, Annette; Uchtenhagen, Hannes; van Gils, Marit J; Weber, Caroline; Shattock, Robin; Scarlatti, Gabriella

    2010-07-26

    EUROPRISE is a Network of Excellence sponsored from 2007 to 2011 by the European Commission within the 6th Framework Program. The Network encompasses a wide portfolio of activities ranging from an integrated research program in the field of HIV vaccines and microbicides to training, dissemination and advocacy. The research program covers the whole pipeline of vaccine and microbicide development from discovery to early clinical trials. The Network is composed of 58 partners representing more than 65 institutions from 13 European countries; it also includes three major pharmaceutical companies (GlaxoSmithKline, Novartis and Sanofi-Pasteur) involved in HIV microbicide and vaccine research. The Network displays a dedicated and informative web page: http://www.europrise.org. Finally, a distinguishing trait of EUROPRISE is its PhD School of students from across Europe, a unique example in the world of science aimed at spreading excellence through training. EUROPRISE held its second annual conference in Budapest in November, 2009. The conference had 143 participants and their presentations covered aspects of vaccine and microbicide research, development and discovery. Since training is a major task of the Network, the students of the EUROPRISE PhD program summarized certain presentations and their view of the conference in this paper.

  7. Rational design of HIV vaccine and microbicides: report of the EUROPRISE annual conference

    Directory of Open Access Journals (Sweden)

    Mainetti Lara

    2010-07-01

    Full Text Available Abstract EUROPRISE is a Network of Excellence sponsored from 2007 to 2011 by the European Commission within the 6th Framework Program. The Network encompasses a wide portfolio of activities ranging from an integrated research program in the field of HIV vaccines and microbicides to training, dissemination and advocacy. The research program covers the whole pipeline of vaccine and microbicide development from discovery to early clinical trials. The Network is composed of 58 partners representing more than 65 institutions from 13 European countries; it also includes three major pharmaceutical companies (GlaxoSmithKline, Novartis and Sanofi-Pasteur involved in HIV microbicide and vaccine research. The Network displays a dedicated and informative web page: http://www.europrise.org. Finally, a distinguishing trait of EUROPRISE is its PhD School of students from across Europe, a unique example in the world of science aimed at spreading excellence through training. EUROPRISE held its second annual conference in Budapest in November, 2009. The conference had 143 participants and their presentations covered aspects of vaccine and microbicide research, development and discovery. Since training is a major task of the Network, the students of the EUROPRISE PhD program summarized certain presentations and their view of the conference in this paper.

  8. Adaptive immune responses to booster vaccination against yellow fever virus are much reduced compared to those after primary vaccination

    DEFF Research Database (Denmark)

    Kongsgaard, Michael; Bassi, Maria Rosaria; Rasmussen, Michael

    2017-01-01

    Outbreaks of Yellow Fever occur regularly in endemic areas of Africa and South America frequently leading to mass vaccination campaigns straining the availability of the attenuated Yellow Fever vaccine, YF-17D. The WHO has recently decided to discontinue regular booster-vaccinations since a single...... vaccination is deemed to confer life-long immune protection. Here, we have examined humoral (neutralizing antibody) and cellular (CD8 and CD4 T cell) immune responses in primary and booster vaccinees (the latter spanning 8 to 36 years after primary vaccination). After primary vaccination, we observed strong...... cellular immune responses with T cell activation peaking ≈2 weeks and subsiding to background levels ≈ 4 weeks post-vaccination. The number of antigen-specific CD8+ T cells declined over the following years. In >90% of vaccinees, in vitro expandable T cells could still be detected >10 years post-vaccination...

  9. Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity.

    Science.gov (United States)

    Chua, Brendon Y; Wong, Chinn Yi; Mifsud, Edin J; Edenborough, Kathryn M; Sekiya, Toshiki; Tan, Amabel C L; Mercuri, Francesca; Rockman, Steve; Chen, Weisan; Turner, Stephen J; Doherty, Peter C; Kelso, Anne; Brown, Lorena E; Jackson, David C

    2015-10-27

    exposure to infectious agents, while adaptive immunity takes several days to become effective. Here we show, by using a simple lipopeptide-based TLR2 agonist, that an influenza detergent-split vaccine can be made to simultaneously stimulate and amplify both systems to provide immediate antiviral protection while giving the adaptive immune system time to implement long-term immunity. Both types of immunity induced by this approach protect against vaccine-matched as well as unrelated virus strains and potentially even against strains yet to be encountered. Conferring dual functionality to influenza vaccines is beneficial for improving community protection, particularly during periods between the onset of an outbreak and the time when a vaccine becomes available or in scenarios in which mass vaccination with a strain to which the population is immunologically naive is imperative. Copyright © 2015 Chua et al.

  10. Active and passive immunity, vaccine types, excipients and licensing.

    Science.gov (United States)

    Baxter, David

    2007-12-01

    Abstract Immunity is the state of protection against infectious disease conferred either through an immune response generated by immunization or previous infection or by other non-immunological factors. This article reviews active and passive immunity and the differences between them: it also describes the four different commercially available vaccine types (live attenuated, killed/inactivated, subunit and toxoid): it also looks at how these different vaccines generate an adaptive immune response.

  11. Single shot of 17D vaccine may not confer life-long protection against yellow fever.

    Science.gov (United States)

    Vasconcelos, Pedro Fc

    2018-02-01

    The yellow fever (YF) vaccine has been used since the 1930s to prevent YF, which is a severe infectious disease caused by the yellow fever virus (YFV), and mainly transmitted by Culicidae mosquitoes from the genera Aedes and Haemagogus . Until 2013, the World Health Organization (WHO) recommended the administration of a vaccine dose every ten years. A new recommendation of a single vaccine dose to confer life-long protection against YFV infection has since been established. Recent evidence published elsewhere suggests that at least a second dose is needed to fully protect against YF disease. Here, we discuss the feasibility of administering multiple doses, the necessity for a new and modern vaccine, and recommend that the WHO conveys a meeting to discuss YFV vaccination strategies for people living in or travelling to endemic areas.

  12. Safety, immunogencity, and efficacy of a cold-adapted A/Ann Arbor/6/60 (H2N2) vaccine in mice and ferrets

    International Nuclear Information System (INIS)

    Chen, Grace L.; Lamirande, Elaine W.; Jin Hong; Kemble, George; Subbarao, Kanta

    2010-01-01

    We studied the attenuation, immunogenicity and efficacy of the cold-adapted A/Ann Arbor/6/60 (AA ca) (H2N2) virus in mice and ferrets to evaluate its use in the event of an H2 influenza pandemic. The AA ca virus was restricted in replication in the respiratory tract of mice and ferrets. In mice, 2 doses of vaccine elicited a > 4-fold rise in hemagglutination-inhibition (HAI) titer and resulted in complete inhibition of viral replication following lethal homologous wild-type virus challenge. In ferrets, a single dose of the vaccine elicited a > 4-fold rise in HAI titer and conferred complete protection against homologous wild-type virus challenge in the upper respiratory tract. In both mice and ferrets, the AA ca virus provided significant protection from challenge with heterologous H2 virus challenge in the respiratory tract. The AA ca vaccine is safe, immunogenic, and efficacious against homologous and heterologous challenge in mice and ferrets, supporting the evaluation of this vaccine in clinical trials.

  13. A safe vaccine (DV-STM-07 against Salmonella infection prevents abortion and confers protective immunity to the pregnant and new born mice.

    Directory of Open Access Journals (Sweden)

    Vidya Devi Negi

    Full Text Available Pregnancy is a transient immuno-compromised condition which has evolved to avoid the immune rejection of the fetus by the maternal immune system. The altered immune response of the pregnant female leads to increased susceptibility to invading pathogens, resulting in abortion and congenital defects of the fetus and a subnormal response to vaccination. Active vaccination during pregnancy may lead to abortion induced by heightened cell mediated immune response. In this study, we have administered the highly attenuated vaccine strain DeltapmrG-HM-D (DV-STM-07 in female mice before the onset of pregnancy and followed the immune reaction against challenge with virulent S. Typhimurium in pregnant mice. Here we demonstrate that DV-STM-07 vaccine gives protection against Salmonella in pregnant mice and also prevents Salmonella induced abortion. This protection is conferred by directing the immune response towards Th2 activation and Th1 suppression. The low Th1 response prevents abortion. The use of live attenuated vaccine just before pregnancy carries the risk of transmission to the fetus. We have shown that this vaccine is safe as the vaccine strain is quickly eliminated from the mother and is not transmitted to the fetus. This vaccine also confers immunity to the new born mice of vaccinated mothers. Since there is no evidence of the vaccine candidate reaching the new born mice, we hypothesize that it may be due to trans-colostral transfer of protective anti-Salmonella antibodies. These results suggest that our vaccine DV-STM-07 can be very useful in preventing abortion in the pregnant individuals and confer immunity to the new born. Since there are no such vaccine candidates which can be given to the new born and to the pregnant women, this vaccine holds a very bright future to combat Salmonella induced pregnancy loss.

  14. Protection conferred by a live avian metapneumovirus vaccine when co-administered with live La Sota Newcastle disease vaccine in chicks

    Directory of Open Access Journals (Sweden)

    Kannan Ganapathy

    2014-06-01

    Full Text Available This paper examines the effects on specific pathogen-free (SPF chicks when avian metapneumovirus (aMPV and Newcastle disease virus (NDV La Sota strain vaccines are co-administered. Day-old SPF chicks were divided into five groups. The first group was inoculated with sterile water (SW and the rest of the groups were inoculated with live NDV vaccine VG/GA by the oculo-oral route. At 21 days-old, the unvaccinated chicks were again inoculated with SW. The four VG/GA-vaccinated groups were further inoculated with (i SW, (ii live aMPV vaccine, (iii live NDV La Sota, or (iv combined live NDV La Sota and live aMPV, respectively. Chicks were monitored for post-vaccination reactions and oropharyngeal swabs were collected for vaccines detection. Blood samples were collected to detect aMPV ELISA and NDV haemagglutination-inhibition antibodies. Twenty-one days following the second vaccination, six chicks from each group were challenged with virulent NDV or aMPV respectively. Chicks were monitored for clinical signs and mortality and oropharyngeal swabs collected for aMPV detection. Results showed that, when challenged with a virulent aMPV, both chicks previously vaccinated with VG/GA and subsequently given aMPV vaccine singly or in combination with La Sota were equally protected against clinical signs. Chicks that were vaccinated against NDV either once with VG/GA or followed by La Sota (singly or in combination with aMPV were fully protected when challenged with velogenic NDV. We concluded that simultaneous administration of live aMPV and NDV La Sota vaccines have no adverse effects on protection conferred by either live vaccine.

  15. Immersion vaccination against Yersinia ruckeri O1, biotype 2 confers cross protection against Y. ruckeri O1 biotype 1

    DEFF Research Database (Denmark)

    Raida, Martin Kristian; Neumann, Lukas; Kragelund Strøm, Helene

    A new biotype 2 of Y. ruckeri O1, which lacks motility has proven highly virulent for rainbow trout, and is causing disease in cultured trout even in fish vaccinated with commercial ERM biotype 1 vaccines. Not much is known about immunity against biotype 2, and therefore have we produced a Y...... resulted in very low mortalities with no significant difference in mortality between vaccinated and mock-vaccinated fish. Challenge with biotype 1 resulted in a significantly lower mortality (P=0.0001) in the vaccinated group. This result was confirmed 15 months post vaccination (P... 2 confers significant cross protection against biotype 1....

  16. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Directory of Open Access Journals (Sweden)

    Camila Figueiredo Pinzan

    Full Text Available Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6 or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6 to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  17. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Science.gov (United States)

    Pinzan, Camila Figueiredo; Sardinha-Silva, Aline; Almeida, Fausto; Lai, Livia; Lopes, Carla Duque; Lourenço, Elaine Vicente; Panunto-Castelo, Ademilson; Matthews, Stephen; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  18. Novel licensure pathways for expeditious introduction of new tuberculosis vaccines: a discussion of the adaptive licensure concept.

    Science.gov (United States)

    Rustomjee, Roxana; Lockhart, Stephen; Shea, Jacqueline; Fourie, P Bernard; Hindle, Zoë; Steel, Gavin; Hussey, Gregory; Ginsberg, Ann; Brennan, Michael J

    2014-03-01

    The ultimate goal of vaccine development is licensure of a safe and efficacious product that has a well-defined manufacturing process resulting in a high quality product. In general, clinical development and regulatory approval occurs in a linear, sequential manner: Phase 1 - safety, immunogenicity; Phase 2 - immunogenicity, safety, dose ranging and preliminary efficacy; Phase 3 - definitive efficacy, safety, lot consistency; and, following regulatory approval, Phase 4 - post-marketing safety and effectiveness. For candidate TB vaccines, where correlates of protection are not yet identified, phase 2 and 3 efficacy of disease prevention trials are, by necessity, very large. Each trial would span 2-5 years, with full licensure expected only after 1 or even 2 decades of development. Given the urgent unmet need for a new TB vaccine, a satellite discussion was held at the International African Vaccinology Conference in Cape Town, South Africa in November 2012, to explore the possibility of expediting licensure by use of an "adaptive licensure" process, based on a risk/benefit assessment that is specific to regional needs informed by epidemiology. This may be appropriate for diseases such as TB, where high rates of morbidity, mortality, particularly in high disease burden countries, impose an urgent need for disease prevention. The discussion focused on two contexts: licensure within the South African regulatory environment - a high burden country where TB vaccine efficacy trials are on-going, and licensure by the United States FDA --a well-resourced regulatory agency where approval could facilitate global licensure of a novel TB vaccine. Copyright © 2013. Published by Elsevier Ltd.

  19. Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis.

    Science.gov (United States)

    Joseph, S K; Ramaswamy, K

    2013-07-18

    The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and protein or protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-protein) and 48% (BmHAT protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis

    Science.gov (United States)

    Joseph, SK; Ramaswamy, K

    2013-01-01

    The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and Protein or Protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-Protein) and 48% (BmHAT Protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. PMID:23735679

  1. Adaptive Immunity to Francisella tularensis and Considerations for Vaccine Development

    Directory of Open Access Journals (Sweden)

    Lydia M. Roberts

    2018-04-01

    Full Text Available Francisella tularensis is an intracellular bacterium that causes the disease tularemia. There are several subspecies of F. tularensis whose ability to cause disease varies in humans. The most virulent subspecies, tularensis, is a Tier One Select Agent and a potential bioweapon. Although considerable effort has made to generate efficacious tularemia vaccines, to date none have been licensed for use in the United States. Despite the lack of a tularemia vaccine, we have learned a great deal about the adaptive immune response the underlies protective immunity. Herein, we detail the animal models commonly used to study tularemia and their recapitulation of human disease, the field's current understanding of vaccine-mediated protection, and discuss the challenges associated with new vaccine development.

  2. Proceedings of the adapting to climate change in Canada 2005 conference : understanding risks and building capacity

    International Nuclear Information System (INIS)

    2005-01-01

    This four-day conference provided a national forum for researchers and decision-makers from a variety of disciplines to share information and results on climate change. Sponsored by Natural Resources Canada's Climate Change Impacts and Adaptation Program, the conference explored ways to improve knowledge of Canada's vulnerability to climate change, to better assess the benefits and risks of climate change and to examine policies and options through which decisions on adaptation can be made. Conference topics included issues such as global warming; sustainable development; climate change and agriculture; adaptation strategies; water, coastline and marine management and climate change; municipal level management and climate change; climate change and health issues; and many other topics related to climate change. The conference featured paper and poster presentations, opening remarks, and panel discussions. A total of 118 conference papers and 46 conference posters were presented at the conference of which 17 have been catalogued separately in this database. refs., tabs., figs

  3. Next generation vaccines.

    Science.gov (United States)

    Riedmann, Eva M

    2011-07-01

    In February this year, about 100 delegates gathered for three days in Vienna (Austria) for the Next Generation Vaccines conference. The meeting held in the Vienna Hilton Hotel from 23rd-25th February 2011 had a strong focus on biotech and industry. The conference organizer Jacob Fleming managed to put together a versatile program ranging from the future generation of vaccines to manufacturing, vaccine distribution and delivery, to regulatory and public health issues. Carefully selected top industry experts presented first-hand experience and shared solutions for overcoming the latest challenges in the field of vaccinology. The program also included several case study presentations on novel vaccine candidates in different stages of development. An interactive pre-conference workshop as well as interactive panel discussions during the meeting allowed all delegates to gain new knowledge and become involved in lively discussions on timely, interesting and sometimes controversial topics related to vaccines.

  4. Immunological correlates for protection against intranasal challenge of Bacillus anthracis spores conferred by a protective antigen-based vaccine in rabbits.

    Science.gov (United States)

    Weiss, Shay; Kobiler, David; Levy, Haim; Marcus, Hadar; Pass, Avi; Rothschild, Nili; Altboum, Zeev

    2006-01-01

    Correlates between immunological parameters and protection against Bacillus anthracis infection in animals vaccinated with protective antigen (PA)-based vaccines could provide surrogate markers to evaluate the putative protective efficiency of immunization in humans. In previous studies we demonstrated that neutralizing antibody levels serve as correlates for protection in guinea pigs (S. Reuveny et al., Infect. Immun. 69:2888-2893, 2001; H. Marcus et al., Infect. Immun. 72:3471-3477, 2004). In this study we evaluated similar correlates for protection by active and passive immunization of New Zealand White rabbits. Full immunization and partial immunization were achieved by single and multiple injections of standard and diluted doses of a PA-based vaccine. Passive immunization was carried out by injection of immune sera from rabbits vaccinated with PA-based vaccine prior to challenge with B. anthracis spores. Immunized rabbits were challenged by intranasal spore instillation with one of two virulent strains (strains Vollum and ATCC 6605). The immune competence was estimated by measuring the level of total anti-PA antibodies, the neutralizing antibody titers, and the conferred protective immunity. The results indicate that total anti-PA antibody titers greater than 1 x 10(5) conferred protection, whereas lower titers (between 10(4) and 10(5)) provided partial protection but failed to predict protection. Neutralizing antibody titers between 500 and 800 provided partial protection, while titers higher than 1,000 conferred protection. In conclusion, this study emphasizes that regardless of the immunization regimen or the time of challenge, neutralizing antibody titers are better predictors of protection than total anti-PA titers.

  5. Long-term evaluation of mucosal and systemic immunity and protection conferred by different polio booster vaccines.

    Science.gov (United States)

    Xiao, Yuhong; Daniell, Henry

    2017-09-25

    Oral polio vaccine (OPV) and Inactivated Polio Vaccine (IPV) have distinct advantages and limitations. IPV does not provide mucosal immunity and introduction of IPV to mitigate consequences of circulating vaccine-derived polio virus from OPV has very limited effect on transmission and OPV campaigns are essential for interrupting wild polio virus transmission, even in developed countries with a high coverage of IPV and protected sewer systems. The problem is magnified in many countries with limited resources. Requirement of refrigeration for storage and transportation for both IPV and OPV is also a major challenge in developing countries. Therefore, we present here long-term studies on comparison of a plant-based booster vaccine, which is free of virus and cold chain with IPV boosters and provide data on mucosal and systemic immunity and protection conferred by neutralizing antibodies. Mice were primed subcutaneously with IPV and boosted orally with lyophilized plant cells containing 1μg or 25μg polio viral protein 1 (VP1), once a month for three months or a single booster one year after the first prime. Our results show that VP1-IgG1 titers in single or double dose IPV dropped to background levels after one year of immunization. This decrease correlated with >50% reduction in seropositivity in double dose and <10% seropositivity in single dose IPV against serotype 1. Single dose IPV offered no or minimal protection against serotype 1 and 2 but conferred protection against serotype 3. VP1-IgA titers were negligible in IPV single or double dose vaccinated mice. VP1 antigen with two plant-derived adjuvants induced significantly high level and long lasting VP1-IgG1, IgA and neutralizing antibody titers (average 4.3-6.8 log2 titers). Plant boosters with VP1 and plant derived adjuvants maintained the same level titers from 29 to 400days and conferred the same level of protection against all three serotypes throughout the duration of this study. Even during period, when

  6. CD4+ T Cells Mediate Aspergillosis Vaccine Protection.

    Science.gov (United States)

    Diaz-Arevalo, Diana; Kalkum, Markus

    2017-01-01

    Adaptive effector CD4 + T cells play essential roles in the defense against fungal infections, especially against invasive aspergillosis (IA). Such protective CD4 + T cells can be generated through immunization with specialized antifungal vaccines, as has been demonstrated for pulmonary Aspergillus fumigatus infections in mouse experiments. Adaptive transfer of fungal antigen-specific CD4 + T cells conferred protection onto non-immunized naive mice, an experimental approach that could potentially become a future treatment option for immunosuppressed IA patients, focusing on the ultimate goal to improve their otherwise dim chances for survival. Here, we describe the different techniques to analyze CD4 + T cell immune responses after immunization with a recombinant fungal protein. We present three major methods that are used to analyze the role of CD4 + T cells in protection against A. fumigatus challenge. They include (1) transplantation of CD4 + T cells from vaccinated mice into immunosuppressed naive mice, observing increasing protection of the cell recipients, (2) depletion of CD4 + T cells from vaccinated mice, which abolishes vaccine protection, and (3) T cell proliferation studies following stimulation with overlapping synthetic peptides or an intact protein vaccine. The latter can be used to validate immunization status and to identify protective T cell epitopes in vaccine antigens. In the methods detailed here, we used versions of the well-studied Asp f3 protein expressed in a bacterial host, either as the intact full length protein or its N-terminally truncated version, comprised of residues 15-168. However, these methods are generally applicable and can well be adapted to study other protein-based subunit vaccines.

  7. Preparation and evaluation of chicken embryo-adapted fowl adenovirus serotype 4 vaccine in broiler chickens.

    Science.gov (United States)

    Mansoor, Muhammad Khalid; Hussain, Iftikhar; Arshad, Muhammad; Muhammad, Ghulam

    2011-02-01

    The current study was planned to develop an efficient vaccine against hydropericardium syndrome virus (HSV). Currently, formalin-inactivated liver organ vaccines failed to protect the Pakistan broiler industry from this destructive disease of economic importance. A field isolate of the pathogenic hydropericardium syndrome virus was adapted to chicken embryos after four blind passages. The chicken embryo-adapted virus was further serially passaged (12 times) to get complete attenuation. Groups of broiler chickens free from maternal antibodies against HSV at the age of 14 days were immunized either with 16th passage attenuated HSV vaccine or commercially formalized liver organ vaccine. The antibody response, measured by enzyme-linked immunosorbent assay was significantly higher (P attenuated HSV vaccine compared to the group immunized with liver organ vaccine at 7, 14, and 21 days post-immunization. At 24 days of age, the broiler chickens in each group were challenged with 10(3.83) embryo infectious dose(50) of pathogenic HSV and were observed for 7 days post-challenge. Vaccination with the 16th passage attenuated HSV gave 94.73% protection as validated on the basis of clinical signs (5.26%), gross lesions in the liver and heart (5.26%), histopathological lesions in the liver (1.5 ± 0.20), and mortality (5.26%). The birds inoculated with liver organ vaccine showed significantly low (p vaccine proved to be immunogenic and has potential for controlling HSV infections in chickens.

  8. LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis.

    Directory of Open Access Journals (Sweden)

    Neida L Conrad

    2017-03-01

    Full Text Available Neglected tropical diseases, including zoonoses such as leptospirosis, have a major impact on rural and poor urban communities, particularly in developing countries. This has led to major investment in antipoverty vaccines that focus on diseases that influence public health and thereby productivity. While the true, global, impact of leptospirosis is unknown due to the lack of adequate laboratory diagnosis, the WHO estimates that incidence has doubled over the last 15 years to over 1 million cases that require hospitalization every year. Leptospirosis is caused by pathogenic Leptospira spp. and is spread through direct contact with infected animals, their urine or contaminated water and soil. Inactivated leptospirosis vaccines, or bacterins, are approved in only a handful of countries due to the lack of heterologous protection (there are > 250 pathogenic Leptospira serovars and the serious side-effects associated with vaccination. Currently, research has focused on recombinant vaccines, a possible solution to these problems. However, due to a lack of standardised animal models, rigorous statistical analysis and poor reproducibility, this approach has met with limited success. We evaluated a subunit vaccine preparation, based on a conserved region of the leptospiral immunoglobulin-like B protein (LigB(131-645 and aluminium hydroxide (AH, in the hamster model of leptospirosis. The vaccine conferred significant protection (80.0-100%, P < 0.05 against mortality in vaccinated animals in seven independent experiments. The efficacy of the LigB(131-645/AH vaccine ranged from 87.5-100% and we observed sterile immunity (87.5-100% among the vaccinated survivors. Significant levels of IgM and IgG were induced among vaccinated animals, although they did not correlate with immunity. A mixed IgG1/IgG2 subclass profile was associated with the subunit vaccine, compared to the predominant IgG2 profile seen in bacterin vaccinated hamsters. These findings suggest

  9. Cold-adapted live attenuated influenza vaccines developed in Russia: Can they contribute to meeting the needs for influenza control in other countries?

    International Nuclear Information System (INIS)

    Kendal, Alan P.

    1997-01-01

    It is now more than 30 years since the first cold-adapted influenza viruses were developed in Russia as potential live, attenuated vaccines. In the past 15-20 years considerable experience has been gained from Russian and joint Russian-US laboratory and clinical studies with type A monovalent and bivalent vaccines prepared with genetic reassortant viruses derived from one of these cold-adapted viruses in particular, A/Leningrad/134/57. More recent experiences include use of trivalent cold-adapted vaccines with a type B component. The overall high level of safety of individual and combined vaccines in pre-school and school-aged children, with illness reductions in open field trials equivalent to that seen with inactivated vaccines, is such as to suggest that practical measures might now be justified to facilitate expansion of the use of these vaccines to other countries. It is proposed that further experimentation with the Russian cold-adapted live attenuated vaccines should be focused on issues that will relate to the public health perspective, i.e. selection of the single best candidate type A and B vaccines for intense study using as criteria their potential for meeting licensing requirements outside Russia, and documenting the clinical protective efficacy of a single vaccine dose compared to two doses as studied until now. Resolution of these issues is important to ensure that costs for future live vaccine production, control, and utilization will be kept at lowest levels so that expanded use of live vaccines will have maximum cost-benefit and affordability. To guide those interested in these issues, examples are given of populations for whom a licensed live cold-adapted vaccine might be considered, together with indications of extra data needed to fully validate each suggested use

  10. FORMATION OF INNATE AND ADAPTIVE IMMUNE RESPONSE UNDER THE INFLUENCE OF DIFFERENT FLAVIVIRUS VACCINES

    Directory of Open Access Journals (Sweden)

    N. V. Krylova

    2015-01-01

    Full Text Available The review examines in a comparative perspective the key moments of formation of innate and adaptive immune responses to different types of current flavivirus vaccines: live attenuated against yellow fever virus and inactivated whole virus against tick-borne encephalitis virus. Particular attention is paid to the ability of these different vaccines, containing exogenous pathogen-associated molecular structures, to stimulate innate immunity. Live attenuated vaccine by infecting several subtypes of dendritic cells activates them through various pattern-recognition receptors, such as Tolland RIG-I-like receptors, which leads to significant production of proinflammatory cytokines, including interferon-α primary mediator of innate antiviral immunity. By simulating natural viral infection, this vaccine quickly spreads over the vascular network, and the dendritic cells, activated by it, migrate to the draining lymph nodes and trigger multiple foci of Tand B-cell activation. Inactivated vaccine stimulates the innate immunity predominantly at the injection site, and for the sufficient activation requires the presence in its composition of an adjuvant (aluminum hydroxide, which effects the formation and activation of inflammasomes, ensuring the formation and secretion of IL-1β and IL-18 that, in turn, trigger a cascade of cellular and humoral innate immune responses. We demonstrated the possibility of involvement in the induction of innate immunity, mediated by the inactivated vaccine, endogenous pathogenassociated molecular patterns (uric acid and host cell DNA, forming at the vaccine injection site. We discuss the triggering of Band T-cell responses by flavivirus vaccines that determine various duration of protection against various pathogens. A single injection of the live vaccine against yellow fever virus induces polyvalent adaptive immune response, including the production of cytotoxic T-lymphocytes, Th1and Th2-cells and neutralizing antibodies

  11. Vaccination with a ΔnorD ΔznuA Brucella abortus mutant confers potent protection against virulent challenge.

    Science.gov (United States)

    Yang, Xinghong; Clapp, Beata; Thornburg, Theresa; Hoffman, Carol; Pascual, David W

    2016-10-17

    There remains a need for an improved livestock vaccine for brucellosis since conventional vaccines are only ∼70% efficacious, making some vaccinated animals susceptible to Brucella infections. To address this void, a vaccine capable of evoking protective immunity, while still being sufficiently attenuated to produce minimal disease, is sought. In this pursuit, the ΔnorD ΔznuA B. abortus-lacZ (termed as znBAZ) was developed to be devoid of functional norD and znuA B. abortus genes, and to contain the lacZ as a marker gene. The results show that znBAZ is highly attenuated in mouse and human macrophages, and completely cleared from mouse spleens within eight weeks post-vaccination. Producing less splenic inflammation, znBAZ is significantly more protective than the conventional RB51 vaccine by more than four orders of magnitude. Vaccination with znBAZ elicits elevated numbers of IFN-γ + , TNF-α + , and polyfunctional IFN-γ + TNF-α + CD4 + and CD8 + T cells in contrast to RB51-vaccinated mice, which show reduced numbers of proinflammatory cytokine-producing T cells. These results demonstrate that znBAZ is a highly efficacious vaccine candidate capable of eliciting diverse T cell subsets that confer protection against parenteral challenge with virulent, wild-type B. abortus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Transdermal influenza immunization with vaccine-coated microneedle arrays.

    Directory of Open Access Journals (Sweden)

    Dimitrios G Koutsonanos

    Full Text Available Influenza is a contagious disease caused by a pathogenic virus, with outbreaks all over the world and thousands of hospitalizations and deaths every year. Due to virus antigenic drift and short-lived immune responses, annual vaccination is required. However, vaccine coverage is incomplete, and improvement in immunization is needed. The objective of this study is to investigate a novel method for transdermal delivery using metal microneedle arrays (MN coated with inactivated influenza virus to determine whether this route is a simpler and safer approach than the conventional immunization, capable to induce robust immune responses and confer protection against lethal virus challenge.Inactivated A/Aichi/2/68 (H3N2 influenza virus was coated on metal microneedle arrays and applied to mice as a vaccine in the caudal dorsal skin area. Substantial antibody titers with hemagglutination inhibition activity were detected in sera collected two and four weeks after a single vaccine dose. Challenge studies in mice with 5 x LD(50 of mouse adapted Aichi virus demonstrated complete protection. Microneedle vaccination induced a broad spectrum of immune responses including CD4+ and CD8+ responses in the spleen and draining lymph node, a high frequency of antigen-secreting cells in the lung and induction of virus-specific memory B-cells. In addition, the use of MN showed a dose-sparing effect and a strong Th2 bias when compared to an intramuscular (IM reference immunization.The present results show that delivery of inactivated influenza virus through the skin using metal microneedle arrays induced strong humoral and cellular immune responses capable of conferring protection against virus challenge as efficiently as intramuscular immunization, which is the standard vaccination route. In view of the convenience of delivery and the potential for self-administration, vaccine-coated metal microneedles may provide a novel and highly effective immunization method.

  13. User modeling, adaptation, and personalization : 17th international conference, UMAP 2009, formerly UM and AH, Trento, Italy, June 22-26, 2009 : proceedings

    NARCIS (Netherlands)

    Houben, G.J.P.M.; McCalla, G.I.; Pianesi, F.; Zancanaro, M.

    2009-01-01

    The First International Conference on User Modeling, Adaptation, and Personalization (UMAP 2009) was held June 22-26, 2009, in Trento, Italy. UMAP 2009 was not, however, the first conference on user modeling or adaptation. In fact, UMAP 2009 merged two vigorous biennial conference traditions - the

  14. 76 FR 60006 - Joint Europe Africa Deployment & Distribution Conference 2011: “Adapting To Challenge and Change”

    Science.gov (United States)

    2011-09-28

    ... DEPARTMENT OF DEFENSE Office of the Secretary Joint Europe Africa Deployment & Distribution Conference 2011: ``Adapting To Challenge and Change'' AGENCY: United States Africa Command, Department of Defense (DoD). ACTION: Notice of conference. SUMMARY: This document announces that U.S. Africa Command...

  15. Pan-Influenza A Protection by Prime-Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model.

    Science.gov (United States)

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime-boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro , CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo . Heterologous combination of prime (H1)-boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a "truly" universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising results

  16. Pan-Influenza A Protection by Prime–Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model

    Science.gov (United States)

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime–boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro, CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo. Heterologous combination of prime (H1)–boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a “truly” universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising

  17. A booster vaccine expressing a latency-associated antigen augments BCG induced immunity and confers enhanced protection against tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bappaditya Dey

    Full Text Available BACKGROUND: In spite of a consistent protection against tuberculosis (TB in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB. METHODS/PRINCIPAL FINDINGS: In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin--a key latency antigen of M. tuberculosis to boost the BCG induced immunity. 'BCG prime-DNA boost' regimen (B/D confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log(10 and 1.96 log(10 fewer bacilli in lungs and spleen, respectively; p<0.01. In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3(+ simultaneously producing interferon (IFNγ, tumor necrosis factor (TNFα and interleukin (IL2. CONCLUSIONS/SIGNIFICANCE: These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3(+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.

  18. New Approaches to Attenuated Hepatitis a Vaccine Development: Cloning and Sequencing of Cell-Culture Adapted Viral cDNA.

    Science.gov (United States)

    1987-10-13

    after multiple passages in vivo and in vitro. J. Gen. Virol. 67, 1741- 1744. Sabin , A.B. (1985). Oral poliovirus vaccine : history of its development...IN (N NEW APPROACHES TO ATTENUATED HEPATITIS A VACCINE DEVELOPMENT: Q) CLONING AND SEQUENCING OF CELL-CULTURE ADAPTED VIRAL cDNA I ANNUAL REPORT...6ll02Bsl0 A 055 11. TITLE (Include Security Classification) New Approaches to Attenuated Hepatitis A Vaccine Development: Cloning and Sequencing of Cell

  19. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine.

    Science.gov (United States)

    Sanders, Barbara P; de Los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G; Song, Yutong; Cooper, Gillian; Crawt, Laura E; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-03-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  20. Military Infectious Diseases Update on Vaccine Development

    Science.gov (United States)

    2011-01-24

    Licensed live vaccines (polio, MMR) - Radiation- attenuated sporozoites - Genetically- attenuated sporozoites 2011 MHS Conference Whole Organism...Not sufficiently attenuated Seattle Biomedical , Gates Foundation, WEHI and USMMVP 2011 MHS Conference Subunit approach- RTS,S Vaccine RTS,S is...Ad Boost  DNA plasmids [Prime] – Encoding malaria proteins CSP and AMA1  Adenovirus 5 ( attenuated )[Boost] – Encoding malaria proteins CSP and AMA1

  1. Progress towards development of an HIV vaccine: report of the AIDS Vaccine 2009 Conference.

    Science.gov (United States)

    Ross, Anna Laura; Bråve, Andreas; Scarlatti, Gabriella; Manrique, Amapola; Buonaguro, Luigi

    2010-05-01

    The search for an HIV/AIDS vaccine is steadily moving ahead, generating and validating new concepts in terms of novel vectors for antigen delivery and presentation, new vaccine and adjuvant strategies, alternative approaches to design HIV-1 antigens for eliciting protective cross-neutralising antibodies, and identification of key mechanisms in HIV infection and modulation of the immune system. All these different perspectives are contributing to the unprecedented challenge of developing a protective HIV-1 vaccine. The high scientific value of this massive effort is its great impact on vaccinology as a whole, providing invaluable scientific information for the current and future development of new preventive vaccine as well as therapeutic knowledge-based infectious-disease and cancer vaccines. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. 76 FR 30950 - Advisory Commission on Childhood Vaccines; Notice of Meeting

    Science.gov (United States)

    2011-05-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Services Administration Advisory Commission on Childhood Vaccines; Notice of Meeting AGENCY: Health Resources and Services Administration, HHS... Childhood Vaccines, June 9- 10, 2011, in the Parklawn Building (and via audio conference call), Conference...

  3. Conference proceedings

    African Journals Online (AJOL)

    ebutamanya

    2016-02-29

    Feb 29, 2016 ... In addition, there are persistent problems with leadership and planning, vaccine stock management, supply chain capacity and quality, provider-parent communication, and financial sustainability. The conference delegates agreed to move from talking to taking concrete actions around children's health, and ...

  4. Cold-adapted influenza and recombinant adenovirus vaccines induce cross-protective immunity against pH1N1 challenge in mice.

    Directory of Open Access Journals (Sweden)

    Mark R Soboleski

    Full Text Available The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1 highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus.BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca influenza viruses from 1977 or recombinant adenoviruses (rAd expressing 1934 nucleoprotein (NP and consensus matrix 2 (M2 (NP+M2-rAd. Antibodies against the M2 ectodomain (M2e were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus.Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic.

  5. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery.

    Science.gov (United States)

    Davoodi-Semiromi, Abdoreza; Schreiber, Melissa; Nalapalli, Samson; Verma, Dheeraj; Singh, Nameirakpam D; Banks, Robert K; Chakrabarti, Debopam; Daniell, Henry

    2010-02-01

    Cholera and malaria are major diseases causing high mortality. The only licensed cholera vaccine is expensive; immunity is lost in children within 3 years and adults are not fully protected. No vaccine is yet available for malaria. Therefore, in this study, the cholera toxin-B subunit (CTB) of Vibrio cholerae fused to malarial vaccine antigens apical membrane antigen-1 (AMA1) and merozoite surface protein-1 (MSP1) was expressed in lettuce and tobacco chloroplasts. Southern blot analysis confirmed homoplasmy and stable integration of transgenes. CTB-AMA1 and CTB-MSP1 fusion proteins accumulated up to 13.17% and 10.11% (total soluble protein, TSP) in tobacco and up to 7.3% and 6.1% (TSP) in lettuce, respectively. Nine groups of mice (n = 10/group) were immunized subcutaneously (SQV) or orally (ORV) with purified antigens or transplastomic tobacco leaves. Significant levels of antigen-specific antibody titres of immunized mice completely inhibited proliferation of the malarial parasite and cross-reacted with the native parasite proteins in immunoblots and immunofluorescence studies. Protection against cholera toxin challenge in both ORV (100%) and SQV (89%) mice correlated with CTB-specific titres of intestinal, serum IgA and IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. Increasing numbers of interleukin-10(+) T cell but not Foxp3(+) regulatory T cells, suppression of interferon-gamma and absence of interleukin-17 were observed in protected mice, suggesting that immunity is conferred via the Tr1/Th2 immune response. Dual immunity against two major infectious diseases provided by chloroplast-derived vaccine antigens for long-term (>300 days, 50% of mouse life span) offers a realistic platform for low cost vaccines and insight into mucosal and systemic immunity.

  6. Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses.

    Science.gov (United States)

    Parker, Lauren; Wharton, Stephen A; Martin, Stephen R; Cross, Karen; Lin, Yipu; Liu, Yan; Feizi, Ten; Daniels, Rodney S; McCauley, John W

    2016-06-01

    Influenza A virus (subtype H3N2) causes seasonal human influenza and is included as a component of influenza vaccines. The majority of vaccine viruses are isolated and propagated in eggs, which commonly results in amino acid substitutions in the haemagglutinin (HA) glycoprotein. These substitutions can affect virus receptor-binding and alter virus antigenicity, thereby, obfuscating the choice of egg-propagated viruses for development into candidate vaccine viruses. To evaluate the effects of egg-adaptive substitutions seen in H3N2 vaccine viruses on sialic acid receptor-binding, we carried out quantitative measurement of virus receptor-binding using surface biolayer interferometry with haemagglutination inhibition (HI) assays to correlate changes in receptor avidity with antigenic properties. Included in these studies was a panel of H3N2 viruses generated by reverse genetics containing substitutions seen in recent egg-propagated vaccine viruses and corresponding cell culture-propagated wild-type viruses. These assays provide a quantitative approach to investigating the importance of individual amino acid substitutions in influenza receptor-binding. Results show that viruses with egg-adaptive HA substitutions R156Q, S219Y, and I226N, have increased binding avidity to α2,3-linked receptor-analogues and decreased binding avidity to α2,6-linked receptor-analogues. No measurable binding was detected for the viruses with amino acid substitution combination 156Q+219Y and receptor-binding increased in viruses where egg-adaptation mutations were introduced into cell culture-propagated virus. Substitutions at positions 156 and 190 appeared to be primarily responsible for low reactivity in HI assays with post-infection ferret antisera raised against 2012-2013 season H3N2 viruses. Egg-adaptive substitutions at position 186 caused substantial differences in binding avidity with an insignificant effect on antigenicity.

  7. Adaptive Multimedia Retrieval: Semantics, Context, and Adaptation

    DEFF Research Database (Denmark)

    This book constitutes the thoroughly refereed post-conference proceedings of the 10th International Conference on Adaptive Multimedia Retrieval, AMR 2012, held in Copenhagen, Denmark, in October 2012. The 17 revised full papers presented were carefully reviewed and selected from numerous submissi......This book constitutes the thoroughly refereed post-conference proceedings of the 10th International Conference on Adaptive Multimedia Retrieval, AMR 2012, held in Copenhagen, Denmark, in October 2012. The 17 revised full papers presented were carefully reviewed and selected from numerous...... submissions. The papers cover topics of state of the art contributions, features and classification, location context, language and semantics, music retrieval, and adaption and HCI....

  8. Safety, immunogenicity and duration of immunity elicited by an inactivated bovine ephemeral fever vaccine.

    Directory of Open Access Journals (Sweden)

    Orly Aziz-Boaron

    Full Text Available Bovine ephemeral fever (BEF is an economically important viral vector-borne cattle disease. Several live-attenuated, inactivated and recombinant vaccines have been tested, demonstrating varying efficacy. However, to the best of our knowledge, duration of immunity conferred by an inactivated vaccine has never been reported. In the last decade, Israel has faced an increasing number of BEF outbreaks. The need for an effective vaccine compatible with strains circulating in the Middle East region led to the development of a MONTANIDE™ ISA 206 VG (water-in-oil-in-water, inactivated vaccine based on a local strain. We tested the safety, immunogenicity and duration of immunity conferred by this vaccine. The induced neutralizing antibody (NA response was followed for 493 days in 40 cows vaccinated by different protocols. The vaccine did not cause adverse reactions or a decrease in milk production. All cows [except 2 (6.7% which did not respond to vaccination] showed a significant rise in NA titer of up to 1:256 following the second, third or fourth booster vaccination. Neutralizing antibody levels declined gradually to 1:16 up to 120 days post vaccination. This decline continued in cows vaccinated only twice, whereas cows vaccinated 3 or 4 times showed stable titers of approximately 1:16 for up to 267 days post vaccination. At least three vaccinations with the inactivated BEF vaccine were needed to confer long-lasting immunity. These results may have significant implications for the choice of vaccination protocol with inactivated BEF vaccines. Complementary challenge data should however be added to the above results in order to determine what is the minimal NA response conferring protection from clinical disease.

  9. Translation and adaptation of a questionnaire to assess the group processes of rehabilitation team conferences

    NARCIS (Netherlands)

    Roelofsen, E.E.; Lankhorst, G.J.; Bouter, L.M.

    2001-01-01

    Objective: To investigate the internal consistency, the domain structure and the influence of social desirability with regard to a questionnaire translated and adapted to assess the quality of rehabilitation team conferences in the Netherlands. Study design: A questionnaire to determine group

  10. Association between plasma antibody response and protection in rainbow trout Oncorhynchus mykiss immersion vaccinated against Yersinia ruckeri.

    Directory of Open Access Journals (Sweden)

    Martin K Raida

    Full Text Available A key hallmark of the vertebrate adaptive immune system is the generation of antigen-specific antibodies from B cells. Fish are the most primitive gnathostomes (jawed vertebrates possessing an adaptive immune system. Vaccination of rainbow trout against enteric redmouth disease (ERM by immersion in Yersinia ruckeri bacterin confers a high degree of protection to the fish. The immune mechanisms responsible for protection may comprise both cellular and humoral elements but the role of specific immunoglobulins in this system has been questioned and not previously described. The present study demonstrates significant increase in plasma antibody titers following immersion vaccination and significantly reduced mortality during Y. ruckeri challenge.Rainbow trout were immersion-vaccinated, using either a commercial ERM vaccine (AquaVac™ ERM vet or an experimental Y. ruckeri bacterin. Half of the trout vaccinated with AquaVac™ ERM vet received an oral booster (AquaVac™ ERM Oral vet. Sub-groups of the fish from each group were subsequently exposed to 1 x 10⁹ CFU Y. ruckeri/ml either eight or twenty-six weeks post vaccination (wpv. All vaccinated groups showed 0% mortality when challenged, which was highly significant compared to the non-vaccinated controls (40 and 28% mortality eight and twenty-six weeks post vaccination (wpv, respectively (P<0.0001. Plasma samples from all groups of vaccinated fish were taken 0, 4, 8, 12, 16 and 26 wpv. and Y. ruckeri specific IgM antibody levels were measured with ELISA. A significant increase in titers was recorded in vaccinated fish, which also showed a reduced bacteremia during challenge. In vitro plasma studies showed a significantly increased bactericidal effect of fresh plasma from vaccinated fish indicating that plasma proteins may play a role in protection of vaccinated rainbow trout.

  11. Cell-associated flagella enhance the protection conferred by mucosally-administered attenuated Salmonella Paratyphi A vaccines.

    Directory of Open Access Journals (Sweden)

    Orit Gat

    2011-11-01

    Full Text Available Antibiotic-resistant Salmonella enterica serovar Paratyphi A, the agent of paratyphoid A fever, poses an emerging public health dilemma in endemic areas of Asia and among travelers, as there is no licensed vaccine. Integral to our efforts to develop a S. Paratyphi A vaccine, we addressed the role of flagella as a potential protective antigen by comparing cell-associated flagella with exported flagellin subunits expressed by attenuated strains.S. Paratyphi A strain ATCC 9150 was first deleted for the chromosomal guaBA locus, creating CVD 1901. Further chromosomal deletions in fliD (CVD 1901D or flgK (CVD 1901K were then engineered, resulting in the export of unpolymerized FliC, without impairing its overall expression. The virulence of the resulting isogenic strains was examined using a novel mouse LD(50 model to accommodate the human-host restricted S. Paratyphi A. The immunogenicity of the attenuated strains was then tested using a mouse intranasal model, followed by intraperitoneal challenge with wildtype ATCC 9150.Mucosal (intranasal immunization of mice with strain CVD 1901 expressing cell-associated flagella conferred superior protection (vaccine efficacy [VE], 90% against a lethal intraperitoneal challenge, compared with the flagellin monomer-exporting mutants CVD 1901K (30% VE or CVD 1901D (47% VE. The superior protection induced by CVD 1901 with its cell-attached flagella was associated with an increased IgG2a:IgG1 ratio of FliC-specific antibodies with enhanced opsonophagocytic capacity.Our results clearly suggest that enhanced anti-FliC antibody-mediated clearance of S. Paratyphi A by phagocytic cells, induced by vaccines expressing cell-associated rather than exported FliC, might be contributing to the vaccine-induced protection from S. Paratyphi A challenge in vivo. We speculate that an excess of IgG1 anti-FliC antibodies induced by the exported FliC may compete with the IgG2a subtype and block binding to specific phagocyte Fc

  12. Epidemic model with vaccinated age that exhibits backward bifurcation

    International Nuclear Information System (INIS)

    Yang Junyuan; Zhang Fengqin; Li Xuezhi

    2009-01-01

    Vaccination of susceptibilities is included in a transmission model for a disease that confers immunity. In this paper, interplay of vaccination strategy together with vaccine efficacy and the vaccinated age is studied. In particular, vaccine efficacy can lead to a backward bifurcation. At the same time, we also discuss an abstract formulation of the problem, and establish the well-posedness of the model.

  13. Adaptation of high-growth influenza H5N1 vaccine virus in Vero cells: implications for pandemic preparedness.

    Directory of Open Access Journals (Sweden)

    Yu-Fen Tseng

    Full Text Available Current egg-based influenza vaccine production technology can't promptly meet the global demand during an influenza pandemic as shown in the 2009 H1N1 pandemic. Moreover, its manufacturing capacity would be vulnerable during pandemics caused by highly pathogenic avian influenza viruses. Therefore, vaccine production using mammalian cell technology is becoming attractive. Current influenza H5N1 vaccine strain (NIBRG-14, a reassortant virus between A/Vietnam/1194/2004 (H5N1 virus and egg-adapted high-growth A/PR/8/1934 virus, could grow efficiently in eggs and MDCK cells but not Vero cells which is the most popular cell line for manufacturing human vaccines. After serial passages and plaque purifications of the NIBRG-14 vaccine virus in Vero cells, one high-growth virus strain (Vero-15 was generated and can grow over 10(8 TCID(50/ml. In conclusion, one high-growth H5N1 vaccine virus was generated in Vero cells, which can be used to manufacture influenza H5N1 vaccines and prepare reassortant vaccine viruses for other influenza A subtypes.

  14. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model.

    Directory of Open Access Journals (Sweden)

    Simon H Apte

    Full Text Available Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+ and/or CD8(+ T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+ T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+ T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.

  15. Cold-Adapted Influenza and Recombinant Adenovirus Vaccines Induce Cross-Protective Immunity against pH1N1 Challenge in Mice

    Science.gov (United States)

    Soboleski, Mark R.; Gabbard, Jon D.; Price, Graeme E.; Misplon, Julia A.; Lo, Chia-Yun; Perez, Daniel R.; Ye, Jianqiang; Tompkins, S. Mark; Epstein, Suzanne L.

    2011-01-01

    Background The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1) highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus. Methodology/Principal Findings BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca) influenza viruses from 1977 or recombinant adenoviruses (rAd) expressing 1934 nucleoprotein (NP) and consensus matrix 2 (M2) (NP+M2-rAd). Antibodies against the M2 ectodomain (M2e) were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus. Conclusion/Significance Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic. PMID:21789196

  16. A virus-like particle based bivalent vaccine confers dual protection against enterovirus 71 and coxsackievirus A16 infections in mice.

    Science.gov (United States)

    Ku, Zhiqiang; Liu, Qingwei; Ye, Xiaohua; Cai, Yicun; Wang, Xiaoli; Shi, Jinping; Li, Dapeng; Jin, Xia; An, Wenqi; Huang, Zhong

    2014-07-23

    Enterovirus 71(EV71) and coxsackievirus A16 (CA16) are responsible for hand, foot and mouth disease which has been prevalent in Asia-Pacific regions, causing significant morbidity and mortality in young children. Co-circulation of and co-infection by both viruses underscores the importance and urgency of developing vaccines against both viruses simultaneously. Here we report the immunogenicity and protective efficacy of a bivalent combination vaccine comprised of EV71 and CA16 virus-like particles (VLPs). We show that monovalent EV71- or CA16-VLPs-elicited serum antibodies exhibited potent neutralization effect on the homotypic virus but little or no effect on the heterotypic one, whereas the antisera against the bivalent vaccine formulation were able to efficiently neutralize both EV71 and CA16, indicating there is no immunological interference between the two antigens with respect to their ability to induce virus-specific neutralizing antibodies. Passive immunization with monovalent VLP vaccines protected mice against a homotypic virus challenge but not heterotypic infection. Surprisingly, antibody-dependent enhancement (ADE) of disease was observed in mice passively transferred with mono-specific anti-CA16 VLP sera and subsequently challenged with EV71. In contrast, the bivalent VLP vaccine conferred full protection against lethal challenge by either EV71 or CA16, thus eliminating the potential of ADE. Taken together, our results demonstrate for the first time that the bivalent VLP approach represents a safe and efficacious vaccine strategy for both EV71 and CA16. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Predictive markers of safety and immunogenicity of adjuvanted vaccines.

    Science.gov (United States)

    Mastelic, Beatris; Garçon, Nathalie; Del Giudice, Giuseppe; Golding, Hana; Gruber, Marion; Neels, Pieter; Fritzell, Bernard

    2013-11-01

    Vaccination represents one of the greatest public health triumphs; in part due to the effect of adjuvants that have been included in vaccine preparations to boost the immune responses through different mechanisms. Although a variety of novel adjuvants have been under development, only a limited number have been approved by regulatory authorities for human vaccines. This report reflects the conclusions of a group of scientists from academia, regulatory agencies and industry who attended a conference on the current state of the art in the adjuvant field. Held at the U.S. Pharmacopeial Convention (USP) in Rockville, Maryland, USA, from 18 to 19 April 2013 and organized by the International Association for Biologicals (IABS), the conference focused particularly on the future development of effective adjuvants and adjuvanted vaccines and on overcoming major hurdles, such as safety and immunogenicity assessment, as well as regulatory scrutiny. More information on the conference output can be found on the IABS website, http://www.iabs.org/. Copyright © 2013. Published by Elsevier Ltd.. All rights reserved.

  18. Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Srinivas Rao

    Full Text Available Sustained outbreaks of highly pathogenic avian influenza (HPAI H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses.The ability of DNA vaccines encoding hemagglutinin (HA proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 microg DNA given twice either by intramuscular needle injection or with a needle-free device.DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.

  19. Can influenza epidemics be prevented by voluntary vaccination?

    Directory of Open Access Journals (Sweden)

    Raffaele Vardavas

    2007-05-01

    Full Text Available Previous modeling studies have identified the vaccination coverage level necessary for preventing influenza epidemics, but have not shown whether this critical coverage can be reached. Here we use computational modeling to determine, for the first time, whether the critical coverage for influenza can be achieved by voluntary vaccination. We construct a novel individual-level model of human cognition and behavior; individuals are characterized by two biological attributes (memory and adaptability that they use when making vaccination decisions. We couple this model with a population-level model of influenza that includes vaccination dynamics. The coupled models allow individual-level decisions to influence influenza epidemiology and, conversely, influenza epidemiology to influence individual-level decisions. By including the effects of adaptive decision-making within an epidemic model, we can reproduce two essential characteristics of influenza epidemiology: annual variation in epidemic severity and sporadic occurrence of severe epidemics. We suggest that individual-level adaptive decision-making may be an important (previously overlooked causal factor in driving influenza epidemiology. We find that severe epidemics cannot be prevented unless vaccination programs offer incentives. Frequency of severe epidemics could be reduced if programs provide, as an incentive to be vaccinated, several years of free vaccines to individuals who pay for one year of vaccination. Magnitude of epidemic amelioration will be determined by the number of years of free vaccination, an individuals' adaptability in decision-making, and their memory. This type of incentive program could control epidemics if individuals are very adaptable and have long-term memories. However, incentive-based programs that provide free vaccination for families could increase the frequency of severe epidemics. We conclude that incentive-based vaccination programs are necessary to control

  20. Understanding reduced rotavirus vaccine efficacy in low socio-economic settings.

    Directory of Open Access Journals (Sweden)

    Benjamin A Lopman

    Full Text Available Rotavirus vaccine efficacy ranges from >90% in high socio-economic settings (SES to 50% in low SES. With the imminent introduction of rotavirus vaccine in low SES countries, understanding reasons for reduced efficacy in these settings could identify strategies to improve vaccine performance.We developed a mathematical model to predict rotavirus vaccine efficacy in high, middle and low SES based on data specific for each setting on incidence, protection conferred by natural infection and immune response to vaccination. We then examined factors affecting efficacy.Vaccination was predicted to prevent 93%, 86% and 51% of severe rotavirus gastroenteritis in high, middle and low SES, respectively. Also predicted was that vaccines are most effective against severe disease and efficacy declines with age in low but not high SES. Reduced immunogenicity of vaccination and reduced protection conferred by natural infection are the main factors that compromise efficacy in low SES.The continued risk of severe disease in non-primary natural infections in low SES is a key factor underpinning reduced efficacy of rotavirus vaccines. Predicted efficacy was remarkably consistent with observed clinical trial results from different SES, validating the model. The phenomenon of reduced vaccine efficacy can be predicted by intrinsic immunological and epidemiological factors of low SES populations. Modifying aspects of the vaccine (e.g. improving immunogenicity in low SES and vaccination program (e.g. additional doses may bring improvements.

  1. Understanding reduced rotavirus vaccine efficacy in low socio-economic settings.

    Science.gov (United States)

    Lopman, Benjamin A; Pitzer, Virginia E; Sarkar, Rajiv; Gladstone, Beryl; Patel, Manish; Glasser, John; Gambhir, Manoj; Atchison, Christina; Grenfell, Bryan T; Edmunds, W John; Kang, Gagandeep; Parashar, Umesh D

    2012-01-01

    Rotavirus vaccine efficacy ranges from >90% in high socio-economic settings (SES) to 50% in low SES. With the imminent introduction of rotavirus vaccine in low SES countries, understanding reasons for reduced efficacy in these settings could identify strategies to improve vaccine performance. We developed a mathematical model to predict rotavirus vaccine efficacy in high, middle and low SES based on data specific for each setting on incidence, protection conferred by natural infection and immune response to vaccination. We then examined factors affecting efficacy. Vaccination was predicted to prevent 93%, 86% and 51% of severe rotavirus gastroenteritis in high, middle and low SES, respectively. Also predicted was that vaccines are most effective against severe disease and efficacy declines with age in low but not high SES. Reduced immunogenicity of vaccination and reduced protection conferred by natural infection are the main factors that compromise efficacy in low SES. The continued risk of severe disease in non-primary natural infections in low SES is a key factor underpinning reduced efficacy of rotavirus vaccines. Predicted efficacy was remarkably consistent with observed clinical trial results from different SES, validating the model. The phenomenon of reduced vaccine efficacy can be predicted by intrinsic immunological and epidemiological factors of low SES populations. Modifying aspects of the vaccine (e.g. improving immunogenicity in low SES) and vaccination program (e.g. additional doses) may bring improvements.

  2. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Jong Seok [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); National Institute of Biological Resources, Incheon (Korea, Republic of); Kim, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Yu-Na; Kim, Min-Chul [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Animal and Plant Quarantine Agency, Gyeonggi-do, Gimcheon, Gyeongsangbukdo (Korea, Republic of); Cho, Minkyoung [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Kang, Sang-Moo, E-mail: skang24@gsu.edu [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States)

    2016-07-15

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.

  3. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    International Nuclear Information System (INIS)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Jong Seok; Kim, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Cho, Minkyoung; Kang, Sang-Moo

    2016-01-01

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.

  4. Dynamic modeling of cost-effectiveness of rotavirus vaccination, Kazakhstan.

    Science.gov (United States)

    Freiesleben de Blasio, Birgitte; Flem, Elmira; Latipov, Renat; Kuatbaeva, Ajnagul; Kristiansen, Ivar Sønbø

    2014-01-01

    The government of Kazakhstan, a middle-income country in Central Asia, is considering the introduction of rotavirus vaccination into its national immunization program. We performed a cost-effectiveness analysis of rotavirus vaccination spanning 20 years by using a synthesis of dynamic transmission models accounting for herd protection. We found that a vaccination program with 90% coverage would prevent ≈880 rotavirus deaths and save an average of 54,784 life-years for children vaccine cost at vaccination program costs would be entirely offset. To further evaluate efficacy of a vaccine program, benefits of indirect protection conferred by vaccination warrant further study.

  5. Comparative evaluation of three capripoxvirus-vectored peste des petits ruminants vaccines.

    Science.gov (United States)

    Fakri, F; Bamouh, Z; Ghzal, F; Baha, W; Tadlaoui, K; Fihri, O Fassi; Chen, W; Bu, Z; Elharrak, M

    2018-01-15

    Sheep and goat pox (SGP) with peste des petits ruminants (PPR) are transboundary viral diseases of small ruminants that cause huge economic losses. Recombinant vaccines that can protect from both infections have been reported as a promising solution for the future. SGP was used as a vector to express two structural proteins hemagglutinin or the fusion protein of PPRV. We compared immunity conferred by recombinant capripoxvirus vaccines expressing H or F or both HF. Safety and efficacy were evaluated in goats and sheep. Two vaccine doses were tested in sheep, 10 4.5 TCDI50 in 1ml dose was retained for the further experiment. Results showed that the recombinant HF confers an earlier and stronger immunity against both SGP and PPR. This recombinant vaccine protect also against the disease in exposed and unexposed sheep. The potential Differentiating Infected from Vaccinated Animals of recombinant vaccines is of great advantage in any eradication program. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Testing Antifungal Vaccines in an Animal Model of Invasive Candidiasis and in Human Mucosal Candidiasis.

    Science.gov (United States)

    Segal, Esther

    2017-01-01

    The following article will concentrate on the NDV-3 anti-Candida and Staphylococcus vaccine. The vaccine is composed of the N-terminal portion of the Candida albicans agglutinin-like sequence 3 protein (Als3p) and aluminum hydroxide as adjuvant. The vaccine conferred protection to mice against experimental vaginal, oral, and intravenous challenge with C. albicans. Due to the sequence and structural homology of the Als3p with Staphylococcus aureus surface proteins, the vaccine also protected against experimental skin and IV infection with S. aureus. The vaccine has reached the stage of human trials: phase 1 clinical studies have shown that the vaccine is safe and immunogenic. The latest brief conference abstract reports of vaccination in women suffering from recurrent vaginal candidiasis, indicating that the recurrence rates were lower in the women receiving the vaccine.

  7. Advocating for efforts to protect African children, families, and communities from the threat of infectious diseases: report of the First International African Vaccinology Conference.

    Science.gov (United States)

    Wiysonge, Charles Shey; Waggie, Zainab; Hawkridge, Anthony; Schoub, Barry; Madhi, Shabir Ahmed; Rees, Helen; Hussey, Gregory

    2016-01-01

    One means of improving healthcare workers' knowledge of and attitudes to vaccines is through running vaccine conferences which are accessible, affordable, and relevant to their everyday work. Various vaccinology conferences are held each year worldwide. These meetings focus heavily on basic science with much discussion about new developments in vaccines, and relatively little coverage of policy, advocacy, and communication issues. A negligible proportion of delegates at these conferences come from Africa, home to almost 40% of the global burden of vaccine-preventable diseases. To the best of our knowledge, no major vaccinology conference has ever been held on the African continent apart from World Health Organization (WHO) meetings. The content of the first International African Vaccinology Conference was planned to be different; to focus on the science, with a major part of discussions being on clinical, programmatic, policy, and advocacy issues. The conference was held in Cape Town, South Africa, from 8 to 11 November 2012. The theme of the conference was "Advocating for efforts to protect African children, families, and communities from the threat of infectious diseases". There were more than 550 registered participants from 55 countries (including 37 African countries). There were nine pre-conference workshops, ten plenary sessions, and 150 oral and poster presentations. The conference discussed the challenges to universal immunisation in Africa as well as the promotion of dialogue and communication on immunisation among all stakeholders. There was general acknowledgment that giant strides have been made in Africa since the global launch of the Expanded Programme on Immunisation in 1974. For example, there has been significant progress in introducing new and under-utilised vaccines; including hepatitis B, Haemophilus influenza type b, pneumococcal conjugate, rotavirus, meningococcal A conjugate, and human papillomavirus vaccines. In May 2012, African countries

  8. Virus-Vectored Influenza Virus Vaccines

    Science.gov (United States)

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  9. Development and trial of vaccines against Brucella.

    Science.gov (United States)

    Lalsiamthara, Jonathan; Lee, John Hwa

    2017-08-31

    The search for ideal brucellosis vaccines remains active today. Currently, no licensed human or canine anti-brucellosis vaccines are available. In bovines, the most successful vaccine (S19) is only used in calves, as adult vaccination results in orchitis in male, prolonged infection, and possible abortion complications in pregnant female cattle. Another widely deployed vaccine (RB51) has a low protective efficacy. An ideal vaccine should exhibit a safe profile as well as enhance protective efficacy. However, currently available vaccines exhibit one or more major drawbacks. Smooth live attenuated vaccines suffer shortcomings such as residual virulence and serodiagnostic interference. Inactivated vaccines, in general, confer relatively low levels of protection. Recent developments to improve brucellosis vaccines include generation of knockout mutants by targeting genes involved in metabolism, virulence, and the lipopolysaccharide synthesis pathway, as well as generation of DNA vaccines, mucosal vaccines, and live vectored vaccines, have all produced varying degrees of success. Herein, we briefly review the bacteriology, pathogenesis, immunological implications, candidate vaccines, vaccinations, and models related to Brucella .

  10. Vaccines and vaccination against yellow fever: WHO Position Paper, June 2013--recommendations.

    Science.gov (United States)

    2015-01-01

    This article presents the World Health Organizations (WHO) evidence and recommendations for the use of yellow fever (YF) vaccination from "Vaccines and vaccination against yellow fever: WHO Position Paper - June 2013" published in the Weekly Epidemiological Record. This position paper summarizes the WHO position on the use of YF vaccination, in particular that a single dose of YF vaccine is sufficient to confer sustained life-long protective immunity against YF disease. A booster dose is not necessary. The current document replaces the position paper on the use of yellow fever vaccines and vaccination published in 2003. Footnotes to this paper provide a number of core references. In accordance with its mandate to provide guidance to Member States on health policy matters, WHO issues a series of regularly updated position papers on vaccines and combinations of vaccines against diseases that have an international public health impact. These papers are concerned primarily with the use of vaccines in large-scale immunization programmes; they summarize essential background information on diseases and vaccines, and conclude with WHO's current position on the use of vaccines in the global context. This paper reflects the recommendations of WHO's Strategic Advisory Group of Experts (SAGE) on immunization. These recommendations were discussed by SAGE at its April 2013 meeting. Evidence presented at the meeting can be accessed at http://www.who.int/immunization/sage/previous/en/index.html. Copyright © 2014. Published by Elsevier Ltd.

  11. Climate change in high definition : scenarios for impacts and adaptation research : conference proceedings

    International Nuclear Information System (INIS)

    2007-01-01

    This conference provided a forum to review information and tools to conduct climate change impact and adaptation research and assessments. The research community, policy advisors and resource managers reviewed the latest advancements in global and regional climate modeling, climate scenarios, downscaling tools and application of scenarios for decision-making. The new Climate Change Scenarios Network (CCSN) website was also launched at this meeting, which also provided training in Environment Canada's new statistical downscaling tool developed in collaboration with the Institut National de la Recherche Scientifique, Eau, Terre et Environnement (INRS-ETE). New features of the CCSN were presented along with examples of how information from the network can be applied in specific cases, including assessments of impacts in areas such as human health and water resources. A training session on downscaling with the newly developed Automated Statistical Downscaling (ASD) tool was also provided. The conference featured 19 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs

  12. Respiratory and oral vaccination improves protection conferred by the live vaccine strain against pneumonic tularemia in the rabbit model.

    Science.gov (United States)

    Stinson, Elizabeth; Smith, Le'Kneitah P; Cole, Kelly Stefano; Barry, Eileen M; Reed, Douglas S

    2016-10-01

    Tularemia is a severe, zoonotic disease caused by a gram-negative bacterium, Francisella tularensis We have previously shown that rabbits are a good model of human pneumonic tularemia when exposed to aerosols containing a virulent, type A strain, SCHU S4. We further demonstrated that the live vaccine strain (LVS), an attenuated type B strain, extended time to death when given by scarification. Oral or aerosol vaccination has been previously shown in humans to offer superior protection to parenteral vaccination against respiratory tularemia challenge. Both oral and aerosol vaccination with LVS were well tolerated in the rabbit with only minimal fever and no weight loss after inoculation. Plasma antibody titers against F. tularensis were higher in rabbits that were vaccinated by either oral or aerosol routes compared to scarification. Thirty days after vaccination, all rabbits were challenged with aerosolized SCHU S4. LVS given by scarification extended time to death compared to mock-vaccinated controls. One orally vaccinated rabbit did survive aerosol challenge, however, only aerosol vaccination extended time to death significantly compared to scarification. These results further demonstrate the utility of the rabbit model of pneumonic tularemia in replicating what has been reported in humans and macaques as well as demonstrating the utility of vaccination by oral and respiratory routes against an aerosol tularemia challenge. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Advances and challenges in malaria vaccine development.

    Science.gov (United States)

    Crompton, Peter D; Pierce, Susan K; Miller, Louis H

    2010-12-01

    Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.

  14. Aggregation and competitive exclusion: explaining the coexistence of human Papillomavirus types and the effectiveness of limited vaccine conferred cross-immunity.

    Science.gov (United States)

    Waters, E K

    2012-12-01

    Human Papillomavirus (HPV) types are sexually transmitted infections that cause a number of human cancers. According to the competitive exclusion principle in ecology, HPV types that have lower transmission probabilities and shorter durations of infection should be outcompeted by more virulent types. This, however, is not the case, as numerous HPV types co-exist, some which are less transmissible and more easily cleared than others. This paper examines whether this exception to the competitive exclusion principle can be explained by the aggregation of infection with HPV types, which results in patchy spatial distributions of infection, and what implications this has for the effect of vaccination on multiple HPV types. A deterministic transmission model is presented that models the patchy distribution of infected individuals using Lloyd's mean crowding. It is first shown that higher aggregation can result in a reduced capacity for onward transmission and reduce the required efficacy of vaccination. It is shown that greater patchiness in the distribution of lower prevalence HPV types permits co-existence. This affirms the hypothesis that the aggregation of HPV types provides an explanation for the violation of the competitive exclusion principle. Greater aggregation of lower prevalence types has important implications where type-specific HPV vaccines also offer cross-protection against non-target types. It is demonstrated that the degree of cross-protection can be less than the degree of vaccine protection conferred against directly targeted types and still result in the elimination of non-target types when these non-target types are patchily distributed.

  15. Using Private Demand Studies to Calculate Socially Optimal Vaccine Subsidies in Developing Countries

    Science.gov (United States)

    Cook, Joseph; Jeuland, Marc; Maskery, Brian; Lauria, Donald; Dipika, Sur; Clemens, John; Whittington, Dale

    2009-01-01

    Although it is well known that vaccines against many infectious diseases confer positive economic externalities via indirect protection, analysts have typically ignored possible herd protection effects in policy analyses of vaccination programs. Despite a growing literature on the economic theory of vaccine externalities and several innovative…

  16. Estimating the full public health value of vaccination.

    Science.gov (United States)

    Gessner, Bradford D; Kaslow, David; Louis, Jacques; Neuzil, Kathleen; O'Brien, Katherine L; Picot, Valentina; Pang, Tikki; Parashar, Umesh D; Saadatian-Elahi, Mitra; Nelson, Christopher B

    2017-11-01

    There is an enhanced focus on considering the full public health value (FPHV) of vaccination when setting priorities, making regulatory decisions and establishing implementation policy for public health activities. Historically, a therapeutic paradigm has been applied to the evaluation of prophylactic vaccines and focuses on an individual benefit-risk assessment in prospective and individually-randomized phase III trials to assess safety and efficacy against etiologically-confirmed clinical outcomes. By contrast, a public health paradigm considers the population impact and encompasses measures of community benefits against a range of outcomes. For example, measurement of the FPHV of vaccination may incorporate health inequity, social and political disruption, disruption of household integrity, school absenteeism and work loss, health care utilization, long-term/on-going disability, the development of antibiotic resistance, and a range of non-etiologically and etiologically defined clinical outcomes. Following an initial conference at the Fondation Mérieux in mid-2015, a second conference (December 2016) was held to further describe the efficacy of using the FPHV of vaccination on a variety of prophylactic vaccines. The wider scope of vaccine benefits, improvement in risk assessment, and the need for partnership and coalition building across interventions has also been discussed during the 2014 and 2016 Global Vaccine and Immunization Research Forums and the 2016 Geneva Health Forum, as well as in numerous publications including a special issue of Health Affairs in February 2016. The December 2016 expert panel concluded that while progress has been made, additional efforts will be necessary to have a more fully formulated assessment of the FPHV of vaccines included into the evidence-base for the value proposition and analysis of unmet medical need to prioritize vaccine development, vaccine licensure, implementation policies and financing decisions. The desired

  17. Oral vaccination against plague using Yersinia pseudotuberculosis.

    Science.gov (United States)

    Demeure, Christian E; Derbise, Anne; Carniel, Elisabeth

    2017-04-01

    Yersinia pestis, the agent of plague, is among the deadliest bacterial pathogens affecting humans, and is a potential biological weapon. Because antibiotic resistant strains of Yersinia pestis have been observed or could be engineered for evil use, vaccination against plague might become the only means to reduce mortality. Although plague is re-emerging in many countries, a vaccine with worldwide license is currently lacking. The vaccine strategy described here is based on an oral vaccination with an attenuated strain of Yersinia pseudotuberculosis. Indeed, this species is genetically almost identical to Y. pestis, but has a much lower pathogenicity and a higher genomic stability. Gradual modifications of the wild-type Yersinia pseudotuberculosis strain IP32953 were performed to generate a safe and immunogenic vaccine. Genes coding for three essential virulence factors were deleted from this strain. To increase cross-species immunogenicity, an F1-encapsulated Y. pseudotuberculosis strain was then generated. For this, the Y. pestis caf operon, which encodes F1, was inserted first on a plasmid, and subsequently into the chromosome. The successive steps achieved to reach maximal vaccine potential are described, and how each step affected bacterial virulence and the development of a protective immune response is discussed. The final version of the vaccine, named VTnF1, provides a highly efficient and long-lasting protection against both bubonic and pneumonic plague after a single oral vaccine dose. Since a Y. pestis strain deprived of F1 exist or could be engineered, we also analyzed the protection conferred by the vaccine against such strain and found that it also confers full protection against the two forms of plague. Thus, the properties of VTnF1 makes it one of the most efficient candidate vaccine for mass vaccination in tropical endemic areas as well as for populations exposed to bioterrorism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. The dog that did not bark: malaria vaccines without antibodies.

    NARCIS (Netherlands)

    Heppner, D.G.; Schwenk, R.J.; Arnot, D.; Sauerwein, R.W.; Luty, A.J.F.

    2007-01-01

    To date, the only pre-blood stage vaccine to confer protection against malaria in field trials elicits both antigen-specific antibody and T-cell responses. Recent clinical trials of new heterologous prime-boost malaria vaccine regimens using DNA, fowlpox or MVA, have chiefly elicited T-cell

  19. Early life vaccination

    DEFF Research Database (Denmark)

    Nazerai, Loulieta; Bassi, Maria Rosaria; Uddbäck, Ida Elin Maria

    2016-01-01

    Intracellular pathogens represent a serious threat during early life. Importantly, even though the immune system of newborns may be characterized as developmentally immature, with a propensity to develop Th2 immunity, significant CD8+ T-cell responses may still be elicited in the context of optimal...... the first period of life and provide a pertinent alternative in infant vaccinology. To address this, infant mice were vaccinated with three different adenoviral vectors and the CD8+ T-cell response after early life vaccination was explored. We assessed the frequency, polyfunctionality and in vivo...... cytotoxicity of the elicited memory CD8+ T cells, as well as the potential of these cells to respond to secondary infections and confer protection. We further tested the impact of maternal immunity against our replication-deficient adenoviral vector during early life vaccination. Overall, our results indicate...

  20. Irradiation-atenuated anti-parasitic vaccines against helminthic infections in ruminants

    International Nuclear Information System (INIS)

    Alabay, M.

    1986-01-01

    The only commercially available irradiated vaccine is Dictol, the anti-Dictiyocaulus viviparus vaccine used in cattle. This succesful product has been in use for over 20 years. Irradiated vaccines have been applied to a number of different host-parasite systems and it has been shown that a high degree of protection can be conferred on the host by administration of radiation-attenuated larvae. In this paper, present situation of radiation attenuated vaccines against helminthic diseases of ruminants is reviewed. (author)

  1. 77 FR 71426 - Advisory Commission on Childhood Vaccines; Notice of Meeting

    Science.gov (United States)

    2012-11-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Services Administration Advisory Commission on Childhood Vaccines; Notice of Meeting AGENCY: Health Resources and Services Administration, HHS... Commission on Childhood Vaccines, December 6, 2012, in the Parklawn Building (and via audio conference call...

  2. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    Science.gov (United States)

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity

    Science.gov (United States)

    Barrangou, Rodolphe; Marraffini, Luciano A.

    2014-01-01

    Summary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing, and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  4. Protection conferred by recombinant turkey herpesvirus avian influenza (rHVT-H5) vaccine in the rearing period in two commercial layer chicken breeds in Egypt.

    Science.gov (United States)

    Kilany, Walid; Dauphin, Gwenaelle; Selim, Abdullah; Tripodi, Astrid; Samy, Mohamed; Sobhy, Heba; VonDobschuetz, Sophie; Safwat, Marwa; Saad, Mona; Erfan, Ahmed; Hassan, Mohamed; Lubroth, Juan; Jobre, Yilma

    2014-01-01

    The effectiveness of recombinant turkey herpesvirus avian influenza (A/swan/Hungary/4999/2006(H5N1)) clade 2.2 virus (rHVT-H5) vaccine was evaluated in two layer chicken breeds (White Bovans [WB] and Brown Shaver [BS]). One dose of rHVT-H5 vaccine was administered at day 1 and birds were monitored serologically (haemagglutination inhibition test) and virologically for 19 weeks. Maternally-derived antibody and post-vaccination H5 antibody titres were measured using the Chinese (A/Goose/Guangdong/1/96(H5N1)) HA and the Egyptian (A/chicken/Egypt/128s/2012(H5N1)) HA as antigens. The challenge was conducted at 19 weeks of age and on six experimental groups: Groups I (WB) and II (BS), both vaccinated and challenged; Groups III (WB) and IV (BS), both vaccinated but not challenged; Groups V and VI, unvaccinated specific pathogen free chickens, serving respectively as positive and negative controls. The challenge virus was the clade 2.2.1 highly pathogenic avian influenza H5N1 A/chicken/Egypt/128s/2012 at a dose of 10(6) median embryo infective dose. For both breeds, complete maternally-derived antibody waning occurred at the age of 4 weeks. The immune response to rHVT-H5 vaccination was detected from the sixth week. The seroconversion rates for both breeds reached 85.7 to 100% in the eighth week of age. Protection levels of 73.3%, 60% and 0% were respectively recorded in Groups I, II and V. No mortalities occurred in the unchallenged groups. Group I showed superior results for all measured post-challenge parameters. In conclusion, a single rHVT-H5 hatchery vaccination conferred a high level of protection for a relatively extended period. This vaccine could be an important tool for future A/H5N1 prevention/control in endemic countries. Further studies on persistence of immunity beyond 19 weeks, need for booster with inactivated vaccines, breed susceptibility and vaccinal response, and transmissibility are recommended.

  5. Rotavirus vaccination in Europe: drivers and barriers.

    Science.gov (United States)

    Parez, N; Giaquinto, C; Du Roure, C; Martinon-Torres, F; Spoulou, V; Van Damme, P; Vesikari, T

    2014-05-01

    Rotavirus gastroenteritis is a vaccine-preventable disease that confers a high medical and economic burden in more developed countries and can be fatal in less developed countries. Two vaccines with high efficacy and good safety profiles were approved and made available in Europe in 2006. We present an overview of the status of rotavirus vaccination in Europe. We discuss the drivers (including high effectiveness and effect of universal rotavirus vaccination) and barriers (including low awareness of disease burden, perception of unfavourable cost-effectiveness, and potential safety concerns) to the implementation of universal rotavirus vaccination in Europe. By February, 2014, national universal rotavirus vaccination had been implemented in Belgium, Luxembourg, Austria, Finland, Greece, Luxembourg, Norway, and the UK. Four other German states have issued recommendations and reimbursement is provided by sickness funds. Other countries were at various stages of recommending or implementing universal rotavirus vaccination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The green vaccine: A global strategy to combat infectious and autoimmune diseases

    Science.gov (United States)

    Davoodi-Semiromi, Abdoreza; Samson, Nalapalli; Daniell, Henry

    2009-01-01

    Plant derived oral green vaccines eliminate expenses associated with fermenters, purification, cold storage/transportation and sterile delivery. Green vaccines are expressed via the plant nuclear or chloroplast genomes. Chloroplast expression has advantages of hyper-expression of therapeutic proteins (10,000 copies of trans-gene per cell), efficient oral delivery and transgene containment via maternal inheritance. To date, 23 vaccine antigens against 16 different bacterial, viral or protozoan pathogens have been expressed in chloroplasts. Mice subcutaneously immunized with the chloroplast derived anthrax protective antigen conferred 100% protection against lethal doses of the anthrax toxin. Oral immunization (ORV) of F1-V antigens without adjuvant conferred greater protection (88%) against 50-fold lethal dose of aerosolized plague (Yersinia pestis) than subcutaneous (SQV) immunization (33%). Oral immunization of malarial vaccine antigens fused to the cholera antigen (CTB-AMA1/CTB-Msp1) conferred prolonged immunity (50% life span), 100% protection against cholera toxin challenge and inhibited proliferation of the malarial parasite. Protection was correlated with antigen-specific titers of intestinal, serum IgA & IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. High level expression in edible plant chloroplasts ideal for oral delivery and long-term immunity observed should facilitate development of low cost human vaccines for large populations, at times of outbreak. PMID:19430198

  7. Modern Vaccines/Adjuvants Formulation—Session 2 (Plenary II)

    Science.gov (United States)

    Collin, Nicolas

    2013-01-01

    On the 15–17th May 2013, the Fourth International Conference on Modern Vaccines/Adjuvants Formulation was organized in Lausanne, Switzerland, and gathered stakeholders from academics and from the industry to discuss several challenges, advances and promises in the field of vaccine adjuvants. Plenary session 2 of the meeting was composed of four different presentations covering: (1) the recent set-up of an adjuvant technology transfer and training platform in Switzerland, (2) the proposition to revisit existing paradigms of modern vaccinology, (3) the properties of polyethyleneimine as potential new vaccine adjuvant, and (4) the progresses in the design of HIV vaccine candidates able to induce broadly neutralizing antibodies. PMID:23966098

  8. Cold-Chain Adaptability During Introduction of Inactivated Polio Vaccine in Bangladesh, 2015.

    Science.gov (United States)

    Billah, Mallick M; Zaman, K; Estivariz, Concepcion F; Snider, Cynthia J; Anand, Abhijeet; Hampton, Lee M; Bari, Tajul I A; Russell, Kevin L; Chai, Shua J

    2017-07-01

    Introduction of inactivated polio vaccine creates challenges in maintaining the cold chain for vaccine storage and distribution. We evaluated the cold chain in 23 health facilities and 36 outreach vaccination sessions in 8 districts and cities of Bangladesh, using purposive sampling during August-October 2015. We interviewed immunization and cold-chain staff, assessed equipment, and recorded temperatures during vaccine storage and transportation. All health facilities had functioning refrigerators, and 96% had freezers. Temperature monitors were observed in all refrigerators and freezers but in only 14 of 66 vaccine transporters (21%). Recorders detected temperatures >8°C for >60 minutes in 5 of 23 refrigerators (22%), 3 of 6 cold boxes (50%) transporting vaccines from national to subnational depots, and 8 of 48 vaccine carriers (17%) used in outreach vaccination sites. Temperatures cold boxes (21%) transporting vaccine from subnational depots to health facilities and 14 of 48 vaccine carriers (29%). Bangladesh has substantial cold-chain storage and transportation capacity after inactivated polio vaccine introduction, but temperature fluctuations during vaccine transport could cause vaccine potency loss that could go undetected. Bangladesh and other countries should strive to ensure consistent and sufficient cold-chain storage and monitor the cold chain during vaccine transportation at all levels. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  9. Interferon alpha inhibits replication of a live-attenuated porcine reproductive and respiratory syndrome virus vaccine preventing development of an adaptive immune response in swine.

    Science.gov (United States)

    Brockmeier, Susan L; Loving, Crystal L; Eberle, Kirsten C; Hau, Samantha J; Buckley, Alexandra; Van Geelen, Albert; Montiel, Nestor A; Nicholson, Tracy; Lager, Kelly M

    2017-12-01

    Type I interferons, such as interferon alpha (IFN-α), contribute to innate antiviral immunity by promoting production of antiviral mediators and are also involved in promoting an adaptive immune response. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating and costly viruses to the swine industry world-wide and has been shown to induce a meager IFN-α response. Previously we administered porcine IFN-α using a replication-defective adenovirus vector (Ad5-IFN-α) at the time of challenge with virulent PRRSV and demonstrated an increase in the number of virus-specific IFNγ secreting cells, indicating that the presence of IFN-α at the time of infection can alter the adaptive immune responses to PRRSV. In the current experiment, we explored the use of IFN-α as an adjuvant administered with live-attenuated PRRSV vaccine as a method to enhance immune response to the vaccine. Unlike the previous studies with fully virulent virus, one injection of the Ad5-IFN-α abolished replication of the vaccine virus and as a result there was no detectible adaptive immune response. Although IFN-α did not have the desired adjuvant effect, the results further highlight the use of IFN-α as a treatment for PRRSV infection. Published by Elsevier B.V.

  10. Protective Immunity Induced by DNA Vaccination against Ranavirus Infection in Chinese Giant Salamander Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Chen

    2018-01-01

    Full Text Available Andrias davidianus ranavirus (ADRV is an emerging viral pathogen that causes severe systemic hemorrhagic disease in Chinese giant salamanders. There is an urgent need for developing an effective vaccine against this fatal disease. In this study, DNA vaccines containing the ADRV 2L gene (pcDNA-2L and the 58L gene (pcDNA-58L were respectively constructed, and their immune protective effects were evaluated in Chinese giant salamanders. In vitro and in vivo expression of the vaccine plasmids were confirmed in transfected cells and muscle tissues of vaccinated Chinese giant salamanders by using immunoblot analysis or RT-PCR. Following ADRV challenge, the Chinese giant salamanders vaccinated with pcDNA-2L showed a relative percent survival (RPS of 66.7%, which was significant higher than that in Chinese giant salamanders immunized with pcDNA-58L (RPS of 3.3%. Moreover, the specific antibody against ADRV was detected in Chinese giant salamanders vaccinated with pcDNA-2L at 14 and 21 days post-vaccination by indirect enzyme-linked immunosorbent assay (ELISA. Transcriptional analysis revealed that the expression levels of immune-related genes including type I interferon (IFN, myxovirus resistance (Mx, major histocompatibility complex class IA (MHC IA, and immunoglobulin M (IgM were strongly up-regulated after vaccination with pcDNA-2L. Furthermore, vaccination with pcDNA-2L significantly suppressed the virus replication, which was seen by a low viral load in the spleen of Chinese giant salamander survivals after ADRV challenge. These results indicated that pcDNA-2L could induce a significant innate immune response and an adaptive immune response involving both humoral and cell-mediated immunity that conferred effective protection against ADRV infection, and might be a potential vaccine candidate for controlling ADRV disease in Chinese giant salamanders.

  11. Future of human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles.

    Science.gov (United States)

    Sahu, Rajnish; Verma, Richa; Dixit, Saurabh; Igietseme, Joseph U; Black, Carolyn M; Duncan, Skyla; Singh, Shree R; Dennis, Vida A

    2018-03-01

    There is a persisting global burden and considerable public health challenge by the plethora of ocular, genital and respiratory diseases caused by members of the Gram-negative bacteria of the genus Chlamydia. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility, and interstitial pneumonia. The failures in screening and other prevention programs led to the current medical opinion that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, there is no human Chlamydia vaccine despite successful veterinary vaccines. A major challenge has been the effective delivery of vaccine antigens to induce safe and effective immune effectors to confer long-term protective immunity. The dawn of the era of biodegradable polymeric nanoparticles and the adjuvanted derivatives may accelerate the realization of the dream of human vaccine in the foreseeable future. Areas covered: This review focuses on the current status of human chlamydial vaccine research, specifically the potential of biodegradable polymeric nanovaccines to provide efficacious Chlamydia vaccines in the near future. Expert commentary: The safety of biodegradable polymeric nanoparticles-based experimental vaccines with or without adjuvants and the array of available chlamydial vaccine candidates would suggest that clinical trials in humans may be imminent. Also, the promising results from vaccine testing in animal models could lead to human vaccines against trachoma and reproductive diseases simultaneously.

  12. Health Belief Model Scale for Human Papilloma Virus and its Vaccination: Adaptation and Psychometric Testing.

    Science.gov (United States)

    Guvenc, Gulten; Seven, Memnun; Akyuz, Aygul

    2016-06-01

    To adapt and psychometrically test the Health Belief Model Scale for Human Papilloma Virus (HPV) and Its Vaccination (HBMS-HPVV) for use in a Turkish population and to assess the Human Papilloma Virus Knowledge score (HPV-KS) among female college students. Instrument adaptation and psychometric testing study. The sample consisted of 302 nursing students at a nursing school in Turkey between April and May 2013. Questionnaire-based data were collected from the participants. Information regarding HBMS-HPVV and HPV knowledge and descriptive characteristic of participants was collected using translated HBMS-HPVV and HPV-KS. Test-retest reliability was evaluated and Cronbach α was used to assess internal consistency reliability, and exploratory factor analysis was used to assess construct validity of the HBMS-HPVV. The scale consists of 4 subscales that measure 4 constructs of the Health Belief Model covering the perceived susceptibility and severity of HPV and the benefits and barriers. The final 14-item scale had satisfactory validity and internal consistency. Cronbach α values for the 4 subscales ranged from 0.71 to 0.78. Total HPV-KS ranged from 0 to 8 (scale range, 0-10; 3.80 ± 2.12). The HBMS-HPVV is a valid and reliable instrument for measuring young Turkish women's beliefs and attitudes about HPV and its vaccination. Copyright © 2015 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  13. Vaccines. An Ebola whole-virus vaccine is protective in nonhuman primates.

    Science.gov (United States)

    Marzi, Andrea; Halfmann, Peter; Hill-Batorski, Lindsay; Feldmann, Friederike; Shupert, W Lesley; Neumann, Gabriele; Feldmann, Heinz; Kawaoka, Yoshihiro

    2015-04-24

    Zaire ebolavirus is the causative agent of the current outbreak of hemorrhagic fever disease in West Africa. Previously, we showed that a whole Ebola virus (EBOV) vaccine based on a replication-defective EBOV (EBOVΔVP30) protects immunized mice and guinea pigs against lethal challenge with rodent-adapted EBOV. Here, we demonstrate that EBOVΔVP30 protects nonhuman primates against lethal infection with EBOV. Although EBOVΔVP30 is replication-incompetent, we additionally inactivated the vaccine with hydrogen peroxide; the chemically inactivated vaccine remained antigenic and protective in nonhuman primates. EBOVΔVP30 thus represents a safe, efficacious, whole-EBOV vaccine candidate that differs from other EBOV vaccine platforms in that it presents all viral proteins and the viral RNA to the host immune system, which might contribute to protective immune responses. Copyright © 2015, American Association for the Advancement of Science.

  14. INTERNATIONAL EXPERIENCE OF ADMINISTRATION OF PNEUMOCOCCAL CONJUGATED VACCINES: PROBLEMS, PROGRESS, PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    M.V. Fedoseenko

    2009-01-01

    Full Text Available This article presents the review of results of International conference on pneumococcal conjugated vaccines. Main results of international experience in the field of control of pneumococcal infection spreading are analyzed. Authors present modern data of clinical and economic effectiveness and safety of pneumococcal conjugated vaccine RCV-7, and describe experience of administration of vaccines of next generation – PCV-10 and PCV-13.Key words: children, pneumococcal infections, prophylaxis, vaccines.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2009;8(1:130-134

  15. A cell culture-derived whole virus influenza A vaccine based on magnetic sulfated cellulose particles confers protection in mice against lethal influenza A virus infection.

    Science.gov (United States)

    Pieler, Michael M; Frentzel, Sarah; Bruder, Dunja; Wolff, Michael W; Reichl, Udo

    2016-12-07

    Downstream processing and formulation of viral vaccines employs a large number of different unit operations to achieve the desired product qualities. The complexity of individual process steps involved, the need for time consuming studies towards the optimization of virus yields, and very high requirements regarding potency and safety of vaccines results typically in long lead times for the establishment of new processes. To overcome such obstacles, to enable fast screening of potential vaccine candidates, and to explore options for production of low cost veterinary vaccines a new platform for whole virus particle purification and formulation based on magnetic particles has been established. Proof of concept was carried out with influenza A virus particles produced in suspension Madin Darby canine kidney (MDCK) cells. The clarified, inactivated, concentrated, and diafiltered virus particles were bound to magnetic sulfated cellulose particles (MSCP), and directly injected into mice for immunization including positive and negative controls. We show here, that in contrast to the mock-immunized group, vaccination of mice with antigen-loaded MSCP (aMSCP) resulted in high anti-influenza A antibody responses and full protection against a lethal challenge with replication competent influenza A virus. Antiviral protection correlated with a 400-fold reduced number of influenza nucleoprotein gene copies in the lungs of aMSCP immunized mice compared to mock-treated animals, indicating the efficient induction of antiviral immunity by this novel approach. Thus, our data proved the use of MSCP for purification and formulation of the influenza vaccine to be fast and efficient, and to confer protection of mice against influenza A virus infection. Furthermore, the method proposed has the potential for fast purification of virus particles directly from bioreactor harvests with a minimum number of process steps towards formulation of low-cost veterinary vaccines, and for screening

  16. Booster Vaccination: The Role of Reduced Antigen Content Vaccines as a Preschool Booster

    Directory of Open Access Journals (Sweden)

    Giovanni Gabutti

    2014-01-01

    Full Text Available The need for boosters for tetanus, diphtheria, pertussis, and polio, starting from preschool age, is related to the waning immune protection conferred by vaccination, the elimination/reduction of natural boosters due to large-scale immunization programs, and the possibility of reintroduction of wild agents from endemic areas. Taking into account the relevance of safety/tolerability in the compliance with vaccination among the population, it have been assessed whether today enough scientific evidences are available to support the use of dTap-IPV booster in preschool age. The review of the literature was conducted using the PubMed search engine. A total of 41 works has been selected; besides, the documentation produced by the World Health Organization, the European Centre for Disease Control, and the Italian Ministry of Health has been consulted. Many recent papers confirm the opportunity to use a low antigenic dose vaccine starting from 4 to 6 years of age. There is also evidence that 10 years after immunization the rate of seroprotected subjects against diphtheria does not differ significantly between those vaccinated with paediatric dose (DTaP or reduced dose (dTaP or dTap product. The dTpa vaccine is highly immunogenic for diphtheria toxoids regardless of prior vaccination history (2 + 1 and 3 + 1 schedules.

  17. Stabilization of a recombinant ricin toxin A subunit vaccine through lyophilization.

    Science.gov (United States)

    Hassett, Kimberly J; Cousins, Megan C; Rabia, Lilia A; Chadwick, Chrystal M; O'Hara, Joanne M; Nandi, Pradyot; Brey, Robert N; Mantis, Nicholas J; Carpenter, John F; Randolph, Theodore W

    2013-10-01

    Lyophilization was used to prepare dry, glassy solid vaccine formulations of recombinant ricin toxin A-chain containing suspensions of colloidal aluminum hydroxide adjuvant. Four lyophilized formulations were prepared by using combinations of rapid or slow cooling during lyophilization and one of two buffers, histidine or ammonium acetate. Trehalose was used as the stabilizing excipient. Aggregation of the colloidal aluminum hydroxide suspension was reduced in formulations processed with a rapid cooling rate. Aluminum hydroxide particle size distributions, glass transition temperatures, water contents, and immunogenicities of lyophilized vaccines were independent of incubation time at 40 °C for up to 15 weeks. Mice immunized with reconstituted ricin toxin subunit A (RTA) vaccines produced RTA-specific antibodies and toxin-neutralizing antibodies (TNAs) regardless of the length of high temperature vaccine storage or the degree of aluminum adjuvant aggregation that occurred during lyophilization. In murine studies, lyophilized formulations of vaccines conferred protection against exposure to lethal doses of ricin, even after the lyophilized formulations had been stored at 40 °C for 4 weeks. A corresponding liquid formulation of vaccine stored at 40 °C elicited RTA-specific antibody titers but failed to confer immunity during a ricin challenge. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The immunology of smallpox vaccines

    Science.gov (United States)

    Kennedy, Richard B; Ovsyannikova, Inna G; Jacobson, Robert M; Poland, Gregory A

    2010-01-01

    In spite of the eradication of smallpox over 30 years ago; orthopox viruses such as smallpox and monkeypox remain serious public health threats both through the possibility of bioterrorism and the intentional release of smallpox and through natural outbreaks of emerging infectious diseases such as monkeypox. The eradication effort was largely made possible by the availability of an effective vaccine based on the immunologically cross-protective vaccinia virus. Although the concept of vaccination dates back to the late 1800s with Edward Jenner, it is only in the past decade that modern immunologic tools have been applied toward deciphering poxvirus immunity. Smallpox vaccines containing vaccinia virus elicit strong humoral and cellular immune responses that confer cross-protective immunity against variola virus for decades after immunization. Recent studies have focused on: establishing the longevity of poxvirus-specific immunity, defining key immune epitopes targeted by T and B cells, developing subunit-based vaccines, and developing genotypic and phenotypic immune response profiles that predict either vaccine response or adverse events following immunization. PMID:19524427

  19. Booster vaccination with safe, modified, live-attenuated mutants of Brucella abortus strain RB51 vaccine confers protective immunity against virulent strains of B. abortus and Brucella canis in BALB/c mice.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Kim, Kiju; Park, Bo-Kyoung; Hahn, Tae-Wook

    2015-11-01

    Brucella abortus attenuated strain RB51 vaccine (RB51) is widely used in prevention of bovine brucellosis. Although vaccination with this strain has been shown to be effective in conferring protection against bovine brucellosis, RB51 has several drawbacks, including residual virulence for animals and humans. Therefore, a safe and efficacious vaccine is needed to overcome these disadvantages. In this study, we constructed several gene deletion mutants (ΔcydC, ΔcydD and ΔpurD single mutants, and ΔcydCΔcydD and ΔcydCΔpurD double mutants) of RB51 with the aim of increasing the safety of the possible use of these mutants as vaccine candidates. The RB51ΔcydC, RB51ΔcydD, RB51ΔpurD, RB51ΔcydCΔcydD and RB51ΔcydCΔpurD mutants exhibited significant attenuation of virulence when assayed in murine macrophages in vitro or in BALB/c mice. A single intraperitoneal immunization with RB51ΔcydC, RB51ΔcydD, RB51ΔcydCΔcydD or RB51ΔcydCΔpurD mutants was rapidly cleared from mice within 3 weeks, whereas the RB51ΔpurD mutant and RB51 were detectable in spleens until 4 and 7 weeks, respectively. Vaccination with a single dose of RB51 mutants induced lower protective immunity in mice than did parental RB51. However, a booster dose of these mutants provided significant levels of protection in mice against challenge with either the virulent homologous B. abortus strain 2308 or the heterologous Brucella canis strain 26. In addition, these mutants were found to induce a mixed but T-helper-1-biased humoral and cellular immune response in immunized mice. These data suggest that immunization with a booster dose of attenuated RB51 mutants provides an attractive strategy to protect against either bovine or canine brucellosis.

  20. Vaccines against enteric infections for the developing world

    Science.gov (United States)

    Czerkinsky, Cecil; Holmgren, Jan

    2015-01-01

    Since the first licensure of the Sabin oral polio vaccine more than 50 years ago, only eight enteric vaccines have been licensed for four disease indications, and all are given orally. While mucosal vaccines offer programmatically attractive tools for facilitating vaccine deployment, their development remains hampered by several factors: —limited knowledge regarding the properties of the gut immune system during early life;—lack of mucosal adjuvants, limiting mucosal vaccine development to live-attenuated or killed whole virus and bacterial vaccines;—lack of correlates/surrogates of mucosal immune protection; and—limited knowledge of the factors contributing to oral vaccine underperformance in children from developing countries.There are now reasons to believe that the development of safe and effective mucosal adjuvants and of programmatically sound intervention strategies could enhance the efficacy of current and next-generation enteric vaccines, especially in lesser developed countries which are often co-endemic for enteric infections and malnutrition. These vaccines must be safe and affordable for the world's poorest, confer long-term protection and herd immunity, and must be able to contain epidemics. PMID:25964464

  1. Prime-boost vaccination using DNA and whole inactivated virus vaccines provides limited protection against virulent feline immunodeficiency virus.

    Science.gov (United States)

    Dunham, Stephen P; Bruce, Jennifer; Klein, Dieter; Flynn, J Norman; Golder, Matthew C; MacDonald, Susan; Jarrett, Oswald; Neil, James C

    2006-11-30

    Protection against feline immunodeficiency virus (FIV) has been achieved using a variety of vaccines notably whole inactivated virus (WIV) and DNA. However protection against more virulent isolates, typical of those encountered in natural infections, has been difficult to achieve. In an attempt to improve protection against virulent FIV(GL8), we combined both DNA and WIV vaccines in a "prime-boost" approach. Thirty cats were divided into four groups receiving vaccinations and one unvaccinated control group. Following viral challenge, two vaccinated animals, one receiving DNA alone and one the prime-boost vaccine remained free of viraemia, whilst all controls became viraemic. Animals vaccinated with WIV showed apparent early enhancement of infection at 2 weeks post challenge (pc) with higher plasma viral RNA loads than control animals or cats immunised with DNA alone. Despite this, animals vaccinated with WIV or DNA alone showed significantly lower proviral loads in peripheral blood mononuclear cells and mesenteric lymph node cells, whilst those receiving the DNA-WIV prime-boost vaccine showed significantly lower proviral loads in PBMC, than control animals, at 35 weeks pc. Therefore both DNA and WIV vaccines conferred limited protection against viral challenge but the combination of WIV and DNA in a prime-boost approach appeared to offer no significant advantage over either vaccine alone.

  2. Measles, immune suppression and vaccination: direct and indirect nonspecific vaccine benefits.

    Science.gov (United States)

    Mina, Michael J

    2017-06-01

    The measles virus is among the most transmissible viruses known to infect humans. Prior to measles vaccination programs, measles infected over 95% of all children and was responsible for over 4 million deaths each year. Measles vaccination programs have been among the greatest public health achievements reducing, eliminating endemic measles in the whole of the Americas and across much of the globe. Where measles vaccines are introduced, unexpectedly large reductions in all-cause childhood mortality have been observed. These gains appear to derive in part from direct heterologous benefits of measles vaccines that enhance innate and adaptive immune responses. Additionally, by preventing measles infections, vaccination prevents measles-associated short- and long-term immunomodulating effects. Before vaccination, these invisible hallmarks of measles infections increased vulnerability to non-measles infections in nearly all children for weeks, months, or years following acute infections. By depleting measles incidence, vaccination has had important indirect benefits to reduce non-measles mortality. Delineating the relative importance of these two modes of survival benefits following measles vaccine introduction is of critical public health importance. While both support continued unwavering global commitments to measles vaccination programs until measles eradication is complete, direct heterologous benefits of measles vaccination further support continued commitment to measles vaccination programs indefinitely. We discuss what is known about direct and indirect nonspecific measles vaccine benefits, and their implications for continued measles vaccination programs. © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  3. Is It Time for Vaccination to "Go Viral"?

    Science.gov (United States)

    Philip, Roy K; Shapiro, Marla; Paterson, Pauline; Glismann, Steffen; Van Damme, Pierre

    2016-12-01

    To promote and sustain excellent vaccination coverage, while preserving the key core values of ethics, truth, transparency and trust, the vaccine community should adopt modern digital communication strategies. This article summarizes our views-as experts in multidisciplinary field of vaccinology (consisting of an anthropologist, a public health policy advisor, a vaccine industry expert, a health care journalist and a practicing physician)-which were presented at a satellite symposium held at the 33rd European Society of Paediatric Infectious Disease conference in Leipzig, Germany, in May 2015. This article aims to suggest and recommend strategies to promote vaccination awareness, and highlight proactive measures for building, maintaining and enhancing trust in vaccination through innovative communication and evidence-based interaction with the end user. We believe that converting the results of vaccine research into a successful vaccination program, and replacing misinformation with evidence-based communication, will require a multidisciplinary approach that embraces modern digital and tailored applications to reach out to all populations.

  4. Perspectives on benefit-risk decision-making in vaccinology: Conference report.

    Science.gov (United States)

    Greenberg, M; Simondon, F; Saadatian-Elahi, M

    2016-01-01

    Benefit/risk (B/R) assessment methods are increasingly being used by regulators and companies as an important decision-making tool and their outputs as the basis of communication. B/R appraisal of vaccines, as compared with drugs, is different due to their attributes and their use. For example, vaccines are typically given to healthy people, and, for some vaccines, benefits exist both at the population and individual level. For vaccines in particular, factors such as the benefit afforded through herd effects as a function of vaccine coverage and consequently impact the B/R ratio, should also be taken into consideration and parameterized in B/R assessment models. Currently, there is no single agreed methodology for vaccine B/R assessment that can fully capture all these aspects. The conference "Perspectives on Benefit-Risk Decision-making in Vaccinology," held in Annecy (France), addressed these issues and provided recommendations on how to advance the science and practice of B/R assessment of vaccines and vaccination programs.

  5. Early protection events in swine immunized with an experimental live attenuated classical swine fever marker vaccine, FlagT4G.

    Directory of Open Access Journals (Sweden)

    Lauren G Holinka

    Full Text Available Prophylactic vaccination using live attenuated classical swine fever (CSF vaccines has been a very effective method to control the disease in endemic regions and during outbreaks in previously disease-free areas. These vaccines confer effective protection against the disease at early times post-vaccination although the mechanisms mediating the protection are poorly characterized. Here we present the events occurring after the administration of our in-house developed live attenuated marker vaccine, FlagT4Gv. We previously reported that FlagT4Gv intramuscular (IM administered conferred effective protection against intranasal challenge with virulent CSFV (BICv as early as 7 days post-vaccination. Here we report that FlagT4Gv is able to induce protection against disease as early as three days post-vaccination. Immunohistochemical testing of tissues from FlagT4Gv-inoculated animals showed that tonsils were colonized by the vaccine virus by day 3 post-inoculation. There was a complete absence of BICv in tonsils of FlagT4Gv-inoculated animals which had been intranasal (IN challenged with BICv 3 days after FlagT4Gv infection, confirming that FlagT4Gv inoculation confers sterile immunity. Analysis of systemic levels of 19 different cytokines in vaccinated animals demonstrated an increase of IFN-α three days after FlagT4Gv inoculation compared with mock infected controls.

  6. HIVR4P 2016, Partnering for Prevention: Conference Summary and Highlights.

    Science.gov (United States)

    Shacklett, Barbara L; Derdeyn, Cynthia A; Folayan, Morenike Oluwatoyin; Landovitz, Raphael J; Anthony, Colin; Behrens, Anna-Janina; Hope, Thomas J; Landais, Elise; Leal, Lorna; Marrazzo, Jeanne M; Morris, Lynn; Mugo, Nelly; Ngure, Kenneth; Noseda, Veronica; Ranasinghe, Srinika; Tully, Damien C; Voronin, Yegor; Warren, Mitchell; Wibmer, Constantinos Kurt; Xie, Irene Y; Scarlatti, Gabriella; Thyagarajan, Bargavi

    2017-08-01

    HIV Research for Prevention: AIDS Vaccine, Microbicide, and ARV-based Prevention Science (HIVR4P) was built on a growing consensus that effective HIV prevention requires a combination of approaches and that understanding, analyzing, and debating the cross-cutting issues that impact prevention research are all essential to combat the global HIV/AIDS epidemic. To that end, the biennial HIVR4P conference is dedicated to all biomedical HIV prevention research approaches, including HIV vaccines, microbicides, pre-exposure prophylaxis, and treatment as prevention. The HIVR4P 2016 conference was held in Chicago, Illinois (USA), on October 17-21, and included more than 700 scientific presentations and 21 satellite sessions covering the latest and most promising advances across the HIV prevention research field. The theme "Partnering for Prevention" represented the conference's commitment to breaking down silos between research disciplines as well as between researchers, program developers, care providers, advocates, communities, and funders. Delegates spanning 42 countries attended the conference. One-third of those in attendance were early career investigators, which reflects a firm commitment to emerging researchers and ultimately to the goal of developing a sustainable scientific enterprise well into the future. This article presents a concise summary of highlights from the conference. For a more detailed account, one may find full abstracts, daily summaries, and webcasts on the conference website at hivr4p.org.

  7. Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone.

    Science.gov (United States)

    Li, Xiao-Feng; Dong, Hao-Long; Wang, Hong-Jiang; Huang, Xing-Yao; Qiu, Ye-Feng; Ji, Xue; Ye, Qing; Li, Chunfeng; Liu, Yang; Deng, Yong-Qiang; Jiang, Tao; Cheng, Gong; Zhang, Fu-Chun; Davidson, Andrew D; Song, Ya-Jun; Shi, Pei-Yong; Qin, Cheng-Feng

    2018-02-14

    The global spread of Zika virus (ZIKV) and its unexpected association with congenital defects necessitates the rapid development of a safe and effective vaccine. Here we report the development and characterization of a recombinant chimeric ZIKV vaccine candidate (termed ChinZIKV) that expresses the prM-E proteins of ZIKV using the licensed Japanese encephalitis live-attenuated vaccine SA14-14-2 as the genetic backbone. ChinZIKV retains its replication activity and genetic stability in vitro, while exhibiting an attenuation phenotype in multiple animal models. Remarkably, immunization of mice and rhesus macaques with a single dose of ChinZIKV elicits robust and long-lasting immune responses, and confers complete protection against ZIKV challenge. Significantly, female mice immunized with ChinZIKV are protected against placental and fetal damage upon ZIKV challenge during pregnancy. Overall, our study provides an alternative vaccine platform in response to the ZIKV emergency, and the safety, immunogenicity, and protection profiles of ChinZIKV warrant further clinical development.

  8. HIV vaccine: it may take two to tango, but no party time yet

    NARCIS (Netherlands)

    Berkhout, Ben; Paxton, William A.

    2009-01-01

    ABSTRACT: A press conference on Thursday September 24 in Bangkok, Thailand, released data that an experimental vaccine provided mild protection against HIV-1 infection. This is the first positive signal of any degree of vaccine efficacy in humans, more than a quarter-century after scientists

  9. Network-topology-adaptive quantum conference protocols

    International Nuclear Information System (INIS)

    Zhang Sheng; Wang Jian; Tang Chao-Jing; Zhang Quan

    2011-01-01

    As an important application of the quantum network communication, quantum multiparty conference has made multiparty secret communication possible. Previous quantum multiparty conference schemes based on quantum data encryption are insensitive to network topology. However, the topology of the quantum network significantly affects the communication efficiency, e.g., parallel transmission in a channel with limited bandwidth. We have proposed two distinctive protocols, which work in two basic network topologies with efficiency higher than the existing ones. We first present a protocol which works in the reticulate network using Greeberger—Horne—Zeilinger states and entanglement swapping. Another protocol, based on quantum multicasting with quantum data compression, which can improve the efficiency of the network, works in the star-like network. The security of our protocols is guaranteed by quantum key distribution and one-time-pad encryption. In general, the two protocols can be applied to any quantum network where the topology can be equivalently transformed to one of the two structures we propose in our protocols. (general)

  10. EDITORIAL: Adaptive and active materials: Selected papers from the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 10) (Philadelphia, PA, USA, 28 September-1 October 2010) Adaptive and active materials: Selected papers from the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 10) (Philadelphia, PA, USA, 28 September-1 October 2010)

    Science.gov (United States)

    Brei, Diann

    2011-09-01

    The third annual meeting of the AMSE/AIAA Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) took place in the heart of historic Philadelphia's cultural district, and included a pioneer banquet in the National Constitutional Center. The applications emphasis of the 2010 conference was reflected in keynote talks by Dr Alan Taub, vice president of General Motors global research and development, 'Smart materials in the automotive industry'; Dr Charles R Farrar, engineering institute leader at Los Alamos National Laboratory, 'Future directions for structural health monitoring of civil engineering infrastructure'; and Professor Christopher S Lynch of the University of California Los Angeles, 'Ferroelectric materials and their applications'. The SMASIS conference was divided into six technical symposia each of which included basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations. The six symposia were: SYMP 1 Multifunctional Materials; SYMP 2 Active Materials, Mechanics and Behavior; SYMP 3 Modeling, Simulation and Control; SYMP 4 Enabling Technologies and Integrated System Design; SYMP 5 Structural Health Monitoring/NDE; and SYMP 6 Bio-inspired Smart Materials and Structures. In addition, the conference introduced a new student and young professional development symposium. Authors of papers in the materials areas (symposia 1, 2 and 6) were invited to write a full journal article on their presentation topic for publication in this special issue of Smart Materials and Structures. This set of papers demonstrates the exceptional quality and originality of the conference presentations. We are appreciative of their efforts in producing this collection of highly relevant articles on smart materials.

  11. A live attenuated cold-adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets

    International Nuclear Information System (INIS)

    Joseph, Tomy; McAuliffe, Josephine; Lu, Bin; Vogel, Leatrice; Swayne, David; Jin, Hong; Kemble, George; Subbarao, Kanta

    2008-01-01

    The appearance of human infections caused by avian influenza A H7 subtype viruses underscores their pandemic potential and the need to develop vaccines to protect humans from viruses of this subtype. A live attenuated H7N3 virus vaccine was generated by reverse genetics using the HA and NA genes of a low pathogenicity A/chicken/BC/CN-6/04 (H7N3) virus and the six internal protein genes of the cold-adapted A/Ann Arbor/6/60 ca (H2N2) virus. The reassortant H7N3 BC 04 ca vaccine virus was temperature sensitive and showed attenuation in mice and ferrets. Intranasal immunization with one dose of the vaccine protected mice and ferrets when challenged with homologous and heterologous H7 viruses. The reassortant H7N3 BC 04 ca vaccine virus showed comparable levels of attenuation, immunogenicity and efficacy in mice and ferret models. The safety, immunogenicity, and efficacy of this vaccine in mice and ferrets support the evaluation of this vaccine in clinical trials

  12. A live attenuated H7N7 candidate vaccine virus induces neutralizing antibody that confers protection from challenge in mice, ferrets and monkeys

    Science.gov (United States)

    A live attenuated H7N7 candidate vaccine virus was generated by reverse genetics using the modified hemagglutinin (HA) and neuraminidase (NA) genes of HP A/Netherlands/219/03 (NL/03) (H7N7) wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 ca (AA ca) (...

  13. Progress toward Development of a Vaccine against Congenital Cytomegalovirus Infection

    Science.gov (United States)

    Permar, Sallie R.; Plotkin, Stanley A.

    2017-01-01

    ABSTRACT A vaccine against congenital human cytomegalovirus (CMV) infection is a major public health priority. Congenital CMV causes substantial long-term morbidity, particularly sensorineural hearing loss (SNHL), in newborns, and the public health impact of this infection on maternal and child health is underrecognized. Although progress toward development of a vaccine has been limited by an incomplete understanding of the correlates of protective immunity for the fetus, knowledge about some of the key components of the maternal immune response necessary for preventing transplacental transmission is accumulating. Moreover, although there have been concerns raised about observations indicating that maternal seropositivity does not fully prevent recurrent maternal CMV infections during pregnancy, it is becoming increasing clear that preconception immunity does confer some measure of protection against both CMV transmission and CMV disease (if transmission occurs) in the newborn infant. Although the immunity to CMV conferred by both infection and vaccination is imperfect, there are encouraging data emerging from clinical trials demonstrating the immunogenicity and potential efficacy of candidate CMV vaccines. In the face of the knowledge that between 20,000 and 30,000 infants are born with congenital CMV in the United States every year, there is an urgent and compelling need to accelerate the pace of vaccine trials. In this minireview, we summarize the status of CMV vaccines in clinical trials and provide a perspective on what would be required for a CMV immunization program to become incorporated into clinical practice. PMID:29046308

  14. Vaccines against enteric infections for the developing world.

    Science.gov (United States)

    Czerkinsky, Cecil; Holmgren, Jan

    2015-06-19

    Since the first licensure of the Sabin oral polio vaccine more than 50 years ago, only eight enteric vaccines have been licensed for four disease indications, and all are given orally. While mucosal vaccines offer programmatically attractive tools for facilitating vaccine deployment, their development remains hampered by several factors: -limited knowledge regarding the properties of the gut immune system during early life; -lack of mucosal adjuvants, limiting mucosal vaccine development to live-attenuated or killed whole virus and bacterial vaccines; -lack of correlates/surrogates of mucosal immune protection; and -limited knowledge of the factors contributing to oral vaccine underperformance in children from developing countries. There are now reasons to believe that the development of safe and effective mucosal adjuvants and of programmatically sound intervention strategies could enhance the efficacy of current and next-generation enteric vaccines, especially in lesser developed countries which are often co-endemic for enteric infections and malnutrition. These vaccines must be safe and affordable for the world's poorest, confer long-term protection and herd immunity, and must be able to contain epidemics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Oral and anal vaccination confers full protection against enteric redmouth disease (ERM) in rainbow trout

    DEFF Research Database (Denmark)

    Villumsen, Kasper Rømer; Neumann, Lukas; Otani, Maki

    2014-01-01

    The effect of oral vaccines against bacterial fish diseases has been a topic for debate for decades. Recently both M-like cells and dendritic cells have been discovered in the intestine of rainbow trout. It is therefore likely that antigens reaching the intestine can be taken up and thereby induce...... immunity in orally vaccinated fish. The objective of this project was to investigate whether oral and anal vaccination of rainbow trout induces protection against an experimental waterborne infection with the pathogenic enterobacteria Yersinia ruckeri O1 biotype 1 the causative agent of enteric redmouth...... disease (ERM). Rainbow trout were orally vaccinated with AquaVac ERM Oral (MERCK Animal Health) or an experimental vaccine bacterin of Y. ruckeri O1. Both vaccines were tested with and without a booster vaccination four months post the primary vaccination. Furthermore, two groups of positive controls were...

  16. Dynamic Modeling of Cost-effectiveness of Rotavirus Vaccination, Kazakhstan

    Science.gov (United States)

    Flem, Elmira; Latipov, Renat; Kuatbaeva, Ajnagul; Kristiansen, Ivar Sønbø

    2014-01-01

    The government of Kazakhstan, a middle-income country in Central Asia, is considering the introduction of rotavirus vaccination into its national immunization program. We performed a cost-effectiveness analysis of rotavirus vaccination spanning 20 years by using a synthesis of dynamic transmission models accounting for herd protection. We found that a vaccination program with 90% coverage would prevent ≈880 rotavirus deaths and save an average of 54,784 life-years for children <5 years of age. Indirect protection accounted for 40% and 60% reduction in severe and mild rotavirus gastroenteritis, respectively. Cost per life year gained was US $18,044 from a societal perspective and US $23,892 from a health care perspective. Comparing the 2 key parameters of cost-effectiveness, mortality rates and vaccine cost at vaccination program costs would be entirely offset. To further evaluate efficacy of a vaccine program, benefits of indirect protection conferred by vaccination warrant further study. PMID:24378188

  17. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.

    Science.gov (United States)

    Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun

    2018-02-01

    Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be

  18. Reproductive toxicity testing of vaccines

    International Nuclear Information System (INIS)

    Verdier, Francois; Barrow, Paul C.; Burge, Joeelle

    2003-01-01

    Vaccines play a major role in the prevention of human birth defects by protecting the pregnant woman from teratogenic or otherwise harmful infections. Until now, it has not been common practice to perform preclinical developmental toxicity tests for new vaccines. Despite the excellent safety record of vaccines, increased attention is now being given to the feasibility of screening new vaccines for developmental hazards in animals before their use in humans. Contrary to previous assumptions, many vaccines are now given to potentially pregnant women. Any new components of the vaccine formulation (adjuvants, excipients, stabilisers, preservatives, etc...) could also be tested for influences on development, although based on past experience the risks are limited by the very low dosages used. The conferred immunity following vaccination lasts for several years. Therefore, the developing conceptus may theoretically be exposed to the induced antibodies and/or sensitised T-cells, even if the pregnant woman was last vaccinated during childhood (particularly if she encounters the antigen during pregnancy through exposure to infection). However, it should be kept in mind that viral or bacterial infections represent a higher risk for a pregnant woman than the potential adverse effects related to vaccination or the associated immune response. Non-clinical safety studies may be employed as an aid for hazard identification. In these studies interactions of the vaccine with the maternal immune system or with the developmental systems of the offspring are considered. Post-natal examinations are necessary to detect all possible manifestations of developmental toxicity, such as effects on the immune system. Species selection for the preclinical studies is based on immunogenicity to the vaccine and the relative timing and rate of transfer of maternal antibodies to the offspring. A single study design is proposed for the pre- and post-natal developmental assessments of vaccines in

  19. Human Milk Oligosaccharide 2′-Fucosyllactose Improves Innate and Adaptive Immunity in an Influenza-Specific Murine Vaccination Model

    Directory of Open Access Journals (Sweden)

    Ling Xiao

    2018-03-01

    Full Text Available BackgroundHuman milk is uniquely suited to provide optimal nutrition and immune protection to infants. Human milk oligosaccharides are structural complex and diverse consisting of short chain and long chain oligosaccharides typically present in a 9:1 ratio. 2′-Fucosyllactose (2′FL is one of the most prominent short chain oligosaccharides and is associated with anti-infective capacity of human milk.AimTo determine the effect of 2′FL on vaccination responsiveness (both innate and adaptive in a murine influenza vaccination model and elucidate mechanisms involved.MethodsA dose range of 0.25–5% (w/w dietary 2′FL was provided to 6-week-old female C57Bl/6JOlaHsd mice 2 weeks prior primary and booster vaccination until the end of the experiment. Intradermal (i.d. challenge was performed to measure the vaccine-specific delayed-type hypersensitivity (DTH. Antigen-specific antibody levels in serum as well as immune cell populations within several organs were evaluated using ELISA and flow cytometry, respectively. In an ex vivo restimulation assay, spleen cells were cocultured with influenza-loaded bone marrow-derived dendritic cells (BMDCs to study the effects of 2′FL on vaccine-specific CD4+ and CD8+ T-cell proliferation and cytokine secretions. Furthermore, the direct immune regulatory effects of 2′FL were confirmed using in vitro BMDCs T-cell cocultures.ResultsDietary 2′FL significantly (p < 0.05 enhanced vaccine specific DTH responses accompanied by increased serum levels of vaccine-specific immunoglobulin (Ig G1 and IgG2a in a dose-dependent manner. Consistently, increased activation marker (CD27 expression on splenic B-cells was detected in mice receiving 2′FL as compared to control mice. Moreover, proliferation of vaccine-specific CD4+ and CD8+ T-cells, as well as interferon-γ production after ex vivo restimulation were significantly increased in spleen cells of mice receiving 2′FL as compared to control mice, which were

  20. Vaccine-induced protection against anthrax in cheetah (Acinonyx jubatus) and black rhinoceros (Diceros bicornis).

    Science.gov (United States)

    Turnbull, P C B; Tindall, B W; Coetzee, J D; Conradie, C M; Bull, R L; Lindeque, P M; Huebschle, O J B

    2004-09-03

    Institution of a policy of vaccination in endangered species with a vaccine not previously administered to it cannot be undertaken lightly. This applies even more in the case of cheetah (Acinonyx jubatus) with their unusually monomorphic gene pool and the potential restrictions this places on their immune responses. However, the recently observed mortalities from anthrax in these animals in the Etosha National Park, Namibia, made it imperative to evaluate vaccination. Black rhinoceros (Diceros bicornis), another endangered species in the park, have been vaccinated for over three decades but the effectiveness of this has never been evaluated. Passive protection tests in A/J mice using sera from 12 cheetahs together with enzyme immunoassay indicated that cheetah are able to mount seemingly normal primary and secondary humoral immune responses to the Sterne 34F2 live spore livestock vaccine. Overall protection rates in mice injected with the sera rose and fell in concert with rises and declines in antibody titres, although fine analysis showed that the correlation between titre and protection was complex. Once a high level of protection (96% of mice 1 month after a second booster in the cheetahs) had been achieved, the duration of substantial protection appeared good (60% of the mice 5 months after the second booster). Protection conferred on mice by sera from three of four vaccinated rhino was almost complete, but, obscurely, none of the mice receiving serum from the fourth rhino were protected. Sera from three park lions with naturally acquired high antibody titres, included as controls, also conferred high levels of protection. For the purposes of wildlife management, the conclusions were that vaccination of cheetah with the standard animal anthrax vaccine causes no observable ill effect in the animals and does appear to confer protective immunity. At least one well-separated booster does appear to be desirable. Vaccination of rhino also appears to be justified

  1. Oral and Anal Vaccination Confers Full Protection against Enteric Redmouth Disease (ERM) in Rainbow Trout

    Science.gov (United States)

    Ohtani, Maki; Strøm, Helene Kragelund; Raida, Martin Kristian

    2014-01-01

    The effect of oral vaccines against bacterial fish diseases has been a topic for debate for decades. Recently both M-like cells and dendritic cells have been discovered in the intestine of rainbow trout. It is therefore likely that antigens reaching the intestine can be taken up and thereby induce immunity in orally vaccinated fish. The objective of this project was to investigate whether oral and anal vaccination of rainbow trout induces protection against an experimental waterborne infection with the pathogenic enterobacteria Yersinia ruckeri O1 biotype 1 the causative agent of enteric redmouth disease (ERM). Rainbow trout were orally vaccinated with AquaVac ERM Oral (MERCK Animal Health) or an experimental vaccine bacterin of Y. ruckeri O1. Both vaccines were tested with and without a booster vaccination four months post the primary vaccination. Furthermore, two groups of positive controls were included, one group receiving the experimental oral vaccine in a 50 times higher dose, and the other group receiving a single dose administered anally in order to bypass the stomach. Each group was bath challenged with 6.3×108 CFU/ml Y. ruckeri, six months post the primary vaccination. The challenge induced significant mortality in all the infected groups except for the groups vaccinated anally with a single dose or orally with the high dose of bacterin. Both of these groups had 100% survival. These results show that a low dose of Y. ruckeri bacterin induces full protection when the bacterin is administered anally. Oral vaccination also induces full protection, however, at a dose 50 times higher than if the fish were to be vaccinated anally. This indicates that much of the orally fed antigen is digested in the stomach before it reaches the second segment of the intestine where it can be taken up as immunogenic antigens and presented to lymphocytes. PMID:24705460

  2. Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines.

    Science.gov (United States)

    Cha, Ra Mi; Smith, Diane; Shepherd, Eric; Davis, C Todd; Donis, Ruben; Nguyen, Tung; Nguyen, Hoang Dang; Do, Hoa Thi; Inui, Ken; Suarez, David L; Swayne, David E; Pantin-Jackwood, Mary

    2013-10-09

    Domestic ducks are the second most abundant poultry species in many Asian countries including Vietnam, and play a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI) [FAO]. In this study, we examined the protective efficacy in ducks of two commercial H5N1 vaccines widely used in Vietnam; Re-1 containing A/goose/Guangdong/1/1996 hemagglutinin (HA) clade 0 antigens, and Re-5 containing A/duck/Anhui/1/2006 HA clade 2.3.4 antigens. Ducks received two doses of either vaccine at 7 and at 14 or 21 days of age followed by challenge at 30 days of age with viruses belonging to the HA clades 1.1, 2.3.4.3, 2.3.2.1.A and 2.3.2.1.B isolated between 2008 and 2011 in Vietnam. Ducks vaccinated with the Re-1 vaccine were protected after infection with the two H5N1 HPAI viruses isolated in 2008 (HA clades 1.1 and 2.3.4.3) showing no mortality and limited virus shedding. The Re-1 and Re-5 vaccines conferred 90-100% protection against mortality after challenge with the 2010 H5N1 HPAI viruses (HA clade 2.3.2.1.A); but vaccinated ducks shed virus for more than 7 days after challenge. Similarly, the Re-1 and Re-5 vaccines only showed partial protection against the 2011 H5N1 HPAI viruses (HA clade 2.3.2.1.A and 2.3.2.1.B), with a high proportion of vaccinated ducks shedding virus for more than 10 days. Furthermore, 50% mortality was observed in ducks vaccinated with Re-1 and challenged with the 2.3.2.1.B virus. The HA proteins of the 2011 challenge viruses had the greatest number of amino acid differences from the two vaccines as compared to the viruses from 2008 and 2009, which correlates with the lesser protection observed with these viruses. These studies demonstrate the suboptimal protection conferred by the Re-1 and Re-5 commercial vaccines in ducks against H5N1 HPAI clade 2.3.2.1 viruses, and underscore the importance of monitoring vaccine efficacy in the control of H5N1 HPAI in ducks. Published by Elsevier Ltd.

  3. Potency of whole virus particle and split virion vaccines using dissolving microneedle against challenges of H1N1 and H5N1 influenza viruses in mice.

    Science.gov (United States)

    Nakatsukasa, Akihiro; Kuruma, Koji; Okamatsu, Masatoshi; Hiono, Takahiro; Suzuki, Mizuho; Matsuno, Keita; Kida, Hiroshi; Oyamada, Takayoshi; Sakoda, Yoshihiro

    2017-05-15

    Transdermal vaccination using a microneedle (MN) confers enhanced immunity compared with subcutaneous (SC) vaccination. Here we developed a novel dissolving MN patch for the influenza vaccine. The potencies of split virion and whole virus particle (WVP) vaccines prepared from A/Puerto Rico/8/1934 (H1N1) and A/duck/Hokkaido/Vac-3/2007 (H5N1), respectively, were evaluated. MN vaccination induced higher neutralizing antibody responses than SC vaccination in mice. Moreover, MN vaccination with a lower dose of antigens conferred protective immunity against lethal challenges of influenza viruses than SC vaccination in mice. These results suggest that the WVP vaccines administered using MN are an effective combination for influenza vaccine to be further validated in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Protective immunity conferred by porcine circovirus 2 ORF2-based DNA vaccine in mice.

    Science.gov (United States)

    Sylla, Seydou; Cong, Yan-Long; Sun, Yi-Xue; Yang, Gui-Lian; Ding, Xue-Mei; Yang, Zhan-Qing; Zhou, Yu-Long; Yang, Minnan; Wang, Chun-Feng; Ding, Zhuang

    2014-07-01

    Post-weaning multisystemic wasting syndrome (PMWS) associated with porcine circovirus type 2 (PCV2) has caused the swine industry significant health challenges and economic damage. Although inactivated and subunit vaccines against PMWS have been used widely, so far no DNA vaccine is available. In this study, with the aim of exploring a new route for developing a vaccine against PCV2, the immunogenicity of a DNA vaccine was evaluated in mice. The pEGFP-N1 vector was used to construct a PCV2 Cap gene recombinant vaccine. To assess the immunogenicity of pEGFP-Cap, 80 BALB/c mice were immunized three times at 2 weekly intervals with pEGFP-Cap, LG-strain vaccine, pEGFP-N1 vector or PBS and then challenged with PCV2. IgG and cytokines were assessed by indirect ELISA and ELISA, respectively. Specimens stained with hematoxylin and eosin (HE) and immunohistochemistry (IHC) techniques were examined histopathologically. It was found that vaccination of the mice with the pEGFP-Cap induced solid protection against PCV2 infection through induction of highly specific serum IgG antibodies and cytokines (IFN-γ and IL-10), and a small PCV2 viral load. The mice treated with the pEGFP-Cap and LG-strain developed no histopathologically detectable lesions (HE stain) and IHC techniques revealed only a few positive cells. Thus, this study demonstrated that recombinant pEGFP-Cap substantially alleviates PCV2 infection in mice and provides evidence that a DNA vaccine could be an alternative to PCV2 vaccines against PMWS. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  5. Making evidence-based selections of influenza vaccines

    OpenAIRE

    Childress, Billy-Clyde; Montney, Joshua D; Albro, Elise A

    2014-01-01

    Years ago, intramuscular influenza vaccines were the only option for those who wanted to arm themselves against the flu. Today there are alternatives, including intradermal injections and intranasal sprays. In order to select the right influenza vaccine for their patients, pharmacists, and other healthcare professionals must have a basic understanding of the immune system. Influenza vaccines elicit different levels of immune response involving innate and adaptive immunity, which are critical ...

  6. "Saving lives": Adapting and adopting Human Papilloma Virus (HPV) vaccination in Austria.

    Science.gov (United States)

    Paul, Katharina T

    2016-03-01

    Vaccination against the sexually transmitted Human Papilloma Virus (HPV), a necessary agent for the development of cervical cancer, has triggered much debate. In Austria, HPV policy turned from "lagging behind" in 2008 into "Europe's frontrunner" by 2013. Drawing on qualitative research, the article shows how the vaccine was transformed and made "good enough" over the course of five years. By means of tinkering and shifting storylines, policy officials and experts disassociated the vaccine from gender, vaccine manufacturers, and youth sexuality. Ultimately, the HPV vaccine functioned to strengthen the national immunization program. To this end, preventing an effective problematization of the extant screening program was essential. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  7. Use of oral cholera vaccine as a vaccine probe to define the geographical dimensions of person-to-person transmission of cholera.

    Science.gov (United States)

    Ali, Mohammad; Kim, Deok Ryun; Kanungo, Suman; Sur, Dipika; Manna, Byomkesh; Digilio, Laura; Dutta, Shanta; Marks, Florian; Bhattacharya, Sujit K; Clemens, John

    2018-01-01

    Cholera is known to be transmitted from person to person, and inactivated oral cholera vaccines (OCVs) have been shown to confer herd protection via interruption of this transmission. However, the geographic dimensions of chains of person-to-person transmission of cholera are uncertain. The ability of OCVs to confer herd protection was used to define these dimensions in two cholera-endemic settings, one in rural Bangladesh and the other in urban India. Two large randomized, placebo-controlled trials of inactivated OCVs, one in rural Matlab, Bangladesh and the other in urban Kolkata, India, were reanalyzed. Vaccine herd protection was evaluated by relating the risk of cholera in placebo recipients to vaccine coverage of surrounding residents residing within concentric rings. In Matlab, concentric rings in 100-m increments up to 700m were evaluated; in Kolkata, 50-m increments up to 350m were evaluated. One hundred and eight cholera cases among 24667 placebo recipients were detected during 1year of post-vaccination follow-up at Matlab; 128 cholera cases among 34968 placebo recipients were detected during 3 years of follow-up in Kolkata. Consistent inverse relationships were observed between vaccine coverage of the ring and the risk of cholera in the central placebo recipient for rings with radii up to 500m in Matlab and up to 150m in Kolkata. These results suggest that the dimensions of chains of person-to-person transmission in endemic settings can be quite large and may differ substantially from setting to setting. Using OCVs as 'probes' to define these dimensions can inform geographical targeting strategies for the deployment of these vaccines in endemic settings. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Adapting to the global shortage of cholera vaccines: targeted single dose cholera vaccine in response to an outbreak in South Sudan.

    Science.gov (United States)

    Parker, Lucy A; Rumunu, John; Jamet, Christine; Kenyi, Yona; Lino, Richard Laku; Wamala, Joseph F; Mpairwe, Allan M; Ciglenecki, Iza; Luquero, Francisco J; Azman, Andrew S; Cabrol, Jean-Clement

    2017-04-01

    Shortages of vaccines for epidemic diseases, such as cholera, meningitis, and yellow fever, have become common over the past decade, hampering efforts to control outbreaks through mass reactive vaccination campaigns. Additionally, various epidemiological, political, and logistical challenges, which are poorly documented in the literature, often lead to delays in reactive campaigns, ultimately reducing the effect of vaccination. In June 2015, a cholera outbreak occurred in Juba, South Sudan, and because of the global shortage of oral cholera vaccine, authorities were unable to secure sufficient doses to vaccinate the entire at-risk population-approximately 1 million people. In this Personal View, we document the first public health use of a reduced, single-dose regimen of oral cholera vaccine, and show the details of the decision-making process and timeline. We also make recommendations to help improve reactive vaccination campaigns against cholera, and discuss the importance of new and flexible context-specific dose regimens and vaccination strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Conference Scene: Recent advancements in immunopotentiators for modern vaccines

    NARCIS (Netherlands)

    Harandi, A.M.; Schijns, V.E.J.C.

    2011-01-01

    Vaccines have proved to be the most successful preventive measure against a variety of infectious diseases. Owing to the potential safety concerns associated with the use of live-attenuated or killed pathogens, there is currently a drive to discover defined subunits of pathogens or recombinant

  10. Adaptive and active materials: selected papers from the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 13) (Snowbird, UT, USA, 16-18 September 2013)

    Science.gov (United States)

    Johnson, Nancy; Naguib, Hani; Turner, Travis; Anderson, Iain; Bassiri-Gharb, Nazanin; Daqaq, Mohammed; Baba Sundaresan, Vishnu; Sarles, Andy

    2014-10-01

    The sixth annual meeting of the ASME Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) was held in the beautiful mountain encircled Snowbird Resort and Conference Center in Little Cottonwood Canyon near Salt Lake City, Utah. It is the conference's objective to provide an up-to-date overview of research trends in the entire field of smart materials systems in a friendly casual forum conducive to the exchange of ideas and latest results. As each year we strive to grow and offer new experiences, this year we included special focused topic tracks on nanoscale multiferroic materials and origami engineering. The cross-disciplinary emphasis was reflected in keynote speeches by Professor Kaushik Bhattacharya (California Institute of Technology) on 'Cyclic Deformation and the Interplay between Phase Transformation and Plasticity in Shape Memory Alloys', by Professor Alison Flatau (University of Maryland at College Park) on 'Structural Magnetostrictive Alloys: The Other Smart Material', and by Dr Leslie Momoda (Director of the Sensors and Materials Laboratories, HRL Laboratories, LLC, Malibu, CA) on 'Architecturing New Functional Materials: An Industrial Perspective'. SMASIS 2013 was divided into seven symposia which span basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations. SYMP 1. Development and Characterization of Multifunctional Materials. SYMP 2. Mechanics and Behavior of Active Materials. SYMP 3. Modeling, Simulation and Control of Adaptive Systems. SYMP 4. Integrated System Design and Implementation. SYMP 5. Structural Health Monitoring. SYMP 6. Bioinspired Smart Materials and Systems. SYMP 7. Energy Harvesting. Authors of selected papers in the materials areas (symposia 1, 2, and 6) as well as energy harvesting (symposium 7) were invited to write a full journal article on their presentation topic for publication in this special issue of Smart

  11. Pertussis Maternal Immunization: Narrowing the Knowledge Gaps on the Duration of Transferred Protective Immunity and on Vaccination Frequency

    Directory of Open Access Journals (Sweden)

    María Emilia Gaillard

    2017-09-01

    Full Text Available Maternal safety through pertussis vaccination and subsequent maternal–fetal-antibody transfer are well documented, but information on infant protection from pertussis by such antibodies and by subsequent vaccinations is scarce. Since mice are used extensively for maternal-vaccination studies, we adopted that model to narrow those gaps in our understanding of maternal pertussis immunization. Accordingly, we vaccinated female mice with commercial acellular pertussis (aP vaccine and measured offspring protection against Bordetella pertussis challenge and specific-antibody levels with or without revaccination. Maternal immunization protected the offspring against pertussis, with that immune protection transferred to the offspring lasting for several weeks, as evidenced by a reduction (4–5 logs, p < 0.001 in the colony-forming-units recovered from the lungs of 16-week-old offspring. Moreover, maternal-vaccination-acquired immunity from the first pregnancy still conferred protection to offspring up to the fourth pregnancy. Under the conditions of our experimental protocol, protection to offspring from the aP-induced immunity is transferred both transplacentally and through breastfeeding. Adoptive-transfer experiments demonstrated that transferred antibodies were more responsible for the protection detected in offspring than transferred whole spleen cells. In contrast to reported findings, the protection transferred was not lost after the vaccination of infant mice with the same or other vaccine preparations, and conversely, the immunity transferred from mothers did not interfere with the protection conferred by infant vaccination with the same or different vaccines. These results indicated that aP-vaccine immunization of pregnant female mice conferred protective immunity that is transferred both transplacentally and via offspring breastfeeding without compromising the protection boostered by subsequent infant vaccination. These results

  12. Ebola virus vaccines: an overview of current approaches

    Science.gov (United States)

    Marzi, Andrea; Feldmann, Heinz

    2016-01-01

    Ebola hemorrhagic fever is one of the most fatal viral diseases worldwide affecting humans and nonhuman primates. Although infections only occur frequently in Central Africa, the virus has the potential to spread globally and is classified as a category A pathogen that could be misused as a bioterrorism agent. As of today there is no vaccine or treatment licensed to counteract Ebola virus infections. DNA, subunit and several viral vector approaches, replicating and non-replicating, have been tested as potential vaccine platforms and their protective efficacy has been evaluated in nonhuman primate models for Ebola virus infections, which closely resemble disease progression in humans. Though these vaccine platforms seem to confer protection through different mechanisms, several of them are efficacious against lethal disease in nonhuman primates attesting that vaccination against Ebola virus infections is feasible. PMID:24575870

  13. Immunogenicity and efficacy of a chimpanzee adenovirus-vectored Rift Valley fever vaccine in mice.

    Science.gov (United States)

    Warimwe, George M; Lorenzo, Gema; Lopez-Gil, Elena; Reyes-Sandoval, Arturo; Cottingham, Matthew G; Spencer, Alexandra J; Collins, Katharine A; Dicks, Matthew D J; Milicic, Anita; Lall, Amar; Furze, Julie; Turner, Alison V; Hill, Adrian V S; Brun, Alejandro; Gilbert, Sarah C

    2013-12-05

    Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials.

  14. Vaccination against Salmonella Infection: the Mucosal Way.

    Science.gov (United States)

    Gayet, Rémi; Bioley, Gilles; Rochereau, Nicolas; Paul, Stéphane; Corthésy, Blaise

    2017-09-01

    Salmonella enterica subspecies enterica includes several serovars infecting both humans and other animals and leading to typhoid fever or gastroenteritis. The high prevalence of associated morbidity and mortality, together with an increased emergence of multidrug-resistant strains, is a current global health issue that has prompted the development of vaccination strategies that confer protection against most serovars. Currently available systemic vaccine approaches have major limitations, including a reduced effectiveness in young children and a lack of cross-protection among different strains. Having studied host-pathogen interactions, microbiologists and immunologists argue in favor of topical gastrointestinal administration for improvement in vaccine efficacy. Here, recent advances in this field are summarized, including mechanisms of bacterial uptake at the intestinal epithelium, the assessment of protective host immunity, and improved animal models that closely mimic infection in humans. The pros and cons of existing vaccines are presented, along with recent progress made with novel formulations. Finally, new candidate antigens and their relevance in the refined design of anti- Salmonella vaccines are discussed, along with antigen vectorization strategies such as nanoparticles or secretory immunoglobulins, with a focus on potentiating mucosal vaccine efficacy. Copyright © 2017 American Society for Microbiology.

  15. Progress on adenovirus-vectored universal influenza vaccines.

    Science.gov (United States)

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.

  16. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Tim J Bull

    Full Text Available BACKGROUND: Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. METHODS: We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5 and Modified Vaccinia Ankara (MVA delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. PRINCIPAL FINDINGS: Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. CONCLUSIONS/SIGNIFICANCE: A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium

  17. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis.

    Science.gov (United States)

    Bull, Tim J; Gilbert, Sarah C; Sridhar, Saranya; Linedale, Richard; Dierkes, Nicola; Sidi-Boumedine, Karim; Hermon-Taylor, John

    2007-11-28

    Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5) and Modified Vaccinia Ankara (MVA) delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium subspecies paratuberculosis are needed. The present vaccine proved to be highly

  18. Cattle tick vaccine researchers join forces in CATVAC

    CSIR Research Space (South Africa)

    Schetters, T

    2016-02-01

    Full Text Available of guinea pigs and cattle against ticks. Nature. 1979;280(5722):491–3. 5. de la Fuente J, Contreras M. Tick vaccines: current status and future directions. Expert Rev Vaccines. 2015;14(10):1367–76. 6. de la Fuente J, Almazan C, Canales M, de la Lastra JM P... 2016 Accepted: 14 February 2016 References 1. Grace D, Songe M, Knight-Jones T. Impact of neglected diseases on animal productivity and public health in Africa. In: 21st conference of the World Organisation for Animal Health (OIE) regional commission...

  19. Comparison of the Effectiveness of Trivalent Inactivated Influenza Vaccine and Live, Attenuated Influenza Vaccine in Preventing Influenza-Like Illness among US Service Members, 2006-2009

    Science.gov (United States)

    2012-11-26

    controlled studies. Vaccine 2012; 30:886–92. 11. Piedra PA, Gaglani MJ, Kozinetz CA, et al. Trivalent live attenuated intranasal influenza vaccine...120:e553–64. 12. Halloran ME, Piedra PA, Longini IM Jr, et al. Efficacy of trivalent, cold-adapted, influenza virus vaccine against influenza A (Fujian

  20. Update on the current status of cytomegalovirus vaccines.

    Science.gov (United States)

    Sung, Heungsup; Schleiss, Mark R

    2010-11-01

    Human cytomegalovirus (HCMV) is ubiquitous in all populations, and is the most commonly recognized cause of congenital viral infection in developed countries. On the basis of the economic costs saved and the improvement in quality of life that could potentially be conferred by a successful vaccine for prevention of congenital HCMV infection, the Institute of Medicine has identified HCMV vaccine development as a major public health priority. An effective vaccine could potentially also be beneficial in preventing or ameliorating HCMV disease in immunocompromised individuals. Although there are no licensed HCMV vaccines currently available, enormous progress has been made in the last decade, as evidenced by the recently reported results of a Phase II trial of a glycoprotein B vaccine for the prevention of HCMV infection in seronegative women of childbearing age. HCMV vaccines currently in clinical trials include: glycoprotein B subunit vaccines; alphavirus replicon particle vaccines; DNA vaccines; and live-attenuated vaccines. A variety of vaccine strategies are also being examined in preclinical systems and animal models of infection. These include: recombinant vesicular stomatitis virus vaccines; recombinant modified vaccinia virus Ankara; replication-deficient adenovirus-vectored vaccines; and recombinant live-attenuated virus vaccines generated by mutagenesis of cloned rodent CMV genomes maintained as bacterial artificial chromosomes in Escherichia coli. In this article, we provide an overview of the current state of clinical trials and preclinical development of vaccines against HCMV, with an emphasis on studies that have been conducted in the past 5 years. We also summarize a number of recent advances in the study of the biology of HCMV, particularly with respect to epithelial and endothelial cell entry of the virus, which have implications for future vaccine design.

  1. Inaugural conference of the International Association of Immunization Managers (IAIM), Istanbul Turkey, 3-4 March 2015.

    Science.gov (United States)

    Carrasco, Peter; Franco-Paredes, Carlos; Andrus, Jon; Waller, Katie; Maassen, Alison; Symenouh, Emi; Hafalia, Gabrielle

    2015-08-07

    For more than 35 years, most national immunization programs have established managerial structures and processes for delivering vaccination services to their populations. These days, immunization managers are facing an increasing number of challenges due to the introduction of new vaccines, shifting demographic patterns, complex networks of service providers, and maintaining the gains achieved with previous vaccination efforts. To confront these challenges, better program performance will require better managerial practices, which incorporates new technologies. To that end, the International Association of Immunization Managers (IAIM) is the first global professional association launched to promote superior leadership and management skills among health professionals involved with vaccination efforts worldwide. From 3 to 4 March 2015, approximately 132 members from 70 countries representing six regions, gathered in Istanbul, Turkey for the inaugural conference of IAIM. In the two-day program, members selected thirteen peers to constitute the Governing Council. The 12 articles of the bylaws of the Association were also ratified. This conference was a forum for sharing managerial best practices through networking sessions, breakout sessions, and presentations. Members also learned about IAIM sponsored training opportunities to deepen their managerial competencies through peer-to-peer exchanges and scholarship training programs. We believe that the IAIM inaugural conference was an appropriate platform for equipping managers with tools and professional network of peers to support them in achieving national, regional and global immunization goals, including those of the Global Vaccine Action Plan of the World Health Organization. Copyright © 2015. Published by Elsevier Ltd.. All rights reserved.

  2. Evaluation of scanning 2D barcoded vaccines to improve data accuracy of vaccines administered.

    Science.gov (United States)

    Daily, Ashley; Kennedy, Erin D; Fierro, Leslie A; Reed, Jenica Huddleston; Greene, Michael; Williams, Warren W; Evanson, Heather V; Cox, Regina; Koeppl, Patrick; Gerlach, Ken

    2016-11-11

    Accurately recording vaccine lot number, expiration date, and product identifiers, in patient records is an important step in improving supply chain management and patient safety in the event of a recall. These data are being encoded on two-dimensional (2D) barcodes on most vaccine vials and syringes. Using electronic vaccine administration records, we evaluated the accuracy of lot number and expiration date entered using 2D barcode scanning compared to traditional manual or drop-down list entry methods. We analyzed 128,573 electronic records of vaccines administered at 32 facilities. We compared the accuracy of records entered using 2D barcode scanning with those entered using traditional methods using chi-square tests and multilevel logistic regression. When 2D barcodes were scanned, lot number data accuracy was 1.8 percentage points higher (94.3-96.1%, Pmanufacturer, month vaccine was administered, and vaccine type were associated with variation in accuracy for both lot number and expiration date. Two-dimensional barcode scanning shows promise for improving data accuracy of vaccine lot number and expiration date records. Adapting systems to further integrate with 2D barcoding could help increase adoption of 2D barcode scanning technology. Published by Elsevier Ltd.

  3. Malnutrition and vaccination in developing countries

    Science.gov (United States)

    Prendergast, Andrew J.

    2015-01-01

    Malnutrition contributes to an estimated 45% of deaths among children under 5 years of age in developing countries, predominantly due to infections. Malnourished children therefore stand to benefit hugely from vaccination, but malnutrition has been described as the most common immunodeficiency globally, suggesting that they may not be able to respond effectively to vaccines. The immunology of malnutrition remains poorly characterized, but is associated with impairments in mucosal barrier integrity, and innate and adaptive immune dysfunction. Despite this, the majority of malnourished children can mount a protective immune response following vaccination, although the timing, quality and duration of responses may be impaired. This paper reviews the evidence for vaccine immunogenicity in malnourished children, discusses the importance of vaccination in prevention of malnutrition and highlights evidence gaps in our current knowledge. PMID:25964453

  4. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    Science.gov (United States)

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  5. Omics Approaches for the Study of Adaptive Immunity to Staphylococcus aureus and the Selection of Vaccine Candidates

    Directory of Open Access Journals (Sweden)

    Silva Holtfreter

    2016-03-01

    Full Text Available Staphylococcus aureus is a dangerous pathogen both in hospitals and in the community. Due to the crisis of antibiotic resistance, there is an urgent need for new strategies to combat S. aureus infections, such as vaccination. Increasing our knowledge about the mechanisms of protection will be key for the successful prevention or treatment of S. aureus invasion. Omics technologies generate a comprehensive picture of the physiological and pathophysiological processes within cells, tissues, organs, organisms and even populations. This review provides an overview of the contribution of genomics, transcriptomics, proteomics, metabolomics and immunoproteomics to the current understanding of S. aureus‑host interaction, with a focus on the adaptive immune response to the microorganism. While antibody responses during colonization and infection have been analyzed in detail using immunoproteomics, the full potential of omics technologies has not been tapped yet in terms of T-cells. Omics technologies promise to speed up vaccine development by enabling reverse vaccinology approaches. In consequence, omics technologies are powerful tools for deepening our understanding of the “superbug” S. aureus and for improving its control.

  6. Omics Approaches for the Study of Adaptive Immunity to Staphylococcus aureus and the Selection of Vaccine Candidates

    Science.gov (United States)

    Holtfreter, Silva; Kolata, Julia; Stentzel, Sebastian; Bauerfeind, Stephanie; Schmidt, Frank; Sundaramoorthy, Nandakumar; Bröker, Barbara M.

    2016-01-01

    Staphylococcus aureus is a dangerous pathogen both in hospitals and in the community. Due to the crisis of antibiotic resistance, there is an urgent need for new strategies to combat S. aureus infections, such as vaccination. Increasing our knowledge about the mechanisms of protection will be key for the successful prevention or treatment of S. aureus invasion. Omics technologies generate a comprehensive picture of the physiological and pathophysiological processes within cells, tissues, organs, organisms and even populations. This review provides an overview of the contribution of genomics, transcriptomics, proteomics, metabolomics and immunoproteomics to the current understanding of S. aureus‑host interaction, with a focus on the adaptive immune response to the microorganism. While antibody responses during colonization and infection have been analyzed in detail using immunoproteomics, the full potential of omics technologies has not been tapped yet in terms of T-cells. Omics technologies promise to speed up vaccine development by enabling reverse vaccinology approaches. In consequence, omics technologies are powerful tools for deepening our understanding of the “superbug” S. aureus and for improving its control. PMID:28248221

  7. Pandemic influenza A H1N1 2009 infection versus vaccination: a cohort study comparing immune responses in pregnancy.

    Directory of Open Access Journals (Sweden)

    Barbra M Fisher

    Full Text Available BACKGROUND: With the emergence of H1N1 pandemic (pH1N1 influenza, the CDC recommended that pregnant women be one of five initial target groups to receive the 2009 monovalent H1N1 vaccine, regardless of prior infection with this influenza strain. We sought to compare the immune response of pregnant women to H1N1 infection versus vaccination and to determine the extent of passive immunity conferred to the newborn. METHODS/FINDINGS: During the 2009-2010 influenza season, we enrolled a cohort of women who either had confirmed pH1N1 infection during pregnancy, did not have pH1N1 during pregnancy but were vaccinated against pH1N1, or did not have illness or vaccination. Maternal and umbilical cord venous blood samples were collected at delivery. Hemagglutination inhibition assays (HAI for pH1N1 were performed. Data were analyzed using linear regression analyses. HAIs were performed for matched maternal/cord blood pairs for 16 women with confirmed pH1N1 infection, 14 women vaccinated against pH1N1, and 10 women without infection or vaccination. We found that pH1N1 vaccination and wild-type infection during pregnancy did not differ with respect to (1 HAI titers at delivery, (2 HAI antibody decay slopes over time, and (3 HAI titers in the cord blood. CONCLUSIONS: Vaccination against pH1N1 confers a similar HAI antibody response as compared to pH1N1 infection during pregnancy, both in quantity and quality. Illness or vaccination during pregnancy confers passive immunity to the newborn.

  8. Harnessing case isolation and ring vaccination to control Ebola.

    Directory of Open Access Journals (Sweden)

    Chad Wells

    2015-05-01

    Full Text Available As a devastating Ebola outbreak in West Africa continues, non-pharmaceutical control measures including contact tracing, quarantine, and case isolation are being implemented. In addition, public health agencies are scaling up efforts to test and deploy candidate vaccines. Given the experimental nature and limited initial supplies of vaccines, a mass vaccination campaign might not be feasible. However, ring vaccination of likely case contacts could provide an effective alternative in distributing the vaccine. To evaluate ring vaccination as a strategy for eliminating Ebola, we developed a pair approximation model of Ebola transmission, parameterized by confirmed incidence data from June 2014 to January 2015 in Liberia and Sierra Leone. Our results suggest that if a combined intervention of case isolation and ring vaccination had been initiated in the early fall of 2014, up to an additional 126 cases in Liberia and 560 cases in Sierra Leone could have been averted beyond case isolation alone. The marginal benefit of ring vaccination is predicted to be greatest in settings where there are more contacts per individual, greater clustering among individuals, when contact tracing has low efficacy or vaccination confers post-exposure protection. In such settings, ring vaccination can avert up to an additional 8% of Ebola cases. Accordingly, ring vaccination is predicted to offer a moderately beneficial supplement to ongoing non-pharmaceutical Ebola control efforts.

  9. Harnessing case isolation and ring vaccination to control Ebola.

    Science.gov (United States)

    Wells, Chad; Yamin, Dan; Ndeffo-Mbah, Martial L; Wenzel, Natasha; Gaffney, Stephen G; Townsend, Jeffrey P; Meyers, Lauren Ancel; Fallah, Mosoka; Nyenswah, Tolbert G; Altice, Frederick L; Atkins, Katherine E; Galvani, Alison P

    2015-05-01

    As a devastating Ebola outbreak in West Africa continues, non-pharmaceutical control measures including contact tracing, quarantine, and case isolation are being implemented. In addition, public health agencies are scaling up efforts to test and deploy candidate vaccines. Given the experimental nature and limited initial supplies of vaccines, a mass vaccination campaign might not be feasible. However, ring vaccination of likely case contacts could provide an effective alternative in distributing the vaccine. To evaluate ring vaccination as a strategy for eliminating Ebola, we developed a pair approximation model of Ebola transmission, parameterized by confirmed incidence data from June 2014 to January 2015 in Liberia and Sierra Leone. Our results suggest that if a combined intervention of case isolation and ring vaccination had been initiated in the early fall of 2014, up to an additional 126 cases in Liberia and 560 cases in Sierra Leone could have been averted beyond case isolation alone. The marginal benefit of ring vaccination is predicted to be greatest in settings where there are more contacts per individual, greater clustering among individuals, when contact tracing has low efficacy or vaccination confers post-exposure protection. In such settings, ring vaccination can avert up to an additional 8% of Ebola cases. Accordingly, ring vaccination is predicted to offer a moderately beneficial supplement to ongoing non-pharmaceutical Ebola control efforts.

  10. “Saving lives”: Adapting and adopting Human Papilloma Virus (HPV) vaccination in Austria

    Science.gov (United States)

    Paul, Katharina T.

    2016-01-01

    Vaccination against the sexually transmitted Human Papilloma Virus (HPV), a necessary agent for the development of cervical cancer, has triggered much debate. In Austria, HPV policy turned from “lagging behind” in 2008 into “Europe's frontrunner” by 2013. Drawing on qualitative research, the article shows how the vaccine was transformed and made “good enough” over the course of five years. By means of tinkering and shifting storylines, policy officials and experts disassociated the vaccine from gender, vaccine manufacturers, and youth sexuality. Ultimately, the HPV vaccine functioned to strengthen the national immunization program. To this end, preventing an effective problematization of the extant screening program was essential. PMID:26921834

  11. Time-Series Adaptive Estimation of Vaccination Uptake Using Web Search Queries

    DEFF Research Database (Denmark)

    Dalum Hansen, Niels; Mølbak, Kåre; Cox, Ingemar J.

    2017-01-01

    Estimating vaccination uptake is an integral part of ensuring public health. It was recently shown that vaccination uptake can be estimated automatically from web data, instead of slowly collected clinical records or population surveys [2]. All prior work in this area assumes that features of vac...

  12. Impact of committed individuals on vaccination behavior

    Science.gov (United States)

    Liu, Xiao-Tao; Wu, Zhi-Xi; Zhang, Lianzhong

    2012-11-01

    We study how the presence of committed vaccinators, a small fraction of individuals who consistently hold the vaccinating strategy and are immune to influence, impact the vaccination dynamics in well-mixed and spatially structured populations. For this purpose, we develop an epidemiological game-theoretic model of a flu-like vaccination by integrating an epidemiological process into a simple agent-based model of adaptive learning, where individuals (except for those committed ones) use anecdotal evidence to estimate costs and benefits of vaccination. We show that the committed vaccinators, acting as “steadfast role models” in the populations, can efficiently avoid the clustering of susceptible individuals and stimulate other imitators to take vaccination, hence contributing to the promotion of vaccine uptake. We substantiate our findings by making comparative studies of our model on a full lattice and on a randomly diluted one. Our work is expected to provide valuable information for decision-making and design more effective disease-control strategy.

  13. Making evidence-based selections of influenza vaccines.

    Science.gov (United States)

    Childress, Billy-Clyde; Montney, Joshua D; Albro, Elise A

    2014-01-01

    Years ago, intramuscular influenza vaccines were the only option for those who wanted to arm themselves against the flu. Today there are alternatives, including intradermal injections and intranasal sprays. In order to select the right influenza vaccine for their patients, pharmacists, and other healthcare professionals must have a basic understanding of the immune system. Influenza vaccines elicit different levels of immune response involving innate and adaptive immunity, which are critical to fighting infection. For the 2013-2014 flu season, there were 13 different formulations of influenza vaccines on the market with vast differences in indications, contraindications, and effectiveness. The CDC does not recommend one vaccine over another, but recommends that all patients be vaccinated against the flu. Preventing the spread of influenza is no simple task; however, the most recent evidence on influenza vaccines and sufficient knowledge of the immune system will allow pharmacists and other healthcare providers to better advocate for vaccines, determine which are most appropriate, and ensure their proper administration.

  14. Comparative efficacy of Rubini, Jeryl-Lynn and Urabe mumps vaccine in an Asian population.

    Science.gov (United States)

    Ong, Gary; Goh, Kee Tai; Ma, Stefan; Chew, Suok Kai

    2005-11-01

    The comparative efficacy of the three mumps vaccine strains (Jeryl-Lynn, Urabe and Rubini) was conducted in an Asian population from data arising from an epidemiological investigation of seven institutional outbreaks of mumps in Singapore. Demographic information (gender, age, ethnic group), clinical presentation and vaccination history (date and place of mumps vaccination, type of mumps vaccine received) of all children who attended the six childcare centres and one primary school where outbreaks of 20 or more cases of mumps occurred in 1999 were collected. The attack rate of the unvaccinated group and the attack rates of the vaccine groups (for each vaccine strain) were determined and the vaccine efficacy of the three vaccines calculated. The vaccine efficacy of the Jeryl-Lynn strain, Urabe strain and Rubini strain mumps vaccine were 80.7, 54.4 and -55.3%, respectively. Rubini strain mumps vaccine conferred no protection and has since been deregistered in Singapore.

  15. Proceedings of the Atlantic climate change 2008 conference : risk, responses and tools for action

    International Nuclear Information System (INIS)

    2008-01-01

    This conference provided a forum for members of the private and public sector, as well as researchers and industry leaders to discuss methods of preventing and adapting to climate change in the Maritime provinces. Presentations at the conference evaluated a range of options, opportunities, and potential outcomes from strategies for reducing environmental impacts and improving energy efficiency in the region. Topics discussed at the conference included adaptation tools; carbon markets; resource management; corporate and public policy; and risk assessment and decision-making processes. The conference was divided into the following 5 sessions: (1) land use planning and adaptation, (2) fish, farms and forests, (3) climate science and modelling, (4) energy policy for mitigation and sustainability, and (5) tools for adaptation and infrastructure. A workshop discussing the use of LIDAR in decision-making processes was also held. The conference featured 11 presentations, of which 3 have been catalogued separately for inclusion in this database. tabs., figs.

  16. Global Population Structure and Evolution of Bordetella pertussis and Their Relationship with Vaccination

    Science.gov (United States)

    Bart, Marieke J.; Harris, Simon R.; Advani, Abdolreza; Arakawa, Yoshichika; Bottero, Daniela; Bouchez, Valérie; Cassiday, Pamela K.; Chiang, Chuen-Sheue; Dalby, Tine; Fry, Norman K.; Gaillard, María Emilia; van Gent, Marjolein; Guiso, Nicole; Hallander, Hans O.; Harvill, Eric T.; He, Qiushui; van der Heide, Han G. J.; Heuvelman, Kees; Hozbor, Daniela F.; Kamachi, Kazunari; Karataev, Gennady I.; Lan, Ruiting; Lutyńska, Anna; Maharjan, Ram P.; Mertsola, Jussi; Miyamura, Tatsuo; Octavia, Sophie; Preston, Andrew; Quail, Michael A.; Sintchenko, Vitali; Stefanelli, Paola; Tondella, M. Lucia; Tsang, Raymond S. W.; Xu, Yinghua; Yao, Shu-Man; Zhang, Shumin; Mooi, Frits R.

    2014-01-01

    ABSTRACT Bordetella pertussis causes pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-cell vaccines (WCVs) to less effective acellular vaccines (ACVs), waning immunity, and pathogen adaptation. Pathogen adaptation is suggested by antigenic divergence between vaccine strains and circulating strains and by the emergence of strains with increased pertussis toxin production. We applied comparative genomics to a worldwide collection of 343 B. pertussis strains isolated between 1920 and 2010. The global phylogeny showed two deep branches; the largest of these contained 98% of all strains, and its expansion correlated temporally with the first descriptions of pertussis outbreaks in Europe in the 16th century. We found little evidence of recent geographical clustering of the strains within this lineage, suggesting rapid strain flow between countries. We observed that changes in genes encoding proteins implicated in protective immunity that are included in ACVs occurred after the introduction of WCVs but before the switch to ACVs. Furthermore, our analyses consistently suggested that virulence-associated genes and genes coding for surface-exposed proteins were involved in adaptation. However, many of the putative adaptive loci identified have a physiological role, and further studies of these loci may reveal less obvious ways in which B. pertussis and the host interact. This work provides insight into ways in which pathogens may adapt to vaccination and suggests ways to improve pertussis vaccines. PMID:24757216

  17. Novel Adjuvants and Immunomodulators for Veterinary Vaccines.

    Science.gov (United States)

    Heegaard, Peter M H; Fang, Yongxiang; Jungersen, Gregers

    2016-01-01

    Adjuvants are crucial for efficacy of vaccines, especially subunit and recombinant vaccines. Rational vaccine design, including knowledge-based and molecularly defined adjuvants tailored for directing and potentiating specific types of host immune responses towards the antigens included in the vaccine is becoming a reality with our increased understanding of innate and adaptive immune activation. This will allow future vaccines to induce immune reactivity having adequate specificity as well as protective and recallable immune effector mechanisms in appropriate body compartments, including mucosal surfaces. Here we describe these new developments and, when possible, relate new immunological knowledge to the many years of experience with traditional, empirical adjuvants. Finally, some protocols are given for production of emulsion (oil-based) and liposome-based adjuvant/antigen formulations.

  18. Vaccination ecosystem health check: achieving impact today and sustainability for tomorrow.

    Science.gov (United States)

    Saadatian-Elahi, Mitra; Bloom, David; Plotkin, Stanley; Picot, Valentina; Louis, Jacques; Watson, Michael

    2017-01-01

    Vaccination is a complex ecosystem with several components that interact with one another and with the environment. Today's vaccine ecosystem is defined by the pursuit of polio eradication, the drive to get as many of the new vaccines to as many people as possible and the research and development against immunologically challenging diseases. Despite these successes, vaccine ecosystem is facing keys issues with regard to supply/distribution and cost/profitability asymmetry that risk slowing its global growth. The conference "Vaccination ecosystem health check: achieving impact today and sustainability for tomorrow" held in Annecy-France (January 19-21, 2015) took stock of the health of today's vaccination ecosystem and its ability to reliably and sustainably supply high-quality vaccines while investing in tomorrow's needed innovation. Small and decreasing numbers of suppliers/manufacturing facilities; paucity of research-driven companies; regulatory pressures; market uncertainties; political prioritization; anti-vaccine movements/complacency; and technological and programmatic issues were acknowledged as the major challenges that could weaken today's vaccination ecosystem. The expert panel discussed also drivers and barriers to a sustainable vaccination ecosystem; the metrics of a vaccination ecosystem; and what should be added, removed, increased, or reduced to maintain the health of the vaccination ecosystem.

  19. Rotavirus vaccines and vaccination in Latin America

    Directory of Open Access Journals (Sweden)

    Linhares Alexandre C.

    2000-01-01

    overcome by giving three doses of the rotavirus vaccine or by using a higher-titer formulation of it. Wild enteroviruses, however, may cause primary rotavirus vaccine failure in developing countries. Studies in Peru with RRV-TV have shown a trend towards higher vaccine efficacy rates against "pure" (rotavirus-only diarrheal episodes. Economic analyses made in the United States indicate that a vaccine that costs less than US$ 9 per dose would lead to a net savings in medical costs. To date, however, cost-benefit studies have not been done in developing countries. In the future, it is possible that some Latin American countries might adapt their polio production facilities to the preparation of rotavirus vaccines for human use. A year after RRV-TV was licensed for vaccination of infants in the United States, the occurrence of intussusception as an adverse event led to the vaccine's withdrawal from the market. The implications of that action, particularly for Latin America, will be addressed in this article, including the need to explore alternative rotavirus candidate vaccines, particularly through the conduct of parallel clinical trials in both developed and developing countries.

  20. Rotavirus vaccines and vaccination in Latin America

    Directory of Open Access Journals (Sweden)

    Alexandre C. Linhares

    2000-11-01

    overcome by giving three doses of the rotavirus vaccine or by using a higher-titer formulation of it. Wild enteroviruses, however, may cause primary rotavirus vaccine failure in developing countries. Studies in Peru with RRV-TV have shown a trend towards higher vaccine efficacy rates against "pure" (rotavirus-only diarrheal episodes. Economic analyses made in the United States indicate that a vaccine that costs less than US$ 9 per dose would lead to a net savings in medical costs. To date, however, cost-benefit studies have not been done in developing countries. In the future, it is possible that some Latin American countries might adapt their polio production facilities to the preparation of rotavirus vaccines for human use. A year after RRV-TV was licensed for vaccination of infants in the United States, the occurrence of intussusception as an adverse event led to the vaccine's withdrawal from the market. The implications of that action, particularly for Latin America, will be addressed in this article, including the need to explore alternative rotavirus candidate vaccines, particularly through the conduct of parallel clinical trials in both developed and developing countries.

  1. Conventional influenza vaccines influence the performance of a universal influenza vaccine in mice.

    Science.gov (United States)

    Rowell, Janelle; Lo, Chia-Yun; Price, Graeme E; Misplon, Julia A; Epstein, Suzanne L; Garcia, Mayra

    2018-02-08

    Universal influenza vaccines are designed to protect against diverse strains of influenza virus. Preclinical testing of new vaccine candidates is usually done in naïve animals, despite intended use in the human population with its varied immune history including responses to previous vaccinations. As an approach more relevant to human use, we tested a candidate universal influenza vaccine in mice with a history of conventional vaccination. Female BALB/c mice were given two intramuscular doses of inactivated influenza vaccine (IIV) or diphtheria and tetanus toxoids vaccine (DT), one month apart. Another group was given two intranasal doses of live attenuated influenza virus (LAIV). One month after the second dose, mice were given the universal influenza vaccine: recombinant adenoviruses expressing influenza A nucleoprotein (A/NP) and matrix 2 (M2) (A/NP + M2-rAd). Immune responses to universal vaccine antigens A/NP and M2 were assessed by ELISA and interferon-γ ELISPOT. Protection was tested by challenge with mouse-adapted A/FM/1/47 (H1N1) and monitoring for weight loss and survival. Universal vaccine performance was enhanced, inhibited or unaffected by particular prior vaccinations. Mice given Afluria IIV and LAIV had greater antibody and T-cell response to A/NP than mice without prior vaccination, providing examples of enhanced A/NP + M2-rAd performance. Though Fluvirin IIV partially inhibited, the universal vaccine still provided considerable protection unlike conventional vaccination. Fluzone IIV and DT had no effect on A/NP + M2-rAd performance. Thus our results demonstrate that universal vaccine candidate A/NP + M2-rAd was at least partially effective in mice with diverse prior histories. However, the degree of protection and nature of the immune responses may be affected by a history of conventional vaccination and suggests that performance in humans would be influenced by immune history. Published by Elsevier Ltd.

  2. Comprehension of a simplified assent form in a vaccine trial for adolescents.

    Science.gov (United States)

    Lee, Sonia; Kapogiannis, Bill G; Flynn, Patricia M; Rudy, Bret J; Bethel, James; Ahmad, Sushma; Tucker, Diane; Abdalian, Sue Ellen; Hoffman, Dannie; Wilson, Craig M; Cunningham, Coleen K

    2013-06-01

    Future HIV vaccine efficacy trials with adolescents will need to ensure that participants comprehend study concepts in order to confer true informed assent. A Hepatitis B vaccine trial with adolescents offers valuable opportunity to test youth understanding of vaccine trial requirements in general. Youth reviewed a simplified assent form with study investigators and then completed a comprehension questionnaire. Once enrolled, all youth were tested for HIV and confirmed to be HIV-negative. 123 youth completed the questionnaire (mean age=15 years; 63% male; 70% Hispanic). Overall, only 69 (56%) youth answered all six questions correctly. Youth enrolled in a Hepatitis B vaccine trial demonstrated variable comprehension of the study design and various methodological concepts, such as treatment group masking.

  3. APPROACHING THE TARGET: THE PATH TOWARDS AN EFFECTIVE MALARIA VACCINE

    Directory of Open Access Journals (Sweden)

    Alberto L. García-Basteiro

    2012-01-01

    Full Text Available Eliciting an effective malaria vaccine has been the goal of the scientific community for many years. A malaria vaccine, added to existing tools and strategies, would further prevent and decrease the unacceptable malaria morbidity and mortality burden. Great progress has been made over the last decade, with some vaccine candidates in the clinical phases of development. The RTS,S malaria vaccine candidate, based on a recombinant P. falciparum protein, is the most advanced of such candidates, currently undergoing a large phase III trial. RTS,S has consistently shown an efficacy of around 50% against the first clinical episode of malaria, with protection in some cases extending up to 4 years of duration. Thus, it is hoped that this candidate vaccine will eventually become the first licensed malaria vaccine. This first vaccine against a human parasite is a groundbreaking achievement, but improved malaria vaccines conferring higher protection will be needed if the aspiration of malaria eradication is to be achieved

  4. Adaptive and active materials: selected papers from the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 12) (Stone Mountain, GA, USA, 19-21 September 2012)

    Science.gov (United States)

    Seelecke, Stefan; Erturk, Alper; Ounaies, Zoubeida; Naguib, Hani; Huber, John; Turner, Travis; Anderson, Iain; Philen, Michael; Baba Sundaresan, Vishnu

    2013-09-01

    The fifth annual meeting of the ASME/AIAA Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) was held in beautiful Stone Mountain near Atlanta, GA. It is the conference's objective to provide an up-to-date overview of research trends in the entire field of smart materials systems. This was reflected in keynote speeches by Professor Eduard Arzt (Institute of New Materials and Saarland University, Saarbrücken, Germany) on 'Micro-patterned artificial 'Gecko' surfaces: a path to switchable adhesive function', by Professor Ray H Baughman (The Alan G MacDiarmid NanoTech Institute, University of Texas at Dallas) on 'The diverse and growing family of carbon nanotube and related artificial muscles', and by Professor Richard James (University of Minnesota) on 'The direct conversion of heat to electricity using multiferroic materials with phase transformations'. SMASIS 2012 was divided into eight symposia which span basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations. • SYMP 1. Development and characterization of multifunctional materials. • SYMP 2. Mechanics and behavior of active materials. • SYMP 3. Modeling, simulation and control of adaptive systems. • SYMP 4. Integrated system design and implementation. • SYMP 5. Structural health monitoring/NDE. • SYMP 6. Bio-inspired materials and systems. • SYMP 7. Energy harvesting. • SYMP 8. Structural and materials logic. This year we were particularly excited to introduce a new symposium on energy harvesting, which has quickly matured from a special track in previous years to an independent symposium for the first time. The subject cuts across fields by studying different materials, ranging from piezoelectrics to electroactive polymers, as well as by emphasizing different energy sources from wind to waves and ambient vibrations. Modeling, experimental studies, and technology applications all

  5. Secreted HSP Vaccine for Malaria Prophylaxis

    Science.gov (United States)

    2017-10-01

    burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing...thereby stimulating an avid, antigen specific, cytotoxic CD8 T cell response. Here we developed malaria vaccine that relies on secreted gp96-Ig... stimulating multi-epitope specific cytotoxic T cells. In the proposed studies, we will adapt this vaccine approach to stimulate cytotoxic T cells

  6. Persistence of antibodies 20 y after vaccination with a combined hepatitis A and B vaccine.

    Science.gov (United States)

    Van Damme, Pierre; Leroux-Roels, Geert; Suryakiran, P; Folschweiller, Nicolas; Van Der Meeren, Olivier

    2017-05-04

    Vaccination is the most effective and well-tolerated method of conferring long-term protection against hepatitis A and B viruses (HAV; HBV). Long-term studies are required to characterize the duration of protection and need for boosters. Following primary immunization of 150 and 157 healthy adults with 3-doses of combined hepatitis A/hepatitis B vaccine (HAB; Twinrix™, GSK Vaccines, Belgium) at 0-1-6 months in 2 separate studies, we measured vaccine-induced antibody persistence against HAV and HBV annually for 20 y (Study A: NCT01000324; Study B: NCT01037114). Subjects with circulating anti-HAV antibodies B surface antigen B vaccine dose (Havrix™/Engerix™-B, GSK Vaccines, Belgium). Applying the immunogenicity results from these studies, mathematical modeling predicted long-term persistence. After 20 y, 18 and 25 subjects in studies A and B, respectively, comprised the long-term according-to-protocol cohort for immunogenicity; 100% and 96.0% retained anti-HAV antibodies ≥ 15 mIU/mL, respectively; 94.4% and 92.0% had anti-HBs antibodies ≥ 10 mIU/mL, respectively. Between Years 16-20, 4 subjects who received a challenge dose of monovalent hepatitis A vaccine (N = 2) or hepatitis B vaccine (N = 2), all mounted a strong anamnestic response suggestive of immune memory despite low antibody levels. Mathematical modeling predicts that 40 y after vaccination ≥ 97% vaccinees will maintain anti-HAV ≥ 15 mIU/mL and ≥ 50% vaccinees will retain anti-HBs ≥ 10 mIU/mL. Immunogenicity data confirm that primary immunization with 3-doses of HAB induces persisting anti-HAV and anti-HBs specific antibodies in most adults for up to 20 y; mathematical modeling predicts even longer-term protection.

  7. Persistence of antibodies 20 y after vaccination with a combined hepatitis A and B vaccine

    Science.gov (United States)

    Van Damme, Pierre; Leroux-Roels, Geert; Suryakiran, P.; Folschweiller, Nicolas; Van Der Meeren, Olivier

    2017-01-01

    ABSTRACT Vaccination is the most effective and well-tolerated method of conferring long-term protection against hepatitis A and B viruses (HAV; HBV). Long-term studies are required to characterize the duration of protection and need for boosters. Following primary immunization of 150 and 157 healthy adults with 3-doses of combined hepatitis A/hepatitis B vaccine (HAB; Twinrix™, GSK Vaccines, Belgium) at 0-1-6 months in 2 separate studies, we measured vaccine-induced antibody persistence against HAV and HBV annually for 20 y (Study A: NCT01000324; Study B: NCT01037114). Subjects with circulating anti-HAV antibodies hepatitis B surface antigen hepatitis A and/or B vaccine dose (Havrix™/Engerix™-B, GSK Vaccines, Belgium). Applying the immunogenicity results from these studies, mathematical modeling predicted long-term persistence. After 20 y, 18 and 25 subjects in studies A and B, respectively, comprised the long-term according-to-protocol cohort for immunogenicity; 100% and 96.0% retained anti-HAV antibodies ≥ 15 mIU/mL, respectively; 94.4% and 92.0% had anti-HBs antibodies ≥ 10 mIU/mL, respectively. Between Years 16–20, 4 subjects who received a challenge dose of monovalent hepatitis A vaccine (N = 2) or hepatitis B vaccine (N = 2), all mounted a strong anamnestic response suggestive of immune memory despite low antibody levels. Mathematical modeling predicts that 40 y after vaccination ≥ 97% vaccinees will maintain anti-HAV ≥ 15 mIU/mL and ≥ 50% vaccinees will retain anti-HBs ≥ 10 mIU/mL. Immunogenicity data confirm that primary immunization with 3-doses of HAB induces persisting anti-HAV and anti-HBs specific antibodies in most adults for up to 20 y; mathematical modeling predicts even longer-term protection. PMID:28281907

  8. Schistosoma mansoni: parasitology and immunology of baboons vaccinated with irradiated cryopreserved schistosomula

    Energy Technology Data Exchange (ETDEWEB)

    Damian, R T; Powell, M R; Roberts, M L [Georgia Univ., Athens (USA). Dept. of Zoology; Clark, J D [Georgia Univ., Athens (USA). Lab. Animal Medicine; Stirewalt, M A; Lewis, F A [Biomedical Research Inst., Rockville, MD (USA)

    1985-06-01

    Young baboons (Papio cynocephalus) were vaccinated with ..gamma..-irradiated (500 Gy) cryopreserved Puerto Rican strain schistosomula of S. mansoni. Protection against heterologous, normal Kenyan Strain S. mansoni challenge infection was erratic and partial; and two putative correlates of immunity, reduced worm fecundity and change in worm location (anterior shift) were not observed. However, immunization of baboons with this vaccine resulted in a stimulated immune system. Both cellular and humoral anamnesis were demonstrable in vaccinated-challenged baboons. Schistosome infection-associated IgM hypergammaglobulinemia was also greatly reduced in vaccinated-challenged baboons. However IgG antibodies to adult, egg, and cercarial antigens were increased after challenge infection in preimmunized baboons. Vaccination appears to have resulted in a redirection of the immune system into anti-parasite channels, but this more specific immune response was insufficient to confer good protection against challenge infection in this experiment. The dampening effect of the vaccine on the hypergammaglobulinemia of schistosomiasis is another candidate for a possible ''anti-pathogenesis'' effect of irradiated schistosome larval vaccines.

  9. Unpredictable checks of yellow fever vaccination certificates upon arrival in Tanzania.

    Science.gov (United States)

    Schönenberger, Selina; Hatz, Christoph; Bühler, Silja

    2016-05-01

    Yellow fever (YF) is a mosquito-borne disease, which can be prevented by vaccination. While YF vaccination (YFV) is not generally recommended for travellers to Tanzania, proof of YFV may be required upon arrival. In April 2013, the World Health Organization concluded that one dose of YFV confers lifelong protection and countries have started to adapt their entry requirements. The traveller's consultant has to balance the risk of YFV and the risk of encountering problems when entering a country without a valid YFV, especially because countries are slowly implementing the requirements. We performed a survey among 421 travellers to Tanzania with a pre-travel consultation at the Travel Clinic of the University of Zurich about their experiences with YFV certificate inspections upon arrival in Tanzania between January and November 2015. There were three main findings: (i) most vaccine card checks were done while crossing the land border of Tanzania. Inspections were frequently conducted at Arusha airport, less often in Dar es Salaam and Zanzibar. In the latter a significantly larger percentage of individuals arriving by ferry/boat were checked than those arriving by plane. (ii) Checks appeared to be non-systematic. They were also performed in travellers who did not enter Tanzania from a YF-endemic country. No seasonal or daytime pattern could be identified; the thoroughness of checks varied widely. (iii) In the case of travel without valid YFV, an exemption certificate was always accepted. In travellers with neither a valid YFV nor an exemption certificate, travellers reported forced YF vaccination and fines before entry was granted. We recommend YFV or a YF exemption certificate for all travellers to Tanzania until further notice. The decision of whether to vaccinate against YF or to issue an exemption should be based on exposure risk to YF infection in other countries during travel. © International Society of Travel Medicine, 2016. All rights reserved. Published by

  10. Use of DNA vaccination for determination of onset of adaptive immunity in rainbow trout fry

    DEFF Research Database (Denmark)

    Rasmussen, Jesper Skou; Lorenzen, Ellen; Kjær, Torben Egil

    2013-01-01

    ). The fish were challenged by immersion at different times post vaccination. Protective immunity was induced in both sizes of fish, but whereas clear-cut specific protection was evident in the fish vaccinated at 0.5g, the results suggested that the protection in the fish vaccinated at 0.25 g was mainly due......Vaccine producers often recommend a minimum size of 5g for vaccination of rainbow trout, but implementation of prophylactic vaccination in smaller sized fish would be an advantage for several infectious diseases. To implement a cost efficient vaccination strategy, it is important to know...... the duration and nature of the protective immunity induced by the vaccines in the fish. The present work aimed at determination of the smallest size at which specific immunity could be induced in rainbow trout fry by DNA vaccination against viral haemorrhagic septicaemia (VHS). Earlier experiments revealed...

  11. Questions regarding the safety and duration of immunity following live yellow fever vaccination.

    Science.gov (United States)

    Amanna, Ian J; Slifka, Mark K

    2016-12-01

    The World Health Organization (WHO) and other health agencies have concluded that yellow fever booster vaccination is unnecessary since a single dose of vaccine confers lifelong immunity. Areas covered: We reviewed the clinical studies cited by health authorities in their investigation of both the safety profile and duration of immunity for the YFV-17D vaccine and examined the position that booster vaccination is no longer needed. We found that antiviral immunity may be lost in 1-in-3 to 1-in-5 individuals within 5 to 10 years after a single vaccination and that children may be at greater risk for primary vaccine failure. The safety profile of YFV-17D was compared to other licensed vaccines including oral polio vaccine (OPV) and the rotavirus vaccine, RotaShield, which have subsequently been withdrawn from the US and world market, respectively. Expert commentary: Based on these results and recent epidemiological data on vaccine failures (particularly evident at >10 years after vaccination), we believe that current recommendations to no longer administer YFV-17D booster vaccination be carefully re-evaluated, and that further development of safer vaccine approaches should be considered.

  12. Questions regarding the safety and duration of immunity following live yellow fever vaccination

    Science.gov (United States)

    Amanna, Ian J.; Slifka, Mark K.

    2016-01-01

    Introduction The World Health Organization (WHO) and other health agencies have concluded that yellow fever booster vaccination is unnecessary since a single dose of vaccine confers lifelong immunity. Areas Covered We reviewed the clinical studies cited by health authorities in their investigation of both the safety profile and duration of immunity for the YFV-17D vaccine and examined the position that booster vaccination is no longer needed. We found that antiviral immunity may be lost in 1-in-3 to 1-in-5 individuals within 5 to 10 years after a single vaccination and that children may be at greater risk for primary vaccine failure. The safety profile of YFV-17D was compared to other licensed vaccines including oral polio vaccine (OPV) and the rotavirus vaccine, RotaShield, which have subsequently been withdrawn from the US and world market, respectively. Expert Commentary Based on these results and recent epidemiological data on vaccine failures (particularly evident at >10 years after vaccination), we believe that current recommendations to no longer administer YFV-17D booster vaccination be carefully re-evaluated, and that further development of safer vaccine approaches should be considered. PMID:27267203

  13. Bringing influenza vaccines into the 21st century.

    Science.gov (United States)

    Settembre, Ethan C; Dormitzer, Philip R; Rappuoli, Rino

    2014-01-01

    The recent H7N9 influenza outbreak in China highlights the need for influenza vaccine production systems that are robust and can quickly generate substantial quantities of vaccines that target new strains for pandemic and seasonal immunization. Although the influenza vaccine system, a public-private partnership, has been effective in providing vaccines, there are areas for improvement. Technological advances such as mammalian cell culture production and synthetic vaccine seeds provide a means to increase the speed and accuracy of targeting new influenza strains with mass-produced vaccines by dispensing with the need for egg isolation, adaptation, and reassortment of vaccine viruses. New influenza potency assays that no longer require the time-consuming step of generating sheep antisera could further speed vaccine release. Adjuvants that increase the breadth of the elicited immune response and allow dose sparing provide an additional means to increase the number of available vaccine doses. Together these technologies can improve the influenza vaccination system in the near term. In the longer term, disruptive technologies, such as RNA-based flu vaccines and 'universal' flu vaccines, offer a promise of a dramatically improved influenza vaccine system.

  14. Assessment of the pathogenicity of cell-culture-adapted Newcastle disease virus strain Komarov.

    Science.gov (United States)

    Visnuvinayagam, Sivam; Thangavel, K; Lalitha, N; Malmarugan, S; Sukumar, Kuppannan

    2015-01-01

    Newcastle disease vaccines hitherto in vogue are produced from embryonated chicken eggs. Egg-adapted mesogenic vaccines possess several drawbacks such as paralysis and mortality in 2-week-old chicks and reduced egg production in the egg-laying flock. Owing to these possible drawbacks, we attempted to reduce the vaccine virulence for safe vaccination by adapting the virus in a chicken embryo fibroblast cell culture (CEFCC) system. Eighteen passages were carried out by CEFCC, and the pathogenicity was assessed on the basis of the mean death time, intracerebral pathogenicity index, and intravenous pathogenicity index, at equal passage intervals. Although the reduction in virulence demonstrated with increasing passage levels in CEFCC was encouraging, 20% of the 2-week-old birds showed paralytic symptoms with the virus vaccine from the 18(th)(final) passage. Thus, a tissue-culture-adapted vaccine would demand a few more passages by CEFCC in order to achieve a complete reduction in virulence for use as a safe and effective vaccine, especially among younger chicks. Moreover, it can be safely administered even to unprimed 8-week-old birds.

  15. Universal Influenza Vaccines, a Dream to Be Realized Soon

    Directory of Open Access Journals (Sweden)

    Han Zhang

    2014-04-01

    Full Text Available Due to frequent viral antigenic change, current influenza vaccines need to be re-formulated annually to match the circulating strains for battling seasonal influenza epidemics. These vaccines are also ineffective in preventing occasional outbreaks of new influenza pandemic viruses. All these challenges call for the development of universal influenza vaccines capable of conferring broad cross-protection against multiple subtypes of influenza A viruses. Facilitated by the advancement in modern molecular biology, delicate antigen design becomes one of the most effective factors for fulfilling such goals. Conserved epitopes residing in virus surface proteins including influenza matrix protein 2 and the stalk domain of the hemagglutinin draw general interest for improved antigen design. The present review summarizes the recent progress in such endeavors and also covers the encouraging progress in integrated antigen/adjuvant delivery and controlled release technology that facilitate the development of an affordable universal influenza vaccine.

  16. ERM booster vaccination of Rainbow trout using diluted bacterin

    DEFF Research Database (Denmark)

    Schmidt, Jacob Günther; Henriksen, Niels H.; Buchmann, Kurt

    2016-01-01

    under laboratory conditions extend the protection period. The present field study investigated the applicability of the method under practical farming conditions (freshwater earth ponds supplied by stream water). Primary immersion vaccination of trout (3–4 g) for 30 s in Y. ruckeri bacterin (diluted 1......Enteric Red Mouth Disease ERM caused by Yersinia ruckeri infection is associated with morbidity and mortality in salmonid farming but immersion vaccination of fry may confer some protection for a number of months. Revaccination of rainbow trout, even by use of diluted ERM immersion vaccine, can......:10) in April 2015 was followed 3 months later (July 2015) by 1 h bathing of rainbow trout in bacterin (diluted 1:650 or 1:1700) in order to evaluate if this time saving vaccination methodology can improve immunity and protection. Trout were subjected in farms to natural Y. ruckeri exposure in June and July...

  17. Bioengineering towards self-assembly of particulate vaccines.

    Science.gov (United States)

    Rehm, Bernd H A

    2017-12-01

    There is an unmet demand for safe and efficient vaccines for prevention of various infectious diseases. Subunit vaccines comprise selected pathogen specific antigens are a safe alternative to whole organism vaccines. However they often lack immunogenicity. Natural and synthetic self-assembling polymers and proteins will be reviewed in view their use to encapsulate and/or display antigens to serve as immunogenic antigen carriers for induction of protective immunity. Recent advances made in in vivo assembly of antigen-displaying polyester inclusions will be a focus. Particulate vaccines are inherently immunogenic due to enhanced uptake by antigen presenting cells which process antigens mediating adaptive immune responses. Bioengineering approaches enable the design of tailor-made particulate vaccines to fine tune immune responses towards protective immunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy

    Science.gov (United States)

    Nau, Gerard J.; Ross, Ted M.; Evans, Thomas G.; Chakraborty, Krishnendu; Empey, Kerry M.; Flynn, JoAnne L.

    2014-01-01

    Pulmonary diseases and infections are among the top contributors to human morbidity and mortality worldwide, and despite the successful history of vaccines and antimicrobial therapeutics, infectious disease still presents a significant threat to human health. Effective vaccines are frequently unavailable in developing countries, and successful vaccines have yet to be developed for major global maladies, such as tuberculosis. Furthermore, antibiotic resistance poses a growing threat to human health. The “Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy” session of the 2013 Pittsburgh International Lung Conference highlighted several recent and current studies related to treatment and prevention of antibiotic-resistant bacterial infections, highly pathogenic influenza, respiratory syncytial virus, and tuberculosis. Research presented here focused on novel antimicrobial therapies, new vaccines that are either in development or currently in clinical trials, and the potential for immunomodulatory therapies. These studies are making important contributions to the areas of microbiology, virology, and immunology related to pulmonary diseases and infections and are paving the way for improvements in the efficacy of vaccines and antimicrobials. PMID:25148426

  19. Challenges and future in vaccines, drug development, and immunomodulatory therapy.

    Science.gov (United States)

    Kling, Heather M; Nau, Gerard J; Ross, Ted M; Evans, Thomas G; Chakraborty, Krishnendu; Empey, Kerry M; Flynn, JoAnne L

    2014-08-01

    Pulmonary diseases and infections are among the top contributors to human morbidity and mortality worldwide, and despite the successful history of vaccines and antimicrobial therapeutics, infectious disease still presents a significant threat to human health. Effective vaccines are frequently unavailable in developing countries, and successful vaccines have yet to be developed for major global maladies, such as tuberculosis. Furthermore, antibiotic resistance poses a growing threat to human health. The "Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy" session of the 2013 Pittsburgh International Lung Conference highlighted several recent and current studies related to treatment and prevention of antibiotic-resistant bacterial infections, highly pathogenic influenza, respiratory syncytial virus, and tuberculosis. Research presented here focused on novel antimicrobial therapies, new vaccines that are either in development or currently in clinical trials, and the potential for immunomodulatory therapies. These studies are making important contributions to the areas of microbiology, virology, and immunology related to pulmonary diseases and infections and are paving the way for improvements in the efficacy of vaccines and antimicrobials.

  20. Adaptive optics imaging of the retina

    Directory of Open Access Journals (Sweden)

    Rajani Battu

    2014-01-01

    Full Text Available Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO and American Academy of Ophthalmology (AAO meetings. In total, 261 relevant publications and 389 conference abstracts were identified.

  1. Rational design of HIV vaccines and microbicides: report of the EUROPRISE annual conference 2011.

    Science.gov (United States)

    Ruffin, Nicolas; Borggren, Marie; Euler, Zelda; Fiorino, Fabio; Grupping, Katrijn; Hallengärd, David; Javed, Aneele; Mendonca, Kevin; Pollard, Charlotte; Reinhart, David; Saba, Elisa; Sheik-Khalil, Enas; Sköld, Annette; Ziglio, Serena; Scarlatti, Gabriella; Gotch, Frances; Wahren, Britta; Shattock, Robin J

    2012-07-11

    Europrise is a Network of Excellence supported by the European Commission within the 6th Framework programme from 2007 to 2012. The Network has involved over 50 institutions from 13 European countries together with 3 industrial partners and 6 African countries. The Network encompasses an integrated program of research, training, dissemination and advocacy within the field of HIV vaccines and microbicides. A central and timely theme of the Network is the development of the unique concept of co-usage of vaccines and microbicides. Training of PhD students has been a major task, and some of these post-graduate students have here summarized novel ideas emanating from presentations at the last annual Europrise meeting in Prague. The latest data and ideas concerning HIV vaccine and microbicide studies are included in this review; these studies are so recent that the majority have yet to be published. Data were presented and discussed concerning novel immunisation strategies; microbicides and PrEP (alone and in combination with vaccines); mucosal transmission of HIV/SIV; mucosal vaccination; novel adjuvants; neutralizing antibodies; innate immune responses; HIV/SIV pathogenesis and disease progression; new methods and reagents. These - necessarily overlapping topics - are comprehensively summarised by the Europrise students in the context of other recent exciting data.

  2. Rational design of HIV vaccines and microbicides: report of the EUROPRISE annual conference 2011

    Directory of Open Access Journals (Sweden)

    Ruffin Nicolas

    2012-07-01

    Full Text Available Abstract Europrise is a Network of Excellence supported by the European Commission within the 6th Framework programme from 2007 to 2012. The Network has involved over 50 institutions from 13 European countries together with 3 industrial partners and 6 African countries. The Network encompasses an integrated program of research, training, dissemination and advocacy within the field of HIV vaccines and microbicides. A central and timely theme of the Network is the development of the unique concept of co-usage of vaccines and microbicides. Training of PhD students has been a major task, and some of these post-graduate students have here summarized novel ideas emanating from presentations at the last annual Europrise meeting in Prague. The latest data and ideas concerning HIV vaccine and microbicide studies are included in this review; these studies are so recent that the majority have yet to be published. Data were presented and discussed concerning novel immunisation strategies; microbicides and PrEP (alone and in combination with vaccines; mucosal transmission of HIV/SIV; mucosal vaccination; novel adjuvants; neutralizing antibodies; innate immune responses; HIV/SIV pathogenesis and disease progression; new methods and reagents. These – necessarily overlapping topics - are comprehensively summarised by the Europrise students in the context of other recent exciting data.

  3. IDRC at the Adaptation Futures Conference | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-06-07

    Jun 7, 2018 ... Mapping the frontiers of adaptation research in the Global South: Identifying ... from climate insurance and risk pooling research in Africa and Asia ... and private investment in adaptation and mainstreaming adaptation finance.

  4. Modern Vaccines/Adjuvants Formulation--Session 2 (Plenary II): May 15-17, 2013--Lausanne, Switzerland.

    Science.gov (United States)

    Collin, Nicolas

    2013-09-01

    On the 15-17th May 2013, the Fourth International Conference on Modern Vaccines/Adjuvants Formulation was organized in Lausanne, Switzerland, and gathered stakeholders from academics and from the industry to discuss several challenges, advances and promises in the field of vaccine adjuvants. Plenary session 2 of the meeting was composed of four different presentations covering: (1) the recent set-up of an adjuvant technology transfer and training platform in Switzerland, (2) the proposition to revisit existing paradigms of modern vaccinology, (3) the properties of polyethyleneimine as potential new vaccine adjuvant, and (4) the progresses in the design of HIV vaccine candidates able to induce broadly neutralizing antibodies.

  5. Herpes simplex virus-2 in the genital mucosa: insights into the mucosal host response and vaccine development.

    Science.gov (United States)

    Lee, Amanda J; Ashkar, Ali A

    2012-02-01

    Herpes simplex virus (HSV)-2 is the predominant cause of genital herpes and has been implicated in HIV infection and transmission. Thus far, vaccines developed against HSV-2 have been clinically ineffective in preventing infection. This review aims to summarize the innate and adaptive immune responses against HSV-2 and examines the current status of vaccine development. Both innate and adaptive immune responses are essential for an effective primary immune response and the generation of immunity. The innate response involves Toll-like receptors, natural killer cells, plasmacytoid dendritic cells, and type I, II, and III interferons. The adaptive response requires a balance between CD4+ and CD8+ T-cells for optimal viral clearance. T-regulatory cells may be involved, although their exact function has yet to be determined. Current vaccine development involves the use of HSV-2 peptides or attenuated/replication-defective HSV-2 to generate adaptive anti-HSV-2 immune responses, however the generation of innate responses may also be an important consideration. Although vaccine development has primarily focused on the adaptive response, arguments for innate involvement are emerging. A greater understanding of the innate and adaptive processes underlying the response to HSV-2 infection will provide the foundation for the development of an effective vaccine.

  6. Vaccines for the elderly.

    Science.gov (United States)

    Del Giudice, Giuseppe; Weinberger, Birgit; Grubeck-Loebenstein, Beatrix

    2015-01-01

    The aging of the human population is posing serious challenges to research and to public health authorities in order to prevent diseases that more frequently affect the elderly, a portion of the population that will increase more and more in the coming years. While some vaccines exist and are used in the elderly to effectively fight against some infections (e.g. influenza, pneumococci, varicella-zoster virus, diphtheria, and tetanus), still a lot of work remains to be done to better adapt these vaccines and to develop new ones for this age group. The prevention of infectious diseases affecting the elderly can be successful only through a holistic approach. This approach will aim at the following: (1) a deeper understanding of the mechanisms leading to the senescence of the immune system, (2) a better and broader use of vaccines recommended for the elderly, (3) the use of vaccines currently considered only for other age groups and (4) actively priming the population when they are immunological competent, before the physiological waning of immune responsiveness may affect the beneficial effects of vaccination. © 2014 S. Karger AG, Basel

  7. Evaluation of 793/B-like and Mass-like vaccine strain kinetics in experimental and field conditions by real-time RT-PCR quantification.

    Science.gov (United States)

    Tucciarone, C M; Franzo, G; Berto, G; Drigo, M; Ramon, G; Koutoulis, K C; Catelli, E; Cecchinato, M

    2018-01-01

    Infectious bronchitis virus (IBV) is a great economic burden both for productive losses and costs of the control strategies. Many different vaccination protocols are applied in the same region and even in consecutive cycles on the same farm in order to find the perfect balance between costs and benefits. In Northern Italy, the usual second vaccination is more and more often moved up to the chick's first d of life. The second strain administration together with the common Mass priming by spray at the hatchery allows saving money and time and reducing animal stress. The present work compared the different vaccine strains (Mass-like or B48, and 1/96) kinetics both in field conditions and in a 21-day-long experimental trial in broilers, monitoring the viral replication by upper respiratory tract swabbing and vaccine specific real time reverse transcription PCR (RT-PCR) quantification. In both field and experimental conditions, titers for all the vaccines showed an increasing trend in the first 2 wk and then a decrease, though still remaining detectable during the whole monitored period. IBV field strain and avian Metapneumovirus (aMPV) presence also was also investigated by RT-PCR and sequencing, and by multiplex real-time RT-PCR, respectively, revealing a consistency in the pathogen introduction timing at around 30 d, in correspondence with the vaccine titer's main decrease. These findings suggest the need for an accurate knowledge of live vaccine kinetics, whose replication can compete with the other pathogen one, providing additional protection to be added to what is conferred by the adaptive immune response. © 2017 Poultry Science Association Inc.

  8. Safety and efficacy of reduced doses of Brucella melitensis strain Rev. 1 vaccine in pregnant Iranian fat-tailed ewes

    Directory of Open Access Journals (Sweden)

    Mohammad Ebrahimi

    2012-12-01

    Full Text Available Brucellosis is one of the most important zoonotic diseases and is a significant cause of abortion in animals. Brucella melitensis strain Rev. 1 is recommended as the most effective vaccine for small ruminants but the application of full doses in adult animals is restricted. This study was conducted to determine a proper reduced dose of vaccine which confers protection but which is not abortifacient in Iranian fat-tailed sheep. A total of 51 non-vaccinated pregnant ewes were divided into three main groups and several subgroups. Ewes in different groups were vaccinated at different stages of pregnancy and various subgroups were subcutaneously immunised with different quantities of the micro-organism (7.5 × 106, 106, 5 × 105. Ewes again became pregnant a year later and were challenged with the wild-type strain to evaluate the protection conferred. Results revealed that the proportion of vaccination-induced abortions was significantly higher in ewes immunised with 7.5 × 106 Rev. 1 organisms than in those which received 106 or 5 × 105 bacteria. While 80% of non-vaccinated ewes aborted after challenge, none of the vaccinated ewes aborted post-challenge. This study indicated that a reduced dose of Rev. 1 vaccine containing 106 or 5 × 105 live cells could be safely used to induce protection in Iranian fat-tailed sheep at various stages of pregnancy.

  9. Veterinary vaccines against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Elisabeth A Innes

    2009-03-01

    Full Text Available Toxoplasma gondii has a very wide intermediate host range and is thought to be able to infect all warm blooded animals. The parasite causes a spectrum of different diseases and clinical symptoms within the intermediate hosts and following infection most animals develop adaptive humoral and cell-mediated immune responses. The development of protective immunity to T. gondii following natural infection in many host species has led researchers to look at vaccination as a strategy to control disease, parasite multiplication and establishment in animal hosts. A range of different veterinary vaccines are required to help control T. gondii infection which include vaccines to prevent congenital toxoplasmosis, reduce or eliminate tissue cysts in meat producing animals and to prevent oocyst shedding in cats. In this paper we will discuss some of the history, challenges and progress in the development of veterinary vaccines against T. gondii.

  10. Adapting immunisation schedules for children undergoing chemotherapy.

    Science.gov (United States)

    Fernández-Prada, María; Rodríguez-Martínez, María; García-García, Rebeca; García-Corte, María Dolores; Martínez-Ortega, Carmen

    2018-02-01

    Children undergoing chemotherapy for cancer have special vaccination needs after completion of the treatment. The aim of this study was to evaluate the adaptation of post-chemotherapy vaccination schedules. An observational study was performed on a retrospective cohort that included all children aged from 0 to 14 years, who completed chemotherapy in a tertiary hospital between 2009 and 2015. Inclusion and exclusion criteria were applied. Immunisation was administered in accordance with the guidelines of the Vaccine Advisory Committee of the Spanish Association of Paediatrics. Primary Care immunisation and clinical records of the Preventive Medicine and Public Health Department were reviewed. Of the 99 children who had received chemotherapy, 51 (70.6% males) were included in the study. As regards the type of tumour, 54.9% had a solid organ tumour, and 45.1% had a haematological tumour. Post-chemotherapy immunisation was administered to 70.6%. The most common vaccines received were: diphtheria-tetanus-pertussis or diphtheria-tetanus (54.9%), meningococcus C (41.2%), and seasonal influenza (39.2%). The rate of adaptation of the immunisation schedule after chemotherapy was 9.8%. The pneumococcal conjugate vaccine against 7v or 13v was administered to 21.6% of study subjects. However, only 17.6% received polysaccharide 23v. None received vaccination against hepatitis A. No statistically significant differences were observed between adherence to immunisation schedules and type of tumour (P=.066), gender (P=.304), or age (P=.342). Post-chemotherapy immunisation of children with cancer is poor. The participation of health professionals in training programs and referral of paediatric cancer patients to Vaccine Units could improve the rate of schedule adaptation and proper immunisation of this population. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  11. The progressive adaptation of a georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome.

    Science.gov (United States)

    Krug, Peter W; Holinka, Lauren G; O'Donnell, Vivian; Reese, Bo; Sanford, Brenton; Fernandez-Sainz, Ignacio; Gladue, Douglas P; Arzt, Jonathan; Rodriguez, Luis; Risatti, Guillermo R; Borca, Manuel V

    2015-02-01

    African swine fever virus (ASFV) causes a contagious and often lethal disease of feral and domestic swine. Experimental vaccines derived from naturally occurring, genetically modified, or cell culture-adapted ASFV have been evaluated, but no commercial vaccine is available to control African swine fever (ASF). We report here the genotypic and phenotypic analysis of viruses obtained at different passages during the process of adaptation of a virulent ASFV field isolate from the Republic of Georgia (ASFV-G) to grow in cultured cell lines. ASFV-G was successively passaged 110 times in Vero cells. Viruses obtained at passages 30, 60, 80, and 110 were evaluated in vitro for the ability to replicate in Vero cells and primary swine macrophages cultures and in vivo for assessing virulence in swine. Replication of ASFV-G in Vero cells increased with successive passages, corresponding to a decreased replication in primary swine macrophages cultures. In vivo, progressive loss of virus virulence was observed with increased passages in Vero cells, and complete attenuation of ASFV-G was observed at passage 110. Infection of swine with the fully attenuated virus did not confer protection against challenge with virulent parental ASFV-G. Full-length sequence analysis of each of these viruses revealed significant deletions that gradually accumulated in specific areas at the right and left variable ends of the genome. Mutations that result in amino acid substitutions and frameshift mutations were also observed, though in a rather limited number of genes. The potential importance of these genetic changes in virus adaptation/attenuation is discussed. The main problem in controlling ASF is the lack of vaccines. Attempts to produce vaccines by adaptation of ASFV to cultured cell lines have been made. These attempts led to the production of attenuated viruses that conferred only homologous protection. Specifics regarding adaptation of these isolates to cell cultures have been

  12. Resolution VII International Conference Working Group on Birds of Prey of Northern Eurasia “Birds of Prey of Northern Eurasia: Problems and Adaptation Under Modern Conditions”

    Directory of Open Access Journals (Sweden)

    Igor V. Karyakin

    2017-01-01

    Full Text Available From 19 to 24 September, 2016 VII International Conference of the Working Group on Raptors of Northern Eurasia “Birds of prey of Northern Eurasia: problems and adaptation under modern conditions” was held on the basis of the Sochi National Park. Materials for the conference were presented by 198 ornithologists from Russia, Ukraine, Belarus, Kazakhstan, Moldova, Turkmenistan, Austria, Great Britain, Hungary, Mongolia, Poland, Estonia and the USA, who published 148 articles in two collections “Birds of prey of Northern Eurasia” and “Palearctic Harriers”.

  13. The Impact of School-Located Influenza Vaccination Programs on Student Absenteeism: A Review of the U.S. Literature

    Science.gov (United States)

    Hull, Harry F.; Ambrose, Christopher S.

    2011-01-01

    A literature review was conducted to summarize the impact of school-located influenza vaccination (SLIV) programs on school absenteeism. Seven studies were identified: six peer-reviewed articles and one conference presentation. The number of students vaccinated ranged from 185 to 5,315, representing 35-86% of enrolled students. Six studies…

  14. Self-amplifying mRNA vaccines.

    Science.gov (United States)

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A public health and budget impact analysis of vaccinating the elderly and at-risk adults with the 23-valent pneumococcal polysaccharide vaccine or 13-valent pneumococcal conjugate vaccine in the UK.

    Science.gov (United States)

    Jiang, Yiling; Gauthier, Aline; Keeping, Sam; Carroll, Stuart

    2014-12-01

    Since the introduction of the routine childhood immunization, a change in epidemiology of pneumococcal disease has been seen in both children and adults. This study aimed to quantify the public health and budget impact of pneumococcal vaccination of the elderly and those in at risk groups in the UK. The model was adapted from a previous population-based Markov model. At-risk adults and the elderly were assumed to receive PPV23 or PCV13 vaccination or no vaccination. Over the study period (2012-2016), PPV23 vaccination led to a reduction in the number of invasive pneumococcal disease cases in most scenarios. The net budget impact ranged between £15 and £39 million (vs no vaccination) or between -£116 and -£93 million (vs PCV13). PPV23 vaccination program remains the optimal strategy from public health and budgetary perspectives despite epidemiological changes. PCV13 is likely to impose a significant budget with limited health benefits.

  16. Schistosoma mansoni: parasitology and immunology of baboons vaccinated with irradiated cryopreserved schistosomula

    Energy Technology Data Exchange (ETDEWEB)

    Damian, R.T.; Powell, M.R.; Roberts, M.L. (Georgia Univ., Athens (USA). Dept. of Zoology); Clark, J.D. (Georgia Univ., Athens (USA). Lab. Animal Medicine); Stirewalt, M.A.; Lewis, F.A. (Biomedical Research Inst., Rockville, MD (USA))

    1985-06-01

    Young baboons (Papio cynocephalus) were vaccinated with ..gamma..-irradiated (500 Gy) cryopreserved Puerto Rican strain schistosomula of S. mansoni. Protection against heterologous, normal Kenyan Strain S. mansoni challenge infection was erratic and partial; and two putative correlates of immunity, reduced worm fecundity and change in worm location (anterior shift) were not observed. However, immunization of baboons with this vaccine resulted in a stimulated immune system. Both cellular and humoral anamnesis were demonstrable in vaccinated-challenged baboons. Schistosome infection-associated IgM hypergammaglobulinemia was also greatly reduced in vaccinated-challenged baboons. However IgG antibodies to adult, egg, and cercarial antigens were increased after challenge infection in preimmunized baboons. Vaccination appears to have resulted in a redirection of the immune system into anti-parasite channels, but this more specific immune response was insufficient to confer good protection against challenge infection in this experiment. The dampening effect of the vaccine on the hypergammaglobulinemia of schistosomiasis is another candidate for a possible ''anti-pathogenesis'' effect of irradiated schistosome larval vaccines.

  17. Schistosoma mansoni: parasitology and immunology of baboons vaccinated with irradiated cryopreserved schistosomula

    International Nuclear Information System (INIS)

    Damian, R.T.; Powell, M.R.; Roberts, M.L.

    1985-01-01

    Young baboons (Papio cynocephalus) were vaccinated with γ-irradiated (500 Gy) cryopreserved Puerto Rican strain schistosomula of S. mansoni. Protection against heterologous, normal Kenyan Strain S. mansoni challenge infection was erratic and partial; and two putative correlates of immunity, reduced worm fecundity and change in worm location (anterior shift) were not observed. However, immunization of baboons with this vaccine resulted in a stimulated immune system. Both cellular and humoral anamnesis were demonstrable in vaccinated-challenged baboons. Schistosome infection-associated IgM hypergammaglobulinemia was also greatly reduced in vaccinated-challenged baboons. However IgG antibodies to adult, egg, and cercarial antigens were increased after challenge infection in preimmunized baboons. Vaccination appears to have resulted in a redirection of the immune system into anti-parasite channels, but this more specific immune response was insufficient to confer good protection against challenge infection in this experiment. The dampening effect of the vaccine on the hypergammaglobulinemia of schistosomiasis is another candidate for a possible ''anti-pathogenesis'' effect of irradiated schistosome larval vaccines. (author)

  18. Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination.

    Directory of Open Access Journals (Sweden)

    Anne Derbise

    Full Text Available No efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably.The caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1-Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50 caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50. Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1- Y. pestis.VTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection against the two forms of plague after a single

  19. Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination.

    Science.gov (United States)

    Derbise, Anne; Hanada, Yuri; Khalifé, Manal; Carniel, Elisabeth; Demeure, Christian E

    2015-01-01

    No efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably. The caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1-Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU) of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50) caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50). Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1-) Y. pestis. VTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative) Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection against the two forms of plague after a single oral

  20. Killed oral cholera vaccines: history, development and implementation challenges.

    Science.gov (United States)

    Lopez, Anna Lena; Gonzales, Maria Liza Antoinette; Aldaba, Josephine G; Nair, G Balakrish

    2014-09-01

    Cholera is still a major global health problem, affecting mainly people living in unsanitary conditions and who are at risk for outbreaks of cholera. During the past decade, outbreaks are increasingly reported from more countries. From the early killed oral cholera vaccine, rapid improvements in vaccine development occurred as a result of a better understanding of the epidemiology of the disease, pathogenesis of cholera infection and immunity. The newer-generation oral killed cholera vaccines have been shown to be safe and effective in field trials conducted in cholera endemic areas. Likewise, they have been shown to be protective when used during outbreak settings. Aside from providing direct protection to vaccinated individuals, recent studies have demonstrated that these killed oral vaccines also confer indirect protection through herd immunity. Although new-generation oral cholera vaccines should not be considered in isolation from other preventive approaches in countries where they are most needed, especially improved water quality and sanitation, these vaccines serve as immediately available public health tools for preventing further morbidity and mortality from cholera. However, despite its availability for more than two decades, use of these vaccines has not been optimized. Although there are limitations of the currently available oral cholera vaccines, recent data show that the vaccines are safe, feasible to use even in difficult circumstances and able to provide protection in various settings. Clear identification of the areas and target population groups who will benefit from the use of the cholera vaccines will be required and strategies to facilitate accessibility and usage of these vaccines in these areas and population groups will need to be developed.

  1. Factors associated with routine childhood vaccine uptake and reasons for non-vaccination in India: 1998-2008.

    Science.gov (United States)

    Francis, Mark Rohit; Nohynek, Hanna; Larson, Heidi; Balraj, Vinohar; Mohan, Venkata Raghava; Kang, Gagandeep; Nuorti, J Pekka

    2017-08-24

    Despite almost three decades of the Universal Immunization Program in India, a little more than half the children aged 12-23months receive the full schedule of routine vaccinations. We examined socio-demographic factors associated with partial-vaccination and non-vaccination and the reasons for non-vaccination among Indian children during 1998 and 2008. Data from three consecutive, nationally-representative, District Level Household and Facility Surveys (1998-99, 2002-04 and 2007-08) were pooled. Multinomial logistic regression was used to identify individual and household level socio-demographic variables associated with the child's vaccination status. The mother's reported reasons for non-vaccination were analyzed qualitatively, adapting from a previously published framework. The pooled dataset contained information on 178,473 children 12-23months of age; 53%, 32% and 15% were fully vaccinated, partially vaccinated and unvaccinated respectively. Compared with the 1998-1999 survey, children in the 2007-2008 survey were less likely to be unvaccinated (Adjusted Prevalence Odds Ratio (aPOR): 0.92, 95%CI=0.86-0.98) but more likely to be partially vaccinated (aPOR: 1.58, 95%CI=1.52-1.65). Vaccination status was inversely associated with female gender, Muslim religion, lower caste, urban residence and maternal characteristics such as lower educational attainment, non-institutional delivery, fewer antenatal care visits and non-receipt of maternal tetanus vaccination. The mother's reported reasons for non-vaccination indicated gaps in awareness, acceptance and affordability (financial and non-financial costs) related to routine vaccinations. Persisting socio-demographic disparities related to partial-vaccination and non-vaccination were associated with important childhood, maternal and household characteristics. Further research investigating the causal pathways through which maternal and social characteristics influence decision-making for childhood vaccinations is

  2. Cost-effectiveness of Rotavirus vaccination in Vietnam

    Directory of Open Access Journals (Sweden)

    Goldie Sue J

    2009-01-01

    Full Text Available Abstract Background Rotavirus is the most common cause of severe diarrhea leading to hospitalization or disease-specific death among young children. New rotavirus vaccines have recently been approved. Some previous studies have provided broad qualitative insights into the health and economic consequences of introducing the vaccines into low-income countries, representing several features of rotavirus infection, such as varying degrees of severity and age-dependency of clinical manifestation, in their model-based analyses. We extend this work to reflect additional features of rotavirus (e.g., the possibility of reinfection and varying degrees of partial immunity conferred by natural infection, and assess the influence of the features on the cost-effectiveness of rotavirus vaccination. Methods We developed a Markov model that reflects key features of rotavirus infection, using the most recent data available. We applied the model to the 2004 Vietnamese birth cohort and re-evaluated the cost-effectiveness (2004 US dollars per disability-adjusted life year [DALY] of rotavirus vaccination (Rotarix® compared to no vaccination, from both societal and health care system perspectives. We conducted univariate sensitivity analyses and also performed a probabilistic sensitivity analysis, based on Monte Carlo simulations drawing parameter values from the distributions assigned to key uncertain parameters. Results Rotavirus vaccination would not completely protect young children against rotavirus infection due to the partial nature of vaccine immunity, but would effectively reduce severe cases of rotavirus gastroenteritis (outpatient visits, hospitalizations, or deaths by about 67% over the first 5 years of life. Under base-case assumptions (94% coverage and $5 per dose, the incremental cost per DALY averted from vaccination compared to no vaccination would be $540 from the societal perspective and $550 from the health care system perspective. Conclusion

  3. Conference report: Bioanalysis highlights from the 2012 American Association of Pharmaceutical Scientists National Biotechnology Conference.

    Science.gov (United States)

    Crisino, Rebecca M; Geist, Brian; Li, Jian

    2012-09-01

    The American Association of Pharmaceutical Scientists (AAPS) is an international forum for the exchange of knowledge among scientists to enhance their contributions to drug development. The annual National Biotechnology Conference, organized by the AAPS on 21-23 May 2012 in San Diego, CA, USA, brings together experts from various disciplines representing private industry, academia and governing institutions dedicated toward advancing the scientific and technological progress related to discovery, development and manufacture of medical biotechnology products. Over 300 scientific poster presentations and approximately 50 oral presentation and discussion sessions examined a breadth of topics pertaining to biotechnology drug development, such as the advancement of vaccines and biosimilars, emerging and innovative technologies, nonclinical and clinical bioanalysis, and regulatory updates. This conference report highlights the existing challenges with ligand-binding assays, emerging challenges, innovative integration of various technology platforms and applicable regulatory considerations as they relate to immunogenicity and pharmacokinetic bioanalytical assessments.

  4. Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2011-01-01

    response could be elicited in MHC class II-deficient mice by vaccination with adenovirus encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein tethered to MHC class II-associated invariant chain. Moreover, the response induced conferred significant cytolytic CD8(+) T cell-mediated protection...... against challenge with a high dose of the invasive clone 13 strain of LCMV. In contrast, vaccination with adenovirus encoding unlinked LCMV glycoprotein induced weak virus control in the absence of CD4(+) T cells, and mice may die of increased immunopathology associated with incomplete protection. Acute...... mortality was not observed in any vaccinated mice following infection with the less-invasive Traub strain. However, LCMV Traub infection caused accelerated late mortality in unvaccinated MHC class II-deficient mice; in this case, we observed a strong trend toward delayed mortality in vaccinated mice...

  5. Revaccination with Live Attenuated Vaccines Confer Additional Beneficial Nonspecific Effects on Overall Survival

    DEFF Research Database (Denmark)

    Benn, Christine S; Fisker, Ane B; Whittle, Hilton C

    2016-01-01

    BACKGROUND: Live vaccines against measles (MV), tuberculosis (BCG), polio (OPV) and smallpox reduce mortality more than explained by target-disease prevention. The beneficial nonspecific effects (NSEs) of MV are strongest when MV is given in presence of maternal antibodies. We therefore hypothesi......BACKGROUND: Live vaccines against measles (MV), tuberculosis (BCG), polio (OPV) and smallpox reduce mortality more than explained by target-disease prevention. The beneficial nonspecific effects (NSEs) of MV are strongest when MV is given in presence of maternal antibodies. We therefore...

  6. Hatchery Vaccination Against Poultry Viral Diseases: Potential Mechanisms and Limitations.

    Science.gov (United States)

    Abdul-Cader, Mohamed Sarjoon; Palomino-Tapia, Victor; Amarasinghe, Aruna; Ahmed-Hassan, Hanaa; De Silva Senapathi, Upasama; Abdul-Careem, Mohamed Faizal

    Commercial broiler and layer chickens are heavily vaccinated against economically important viral diseases with a view of preventing morbidity, mortality, and production impacts encountered during short production cycles. Hatchery vaccination is performed through in ovo embryo vaccination prehatch or spray and subcutaneous vaccinations performed at the day of hatch before the day-old chickens are being placed in barns with potentially contaminated environments. Commercially, multiple vaccines (e.g., live, live attenuated, and viral vectored vaccines) are available to administer through these routes within a short period (embryo day 18 prehatch to day 1 posthatch). Although the ability to mount immune response, especially the adaptive immune response, is not optimal around the hatch, it is possible that the efficacy of these vaccines depends partly on innate host responses elicited in response to replicating vaccine viruses. This review focuses on the current knowledge of hatchery vaccination in poultry and potential mechanisms of hatchery vaccine-mediated protective responses and limitations.

  7. Flexible Adaptivity in AEHS Using Policies

    NARCIS (Netherlands)

    Koesling, Arne; Krause, Daniel; Herder, Eelco

    2008-01-01

    Koesling, A., Krause, D., & Herder, E. (2008). Flexible Adaptivity in AEHS Using Policies. In W. Nejdl, J. Kay, P. Pu & E. Herder (Eds.), Proceedings Adaptive Hypermedia and Adaptive Web-Based Systems 5th International Conference, AH 2008 (pp. 410-415). July 29-August, 1, 2008, Hannover, Germany:

  8. Tapping the world wide web for designing vaccines for livestock diseases

    International Nuclear Information System (INIS)

    Deocaris, C.C.

    2005-01-01

    Post-genomic approaches in the development of new vaccines will fundamentally change how veterinarians prevent and treat diseases. One type of vaccine that has generated renewed interest is the subunit or synthetic vaccine, which has the advantage of rapid, safe and high-throughput production via chemical (as synthetic peptides) or recombinant approaches (as DNA, purified subunit or multigene vaccines). At the heart of such a vaccine are few but powerful epitopes that confer both the humoral and cell-mediated immune responses. Traditional biochemical assays have been used to map these epitopes; however, they are prohibitively labour and capital intensive. In contrast, in silico development of multivalent subunit vaccines is now possible through the availability of genomic information and the nascence of molecular immunoinformatics as a discipline. Algorithms are described in this paper to aid in identifying B and T cell epitopes for design of vaccines based on published available protein databases. From the mapped epitopes, synthetic mimotopes (or epitope-mimicking sequences) are concatenated using glycine bridges aimed at maintaining at least 90% of the secondary structures while minimizing steric hindrances between adjacent epitopes. (author)

  9. Adaptation of enterovirus 71 to adult interferon deficient mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Caine

    Full Text Available Non-polio enteroviruses, including enterovirus 71 (EV71, have caused severe and fatal cases of hand, foot and mouth disease (HFMD in the Asia-Pacific region. The development of a vaccine or antiviral against these pathogens has been hampered by the lack of a reliable small animal model. In this study, a mouse adapted EV71 strain was produced by conducting serial passages through A129 (α/β interferon (IFN receptor deficient and AG129 (α/β, γ IFN receptor deficient mice. A B2 sub genotype of EV71 was inoculated intraperitoneally (i.p. into neonatal AG129 mice and brain-harvested virus was subsequently passaged through 12 and 15 day-old A129 mice. When tested in 10 week-old AG129 mice, this adapted strain produced 100% lethality with clinical signs including limb paralysis, eye irritation, loss of balance, and death. This virus caused only 17% mortality in same age A129 mice, confirming that in the absence of a functional IFN response, adult AG129 mice are susceptible to infection by adapted EV71 isolates. Subsequent studies in adult AG129 and young A129 mice with the adapted EV71 virus examined the efficacy of an inactivated EV71 candidate vaccine and determined the role of humoral immunity in protection. Passive transfer of rabbit immune sera raised against the EV71 vaccine provided protection in a dose dependent manner in 15 day-old A129 mice. Intramuscular injections (i.m. in five week-old AG129 mice with the alum adjuvanted vaccine also provided protection against the mouse adapted homologous strain. No clinical signs of disease or mortality were observed in vaccinated animals, which received a prime-and-boost, whereas 71% of control animals were euthanized after exhibiting systemic clinical signs (P<0.05. The development of this animal model will facilitate studies on EV71 pathogenesis, antiviral testing, the evaluation of immunogenicity and efficacy of vaccine candidates, and has the potential to establish correlates of protection

  10. Vaccinating for natural killer cell effector functions

    OpenAIRE

    Wagstaffe, Helen R; Mooney, Jason P; Riley, Eleanor M; Goodier, Martin R

    2018-01-01

    Abstract Vaccination has proved to be highly effective in reducing global mortality and eliminating infectious diseases. Building on this success will depend on the development of new and improved vaccines, new methods to determine efficacy and optimum dosing and new or refined adjuvant systems. NK cells are innate lymphoid cells that respond rapidly during primary infection but also have adaptive characteristics enabling them to integrate innate and acquired immune responses. NK cells are ac...

  11. What works for human papillomavirus vaccine introduction in low and middle-income countries?

    Directory of Open Access Journals (Sweden)

    Natasha Howard

    2017-12-01

    Full Text Available Since 2007, low and middle-income countries (LMICs have gained experience delivering HPV vaccines through HPV vaccination pilots, demonstration projects and national programmes. This commentary summarises lessons from HPV vaccination experiences in 45 LMICs and what works for HPV vaccination introduction. Methods included a systematic literature review, unpublished document review, and key informant interviews. Data were extracted from 61 peer-reviewed articles, 11 conference abstracts, 188 technical reports, and 56 interviews, with quantitative data analysed descriptively and qualitative data analysed thematically. Key lessons are described under five themes of preparation, communications, delivery, coverage achievements, and sustainability. Lessons learnt were generally consistent across countries and projects and sufficient lessons have been learnt for countries to deliver HPV vaccine through phased national rollout rather than demonstration projects. However, challenges remain in securing the political will and financial resources necessary to implement successful national programmes. Keywords: Cervical cancer prevention, Human papillomavirus, Vaccination, Low and middle-income countries, Demonstration projects

  12. Determinants of attenuation and temperature sensitivity in the type 1 poliovirus Sabin vaccine.

    OpenAIRE

    Bouchard, M J; Lam, D H; Racaniello, V R

    1995-01-01

    To identify determinants of attenuation in the poliovirus type 1 Sabin vaccine strain, a series of recombinant viruses were constructed by using infectious cDNA clones of the virulent type 1 poliovirus P1/Mahoney and the attenuated type 1 vaccine strain P1/Sabin. Intracerebral inoculation of these viruses into transgenic mice which express the human receptor for poliovirus identified regions of the genome that conferred reduced neurovirulence. Exchange of smaller restriction fragments and sit...

  13. Principles underlying rational design of live attenuated influenza vaccines

    Science.gov (United States)

    Jang, Yo Han

    2012-01-01

    Despite recent innovative advances in molecular virology and the developments of vaccines, influenza virus remains a serious burden for human health. Vaccination has been considered a primary countermeasure for prevention of influenza infection. Live attenuated influenza vaccines (LAIVs) are particularly attracting attention as an effective strategy due to several advantages over inactivated vaccines. Cold-adaptation, as a classical means for attenuating viral virulence, has been successfully used for generating safe and effective donor strains of LAIVs against seasonal epidemics and occasional pandemics. Recently, the advent of reverse genetics technique expedited a variety of rational strategies to broaden the pool of LAIVs. Considering the breadth of antigenic diversity of influenza virus, the pool of LAIVs is likely to equip us with better options for controlling influenza pandemics. With a brief reflection on classical attenuating strategies used at the initial stage of development of LAIVs, especially on the principles underlying the development of cold-adapted LAIVs, we further discuss and outline other attenuation strategies especially with respect to the rationales for attenuation, and their practicality for mass production. Finally, we propose important considerations for a rational vaccine design, which will provide us with practical guidelines for improving the safety and effectiveness of LAIVs. PMID:23596576

  14. [Dengue, zika, chikungunya and the development of vaccines].

    Science.gov (United States)

    Kantor, Isabel N

    2018-01-01

    Dengue (DENV), zika (ZIKV) and chikungunya (CHIKV), three arbovirosis transmitted by Aedes mosquitoes, have spread in recent decades in humid tropical and subtropical zones. Dengue is epidemic in subtropical areas of Argentina. DENV infection confers lasting immunity against the infecting serotype but increases the risk of serious disease upon reinfection by any of the other three. The recombinant tetravalent vaccine Dengvaxia® prevents severe dengue and hospitalization in seropositive subjects. In 2017, Dengvaxia was approved in Argentina, for ages 9 to 45, but is not included in the national vaccination calendar. Two other vaccines are in Phase III evaluation: one developed by NIAID / Instituto Butantan and the other by Takeda. ZIKV, a virus associated with microcephaly in newborns in Brazil, circulates since 2016 in Argentina. There is still not effective treatment nor vaccine with proven activity against ZIKV. There has been no active circulation of CHIKV in Argentina in 2017. Outbreaks of CHIKV fever have a complication: the development of chronic post-disease rheumatism. There are not approved vaccines for humans nor effective antiviral therapies. The seriousness of these virosis has contributed to a rapid progress in the knowledge of the infection processes and the immune response. For now, Aedes aegypti and A. albopictus vectors continue to expand, suggesting that the vaccine will be the most effective means of controlling these viruses. Here we summarize information about these arbovirosis in Argentina and Brazil and describe advances in the development and evaluation of vaccines.

  15. Dengue, zika, chikungunya and the development of vaccines

    Directory of Open Access Journals (Sweden)

    Isabel N. Kantor

    2018-01-01

    Full Text Available Dengue (DENV, zika (ZIKV and chikungunya (CHIKV, three arbovirosis transmitted by Aedes mosquitoes, have spread in recent decades in humid tropical and subtropical zones. Dengue is epidemic in subtropical areas of Argentina. DENV infection confers lasting immunity against the infecting serotype but increases the risk of serious disease upon reinfection by any of the other three. The recombinant tetravalent vaccine Dengvaxia® prevents severe dengue and hospitalization in seropositive subjects. In 2017, Dengvaxia was approved in Argentina, for ages 9 to 45, but is not included in the national vaccination calendar. Two other vaccines are in Phase III evaluation: one developed by NIAID / Instituto Butantan and the other by Takeda. ZIKV, a virus associated with microcephaly in newborns in Brazil, circulates since 2016 in Argentina. There is still not effective treatment nor vaccine with proven activity against ZIKV. There has been no active circulation of CHIKV in Argentina in 2017. Outbreaks of CHIKV fever have a complication: the development of chronic post-disease rheumatism. There are not approved vaccines for humans nor effective antiviral therapies. The seriousness of these virosis has contributed to a rapid progress in the knowledge of the infection processes and the immune response. For now, Aedes aegypti and A. albopictus vectors continue to expand, suggesting that the vaccine will be the most effective means of controlling these viruses. Here we summarize information about these arbovirosis in Argentina and Brazil and describe advances in the development and evaluation of vaccines.

  16. InCVAX, a novel in situ autologous cancer vaccine (Conference Presentation)

    Science.gov (United States)

    Lam, Samuel Siu Kit; Chen, Wei R.

    2017-02-01

    Cancer immunotherapy is the concept of harnessing our own immune system to fight against cancer cells. The most attractive features of immunotherapy include relatively low toxicities compared to traditional therapies (surgery, chemotherapy and radiation), the possibility of eliminating distant metastases and the potential of preventing relapses. After decades of research, its therapeutic efficacy has finally been recognized and a number of approaches has been approved by the FDA over the past 10 years. Dendritic cell vaccine and checkpoint blockade strategies were among the first to enter the clinic, with many other strategies such as peptide vaccine, whole cell tumor vaccine, and adoptive T cell transfer (with Chimeric Antigen Receptors) etc. closely following in clinical trials. Immunophotonics is developing a novel in situ autologous cancer vaccine (InCVAX) by combining thermal laser phototherapy with immunotherapy. InCVAX is a two-step procedure: (1) Delivery of low-power thermal laser to any accessible tumor to cause partial cell death, increase tumor immunogenicity by releasing tumor antigens and Damage Associated Molecular Patterns (DAMPs). This is followed immediately by (2) injection of our proprietary immunostimulant, N-dihydro-acetylglucosamine (GC), into the laser-treated region to stimulate antigen presenting cells. These two steps work synergistically to enhance the systemic anti-tumor T cell response which is capable of eliminating both primary and metastatic cancers in some patients with advanced, stage III/IV, breast cancer with minimal toxicity. Our approach has the unique benefits of stimulating an immune response against a wide array of tumor antigens, and thus the potential to induce a strong, comprehensive and long-term anti-tumor protection in patients with minimal costs. Following early data showing efficacy in breast cancer patients, a multi-center, randomized clinical trial is currently underway in South America to consolidate the findings

  17. Pertussis Maternal Immunization: Narrowing the Knowledge Gaps on the Duration of Transferred Protective Immunity and on Vaccination Frequency

    Science.gov (United States)

    Gaillard, María Emilia; Bottero, Daniela; Zurita, María Eugenia; Carriquiriborde, Francisco; Martin Aispuro, Pablo; Bartel, Erika; Sabater-Martínez, David; Bravo, María Sol; Castuma, Celina; Hozbor, Daniela Flavia

    2017-01-01

    Maternal safety through pertussis vaccination and subsequent maternal–fetal-antibody transfer are well documented, but information on infant protection from pertussis by such antibodies and by subsequent vaccinations is scarce. Since mice are used extensively for maternal-vaccination studies, we adopted that model to narrow those gaps in our understanding of maternal pertussis immunization. Accordingly, we vaccinated female mice with commercial acellular pertussis (aP) vaccine and measured offspring protection against Bordetella pertussis challenge and specific-antibody levels with or without revaccination. Maternal immunization protected the offspring against pertussis, with that immune protection transferred to the offspring lasting for several weeks, as evidenced by a reduction (4–5 logs, p protection to offspring up to the fourth pregnancy. Under the conditions of our experimental protocol, protection to offspring from the aP-induced immunity is transferred both transplacentally and through breastfeeding. Adoptive-transfer experiments demonstrated that transferred antibodies were more responsible for the protection detected in offspring than transferred whole spleen cells. In contrast to reported findings, the protection transferred was not lost after the vaccination of infant mice with the same or other vaccine preparations, and conversely, the immunity transferred from mothers did not interfere with the protection conferred by infant vaccination with the same or different vaccines. These results indicated that aP-vaccine immunization of pregnant female mice conferred protective immunity that is transferred both transplacentally and via offspring breastfeeding without compromising the protection boostered by subsequent infant vaccination. These results—though admittedly not necessarily immediately extrapolatable to humans—nevertheless enabled us to test hypotheses under controlled conditions through detailed sampling and data collection. These

  18. Mandatory and recommended vaccination in the EU, Iceland and Norway: results of the VENICE 2010 survey on the ways of implementing national vaccination programmes.

    Science.gov (United States)

    Haverkate, M; D'Ancona, F; Giambi, C; Johansen, K; Lopalco, P L; Cozza, V; Appelgren, E

    2012-05-31

    This report provides an updated overview of recommended and mandatory vaccinations in the European Union (EU), Iceland and Norway, considering the differences in vaccine programme implementation between countries. In 2010, the Vaccine European New Integrated Collaboration Effort (VENICE) network, conducted a survey among the VENICE project gatekeepers to learn more about how national vaccination programmes are implemented, whether recommended or mandatory. Information was collected from all 27 EU Member States, Iceland and Norway. In total 15 countries do not have any mandatory vaccinations; the remaining 14 have at least one mandatory vaccination included in their programme. Vaccination against polio is mandatory for both children and adults in 12 countries; diphtheria and tetanus vaccination in 11 countries and hepatitis B vaccination in 10 countries. For eight of the 15 vaccines considered, some countries have a mixed strategy of recommended and mandatory vaccinations. Mandatory vaccination may be considered as a way of improving compliance to vaccination programmes. However, compliance with many programmes in Europe is high, using only recommendations. More information about the diversity in vaccine offer at European level may help countries to adapt vaccination strategies based on the experience of other countries. However, any proposal on vaccine strategies should be developed taking into consideration the local context habits.

  19. Economic impact of pneumococcal conjugate vaccination in Brazil, Chile, and Uruguay.

    Science.gov (United States)

    Constenla, Dagna O

    2008-08-01

    To evaluate the economic impact of vaccination with the pneumococcal 7-valent conjugate vaccine (PCV7) in Brazil, Chile, and Uruguay. A decision analytic model was constructed to compare pneumococcal vaccination of children 0-5 years old with no vaccination in Brazil, Chile, and Uruguay. Costs and health outcomes were analyzed from the societal perspective. Vaccine, demographic, epidemiologic, and cost data were incorporated into this economic analysis. At the rate of diphtheria-tetanus-pertussis (DTP) vaccine coverage and a vaccine price of US$ 53 per dose, PCV7 was projected to prevent 23 474 deaths per year in children under 5 years old in the three countries studied, thus averting 884,841 disability-adjusted life years (DALYs) yearly. To vaccinate the entire birth cohort of the three countries, total vaccine costs would be US$ 613.9 million. At US$ 53 per dose, the cost per DALY averted from a societal perspective would range from US$ 664 (Brazil) to US$ 2019 (Chile). At a cost of US$ 10 per dose, vaccine cost is lower than the overall cost of illness averted (US$ 125,050,497 versus US$ 153,965,333), making it cost effective and cost-saving. The results of this study demonstrate that the incorporation of PCV7 vaccine at US$ 53 per dose confers health benefits at extra costs. It is unclear whether vaccinatfon at the current price is affordable to these countries.

  20. Development of a novel in-water vaccination protocol for DNA adenine methylase deficient Salmonella enterica serovar Typhimurium vaccine in adult sheep.

    Science.gov (United States)

    Mohler, V L; Heithoff, D M; Mahan, M J; Hornitzky, M A; Thomson, P C; House, J K

    2012-02-14

    Intensive livestock production is associated with an increased incidence of salmonellosis. The risk of infection and the subsequent public health concern is attributed to increased pathogen exposure and disease susceptibility due to multiple stressors experienced by livestock from farm to feedlot. Traditional parenteral vaccine methods can further stress susceptible populations and cause carcass damage, adverse reactions, and resultant increased production costs. As a potential means to address these issues, in-water delivery of live attenuated vaccines affords a low cost, low-stress method for immunization of livestock populations that is not associated with the adverse handling stressors and injection reactions associated with parenteral administration. We have previously established that in-water administration of a Salmonella enterica serovar Typhimurium dam vaccine conferred significant protection in livestock. While these experimental trials hold significant promise, the ultimate measure of the vaccine will not be established until it has undergone clinical testing in the field wherein environmental and sanitary conditions are variable. Here we show that in-water administration of a S. Typhimurium dam attenuated vaccine was safe, stable, and well-tolerated in adult sheep. The dam vaccine did not alter water consumption or vaccine dosing; remained viable under a wide range of temperatures (21-37°C); did not proliferate within fecal-contaminated trough water; and was associated with minimal fecal shedding and clinical disease as a consequence of vaccination. The capacity of Salmonella dam attenuated vaccines to be delivered in drinking water to protect livestock from virulent Salmonella challenge offers an effective, economical, stressor-free Salmonella prophylaxis for intensive livestock production systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Mechanism of action of mRNA-based vaccines.

    Science.gov (United States)

    Iavarone, Carlo; O'hagan, Derek T; Yu, Dong; Delahaye, Nicolas F; Ulmer, Jeffrey B

    2017-09-01

    The present review summarizes the growing body of work defining the mechanisms of action of this exciting new vaccine technology that should allow rational approaches in the design of next generation mRNA vaccines. Areas covered: Bio-distribution of mRNA, localization of antigen production, role of the innate immunity, priming of the adaptive immune response, route of administration and effects of mRNA delivery systems. Expert commentary: In the last few years, the development of RNA vaccines had a fast growth, the rising number of proof will enable rational approaches to improving the effectiveness and safety of this modern class of medicine.

  2. Comparison of vaccine efficacy for different antigen delivery systems for infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salmo salar L.) in a cohabitation challenge model.

    Science.gov (United States)

    Munang'andu, Hetron M; Fredriksen, Børge N; Mutoloki, Stephen; Brudeseth, Bjørn; Kuo, Tsun-Yung; Marjara, Inderjit S; Dalmo, Roy A; Evensen, Øystein

    2012-06-08

    Two strains of IPNV made by reverse genetics on the Norwegian Sp strain NVI-015 (GenBank AY379740) backbone encoding the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs were used to prepare inactivated whole virus (IWV), nanoparticle vaccines with whole virus, Escherichia coli subunit encoding truncated VP2-TA and VP2-PT, VP2-TA and VP2-PT fusion antigens with putative translocating domains of Pseudomonas aeruginosa exotoxin, and plasmid DNA encoding segment A of the TA strain. Post challenge survival percentages (PCSP) showed that IWV vaccines conferred highest protection (PCSP=42-53) while nanoparticle, sub-unit recombinant and DNA vaccines fell short of the IWV vaccines in Atlantic salmon (Salmo salar L.) postsmolts challenged with the highly virulent Sp strain NVI-015 (TA strain) of IPNV after 560 degree days post vaccination. Antibody levels induced by these vaccines did not show antigenic differences between the virulent and avirulent motifs for vaccines made with the same antigen dose and delivery system after 8 weeks post vaccination. Our findings show that fish vaccinated with less potent vaccines comprising of nanoparticle, DNA and recombinant vaccines got infected much earlier and yielded to higher infection rates than fish vaccinated with IWV vaccines that were highly potent. Ability of the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs to limit establishment of infection showed equal protection for vaccines made of the same antigen dose and delivery systems. Prevention of tissue damage linked to viral infection was eminent in the more potent vaccines than the less protective ones. Hence, there still remains the challenge of developing highly efficacious vaccines with the ability to eliminate the post challenge carrier state in IPNV vaccinology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Vanishing vaccinations: why are so many Americans opting out of vaccinating their children?

    Science.gov (United States)

    Calandrillo, Steve P

    2004-01-01

    Vaccinations against life-threatening diseases are one of the greatest public health achievements in history. Literally millions of premature deaths have been prevented, and countless more children have been saved from disfiguring illness. While vaccinations carry unavoidable risks, the medical, social and economic benefits they confer have led all fifty states to enact compulsory childhood vaccination laws to stop the spread of preventable diseases. Today, however, vaccines are becoming a victim of their success--many individuals have never witnessed the debilitating diseases that vaccines protect against, allowing complacency toward immunization requirements to build. Antivaccination sentiment is growing fast in the United States, in large part due to the controversial and hotly disputed link between immunizations and autism. The internet worsens fears regarding vaccination safety, as at least a dozen websites publish alarming information about the risks of vaccines. Increasing numbers of parents are refusing immunizations for their children and seeking legally sanctioned exemptions instead, apparently fearing vaccines more than the underlying diseases that they protect against. A variety of factors are at play: religious and philosophical beliefs, freedom and individualism, misinformation about risk, and overperception of risk. State legislatures and health departments now face a difficult challenge: respecting individual rights and freedoms while also safeguarding the public welfare. Nearly all states allow vaccination exemptions for religious reasons and a growing number provide "philosophical" opt-outs as well. However, in all but a handful of jurisdictions, neither objection is seriously documented or verified. Often, the law requires a parent to do no more than simply check a box indicating she does not wish her child to receive immunizations. The problem is exacerbated by financial incentives schools have to encourage students to opt out of vaccinations

  4. Lights and shades on an historical vaccine canine distemper virus, the Rockborn strain

    DEFF Research Database (Denmark)

    Martella, V.; Blixenkrone-Møller, Merete; Elia, G.

    2011-01-01

    Both egg- and cell-adapted canine distemper virus (CDV) vaccines are suspected to retain residual virulence, especially if administered to immuno-suppressed animals, very young pups or to highly susceptible animal species. In the early 1980s, post-vaccine encephalitis was reported in dogs from...... in the sequence databases. Also, Rockborn-like strains were identified in two vaccines currently in the market. These findings indicate that Rockborn-like viruses may be recovered from dogs or other carnivores with distemper, suggesting cases of residual virulence of vaccines, or circulation of vaccine...

  5. Immunology of Gut Mucosal Vaccines

    Science.gov (United States)

    Pasetti, Marcela F.; Simon, Jakub K.; Sztein, Marcelo B.; Levine, Myron M.

    2011-01-01

    Summary Understanding the mechanisms underlying the induction of immunity in the gastrointestinal mucosa following oral immunization and the cross-talk between mucosal and systemic immunity should expedite the development of vaccines to diminish the global burden caused by enteric pathogens. Identifying an immunological correlate of protection in the course of field trials of efficacy, animal models (when available), or human challenge studies is also invaluable. In industrialized country populations, live attenuated vaccines (e.g. polio, typhoid, and rotavirus) mimic natural infection and generate robust protective immune responses. In contrast, a major challenge is to understand and overcome the barriers responsible for the diminished immunogenicity and efficacy of the same enteric vaccines in underprivileged populations in developing countries. Success in developing vaccines against some enteric pathogens has heretofore been elusive (e.g. Shigella). Different types of oral vaccines can selectively or inclusively elicit mucosal secretory immunoglobulin A and serum immunoglobulin G antibodies and a variety of cell-mediated immune responses. Areas of research that require acceleration include interaction between the gut innate immune system and the stimulation of adaptive immunity, development of safe yet effective mucosal adjuvants, better understanding of homing to the mucosa of immunologically relevant cells, and elicitation of mucosal immunologic memory. This review dissects the immune responses elicited in humans by enteric vaccines. PMID:21198669

  6. Technology transfer of oil-in-water emulsion adjuvant manufacturing for pandemic influenza vaccine production in Romania: Preclinical evaluation of split virion inactivated H5N1 vaccine with adjuvant.

    Science.gov (United States)

    Stavaru, Crina; Onu, Adrian; Lupulescu, Emilia; Tucureanu, Catalin; Rasid, Orhan; Vlase, Ene; Coman, Cristin; Caras, Iuliana; Ghiorghisor, Alina; Berbecila, Laurentiu; Tofan, Vlad; Bowen, Richard A; Marlenee, Nicole; Hartwig, Airn; Bielefeldt-Ohmann, Helle; Baldwin, Susan L; Van Hoeven, Neal; Vedvick, Thomas S; Huynh, Chuong; O'Hara, Michael K; Noah, Diana L; Fox, Christopher B

    2016-04-02

    Millions of seasonal and pandemic influenza vaccine doses containing oil-in-water emulsion adjuvant have been administered in order to enhance and broaden immune responses and to facilitate antigen sparing. Despite the enactment of a Global Action Plan for Influenza Vaccines and a multi-fold increase in production capabilities over the past 10 years, worldwide capacity for pandemic influenza vaccine production is still limited. In developing countries, where routine influenza vaccination is not fully established, additional measures are needed to ensure adequate supply of pandemic influenza vaccines without dependence on the shipment of aid from other, potentially impacted first-world countries. Adaptation of influenza vaccine and adjuvant technologies by developing country influenza vaccine manufacturers may enable antigen sparing and corresponding increases in global influenza vaccine coverage capacity. Following on previously described work involving the technology transfer of oil-in-water emulsion adjuvant manufacturing to a Romanian vaccine manufacturing institute, we herein describe the preclinical evaluation of inactivated split virion H5N1 influenza vaccine with emulsion adjuvant, including immunogenicity, protection from virus challenge, antigen sparing capacity, and safety. In parallel with the evaluation of the bioactivity of the tech-transferred adjuvant, we also describe the impact of concurrent antigen manufacturing optimization activities. Depending on the vaccine antigen source and manufacturing process, inclusion of adjuvant was shown to enhance and broaden functional antibody titers in mouse and rabbit models, promote protection from homologous virus challenge in ferrets, and facilitate antigen sparing. Besides scientific findings, the operational lessons learned are delineated in order to facilitate adaptation of adjuvant technologies by other developing country institutes to enhance global pandemic influenza preparedness.

  7. A nonintegrative lentiviral vector-based vaccine provides long-term sterile protection against malaria.

    Directory of Open Access Journals (Sweden)

    Frédéric Coutant

    Full Text Available Trials testing the RTS,S candidate malaria vaccine and radiation-attenuated sporozoites (RAS have shown that protective immunity against malaria can be induced and that an effective vaccine is not out of reach. However, longer-term protection and higher protection rates are required to eradicate malaria from the endemic regions. It implies that there is still a need to explore new vaccine strategies. Lentiviral vectors are very potent at inducing strong immunological memory. However their integrative status challenges their safety profile. Eliminating the integration step obviates the risk of insertional oncogenesis. Providing they confer sterile immunity, nonintegrative lentiviral vectors (NILV hold promise as mass pediatric vaccine by meeting high safety standards. In this study, we have assessed the protective efficacy of NILV against malaria in a robust pre-clinical model. Mice were immunized with NILV encoding Plasmodium yoelii Circumsporozoite Protein (Py CSP and challenged with sporozoites one month later. In two independent protective efficacy studies, 50% (37.5-62.5 of the animals were fully protected (p = 0.0072 and p = 0.0008 respectively when compared to naive mice. The remaining mice with detectable parasitized red blood cells exhibited a prolonged patency and reduced parasitemia. Moreover, protection was long-lasting with 42.8% sterile protection six months after the last immunization (p = 0.0042. Post-challenge CD8+ T cells to CSP, in contrast to anti-CSP antibodies, were associated with protection (r = -0.6615 and p = 0.0004 between the frequency of IFN-g secreting specific T cells in spleen and parasitemia. However, while NILV and RAS immunizations elicited comparable immunity to CSP, only RAS conferred 100% of sterile protection. Given that a better protection can be anticipated from a multi-antigen vaccine and an optimized vector design, NILV appear as a promising malaria vaccine.

  8. Yellow fever vaccine-associated viscerotropic disease: current perspectives.

    Science.gov (United States)

    Thomas, Roger E

    2016-01-01

    To assess those published cases of yellow fever (YF) vaccine-associated viscerotropic disease that meet the Brighton Collaboration criteria and to assess the safety of YF vaccine with respect to viscerotropic disease. Ten electronic databases were searched with no restriction of date or language and reference lists of retrieved articles. All abstracts and titles were independently read by two reviewers and data independently entered by two reviewers. All serious adverse events that met the Brighton Classification criteria were associated with first YF vaccinations. Sixty-two published cases (35 died) met the Brighton Collaboration viscerotropic criteria, with 32 from the US, six from Brazil, five from Peru, three from Spain, two from the People's Republic of China, one each from Argentina, Australia, Belgium, Ecuador, France, Germany, Ireland, New Zealand, Portugal, and the UK, and four with no country stated. Two cases met both the viscerotropic and YF vaccine-associated neurologic disease criteria. Seventy cases proposed by authors as viscerotropic disease did not meet any Brighton Collaboration viscerotropic level of diagnostic certainty or any YF vaccine-associated viscerotropic disease causality criteria (37 died). Viscerotropic disease is rare in the published literature and in pharmacovigilance databases. All published cases were from developing countries. Because the symptoms are usually very severe and life threatening, it is unlikely that cases would not come to medical attention (but might not be published). Because viscerotropic disease has a highly predictable pathologic course, it is likely that viscerotropic disease post-YF vaccine occurs in low-income countries with the same incidence as in developing countries. YF vaccine is a very safe vaccine that likely confers lifelong immunity.

  9. Yellow fever vaccine-associated viscerotropic disease: current perspectives

    Science.gov (United States)

    Thomas, Roger E

    2016-01-01

    Purpose To assess those published cases of yellow fever (YF) vaccine-associated viscerotropic disease that meet the Brighton Collaboration criteria and to assess the safety of YF vaccine with respect to viscerotropic disease. Literature search Ten electronic databases were searched with no restriction of date or language and reference lists of retrieved articles. Methods All abstracts and titles were independently read by two reviewers and data independently entered by two reviewers. Results All serious adverse events that met the Brighton Classification criteria were associated with first YF vaccinations. Sixty-two published cases (35 died) met the Brighton Collaboration viscerotropic criteria, with 32 from the US, six from Brazil, five from Peru, three from Spain, two from the People’s Republic of China, one each from Argentina, Australia, Belgium, Ecuador, France, Germany, Ireland, New Zealand, Portugal, and the UK, and four with no country stated. Two cases met both the viscerotropic and YF vaccine-associated neurologic disease criteria. Seventy cases proposed by authors as viscerotropic disease did not meet any Brighton Collaboration viscerotropic level of diagnostic certainty or any YF vaccine-associated viscerotropic disease causality criteria (37 died). Conclusion Viscerotropic disease is rare in the published literature and in pharmacovigilance databases. All published cases were from developing countries. Because the symptoms are usually very severe and life threatening, it is unlikely that cases would not come to medical attention (but might not be published). Because viscerotropic disease has a highly predictable pathologic course, it is likely that viscerotropic disease post-YF vaccine occurs in low-income countries with the same incidence as in developing countries. YF vaccine is a very safe vaccine that likely confers lifelong immunity. PMID:27784992

  10. Rational design of HIV vaccines and microbicides: report of the EUROPRISE network annual conference 2010

    Directory of Open Access Journals (Sweden)

    Uchtenhagen Hannes

    2011-04-01

    Full Text Available Abstract Novel, exciting intervention strategies to prevent infection with HIV have been tested in the past year, and the field is rapidly evolving. EUROPRISE is a network of excellence sponsored by the European Commission and concerned with a wide range of activities including integrated developmental research on HIV vaccines and microbicides from discovery to early clinical trials. A central and timely theme of the network is the development of the unique concept of co-usage of vaccines and microbicides. This review, prepared by the PhD students of the network captures much of the research ongoing between the partners. The network is in its 5th year and involves over 50 institutions from 13 European countries together with 3 industrial partners; GSK, Novartis and Sanofi-Pasteur. EUROPRISE is involved in 31 separate world-wide trials of Vaccines and Microbicides including 6 in African countries (Tanzania, Mozambique, South Africa, Kenya, Malawi, Rwanda, and is directly supporting clinical trials including MABGEL, a gp140-hsp70 conjugate trial and HIVIS, vaccine trials in Europe and Africa.

  11. Rational design of HIV vaccines and microbicides: report of the EUROPRISE network annual conference 2010.

    Science.gov (United States)

    Brinckmann, Sarah; da Costa, Kelly; van Gils, Marit J; Hallengärd, David; Klein, Katja; Madeira, Luisa; Mainetti, Lara; Palma, Paolo; Raue, Katharina; Reinhart, David; Reudelsterz, Marc; Ruffin, Nicolas; Seifried, Janna; Schäfer, Katrein; Sheik-Khalil, Enas; Sköld, Annette; Uchtenhagen, Hannes; Vabret, Nicolas; Ziglio, Serena; Scarlatti, Gabriella; Shattock, Robin; Wahren, Britta; Gotch, Frances

    2011-04-12

    Novel, exciting intervention strategies to prevent infection with HIV have been tested in the past year, and the field is rapidly evolving. EUROPRISE is a network of excellence sponsored by the European Commission and concerned with a wide range of activities including integrated developmental research on HIV vaccines and microbicides from discovery to early clinical trials. A central and timely theme of the network is the development of the unique concept of co-usage of vaccines and microbicides. This review, prepared by the PhD students of the network captures much of the research ongoing between the partners. The network is in its 5th year and involves over 50 institutions from 13 European countries together with 3 industrial partners; GSK, Novartis and Sanofi-Pasteur. EUROPRISE is involved in 31 separate world-wide trials of Vaccines and Microbicides including 6 in African countries (Tanzania, Mozambique, South Africa, Kenya, Malawi, Rwanda), and is directly supporting clinical trials including MABGEL, a gp140-hsp70 conjugate trial and HIVIS, vaccine trials in Europe and Africa.

  12. Managing the effect of TRIPS on availability of priority vaccines.

    Science.gov (United States)

    Milstien, Julie; Kaddar, Miloud

    2006-05-01

    The stated purpose of intellectual property protection is to stimulate innovation. The Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS) requires all Members of the World Trade Organization (WTO) to enact national laws conferring minimum standards of intellectual property protection by certain deadlines. Critics of the Agreement fear that such action is inconsistent with ensuring access to medicines in the developing world. A WHO convened meeting on intellectual property rights and vaccines in developing countries, on which this paper is based, found no evidence that TRIPS has stimulated innovation in developing market vaccine development (where markets are weak) or that protection of intellectual property rights has had a negative effect on access to vaccines. However, access to future vaccines in the developing world could be threatened by compliance with TRIPS. The management of such threats requires adherence of all countries to the Doha Declaration on TRIPS, and the protections guaranteed by the Agreement itself, vigilance on TRIPS-plus elements of free trade agreements, developing frameworks for licensing and technology transfer, and promoting innovative vaccine development in developing countries. The role of international organizations in defining best practices, dissemination of information, and monitoring TRIPS impact will be crucial to ensuring optimal access to priority new vaccines for the developing world.

  13. Pulmonary immunity and durable protection induced by the ID93/GLA-SE vaccine candidate against the hyper-virulent Korean Beijing Mycobacterium tuberculosis strain K.

    Science.gov (United States)

    Cha, Seung Bin; Kim, Woo Sik; Kim, Jong-Seok; Kim, Hongmin; Kwon, Kee Woong; Han, Seung Jung; Cho, Sang-Nae; Coler, Rhea N; Reed, Steven G; Shin, Sung Jae

    2016-04-27

    The majority of tuberculosis (TB) vaccine candidates advanced to clinical trials have been evaluated preclinically using laboratory-adapted strains. However, it has been proposed that challenge with clinical isolates in preclinical vaccine testing could provide further and more practical validation. Here, we tested the ID93/GLA-SE TB vaccine candidate against the clinical Mycobacterium tuberculosis (Mtb) strain K (Mtb K) belonging to the Beijing family, the most prevalent Mtb strain in South Korea. Mice immunized with ID93/GLA-SE exhibited a significant reduction in bacteria and reduced lung inflammation against Mtb K when compared to non-immunized controls. In addition, we analyzed the immune responses in the lungs of ID93/GLA-SE-immunized mice, and showed that ID93/GLA-SE was able to elicit sustained Th1-biased immune responses including antigen-specific multifunctional CD4(+) T cell co-producing IFN-γ, TNF-α, and IL-2 as well as a high magnitude of IFN-γ response for up to 10 weeks post-challenge. Notably, further investigation of T cell subsets in the lung following challenge showed remarkable generation of CD8(+) central memory T cells by ID93/GLA-SE-immunization. Our findings showed that ID93/GLA-SE vaccine confers a high level of robust protection against the hypervirulent Mtb Beijing infection which was characterized by pulmonary Th1-polarized T-cell immune responses. These findings may also provide relevant information for potential utility of this vaccine candidate in East-Asian countries where the Beijing genotype is highly prevalent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Spanish human papillomavirus vaccine consensus group: a working model.

    Science.gov (United States)

    Cortés-Bordoy, Javier; Martinón-Torres, Federico

    2010-08-01

    Successful implementation of Human Papillomavirus (HPV) vaccine in each country can only be achieved from a complementary and synergistic perspective, integrating all the different points of view of the diverse related professionals. It is this context where the Spanish HPV Vaccine Consensus Group (Grupo Español de Consenso sobre la Vacuna VPH, GEC-VPH) was created. GEC-VPH philosophy, objectives and experience are reported in this article, with particular attention to the management of negative publicity and anti-vaccine groups. Initiatives as GEC-VPH--adapted to each country's particular idiosyncrasies--might help to overcome the existing barriers and to achieve wide and early implementation of HPV vaccination.

  15. Bordetella pertussis, B. parapertussis, vaccines and cycles of whooping cough.

    Science.gov (United States)

    Bouchez, Valérie; Guiso, Nicole

    2015-10-01

    Whooping cough is a vaccine-preventable disease due to Bordetella pertussis and B. parapertussis. This highly contagious respiratory disease occurs through epidemic cycles every 3-5 years and vaccination did not change this frequency. Models suggest that the cyclic increase of susceptibles is linked to demographic differences and different vaccine coverage. However, differences in surveillance of the disease as well as adaptation of the agents of the disease to their human hosts and to vaccine pressure might also play an important role. These parameters are discussed in this review. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Economic impact of dengue illness and the cost-effectiveness of future vaccination programs in Singapore.

    Directory of Open Access Journals (Sweden)

    Luis R Carrasco

    2011-12-01

    Full Text Available BACKGROUND: Dengue illness causes 50-100 million infections worldwide and threatens 2.5 billion people in the tropical and subtropical regions. Little is known about the disease burden and economic impact of dengue in higher resourced countries or the cost-effectiveness of potential dengue vaccines in such settings. METHODS AND FINDINGS: We estimate the direct and indirect costs of dengue from hospitalized and ambulatory cases in Singapore. We consider inter alia the impacts of dengue on the economy using the human-capital and the friction cost methods. Disease burden was estimated using disability-adjusted life years (DALYs and the cost-effectiveness of a potential vaccine program was evaluated. The average economic impact of dengue illness in Singapore from 2000 to 2009 in constant 2010 US$ ranged between $0.85 billion and $1.15 billion, of which control costs constitute 42%-59%. Using empirically derived disability weights, we estimated an annual average disease burden of 9-14 DALYs per 100 000 habitants, making it comparable to diseases such as hepatitis B or syphilis. The proportion of symptomatic dengue cases detected by the national surveillance system was estimated to be low, and to decrease with age. Under population projections by the United Nations, the price per dose threshold for which vaccines stop being more cost-effective than the current vector control program ranged from $50 for mass vaccination requiring 3 doses and only conferring 10 years of immunity to $300 for vaccination requiring 2 doses and conferring lifetime immunity. The thresholds for these vaccine programs to not be cost-effective for Singapore were $100 and $500 per dose respectively. CONCLUSIONS: Dengue illness presents a serious economic and disease burden in Singapore. Dengue vaccines are expected to be cost-effective if reasonably low prices are adopted and will help to reduce the economic and disease burden of dengue in Singapore substantially.

  17. Occurrence of Autoimmune Diseases Related to the Vaccine against Yellow Fever

    Directory of Open Access Journals (Sweden)

    Ana Cristina Vanderley Oliveira

    2014-01-01

    Full Text Available Yellow fever is an infectious disease, endemic in South America and Africa. This is a potentially serious illness, with lethality between 5 and 40% of cases. The most effective preventive vaccine is constituted by the attenuated virus strain 17D, developed in 1937. It is considered safe and effective, conferring protection in more than 90% in 10 years. Adverse effects are known as mild reactions (allergies, transaminases transient elevation, fever, headache and severe (visceral and neurotropic disease related to vaccine. However, little is known about its potential to induce autoimmune responses. This systematic review aims to identify the occurrence of autoinflammatory diseases related to 17D vaccine administration. Six studies were identified describing 13 possible cases. The diseases were Guillain-Barré syndrome, multiple sclerosis, multiple points evanescent syndrome, acute disseminated encephalomyelitis, autoimmune hepatitis, and Kawasaki disease. The data suggest that 17D vaccination may play a role in the mechanism of loss of self-tolerance.

  18. Immunogenic multistage recombinant protein vaccine confers partial protection against experimental toxoplasmosis mimicking natural infection in murine model

    Directory of Open Access Journals (Sweden)

    Yaprak Gedik

    2016-01-01

    To generate a protective vaccine against toxoplasmosis, multistage vaccines and usage of challenging models mimicking natural route of infection are critical cornerstones. In this study, we generated a BAG1 and GRA1 multistage vaccine that induced strong immune response in which the protection was not at anticipated level. In addition, the murine model was orally challenged with tissue cysts to mimic natural route of infection.

  19. A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus.

    Directory of Open Access Journals (Sweden)

    Yoshimi Tsuda

    2011-08-01

    Full Text Available Human outbreaks of Ebola virus (EBOV are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees are an important source of EBOV transmission to humans due to increased hunting of wildlife including the 'bush-meat' trade. Cytomegalovirus (CMV is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes.We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a 'proof-of-concept' for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV vector expressing a CD8+ T cell epitope from the nucleoprotein (NP of Zaire ebolavirus (ZEBOV (MCMV/ZEBOV-NP(CTL. MCMV/ZEBOV-NP(CTL induced high levels of long-lasting (>8 months CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection.This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for 'disseminating' CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.

  20. Dengue, zika, chikungunya and the development of vaccines

    OpenAIRE

    Isabel N. Kantor

    2018-01-01

    Dengue (DENV), zika (ZIKV) and chikungunya (CHIKV), three arbovirosis transmitted by Aedes mosquitoes, have spread in recent decades in humid tropical and subtropical zones. Dengue is epidemic in subtropical areas of Argentina. DENV infection confers lasting immunity against the infecting serotype but increases the risk of serious disease upon reinfection by any of the other three. The recombinant tetravalent vaccine Dengvaxia® prevents severe dengue and hospitalization in seropositive subjec...

  1. Adaptation and Livelihood Resilience | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Extrants. Articles de revue. Engendering adaptation to climate variability in Gujarat, India. Rapports. Exploring linkages between adaptation and development : proceedings of The Scientific and Technical Conference On Adapting to Climate Change in Asia, August 29-30, 2009, Hotel Hyatt Regency, Kathmandu, Nepal ...

  2. Spatial and environmental connectivity analysis in a cholera vaccine trial.

    Science.gov (United States)

    Emch, Michael; Ali, Mohammad; Root, Elisabeth D; Yunus, Mohammad

    2009-02-01

    This paper develops theory and methods for vaccine trials that utilize spatial and environmental information. Satellite imagery is used to identify whether households are connected to one another via water bodies in a study area in rural Bangladesh. Then relationships between neighborhood-level cholera vaccine coverage and placebo incidence and neighborhood-level spatial variables are measured. The study hypothesis is that unvaccinated people who are environmentally connected to people who have been vaccinated will be at lower risk compared to unvaccinated people who are environmentally connected to people who have not been vaccinated. We use four datasets including: a cholera vaccine trial database, a longitudinal demographic database of the rural population from which the vaccine trial participants were selected, a household-level geographic information system (GIS) database of the same study area, and high resolution Quickbird satellite imagery. An environmental connectivity metric was constructed by integrating the satellite imagery with the vaccine and demographic databases linked with GIS. The results show that there is a relationship between neighborhood rates of cholera vaccination and placebo incidence. Thus, people are indirectly protected when more people in their environmentally connected neighborhood are vaccinated. This result is similar to our previous work that used a simpler Euclidean distance neighborhood to measure neighborhood vaccine coverage [Ali, M., Emch, M., von Seidlein, L., Yunus, M., Sack, D. A., Holmgren, J., et al. (2005). Herd immunity conferred by killed oral cholera vaccines in Bangladesh. Lancet, 366(9479), 44-49]. Our new method of measuring environmental connectivity is more precise since it takes into account the transmission mode of cholera and therefore this study validates our assertion that the oral cholera vaccine provides indirect protection in addition to direct protection.

  3. Antibodies to parvovirus, distemper virus and adenovirus conferred to household dogs using commercial combination vaccines containing Leptospira bacterin.

    Science.gov (United States)

    Taguchi, M; Namikawa, K; Maruo, T; Lynch, J; Sahara, H

    2010-12-11

    To examine how the inclusion (+) or exclusion (-) of inactivated Leptospira antigens in a vaccine for canine parvovirus type 2 (CPV-2), canine distemper virus (CDV) and canine adenovirus type 2 (CAdV-2) affects antibody titres to CPV-2, CDV and CAdV-1 antigens, household dogs were vaccinated with commercially available vaccines from one of three manufacturers. CPV-2, CDV and CAdV-1 antibody titres were measured 11 to 13 months later and compared within three different age groups and three different bodyweight groups. There were significant differences between CPV-2 antibody titres in dogs vaccinated with (+) vaccine and those vaccinated with (-) vaccine for two products in the two-year-old group and for one product in the greater than seven-year-old group; no significant differences were seen that could be attributed to bodyweight. No differences in CDV antibody titres were observed within age groups, but a significant difference was seen in the 11 to 20 kg weight group for one product. Significant differences in CAdV-1 antibody titres were seen for one product in both the two-year-old group and the ≤10 kg weight group.

  4. Rational design of a live attenuated dengue vaccine: 2'-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques.

    Directory of Open Access Journals (Sweden)

    Roland Züst

    Full Text Available Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2'-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2'-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2'-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response.

  5. An M2e-based synthetic peptide vaccine for influenza A virus confers heterosubtypic protection from lethal virus challenge.

    Science.gov (United States)

    Ma, Ji-Hong; Yang, Fu-Ru; Yu, Hai; Zhou, Yan-Jun; Li, Guo-Xin; Huang, Meng; Wen, Feng; Tong, Guangzhi

    2013-07-09

    Vaccination is considered as the most effective preventive method to control influenza. The hallmark of influenza virus is the remarkable variability of its major surface glycoproteins, HA and NA, which allows the virus to evade existing anti-influenza immunity in the target population. So it is necessary to develop a novel vaccine to control animal influenza virus. Also we know that the ectodomain of influenza matrix protein 2 (M2e) is highly conserved in animal influenza A viruses, so a vaccine based on the M2e could avoid several drawbacks of the traditional vaccines. In this study we designed a novel tetra-branched multiple antigenic peptide (MAP) based vaccine, which was constructed by fusing four copies of M2e to one copy of foreign T helper (Th) cell epitope, and then investigated its immune responses. Our results show that the M2e-MAP induced strong M2e-specific IgG antibody,which responses following 2 doses immunization in the presence of Freunds' adjuvant. M2e-MAP vaccination limited viral replication substantially. Also it could attenuate histopathological damage in the lungs of challenged mice and counteracted weight loss. M2e-MAP-based vaccine protected immunized mice against the lethal challenge with PR8 virus. Based on these findings, M2e-MAP-based vaccine seemed to provide useful information for the research of M2e-based influenza vaccine. Also it show huge potential to study vaccines for other similarly viruses.

  6. Vaccines for preventing malaria (blood-stage).

    Science.gov (United States)

    Graves, P; Gelband, H

    2006-10-18

    A malaria vaccine is needed because of the heavy burden of mortality and morbidity due to this disease. This review describes the results of trials of blood (asexual)-stage vaccines. Several are under development, but only one (MSP/RESA, also known as Combination B) has been tested in randomized controlled trials. To assess the effect of blood-stage malaria vaccines in preventing infection, disease, and death. In March 2006, we searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (The Cochrane Library 2006, Issue 1), MEDLINE, EMBASE, LILACS, and the Science Citation Index. We also searched conference proceedings and reference lists of articles, and contacted organizations and researchers in the field. Randomized controlled trials comparing blood-stage vaccines (other than SPf66) against P. falciparum, P. vivax, P. malariae, or P. ovale with placebo, control vaccine, or routine antimalarial control measures in people of any age receiving a challenge malaria infection. Both authors independently assessed trial quality and extracted data. Results for dichotomous data were expressed as relative risks (RR) with 95% confidence intervals (CI). Five trials of MSP/RESA vaccine with 217 participants were included; all five reported on safety, and two on efficacy. No severe or systemic adverse effects were reported at doses of 13 to 15 microg of each antigen (39 to 45 microg total). One small efficacy trial with 17 non-immune participants with blood-stage parasites showed no reduction or delay in parasite growth rates after artificial challenge. In the second efficacy trial in 120 children aged five to nine years in Papua New Guinea, episodes of clinical malaria were not reduced, but MSP/RESA significantly reduced parasite density only in children who had not been pretreated with an antimalarial drug (sulfadoxine-pyrimethamine). Infections with the 3D7 parasite subtype of MSP2 (the variant included in the vaccine) were reduced (RR 0.38, 95% CI 0.26 to

  7. Control of bovine ringworm by vaccination in Norway.

    Science.gov (United States)

    Lund, Arve; Bratberg, Anna Marie; Næss, Bjørn; Gudding, Roar

    2014-03-15

    Bovine ringworm caused by Trichophyton verrucosum is a notifiable disease in Norway. New infected herds are reported to the Norwegian Food Safety Authority. To limit spread of the disease, restrictions are imposed on holdings including access to common pastures and sale of live animals. Bovine ringworm has been endemic in the Norwegian dairy population for decades. Since 1980 a vaccine (Bovilis Ringvac LTF-130, Merck Animal Health) has been available. The vaccine contains an attenuated strain of T. verrucosum and stimulates humoral and cellular immune responses conferring protection. Efficacy and safety of the vaccine have been evaluated in experimental and field studies. Vaccination campaigns in densely populated counties have contributed to a substantial decrease in number of ringworm outbreaks. The annual incidence of new infected herds decreased from 1.7% in 1980 to 0.043% in 2004. Few herds remained with restrictions and a "mopping up" project was established to offer assistance specifically to these holdings. A milestone was achieved in 2009; no new herds with cases of clinical ringworm caused by T. verrucosum were reported to the authorities. By end of 2012, there are only two herds with restrictions. Vaccination during the last 30 years has been a key control measure in the effort to prevent disease outbreaks and eradicate bovine ringworm in Norway. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Safety and immunogenicity of a novel quadrivalent meningococcal CRM-conjugate vaccine given concomitantly with routine vaccinations in infants.

    Science.gov (United States)

    Klein, Nicola P; Reisinger, Keith S; Johnston, William; Odrljin, Tatjana; Gill, Christopher J; Bedell, Lisa; Dull, Peter

    2012-01-01

    In phase II studies, MenACWY-CRM elicited robust immunologic responses in young infants. We now present results from our pivotal phase III infant immunogenicity/safety study. In this open-label phase III study, we randomized full-term 2-month-old infants to 4 doses of MenACWY-CRM coadministered with routine vaccines at 2, 4, 6, and 12 months of age or with routine vaccines alone. We monitored for local and systemic reactions and serious adverse events among all study participants and evaluated for sufficiency of the immune responses to MenACWY-CRM through serum bactericidal activity assay with human complement. Bactericidal antibodies were present in 94% to 100% of subjects against each of the serogroups in MenACWY-CRM after the 4-dose series and were 67% to 97% after the first 3 doses. Geometric mean titers were higher after the fourth dose of MenACWY-CRM compared with a single dose of MenACWY-CRM at 12 months of age for all serogroups (range of ratios, 4.5-38). Responses to 3 doses of routine vaccines coadministered with MenACWY-CRM were noninferior to routine vaccinations alone, except for small differences in pneumococcal serotype 6B responses after dose 3 but not dose 4 and pertactin after dose 3. Inclusion of MenACWY-CRM did not affect the safety or reactogenicity profiles of the routine infant vaccine series. A 4-dose series of MenACWY-CRM was highly immunogenic and well tolerated in young infants, and it can be coadministered with routine infant vaccines. Substantial immunity was conferred after the first 3 doses administered at 2, 4, and 6 months of age.

  9. Recombinant Lipoproteins as Novel Vaccines with Intrinsic Adjuvant.

    Science.gov (United States)

    Chong, Pele; Huang, Jui-Hsin; Leng, Chih-Hsiang; Liu, Shih-Jen; Chen, Hsin-Wei

    2015-01-01

    A core platform technology for high production of recombinant lipoproteins with built-in immunostimulator for novel subunit vaccine development has been established. This platform technology has the following advantages: (1) easily convert antigen into lipidated recombinant protein using a fusion sequence containing lipobox and express high level (50-150mg/L) in Escherichia coli; (2) a robust high-yield up- and downstream bioprocess for lipoprotein production is successfully developed to devoid endotoxin contamination; (3) the lipid moiety of recombinant lipoproteins, which is identical to that of bacterial lipoproteins is recognized as danger signals by the immune system (Toll-like receptor 2 agonist), so both innate and adaptive immune responses can be induced by lipoproteins; and (4) successfully demonstrate the feasibility and safety of this core platform technology in meningococcal group B subunit vaccine, dengue subunit vaccine, novel subunit vaccine against Clostridium difficile-associated diseases, and HPV-based immunotherapeutic vaccines in animal model studies. © 2015 Elsevier Inc. All rights reserved.

  10. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    International Nuclear Information System (INIS)

    Aurisicchio, Luigi; Ciliberto, Gennaro

    2011-01-01

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost

  11. Invitro immune responses in children following BCG vaccination

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi V

    2006-01-01

    Full Text Available Introduction: There is still no consensus on the efficacy of BCG vaccine in the prevention of tuberculosis. This study therefore addressed the question of the magnitude of immunity afforded by BCG, by studying the effector mechanisms of protection in children. The main objectives were to assess the degree of immunity conferred by BCG vaccine in children and to identify the most immunogenic antigen(s of BCG by conducting in-vitro studies. Materials and methods: Children in the age-group of 1 to 10 years, were categorized: (A normal, and vaccinated with BCG during the first year, n=45, (B normal, without scar and with no evident history of vaccination, n=31: and (C children admitted in the hospital with a confirmed diagnosis of tuberculosis, n=31. Fractions of BCG were obtained by lysis, sonication, separation by gel chromatography, HPLC and confirmed by SDS-PAGE. In lymphoproliferative assays PBMC were cultured and stimulated with either Concanavalin-A or Tuberculin or the fractions of BCG. Stimulation indices (SI in lymphoproliferation, CD4/CD8 cells, levels of Interferon-γ (IFN- γ in the culture supernatants were measured by ELISA. Results: The vaccinated children displayed significantly high (P< 0.05 mean values of SI in LTT, CD4/CD8 cell ratio against the unfractionated, 67kDa fraction and BCG-CF Ags. While 100% of the vaccinated children had positive lymphoproliferation indices to BCG-CF, only 8.3% of the unvaccinated children were positive. Conclusion: Some of the components of BCG induced a strong Thl cell response in children. These immunogenic antigens were present in the whole cell lysate. The use of BCG vaccine for tuberculosis is worthwhile till a new vaccine is developed.

  12. Journey to vaccination: a protocol for a multinational qualitative study.

    Science.gov (United States)

    Wheelock, Ana; Miraldo, Marisa; Parand, Anam; Vincent, Charles; Sevdalis, Nick

    2014-01-31

    In the past two decades, childhood vaccination coverage has increased dramatically, averting an estimated 2-3 million deaths per year. Adult vaccination coverage, however, remains inconsistently recorded and substandard. Although structural barriers are known to limit coverage, social and psychological factors can also affect vaccine uptake. Previous qualitative studies have explored beliefs, attitudes and preferences associated with seasonal influenza (flu) vaccination uptake, yet little research has investigated how participants' context and experiences influence their vaccination decision-making process over time. This paper aims to provide a detailed account of a mixed methods approach designed to understand the wider constellation of social and psychological factors likely to influence adult vaccination decisions, as well as the context in which these decisions take place, in the USA, the UK, France, India, China and Brazil. We employ a combination of qualitative interviewing approaches to reach a comprehensive understanding of the factors influencing vaccination decisions, specifically seasonal flu and tetanus. To elicit these factors, we developed the journey to vaccination, a new qualitative approach anchored on the heuristics and biases tradition and the customer journey mapping approach. A purposive sampling strategy is used to select participants who represent a range of key sociodemographic characteristics. Thematic analysis will be used to analyse the data. Typical journeys to vaccination will be proposed. Vaccination uptake is significantly influenced by social and psychological factors, some of which are under-reported and poorly understood. This research will provide a deeper understanding of the barriers and drivers to adult vaccination. Our findings will be published in relevant peer-reviewed journals and presented at academic conferences. They will also be presented as practical recommendations at policy and industry meetings and healthcare

  13. Critical dynamics in population vaccinating behavior.

    Science.gov (United States)

    Pananos, A Demetri; Bury, Thomas M; Wang, Clara; Schonfeld, Justin; Mohanty, Sharada P; Nyhan, Brendan; Salathé, Marcel; Bauch, Chris T

    2017-12-26

    Vaccine refusal can lead to renewed outbreaks of previously eliminated diseases and even delay global eradication. Vaccinating decisions exemplify a complex, coupled system where vaccinating behavior and disease dynamics influence one another. Such systems often exhibit critical phenomena-special dynamics close to a tipping point leading to a new dynamical regime. For instance, critical slowing down (declining rate of recovery from small perturbations) may emerge as a tipping point is approached. Here, we collected and geocoded tweets about measles-mumps-rubella vaccine and classified their sentiment using machine-learning algorithms. We also extracted data on measles-related Google searches. We find critical slowing down in the data at the level of California and the United States in the years before and after the 2014-2015 Disneyland, California measles outbreak. Critical slowing down starts growing appreciably several years before the Disneyland outbreak as vaccine uptake declines and the population approaches the tipping point. However, due to the adaptive nature of coupled behavior-disease systems, the population responds to the outbreak by moving away from the tipping point, causing "critical speeding up" whereby resilience to perturbations increases. A mathematical model of measles transmission and vaccine sentiment predicts the same qualitative patterns in the neighborhood of a tipping point to greatly reduced vaccine uptake and large epidemics. These results support the hypothesis that population vaccinating behavior near the disease elimination threshold is a critical phenomenon. Developing new analytical tools to detect these patterns in digital social data might help us identify populations at heightened risk of widespread vaccine refusal. Copyright © 2017 the Author(s). Published by PNAS.

  14. Immunogenicity and protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Shufang Fan

    2009-05-01

    Full Text Available The continued spread of highly pathogenic H5N1 influenza viruses among poultry and wild birds, together with the emergence of drug-resistant variants and the possibility of human-to-human transmission, has spurred attempts to develop an effective vaccine. Inactivated subvirion or whole-virion H5N1 vaccines have shown promising immunogenicity in clinical trials, but their ability to elicit protective immunity in unprimed human populations remains unknown. A cold-adapted, live attenuated vaccine with the hemagglutinin (HA and neuraminidase (NA genes of an H5N1 virus A/VN/1203/2004 (clade 1 was protective against the pulmonary replication of homologous and heterologous wild-type H5N1 viruses in mice and ferrets. In this study, we used reverse genetics to produce a cold-adapted, live attenuated H5N1 vaccine (AH/AAca that contains HA and NA genes from a recent H5N1 isolate, A/Anhui/2/05 virus (AH/05 (clade 2.3, and the backbone of the cold-adapted influenza H2N2 A/AnnArbor/6/60 virus (AAca. AH/AAca was attenuated in chickens, mice, and monkeys, and it induced robust neutralizing antibody responses as well as HA-specific CD4+ T cell immune responses in rhesus macaques immunized twice intranasally. Importantly, the vaccinated macaques were fully protected from challenge with either the homologous AH/05 virus or a heterologous H5N1 virus, A/bar-headed goose/Qinghai/3/05 (BHG/05; clade 2.2. These results demonstrate for the first time that a cold-adapted H5N1 vaccine can elicit protective immunity against highly pathogenic H5N1 virus infection in a nonhuman primate model and provide a compelling argument for further testing of double immunization with live attenuated H5N1 vaccines in human trials.

  15. Effects of adjuvant Montanide™ ISA 763 A VG in rainbow trout injection vaccinated against Yersinia ruckeri

    DEFF Research Database (Denmark)

    Jaafar, Rzgar M; Chettri, Jiwan Kumar; Dalsgaard, Inger

    2015-01-01

    Enteric redmouth disease (ERM) caused by the fish pathogen Yersinia ruckeri is a major threat to freshwater production of rainbow trout (Oncorhynchus mykiss) throughout all life stages. Injection vaccination of rainbow trout against Y. ruckeri infection has been shown to confer better protection...... fish (NonVac), 2) fish injected with a commercial vaccine (AquaVac(®) Relera™) (ComVac), 3) fish injected with an experimental vaccine (ExpVac), 4) fish injected with an experimental vaccine + adjuvant (ExpVacAdj) and 5) fish injected with adjuvant alone (Adj). Injection of the experimental vaccine...... of the adjuvant as the challenge produced 100% mortality in the NonVac group, 60% mortality in both of ComVac and Adj groups and only 13 and 2.5% mortalities in the ExpVac and the ExpVacAdj groups, respectively....

  16. Cold chain and virus-free chloroplast-made booster vaccine to confer immunity against different poliovirus serotypes.

    Science.gov (United States)

    Chan, Hui-Ting; Xiao, Yuhong; Weldon, William C; Oberste, Steven M; Chumakov, Konstantin; Daniell, Henry

    2016-11-01

    The WHO recommends complete withdrawal of oral polio vaccine (OPV) type 2 by April 2016 globally and replacing with at least one dose of inactivated poliovirus vaccine (IPV). However, high-cost, limited supply of IPV, persistent circulating vaccine-derived polioviruses transmission and need for subsequent boosters remain unresolved. To meet this critical need, a novel strategy of a low-cost cold chain-free plant-made viral protein 1 (VP1) subunit oral booster vaccine after single IPV dose is reported. Codon optimization of the VP1 gene enhanced expression by 50-fold in chloroplasts. Oral boosting of VP1 expressed in plant cells with plant-derived adjuvants after single priming with IPV significantly increased VP1-IgG1 and VP1-IgA titres when compared to lower IgG1 or negligible IgA titres with IPV injections. IgA plays a pivotal role in polio eradication because of its transmission through contaminated water or sewer systems. Neutralizing antibody titres (~3.17-10.17 log 2 titre) and seropositivity (70-90%) against all three poliovirus Sabin serotypes were observed with two doses of IPV and plant-cell oral boosters but single dose of IPV resulted in poor neutralization. Lyophilized plant cells expressing VP1 stored at ambient temperature maintained efficacy and preserved antigen folding/assembly indefinitely, thereby eliminating cold chain currently required for all vaccines. Replacement of OPV with this booster vaccine and the next steps in clinical translation of FDA-approved antigens and adjuvants are discussed. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Combination of pneumococcal surface protein A (PspA with whole cell pertussis vaccine increases protection against pneumococcal challenge in mice.

    Directory of Open Access Journals (Sweden)

    Maria Leonor S Oliveira

    Full Text Available Streptococcus pneumoniae is the leading cause of respiratory acute infections around the world. In Latin America, approximately 20,000 children under 5 years of age die of pneumococcal diseases annually. Pneumococcal surface protein A (PspA is among the best-characterized pneumococcal antigens that confer protection in animal models of pneumococcal infections and, as such, is a good alternative for the currently available conjugated vaccines. Efficient immune responses directed to PspA in animal models have already been described. Nevertheless, few low cost adjuvants for a subunit pneumococcal vaccine have been proposed to date. Here, we have tested the adjuvant properties of the whole cell Bordetella pertussis vaccine (wP that is currently part of the DTP (diphtheria-tetanus-pertussis vaccine administrated to children in several countries, as an adjuvant to PspA. Nasal immunization of BALB/c mice with a combination of PspA5 and wP or wP(low--a new generation vaccine that contains low levels of B. pertussis LPS--conferred protection against a respiratory lethal challenge with S. pneumoniae. Both PspA5-wP and PspA5-wP(low vaccines induced high levels of systemic and mucosal antibodies against PspA5, with similar profile, indicating no essential requirement for B. pertussis LPS in the adjuvant properties of wP. Accordingly, nasal immunization of C3H/HeJ mice with PspA5-wP conferred protection against the pneumococcal challenge, thus ruling out a role for TLR4 responses in the adjuvant activity and the protection mechanisms triggered by the vaccines. The high levels of anti-PspA5 antibodies correlated with increased cross-reactivity against PspAs from different clades and also reflected in cross-protection. In addition, passive immunization experiments indicated that antibodies played an important role in protection in this model. Finally, subcutaneous immunization with a combination of PspA5 with DTP(low protected mice against challenge with two

  18. Final report on the Copper Mountain conference on multigrid methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Copper Mountain Conference on Multigrid Methods was held on April 6-11, 1997. It took the same format used in the previous Copper Mountain Conferences on Multigrid Method conferences. Over 87 mathematicians from all over the world attended the meeting. 56 half-hour talks on current research topics were presented. Talks with similar content were organized into sessions. Session topics included: fluids; domain decomposition; iterative methods; basics; adaptive methods; non-linear filtering; CFD; applications; transport; algebraic solvers; supercomputing; and student paper winners.

  19. Applying Mathematical Tools to Accelerate Vaccine Development: Modeling Shigella Immune Dynamics

    Science.gov (United States)

    Davis, Courtney L.; Wahid, Rezwanul; Toapanta, Franklin R.; Simon, Jakub K.

    2013-01-01

    We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella’s outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design. PMID:23589755

  20. An innovative influenza vaccination policy: targeting last season's patients.

    Science.gov (United States)

    Yamin, Dan; Gavious, Arieh; Solnik, Eyal; Davidovitch, Nadav; Balicer, Ran D; Galvani, Alison P; Pliskin, Joseph S

    2014-05-01

    Influenza vaccination is the primary approach to prevent influenza annually. WHO/CDC recommendations prioritize vaccinations mainly on the basis of age and co-morbidities, but have never considered influenza infection history of individuals for vaccination targeting. We evaluated such influenza vaccination policies through small-world contact networks simulations. Further, to verify our findings we analyzed, independently, large-scale empirical data of influenza diagnosis from the two largest Health Maintenance Organizations in Israel, together covering more than 74% of the Israeli population. These longitudinal individual-level data include about nine million cases of influenza diagnosed over a decade. Through contact network epidemiology simulations, we found that individuals previously infected with influenza have a disproportionate probability of being highly connected within networks and transmitting to others. Therefore, we showed that prioritizing those previously infected for vaccination would be more effective than a random vaccination policy in reducing infection. The effectiveness of such a policy is robust over a range of epidemiological assumptions, including cross-reactivity between influenza strains conferring partial protection as high as 55%. Empirically, our analysis of the medical records confirms that in every age group, case definition for influenza, clinical diagnosis, and year tested, patients infected in the year prior had a substantially higher risk of becoming infected in the subsequent year. Accordingly, considering individual infection history in targeting and promoting influenza vaccination is predicted to be a highly effective supplement to the current policy. Our approach can also be generalized for other infectious disease, computer viruses, or ecological networks.

  1. An innovative influenza vaccination policy: targeting last season's patients.

    Directory of Open Access Journals (Sweden)

    Dan Yamin

    2014-05-01

    Full Text Available Influenza vaccination is the primary approach to prevent influenza annually. WHO/CDC recommendations prioritize vaccinations mainly on the basis of age and co-morbidities, but have never considered influenza infection history of individuals for vaccination targeting. We evaluated such influenza vaccination policies through small-world contact networks simulations. Further, to verify our findings we analyzed, independently, large-scale empirical data of influenza diagnosis from the two largest Health Maintenance Organizations in Israel, together covering more than 74% of the Israeli population. These longitudinal individual-level data include about nine million cases of influenza diagnosed over a decade. Through contact network epidemiology simulations, we found that individuals previously infected with influenza have a disproportionate probability of being highly connected within networks and transmitting to others. Therefore, we showed that prioritizing those previously infected for vaccination would be more effective than a random vaccination policy in reducing infection. The effectiveness of such a policy is robust over a range of epidemiological assumptions, including cross-reactivity between influenza strains conferring partial protection as high as 55%. Empirically, our analysis of the medical records confirms that in every age group, case definition for influenza, clinical diagnosis, and year tested, patients infected in the year prior had a substantially higher risk of becoming infected in the subsequent year. Accordingly, considering individual infection history in targeting and promoting influenza vaccination is predicted to be a highly effective supplement to the current policy. Our approach can also be generalized for other infectious disease, computer viruses, or ecological networks.

  2. 2009 MICROBIAL POPULATION BIOLOGY GORDON RESEARCH CONFERENCES JULY 19-24,2009

    Energy Technology Data Exchange (ETDEWEB)

    ANTHONY DEAN

    2009-07-24

    The 2009 Gordon Conference on Microbial Population Biology will cover a diverse range of cutting edge issues in the microbial sciences and beyond. Firmly founded in evolutionary biology and with a strongly integrative approach, past Conferences have covered a range of topics from the dynamics and genetics of adaptation to the evolution of mutation rate, community ecology, evolutionary genomics, altruism, and epidemiology. The 2009 Conference is no exception, and will include sessions on the evolution of infectious diseases, social evolution, the evolution of symbioses, experimental evolution, adaptive landscapes, community dynamics, and the evolution of protein structure and function. While genomic approaches continue to make inroads, broadening our knowledge and encompassing new questions, the conference will also emphasize the use of experimental approaches to test hypotheses decisively. As in the past, this Conference provides young scientists and graduate students opportunities to present their work in poster format and exchange ideas with leading investigators from a broad spectrum of disciplines. This meeting is never dull: some of the most significant and contentious issues in biology have been thrashed out here. The 2009 meeting will be no exception.

  3. GLA-AF, an emulsion-free vaccine adjuvant for pandemic influenza.

    Science.gov (United States)

    Clegg, Christopher H; Roque, Richard; Perrone, Lucy A; Rininger, Joseph A; Bowen, Richard; Reed, Steven G

    2014-01-01

    The ongoing threat from Influenza necessitates the development of new vaccine and adjuvant technologies that can maximize vaccine immunogenicity, shorten production cycles, and increase global vaccine supply. Currently, the most successful adjuvants for Influenza vaccines are squalene-based oil-in-water emulsions. These adjuvants enhance seroprotective antibody titers to homologous and heterologous strains of virus, and augment a significant dose sparing activity that could improve vaccine manufacturing capacity. As an alternative to an emulsion, we tested a simple lipid-based aqueous formulation containing a synthetic TLR4 ligand (GLA-AF) for its ability to enhance protection against H5N1 infection. GLA-AF was very effective in adjuvanting recombinant H5 hemagglutinin antigen (rH5) in mice and was as potent as the stable emulsion, SE. Both adjuvants induced similar antibody titers using a sub-microgram dose of rH5, and both conferred complete protection against a highly pathogenic H5N1 challenge. However, GLA-AF was the superior adjuvant in ferrets. GLA-AF stimulated a broader antibody response than SE after both the prime and boost immunization with rH5, and ferrets were better protected against homologous and heterologous strains of H5N1 virus. Thus, GLA-AF is a potent emulsion-free adjuvant that warrants consideration for pandemic influenza vaccine development.

  4. Comparison of potential protection conferred by three immunization strategies (protein/protein, DNA/DNA, and DNA/protein) against Brucella infection using Omp2b in BALB/c Mice.

    Science.gov (United States)

    Golshani, Maryam; Rafati, Sima; Nejati-Moheimani, Mehdi; Ghasemian, Melina; Bouzari, Saeid

    2016-12-25

    In the present study, immunogenicity and protective efficacy of the Brucella outer membrane protein 2b (Omp2b) was evaluated in BALB/c mice using Protein/Protein, DNA/DNA and DNA/Protein vaccine strategies. Immunization of mice with three vaccine regimens elicited a strong specific IgG response (higher IgG2a titers over IgG1 titers) and provided Th1-oriented immune response. Vaccination of BALB/c mice with the DNA/Pro regimen induced higher levels of IFN-γ/IL-2 and conferred more protection levels against B. melitenisis and B. abortus challenge than did the protein or DNA alone. In conclusion, Omp2b is able to stimulate specific immune responses and to confer cross protection against B. melitensis and B. abortus infection. Therefore, it could be introduced as a new potential candidate for the development of a subunit vaccine against Brucella infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Against which human papillomavirus types shall we vaccinate and screen? The international perspective.

    NARCIS (Netherlands)

    Munoz, N.; Bosch, F.X.; Castellsague, X; Diaz, M; Sanjose, de S; Hammouda, D; Shah, K.V.; Meijer, C.J.L.M.

    2004-01-01

    At least 15 types of HPV have been associated with cervical cancer, but current HPV vaccines confer only type-specific immunity. To determine geographic variations in the HPV type distribution in cervical cancer, we carried out a pooled analysis of data from an international survey of HPV types in

  6. Overexpression of a Mycobacterium ulcerans Ag85B-EsxH Fusion Protein in Recombinant BCG Improves Experimental Buruli Ulcer Vaccine Efficacy.

    Directory of Open Access Journals (Sweden)

    Bryan E Hart

    2016-12-01

    Full Text Available Buruli ulcer (BU vaccine design faces similar challenges to those observed during development of prophylactic tuberculosis treatments. Multiple BU vaccine candidates, based upon Mycobacterium bovis BCG, altered Mycobacterium ulcerans (MU cells, recombinant MU DNA, or MU protein prime-boosts, have shown promise by conferring transient protection to mice against the pathology of MU challenge. Recently, we have shown that a recombinant BCG vaccine expressing MU-Ag85A (BCG MU-Ag85A displayed the highest level of protection to date, by significantly extending the survival time of MU challenged mice compared to BCG vaccination alone. Here we describe the generation, immunogenicity testing, and evaluation of protection conferred by a recombinant BCG strain which overexpresses a fusion of two alternative MU antigens, Ag85B and the MU ortholog of tuberculosis TB10.4, EsxH. Vaccination with BCG MU-Ag85B-EsxH induces proliferation of Ag85 specific CD4+ T cells in greater numbers than BCG or BCG MU-Ag85A and produces IFNγ+ splenocytes responsive to whole MU and recombinant antigens. In addition, anti-Ag85A and Ag85B IgG humoral responses are significantly enhanced after administration of the fusion vaccine compared to BCG or BCG MU-Ag85A. Finally, mice challenged with MU following a single subcutaneous vaccination with BCG MU-Ag85B-EsxH display significantly less bacterial burden at 6 and 12 weeks post-infection, reduced histopathological tissue damage, and significantly longer survival times compared to vaccination with either BCG or BCG MU-Ag85A. These results further support the potential of BCG as a foundation for BU vaccine design, whereby discovery and recombinant expression of novel immunogenic antigens could lead to greater anti-MU efficacy using this highly safe and ubiquitous vaccine.

  7. Projected Impact of Dengue Vaccination in Yucatán, Mexico.

    Directory of Open Access Journals (Sweden)

    Thomas J Hladish

    2016-05-01

    Full Text Available Dengue vaccines will soon provide a new tool for reducing dengue disease, but the effectiveness of widespread vaccination campaigns has not yet been determined. We developed an agent-based dengue model representing movement of and transmission dynamics among people and mosquitoes in Yucatán, Mexico, and simulated various vaccine scenarios to evaluate effectiveness under those conditions. This model includes detailed spatial representation of the Yucatán population, including the location and movement of 1.8 million people between 375,000 households and 100,000 workplaces and schools. Where possible, we designed the model to use data sources with international coverage, to simplify re-parameterization for other regions. The simulation and analysis integrate 35 years of mild and severe case data (including dengue serotype when available, results of a seroprevalence survey, satellite imagery, and climatological, census, and economic data. To fit model parameters that are not directly informed by available data, such as disease reporting rates and dengue transmission parameters, we developed a parameter estimation toolkit called AbcSmc, which we have made publicly available. After fitting the simulation model to dengue case data, we forecasted transmission and assessed the relative effectiveness of several vaccination strategies over a 20 year period. Vaccine efficacy is based on phase III trial results for the Sanofi-Pasteur vaccine, Dengvaxia. We consider routine vaccination of 2, 9, or 16 year-olds, with and without a one-time catch-up campaign to age 30. Because the durability of Dengvaxia is not yet established, we consider hypothetical vaccines that confer either durable or waning immunity, and we evaluate the use of booster doses to counter waning. We find that plausible vaccination scenarios with a durable vaccine reduce annual dengue incidence by as much as 80% within five years. However, if vaccine efficacy wanes after administration, we

  8. Projected Impact of Dengue Vaccination in Yucatán, Mexico.

    Science.gov (United States)

    Hladish, Thomas J; Pearson, Carl A B; Chao, Dennis L; Rojas, Diana Patricia; Recchia, Gabriel L; Gómez-Dantés, Héctor; Halloran, M Elizabeth; Pulliam, Juliet R C; Longini, Ira M

    2016-05-01

    Dengue vaccines will soon provide a new tool for reducing dengue disease, but the effectiveness of widespread vaccination campaigns has not yet been determined. We developed an agent-based dengue model representing movement of and transmission dynamics among people and mosquitoes in Yucatán, Mexico, and simulated various vaccine scenarios to evaluate effectiveness under those conditions. This model includes detailed spatial representation of the Yucatán population, including the location and movement of 1.8 million people between 375,000 households and 100,000 workplaces and schools. Where possible, we designed the model to use data sources with international coverage, to simplify re-parameterization for other regions. The simulation and analysis integrate 35 years of mild and severe case data (including dengue serotype when available), results of a seroprevalence survey, satellite imagery, and climatological, census, and economic data. To fit model parameters that are not directly informed by available data, such as disease reporting rates and dengue transmission parameters, we developed a parameter estimation toolkit called AbcSmc, which we have made publicly available. After fitting the simulation model to dengue case data, we forecasted transmission and assessed the relative effectiveness of several vaccination strategies over a 20 year period. Vaccine efficacy is based on phase III trial results for the Sanofi-Pasteur vaccine, Dengvaxia. We consider routine vaccination of 2, 9, or 16 year-olds, with and without a one-time catch-up campaign to age 30. Because the durability of Dengvaxia is not yet established, we consider hypothetical vaccines that confer either durable or waning immunity, and we evaluate the use of booster doses to counter waning. We find that plausible vaccination scenarios with a durable vaccine reduce annual dengue incidence by as much as 80% within five years. However, if vaccine efficacy wanes after administration, we find that there

  9. Evaluation of live attenuated S79 mumps vaccine effectiveness in mumps outbreaks: a matched case-control study.

    Science.gov (United States)

    Fu, Chuan-xi; Nie, Jun; Liang, Jian-hua; Wang, Ming

    2009-02-05

    Mumps virus infection is a potentially serious viral infection of childhood and early adulthood. In China, live attenuated S(79) mumps vaccine has been licensed for pediatric use since 1990. The objective of this study was to determine the effectiveness of live attenuated S(79) mumps vaccine against clinical mumps in outbreaks. Cases were selected from mumps outbreaks in schools in Guangzhou between 2004 and 2005. Each case was matched by gender, age and classroom. Vaccination information was obtained from Children's EPI Administrative Computerized System. Vaccine effectiveness (VE) was calculated for 1 or 2 doses of S(79) vaccine with 95% confidence intervals (CI). One hundred and ninety-four cases and 194 controls were enrolled into the study. VE of the S(79) mumps vaccine for 1 dose versus 0 confer protection 80.4% (95% CI, 60.0%-90.4%) and VEs against mumps in outbreaks for 1 dose of mumps vaccine are similar among those children aged 4-9 years and aged over 10 years old. The live attenuated S(79) mumps vaccine can be effective in preventing clinical mumps outbreaks.

  10. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery.

    Science.gov (United States)

    Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke

    2017-02-06

    In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.

  11. Protection against bovine tuberculosis induced by oral vaccination of cattle with Mycobacterium bovis BCG is not enhanced by co-administration of mycobacterial protein vaccines.

    Science.gov (United States)

    Wedlock, D Neil; Aldwell, Frank E; Vordermeier, H Martin; Hewinson, R Glyn; Buddle, Bryce M

    2011-12-15

    Mycobacterium bovis bacille Calmette-Guérin (BCG) delivered to calves by the oral route in a formulated lipid matrix has been previously shown to induce protection against bovine tuberculosis. A study was conducted in cattle to determine if a combination of a low dose of oral BCG and a protein vaccine could induce protective immunity to tuberculosis while not sensitising animals to tuberculin. Groups of calves (10 per group) were vaccinated by administering 2 × 10(7)colony forming units (CFU) of BCG orally or a combination of 2 × 10(7)CFU oral BCG and a protein vaccine comprised of M. bovis culture filtrate proteins (CFP) formulated with the adjuvants Chitin and Gel 01 and delivered by the intranasal route, or CFP formulated with Emulsigen and the TLR2 agonist Pam(3)CSK(4) and administered by the subcutaneous (s.c.) route. Two further groups were vaccinated with the CFP/Chitin/Gel 01 or CFP/Emulsigen/Pam(3)CSK(4) vaccines alone. Positive control groups were given 10(8)CFU oral BCG or 10(6)CFU s.c. BCG while a negative control group was non-vaccinated. All animals were challenged with M. bovis 15 weeks after vaccination and euthanized and necropsied at 16 weeks following challenge. Groups of cattle vaccinated with s.c. BCG, 10(8)CFU or 2 × 10(7)CFU oral BCG showed significant reductions in seven, three and four pathological or microbiological disease parameters, respectively, compared to the results for the non-vaccinated group. There was no evidence of protection in calves vaccinated with the combination of oral BCG and CFP/Emulsigen/Pam(3)CSK(4) or oral BCG and CFP/Chitin/Gel 01 or vaccinated with the protein vaccines alone. Positive responses in the comparative cervical skin test at 12 weeks after vaccination were only observed in animals vaccinated with s.c. BCG, 10(8)CFU oral BCG or a combination of 2 × 10(7)CFU oral BCG and CFP/Chitin/Gel 01. In conclusion, co-administration of a protein vaccine, administered by either systemic or mucosal routes with oral

  12. Cost-effectiveness of canine vaccination to prevent human rabies in rural Tanzania.

    Science.gov (United States)

    Fitzpatrick, Meagan C; Hampson, Katie; Cleaveland, Sarah; Mzimbiri, Imam; Lankester, Felix; Lembo, Tiziana; Meyers, Lauren A; Paltiel, A David; Galvani, Alison P

    2014-01-21

    The annual mortality rate of human rabies in rural Africa is 3.6 deaths per 100 000 persons. Rabies can be prevented with prompt postexposure prophylaxis, but this is costly and often inaccessible in rural Africa. Because 99% of human exposures occur through rabid dogs, canine vaccination also prevents transmission of rabies to humans. To evaluate the cost-effectiveness of rabies control through annual canine vaccination campaigns in rural sub-Saharan Africa. We model transmission dynamics in dogs and wildlife and assess empirical uncertainty in the biological variables to make probability-based evaluations of cost-effectiveness. Epidemiologic variables from a contact-tracing study and literature and cost data from ongoing vaccination campaigns. Two districts of rural Tanzania: Ngorongoro and Serengeti. 10 years. Health policymaker. Vaccination coverage ranging from 0% to 95% in increments of 5%. Life-years for health outcomes and 2010 U.S. dollars for economic outcomes. Annual canine vaccination campaigns were very cost-effective in both districts compared with no canine vaccination. In Serengeti, annual campaigns with as much as 70% coverage were cost-saving. Across a wide range of variable assumptions and levels of societal willingness to pay for life-years, the optimal vaccination coverage for Serengeti was 70%. In Ngorongoro, although optimal coverage depended on willingness to pay, vaccination campaigns were always cost-effective and lifesaving and therefore preferred. Canine vaccination was very cost-effective in both districts, but there was greater uncertainty about the optimal coverage in Ngorongoro. Annual canine rabies vaccination campaigns conferred extraordinary value and dramatically reduced the health burden of rabies. National Institutes of Health.

  13. Potential of Cationic Liposomes as Adjuvants/Delivery Systems for Tuberculosis Subunit Vaccines.

    Science.gov (United States)

    Khademi, Farzad; Taheri, Ramezan Ali; Momtazi-Borojeni, Amir Abbas; Farnoosh, Gholamreza; Johnston, Thomas P; Sahebkar, Amirhossein

    2018-04-27

    The weakness of the BCG vaccine and its highly variable protective efficacy in controlling tuberculosis (TB) in different age groups as well as in different geographic areas has led to intense efforts towards the development and design of novel vaccines. Currently, there are several strategies to develop novel TB vaccines. Each strategy has its advantages and disadvantages. However, the most important of these strategies is the development of subunit vaccines. In recent years, the use of cationic liposome-based vaccines has been considered due to their capacity to elicit strong humoral and cellular immune responses against TB infections. In this review, we aim to evaluate the potential for cationic liposomes to be used as adjuvants/delivery systems for eliciting immune responses against TB subunit vaccines. The present review shows that cationic liposomes have extensive applications either as adjuvants or delivery systems, to promote immune responses against Mycobacterium tuberculosis (Mtb) subunit vaccines. To overcome several limitations of these particles, they were used in combination with other immunostimulatory factors such as TDB, MPL, TDM, and Poly I:C. Cationic liposomes can provide long-term storage of subunit TB vaccines at the injection site, confer strong electrostatic interactions with APCs, potentiate both humoral and cellular (CD4 and CD8) immune responses, and induce a strong memory response by the immune system. Therefore, cationic liposomes can increase the potential of different TB subunit vaccines by serving as adjuvants/delivery systems. These properties suggest the use of cationic liposomes to produce an efficient vaccine against TB infections.

  14. High growth reassortant influenza vaccine viruses: new approaches to their control.

    Science.gov (United States)

    Robertson, J S; Nicolson, C; Newman, R; Major, D; Dunleavy, U; Wood, J M

    1992-09-01

    When a new strain of an influenza virus is required to be incorporated into influenza vaccine, attempts are made to recombine such strains with laboratory adapted viruses, which will grow to high titre in order to improve the yield of the vaccine strain. It is important that such high growth reassortant vaccine strains are not contaminated with genes coding for the antigenic determinants of the high growth laboratory strain. We describe the characterization of two recent high growth reassortants and the application of the polymerase chain reaction to ensure their genetic identity and purity.

  15. Reversion of a live porcine reproductive and respiratory virus vaccine investigated by parallel mutations

    DEFF Research Database (Denmark)

    Nielsen, Henriette S.; Oleksiewicz, Martin B; Forsberg, R

    2001-01-01

    A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates was sequen......A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates...... in the vaccine virus sequence during cell-culture adaptation. Evaluation of the remaining mutations in the ORF1 sequence revealed stronger selective pressure for amino acid conservation during spread in pigs than during vaccine production. Furthermore, it was found that the selective pressure did not change...

  16. Yellow fever vaccine-associated viscerotropic disease: current perspectives

    Directory of Open Access Journals (Sweden)

    Thomas RE

    2016-10-01

    vaccine is a very safe vaccine that likely confers lifelong immunity. Keywords: yellow fever vaccine, viscerotropic disease, postvaccination severe adverse events, systematic review

  17. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity.

    Science.gov (United States)

    Martins, Karen A O; Cooper, Christopher L; Stronsky, Sabrina M; Norris, Sarah L W; Kwilas, Steven A; Steffens, Jesse T; Benko, Jacqueline G; van Tongeren, Sean A; Bavari, Sina

    2016-01-01

    Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development.

  18. New approaches to design HIV-1 T-cell vaccines.

    Science.gov (United States)

    Perrin, Hélène; Canderan, Glenda; Sékaly, Rafick-Pierre; Trautmann, Lydie

    2010-09-01

    Following the evidence that T-cell responses are crucial in the control of HIV-1 infection, vaccines targeting T-cell responses were tested in recent clinical trials. However, these vaccines showed a lack of efficacy. This review attempts to define the qualitative and quantitative features that are desirable for T-cell-induced responses by vaccines. We also describe strategies that could lead to achievement of this goal. Using the yellow fever vaccine as a benchmark of an efficient vaccine, recent studies identified factors of immune protection and more importantly innate immune pathways needed for the establishment of long-term protective adaptive immunity. To prevent or control HIV-1 infection, a vaccine must induce efficient and persistent antigen-specific T cells endowed with mucosal homing capacity. Such cells should have the capability to counteract HIV-1 diversity and its rapid spread from the initial site of infection. To achieve this goal, the activation of a diversified innate immune response is critical. New systems biology approaches will provide more precise correlates of immune protection that will pave the way for new approaches in T-cell-based vaccines.

  19. Economic benefits of sharing and redistributing influenza vaccines when shortages occurred.

    Science.gov (United States)

    Chen, Sheng-I

    2017-01-01

    Recurrent influenza outbreak has been a concern for government health institutions in Taiwan. Over 10% of the population is infected by influenza viruses every year, and the infection has caused losses to both health and the economy. Approximately three million free vaccine doses are ordered and administered to high-risk populations at the beginning of flu season to control the disease. The government recommends sharing and redistributing vaccine inventories when shortages occur. While this policy intends to increase inventory flexibility, and has been proven as widely valuable, its impact on vaccine availability has not been previously reported. This study developed an inventory model adapted to vaccination protocols to evaluate government recommended polices under different levels of vaccine production. Demands were uncertain and stratified by ages and locations according to the demographic data in Taiwan. When vaccine supply is sufficient, sharing pediatric vaccine reduced vaccine unavailability by 43% and overstock by 54%, and sharing adult vaccine reduced vaccine unavailability by 9% and overstock by 15%. Redistributing vaccines obtained greater gains for both pediatrics and adults (by 75%). When the vaccine supply is in short, only sharing pediatric vaccine yielded a 48% reduction of unused inventory, while other polices do not improve performances. When implementing vaccination activities for seasonal influenza intervention, it is important to consider mismatches of demand and vaccine inventory. Our model confirmed that sharing and redistributing vaccines can substantially increase availability and reduce unused vaccines.

  20. Economic benefits of sharing and redistributing influenza vaccines when shortages occurred.

    Directory of Open Access Journals (Sweden)

    Sheng-I Chen

    Full Text Available Recurrent influenza outbreak has been a concern for government health institutions in Taiwan. Over 10% of the population is infected by influenza viruses every year, and the infection has caused losses to both health and the economy. Approximately three million free vaccine doses are ordered and administered to high-risk populations at the beginning of flu season to control the disease. The government recommends sharing and redistributing vaccine inventories when shortages occur. While this policy intends to increase inventory flexibility, and has been proven as widely valuable, its impact on vaccine availability has not been previously reported.This study developed an inventory model adapted to vaccination protocols to evaluate government recommended polices under different levels of vaccine production. Demands were uncertain and stratified by ages and locations according to the demographic data in Taiwan.When vaccine supply is sufficient, sharing pediatric vaccine reduced vaccine unavailability by 43% and overstock by 54%, and sharing adult vaccine reduced vaccine unavailability by 9% and overstock by 15%. Redistributing vaccines obtained greater gains for both pediatrics and adults (by 75%. When the vaccine supply is in short, only sharing pediatric vaccine yielded a 48% reduction of unused inventory, while other polices do not improve performances.When implementing vaccination activities for seasonal influenza intervention, it is important to consider mismatches of demand and vaccine inventory. Our model confirmed that sharing and redistributing vaccines can substantially increase availability and reduce unused vaccines.

  1. Vaccination against Louping Ill Virus Protects Goats from Experimental Challenge with Spanish Goat Encephalitis Virus.

    Science.gov (United States)

    Salinas, L M; Casais, R; García Marín, J F; Dalton, K P; Royo, L J; Del Cerro, A; Gayo, E; Dagleish, M P; Alberdi, P; Juste, R A; de la Fuente, J; Balseiro, A

    2017-05-01

    Spanish goat encephalitis virus (SGEV) is a recently described member of the genus Flavivirus belonging to the tick-borne encephalitis group of viruses, and is closely related to louping ill virus (LIV). Naturally acquired disease in goats results in severe, acute encephalitis and 100% mortality. Eighteen goats were challenged subcutaneously with SGEV; nine were vaccinated previously against LIV and nine were not. None of the vaccinated goats showed any clinical signs of disease or histological lesions, but all of the non-vaccinated goats developed pyrexia and 5/9 developed neurological clinical signs, primarily tremors in the neck and ataxia. All non-vaccinated animals developed histological lesions restricted to the central nervous system and consistent with a lymphocytic meningomyeloencephalitis. Vaccinated goats had significantly (P goats throughout the experiment, but increased rapidly and were significantly (P goats against LIV confers highly effective protection against SGEV; this is probably mediated by IgG and prevents an increase in viral RNA load in serum such that vaccinated animals would not be an effective reservoir of the virus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Intranasal immunization of baculovirus displayed hemagglutinin confers complete protection against mouse adapted highly pathogenic H7N7 reassortant influenza virus.

    Directory of Open Access Journals (Sweden)

    Subaschandrabose Rajesh Kumar

    Full Text Available BACKGROUND: Avian influenza A H7N7 virus poses a pandemic threat to human health because of its ability for direct transmission from domestic poultry to humans and from human to human. The wide zoonotic potential of H7N7 combined with an antiviral immunity inhibition similar to pandemic 1918 H1N1 and 2009 H1N1 influenza viruses is disconcerting and increases the risk of a putative H7N7 pandemic in the future, underlining the urgent need for vaccine development against this virus. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we developed a recombinant vaccine by expressing the H7N7-HA protein on the surface of baculovirus (Bac-HA. The protective efficacy of the live Bac-HA vaccine construct was evaluated in a mouse model by challenging mice immunized intranasally (i.n. or subcutaneously (s.c. with high pathogenic mouse adapted H7N7 reassorted strain. Although s.c. injection of live Bac-HA induced higher specific IgG than i.n. immunization, the later resulted in an elevated neutralization titer. Interestingly, 100% protection from the lethal viral challenge was only observed for the mice immunized intranasally with live Bac-HA, whereas no protection was achieved in any other s.c. or i.n. immunized mice groups. In addition, we also observed higher mucosal IgA as well as increased IFN-γ and IL-4 responses in the splenocytes of the surviving mice coupled with a reduced viral titer and diminished histopathological signs in the lungs. CONCLUSION: Our results indicated that protection from high pathogenic H7N7 (NL/219/03 virus requires both mucosal and systemic immune responses in mice. The balance between Th1 and Th2 cytokines is also required for the protection against the H7N7 pathogen. Intranasal administration of live Bac-HA induced all these immune responses and protected the mice from lethal viral challenge. Therefore, live Bac-HA is an effective vaccine candidate against H7N7 viral infections.

  3. Indoleamine 2,3-dioxygenase vaccination

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Svane, Inge Marie

    2015-01-01

    Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme. Remarkably, we discovered IDO-specific T cells that can influence adaptive immune reactions in patients with cancer. Further, a recent phase I clinical trial demonstrated long-lasting disease stabilization without toxicity in patien...... with non-small-cell lung cancer (NSCLC) who were vaccinated with an IDO-derived HLA-A2-restricted epitope....

  4. Dictyocaulus filaria in Ethiopian sheep: Studies on pathogenesis and vaccination

    International Nuclear Information System (INIS)

    Tilahun, G.

    1988-01-01

    The pathogenicity of varying levels of single and repeated infections with Dictyocaulus filaria in local Ethiopian Highland lambs and Hampshire X Ethiopian Highland cross-bred lambs is described. Mortality, increased respiration rates, impaired weight gain or loss of weight were observed in infected animals, often in association with low parasite burdens. The disease was more severe in lambs receiving higher infective doses and the local Ethiopian Highland lambs were more susceptible to D.filaria infection than the Hampshire cross-bred lambs. In a field vaccination trial, it was shown that administration of two doses of irradiated D. filaria larvae conferred a high degree of protection against challenge with normal larvae and resulted in increased weight gains compared with non-vaccinated animals. However, the greatest weight gains were recorded in sheep given a combination of vaccination and treatment with a broad-spectrum anthelmintic, indicating that both strategies are required for efficient parasite control in the Ethiopian highlands. (author). 15 refs, 5 figs, 6 tabs

  5. 2010 Plant Molecular Biology Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Michael Sussman

    2010-07-23

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.

  6. Robots in the nuclear industry: conference report

    International Nuclear Information System (INIS)

    Kochan, Anna.

    1992-01-01

    Current robotic technology is severely challenged by the conditions which nuclear environments present. In such applications, reliability demands are stringent; the environment is highly unstructured; and the ionizing radiation field is extremely hazardous to equipment. But an international conference, held recently in Marseille, indicated clearly that there is no shortage of robotic solutions adapted to these special needs. Organized by the Institut International de Robotique et d'Intelligence Artificelle in Marseille, the conference focused on telerobotics in hostile environments, including sessions on Perception of Environment; Man/machine Interface; and Technologies and Components. (Author)

  7. Inflammation, Immunity, and Vaccines for Helicobacter pylori Infection

    DEFF Research Database (Denmark)

    Walduck, Anna; Andersen, Leif P; Raghavan, Sukanya

    2015-01-01

    studies that contribute with new insights in the host response to H. pylori infection. Also, the adaptive immune response to H. pylori and particularly the role of IL-22 have been addressed in some studies. These advances may improve vaccine development where new strategies have been published. Two major...... studies analyzed H. pylori genomes of 39 worldwide strains and looked at the protein profiles. In addition, multi-epitope vaccines for therapeutic use have been investigated. Studies on different adjuvants and delivery systems have also given us new insights. This review presents articles from the last...... year that reveal detailed insight into immunity and regulation of inflammation, the contribution of immune cells to the development of gastric cancer, and understanding mechanisms of vaccine-induced protection....

  8. Green revolution vaccines, edible vaccines

    African Journals Online (AJOL)

    Admin

    of development. Food vaccines may also help to suppress autoimmunity disorders such as Type-1. Diabetes. Key words: Edible vaccines, oral vaccines, antigen expression, food vaccines. INTRODUCTION. Vaccination involves the stimulation of the immune system to prepare it for the event of an invasion from a particular ...

  9. Insight conference proceedings : natural gas

    International Nuclear Information System (INIS)

    2005-01-01

    The state of Quebec's energy industry was discussed at this conference. Quebec's energy market is distinct by the diversity of its clients, the resource exploitation sector and its types of industries. As such, the energy needs are specific and the strategies for developing natural gas should be adapted to meet these needs. This conference focused on recent energy policy developments at Quebec's Office of Energy and other regulatory bodies. Topics of discussion included the risks and opportunities of the natural gas export market; volatile gas prices; public consultation processes; perspectives of large energy consumers; hydrocarbon potential and exploration in Quebec; natural gas exploration and development in Quebec; energy security and strategies to address carbon dioxide emissions. Other topics of discussion included the investment climate in Quebec; the profitability of Canada's oil and gas sector and refining capacity in Quebec. The conference featured 17 presentations, of which 6 have been indexed separately for inclusion in this database. refs., tabs., figs

  10. Inaugural AGU Science Policy Conference

    Science.gov (United States)

    Uhlenbrock, Kristan

    2012-01-01

    AGU will present its inaugural Science Policy Conference, 30 April to 3 May 2012, at the Ronald Reagan Building and International Trade Center, located in downtown Washington, D. C. This conference will bring together leading scientists, policy makers, industry professionals, press, and other stakeholders to discuss natural hazards, natural resources, oceans, and Arctic science and the role these sciences play in serving communities. To bridge the science and policy fields, AGU plans to host this conference every 2 years and focus on the applications of Earth and space sciences to serve local and national communities. "Our nation faces a myriad of challenges such as the sustainability of our natural resources, current and future energy needs, and the ability to mitigate and adapt to natural and manmade hazards," said Michael McPhaden, president of AGU. "It is essential that policies to address these challenges be built on a solid foundation of credible scientific knowledge."

  11. Epidemiological Studies to Support the Development of Next Generation Influenza Vaccines.

    Science.gov (United States)

    Petrie, Joshua G; Gordon, Aubree

    2018-03-26

    The National Institute of Allergy and Infectious Diseases recently published a strategic plan for the development of a universal influenza vaccine. This plan focuses on improving understanding of influenza infection, the development of influenza immunity, and rational design of new vaccines. Epidemiological studies such as prospective, longitudinal cohort studies are essential to the completion of these objectives. In this review, we discuss the contributions of epidemiological studies to our current knowledge of vaccines and correlates of immunity, and how they can contribute to the development and evaluation of the next generation of influenza vaccines. These studies have been critical in monitoring the effectiveness of current influenza vaccines, identifying issues such as low vaccine effectiveness, reduced effectiveness among those who receive repeated vaccination, and issues related to egg adaptation during the manufacturing process. Epidemiological studies have also identified population-level correlates of protection that can inform the design and development of next generation influenza vaccines. Going forward, there is an enduring need for epidemiological studies to continue advancing knowledge of correlates of protection and the development of immunity, to evaluate and monitor the effectiveness of next generation influenza vaccines, and to inform recommendations for their use.

  12. Investing in life saving vaccines to guarantee life of future generations in Africa.

    Science.gov (United States)

    Mihigo, R M; Okeibunor, J C; O'Malley, H; Masresha, B; Mkanda, P; Zawaira, F

    2016-11-21

    The World Health Organization's Regional Offices for Africa and for the Eastern Mediterranean in conjunction with the African Union and the Government of Ethiopia hosted a ministerial conference on immunization in Africa from 24 to 25 February 2016 in Addis Ababa, Ethiopia under the theme "towards universal immunization coverage as a cornerstone for health and development in Africa". The conference brought together African leaders - including health and finance ministers, and parliamentarians thus creating a powerful platform for governments to demonstrate their commitment to advancing universal access to immunization on the continent in line with the Global Vaccine Action Plan. The event also brought together advocates, technical experts, policymakers, partner agencies, donors and journalists to examine how best to drive forward immunization across Africa, ensuring every child has access to the vaccines they need. Key points highlighted throughout conference were: universal access to immunization is at the forefront of enabling Africa to reach its full potential - by improving health, driving economic growth and empowering future generations; it is one of the most cost-effective solutions in global health, with clear benefits for health and development; and immunization brings economic benefits too, reducing health care costs and increasing productivity. At the close of the conference, 46 African countries signed a historic ministerial declaration on "Universal Access to Immunization as a Cornerstone for Health and Development in Africa" signaling fierce determination among African leaders to secure the health and prosperity of their societies through immunization. Copyright © 2016 World Health Organization Regional Office for Africa. Published by Elsevier Ltd.. All rights reserved.

  13. Climate adaptation

    Science.gov (United States)

    Kinzig, Ann P.

    2015-03-01

    This paper is intended as a brief introduction to climate adaptation in a conference devoted otherwise to the physics of sustainable energy. Whereas mitigation involves measures to reduce the probability of a potential event, such as climate change, adaptation refers to actions that lessen the impact of climate change. Mitigation and adaptation differ in other ways as well. Adaptation does not necessarily have to be implemented immediately to be effective; it only needs to be in place before the threat arrives. Also, adaptation does not necessarily require global, coordinated action; many effective adaptation actions can be local. Some urban communities, because of land-use change and the urban heat-island effect, currently face changes similar to some expected under climate change, such as changes in water availability, heat-related morbidity, or changes in disease patterns. Concern over those impacts might motivate the implementation of measures that would also help in climate adaptation, despite skepticism among some policy makers about anthropogenic global warming. Studies of ancient civilizations in the southwestern US lends some insight into factors that may or may not be important to successful adaptation.

  14. Estimating the herd immunity effect of rotavirus vaccine.

    Science.gov (United States)

    Pollard, Suzanne L; Malpica-Llanos, Tanya; Friberg, Ingrid K; Fischer-Walker, Christa; Ashraf, Sania; Walker, Neff

    2015-07-31

    Diarrhea is one of the leading causes of death in children under 5, and an estimated 39% of these deaths are attributable to rotavirus. Currently two live, oral rotavirus vaccines have been introduced on the market; however, the herd immunity effect associated with rotavirus vaccine has not yet been quantified. The purpose of this meta-analysis was to estimate the herd immunity effects associated with rotavirus vaccines. We performed a systematic literature review of articles published between 2008 and 2014 that measured the impact of rotavirus vaccine on severe gastroenteritis (GE) morbidity or mortality. We assessed the quality of published studies using a standard protocol and conducted meta-analyses to estimate the herd immunity effect in children less than one year of age across all years presented in the studies. We conducted these analyses separately for studies reporting a rotavirus-specific GE outcome and those reporting an all-cause GE outcome. In studies reporting a rotavirus-specific GE outcome, four of five of which were conducted in the United States, the median herd effect across all study years was 22% [19-25%]. In studies reporting an all-cause GE outcome, all of which were conducted in Latin America, the median herd effect was 24.9% [11-30%]. There is evidence that rotavirus vaccination confers a herd immunity effect in children under one year of age in the United States and Latin American countries. Given the high variability in vaccine efficacy across regions, more studies are needed to better examine herd immunity effects in high mortality regions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Comparative testing of six antigen-based malaria vaccine candidates directed toward merozoite-stage Plasmodium falciparum

    DEFF Research Database (Denmark)

    Arnot, David E; Cavanagh, David R; Remarque, Edmond J

    2008-01-01

    Immunogenicity testing of Plasmodium falciparum antigens being considered as malaria vaccine candidates was undertaken in rabbits. The antigens compared were recombinant baculovirus MSP-1(19) and five Pichia pastoris candidates, including two versions of MSP-1(19), AMA-1 (domains I and II), AMA-1......G concentrations. The two P. pastoris-produced MSP-1(19)-induced IgGs conferred the lowest growth inhibition. Comparative analysis of immunogenicity of vaccine antigens can be used to prioritize candidates before moving to expensive GMP production and clinical testing. The assays used have given discriminating...

  16. Reversion of a live porcine reproductive and respiratory syndrome virus vaccine investigated by parallel mutations

    DEFF Research Database (Denmark)

    Nielsen, Henriette S.; Oleksiewicz, M.B.; Forsberg, R.

    2001-01-01

    A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates was sequen......A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates...... in the vaccine virus sequence during cell-culture adaptation. Evaluation of the remaining mutations in the ORF1 sequence revealed stronger selective pressure for amino acid conservation during spread in pigs than during vaccine production. Furthermore, it was found that the selective pressure did not change...

  17. Pneumococcal conjugate vaccines: proceedings from an interactive symposium at the 41st Interscience Conference on Antimicrobial Agents and Chemotherapy.

    Science.gov (United States)

    Pelton, Stephen I; Dagan, Ron; Gaines, Beverly M; Klugman, Keith P; Laufer, Dagna; O'Brien, Katherine; Schmitt, Heinz J

    2003-04-02

    Globally, Streptococcus pneumoniae is a leading cause of invasive and noninvasive disease in infants and young children. The emergence of antibiotic-resistant strains has increased interest in prevention through immunization. Currently, the only available conjugate pneumococcal vaccine is a seven-valent formulation, PNCRM7. This paper presents excerpts from a symposium that provided an update of ongoing surveillance data and clinical trials evaluating pneumococcal conjugate vaccines. The topics addressed included: (1) PNCRM7 postmarketing safety data; (2) the impact of PNCRM7 in premature infants; (3) the direct and indirect effect of pneumococcal conjugate vaccines on colonization; (4) the effect of pneumococcal conjugate vaccines on replacement disease and the rate of resistance among replacement serotypes; (5) the current recommendations for the use of PNCRM7; and (6) the potential impact of conjugate vaccines in Europe and the Asia-Pacific region.

  18. The protective rate of the feline immunodeficiency virus vaccine: An Australian field study.

    Science.gov (United States)

    Westman, M E; Malik, R; Hall, E; Harris, M; Norris, J M

    2016-09-07

    A case-control field study was undertaken to determine the level of protection conferred to client-owned cats in Australia against feline immunodeficiency virus (FIV) using a commercial vaccine. 440 cats with outdoor access from five Australian states/territories underwent testing, comprising 139 potential cases (complete course of primary FIV vaccinations and annual boosters for three or more years), and 301 potential controls (age, sex and postcode matched FIV-unvaccinated cats). FIV status was determined using a combination of antibody testing (using point-of-care test kits) and nucleic acid amplification, as well as virus isolation in cases where results were discordant and in all suspected FIV-vaccinated/FIV-infected cats ('vaccine breakthroughs'). Stringent inclusion criteria were applied to both 'cases' and 'controls'; 89 FIV-vaccinated cats and 212 FIV-unvaccinated cats ultimately satisfied the inclusion criteria. Five vaccine breakthroughs (5/89; 6%), and 25 FIV-infected controls (25/212; 12%) were identified, giving a vaccine protective rate of 56% (95% CI -20 to 84). The difference in FIV prevalence rates between the two groups was not significant (P=0.14). Findings from this study raise doubt concerning the efficacy of Fel-O-Vax FIV® under field conditions. Screening for FIV infection may be prudent before annual FIV re-vaccination and for sick FIV-vaccinated cats. Owners should not rely on vaccination alone to protect cats against the risk of acquiring FIV infection; other measures such as cat curfews, the use of 'modular pet parks' or keeping cats exclusively indoors, are recommended. Copyright © 2016. Published by Elsevier Ltd.

  19. A small jab - a big effect: nonspecific immunomodulation by vaccines.

    Science.gov (United States)

    Benn, Christine S; Netea, Mihai G; Selin, Liisa K; Aaby, Peter

    2013-09-01

    Recent epidemiological studies have shown that, in addition to disease-specific effects, vaccines against infectious diseases have nonspecific effects on the ability of the immune system to handle other pathogens. For instance, in randomized trials tuberculosis and measles vaccines are associated with a substantial reduction in overall child mortality, which cannot be explained by prevention of the target disease. New research suggests that the nonspecific effects of vaccines are related to cross-reactivity of the adaptive immune system with unrelated pathogens, and to training of the innate immune system through epigenetic reprogramming. Hence, epidemiological findings are backed by immunological data. This generates a new understanding of the immune system and about how it can be modulated by vaccines to impact the general resistance to disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, A.; Chettri, J. K.

    2017-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  1. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, Azmi; Chettri, Jiwan Kumar

    2018-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  2. Comparison of the Protective Efficacy of DNA and Baculovirus-Derived Protein Vaccines for EBOLA Virus in Guinea Pigs

    National Research Council Canada - National Science Library

    Mellquist-Riemenschneider, Jenny L; Garrison, Aura R; Geisbert, Joan B; Saikh, Kamal U; Heidebrink, Kelli D

    2003-01-01

    .... Previously, a priming dose of a DNA vaccine expressing the glycoprotein (GP) gene of MARV followed by boosting with recombinant baculovirus-derived GP protein was found to confer protective immunity to guinea pigs (Hevey et al., 2001...

  3. Cost-effectiveness of HPV vaccination regime: comparing twice versus thrice vaccinations dose regime among adolescent girls in Malaysia.

    Science.gov (United States)

    Aljunid, Syed; Maimaiti, Namaitijiang; Nur, Amrizal M; Noor, Mohd Rushdan Md; Wan Puteh, Sharifa Ezat

    2016-01-23

    The HPV vaccine was introduced to Malaysian national immunization programme in 2010. The current implementation age of HPV vaccination in Malaysian is at the age of 13 years school girls, given according to a 3 doses protocol which may complicate implementation and compliance. Aim of the study is to determine the cost-effectiveness of HPV vaccination regime comparing twice versus thrice HPV vaccinations dose regime among adolescent girls in Malaysia. A Markov cohort model reflecting the natural history of HPV infection accounting for oncogenic and low-risk HPV was adapted for 13 year old Malaysian girls cohort (n = 274,050). Transition probabilities, utilities values, epidemiological and cost data were sourced from published literature and local data. Vaccine effectiveness was based on overall efficacy reported from 3-doses clinical trials, with the assumption that the 2-doses is non-inferior to the 3-doses allowing overall efficacy to be inferred from the 3-doses immunogenicity data. Price parity and life-long protection were assumed. The payer perspective was adopted, with appropriate discounting for costs (3 %) and outcomes (3 %). One way sensitivity analysis was conducted. The sensitivity analysis on cost of vaccine, vaccine coverage and discount rate with a 2-doses protocol was performed. The 3-doses and 2-doses regimes showed same number of Cervical Cancers averted (361 cases); QALYs saved at 7,732,266. However, the lifetime protection under the 2-doses regime, showed a significant cost-savings of RM 36, 722,700 compared to the 3-doses scheme. The MOH Malaysia could vaccinate 137,025 more girls in this country using saving 2-doses regime vaccination programme. The model predicted that 2-doses HPV vaccination schemes can avoid additional 180 Cervical Cancers and 63 deaths compare to 3-doses. A 2-doses HPV vaccination scheme may enable Malaysian women to be protected at a lower cost than that achievable under a 3-doses scheme, while avoiding the same number of

  4. Feedback in Videogame-based Adaptive Training

    Science.gov (United States)

    2011-05-01

    G. (1985). The geometry tutor. Proceedings of the International Joint Conference on Artificial Intelligence . Los Altos, CA: Kaufmann. Anderson, R...Technical Report 1287 Feedback in Videogame -based Adaptive Training Iris D. Rivera Florida Institute of Technology...REPORT TYPE Final 3. DATES COVERED (from. . . to) August 2008 – April 2010 4. TITLE AND SUBTITLE Feedback in Videogame -based Adaptive

  5. Content and accuracy of vaccine information on pediatrician blogs.

    Science.gov (United States)

    Bryan, Mersine A; Gunningham, Hailey; Moreno, Megan A

    2018-01-29

    Parents often use social media such as blogs to inform decisions about vaccinations, however little is known about pediatrician blogs addressing vaccines. The objective of this study was to assess content, citations, audience engagement and accuracy of vaccine information on pediatrician blogs. We conducted a content analysis of vaccine information on pediatrician blogs. A national sample of pediatrician blogs was identified using a search rubric of terms applied to multiple search engines. Inclusion criteria were: (1) the writer identified as a pediatrician (2) US based (3) ≥1 post since 1/1/2014. We identified 84 blogs; 56 fit inclusion criteria. Data were collected on all posts mentioning vaccines from 1/1/14 to 2/28/15. We identified the major topic for each post, examined citations to determine sources of information and counted the number of comments per post to evaluate audience engagement. We assessed accuracy of vaccine information using evaluation criteria adapted from information for parents on the CDC website. We identified 324 unique blog posts containing information about vaccines on 31 pediatrician blogs. The most common major topic was vaccine-specific posts (36%); Influenza and MMR were the most prevalent. Other common topics included: activism against anti-vaccine information (21%), vaccine exemptions (10%), autism (8%), and vaccine safety (6%). Activism against anti-vaccine information was the topic with the most reader engagement. The most common sources cited were governmental organizations such as the CDC and WHO (34%), and medical journals (31%). All blogs except 2 included information that was consistent with CDC information. Pediatrician bloggers frequently address vaccinations; most provide accurate information. Pediatrician blogs may be a new source to provide vaccine education to parents via social media. Copyright © 2017. Published by Elsevier Ltd.

  6. Effectiveness of pentavalent rotavirus vaccine in a large urban population in the United States.

    Science.gov (United States)

    Boom, Julie A; Tate, Jacqueline E; Sahni, Leila C; Rench, Marcia A; Hull, Jennifer J; Gentsch, Jon R; Patel, Manish M; Baker, Carol J; Parashar, Umesh D

    2010-02-01

    The goal was to assess the effectiveness of complete (3-dose) or partial (1- or 2-dose) immunization with pentavalent rotavirus vaccine (RV5) against rotavirus acute gastroenteritis (AGE) in US clinical practice. A case-control evaluation was conducted in February through June 2008 at an emergency department in Houston, Texas. Case patients with rotavirus AGE (N = 90) were identified through testing for rotavirus in fecal specimens obtained from 205 children 15 days through 23 months of age presenting with AGE. Control groups included rotavirus-negative AGE patients (N = 115), concurrently enrolled patients with acute respiratory infection (ARI) (N = 228), and up to 10 age- and zip code-matched children sampled from the Houston-Harris County Immunization Registry (HHCIR) for each case patient >8 months of age. Immunization data were obtained from parent records, health care providers, and/or the HHCIR. Vaccine effectiveness was calculated as 1 minus odds of RV5 vaccination for case patients versus control patients, after adjustment for age at presentation and birth date. The vaccine effectiveness of a complete RV5 series was 89% (95% confidence interval [CI]: 70%-96%) and 85% (95% CI: 55%-95%) with rotavirus-negative AGE and ARI control patients, respectively. Immunization data were available for 44% of case patients (n = 40) from the HHCIR; the estimated 3-dose vaccine effectiveness with these HHCIR control patients was 82% (95% CI: 19%-96%). A complete RV5 series conferred 100% protection (95% CI: 71%-100%) against severe rotavirus disease requiring hospitalization and 96% protection (95% CI: 72%-99%) against disease requiring intravenous hydration. Vaccine effectiveness of 1 and 2 doses against hospitalization and emergency department visits was 69% (95% CI: 13%-89%) and 81% (95% CI: 13%-96%), respectively, using rotavirus-negative AGE and ARI control groups combined. In this setting, a complete series of RV5 was highly effective against severe rotavirus AGE

  7. Naturally selected hepatitis C virus polymorphisms confer broad neutralizing antibody resistance.

    Science.gov (United States)

    Bailey, Justin R; Wasilewski, Lisa N; Snider, Anna E; El-Diwany, Ramy; Osburn, William O; Keck, Zhenyong; Foung, Steven K H; Ray, Stuart C

    2015-01-01

    For hepatitis C virus (HCV) and other highly variable viruses, broadly neutralizing mAbs are an important guide for vaccine development. The development of resistance to anti-HCV mAbs is poorly understood, in part due to a lack of neutralization testing against diverse, representative panels of HCV variants. Here, we developed a neutralization panel expressing diverse, naturally occurring HCV envelopes (E1E2s) and used this panel to characterize neutralizing breadth and resistance mechanisms of 18 previously described broadly neutralizing anti-HCV human mAbs. The observed mAb resistance could not be attributed to polymorphisms in E1E2 at known mAb-binding residues. Additionally, hierarchical clustering analysis of neutralization resistance patterns revealed relationships between mAbs that were not predicted by prior epitope mapping, identifying 3 distinct neutralization clusters. Using this clustering analysis and envelope sequence data, we identified polymorphisms in E2 that confer resistance to multiple broadly neutralizing mAbs. These polymorphisms, which are not at mAb contact residues, also conferred resistance to neutralization by plasma from HCV-infected subjects. Together, our method of neutralization clustering with sequence analysis reveals that polymorphisms at noncontact residues may be a major immune evasion mechanism for HCV, facilitating viral persistence and presenting a challenge for HCV vaccine development.

  8. Probiotics, antibiotics and the immune responses to vaccines.

    Science.gov (United States)

    Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-06-19

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Oil adjuvant elevates protection of rainbow trout (Oncorhynchus my-kiss) following injection vaccination against Yersinia ruckeri

    DEFF Research Database (Denmark)

    Jaafar, Rzgar M.; Chettri, Jiwan Kumar; Dalsgaard, Inger

    2016-01-01

    Enteric redmouth disease (ERM) caused by the fish pathogen Yersinia ruckeri is a major threat to freshwater production of rainbow trout throughout all life stages. Injection vaccination of rainbow trout against Y. ruckeri infection has been shown to confer better protection compared to the tradit...

  10. Microneedle patches: usability and acceptability for self-vaccination against influenza.

    Science.gov (United States)

    Norman, James J; Arya, Jaya M; McClain, Maxine A; Frew, Paula M; Meltzer, Martin I; Prausnitz, Mark R

    2014-04-01

    While therapeutic drugs are routinely self-administered by patients, there is little precedent for self-vaccination. Convenient self-vaccination may expand vaccination coverage and reduce administration costs. Microneedle patches are in development for many vaccines, but no reports exist on usability or acceptability. We hypothesized that naïve patients could apply patches and that self-administered patches would improve stated intent to receive an influenza vaccine. We conducted a randomized, repeated measures study with 91 venue-recruited adults. To simulate vaccination, subjects received placebo microneedle patches given three times by self-administration and once by the investigator, as well as an intramuscular injection of saline. Seventy participants inserted patches with thumb pressure alone and the remainder used snap-based devices that closed shut at a certain force. Usability was assessed by skin staining and acceptability was measured with an adaptive-choice analysis. The best usability was seen with the snap device, with users inserting a median value of 93-96% of microneedles over three repetitions. When a self-administered microneedle patch was offered, intent to vaccinate increased from 44% to 65% (CI: 55-74%). The majority of those intending vaccination would prefer to self-vaccinate: 64% (CI: 51-75%). There were no serious adverse events associated with use of microneedle patches. The findings from this initial study indicate that microneedle patches for self-vaccination against influenza are usable and may lead to improved vaccination coverage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Relative Contribution of Th1 and Th17 Cells in Adaptive Immunity to Bordetella pertussis: Towards the Rational Design of an Improved Acellular Pertussis Vaccine

    Science.gov (United States)

    Ross, Pádraig J.; Allen, Aideen C.; Walsh, Kevin; Misiak, Alicja; Lavelle, Ed C.; McLoughlin, Rachel M.; Mills, Kingston H. G.

    2013-01-01

    Whooping cough caused by Bordetella pertussis is a re-emerging infectious disease despite the introduction of safer acellular pertussis vaccines (Pa). One explanation for this is that Pa are less protective than the more reactogenic whole cell pertussis vaccines (Pw) that they replaced. Although Pa induce potent antibody responses, and protection has been found to be associated with high concentrations of circulating IgG against vaccine antigens, it has not been firmly established that host protection induced with this vaccine is mediated solely by humoral immunity. The aim of this study was to examine the relative contribution of Th1 and Th17 cells in host immunity to infection with B. pertussis and in immunity induced by immunization with Pw and Pa and to use this information to help rationally design a more effective Pa. Our findings demonstrate that Th1 and Th17 both function in protective immunity induced by infection with B. pertussis or immunization with Pw. In contrast, a current licensed Pa, administered with alum as the adjuvant, induced Th2 and Th17 cells, but weak Th1 responses. We found that IL-1 signalling played a central role in protective immunity induced with alum-adsorbed Pa and this was associated with the induction of Th17 cells. Pa generated strong antibody and Th2 responses, but was fully protective in IL-4-defective mice, suggesting that Th2 cells were dispensable. In contrast, Pa failed to confer protective immunity in IL-17A-defective mice. Bacterial clearance mediated by Pa-induced Th17 cells was associated with cell recruitment to the lungs after challenge. Finally, protective immunity induced by an experimental Pa could be enhanced by substituting alum with a TLR agonist that induces Th1 cells. Our findings demonstrate that alum promotes protective immunity through IL-1β-induced IL-17A production, but also reveal that optimum protection against B. pertussis requires induction of Th1, but not Th2 cells. PMID:23592988

  12. Safety and Efficacy Profile of Commercial Veterinary Vaccines against Rift Valley Fever: A Review Study

    Directory of Open Access Journals (Sweden)

    Moataz Alhaj

    2016-01-01

    Full Text Available Rift Valley Fever (RVF is an infectious illness with serious clinical manifestations and health consequences in humans as well as a wide range of domestic ruminants. This review provides significant information about the prevention options of RVF along with the safety-efficacy profile of commercial vaccines and some of RVF vaccination strategies. Information presented in this paper was obtained through a systematic investigation of published data about RVF vaccines. Like other viral diseases, the prevention of RVF relies heavily on immunization of susceptible herds with safe and cost-effective vaccine that is able to confer long-term protective immunity. Several strains of RVF vaccines have been developed and are available in commercial production including Formalin-Inactivated vaccine, live attenuated Smithburn vaccine, and the most recent Clone13. Although Formalin-Inactivated vaccine and live attenuated Smithburn vaccine are immunogenic and widely used in prevention programs, they proved to be accompanied by significant concerns. Despite Clone13 vaccine being suggested as safe in pregnant ewes and as highly immunogenic along with its potential for differentiating infected from vaccinated animals (DIVA, a recent study raised concerns about the safety of the vaccine during the first trimester of gestation. Accordingly, RVF vaccines that are currently available in the market to a significant extent do not fulfill the requirements of safety, potency, and DIVA. These adverse effects stressed the need for developing new vaccines with an excellent safety profile to bridge the gap in safety and immunity. Bringing RVF vaccine candidates to local markets besides the absence of validated serological test for DIVA remain the major challenges of RVF control.

  13. Climate Adaptation in Europe

    International Nuclear Information System (INIS)

    Parry, M.; McGlade, J.; Verschoor, M.; Isoard, S.; Anema, K.; Boer, J.; Cowan, C.; Collins, R.; Smeets, M.

    2009-01-01

    At the Conference of Parties in Copenhagen, Denmark, December 7-18, 2009 Change Magazine will present a special issue on 'Climate Adaptation in Europe'. The magazine contains articles on climate policy strategies in European countries and cross-border studies on climate change, articles on climate adaptation in the Alps, on water quality as a bottleneck for the agricultural sector, and drought in the mediterranean countries. How will member countries in the European Union tackle the climate crisis?.

  14. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity

    Directory of Open Access Journals (Sweden)

    Karen A.O. Martins

    2016-01-01

    Full Text Available Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol, MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development.

  15. 3rd international conference, LDIC 2012

    CERN Document Server

    Scholz-Reiter, Bernd; Thoben, Klaus-Dieter

    2013-01-01

    The volume comprises the proceedings of the third International Conference on Dynamics in Logistics LDIC 2012. The scope of the conference targeted the identification, analysis, and description of the dynamics of logistic processes and networks. The spectrum ranged from the modeling and planning of processes and innovative methods like autonomous control and knowledge management to the new technologies provided by radio frequency identification, mobile communication, and networking. The growing dynamics in the area of logistics poses completely new challenges: Logistic processes and networks must rapidly and flexibly adapt to continuously changing conditions. LDIC 2012 provided a venue for researchers from academia and industry interested in the technical advances in dynamics in logistics. The conference addressed research in logistics from a wide range of fields, e.g. engineering, computer science and operations research. The volume consists of two invited papers and of 49 contributed papers divided into var...

  16. Characterization of main cytokine sources from the innate and adaptive immune responses following primary 17DD yellow fever vaccination in adults.

    Science.gov (United States)

    Silva, Maria Luiza; Martins, Marina Angela; Espírito-Santo, Luçandra Ramos; Campi-Azevedo, Ana Carolina; Silveira-Lemos, Denise; Ribeiro, José Geraldo Leite; Homma, Akira; Kroon, Erna Geessien; Teixeira-Carvalho, Andréa; Elói-Santos, Silvana Maria; Martins-Filho, Olindo Assis

    2011-01-10

    The mechanisms of immune response following yellow fever (YF-17DD) vaccination are still poorly understood. In this study, we have performed a longitudinal investigation (days 0, 7, 15 and 30) to characterize the cytokine profile of innate and adaptive immunity following YF-17DD first-time vaccination. Data from non-stimulated cultures demonstrated a prominent participation of the innate immunity with increased frequency of TNF-α(+) neutrophils and IFN-γ(+) NK-cells at day 7 besides TNF-α(+) monocytes at day 7, day 15 and day 30. Increased frequency of IL-10(+) monocytes was observed at day 15 and day 30, and decreased percentage of IL-4(+) NK-cells were detected at day 7, day 15 and day 30. Time-dependent and oscillating cytokine pattern was observed in CD4(+) T-cells, with low percentage of IL-12(+), IL-4(+) and IL-10(+) cells at day 7 and increased frequency of TNF-α(+) cells at day 15 besides IFN-γ(+) and IL-5(+) cells at day 15 and day 30. Later changes with increased percentage of IL-12(+) and IL-5(+)CD8(+) T-cells were observed at day 30. Increased frequency of IL-10(+) B-cells was observed at day 15, when seroconversion was detected in all vaccinees. The overall cytokine analysis of non-stimulated leukocytes showed a transient shift towards a pro-inflammatory profile at day 7, mainly due to changes in the innate immunity, which draws back toward a mixed/regulatory pattern at day 15 and day 30. The changes induced by the in vitro YF-17DD vaccine-stimulation were mainly observed at day 0 and day 7 (before seroconversion) with minor changes at day 15 and day 30 (after seroconversion). These data support the hypothesis that a complex network with mixed pro/anti-inflammatory cytokine profile is associated with the establishment of the protective immunity following YF-17DD primo-vaccination, free of adverse events. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Recombinant protective antigen 102 (rPA102): profile of a second-generation anthrax vaccine.

    Science.gov (United States)

    Keitel, Wendy A

    2006-08-01

    Recent terrorist attacks involving the use of Bacillus anthracis spores have stimulated interest in the development of new vaccines for anthrax prevention. Studies of the pathogenesis of anthrax and of the immune responses following infection and immunization underscore the pivotal role that antibodies to the protective antigen play in protection. The most promising vaccine candidates contain purified recombinant protective antigen. Clinical trials of one of these, recombinant protective antigen (rPA)102, are underway. Initial results suggest that rPA102 is well tolerated and immunogenic. Additional trials are necessary to identify optimal formulations and immunization regimens for pre- and postexposure prophylaxis. Future licensure of these and other candidate vaccines will depend on their safety and immunogenicity profiles in humans, and their ability to confer protection in animal models of inhalational anthrax.

  18. [From the licensure of vaccines to the recommendation of the Standing Committee on Vaccination in Germany : criteria for the assessment of benefits and risks].

    Science.gov (United States)

    Pfleiderer, Michael; Wichmann, Ole

    2015-03-01

    Vaccines are among the most effective preventive measures in modern medicine and have led to a dramatic decline and-for a few diseases-even to the elimination of severely infectious diseases. There are some particularities of the risk-benefit assessment of vaccines compared with that of therapeutic drugs. These include the fact that vaccines are applied to healthy individuals with the aim of preventing an infectious disease, while therapeutic drugs are administered to sick people to cure them of an already acquired disease. The acceptable level of risk associated with the application of a vaccine is therefore much lower. In addition, high vaccination coverage can lead to population-level effects (e.g., the indirect protection of unvaccinated individuals) that can confer additional benefits to the population overall. When a marketing authorization application (MAA) for a novel vaccine is evaluated, conclusions are made regarding its quality, safety, and efficacy, and a benefit-risk assessment is carried out accordingly. In contrast, when deciding on the introduction of a new vaccine into a national immunization program or on a recommendation for a specific risk-group, the focus is shifted to considerations of how a licensed vaccine can be best used in a population (e.g., which immunization strategy is most effective in preventing deaths or hospitalizations, or in reducing treatment costs for the health care system). Stringent assessment criteria have been developed that require a robust safety analysis before a new vaccine is administered to humans for the first time in pre-licensure studies. Similarly, criteria are applied for calculating the benefit-risk ratio at the time of the licensure of a new vaccine in addition to during the entire post-licensure period. However, when deciding if and how a licensed vaccine can best be integrated into an existing immunization program, additional criteria are applied that are different, yet complementary to those applied for

  19. Long-term protective immunity from an influenza virus-like particle vaccine administered with a microneedle patch.

    Science.gov (United States)

    Quan, Fu-Shi; Kim, Yeu-Chun; Song, Jae-Min; Hwang, Hye Suk; Compans, Richard W; Prausnitz, Mark R; Kang, Sang-Moo

    2013-09-01

    Skin vaccination with influenza virus-like particles (VLPs) using microneedles has been shown to induce protection similar to or better than that induced by intramuscular immunization. In this study, we examined the long-term protective efficacy of influenza (H1N1 A/PR/8/34) VLPs after skin vaccination using microneedle patches coated with the vaccine. Microneedle vaccination of mice in the skin induced 100% protection against lethal challenge infection with influenza A/PR/8/34 virus 14 months after a single vaccine dose. Influenza virus-specific total IgG response and hemagglutination inhibition (HAI) titers were maintained at high levels for over 1 year after microneedle vaccination. Microneedle vaccination also induced substantial levels of lung IgG and IgA antibody responses, and antibody-secreting plasma cells from spleen and bone marrow, as well as conferring effective control of lung viral loads, resulting in complete protection 14 months after vaccination. These strong and long-lasting immune responses were enabled in part by stabilization of the vaccine by formulation with trehalose during microneedle patch fabrication. Administration of the stabilized vaccine using microneedles was especially effective at enabling strong recall responses measured 4 days after lethal virus challenge, including increased HAI and antibody-secreting cells in the spleen and reduced viral titer and inflammatory response in the lung. The results in this study indicate that skin vaccination with VLP vaccine using a microneedle patch provides long-term protection against influenza in mice.

  20. Prevention of influenza-related illness in young infants by maternal vaccination during pregnancy [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Marta C Nunes

    2018-01-01

    Full Text Available The influenza virus circulates yearly and causes global epidemics. Influenza infection affects all age groups and causes mild to severe illness, and young infants are at particular risk for serious disease. The most effective measure to prevent influenza disease is vaccination; however, no vaccine is licensed for use in infants younger than 6 months old. Thus, there is a crucial need for other preventive strategies in this high-risk age group. Influenza vaccination during pregnancy protects both the mothers and the young infants against influenza infection. Vaccination during pregnancy boosts the maternal antibodies and increases the transfer of immunoglobulin G from the mother to the fetus through the placenta, which confers protection against infection in infants too young to be vaccinated. Data from clinical trials and observational studies did not demonstrate adverse effects to the mother, the fetus, or the infant after maternal influenza vaccination. We present the current data on the effectiveness and safety of influenza vaccination during pregnancy in preventing disease in the young infant.

  1. Particle-based vaccines for HIV-1 infection.

    Science.gov (United States)

    Young, Kelly R; Ross, Ted M

    2003-06-01

    The use of live-attenuated viruses as vaccines has been successful for the control of viral infections. However, the development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge. HIV infects cells of the immune system and results in a severe immunodeficiency. In addition, the ability of the virus to adapt to immune pressure and the ability to reside in an integrated form in host cells present hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes from different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immunity, however, a live-attenuated vaccine for HIV is problematic. The possibility of a live-attenuated vaccine to revert to a pathogenic form or recombine with a wild-type or defective virus in an infected individual is a drawback to this approach. Therefore, these vaccines are currently only being tested in non-human primate models. Live-attenuated vaccines are effective in stimulating immunity, however challenged animals rarely clear viral infection and the degree of attenuation directly correlates with the protection of animals from disease. Another particle-based vaccine approach for HIV involves the use of virus-like particles (VLPs). VLPs mimic the viral particle without causing an immunodeficiency disease. HIV-like particles (HIV-LP) are defined as self-assembling, non-replicating, nonpathogenic, genomeless particles that are similar in size and conformation to intact virions. A variety of VLPs for both HIV and SIV are currently in pre-clinical and clinical trials. This review focuses on the current knowledge regarding the immunogenicity and safety of particle-based vaccine strategies for HIV-1.

  2. Biodegradable nanoparticle-entrapped vaccine induces cross-protective immune response against a virulent heterologous respiratory viral infection in pigs.

    Directory of Open Access Journals (Sweden)

    Varun Dwivedi

    Full Text Available Biodegradable nanoparticle-based vaccine development research is unexplored in large animals and humans. In this study, we illustrated the efficacy of nanoparticle-entrapped UV-killed virus vaccine against an economically important respiratory viral disease of pigs called porcine reproductive and respiratory syndrome virus (PRRSV. We entrapped PLGA [poly (lactide-co-glycolides] nanoparticles with killed PRRSV antigens (Nano-KAg and detected its phagocytosis by pig alveolar macrophages. Single doses of Nano-KAg vaccine administered intranasally to pigs upregulated innate and PRRSV specific adaptive responses. In a virulent heterologous PRRSV challenge study, Nano-KAg vaccine significantly reduced the lung pathology and viremia, and the viral load in the lungs. Immunologically, enhanced innate and adaptive immune cell population and associated cytokines with decreased secretion of immunosuppressive mediators were observed at both mucosal sites and blood. In summary, we demonstrated the benefits of intranasal delivery of nanoparticle-based viral vaccine in eliciting cross-protective immune response in pigs, a potential large animal model.

  3. Immune responses and interactions following simultaneous application of live Newcastle disease, infectious bronchitis and avian metapneumovirus vaccines in specific-pathogen-free chicks.

    Science.gov (United States)

    Awad, Faez; Forrester, Anne; Baylis, Matthew; Lemiere, Stephane; Jones, Richard; Ganapathy, Kannan

    2015-02-01

    Interactions between live Newcastle disease virus (NDV), avian metapneumovirus (aMPV) and infectious bronchitis virus (IBV) vaccines following simultaneous vaccination of day old specific pathogen free (SPF) chicks were evaluated. The chicks were divided into eight groups: seven vaccinated against NDV, aMPV and IBV (single, dual or triple) and one unvaccinated as control. Haemagglutination inhibition (HI) NDV antibody titres were similar across all groups but were above protective titres. aMPV vaccine when given with other live vaccines suppressed levels of aMPV enzyme-linked immunosorbent assay (ELISA) antibodies. Cellular and local immunity induced by administration of NDV, aMPV or IBV vaccines (individually or together) showed significant increase in CD4+, CD8+ and IgA bearing B-cells in the trachea compared to the unvaccinated group. Differences between the vaccinated groups were insignificant. Simultaneous vaccination with live NDV, aMPV and IBV did not affect the protection conferred against aMPV or IBV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Evaluation of the Mycobacterium tuberculosis SO2 vaccine using a natural tuberculosis infection model in goats.

    Science.gov (United States)

    Bezos, J; Casal, C; Álvarez, J; Roy, A; Romero, B; Rodríguez-Bertos, A; Bárcena, C; Díez, A; Juste, R; Gortázar, C; Puentes, E; Aguiló, N; Martín, C; de Juan, L; Domínguez, L

    2017-05-01

    The development of new vaccines against animal tuberculosis (TB) is a priority for improving the control and eradication of this disease, particularly in those species not subjected to compulsory eradication programmes. In this study, the protection conferred by the Mycobacterium tuberculosis SO 2 experimental vaccine was evaluated using a natural infection model in goats. Twenty-six goats were distributed in three groups: (1) 10 goats served as a control group; (2) six goats were subcutaneously vaccinated with BCG; and (3) 10 goats were subcutaneously vaccinated with SO 2 . Four months after vaccination, all groups were merged with goats infected with Mycobacterium bovis or Mycobacterium caprae, and tested over a 40 week period using a tuberculin intradermal test and an interferon-γ assay for mycobacterial reactivity. The severity of lesions was determined at post-mortem examination and the bacterial load in tissues were evaluated by culture. The two vaccinated groups had significantly lower lesion and bacterial culture scores than the control group (P<0.05); at the end of the study, the SO 2 vaccinated goats had the lowest lesion and culture scores. These results suggest that the SO 2 vaccine provides some protection against TB infection acquired from natural exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. [Characteristics of the Videos in Spanish Posted on Youtube about Human Papillomavirus Vaccines].

    Science.gov (United States)

    Tuells, José; Martínez-Martínez, Pedro Javier; Duro-Torrijos, José Luis; Caballero, Pablo; Fraga-Freijeiro, Paula; Navarro-López, Vicente

    2015-01-01

    Internet is a resource to search for health-related information. The aim of this work was to know the content of the videos in Spanish language of YouTube related to the vaccine against the human papilloma virus (HPV). An observational study was conducted from a search on YouTube on 26th July 2013 by using keywords such as: "human papilloma virus vaccine", "HPV vaccine", "Gardasil vaccine", "Cervarix vaccine". Different categories were established according to: the type of vaccine, the published source and the favorable or unfavorable predisposition towards the human papillomavirus vaccination. The number of visits and the duration of the videos were gathered, with analysis of variables in the 20 most visited videos. A total of 170 videos were classified like: local news (n=39; 37 favorable, 2 unfavorable; 2:06:29; 42972 visits), national news (n=32; 30/2; 1:49:27; 50138 visits), created by YouTube subscribers (n=21; 21/1; 1:44:39; 10991 visits), advertisements (n=21; 19/2; 0:27:05; 28435 visits), conferences (n=17; 15/2; 3:25:39; 27206 visits), documentaries (n=16; 12/4; 2:11:31; 30629 visits). From all of the 20 most viewed YouTube videos predominated those which were favorable to the vaccination (n=12; 0:43:43; 161789 visits) against the unfavorable (n=8; 2:44:14; 86583 visits). Most of the videos have a favorable opinion towards HPV vaccine, although videos with a negative content were the longest and most viewed.

  6. A DNA vaccine against yellow fever virus: development and evaluation.

    Directory of Open Access Journals (Sweden)

    Milton Maciel

    2015-04-01

    Full Text Available Attenuated yellow fever (YF virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE, aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  7. A DNA vaccine against yellow fever virus: development and evaluation.

    Science.gov (United States)

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T A; Dhalia, Rafael

    2015-04-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  8. A DNA Vaccine against Yellow Fever Virus: Development and Evaluation

    Science.gov (United States)

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T. A.; Dhalia, Rafael

    2015-01-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies. PMID:25875109

  9. Autovaccination confers protection against Devriesea agamarum associated septicemia but not dermatitis in bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Hellebuyck, Tom; Van Steendam, Katleen; Deforce, Dieter; Blooi, Mark; Van Nieuwerburgh, Filip; Bullaert, Evelien; Ducatelle, Richard; Haesebrouck, Freddy; Pasmans, Frank; Martel, An

    2014-01-01

    Devrieseasis caused by Devriesea agamarum is a highly prevalent disease in captive desert lizards, resulting in severe dermatitis and in some cases mass mortality. In this study, we assessed the contribution of autovaccination to devrieseasis control by evaluating the capacity of 5 different formalin-inactivated D. agamarum vaccines to induce a humoral immune response in bearded dragons (Pogona vitticeps). Each vaccine contained one of the following adjuvants: CpG, incomplete Freund's, Ribi, aluminium hydroxide, or curdlan. Lizards were administrated one of the vaccines through subcutaneous injection and booster vaccination was given 3 weeks after primo-vaccination. An indirect ELISA was developed and used to monitor lizard serological responses. Localized adverse effects following subcutaneous immunization were observed in all but the Ribi adjuvanted vaccine group. Following homologous experimental challenge, the incomplete Freund's as well as the Ribi vaccine were observed to confer protection in bearded dragons against the development of D. agamarum associated septicemia but not against dermatitis. Subsequently, two-dimensional gelelectrophoresis followed by immunoblotting and mass spectrometry was conducted with serum obtained from 3 lizards that showed seroconversion after immunisation with the Ribi vaccine. Fructose-bisphosphate aldolase and aldo-keto reductase of D. agamarum reacted with serum from the latter lizards. Based on the demonstrated seroconversion and partial protection against D. agamarum associated disease following the use of formalin-inactivated vaccines as well as the identification of target antigens in Ribi vaccinated bearded dragons, this study provides promising information towards the development of a vaccination strategy to control devrieseasis in captive lizard collections.

  10. Autovaccination confers protection against Devriesea agamarum associated septicemia but not dermatitis in bearded dragons (Pogona vitticeps.

    Directory of Open Access Journals (Sweden)

    Tom Hellebuyck

    Full Text Available Devrieseasis caused by Devriesea agamarum is a highly prevalent disease in captive desert lizards, resulting in severe dermatitis and in some cases mass mortality. In this study, we assessed the contribution of autovaccination to devrieseasis control by evaluating the capacity of 5 different formalin-inactivated D. agamarum vaccines to induce a humoral immune response in bearded dragons (Pogona vitticeps. Each vaccine contained one of the following adjuvants: CpG, incomplete Freund's, Ribi, aluminium hydroxide, or curdlan. Lizards were administrated one of the vaccines through subcutaneous injection and booster vaccination was given 3 weeks after primo-vaccination. An indirect ELISA was developed and used to monitor lizard serological responses. Localized adverse effects following subcutaneous immunization were observed in all but the Ribi adjuvanted vaccine group. Following homologous experimental challenge, the incomplete Freund's as well as the Ribi vaccine were observed to confer protection in bearded dragons against the development of D. agamarum associated septicemia but not against dermatitis. Subsequently, two-dimensional gelelectrophoresis followed by immunoblotting and mass spectrometry was conducted with serum obtained from 3 lizards that showed seroconversion after immunisation with the Ribi vaccine. Fructose-bisphosphate aldolase and aldo-keto reductase of D. agamarum reacted with serum from the latter lizards. Based on the demonstrated seroconversion and partial protection against D. agamarum associated disease following the use of formalin-inactivated vaccines as well as the identification of target antigens in Ribi vaccinated bearded dragons, this study provides promising information towards the development of a vaccination strategy to control devrieseasis in captive lizard collections.

  11. Rational design of HIV vaccine and microbicides: report of the EUROPRISE annual conference

    NARCIS (Netherlands)

    Wahren, Britta; Biswas, Priscilla; Borggren, Marie; Coleman, Adam; Da Costa, Kelly; de Haes, Winni; Dieltjens, Tessa; Dispinseri, Stefania; Grupping, Katrijn; Hallengärd, David; Hornig, Julia; Klein, Katja; Mainetti, Lara; Palma, Paolo; Reudelsterz, Marc; Seifried, Janna; Selhorst, Philippe; Sköld, Annette; Uchtenhagen, Hannes; van Gils, Marit J.; Weber, Caroline; Shattock, Robin; Scarlatti, Gabriella

    2010-01-01

    EUROPRISE is a Network of Excellence sponsored from 2007 to 2011 by the European Commission within the 6th Framework Program. The Network encompasses a wide portfolio of activities ranging from an integrated research program in the field of HIV vaccines and microbicides to training, dissemination

  12. Architectural Insight into Inovirus-Associated Vectors (IAVs and Development of IAV-Based Vaccines Inducing Humoral and Cellular Responses: Implications in HIV-1 Vaccines

    Directory of Open Access Journals (Sweden)

    Kyriakos A. Hassapis

    2014-12-01

    Full Text Available Inovirus-associated vectors (IAVs are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.

  13. African Swine Fever Virus Biology and Vaccine Approaches.

    Science.gov (United States)

    Revilla, Yolanda; Pérez-Núñez, Daniel; Richt, Juergen A

    2018-01-01

    African swine fever (ASF) is an acute and often fatal disease affecting domestic pigs and wild boar, with severe economic consequences for affected countries. ASF is endemic in sub-Saharan Africa and the island of Sardinia, Italy. Since 2007, the virus emerged in the republic of Georgia, and since then spread throughout the Caucasus region and Russia. Outbreaks have also been reported in Belarus, Ukraine, Lithuania, Latvia, Estonia, Romania, Moldova, Czech Republic, and Poland, threatening neighboring West European countries. The causative agent, the African swine fever virus (ASFV), is a large, enveloped, double-stranded DNA virus that enters the cell by macropinocytosis and a clathrin-dependent mechanism. African Swine Fever Virus is able to interfere with various cellular signaling pathways resulting in immunomodulation, thus making the development of an efficacious vaccine very challenging. Inactivated preparations of African Swine Fever Virus do not confer protection, and the role of antibodies in protection remains unclear. The use of live-attenuated vaccines, although rendering suitable levels of protection, presents difficulties due to safety and side effects in the vaccinated animals. Several African Swine Fever Virus proteins have been reported to induce neutralizing antibodies in immunized pigs, and vaccination strategies based on DNA vaccines and recombinant proteins have also been explored, however, without being very successful. The complexity of the virus particle and the ability of the virus to modulate host immune responses are most likely the reason for this failure. Furthermore, no permanent cell lines able to sustain productive virus infection by both virulent and naturally attenuated African Swine Fever Virus strains exist so far, thus impairing basic research and the commercial production of attenuated vaccine candidates. © 2018 Elsevier Inc. All rights reserved.

  14. Non-specific Effect of Vaccines: Immediate Protection against Respiratory Syncytial Virus Infection by a Live Attenuated Influenza Vaccine

    Directory of Open Access Journals (Sweden)

    Young J. Lee

    2018-01-01

    Full Text Available The non-specific effects (NSEs of vaccines have been discussed for their potential long-term beneficial effects beyond direct protection against a specific pathogen. Cold-adapted, live attenuated influenza vaccine (CAIV induces local innate immune responses that provide a broad range of antiviral immunity. Herein, we examined whether X-31ca, a donor virus for CAIVs, provides non-specific cross-protection against respiratory syncytial virus (RSV. The degree of RSV replication was significantly reduced when X-31ca was administered before RSV infection without any RSV-specific antibody responses. The vaccination induced an immediate release of cytokines and infiltration of leukocytes into the respiratory tract, moderating the immune perturbation caused by RSV infection. The potency of protection against RSV challenge was significantly reduced in TLR3-/- TLR7-/- mice, confirming that the TLR3/7 signaling pathways are necessary for the observed immediate and short-term protection. The results suggest that CAIVs provide short-term, non-specific protection against genetically unrelated respiratory pathogens. The additional benefits of CAIVs in mitigating acute respiratory infections for which vaccines are not yet available need to be assessed in future studies.

  15. Mesenchymal stem cells as a novel vaccine platform

    Directory of Open Access Journals (Sweden)

    Suzanne L. Tomchuck

    2012-11-01

    Full Text Available Vaccines are the most efficient and cost-effective means of preventing infectious disease. However, traditional vaccine approaches have thus far failed to provide protection against human immunodeficiency virus (HIV, tuberculosis, malaria and many other diseases. New approaches to vaccine development are needed to address some of these intractable problems. In this report, we review the literature identifying stimulatory effects of mesenchymal stem cells (MSC on immune responses and explore the potential for MSC as a novel, universal vaccination platform. MSC are unique bone marrow-derived multipotent progenitor cells that are presently being exploited as gene therapy vectors for a variety of conditions, including cancer and autoimmune diseases. Although MSC are predominantly known for anti-inflammatory properties during allogeneic MSC transplant, there is evidence that MSC can actually promote adaptive immunity under certain settings. MSC have also demonstrated some success in anti-cancer therapeutic vaccines and anti-microbial prophylactic vaccines, as we report, for the first time, the ability of modified MSC to express and secrete a viral antigen that stimulates antigen-specific antibody production in vivo. We hypothesize that the unique properties of modified MSC may enable MSC to serve as an unconventional but innovative, vaccine platform. Such a platform would be capable of expressing hundreds of proteins, thereby generating a broad array of epitopes with correct post-translational processing, mimicking natural infection. By stimulating immunity to a combination of epitopes, it may be possible to develop prophylactic and even therapeutic vaccines to tackle major health problems including those of non-microbial and microbial origin, including cancer, or an infectious disease like HIV, where traditional vaccination approaches have failed.

  16. Intermediate rough Brucella abortus S19Δper mutant is DIVA enable, safe to pregnant guinea pigs and confers protection to mice.

    Science.gov (United States)

    Lalsiamthara, Jonathan; Gogia, Neha; Goswami, Tapas K; Singh, R K; Chaudhuri, Pallab

    2015-05-21

    Brucella abortus S19 is a smooth strain used as live vaccine against bovine brucellosis. Smooth lipopolysaccharide (LPS) is responsible for its residual virulence and serological interference. Rough mutants defective of LPS are more attenuated but confers lower level of protection. We describe a modified B. abortus S19 strain, named as S19Δper, which exhibits intermediate rough phenotype with residual O-polysaccharide (OPS). Deletion of perosamine synthetase gene resulted in substantial attenuation of S19Δper mutant without affecting immunogenic properties. It mounted strong immune response in Swiss albino mice and conferred protection similar to S19 vaccine. Immunized mice produced higher levels of IFN-γ, IgG2a and thus has immune response inclined towards Th1 cell mediated immunity. Sera from immunized animals did not show agglutination reaction with RBPT antigen and thus could serve as DIVA (Differentiating Infected from Vaccinated Animals) vaccine. S19Δper mutant displayed more susceptibility to serum complement mediated killing and sensitivity to polymyxin B. Pregnant guinea pigs injected with S19Δper mutant completed full term of pregnancy and did not cause abortion, still birth or birth of weak offspring. S19Δper mutant with intermediate rough phenotype displayed remarkable resemblance to S19 vaccine strain with improved properties of safety, immunogenicity and DIVA capability for control of bovine brucellosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Activation/modulation of adaptive immunity emerges simultaneously after 17DD yellow fever first-time vaccination: is this the key to prevent severe adverse reactions following immunization?

    Science.gov (United States)

    Martins, M A; Silva, M L; Marciano, A P V; Peruhype-Magalhães, V; Eloi-Santos, S M; Ribeiro, j G L; Correa-Oliveira, R; Homma, A; Kroon, E G; Teixeira-Carvalho, A; Martins-Filho, O A

    2007-04-01

    Over past decades the 17DD yellow fever vaccine has proved to be effective in controlling yellow fever and promises to be a vaccine vector for other diseases, but the cellular and molecular mechanisms by which it elicits such broad-based immunity are still unclear. In this study we describe a detailed phenotypic investigation of major and minor peripheral blood lymphocyte subpopulations aimed at characterizing the kinetics of the adaptive immune response following primary 17DD vaccination. Our major finding is a decreased frequency of circulating CD19+ cells at day 7 followed by emerging activation/modulation phenotypic features (CD19+interleukin(IL)10R+/CD19+CD32+) at day 15. Increased frequency of CD4+human leucocyte antigen D-related(HLA-DR+) at day 7 and CD8+HLA-DR+ at day 30 suggest distinct kinetics of T cell activation, with CD4+ T cells being activated early and CD8+ T cells representing a later event following 17DD vaccination. Up-regulation of modulatory features on CD4+ and CD8+ cells at day 15 seems to be the key event leading to lower frequency of CD38+ T cells at day 30. Taken together, our findings demonstrate the co-existence of phenotypic features associated with activation events and modulatory pathways. Positive correlations between CD4+HLA-DR+ cells and CD4+CD25high regulatory T cells and the association between the type 0 chemokine receptor CCR2 and the activation status of CD4+ and CD8+ cells further support this hypothesis. We hypothesize that this controlled microenviroment seems to be the key to prevent the development of serious adverse events, and even deaths, associated with the 17DD vaccine reported in the literature.

  18. CELLULAR VACCINES IN LISTERIOSIS: ROLE OF THE LISTERIA ANTIGEN GAPDH.

    Directory of Open Access Journals (Sweden)

    Ricardo eCalderon-Gonzalez

    2014-02-01

    Full Text Available The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH, and several epitopes such as the LLO peptides, LLO189–201 and LLO91–99 and the GAPDH peptide, GAPDH1–22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1–22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91–99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1–22-specific CD4+ and CD8+ immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4+ and CD8+ epitopes.

  19. Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH

    Science.gov (United States)

    Calderón-González, Ricardo; Frande-Cabanes, Elisabet; Bronchalo-Vicente, Lucía; Lecea-Cuello, M. Jesús; Pareja, Eduardo; Bosch-Martínez, Alexandre; Fanarraga, Mónica L.; Yañez-Díaz, Sonsoles; Carrasco-Marín, Eugenio; Álvarez-Domínguez, Carmen

    2014-01-01

    The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs) and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and several epitopes such as the LLO peptides, LLO189−201 and LLO91−99 and the GAPDH peptide, GAPDH1−22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1−22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91−99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1−22-specific CD4+ and CD8+ immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4+ and CD8+ epitopes. PMID:24600592

  20. Modelling Risk to US Military Populations from Stopping Blanket Mandatory Polio Vaccination.

    Science.gov (United States)

    Burgess, Colleen; Burgess, Andrew; McMullen, Kellie

    2017-01-01

    Transmission of polio poses a threat to military forces when deploying to regions where such viruses are endemic. US-born soldiers generally enter service with immunity resulting from childhood immunization against polio; moreover, new recruits are routinely vaccinated with inactivated poliovirus vaccine (IPV), supplemented based upon deployment circumstances. Given residual protection from childhood vaccination, risk-based vaccination may sufficiently protect troops from polio transmission. This analysis employed a mathematical system for polio transmission within military populations interacting with locals in a polio-endemic region to evaluate changes in vaccination policy. Removal of blanket immunization had no effect on simulated polio incidence among deployed military populations when risk-based immunization was employed; however, when these individuals reintegrated with their base populations, risk of transmission to nondeployed personnel increased by 19%. In the absence of both blanket- and risk-based immunization, transmission to nondeployed populations increased by 25%. The overall number of new infections among nondeployed populations was negligible for both scenarios due to high childhood immunization rates, partial protection against transmission conferred by IPV, and low global disease incidence levels. Risk-based immunization driven by deployment to polio-endemic regions is sufficient to prevent transmission among both deployed and nondeployed US military populations.

  1. Construction and analysis of experimental DNA vaccines against megalocytivirus.

    Science.gov (United States)

    Zhang, Min; Hu, Yong-Hua; Xiao, Zhi-Zhong; Sun, Yun; Sun, Li

    2012-11-01

    Iridoviruses are large double-stranded DNA viruses with icosahedral capsid. The Iridoviridae family contains five genera, one of which is Megalocytivirus. Megalocytivirus has emerged in recent years as an important pathogen to a wide range of marine and freshwater fish. In this study, we aimed at developing effective genetic vaccines against megalocytivirus affecting farmed fish in China. For this purpose, we constructed seven DNA vaccines based on seven genes of rock bream iridovirus isolate 1 from China (RBIV-C1), a megalocytivirus with a host range that includes Japanese flounder (Paralichthys olivaceus) and turbot (Scophthalmus maximus). The protective potentials of these vaccines were examined in a turbot model. The results showed that after vaccination via intramuscular injection, the vaccine plasmids were distributed in spleen, kidney, muscle, and liver, and transcription of the vaccine genes and production of the vaccine proteins were detected in these tissues. Following challenge with a lethal-dose of RBIV-C1, fish vaccinated with four of the seven DNA vaccines exhibited significantly higher levels of survival compared to control fish. Of these four protective DNA vaccines, pCN86, which is a plasmid that expresses an 86-residue viral protein, induced the highest protection. Immunological analysis showed that pCN86 was able to (i) stimulate the respiratory burst of head kidney macrophages at 14 d, 21 d, and 28 d post-vaccination, (ii) upregulate the expression of immune relevant genes involved in innate and adaptive immunity, and (iii) induce production of serum antibodies that, when incubated with RBIV-C1 before infection, significantly reduced viral loads in kidney and spleen following viral infection of turbot. Taken together, these results indicate that pCN86 is an effective DNA vaccine that may be used in the control of megalocytivirus-associated diseases in aquaculture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Non-specific immunity of BCG vaccine: A perspective of BCG immunotherapy

    Directory of Open Access Journals (Sweden)

    Najeeha Talat Iqbal

    2014-01-01

    Full Text Available BCG is a widely used vaccine worldwide for neonates including Pakistan. BCG has more than 90% coverage through the EPI program which was introduced in 1965 in Pakistan. BCG has limited efficacy against the transmissible form of pulmonary tuberculosis in high TB endemic countries. However, BCG vaccination continues in these countries because BCG confers protection against the disseminated form of TB in children. BCG has also shown some protection against leprosy and certain forms of cancers. One reason for such nonspecific protection may be that BCG activates APCs via PAMPS that interacts with TLRs (2, 4 & 8, which initiate the inflammatory cascade thereby recruiting inflammatory cells to the site of infection and providing maturation signals for neutrophils, macrophages and dendritic cells. Such activation may be crucial for restricting the infection at the initial site. Furthermore, activation of the pro-inflammatory cascade also results in expression of adhesion molecules, co-stimulatory molecules as well as MHC class II molecule. MHC class II molecules engage CD4+ cells via the TCR receptor while the adhesion and costimulatory molecules bind to their respective receptors on CD4+ T cells for additional high affinity binding for T cell activation. Although activation of the innate arm may not provide subsequent memory, activation of T cells may introduce a certain level of memory response and therefore, may form a rational basis for BCG immunotherapy. This review, therefore, focuses on the immune activation related to both the innate and adaptive arm of the immune response that has been reported and further explores the utility of BCG immunotherapy related to non TB conditions.

  3. "Wait and see" vaccinating behaviour during a pandemic: a game theoretic analysis.

    Science.gov (United States)

    Bhattacharyya, Samit; Bauch, Chris T

    2011-07-26

    During the 2009 H1N1 pandemic, many individuals did not seek vaccination immediately but rather decided to "wait and see" until further information was available on vaccination costs. This behaviour implies two sources of strategic interaction: as more individuals become vaccinated, both the perceived vaccination cost and the probability that susceptible individuals become infected decline. Here we analyze the outcome of these two strategic interactions by combining game theory with a disease transmission model during an outbreak of a novel influenza strain. The model exhibits a "wait and see" Nash equilibrium strategy, with vaccine delayers relying on herd immunity and vaccine safety information generated by early vaccinators. This strategic behaviour causes the timing of the epidemic peak to be strongly conserved across a broad range of plausible transmission rates, in contrast to models without such adaptive behaviour. The model exhibits not only feedback mechanisms but also a feed-forward mechanism: a high initial perceived vaccination cost perpetuates high perceived vaccine costs (and lower vaccine coverage) throughout the remainder of the outbreak. This suggests that any effect of risk communication at the start of a pandemic outbreak will be amplified compared to the same amount of risk communication effort distributed throughout the outbreak. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Vaccine decision-making begins in pregnancy: Correlation between vaccine concerns, intentions and maternal vaccination with subsequent childhood vaccine uptake.

    Science.gov (United States)

    Danchin, M H; Costa-Pinto, J; Attwell, K; Willaby, H; Wiley, K; Hoq, M; Leask, J; Perrett, K P; O'Keefe, Jacinta; Giles, M L; Marshall, H

    2017-08-12

    Maternal and childhood vaccine decision-making begins prenatally. Amongst pregnant Australian women we aimed to ascertain vaccine information received, maternal immunisation uptake and attitudes and concerns regarding childhood vaccination. We also aimed to determine any correlation between a) intentions and concerns regarding childhood vaccination, (b) concerns about pregnancy vaccination, (c) socioeconomic status (SES) and (d) uptake of influenza and pertussis vaccines during pregnancy and routine vaccines during childhood. Women attending public antenatal clinics were recruited in three Australian states. Surveys were completed on iPads. Follow-up phone surveys were done three to six months post delivery, and infant vaccination status obtained via the Australian Childhood Immunisation Register (ACIR). Between October 2015 and March 2016, 975 (82%) of 1184 mothers consented and 406 (42%) agreed to a follow up survey, post delivery. First-time mothers (445; 49%) had significantly more vaccine concerns in pregnancy and only 73% had made a decision about childhood vaccination compared to 89% of mothers with existing children (p-valuepost delivery survey, 46% and 82% of mothers reported receiving pregnancy influenza and pertussis vaccines respectively. The mother's degree of vaccine hesitancy and two attitudinal factors were correlated with vaccine uptake post delivery. There was no association between reported maternal vaccine uptake or SES and childhood vaccine uptake. First time mothers are more vaccine hesitant and undecided about childhood vaccination, and only two thirds of all mothers believed they received enough information during pregnancy. New interventions to improve both education and communication on childhood and maternal vaccines, delivered by midwives and obstetricians in the Australian public hospital system, may reduce vaccine hesitancy for all mothers in pregnancy and post delivery, particularly first-time mothers. Copyright © 2017 Elsevier Ltd

  5. Single Dose of Consensus Hemagglutinin-Based Virus-Like Particles Vaccine Protects Chickens against Divergent H5 Subtype Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Peipei Wu

    2017-11-01

    Full Text Available The H5 subtype highly pathogenic avian influenza (HPAI virus is one of the greatest threats to global poultry industry. To develop broadly protective H5 subunit vaccine, a recombinant consensus HA sequence (rHA was constructed and expressed in virus-like particles (rHA VLPs in the baculovirus-insect cell system. The efficacy of the rHA VLPs vaccine with or without immunopotentiator (CVCVA5 was assessed in chickens. Compared to the commercial Re6 or Re6-CVCVA5 vaccines, single dose immunization of chickens with rHA VLPs or rHA-CVCVA5 vaccines induced higher levels of serum hemagglutinin inhibition titers and neutralization titers, mucosal antibodies, IFN-γ and IL-4 cytokines in sera, and cytotoxic T lymphocyte responses. The rHA VLPs vaccine was superior to the commercial Re6 vaccine in conferring cross-protection against different clades of H5 subtype viruses. This study reports that H5 subtype consensus HA VLP single dose vaccination provides broad protection against HPAI virus in chickens.

  6. Adapted Lethality: What We Can Learn from Guinea Pig-Adapted Ebola Virus Infection Model.

    Science.gov (United States)

    Cheresiz, S V; Semenova, E A; Chepurnov, A A

    2016-01-01

    Establishment of small animal models of Ebola virus (EBOV) infection is important both for the study of genetic determinants involved in the complex pathology of EBOV disease and for the preliminary screening of antivirals, production of therapeutic heterologic immunoglobulins, and experimental vaccine development. Since the wild-type EBOV is avirulent in rodents, the adaptation series of passages in these animals are required for the virulence/lethality to emerge in these models. Here, we provide an overview of our several adaptation series in guinea pigs, which resulted in the establishment of guinea pig-adapted EBOV (GPA-EBOV) variants different in their characteristics, while uniformly lethal for the infected animals, and compare the virologic, genetic, pathomorphologic, and immunologic findings with those obtained in the adaptation experiments of the other research groups.

  7. Adapted Lethality: What We Can Learn from Guinea Pig-Adapted Ebola Virus Infection Model

    Directory of Open Access Journals (Sweden)

    S. V. Cheresiz

    2016-01-01

    Full Text Available Establishment of small animal models of Ebola virus (EBOV infection is important both for the study of genetic determinants involved in the complex pathology of EBOV disease and for the preliminary screening of antivirals, production of therapeutic heterologic immunoglobulins, and experimental vaccine development. Since the wild-type EBOV is avirulent in rodents, the adaptation series of passages in these animals are required for the virulence/lethality to emerge in these models. Here, we provide an overview of our several adaptation series in guinea pigs, which resulted in the establishment of guinea pig-adapted EBOV (GPA-EBOV variants different in their characteristics, while uniformly lethal for the infected animals, and compare the virologic, genetic, pathomorphologic, and immunologic findings with those obtained in the adaptation experiments of the other research groups.

  8. Can probiotics enhance vaccine-specific immunity in children and adults?

    Science.gov (United States)

    Kwak, J Y; Lamousé-Smith, E S N

    2017-10-13

    The growing use of probiotics by the general public has heightened the interest in understanding the role of probiotics in promoting health and preventing disease. General practitioners and specialists often receive inquiries from their patients regarding probiotic products and their use to ward off systemic infection or intestinal maladies. Enhanced immune function is among the touted health benefits conferred by probiotics but has not yet been fully established. Results from recent clinical trials in adults suggest a potential role for probiotics in enhancing vaccine-specific immunity. Although almost all vaccinations are given during infancy and childhood, the numbers of and results from studies using probiotics in pediatric subjects are limited. This review evaluates recent clinical trials of probiotics used to enhance vaccine-specific immune responses in adults and infants. We highlight meaningful results and the implications of these findings for designing translational and clinical studies that will evaluate the potential clinical role for probiotics. We conclude that the touted health claims of probiotics for use in children to augment immunity warrant further investigation. In order to achieve this goal, a consensus should be reached on common study designs that apply similar treatment timelines, compare well-characterised probiotic strains and monitor effective responses against different classes of vaccines.

  9. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines

    DEFF Research Database (Denmark)

    Blok, Bastiaan A; Arts, Rob J W; van Crevel, Reinout

    2015-01-01

    An increasing body of evidence shows that the innate immune system has adaptive characteristics that involve a heterologous memory of past insults. Both experimental models and proof-of-principle clinical trials show that innate immune cells, such as monocytes, macrophages, and NK cells, can...... provide protection against certain infections in vaccination models independently of lymphocytes. This process is regulated through epigenetic reprogramming of innate immune cells and has been termed "trained immunity." It has been hypothesized that induction of trained immunity is responsible...... for the protective, nonspecific effects induced by vaccines, such as BCG, measles vaccination, and other whole-microorganism vaccines. In this review, we will present the mechanisms of trained immunity responsible for the long-lasting effects of vaccines on the innate immune system....

  10. Non-invasive monitoring of Streptococcus pyogenes vaccine efficacy using biophotonic imaging.

    Directory of Open Access Journals (Sweden)

    Faraz M Alam

    Full Text Available Streptococcus pyogenes infection of the nasopharynx represents a key step in the pathogenic cycle of this organism and a major focus for vaccine development, requiring robust models to facilitate the screening of potentially protective antigens. One antigen that may be an important target for vaccination is the chemokine protease, SpyCEP, which is cell surface-associated and plays a role in pathogenesis. Biophotonic imaging (BPI can non-invasively characterize the spatial location and abundance of bioluminescent bacteria in vivo. We have developed a bioluminescent derivative of a pharyngeal S. pyogenes strain by transformation of an emm75 clinical isolate with the luxABCDE operon. Evaluation of isogenic recombinant strains in vitro and in vivo confirmed that bioluminescence conferred a growth deficit that manifests as a fitness cost during infection. Notwithstanding this, bioluminescence expression permitted non-invasive longitudinal quantitation of S. pyogenes within the murine nasopharynx albeit with a detection limit corresponding to approximately 10(5 bacterial colony forming units (CFU in this region. Vaccination of mice with heat killed streptococci, or with SpyCEP led to a specific IgG response in the serum. BPI demonstrated that both vaccine candidates reduced S. pyogenes bioluminescence emission over the course of nasopharyngeal infection. The work suggests the potential for BPI to be used in the non-invasive longitudinal evaluation of potential S. pyogenes vaccines.

  11. EDITORIAL: Adaptive and active materials: Selected papers from the ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 11) (Scottsdale, AZ, USA, 18-21 September 2011) Adaptive and active materials: Selected papers from the ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 11) (Scottsdale, AZ, USA, 18-21 September 2011)

    Science.gov (United States)

    Brei, Diann

    2012-09-01

    The fourth annual meeting of the ASME/AIAA Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) took place in sunny Scottsdale, Arizona. Each year we strive to grow and offer new experiences. This year we held a special Guest Symposium on Sustainability along with two focused topic tracks on energy harvesting and active composites to encourage cross-fertilization between these important fields and our community. This cross-disciplinary emphasis was reflected in keynote talks by Dr Wayne Brown, President and founder of Dynalloy, Inc., 'Cross-Discipline Sharing'; Dr Brad Allenby, Arizona State University, 'You Want the Future? You can't Handle the Future!'; and Professor Aditi Chattopadhyay, Arizona State University, 'A Multidisciplinary Approach to Structural Health Monitoring and Prognosis'. SMASIS continues to grow our community through both social and technical interchange. The conference location, the exotic Firesky Resort and Spa, exemplified the theme of our Guest Symposium on Sustainability, being the only Green Seal certified resort in Arizona, and highlighting four elements thought to represent all that exist: fire, water, earth and air. Several special events were held around this theme including the night at the oasis reception sponsored by General Motors, sustainability bingo, smart trivia and student networking lunches, and an Arizona pow-wow with a spectacular Indian hoop dance. Our student and young professional development continues to grow strong with best paper and hardware competitions, scavenger student outing and games night. We are very proud that our students and young professionals are always seeking out ways to give back to the community, including organizing outreach to local high school talent. We thank all of our sponsors who made these special events possible. We hope that these social events provided participants with the opportunity to expand their own personal community and broaden their horizons. Our

  12. CAF01 potentiates immune responses and efficacy of an inactivated influenza vaccine in ferrets.

    Directory of Open Access Journals (Sweden)

    Cyril Jean-Marie Martel

    Full Text Available Trivalent inactivated vaccines (TIV against influenza are given to 350 million people every year. Most of these are non-adjuvanted vaccines whose immunogenicity and protective efficacy are considered suboptimal. Commercially available non-adjuvanted TIV are known to elicit mainly a humoral immune response, whereas the induction of cell-mediated immune responses is negligible. Recently, a cationic liposomal adjuvant (dimethyldioctadecylammonium/trehalose 6,6'-dibehenate, CAF01 was developed. CAF01 has proven to enhance both humoral and cell-mediated immune responses to a number of different experimental vaccine candidates. In this study, we compared the immune responses in ferrets to a commercially available TIV with the responses to the same vaccine mixed with the CAF01 adjuvant. Two recently circulating H1N1 viruses were used as challenge to test the vaccine efficacy. CAF01 improved the immunogenicity of the vaccine, with increased influenza-specific IgA and IgG levels. Additionally, CAF01 promoted cellular-mediated immunity as indicated by interferon-gamma expressing lymphocytes, measured by flow cytometry. CAF01 also enhanced the protection conferred by the vaccine by reducing the viral load measured in nasal washes by RT-PCR. Finally, CAF01 allowed for dose-reduction and led to higher levels of protection compared to TIV adjuvanted with a squalene emulsion. The data obtained in this human-relevant challenge model supports the potential of CAF01 in future influenza vaccines.

  13. Alternatives to conventional vaccines--mediators of innate immunity.

    Science.gov (United States)

    Eisen, D P; Liley, H G; Minchinton, R M

    2004-01-01

    Vaccines have been described as "weapons of mass protection". The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.

  14. Liposome-based cationic adjuvant CAF01 enhances the protection conferred by a commercial inactivated influenza vaccine in ferrets

    DEFF Research Database (Denmark)

    Martel, Cyril Jean-Marie; Agger, Else Marie; Jensen, Trine Hammer

    Objectives: To assess the effect of CAF01 adjuvant associated to a commercial trivalent inactivated influenza vaccine in the ferret model. Methods:  Ferrets were vaccinated with a range of doses of Sanofi-Pasteur's Vaxigrip with or without the CAF01 adjuvant, and challenged with either one of two H...

  15. A novel alphavirus replicon-vectored vaccine delivered by adenovirus induces sterile immunity against classical swine fever.

    Science.gov (United States)

    Sun, Yuan; Li, Hong-Yu; Tian, Da-Yong; Han, Qiu-Ying; Zhang, Xin; Li, Na; Qiu, Hua-Ji

    2011-10-26

    Low efficacy of gene-based vaccines due to inefficient gene delivery and expression has been major bottleneck of their applications. Efforts have been made to improve the efficacy, such as gene gun and electroporation, but the strategies are difficult to put into practical use. In this study, we developed and evaluated an adenovirus-delivered, alphavirus replicon-vectored vaccine (chimeric vector-based vaccine) expressing the E2 gene of classical swine fever virus (CSFV) (rAdV-SFV-E2). Rabbits immunized with rAdV-SFV-E2 developed CSFV-specific antibodies as early as 9 days and as long as 189 days and completely protected from challenge with C-strain. Pigs immunized with rAdV-SFV-E2 (n=5) developed robust humoral and cell-mediated responses to CSFV and were completely protected from subsequent lethal CSFV infection clinically and virologically. The level of immunity and protection induced by rAdV-SFV-E2 was comparable to that provided by the currently used live attenuated vaccine, C-strain. In contrast, both the conventional alphavirus replicon-vectored vaccine pSFV1CS-E2 and conventional adenovirus-vectored vaccine rAdV-E2 provided incomplete protection. The chimeric vector-based vaccine represents the first gene-based vaccine that is able to confer sterile immunity and complete protection against CSFV. The new-concept vaccination strategy may also be valuable in vaccine development against other pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Cost-effectiveness of routine varicella vaccination using the measles, mumps, rubella and varicella vaccine in France: an economic analysis based on a dynamic transmission model for varicella and herpes zoster.

    Science.gov (United States)

    Littlewood, Kavi J; Ouwens, Mario J N M; Sauboin, Christophe; Tehard, Bertrand; Alain, Sophie; Denis, François

    2015-04-01

    Each year in France, varicella and zoster affect large numbers of children and adults, resulting in medical visits, hospitalizations for varicella- and zoster-related complications, and societal costs. Disease prevention by varicella vaccination is feasible, wherein a plausible option involves replacing the combined measles, mumps, and rubella (MMR) vaccine with the combined MMR and varicella (MMRV) vaccine. This study aimed to: (1) assess the cost-effectiveness of adding routine varicella vaccination through MMRV, using different vaccination strategies in France; and (2) address key uncertainties, such as the economic consequences of breakthrough varicella cases, the waning of vaccine-conferred protection, vaccination coverage, and indirect costs. Based on the outputs of a dynamic transmission model that used data on epidemiology and costs from France, a cost-effectiveness model was built. A conservative approach was taken regarding the impact of varicella vaccination on zoster incidence by assuming the validity of the hypothesis of an age-specific boosting of immunity against varicella. The model determined that routine MMRV vaccination is expected to be a cost-effective option, considering a cost-effectiveness threshold of €20,000 per quality-adjusted life-year saved; routine vaccination was cost-saving from the societal perspective. Results were driven by a large decrease in varicella incidence despite a temporary initial increase in the number of zoster cases due to the assumption of exogenous boosting. In the scenario analyses, despite moderate changes in assumptions about incidence and costs, varicella vaccination remained a cost-effective option for France. Routine vaccination with MMRV was associated with high gains in quality-adjusted life-years, substantial reduction in the occurrences of varicella- and zoster-related complications, and few deaths due to varicella. Routine MMRV vaccination is also expected to provide reductions in costs related to

  17. Vaccines today, vaccines tomorrow: a perspective.

    Science.gov (United States)

    Loucq, Christian

    2013-01-01

    Vaccines are considered as one of the major contributions of the 20th century and one of the most cost effective public health interventions. The International Vaccine Institute has as a mission to discover, develop and deliver new and improved vaccines against infectious diseases that affects developing nations. If Louis Pasteur is known across the globe, vaccinologists like Maurice Hilleman, Jonas Salk and Charles Mérieux are known among experts only despite their contribution to global health. Thanks to a vaccine, smallpox has been eradicated, polio has nearly disappeared, Haemophilus influenzae B, measles and more recently meningitis A are controlled in many countries. While a malaria vaccine is undergoing phase 3, International Vaccine Institute, in collaboration with an Indian manufacturer has brought an oral inactivated cholera vaccine to pre-qualification. The field of vaccinology has undergone major changes thanks to philanthropists such as Bill and Melinda Gates, initiatives like the Decade of Vaccines and public private partnerships. Current researches on vaccines have more challenging targets like the dengue viruses, malaria, human immunodeficiency virus, the respiratory syncytial virus and nosocomial diseases. Exciting research is taking place on new adjuvants, nanoparticles, virus like particles and new route of administration. An overcrowded infant immunization program, anti-vaccine groups, immunizing a growing number of elderlies and delivering vaccines to difficult places are among challenges faced by vaccinologists and global health experts.

  18. Relationship between Humoral Immune Responses against HPV16, HPV18, HPV31 and HPV45 in 12-15 Year Old Girls Receiving Cervarix® or Gardasil® Vaccine.

    Directory of Open Access Journals (Sweden)

    Anna Godi

    Full Text Available Human papillomavirus (HPV vaccines confer protection against the oncogenic genotypes HPV16 and HPV18 through the generation of type-specific neutralizing antibodies raised against virus-like particles (VLP representing these genotypes. The vaccines also confer a degree of cross-protection against HPV31 and HPV45, which are genetically-related to the vaccine types HPV16 and HPV18, respectively, although the mechanism is less certain. There are a number of humoral immune measures that have been examined in relation to the HPV vaccines, including VLP binding, pseudovirus neutralization and the enumeration of memory B cells. While the specificity of responses generated against the vaccine genotypes are fairly well studied, the relationship between these measures in relation to non-vaccine genotypes is less certain.We carried out a comparative study of these immune measures against vaccine and non-vaccine genotypes using samples collected from 12-15 year old girls following immunization with three doses of either Cervarix® or Gardasil® HPV vaccine.The relationship between neutralizing and binding antibody titers and HPV-specific memory B cell levels for the vaccine genotypes, HPV16 and HPV18, were very good. The proportion of responders approached 100% for both vaccines while the magnitude of these responses induced by Cervarix® were generally higher than those following Gardasil® immunization. A similar pattern was found for the non-vaccine genotype HPV31, albeit at a lower magnitude compared to its genetically-related vaccine genotype, HPV16. However, both the enumeration of memory B cells and VLP binding responses against HPV45 were poorly related to its neutralizing antibody responses. Purified IgG derived from memory B cells demonstrated specificities similar to those found in the serum, including the capacity to neutralize HPV pseudoviruses.These data suggest that pseudovirus neutralization should be used as the preferred humoral immune

  19. SEVERAL MUCOSAL VACCINATION ROUTES CONFER IMMUNITY AGAINST ENTERIC REDMOUTH DISEASE IN RAINBOW TROUT, BUT THE PROTECTIVE MECHANISMS ARE DIFFERENT

    DEFF Research Database (Denmark)

    Neumann, Lukas; Villumsen, Kasper Rømer; Kragelund Strøm, Helene

    Vaccination is a keystone in prophylactic strategies preventing outbreaks of fish pathogenic bacterial diseases in aquaculture. The first commercial fish vaccine consisted of a bacterin of Yersinia ruckeri serotype O1 biotype 1. The vaccine has been very successful and has been used for more than...... cells and M-like cells have been found in fish, is it suggested that gut-associated lymphoid tissue (GALT) associated with the gastrointestinal tract are involved in antigen uptake and generation of a local protective immune response against Y. ruckeri....

  20. Effectiveness of one dose of mumps vaccine against clinically diagnosed mumps in Guangzhou, China, 2006-2012.

    Science.gov (United States)

    Fu, Chuanxi; Xu, Jianxiong; Cai, Yuanjun; He, Qing; Zhang, Chunhuan; Chen, Jian; Dong, Zhiqiang; Hu, Wensui; Wang, Hui; Zhu, Wei; Wang, Ming

    2013-12-01

    Although mumps-containing vaccines were introduced in China in 1990s, mumps continues to be a public health concern due to the lack of decline in reported mumps cases. To assess the mumps vaccine effectiveness (VE) in Guangzhou, China, we performed a 1:1 matched case-control study. Among children in Guangzhou aged 8 mo to 12 y during 2006 to 2012, we matched one healthy child to each child with clinically diagnosed mumps. Cases with clinically diagnosed mumps were identified from surveillance sites system and healthy controls were randomly sampled from the Children's Expanded Programmed Immunization Administrative Computerized System in Guangzhou. Conditional logistic regression was used to calculate VE. We analyzed the vaccination information for 1983 mumps case subjects and 1983 matched controls and found that the overall VE for 1 dose of mumps vaccine, irrespective of the manufacture, was 53.6% (95% confidence interval [CI], 41.0-63.5%) to children aged 8 mo to 12 y. This post-marketing mumps VE study found that immunization with one dose of the mumps vaccine confers partial protection against mumps disease. Evaluation of the VE for the current mumps vaccines, introduction of a second dose of mumps vaccine, and assessment of modifications to childhood immunization schedules is essential.

  1. Development of a human live attenuated West Nile infectious DNA vaccine: Identification of a minimal mutation set conferring the attenuation level acceptable for a human vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Yamshchikov, Vladimir, E-mail: yaximik@gmail.com; Manuvakhova, Marina; Rodriguez, Efrain; Hébert, Charles

    2017-01-15

    ABSTRACT: For the development of a human West Nile (WN) infectious DNA (iDNA) vaccine, we created highly attenuated chimeric virus W1806 with the serological identity of highly virulent WN-NY99. Earlier, we attempted to utilize mutations found in the E protein of the SA14-14-2 vaccine to bring safety of W1806 to the level acceptable for human use (). Here, we analyzed effects of the SA14-14-2 changes on growth properties and neurovirulence of W1806. A set including the E138K, K279M, K439R and G447D changes was identified as the perspective subset for satisfying the target safety profile without compromising immunogenicity of the vaccine candidate. The genetic stability of the attenuated phenotype was found to be unsatisfactory being dependent on a subset of attenuating changes incorporated in W1806. Elucidation of underlying mechanisms influencing selection of pathways for restoration of the envelope protein functionality will facilitate resolution of the emerged genetic stability issue. - Highlights: •Effect of mutations in E on properties of WN1806 is determined. •A subset of attenuating mutations suitable for a human vaccine is defined. •Mechanism of attenuation is proposed and illustrated. •Underlying mechanisms of neurovirulence reversion are suggested.

  2. Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry

    Science.gov (United States)

    Miles, John J.; Tan, Mai Ping; Dolton, Garry; Galloway, Sarah A.E.; Laugel, Bruno; Makinde, Julia; Matthews, Katherine K.; Watkins, Thomas S.; Wong, Yide; Clark, Richard J.; Pentier, Johanne M.; Attaf, Meriem; Lissina, Anya; Ager, Ann; Gallimore, Awen; Gras, Stephanie; Rossjohn, Jamie; Burrows, Scott R.; Cole, David K.; Price, David A.

    2018-01-01

    Polypeptide vaccines effectively activate human T cells but suffer from poor biological stability, which confines both transport logistics and in vivo therapeutic activity. Synthetic biology has the potential to address these limitations through the generation of highly stable antigenic “mimics” using subunits that do not exist in the natural world. We developed a platform based on D–amino acid combinatorial chemistry and used this platform to reverse engineer a fully artificial CD8+ T cell agonist that mirrored the immunogenicity profile of a native epitope blueprint from influenza virus. This nonnatural peptide was highly stable in human serum and gastric acid, reflecting an intrinsic resistance to physical and enzymatic degradation. In vitro, the synthetic agonist stimulated and expanded an archetypal repertoire of polyfunctional human influenza virus–specific CD8+ T cells. In vivo, specific responses were elicited in naive humanized mice by subcutaneous vaccination, conferring protection from subsequent lethal influenza challenge. Moreover, the synthetic agonist was immunogenic after oral administration. This proof-of-concept study highlights the power of synthetic biology to expand the horizons of vaccine design and therapeutic delivery. PMID:29528337

  3. Plant-made oral vaccines against human infectious diseases-Are we there yet?

    Science.gov (United States)

    Chan, Hui-Ting; Daniell, Henry

    2015-10-01

    Although the plant-made vaccine field started three decades ago with the promise of developing low-cost vaccines to prevent infectious disease outbreaks and epidemics around the globe, this goal has not yet been achieved. Plants offer several major advantages in vaccine generation, including low-cost production by eliminating expensive fermentation and purification systems, sterile delivery and cold storage/transportation. Most importantly, oral vaccination using plant-made antigens confers both mucosal (IgA) and systemic (IgG) immunity. Studies in the past 5 years have made significant progress in expressing vaccine antigens in edible leaves (especially lettuce), processing leaves or seeds through lyophilization and achieving antigen stability and efficacy after prolonged storage at ambient temperatures. Bioencapsulation of antigens in plant cells protects them from the digestive system; the fusion of antigens to transmucosal carriers enhances efficiency of their delivery to the immune system and facilitates successful development of plant vaccines as oral boosters. However, the lack of oral priming approaches diminishes these advantages because purified antigens, cold storage/transportation and limited shelf life are still major challenges for priming with adjuvants and for antigen delivery by injection. Yet another challenge is the risk of inducing tolerance without priming the host immune system. Therefore, mechanistic aspects of these two opposing processes (antibody production or suppression) are discussed in this review. In addition, we summarize recent progress made in oral delivery of vaccine antigens expressed in plant cells via the chloroplast or nuclear genomes and potential challenges in achieving immunity against infectious diseases using cold-chain-free vaccine delivery approaches. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Adaptive and integrated water management

    NARCIS (Netherlands)

    Pahl-Wostl, C.; Kabat, P.; Möltgen, J.

    2007-01-01

    Sustainable water management is a key environmental challenge of the 21st century. Developing and implementing innovative management approaches and how to cope with the increasing complexity and uncertainties was the theme of the first International Conference on Adaptive and Integrated Water

  5. Influenza vaccines for preventing cardiovascular disease.

    Science.gov (United States)

    Clar, Christine; Oseni, Zainab; Flowers, Nadine; Keshtkar-Jahromi, Maryam; Rees, Karen

    2015-05-05

    This is an update of the original review published in 2008. The risk of adverse cardiovascular outcomes is increased with influenza-like infection, and vaccination against influenza may improve cardiovascular outcomes. To assess the potential benefits of influenza vaccination for primary and secondary prevention of cardiovascular disease. We searched the following electronic databases on 18 October 2013: The Cochrane Library (including Cochrane Central Register of Controlled Trials (CENTRAL), Database of Abstracts of Reviews of Effects (DARE), Economic Evaluation Database (EED) and Health Technology Assessment database (HTA)), MEDLINE, EMBASE, Science Citation Index Expanded, Conference Proceedings Citation Index - Science and ongoing trials registers (www.controlled-trials.com/ and www.clinicaltrials.gov). We examined reference lists of relevant primary studies and systematic reviews. We performed a limited PubMed search on 20 February 2015, just before publication. Randomised controlled trials (RCTs) of influenza vaccination compared with placebo or no treatment in participants with or without cardiovascular disease, assessing cardiovascular death or non-fatal cardiovascular events. We used standard methodological procedures as expected by The Cochrane Collaboration. We carried out meta-analyses only for cardiovascular death, as other outcomes were reported too infrequently. We expressed effect sizes as risk ratios (RRs), and we used random-effects models. We included eight trials of influenza vaccination compared with placebo or no vaccination, with 12,029 participants receiving at least one vaccination or control treatment. We included six new studies (n = 11,251), in addition to the two included in the previous version of the review. Four of these trials (n = 10,347) focused on prevention of influenza in the general or elderly population and reported cardiovascular outcomes among their safety analyses; four trials (n = 1682) focused on prevention of

  6. 2007 Joint Chemical Biological, Radiological and Nuclear (CBRN) Conference and Exhibition - Combating Weapons of Mass Destruction

    Science.gov (United States)

    2007-06-27

    Selected CB Defense Systems SHAPESENSE Joint Warning and Reporting Network JSLIST CB Protected Shelter Joint Vaccine Acquisition Program Joint Effects...military can operate in any environment, unconstrained by chemical or biological weapons. 21 SHIELD SUSTAIN Selected CB Defense Systems SHAPESENSE Joint...28070625_JCBRN_Conference_Reeves UNCLASSIFIED Decontamination Vision Strippable Barriers Self-Decontaminating Fabrics/Coatings Reduce Logistics Burden

  7. SIAM Conference on Computational Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-08-29

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third mode of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS

  8. Better vaccines for healthier life. Part II. Conference report of the DCVMN International 14th Annual General Meeting Hanoi, Vietnam.

    Science.gov (United States)

    Pagliusi, Sonia; Tippoo, Patrick; Sivaramakrishnan, Venkatraman; Nguyen, Thuvan

    2014-11-12

    New vaccines are required to meet the public health challenges of the next generation and many unmet global health needs can be addressed by developing countries vaccine manufacturers such as lower-cost vaccines based on single-dose, thermostable formulations, efficacious in children with compromised gastrointestinal tracts. GMP compliance is also a challenge, as sometimes innovation and clinical development focus is not accompanied by command of scale-up and quality assurance for large volume manufacturing and supply. Identifying and addressing such challenges, beyond cost and cold-chain space, including safety considerations and health worker behavior, regulatory alliances and harmonization to foster access to vaccines, will help countries to ensure sustainable immunization. There needs to be continuous and close management of the global vaccine supply both at national and international levels, requiring careful risk management, coordination and cooperation with manufacturers. Successful partnership models based on sharing a common goal, mutual respect and good communication were discussed among stakeholders. Copyright © 2014. Published by Elsevier Ltd.. All rights reserved.

  9. Fourth Conference on Artificial Intelligence for Space Applications

    Science.gov (United States)

    Odell, Stephen L. (Compiler); Denton, Judith S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming.

  10. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates.

    Science.gov (United States)

    Sha, Jian; Kirtley, Michelle L; Klages, Curtis; Erova, Tatiana E; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C; Baze, Wallace B; Sivasubramani, Satheesh K; Lawrence, William S; Patrikeev, Igor; Peel, Jennifer E; Andersson, Jourdan A; Kozlova, Elena V; Tiner, Bethany L; Peterson, Johnny W; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L; Chopra, Ashok K

    2016-07-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. 9th Conference of the European Social Simulation Association

    CERN Document Server

    Koloch, Grzegorz

    2014-01-01

    This book is the conference proceedings of ESSA 2013, the 9th Conference of the European Social Simulation Association. ESSA conferences constitute annual events which serve as an international platform for the exchange of ideas and discussion of cutting-edge research in the field of social simulations, both from the theoretical as well as applied perspective. This book consists of 33 articles, which are divided into four themes: Methods for the development of simulation models, Applications of agent-based modeling, Adaptive behavior, social interactions and global environmental change and Using qualitative data to inform behavioral rules. We are convinced that this book will serve interested readers as a useful compendium which presents in a nutshell the most recent advances at the frontiers of social simulation research.

  12. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat.

    Science.gov (United States)

    Mao, Donghai; Yu, Li; Chen, Dazhou; Li, Lanying; Zhu, Yuxing; Xiao, Yeqing; Zhang, Dechun; Chen, Caiyan

    2015-07-01

    Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat. Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.

  13. 2015 Chinese Intelligent Automation Conference

    CERN Document Server

    Li, Hongbo

    2015-01-01

    Proceedings of the 2015 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’15, held in Fuzhou, China. The topics include adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, reconfigurable control, etc. Engineers and researchers from academia, industry and the government can gain valuable insights into interdisciplinary solutions in the field of intelligent automation.

  14. Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus.

    Science.gov (United States)

    Chamberlain, Kyle; Fowler, Veronica L; Barnett, Paul V; Gold, Sarah; Wadsworth, Jemma; Knowles, Nick J; Jackson, Terry

    2015-09-01

    Vaccination remains the most effective tool for control of foot-and-mouth disease both in endemic countries and as an emergency preparedness for new outbreaks. Foot-and-mouth disease vaccines are chemically inactivated virus preparations and the production of new vaccines is critically dependent upon cell culture adaptation of field viruses, which can prove problematic. A major driver of cell culture adaptation is receptor availability. Field isolates of foot-and-mouth disease virus (FMDV) use RGD-dependent integrins as receptors, whereas cell culture adaptation often selects for variants with altered receptor preferences. Previously, two independent sites on the capsid have been identified where mutations are associated with improved cell culture growth. One is a shallow depression formed by the three major structural proteins (VP1-VP3) where mutations create a heparan sulphate (HS)-binding site (the canonical HS-binding site). The other involves residues of VP1 and is located at the fivefold symmetry axis. For some viruses, changes at this site result in HS binding; for others, the receptors are unknown. Here, we report the identification of a novel site on VP2 where mutations resulted in an expanded cell tropism of a vaccine variant of A/IRN/87 (called A - ). Furthermore, we show that introducing the same mutations into a different type A field virus (A/TUR/2/2006) resulted in the same expanded cell culture tropism as the A/IRN/87 A -  vaccine variant. These observations add to the evidence for multiple cell attachment mechanisms for FMDV and may be useful for vaccine manufacture when cell culture adaptation proves difficult.

  15. Building Research Capacity to Understand and Adapt to Climate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Building Research Capacity to Understand and Adapt to Climate Change in the Indus Basin ... Eleven world-class research teams set to improve livestock vaccine development ... Building resilience through socially equitable climate action.

  16. Prenatal vitamin A deficiency impairs adaptive immune responses to pentavalent rotavirus vaccine (RotaTeq®) in a neonatal gnotobiotic pig model.

    Science.gov (United States)

    Kandasamy, Sukumar; Chattha, Kuldeep S; Vlasova, Anastasia N; Saif, Linda J

    2014-02-07

    Vitamin A deficiency (VAD) is associated with increased childhood mortality and morbidity in impoverished Asian and African countries, but the impact of VAD on rotavirus (RV) vaccine or infection is poorly understood. We assessed effects of gestational and dietary induced pre- and post-natal VAD and vitamin A supplementation on immune responses to a pentavalent rotavirus vaccine, RotaTeq(®) in a neonatal gnotobiotic pig model. Vaccine efficacy was assessed against virulent G1P[8] human rotavirus (HRV) challenge. VAD and vitamin A sufficient (VAS) piglets were derived from dietary VAD and VAS sows, respectively. VAD piglets had significantly lower levels of hepatic vitamin A compared to that of VAS piglets. RotaTeq(®)-vaccinated VAD piglets had 350-fold higher fecal virus shedding titers compared to vaccinated VAS piglets post-challenge. Only 25% of vaccinated non-vitamin A supplemented VAD piglets were protected against diarrhea compared with 100% protection rate in vaccinated non-supplemented VAS piglets post-challenge. Intestinal HRV specific immune responses were compromised in VAD piglets. Vaccinated VAD piglets had significantly lower ileal HRV IgG antibody secreting cell (ASC) responses (pre-challenge) and duodenal HRV IgA ASC responses (post-challenge) compared to vaccinated VAS piglets. Also, intestinal HRV IgA antibody titers were 11-fold lower in vaccinated VAD compared to vaccinated VAS piglets post-challenge. Persistently elevated levels of IL-8, a pro-inflammatory mediator, and lower IL-10 responses (anti-inflammatory) in vaccinated VAD compared to VAS piglets suggest more severe inflammatory responses in VAD piglets post-challenge. Moreover higher IFN-γ responses pre-challenge were observed in VAD compared to VAS piglets. The impaired vaccine-specific intestinal antibody responses and decreased immunoregulatory cytokine responses coincided with reduced protective efficacy of the RV vaccine against virulent HRV challenge in VAD piglets. In

  17. How influenza vaccination policy may affect vaccine logistics.

    Science.gov (United States)

    Assi, Tina-Marie; Rookkapan, Korngamon; Rajgopal, Jayant; Sornsrivichai, Vorasith; Brown, Shawn T; Welling, Joel S; Norman, Bryan A; Connor, Diana L; Chen, Sheng-I; Slayton, Rachel B; Laosiritaworn, Yongjua; Wateska, Angela R; Wisniewski, Stephen R; Lee, Bruce Y

    2012-06-22

    When policymakers make decision about the target populations and timing of influenza vaccination, they may not consider the impact on the vaccine supply chains, which may in turn affect vaccine availability. Our goal is to explore the effects on the Thailand vaccine supply chain of introducing influenza vaccines and varying the target populations and immunization time-frames. We Utilized our custom-designed software HERMES (Highly Extensible Resource for Modeling Supply Chains), we developed a detailed, computational discrete-event simulation model of the Thailand's National Immunization Program (NIP) supply chain in Trang Province, Thailand. A suite of experiments simulated introducing influenza vaccines for different target populations and over different time-frames prior to and during the annual influenza season. Introducing influenza vaccines creates bottlenecks that reduce the availability of both influenza vaccines as well as the other NIP vaccines, with provincial to district transport capacity being the primary constraint. Even covering only 25% of the Advisory Committee on Immunization Practice-recommended population while administering the vaccine over six months hinders overall vaccine availability so that only 62% of arriving patients can receive vaccines. Increasing the target population from 25% to 100% progressively worsens these bottlenecks, while increasing influenza vaccination time-frame from 1 to 6 months decreases these bottlenecks. Since the choice of target populations for influenza vaccination and the time-frame to deliver this vaccine can substantially affect the flow of all vaccines, policy-makers may want to consider supply chain effects when choosing target populations for a vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The golden jubilee of vaccination against poliomyelitis.

    Science.gov (United States)

    John, T Jacob

    2004-01-01

    Inactivated poliovirus vaccine (IPV), developed in the USA by Jonas Salk in the early 1950s, was field tested in 1954, and found to be safe and effective. The year 2004 marks the golden jubilee of this breakthrough. From 1955 IPV was used extensively in the US and polio incidence declined by more than 95 per cent. However, in 1962, when oral poliovirus vaccine (OPV) became available, the national policy was shifted to its exclusive use, for reasons other than science and economics. The World Health Organisation (WHO) also adopted the policy of the exclusive use of OPV in developing countries. Thus IPV fell into disrepute in much of the world, while Northern European countries continued to use it. New research led to improving its potency, reducing its manufacturing costs and combining it with the diphtheria-tetanus-pertussis (DTP) vaccine to simplify its administration and reduce programmatic costs. All countries that chose to persist with IPV eliminated poliovirus circulation without OPV-induced polio or the risk of live vaccine viruses reverting to wild-like nature. IPV is highly immunogenic, confers mucosal immunity and exerts herd protective effect, all qualities of a good vaccine. It can be used in harmony with the extendend programme on immunization (EPI) schedule of infant immunisation with DTP, thus reducing programmatic costs. During the last ten years IPV has once again regained its popularity and some 25 industrialised countries use it exclusively. The demand is increasing from other countries and the supply has not caught up, leaving market forces to dictate the sale price of IPV. Anticipating such a turn of events India had launched its own IPV manufacturing programme in 1987, but the project was closed in 1992. Today it is not clear if we can complete the job of global polio eradication without IPV, on account of the genetic instability of OPV and the consequent tendency of vaccine viruses to revert to wild-like properties. The option to use IPV is

  19. Adaptation strategies in the Netherlands

    NARCIS (Netherlands)

    Gupta, J.; Klostermann, J.E.M.; Bergsma, E.; Jong, P.; Albrecht, E.; Schmidt, M.; Mißler-Behr, M.; Spyra, S.P.N.

    2014-01-01

    Although climate change has been prominently featured on the global scientific and political agendas since the World Climate Conference in 1979 (WCC 1979), the specific importance of adaptation to climate change has only been underlined about 20 years later. The Netherlands, because it lies largely

  20. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Bernhards R Ogutu

    Full Text Available The antigen, falciparum malaria protein 1 (FMP1, represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1 of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System, it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccine's safety, immunogenicity, and efficacy in African children.A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12-47 months in general good health.Children were randomised in a 1ratio1 fashion to receive either FMP1/AS02 (50 microg or Rabipur(R rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature >/=37.5 degrees C with asexual parasitaemia of >/=50,000 parasites/microL of blood occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE was measured over a six-month period following third vaccinations.374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-1(42 antibody concentrations increased from1.3 microg/mL to 27.3 microg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: -26% to +28%; p-value = 0.7.FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-1(42 vaccine development should focus on other formulations and antigen constructs

  1. Surface display of Clonorchis sinensis enolase on Bacillus subtilis spores potentializes an oral vaccine candidate.

    Science.gov (United States)

    Wang, Xiaoyun; Chen, Wenjun; Tian, Yanli; Mao, Qiang; Lv, Xiaoli; Shang, Mei; Li, Xuerong; Yu, Xinbing; Huang, Yan

    2014-03-10

    Clonorchis sinensis (C. sinensis) infections remain the common public health problem in freshwater fish consumption areas. New effective prevention strategies are still the urgent challenges to control this kind of foodborne infectious disease. The biochemical importance and biological relevance render C. sinensis enolase (Csenolase) as a potential vaccine candidate. In the present study, we constructed Escherichia coli/Bacillus subtilis shuttle genetic engineering system and investigated the potential of Csenolase as an oral vaccine candidate for C. sinensis prevention in different immunization routes. Our results showed that, compared with control groups, both recombinant Csenolase protein and nucleic acid could induce a mixed IgG1/IgG2a immune response when administrated subcutaneously (Psinensis infection. Csenolase derived oral vaccine conferred worm reduction rate and egg reduction rate at 60.07% (Psinensis prevention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effectiveness of one dose of mumps vaccine against clinically diagnosed mumps in Guangzhou, China, 2006–2012

    Science.gov (United States)

    Fu, Chuanxi; Xu, Jianxiong; Cai, Yuanjun; He, Qing; Zhang, Chunhuan; Chen, Jian; Dong, Zhiqiang; Hu, Wensui; Wang, Hui; Zhu, Wei; Wang, Ming

    2013-01-01

    Although mumps-containing vaccines were introduced in China in 1990s, mumps continues to be a public health concern due to the lack of decline in reported mumps cases. To assess the mumps vaccine effectiveness (VE) in Guangzhou, China, we performed a 1:1 matched case-control study. Among children in Guangzhou aged 8 mo to 12 y during 2006 to 2012, we matched one healthy child to each child with clinically diagnosed mumps. Cases with clinically diagnosed mumps were identified from surveillance sites system and healthy controls were randomly sampled from the Children’s Expanded Programmed Immunization Administrative Computerized System in Guangzhou. Conditional logistic regression was used to calculate VE. We analyzed the vaccination information for 1983 mumps case subjects and 1983 matched controls and found that the overall VE for 1 dose of mumps vaccine, irrespective of the manufacture, was 53.6% (95% confidence interval [CI], 41.0–63.5%) to children aged 8 mo to 12 y. This post-marketing mumps VE study found that immunization with one dose of the mumps vaccine confers partial protection against mumps disease. Evaluation of the VE for the current mumps vaccines, introduction of a second dose of mumps vaccine, and assessment of modifications to childhood immunization schedules is essential. PMID:23955378

  3. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis.

    Science.gov (United States)

    Lemieux, Maxime W; Sonzogni-Desautels, Karine; Ndao, Momar

    2017-12-24

    In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between T H 1/T H 2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.

  4. A single-dose live-attenuated vaccine prevents Zika virus pregnancy transmission and testis damage.

    Science.gov (United States)

    Shan, Chao; Muruato, Antonio E; Jagger, Brett W; Richner, Justin; Nunes, Bruno T D; Medeiros, Daniele B A; Xie, Xuping; Nunes, Jannyce G C; Morabito, Kaitlyn M; Kong, Wing-Pui; Pierson, Theodore C; Barrett, Alan D; Weaver, Scott C; Rossi, Shannan L; Vasconcelos, Pedro F C; Graham, Barney S; Diamond, Michael S; Shi, Pei-Yong

    2017-09-22

    Zika virus infection during pregnancy can cause congenital abnormities or fetal demise. The persistence of Zika virus in the male reproductive system poses a risk of sexual transmission. Here we demonstrate that live-attenuated Zika virus vaccine candidates containing deletions in the 3' untranslated region of the Zika virus genome (ZIKV-3'UTR-LAV) prevent viral transmission during pregnancy and testis damage in mice, as well as infection of nonhuman primates. After a single-dose vaccination, pregnant mice challenged with Zika virus at embryonic day 6 and evaluated at embryonic day 13 show markedly diminished levels of viral RNA in maternal, placental, and fetal tissues. Vaccinated male mice challenged with Zika virus were protected against testis infection, injury, and oligospermia. A single immunization of rhesus macaques elicited a rapid and robust antibody response, conferring complete protection upon challenge. Furthermore, the ZIKV-3'UTR-LAV vaccine candidates have a desirable safety profile. These results suggest that further development of ZIKV-3'UTR-LAV is warranted for humans.Zika virus infection can result in congenital disorders and cause disease in adults, and there is currently no approved vaccine. Here Shan et al. show that a single dose of a live-attenuated Zika vaccine prevents infection, testis damage and transmission to the fetus during pregnancy in different animal models.

  5. Immunization with plasmid DNA encoding the hemagglutinin and the nucleoprotein confers robust protection against a lethal canine distemper virus challenge.

    Science.gov (United States)

    Dahl, Lotte; Jensen, Trine Hammer; Gottschalck, Elisabeth; Karlskov-Mortensen, Peter; Jensen, Tove Dannemann; Nielsen, Line; Andersen, Mads Klindt; Buckland, Robin; Wild, T Fabian; Blixenkrone-Møller, Merete

    2004-09-09

    We have investigated the protective effect of immunization of a highly susceptible natural host of canine distemper virus (CDV) with DNA plasmids encoding the viral nucleoprotein (N) and hemagglutinin (H). The combined intradermal and intramuscular routes of immunization elicited high virus-neutralizing serum antibody titres in mink (Mustela vison). To mimic natural exposure, we also conducted challenge infection by horizontal transmission from infected contact animals. Other groups received a lethal challenge infection by administration to the mucosae of the respiratory tract and into the muscle. One of the mink vaccinated with N plasmid alone developed severe disease after challenge. In contrast, vaccination with the H plasmid together with the N plasmid conferred solid protection against disease and we were unable to detect CDV infection in PBMCs or in different tissues after challenge. Our findings show that DNA immunization by the combined intradermal and intramuscular routes can confer solid protective immunity against naturally transmitted morbillivirus infection and disease.

  6. Vaccines.gov

    Science.gov (United States)

    ... Vaccine Safety Vaccines Work Vaccine Types Vaccine Ingredients Vaccines by Disease Chickenpox ... Typhoid Fever Whooping Cough (Pertussis) Yellow Fever Who and When Infants, Children, and Teens ...

  7. Influenza infection and heart failure-vaccination may change heart failure prognosis?

    Science.gov (United States)

    Kadoglou, Nikolaos P E; Bracke, Frank; Simmers, Tim; Tsiodras, Sotirios; Parissis, John

    2017-05-01

    The interaction of influenza infection with the pathogenesis of acute heart failure (AHF) and the worsening of chronic heart failure (CHF) is rather complex. The deleterious effects of influenza infection on AHF/CHF can be attenuated by specific immunization. Our review aimed to summarize the efficacy, effectiveness, safety, and dosage of anti-influenza vaccination in HF. In this literature review, we searched MEDLINE and EMBASE from January 1st 1966 to December 31st, 2016, for studies examining the association between AHF/CHF, influenza infections, and anti-influenza immunizations. We used broad criteria to increase the sensitivity of the search. HF was a prerequisite for our search. The search fields used included "heart failure," "vaccination," "influenza," "immunization" along with variants of these terms. No restrictions on the type of study design were applied. The most common clinical scenario is exacerbation of pre-existing CHF by influenza infection. Scarce evidence supports a potential positive association of influenza infection with AHF. Vaccinated patients with pre-existing CHF have reduced all-cause morbidity and mortality, but effects are not consistently documented. Immunization with higher antigen quantity may confer additional protection, but such aggressive approach has not been generally advocated. Further studies are needed to delineate the role of influenza infection on AHF/CHF pathogenesis and maintenance. Annual anti-influenza vaccination appears to be an effective measure for secondary prevention in HF. Better immunization strategies and more efficacious vaccines are urgently necessary.

  8. Influence of breaking the symmetry between disease transmission and information propagation networks on stepwise decisions concerning vaccination

    International Nuclear Information System (INIS)

    Fukuda, Eriko; Tanimoto, Jun; Akimoto, Mitsuhiro

    2015-01-01

    Highlights: • We construct a model using epidemiological and vaccination dynamics. • We study effects of information propagation networks on disease propagation. • Information propagation networks affect the spatial structures of vaccinators. • Disease transmission network affects the information propagation network results. • Vaccination cost does not alter the effects of network-topology symmetry breaking. - Abstract: In previous epidemiological studies that address adaptive vaccination decisions, individuals generally act within a single network, which models the population structure. However, in reality, people are typically members of multiplex networks, which have various community structures. For example, a disease transmission network, which directly transmits infectious diseases, does not necessarily correspond with an information propagation network, in which individuals directly or indirectly exchange information concerning health conditions and vaccination strategies. The latter network may also be used for strategic interaction (strategy adaptation) concerning vaccination. Therefore, in order to reflect this feature, we consider the vaccination dynamics of structured populations whose members simultaneously belong to two types of networks: disease transmission and information propagation. Applying intensive numerical calculations, we determine that if the disease transmission network is modeled using a regular graph, such as a lattice population or random regular graph containing individuals of equivalent degrees, individuals should base their vaccination decisions on a different type of network. However, if the disease transmission network is a degree-heterogeneous graph, such as the Barabási–Albert scale-free network, which has a heterogeneous degree according to power low, then using the same network for information propagation more effectively prevents the spread of epidemics. Furthermore, our conclusions are unaffected by the relative

  9. A brief history of vaccines & vaccination in India

    Directory of Open Access Journals (Sweden)

    Chandrakant Lahariya

    2014-01-01

    Full Text Available The challenges faced in delivering lifesaving vaccines to the targeted beneficiaries need to be addressed from the existing knowledge and learning from the past. This review documents the history of vaccines and vaccination in India with an objective to derive lessons for policy direction to expand the benefits of vaccination in the country. A brief historical perspective on smallpox disease and preventive efforts since antiquity is followed by an overview of 19 th century efforts to replace variolation by vaccination, setting up of a few vaccine institutes, cholera vaccine trial and the discovery of plague vaccine. The early twentieth century witnessed the challenges in expansion of smallpox vaccination, typhoid vaccine trial in Indian army personnel, and setting up of vaccine institutes in almost each of the then Indian States. In the post-independence period, the BCG vaccine laboratory and other national institutes were established; a number of private vaccine manufacturers came up, besides the continuation of smallpox eradication effort till the country became smallpox free in 1977. The Expanded Programme of Immunization (EPI (1978 and then Universal Immunization Programme (UIP (1985 were launched in India. The intervening events since UIP till India being declared non-endemic for poliomyelitis in 2012 have been described. Though the preventive efforts from diseases were practiced in India, the reluctance, opposition and a slow acceptance of vaccination have been the characteristic of vaccination history in the country. The operational challenges keep the coverage inequitable in the country. The lessons from the past events have been analysed and interpreted to guide immunization efforts.

  10. A brief history of vaccines & vaccination in India.

    Science.gov (United States)

    Lahariya, Chandrakant

    2014-04-01

    The challenges faced in delivering lifesaving vaccines to the targeted beneficiaries need to be addressed from the existing knowledge and learning from the past. This review documents the history of vaccines and vaccination in India with an objective to derive lessons for policy direction to expand the benefits of vaccination in the country. A brief historical perspective on smallpox disease and preventive efforts since antiquity is followed by an overview of 19 th century efforts to replace variolation by vaccination, setting up of a few vaccine institutes, cholera vaccine trial and the discovery of plague vaccine. The early twentieth century witnessed the challenges in expansion of smallpox vaccination, typhoid vaccine trial in Indian army personnel, and setting up of vaccine institutes in almost each of the then Indian States. In the post-independence period, the BCG vaccine laboratory and other national institutes were established; a number of private vaccine manufacturers came up, besides the continuation of smallpox eradication effort till the country became smallpox free in 1977. The Expanded Programme of Immunization (EPI) (1978) and then Universal Immunization Programme (UIP) (1985) were launched in India. The intervening events since UIP till India being declared non-endemic for poliomyelitis in 2012 have been described. Though the preventive efforts from diseases were practiced in India, the reluctance, opposition and a slow acceptance of vaccination have been the characteristic of vaccination history in the country. The operational challenges keep the coverage inequitable in the country. The lessons from the past events have been analysed and interpreted to guide immunization efforts.

  11. Ethical and legal challenges of vaccines and vaccination: Reflections.

    Science.gov (United States)

    Jesani, Amar; Johari, Veena

    2017-01-01

    Vaccines and vaccination have emerged as key medical scientific tools for prevention of certain diseases. Documentation of the history of vaccination shows that the initial popular resistance to universal vaccination was based on false assumptions and eventually gave way to acceptance of vaccines and trust in their ability to save lives. The successes of the global eradication of smallpox, and now of polio, have only strengthened the premier position occupied by vaccines in disease prevention. However, the success of vaccines and public trust in their ability to eradicate disease are now under challenge, as increasing numbers of people refuse vaccination, questioning the effectiveness of vaccines and the need to vaccinate.

  12. Live attenuated S. Typhimurium vaccine with improved safety in immuno-compromised mice.

    Directory of Open Access Journals (Sweden)

    Balamurugan Periaswamy

    Full Text Available Live attenuated vaccines are of great value for preventing infectious diseases. They represent a delicate compromise between sufficient colonization-mediated adaptive immunity and minimizing the risk for infection by the vaccine strain itself. Immune defects can predispose to vaccine strain infections. It has remained unclear whether vaccine safety could be improved via mutations attenuating a vaccine in immune-deficient individuals without compromising the vaccine's performance in the normal host. We have addressed this hypothesis using a mouse model for Salmonella diarrhea and a live attenuated Salmonella Typhimurium strain (ssaV. Vaccination with this strain elicited protective immunity in wild type mice, but a fatal systemic infection in immune-deficient cybb(-/-nos2(-/- animals lacking NADPH oxidase and inducible NO synthase. In cybb(-/-nos2(-/- mice, we analyzed the attenuation of 35 ssaV strains carrying one additional mutation each. One strain, Z234 (ssaV SL1344_3093, was >1000-fold attenuated in cybb(-/-nos2(-/- mice and ≈100 fold attenuated in tnfr1(-/- animals. However, in wt mice, Z234 was as efficient as ssaV with respect to host colonization and the elicitation of a protective, O-antigen specific mucosal secretory IgA (sIgA response. These data suggest that it is possible to engineer live attenuated vaccines which are specifically attenuated in immuno-compromised hosts. This might help to improve vaccine safety.

  13. Meningococcal factor H binding proteins in epidemic strains from Africa: implications for vaccine development.

    Directory of Open Access Journals (Sweden)

    Rolando Pajon

    2011-09-01

    Full Text Available Factor H binding protein (fHbp is an important antigen for vaccines against meningococcal serogroup B disease. The protein binds human factor H (fH, which enables the bacteria to resist serum bactericidal activity. Little is known about the vaccine-potential of fHbp for control of meningococcal epidemics in Africa, which typically are caused by non-group B strains.We investigated genes encoding fHbp in 106 serogroup A, W-135 and X case isolates from 17 African countries. We determined complement-mediated bactericidal activity of antisera from mice immunized with recombinant fHbp vaccines, or a prototype native outer membrane vesicle (NOMV vaccine from a serogroup B mutant strain with over-expressed fHbp. Eighty-six of the isolates (81% had one of four prevalent fHbp sequence variants, ID 4/5 (serogroup A isolates, 9 (W-135, or 74 (X in variant group 1, or ID 22/23 (W-135 in variant group 2. More than one-third of serogroup A isolates and two-thirds of W-135 isolates tested had low fHbp expression while all X isolates tested had intermediate or high expression. Antisera to the recombinant fHbp vaccines were generally bactericidal only against isolates with fHbp sequence variants that closely matched the respective vaccine ID. Low fHbp expression also contributed to resistance to anti-fHbp bactericidal activity. In contrast to the recombinant vaccines, the NOMV fHbp ID 1 vaccine elicited broad anti-fHbp bactericidal activity, and the antibodies had greater ability to inhibit binding of fH to fHbp than antibodies elicited by the control recombinant fHbp ID 1 vaccine.NOMV vaccines from mutants with increased fHbp expression elicit an antibody repertoire with greater bactericidal activity than recombinant fHbp vaccines. NOMV vaccines are promising for prevention of meningococcal disease in Africa and could be used to supplement coverage conferred by a serogroup A polysaccharide-protein conjugate vaccine recently introduced in some sub

  14. Yellow fever vaccine for patients with HIV infection.

    Science.gov (United States)

    Barte, Hilary; Horvath, Tara H; Rutherford, George W

    2014-01-23

    Yellow fever (YF) is an acute viral haemorrhagic disease prevalent in tropical Africa and Latin America. The World Health Organization (WHO) estimates that there are 200,000 cases of YF and 30,000 deaths worldwide annually. Treatment for YF is supportive, but a live attenuated virus vaccine is effective for preventing infection. WHO recommends immunisation for all individuals > 9 months living in countries or areas at risk. However, the United States Advisory Committee on Immunization Practices (ACIP) advises that YF vaccine is contraindicated in individuals with HIV. Given the large populations of HIV-infected individuals living in tropical areas where YF is endemic, YF vaccine may be an important intervention for preventing YF in immunocompromised populations. To assess the risk and benefits of YF immunisation for people infected with HIV. We used standard Cochrane methods to search electronic databases and conference proceedings with relevant search terms without limits to language. Randomised controlled trials and cohort studies of individuals with HIV infection who received YF vaccine (17DD or 17D-204). Two authors screened abstracts of references identified by electronic or bibliographic searches according to inclusion and exclusion criteria as detailed in the protocol. We identified 199 references and examined 19 in detail for study eligibility. Data were abstracted independently using a standardised abstraction form. Three cohort studies were included in the review. They examined 484 patients with HIV infection who received YF immunisation. Patients with HIV infection developed significantly lower concentrations of neutralising antibodies in the first year post immunisation compared to uninfected patients, though decay patterns were similar for recipients regardless of HIV infection. No study patient with HIV infection suffered serious adverse events as a result of YF vaccination. YF vaccination can produce protective levels of neutralising antibodies in

  15. Vaccine Hesitancy.

    Science.gov (United States)

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  16. Influenza vaccines for preventing cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Christine Clar

    Full Text Available ABSTRACTBACKGROUND: This is an update of the original review published in 2008. The risk of adverse cardiovascular outcomes is increased with influenza-like infection, and vaccination against influenza may improve cardiovascular outcomes.OBJECTIVES: To assess the potential benefits of influenza vaccination for primary and secondary prevention of cardiovascular disease.METHODS:Search methods:We searched the following electronic databases on 18 October 2013: The Cochrane Library (including Cochrane Central Register of Controlled Trials (CENTRAL, Database of Abstracts of Reviews of Effects (DARE, Economic Evaluation Database (EED and Health Technology Assessment database (HTA, MEDLINE, EMBASE, Science Citation Index Expanded, Conference Proceedings Citation Index - Science and ongoing trials registers (www.controlled-trials.com/ and www.clinicaltrials.gov. We examined reference lists of relevant primary studies and systematic reviews. We performed a limited PubMed search on 20 February 2015, just before publication.Selection criteria:Randomised controlled trials (RCTs of influenza vaccination compared with placebo or no treatment in participants with or without cardiovascular disease, assessing cardiovascular death or non-fatal cardiovascular events.Data collection and analysis:We used standard methodological procedures as expected by The Cochrane Collaboration. We carried out meta-analyses only for cardiovascular death, as other outcomes were reported too infrequently. We expressed effect sizes as risk ratios (RRs, and we used random-effects models.MAIN RESULTS: We included eight trials of influenza vaccination compared with placebo or no vaccination, with 12,029 participants receiving at least one vaccination or control treatment. We included six new studies (n = 11,251, in addition to the two included in the previous version of the review. Four of these trials (n = 10,347 focused on prevention of influenza in the general or elderly population

  17. [Vaccination against hepatitis B. Impact of vaccination programmes after 20 years of use in Spain. Is it time for a change?].

    Science.gov (United States)

    Arístegui Fernández, Javier; Díez-Domingo, Javier; Marés Bermúdez, Josep; Martinón Torres, Federico

    2015-02-01

    The highest incidence rate of hepatitis B (HB) in Spain is detected in adults between 20 and 54 years old, whereas the incidence in children under 1 year old is almost nil. The low prevalence of HB in children under 1 year is mainly due to the success of gestational screening strategies for the detection of HBsAg(+) in pregnant women, and vaccination campaigns during childhood. Currently, in Spain, the last dose of the HB included in the national childhood immunization program is administered at 6 months of age, although some studies show that delaying the age of the administration of the last dose of HB vaccine and increasing the time between doses, may improve immune memory by offering greater protection against this virus in the adulthood. In this article, the impact of HB vaccination in Spain is reviewed, and other potential vaccination strategies in our environment are discussed, such as extending the interval between doses, and administering the last dose in the second year of life, adapting the valid strategy in Spain to the current epidemiological context in order to reduce the prevalence of HB in adulthood. Copyright © 2015. Published by Elsevier España.

  18. Pre-clinical efficacy and safety of experimental vaccines based on non-replicating vaccinia vectors against yellow fever.

    Directory of Open Access Journals (Sweden)

    Birgit Schäfer

    Full Text Available BACKGROUND: Currently existing yellow fever (YF vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D. Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. METHODOLOGY/PRINCIPAL FINDINGS: A gene encoding the precursor of the membrane and envelope (prME protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 10(5 TCID(50. Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. CONCLUSIONS/SIGNIFICANCE: The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice.

  19. Pre-Clinical Efficacy and Safety of Experimental Vaccines Based on Non-Replicating Vaccinia Vectors against Yellow Fever

    Science.gov (United States)

    Schäfer, Birgit; Holzer, Georg W.; Joachimsthaler, Alexandra; Coulibaly, Sogue; Schwendinger, Michael; Crowe, Brian A.; Kreil, Thomas R.; Barrett, P. Noel; Falkner, Falko G.

    2011-01-01

    Background Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. Methodology/Principal Findings A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 105 TCID50. Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. Conclusions/Significance The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice. PMID:21931732

  20. Memory T-cell immune response in healthy young adults vaccinated with live attenuated influenza A (H5N2) vaccine.

    Science.gov (United States)

    Chirkova, T V; Naykhin, A N; Petukhova, G D; Korenkov, D A; Donina, S A; Mironov, A N; Rudenko, L G

    2011-10-01

    Cellular immune responses of both CD4 and CD8 memory/effector T cells were evaluated in healthy young adults who received two doses of live attenuated influenza A (H5N2) vaccine. The vaccine was developed by reassortment of nonpathogenic avian A/Duck/Potsdam/1402-6/68 (H5N2) and cold-adapted A/Leningrad/134/17/57 (H2N2) viruses. T-cell responses were measured by standard methods of intracellular cytokine staining of gamma interferon (IFN-γ)-producing cells and a novel T-cell recognition of antigen-presenting cells by protein capture (TRAP) assay based on the trogocytosis phenomenon, namely, plasma membrane exchange between interacting immune cells. TRAP enables the detection of activated trogocytosis-positive T cells after virus stimulation. We showed that two doses of live attenuated influenza A (H5N2) vaccine promoted both CD4 and CD8 T-memory-cell responses in peripheral blood of healthy young subjects in the clinical study. Significant differences in geometric mean titers (GMTs) of influenza A (H5N2)-specific IFN-γ(+) cells were observed at day 42 following the second vaccination, while peak levels of trogocytosis(+) T cells were detected earlier, on the 21st day after the second vaccination. The inverse correlation of baseline levels compared to postvaccine fold changes in GMTs of influenza-specific CD4 and CD8 T cells demonstrated that baseline levels of these specific cells could be considered a predictive factor of vaccine immunogenicity.

  1. CCTC 2009 : 2nd Climate Change Technology Conference

    International Nuclear Information System (INIS)

    2009-01-01

    The 2nd Climate Change Technology Conference (CCTC2009) was held in Hamilton, Ontario, Canada on May 12-15, 2009. CCTC2009 is a Canadian/International forum for engineers, scientists, policy advisors, industry and other stakeholders to share new information and ideas for dealing with climate change and global warming. It also provided an opportunity for participants to keep abreast of emerging techniques and technologies for the mitigation of and adaptation to, the impacts of climate change. The conference theme: 'Climate Change ..... Deal with It!' emphasized the need to develop practical engineering and administrative responses to address the impacts of climate change and global warming.

  2. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant

    Directory of Open Access Journals (Sweden)

    Shailbala Singh

    2014-10-01

    Full Text Available Gene-based vaccination strategies, specifically viral vectors encoding vaccine immunogens are effective at priming strong immune responses. Mucosal routes offer practical advantages for vaccination by ease of needle-free administration, and immunogen delivery at readily accessible oral/nasal sites to efficiently induce immunity at distant gut and genital tissues. However, since mucosal tissues are inherently tolerant for induction of immune responses, incorporation of adjuvants for optimal mucosal vaccination strategies is important. We report here the effectiveness of alpha-galactosylceramide (α-GalCer, a synthetic glycolipid agonist of natural killer T (NKT cells, as an adjuvant for enhancing immunogenicity of vaccine antigens delivered using viral vectors by mucosal routes in murine and nonhuman primate models. Significant improvement in adaptive immune responses in systemic and mucosal tissues was observed by including α-GalCer adjuvant for intranasal immunization of mice with vesicular stomatitis virus vector encoding the model antigen ovalbumin and adenoviral vectors expressing HIV env and Gag antigens. Activation of NKT cells in systemic and mucosal tissues along with significant increases in adaptive immune responses were observed in rhesus macaques immunized by intranasal and sublingual routes with protein or adenovirus vectored antigens when combined with α-GalCer adjuvant. These results support the utility of α-GalCer adjuvant for enhancing immunogenicity of mucosal vaccines delivered using viral vectors.

  3. Bioinformatics analysis of Brucella vaccines and vaccine targets using VIOLIN.

    Science.gov (United States)

    He, Yongqun; Xiang, Zuoshuang

    2010-09-27

    Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis, one of the commonest zoonotic diseases found worldwide in humans and a variety of animal species. While several animal vaccines are available, there is no effective and safe vaccine for prevention of brucellosis in humans. VIOLIN (http://www.violinet.org) is a web-based vaccine database and analysis system that curates, stores, and analyzes published data of commercialized vaccines, and vaccines in clinical trials or in research. VIOLIN contains information for 454 vaccines or vaccine candidates for 73 pathogens. VIOLIN also contains many bioinformatics tools for vaccine data analysis, data integration, and vaccine target prediction. To demonstrate the applicability of VIOLIN for vaccine research, VIOLIN was used for bioinformatics analysis of existing Brucella vaccines and prediction of new Brucella vaccine targets. VIOLIN contains many literature mining programs (e.g., Vaxmesh) that provide in-depth analysis of Brucella vaccine literature. As a result of manual literature curation, VIOLIN contains information for 38 Brucella vaccines or vaccine candidates, 14 protective Brucella antigens, and 68 host response studies to Brucella vaccines from 97 peer-reviewed articles. These Brucella vaccines are classified in the Vaccine Ontology (VO) system and used for different ontological applications. The web-based VIOLIN vaccine target prediction program Vaxign was used to predict new Brucella vaccine targets. Vaxign identified 14 outer membrane proteins that are conserved in six virulent strains from B. abortus, B. melitensis, and B. suis that are pathogenic in humans. Of the 14 membrane proteins, two proteins (Omp2b and Omp31-1) are not present in B. ovis, a Brucella species that is not pathogenic in humans. Brucella vaccine data stored in VIOLIN were compared and analyzed using the VIOLIN query system. Bioinformatics curation and ontological representation of Brucella vaccines

  4. Green revolution vaccines, edible vaccines | Tripurani | African ...

    African Journals Online (AJOL)

    Edible vaccines are sub-unit vaccines where the selected genes are introduced into the plants and the transgenic plant is then induced to manufacture the encoded protein. Edible vaccines are mucosal-targeted vaccines where stimulation of both systematic and mucosal immune network takes place. Foods under study ...

  5. On user behaviour adaptation under interface change

    CSIR Research Space (South Africa)

    Rosman, Benjamin S

    2014-02-01

    Full Text Available International Conference on Intelligent User Interfaces, Haifa, Israel, 24-27 February 2014 On User Behaviour Adaptation Under Interface Change Benjamin Rosman_ Subramanian Ramamoorthy M. M. Hassan Mahmud School of Informatics University of Edinburgh...

  6. Vaccination Confidence and Parental Refusal/Delay of Early Childhood Vaccines.

    Directory of Open Access Journals (Sweden)

    Melissa B Gilkey

    Full Text Available To support efforts to address parental hesitancy towards early childhood vaccination, we sought to validate the Vaccination Confidence Scale using data from a large, population-based sample of U.S. parents.We used weighted data from 9,354 parents who completed the 2011 National Immunization Survey. Parents reported on the immunization history of a 19- to 35-month-old child in their households. Healthcare providers then verified children's vaccination status for vaccines including measles, mumps, and rubella (MMR, varicella, and seasonal flu. We used separate multivariable logistic regression models to assess associations between parents' mean scores on the 8-item Vaccination Confidence Scale and vaccine refusal, vaccine delay, and vaccination status.A substantial minority of parents reported a history of vaccine refusal (15% or delay (27%. Vaccination confidence was negatively associated with refusal of any vaccine (odds ratio [OR] = 0.58, 95% confidence interval [CI], 0.54-0.63 as well as refusal of MMR, varicella, and flu vaccines specifically. Negative associations between vaccination confidence and measures of vaccine delay were more moderate, including delay of any vaccine (OR = 0.81, 95% CI, 0.76-0.86. Vaccination confidence was positively associated with having received vaccines, including MMR (OR = 1.53, 95% CI, 1.40-1.68, varicella (OR = 1.54, 95% CI, 1.42-1.66, and flu vaccines (OR = 1.32, 95% CI, 1.23-1.42.Vaccination confidence was consistently associated with early childhood vaccination behavior across multiple vaccine types. Our findings support expanding the application of the Vaccination Confidence Scale to measure vaccination beliefs among parents of young children.

  7. The biography of the immune system and the control of cancer: from St Peregrine to contemporary vaccination strategies.

    Science.gov (United States)

    Krone, Bernd; Kölmel, Klaus F; Grange, John M

    2014-08-16

    The historical basis and contemporary evidence for the use of immune strategies for prevention of malignancies are reviewed. Emphasis is focussed on the Febrile Infections and Melanoma (FEBIM) study on melanoma and on malignancies that seem to be related to an overexpression of human endogenous retrovirus K (HERV-K). It is claimed that, as a result of recent observational studies, measures for prevention of some malignancies such as melanoma and certain forms of leukaemia are already at hand: vaccination with Bacille Calmette-Guérin (BCG) of new-borns and vaccination with the yellow fever 17D (YFV) vaccine of adults. While the evidence of their benefit for prevention of malignancies requires substantiation, the observations that vaccinations with BCG and/or vaccinia early in life improved the outcome of patients after surgical therapy of melanoma are of practical relevance as the survival advantage conferred by prior vaccination is greater than any contemporary adjuvant therapy. The reviewed findings open a debate as to whether controlled vaccination studies should be conducted in patients and/or regions for whom/where they are needed most urgently. A study proposal is made and discussed. If protection is confirmed, the development of novel recombinant vaccines with wider ranges of protection based, most likely, on BCG, YFV or vaccinia, could be attempted.

  8. Simultaneous subcutaneous and conjunctival administration of the influenza viral vector based Brucella abortus vaccine to pregnant heifers provides better protection against B. abortus 544 infection than the commercial B. abortus S19 vaccine.

    Science.gov (United States)

    Tabynov, Kaissar; Orynbayev, Mukhit; Renukaradhya, Gourapura J; Sansyzbay, Abylai

    2016-09-30

    In this study, we explored possibility of increasing the protective efficacy of our novel influenza viral vector based B. abortus vaccine (Flu-BA) in pregnant heifers by adapting an innovative method of vaccine delivery. We administered the vaccine concurrently via the conjunctival and subcutaneous routes to pregnant heifers, and these routes were previously tested individually. The Flu-BA vaccination of pregnant heifers (n=9) against a challenge B. abortus 544 infection provided protection from abortion, infection of heifers and fetuses/calves by 88.8%, 100% and 100%, respectively (alpha=0.004-0.0007 vs. negative control; n=7). Our candidate vaccine using this delivery method provided slightly better protection than the commercial B. abortus S19 vaccine in pregnant heifers (n=8), which provided protection from abortion, infection of heifers and fetuses/calves by 87.5%, 75% and 87.5%, respectively. This improved method of the Flu-BA vaccine administration is highly recommended for the recovery of farms which has high prevalence of brucellosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Prediction of T-cell Epitopes for Therapeutic and Prophylactic Vaccines

    DEFF Research Database (Denmark)

    Larsen, Mette Voldby

    2007-01-01

    : The bacteria Mycobacterium tuberculosis, Influenza A virus, HIV, Yellow fever virus, and West Nile virus. For each of the above-mentioned viruses, a number of predicted CTL epitopes was subsequently selected in such a way that they together constitute a broad coverage of the available viral strains. Part IV......The spread of existing infectious diseases and the emergence of new ones call for efficient methods for vaccine development. Some of the important players in conferring immunity against pathogens are the Cytotoxic T Lymphocytes (CTL), which eliminate infected cells. Due to their deleterious effects...... vaccine design as well as for diagnostic purposes and is the centre of focus of this thesis: Part I of the thesis is an introduction to the field. In part II, I describe how we generated a method, NetCTL, for predicting CTL epitopes by integrating existing methods for predicting proteasomal cleavage, TAP...

  10. Immunisation With Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection.

    Directory of Open Access Journals (Sweden)

    Hui-Jie Yang

    Full Text Available Vaccination strategies for Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA infections have attracted much research attention. Recent efforts have been made to select manganese transport protein C, or manganese binding surface lipoprotein C (MntC, which is a metal ion associated with pathogen nutrition uptake, as potential candidates for an S. aureus vaccine. Although protective humoral immune responses to MntC are well-characterised, much less is known about detailed MntC-specific B cell epitope mapping and particularly epitope vaccines, which are less-time consuming and more convenient. In this study, we generated a recombinant protein rMntC which induced strong antibody response when used for immunisation with CFA/IFA adjuvant. On the basis of the results, linear B cell epitopes within MntC were finely mapped using a series of overlapping synthetic peptides. Further studies indicate that MntC113-136, MntC209-232, and MntC263-286 might be the original linear B-cell immune dominant epitope of MntC, furthermore, three-dimensional (3-d crystal structure results indicate that the three immunodominant epitopes were displayed on the surface of the MntC antigen. On the basis of immunodominant MntC113-136, MntC209-232, and MntC263-286 peptides, the epitope vaccine for S. aureus induces a high antibody level which is biased to TH2 and provides effective immune protection and strong opsonophagocytic killing activity in vitro against MRSA infection. In summary, the study provides strong proof of the optimisation of MRSA B cell epitope vaccine designs and their use, which was based on the MntC antigen in the development of an MRSA vaccine.

  11. Determinants of vaccine immunogenicity in HIV-infected pregnant women: analysis of B and T cell responses to pandemic H1N1 monovalent vaccine.

    Directory of Open Access Journals (Sweden)

    Adriana Weinberg

    Full Text Available Influenza infections have high frequency and morbidity in HIV-infected pregnant women, underscoring the importance of vaccine-conferred protection. To identify the factors that determine vaccine immunogenicity in this group, we characterized the relationship of B- and T-cell responses to pandemic H1N1 (pH1N1 vaccine with HIV-associated immunologic and virologic characteristics. pH1N1 and seasonal-H1N1 (sH1N1 antibodies were measured in 119 HIV-infected pregnant women after two double-strength pH1N1 vaccine doses. pH1N1-IgG and IgA B-cell FluoroSpot, pH1N1- and sH1N1-interferon γ (IFNγ and granzyme B (GrB T-cell FluoroSpot, and flow cytometric characterization of B- and T-cell subsets were performed in 57 subjects. pH1N1-antibodies increased after vaccination, but less than previously described in healthy adults. pH1N1-IgG memory B cells (Bmem increased, IFNγ-effector T-cells (Teff decreased, and IgA Bmem and GrB Teff did not change. pH1N1-antibodies and Teff were significantly correlated with each other and with sH1N1-HAI and Teff, respectively, before and after vaccination. pH1N1-antibody responses to the vaccine significantly increased with high proportions of CD4+, low CD8+ and low CD8+HLADR+CD38+ activated (Tact cells. pH1N1-IgG Bmem responses increased with high proportions of CD19+CD27+CD21- activated B cells (Bact, high CD8+CD39+ regulatory T cells (Treg, and low CD19+CD27-CD21- exhausted B cells (Bexhaust. IFNγ-Teff responses increased with low HIV plasma RNA, CD8+HLADR+CD38+ Tact, CD4+FoxP3+ Treg and CD19+IL10+ Breg. In conclusion, pre-existing antibody and Teff responses to sH1N1 were associated with increased responses to pH1N1 vaccination in HIV-infected pregnant women suggesting an important role for heterosubtypic immunologic memory. High CD4+% T cells were associated with increased, whereas high HIV replication, Tact and Bexhaust were associated with decreased vaccine immunogenicity. High Treg increased antibody responses but

  12. Challenges in the rabbit haemorrhagic disease 2 (RHDV2) molecular diagnosis of vaccinated rabbits.

    Science.gov (United States)

    Carvalho, C L; Duarte, E L; Monteiro, M; Botelho, A; Albuquerque, T; Fevereiro, M; Henriques, A M; Barros, S S; Duarte, Margarida Dias

    2017-01-01

    Molecular methods are fundamental tools for the diagnosis of viral infections. While interpretation of results is straightforward for unvaccinated animals, where positivity represents ongoing or past infections, the presence of vaccine virus in the tissues of recently vaccinated animals may mislead diagnosis. In this study, we investigated the interference of RHDV2 vaccination in the results of a RT-qPCR for RHDV2 detection, and possible associations between mean Cq values of five animal groups differing in age, vaccination status and origin (domestic/wild). Viral sequences from vaccinated rabbits that died of RHDV2 infection (n=14) were compared with the sequences from the commercial vaccines used in those animals. Group Cq means were compared through Independent t-test and One-way ANOVA. We proved that RHDV2 vaccine-RNA is not detected by the RT-qPCR as early as 15days post-vaccination, an important fact in assisting results interpretation for diagnosis. Cq values of vaccinated and non-vaccinated infected domestic adults showed a statistically significant difference (pRHDV2-victimised rabbits. Although the reduced number of vaccinated young animals analysed hampered a robust statistical analysis, this occurrence suggests that passively acquired maternal antibodies may inhibit the active immune response to vaccination, delaying protection and favouring disease progression. Our finding emphasises the importance of adapting kitten RHDV2 vaccination schedules to circumvent this interference phenomenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. IMMUNOGENICITY OF ADJUVANT INFLUENZA VACCINE FOR PREGNANT WOMEN

    Directory of Open Access Journals (Sweden)

    M. P. Kostinov

    2017-01-01

    Full Text Available Recent epidemiological events showed that pregnant women are the most vulnerable part of population if there is the flu in the country and they die much more often than the rest part of people. That is why influenza vaccination of population including pregnant women is one of the priorities of public health service in our state. Worldwide experience of influenza vaccination of either adults or children by new adjuvant vaccine has caused our research of its efficiency among pregnant women. The aim of the study was to investigate the level of antibodies to influenza virus strain A/H1N1/v, A/H3N2 and B in pregnant women vaccinated adjuvant trivalent subunit vaccine. Our research is randomized and comparative on parallel groups. It was carried out within the demands of Russian Federation and International ethic norms adapted to such kind of researches. Evaluation of the immunogenicity of the vaccine was conducted in 27 pregnant women in the II trimester of gestation, and in 23 pregnant women in the III trimester of gestation, 19 non-pregnant women was in the control group. The level of antibodies in the serum was determined using a reaction of hemagglutination inhibition before and 1, 3, 6, 9 and 12 months after the vaccination. Revealed that influenza vaccination of pregnant women in the II and III trimester, causes the increase in titers of antibodies to vaccine influenza strains A and B, to fully meet the required criteria CPMP, and does not differ from the nonpregnant group. In a month after vaccination the level of seroprotective against A/H1N1/v was 77.0%, A/H3N2 — 88.9%, B — 85.2% after vaccination in II trimester, and 87.0; 87.0; 91.35% in III trimester of gestation. The factor of seroconversion after vaccination in II trimester for A/H1N1/v was equal to 6.5, A/H3N2 — 7.2, B — 6.5, after vaccination in III trimester of pregnancy: 7.1, 6.5 and 5.1 correspondingly. At the same time revealed accelerated decline in antibody titer against

  14. Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-2-0031 TITLE: Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines PRINCIPAL...SUBTITLE 5a. CONTRACT NUMBER Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines 5b. GRANT NUMBER W81XWH-16-2-0031 5c...adaptive (T and B cell) responses will be measured using molecular and cellular approaches and the data analyzed using a systems biology approach

  15. New challenges for vaccination to prevent chlamydial abortion in sheep.

    Science.gov (United States)

    Entrican, Gary; Wheelhouse, Nick; Wattegedera, Sean R; Longbottom, David

    2012-05-01

    Ovine enzootic abortion (OEA) is caused by the obligate intracellular Gram-negative bacterium Chlamydia abortus. OEA remains a common cause of infectious abortion in many sheep-rearing countries despite the existence of commercially available vaccines that protect against the disease. There are a number of confounding factors that influence the uptake and use of these vaccines, which includes an inability to discriminate between infected and vaccinated animals (DIVA) using conventional serological diagnostic techniques. This suggests that the immunity elicited by current vaccines is similar to that observed in convalescent, immune sheep that have experienced OEA. The existence of these vaccines provides an opportunity to understand how protection against OEA is elicited and also to understand why vaccines can occasionally appear to fail, as has been reported recently for OEA. Interferon-gamma (IFN-γ), the cytokine that classically defines Th1-type adaptive immunity, is a strong correlate of protection against OEA in sheep and has been shown to inhibit the growth of C. abortus in vitro. Humoral immunity to C. abortus is observed in both vaccinated and naturally infected sheep, but antibody responses tend to be used more as diagnostic markers than targets for strategic vaccine design. A future successful DIVA vaccine against OEA should aim to elicit the immunological correlate of protection (IFN-γ) concomitantly with an antibody profile that is distinct from that of the natural infection. Such an approach requires careful selection of protective components of C. abortus combined with an effective delivery system that elicits IFN-γ-producing CD4+ve memory T cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Heterosybtypic T-cell immunity to influenza in humans: challenges for universal T-cell influenza vaccines

    Directory of Open Access Journals (Sweden)

    Saranya eSridhar

    2016-05-01

    Full Text Available Influenza A virus (IAV remains a significant global health issue causing annual epidemics, pandemics and sporadic human infections with highly pathogenic avian or swine influenza viruses. Current inactivated and live vaccines are the mainstay of the public health response to influenza although vaccine efficacy is lower against antigenically distinct viral strains. The first pandemic of the 21st century underlined the urgent need to develop new vaccines capable of protection against a broad range of influenza strains. Such universal influenza vaccines are based on the idea of heterosubtypic immunity wherein immune responses to epitopes conserved across IAV strains can confer protection against subsequent infection and disease. T-cells recognising conserved antigens are a key contributor to reducing viral load and limiting disease severity during heterosubtypic infection in animal models. Recent studies undertaken during the 2009 H1N1 pandemic provided key insights into the role of cross-reactive T-cells in mediating heterosubtypic protection in humans. This review focuses on human influenza to discuss the epidemiological observations that underpin cross-protective immunity, the role of T-cells as key players in mediating heterosubtypic immunity including recent data from natural history cohort studies and the ongoing clinical development of T-cell inducing universal influenza vaccines. The challenges and knowledge gaps for developing vaccines to generate long-lived protective T-cell responses is discussed.

  17. EPIVAC International Conference on Financial Sustainability of Immunization Programs in sub-Saharan Africa, February 16-18, 2012, Ouidah, Benin.

    Science.gov (United States)

    Drach, Marcel; Le Gargasson, Jean-Bernard; Mathonnat, Jacky; Da Silva, Alfred; Kaddar, Miloud; Colombini, Anaïs

    2013-09-23

    The introduction of new vaccines with much higher prices than traditional vaccines results in increasing budgetary pressure on immunization programs in GAVI-eligible countries, increasing the need to ensure their financial sustainability. In this context, the third EPIVAC (Epidemiology and Vaccinology) technical conference was held from February 16 to 18, 2012 at the Regional Institute of Public Health in Ouidah, Benin. Managers of ministries of health and finance from 11 West African countries (GAVI eligible countries), as well as former EPIVAC students and European experts, shared their knowledge and best practices on immunization financing at district and country level. The conference concluded by stressing five major priorities for the financial sustainability of national immunization programs (NIPs) in GAVI-eligible countries. - Strengthen public financing by increasing resources and fiscal space, improving budget processes, increasing contribution of local governments and strengthen efficiency of budget spending. - Promote equitable community financing which was recognized as a significant and essential contribution to the continuity of EPI operations. - Widen private funding by exploring prospects offered by sponsorship through foundations dedicated to immunization and by corporate social responsibility programs. - Contain the potential crowding-out effect of GAVI co-financing and ensure that decisions on new vaccine introductions are evidence-based. - Seek out innovative financing mechanisms such as taxes on food products or a national solidarity fund. Copyright © 2013. Published by Elsevier Ltd.. All rights reserved.

  18. The Latest in Vaccine Policies: Selected Issues in School Vaccinations, Healthcare Worker Vaccinations, and Pharmacist Vaccination Authority Laws.

    Science.gov (United States)

    Barraza, Leila; Schmit, Cason; Hoss, Aila

    2017-03-01

    This paper discusses recent changes to state legal frameworks for mandatory vaccination in the context of school and healthcare worker vaccination. It then discusses state laws that allow pharmacists the authority to vaccinate.

  19. Dynamic profiles of neutralizing antibody responses elicited in rhesus monkeys immunized with a combined tetravalent DTaP-Sabin IPV candidate vaccine.

    Science.gov (United States)

    Sun, Mingbo; Ma, Yan; Xu, Yinhua; Yang, Huijuan; Shi, Li; Che, Yanchun; Liao, Guoyang; Jiang, Shude; Zhang, Shumin; Li, Qihan

    2014-02-19

    The World Health Organization has recommended that a Sabin inactivated polio vaccine (IPV) should gradually and synchronously replace oral polio vaccines for routine immunizations because its benefits in eliminating vaccine-associated paralytic poliomyelitis have been reported in different phases of clinical trials. It is also considered important to explore new tetravalent diphtheria, tetanus, and acellular pertussis-Sabin IPV (DTaP-sIPV) candidate vaccines for possible use in developing countries. In this study, the immunogenicity of a combined tetravalent DTaP-sIPV candidate vaccine was investigated in primates by evaluating the neutralizing antibody responses it induced. The dynamic profiles of the antibody responses to each of the separate antigenic components and serotypes of Sabin IPV were determined and their corresponding geometric mean titers were similar to those generated by the tetravalent diphtheria, tetanus, and acellular pertussis-conventional IPV (DTaP-cIPV), the tetravalent diphtheria, tetanus, and acellular pertussis (DTaP), and Sabin IPV vaccines in the control groups. This implies that protective immunogenic effects are conferred by this combined tetravalent formulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Cost-effectiveness analysis of prophylactic cervical cancer vaccination in Japanese women.

    Science.gov (United States)

    Konno, Ryo; Sasagawa, Toshiyuki; Fukuda, Takashi; Van Kriekinge, Georges; Demarteau, Nadia

    2010-04-01

    The incidence of cervical cancer (CC) is high in Japan and is further increasing among women younger than 30 years. This burden could be reduced by the implementation of a CC vaccine, but its cost-effectiveness is unknown. We quantified the clinical impact and assessed the cost-effectiveness of adding CC vaccination at age 12 to the current screening in place in Japan with a lifetime Markov model adapted to the Japanese setting. Transition probabilities and utility values were obtained from public databases. Direct costs for treatment and screening were estimated using Japanese medical fees. Annual costs and benefits were discounted at 3%. Sensitivity analyses were conducted on the age at vaccination, the vaccine characteristics, the discount rates, the proportion of human papillomavirus types 16/18 in cancer, and the screening coverage. Vaccinating a 12-year-old cohort was predicted to reduce CC incidence and deaths from CC by 73%. These clinical effects were associated with an incremental cost-effectiveness ratio of yen1.8 million per quality-adjusted life year gained. The incremental cost-effectiveness ratio of vaccinating all 10- to 45-year-old women was yen2.8 million per quality-adjusted life year, still below the threshold value. The implementation of a CC vaccination in Japan could reduce the CC burden in a very cost-effective manner for women up to 45 years.

  1. Theory-Based Analysis of Interest in an HIV Vaccine for Reasons Indicative of Risk Compensation Among African American Women.

    Science.gov (United States)

    Painter, Julia E; Temple, Brandie S; Woods, Laura A; Cwiak, Carrie; Haddad, Lisa B; Mulligan, Mark J; DiClemente, Ralph J

    2018-06-01

    Licensure of an HIV vaccine could reduce or eliminate HIV among vulnerable populations. However, vaccine effectiveness could be undermined by risk compensation (RC), defined by an increase in risky behavior due to a belief that the vaccine will confer protection. Interest in an HIV vaccine for reasons indicative of RC may serve as an indicator of actual RC in a postlicensure era. This study assessed factors associated with interest in an HIV vaccine for reasons indicative of RC among African American women aged 18 to 55 years, recruited from a hospital-based family planning clinic in Atlanta, Georgia ( N = 321). Data were collected using audio-computer-assisted surveys. Survey items were guided by risk homeostasis theory and social cognitive theory. Multivariable logistic regression was used to assess determinants of interest in an HIV vaccine for reasons indicative of RC. Thirty-eight percent of the sample expressed interest in an HIV vaccine for at least one reason indicative of RC. In the final model, interest in an HIV vaccine for reasons indicative of RC was positively associated with higher impulsivity, perceived benefits of sexual risk behaviors, and perceived benefits of HIV vaccination; it was negatively associated with having at least some college education, positive future orientation, and self-efficacy for sex refusal. Results suggest that demographic, personality, and theory-based psychosocial factors are salient to wanting an HIV vaccine for reasons indicative of RC, and underscore the need for risk-reduction counseling alongside vaccination during the eventual rollout of an HIV vaccine.

  2. Rotavirus vaccines

    Directory of Open Access Journals (Sweden)

    Kang G

    2006-01-01

    Full Text Available Rotavirus, the most common cause of severe diarrhea and a leading cause of mortality in children, has been a priority target for vaccine development for the past several years. The first rotavirus vaccine licensed in the United States was withdrawn because of an association of the vaccine with intussusception. However, the need for a vaccine is greatest in the developing world, because the benefits of preventing deaths due to rotavirus disease are substantially greater than the risk of intussusception. Early vaccines were based on animal strains. More recently developed and licenced vaccines are either animal-human reassortants or are based on human strains. In India, two candidate vaccines are in the development process, but have not yet reached efficacy trials. Many challenges regarding vaccine efficacy and safety remain. In addition to completing clinical evaluations of vaccines in development in settings with the highest disease burden and virus diversity, there is also a need to consider alternative vaccine development strategies.

  3. Field Efficacy of an Attenuated Infectious Bronchitis Variant 2 Virus Vaccine in Commercial Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Mohamed A. Elhady

    2018-05-01

    Full Text Available Egyptian poultry suffer from frequent respiratory disease outbreaks associated with Infectious Bronchitis Virus (IBV variant 2 strains (Egy/VarII. Different vaccination programs using imported vaccines have failed to protect the flocks from field challenge. Recent studies confirmed a successful protection using homologous strains as live attenuated vaccines. In this study, a newly developed live attenuated IB-VAR2 vaccine representing the GI-23 Middle East IBV lineage was evaluated in day-old commercial broilers in an IBV-endemic area. A commercial broiler flock was vaccinated with the IB-VAR2 vaccine at day-old age followed by IB-H120 at day 16. The vaccinated flock was monitored on a weekly basis till the slaughter age. The health status and growth performance were monitored, and selected viral pathogen real-time RT-PCR (rRT-PCR detection was conducted on a weekly basis. Finally, the flock was compared to a nearby farm with only the classical IB-H120 vaccination program. Results showed that the IB-VAR2 vaccine was tolerable in day-old broiler chicks. The IBV virus rRT-PCR detection was limited to the trachea as compared to its nephropathogenic parent virus. Respiratory disease problems and high mortalities were reported in the IB-H120-only vaccinated flock. An exposure to a wild-type Egy/VarII strain was confirmed in both flocks as indicated by partial IBV S1 gene sequence. Even though the IB-VAR2-vaccinated flock performance was better than the flock that received only IB-H120, the IBV ELISA (enzyme-linked immunosorbent assay and log2 Haemagglutination inhibition (HI antibody mean titers remained high (3128 ± 2713 and ≥9 log2, respectively until the 28th day of age. The current study demonstrates the safety and effectiveness of IB-VAR2 as a live attenuated vaccine in day-old commercial broilers. Also, the combination of IB-VAR2 and classical IBV vaccines confers a broader protective immune response against IBV in endemic areas.

  4. Conditions Influencing the Efficacy of Vaccination with Live Organisms against Leishmania major Infection

    Science.gov (United States)

    Tabbara, Khaled S.; Peters, Nathan C.; Afrin, Farhat; Mendez, Susana; Bertholet, Sylvie; Belkaid, Yasmine; Sacks, David L.

    2005-01-01

    Numerous experimental vaccines have been developed with the goal of generating long-term cell-mediated immunity to the obligate intracellular parasite Leishmania major, yet inoculation with live, wild-type L. major remains the only successful vaccine in humans. We examined the expression of immunity at the site of secondary, low-dose challenge in the ear dermis to determine the kinetics of parasite clearance and the early events associated with the protection conferred by vaccination with live L. major organisms in C57BL/6 mice. Particular attention was given to the route of vaccination. We observed that the rapidity, strength, and durability of the memory response following subcutaneous vaccination with live parasites in the footpad are even greater than previously appreciated. Antigen-specific gamma interferon (IFN-γ)-producing T cells infiltrate the secondary site by 1.5 weeks, and viable parasites are cleared as early as 2.5 weeks following rechallenge, followed by a rapid drop in IFN-γ+ CD4+ cell numbers in the site. In comparison, intradermal vaccination with live parasites in the ear generates immunity that is delayed in effector cell recruitment to the rechallenge site and in the clearance of parasites from the site. This compromised immunity was associated with a rapid recruitment of interleukin-10 (IL-10)-producing CD4+ T cells to the rechallenge site. Treatment with anti-IL-10-receptor or anti-CD25 antibody enhanced early parasite clearance in ear-vaccinated mice, indicating that chronic infection in the skin generates a population of regulatory cells capable of influencing the level of resistance to reinfection. A delicate balance of effector and regulatory T cells may be required to optimize the potency and durability of vaccines against Leishmaniasis and other intracellular pathogens. PMID:16040984

  5. Comparison of BCG, MPL and cationic liposome adjuvant systems in leishmanial antigen vaccine formulations against murine visceral leishmaniasis

    Directory of Open Access Journals (Sweden)

    Bhowmick Sudipta

    2010-06-01

    Full Text Available Abstract Background The development of an effective vaccine against visceral leishmaniasis (VL caused by Leishmania donovani is an essential aim for controlling the disease. Use of the right adjuvant is of fundamental importance in vaccine formulations for generation of effective cell-mediated immune response. Earlier we reported the protective efficacy of cationic liposome-associated L. donovani promastigote antigens (LAg against experimental VL. The aim of the present study was to compare the effectiveness of two very promising adjuvants, Bacille Calmette-Guerin (BCG and Monophosphoryl lipid A (MPL plus trehalose dicorynomycolate (TDM with cationic liposomes, in combination with LAg, to confer protection against murine VL. Results All the three formulations afforded significant protection against L. donovani in both the visceral organs, liver and spleen. Although comparable level of protection was observed in BCG+LAg and MPL-TDM+LAg immunized mice, highest level of protection was exhibited by the liposomal LAg immunized group. Significant increase in anti-LAg IgG levels were detected in both MPL-TDM+LAg and liposomal LAg immunized animals with higher levels of IgG2a than IgG1. But BCG+LAg failed to induce any antibody response. As an index of cell-mediated immunity DTH responses were measured and significant response was observed in mice vaccinated with all the three different formulations. However, highest responses were observed with liposomal vaccine immunization. Comparative evaluation of IFN-γ and IL-4 responses in immunized mice revealed that MPL-TDM+LAg group produced the highest level of IFN-γ but lowest IL-4 level, while BCG+LAg demonstrated generation of suboptimum levels of both IFN-γ and IL-4 response. Elicitation of moderate levels of prechallenge IFN-γ along with optimum IL-4 corresponds with successful vaccination with liposomal LAg. Conclusion This comparative study reveals greater effectiveness of the liposomal vaccine for

  6. Vial usage, device dead space, vaccine wastage, and dose accuracy of intradermal delivery devices for inactivated poliovirus vaccine (IPV).

    Science.gov (United States)

    Jarrahian, Courtney; Rein-Weston, Annie; Saxon, Gene; Creelman, Ben; Kachmarik, Greg; Anand, Abhijeet; Zehrung, Darin

    2017-03-27

    Intradermal delivery of a fractional dose of inactivated poliovirus vaccine (IPV) offers potential benefits compared to intramuscular (IM) delivery, including possible cost reductions and easing of IPV supply shortages. Objectives of this study were to assess intradermal delivery devices for dead space, wastage generated by the filling process, dose accuracy, and total number of doses that can be delivered per vial. Devices tested included syringes with staked (fixed) needles (autodisable syringes and syringes used with intradermal adapters), a luer-slip needle and syringe, a mini-needle syringe, a hollow microneedle device, and disposable-syringe jet injectors with their associated filling adapters. Each device was used to withdraw 0.1-mL fractional doses from single-dose IM glass vials which were then ejected into a beaker. Both vial and device were weighed before and after filling and again after expulsion of liquid to record change in volume at each stage of the process. Data were used to calculate the number of doses that could potentially be obtained from multidose vials. Results show wide variability in dead space, dose accuracy, overall wastage, and total number of doses that can be obtained per vial among intradermal delivery devices. Syringes with staked needles had relatively low dead space and low overall wastage, and could achieve a greater number of doses per vial compared to syringes with a detachable luer-slip needle. Of the disposable-syringe jet injectors tested, one was comparable to syringes with staked needles. If intradermal delivery of IPV is introduced, selection of an intradermal delivery device can have a substantial impact on vaccine wasted during administration, and thus on the required quantity of vaccine that needs to be purchased. An ideal intradermal delivery device should be not only safe, reliable, accurate, and acceptable to users and vaccine recipients, but should also have low dead space, high dose accuracy, and low overall

  7. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis

    Directory of Open Access Journals (Sweden)

    Maxime W. Lemieux

    2017-12-01

    Full Text Available In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between TH1/TH2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.

  8. Informing vaccine decision-making: A strategic multi-attribute ranking tool for vaccines-SMART Vaccines 2.0.

    Science.gov (United States)

    Knobler, Stacey; Bok, Karin; Gellin, Bruce

    2017-01-20

    SMART Vaccines 2.0 software is being developed to support decision-making among multiple stakeholders in the process of prioritizing investments to optimize the outcomes of vaccine development and deployment. Vaccines and associated vaccination programs are one of the most successful and effective public health interventions to prevent communicable diseases and vaccine researchers are continually working towards expanding targets for communicable and non-communicable diseases through preventive and therapeutic modes. A growing body of evidence on emerging vaccine technologies, trends in disease burden, costs associated with vaccine development and deployment, and benefits derived from disease prevention through vaccination and a range of other factors can inform decision-making and investment in new and improved vaccines and targeted utilization of already existing vaccines. Recognizing that an array of inputs influences these decisions, the strategic multi-attribute ranking method for vaccines (SMART Vaccines 2.0) is in development as a web-based tool-modified from a U.S. Institute of Medicine Committee effort (IOM, 2015)-to highlight data needs and create transparency to facilitate dialogue and information-sharing among decision-makers and to optimize the investment of resources leading to improved health outcomes. Current development efforts of the SMART Vaccines 2.0 framework seek to generate a weighted recommendation on vaccine development or vaccination priorities based on population, disease, economic, and vaccine-specific data in combination with individual preference and weights of user-selected attributes incorporating valuations of health, economics, demographics, public concern, scientific and business, programmatic, and political considerations. Further development of the design and utility of the tool is being carried out by the National Vaccine Program Office of the Department of Health and Human Services and the Fogarty International Center of the

  9. Climate Change Adaptation in Africa | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The poor in many parts of Africa will have to cope with more drought, more extreme temperatures, ... Stories from the field : adapting fishing policies to address climate change in West Africa ... IDRC at the ICLEI Resilient Cities 2018 conference.

  10. The impact of making vaccines thermostable in Niger's vaccine supply chain.

    Science.gov (United States)

    Lee, Bruce Y; Cakouros, Brigid E; Assi, Tina-Marie; Connor, Diana L; Welling, Joel; Kone, Souleymane; Djibo, Ali; Wateska, Angela R; Pierre, Lionel; Brown, Shawn T

    2012-08-17

    Determine the effects on the vaccine cold chain of making different types of World Health Organization (WHO) Expanded Program on Immunizations (EPI) vaccines thermostable. Utilizing a detailed computational, discrete-event simulation model of the Niger vaccine supply chain, we simulated the impact of making different combinations of the six current EPI vaccines thermostable. Making any EPI vaccine thermostable relieved existing supply chain bottlenecks (especially at the lowest levels), increased vaccine availability of all EPI vaccines, and decreased cold storage and transport capacity utilization. By far, the most substantial impact came from making the pentavalent vaccine thermostable, increasing its own vaccine availability from 87% to 97% and the vaccine availabilities of all other remaining non-thermostable EPI vaccines to over 93%. By contrast, making each of the other vaccines thermostable had considerably less effect on the remaining vaccines, failing to increase the vaccine availabilities of other vaccines to more than 89%. Making tetanus toxoid vaccine along with the pentavalent thermostable further increased the vaccine availability of all EPI vaccines by at least 1-2%. Our study shows the potential benefits of making any of Niger's EPI vaccines thermostable and therefore supports further development of thermostable vaccines. Eliminating the need for refrigerators and freezers should not necessarily be the only benefit and goal of vaccine thermostability. Rather, making even a single vaccine (or some subset of the vaccines) thermostable could free up significant cold storage space for other vaccines, and thereby help alleviate supply chain bottlenecks that occur throughout the world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Vaccines (immunizations) - overview

    Science.gov (United States)

    Vaccinations; Immunizations; Immunize; Vaccine shots; Prevention - vaccine ... of the vaccine. VACCINE SCHEDULE The recommended vaccination (immunization) schedule is updated every 12 months by the ...

  12. QoS Adaptation in Multimedia Multicast Conference Applications for E-Learning Services

    Science.gov (United States)

    Deusdado, Sérgio; Carvalho, Paulo

    2006-01-01

    The evolution of the World Wide Web service has incorporated new distributed multimedia conference applications, powering a new generation of e-learning development and allowing improved interactivity and prohuman relations. Groupware applications are increasingly representative in the Internet home applications market, however, the Quality of…

  13. Schistosoma mansoni: analysis of the humoral and cellular basis of resistance in guinea-pigs vaccinated with radiation-attenuated cercariae

    International Nuclear Information System (INIS)

    McLaren, D.J.; Delgado, V.S.; Gordon, J.R.; Rogers, M.V.

    1990-01-01

    This study addresses the humoral and cellular basis of specific acquired immunity in the guinea-pig irradiated vaccine model of schistosomiasis mansoni. Rodents vaccinated with 500 gamma-irradiated cercariae and then splenectomized 4. 5 weeks later showed a 33% reduction in resistance to challenge as compared to vaccinated animals or vaccinated/sham splenectomized controls. Serum harvested from once vaccinated individuals conferred modest levels of resistance upon naive recipients in some experiments, but transfer was not achieved consistently. Serum from vaccinated and thrice boosted rodents (Vbbb) routinely transferred about 45% immunity, however, provided it was given in 4 ml aliquots on day 9 post-challenge; Vbbb serum thus transferred 50% of donor immunity. Interestingly, multiple doses of this protective serum given on and either side of day 9 did not enhance the protection achieved with a single 4 ml aliquot. Neither peripheral lymph node cells nor splenocytes from the polyvaccinated serum donors were able to transfer resistance to recipient guinea-pigs and they failed to augment the protection achieved with Vbbb serum. Foot-pad testing revealed no correlation between delayed hypersensitivity responses and immunity to challenge in vaccinated guinea-pigs. Polyvaccine guinea-pig serum failed to protect mice and guinea-pigs could not be protected with polyvaccine rat serum. (author)

  14. A clinically parameterized mathematical model of Shigella immunity to inform vaccine design.

    Directory of Open Access Journals (Sweden)

    Courtney L Davis

    Full Text Available We refine and clinically parameterize a mathematical model of the humoral immune response against Shigella, a diarrheal bacteria that infects 80-165 million people and kills an estimated 600,000 people worldwide each year. Using Latin hypercube sampling and Monte Carlo simulations for parameter estimation, we fit our model to human immune data from two Shigella EcSf2a-2 vaccine trials and a rechallenge study in which antibody and B-cell responses against Shigella's lipopolysaccharide (LPS and O-membrane proteins (OMP were recorded. The clinically grounded model is used to mathematically investigate which key immune mechanisms and bacterial targets confer immunity against Shigella and to predict which humoral immune components should be elicited to create a protective vaccine against Shigella. The model offers insight into why the EcSf2a-2 vaccine had low efficacy and demonstrates that at a group level a humoral immune response induced by EcSf2a-2 vaccine or wild-type challenge against Shigella's LPS or OMP does not appear sufficient for protection. That is, the model predicts an uncontrolled infection of gut epithelial cells that is present across all best-fit model parameterizations when fit to EcSf2a-2 vaccine or wild-type challenge data. Using sensitivity analysis, we explore which model parameter values must be altered to prevent the destructive epithelial invasion by Shigella bacteria and identify four key parameter groups as potential vaccine targets or immune correlates: 1 the rate that Shigella migrates into the lamina propria or epithelium, 2 the rate that memory B cells (BM differentiate into antibody-secreting cells (ASC, 3 the rate at which antibodies are produced by activated ASC, and 4 the Shigella-specific BM carrying capacity. This paper underscores the need for a multifaceted approach in ongoing efforts to design an effective Shigella vaccine.

  15. A clinically parameterized mathematical model of Shigella immunity to inform vaccine design.

    Science.gov (United States)

    Davis, Courtney L; Wahid, Rezwanul; Toapanta, Franklin R; Simon, Jakub K; Sztein, Marcelo B

    2018-01-01

    We refine and clinically parameterize a mathematical model of the humoral immune response against Shigella, a diarrheal bacteria that infects 80-165 million people and kills an estimated 600,000 people worldwide each year. Using Latin hypercube sampling and Monte Carlo simulations for parameter estimation, we fit our model to human immune data from two Shigella EcSf2a-2 vaccine trials and a rechallenge study in which antibody and B-cell responses against Shigella's lipopolysaccharide (LPS) and O-membrane proteins (OMP) were recorded. The clinically grounded model is used to mathematically investigate which key immune mechanisms and bacterial targets confer immunity against Shigella and to predict which humoral immune components should be elicited to create a protective vaccine against Shigella. The model offers insight into why the EcSf2a-2 vaccine had low efficacy and demonstrates that at a group level a humoral immune response induced by EcSf2a-2 vaccine or wild-type challenge against Shigella's LPS or OMP does not appear sufficient for protection. That is, the model predicts an uncontrolled infection of gut epithelial cells that is present across all best-fit model parameterizations when fit to EcSf2a-2 vaccine or wild-type challenge data. Using sensitivity analysis, we explore which model parameter values must be altered to prevent the destructive epithelial invasion by Shigella bacteria and identify four key parameter groups as potential vaccine targets or immune correlates: 1) the rate that Shigella migrates into the lamina propria or epithelium, 2) the rate that memory B cells (BM) differentiate into antibody-secreting cells (ASC), 3) the rate at which antibodies are produced by activated ASC, and 4) the Shigella-specific BM carrying capacity. This paper underscores the need for a multifaceted approach in ongoing efforts to design an effective Shigella vaccine.

  16. Modeling the impact of the 7-valent pneumococcal conjugate vaccine in Chinese infants: an economic analysis of a compulsory vaccination.

    Science.gov (United States)

    Che, Datian; Zhou, Hua; He, Jinchun; Wu, Bin

    2014-02-07

    The purpose of this study was to compare, from a Chinese societal perspective, the projected health benefits, costs, and cost-effectiveness of adding pneumococcal conjugate heptavalent vaccine (PCV-7) to the routine compulsory child immunization schedule. A decision-tree model, with data and assumptions adapted for relevance to China, was developed to project the health outcomes of PCV-7 vaccination (compared with no vaccination) over a 5-year period as well as a lifetime. The vaccinated birth cohort included 16,000,000 children in China. A 2 + 1 dose schedule at US$136.51 per vaccine dose was used in the base-case analysis. One-way sensitivity analysis was used to test the robustness of the model. The impact of a net indirect effect (herd immunity) was evaluated. Outcomes are presented in terms of the saved disease burden, costs, quality-adjusted life years (QALYs) and incremental cost-effectiveness ratio. In a Chinese birth cohort, a PCV-7 vaccination program would reduce the number of pneumococcus-related infections by at least 32% and would prevent 2,682 deaths in the first 5 years of life, saving $1,190 million in total costs and gaining an additional 9,895 QALYs (discounted by 3%). The incremental cost per QALY was estimated to be $530,354. When herd immunity was taken into account, the cost per QALY was estimated to be $95,319. The robustness of the model was influenced mainly by the PCV-7 cost per dose, effectiveness herd immunity and incidence of pneumococcal diseases. With and without herd immunity, the break-even costs in China were $29.05 and $25.87, respectively. Compulsory routine infant vaccination with PCV-7 is projected to substantially reduce pneumococcal disease morbidity, mortality, and related costs in China. However, a universal vaccination program with PCV-7 is not cost-effective at the willingness-to-pay threshold that is currently recommended for China by the World Health Organization.

  17. Efficacy and Duration of Immunity after Yellow Fever Vaccination: Systematic Review on the Need for a Booster Every 10 Years

    Science.gov (United States)

    Gotuzzo, Eduardo; Yactayo, Sergio; Córdova, Erika

    2013-01-01

    Current regulations stipulate a yellow fever (YF) booster every 10 years. We conducted a systematic review of the protective efficacy and duration of immunity of YF vaccine in residents of disease-endemic areas and in travelers to assess the need for a booster in these two settings and in selected populations (human immunodeficiency virus–infected persons, infants, children, pregnant women, and severely malnourished persons). Thirty-six studies and 22 reports were included. We identified 12 studies of immunogenicity, 8 of duration of immunity, 8 of vaccine response in infants and children, 7 of human-immunodeficiency virus–infected persons, 2 of pregnant women, and 1 of severely malnourished children. Based on currently available data, a single dose of YF vaccine is highly immunogenic and confers sustained life-long protective immunity against YF. Therefore, a booster dose of YF vaccine is not needed. Special considerations for selected populations are detailed. PMID:24006295

  18. Joint Armaments Conference, Exhibition and Firing Demonstration. Volume 1. Monday - Tuesday

    Science.gov (United States)

    2010-05-20

    Systems Conference Dallas, Texas May 2010 Support Equipment Design J75189 Ground Handling Adapter J75196 Mount Rail J75199 Gun Transfer Adapter J75208...AP and HE Flex Chutes Primary Container Cover (HE) w/ Indexing Conveyor MK44 30mm Bushmaster II Gun and Dual Feeder 6NDIA Gun and Missile Systems... Transfer Program Manager ARDEC Tuesday , May 18, 2010 KEYNOTE ADDRESS · BrigGen Michael M. Brogan, USMC, Commander, Marine Corps Systems

  19. Protein-energy malnutrition alters IgA responses to rotavirus vaccination and infection but does not impair vaccine efficacy in mice.

    Science.gov (United States)

    Maier, Elizabeth A; Weage, Kristina J; Guedes, Marjorie M; Denson, Lee A; McNeal, Monica M; Bernstein, David I; Moore, Sean R

    2013-12-17

    Conflicting evidence links malnutrition to the reduced efficacy of rotavirus vaccines in developing countries, where diarrhea and undernutrition remain leading causes of child deaths. Here, we adapted mouse models of rotavirus vaccination (rhesus rotavirus, RRV), rotavirus infection (EDIM), and protein-energy malnutrition (PEM) to test the hypothesis that undernutrition reduces rotavirus vaccine immunogenicity and efficacy. We randomized wild type Balb/C dams with 3-day-old pups to a control diet (CD) or an isocaloric, multideficient regional basic diet (RBD) that produces PEM. At 3 weeks of age, we weaned CD and RBD pups to their dams' diet and subrandomized weanlings to receive a single dose of either live oral rotavirus vaccine (RRV) or PBS. At 6 weeks of age, we orally challenged all groups with murine rotavirus (EDIM). Serum and stool specimens were collected before and after RRV and EDIM administration to measure viral shedding and antibody responses by ELISA. RBD pups and weanlings exhibited significant failure to thrive compared to age-matched CD mice (Pvaccination induced higher levels of serum anti-RV IgA responses in RBD vs. CD mice (PVaccination protected CD and RBD mice equally against EDIM infection, as measured by viral shedding. In unvaccinated RBD mice, EDIM shedding peaked 1 day earlier (Pvaccination (Pvaccination mitigated stool IgA responses to EDIM more in CD vs. RBD mice (Pvaccination and infection, undernutrition does not impair rotavirus vaccine efficacy nor exacerbate infection in this mouse model of protein-energy malnutrition. Alternative models are needed to elucidate host-pathogen factors undermining rotavirus vaccine effectiveness in high-risk global settings. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Rotavirus vaccines

    Science.gov (United States)

    Yen, Catherine; Tate, Jacqueline E; Hyde, Terri B; Cortese, Margaret M; Lopman, Benjamin A; Jiang, Baoming; Glass, Roger I; Parashar, Umesh D

    2014-01-01

    Rotavirus is the leading cause of severe diarrhea among children rotavirus vaccines have been efficacious and effective, with many countries reporting substantial declines in diarrheal and rotavirus-specific morbidity and mortality. However, the full public health impact of these vaccines has not been realized. Most countries, including those with the highest disease burden, have not yet introduced rotavirus vaccines into their national immunization programs. Research activities that may help inform vaccine introduction decisions include (1) establishing effectiveness, impact, and safety for rotavirus vaccines in low-income settings; (2) identifying potential strategies to improve performance of oral rotavirus vaccines in developing countries, such as zinc supplementation; and (3) pursuing alternate approaches to oral vaccines, such as parenteral immunization. Policy- and program-level barriers, such as financial implications of new vaccine introductions, should be addressed to ensure that countries are able to make informed decisions regarding rotavirus vaccine introduction. PMID:24755452

  1. Hepatitis Vaccines

    Directory of Open Access Journals (Sweden)

    Sina Ogholikhan

    2016-03-01

    Full Text Available Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver.

  2. Hepatitis Vaccines

    Science.gov (United States)

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  3. Imperfect Vaccine Aggravates the Long-Standing Dilemma of Voluntary Vaccination

    Science.gov (United States)

    Wu, Bin; Fu, Feng; Wang, Long

    2011-01-01

    Achieving widespread population immunity by voluntary vaccination poses a major challenge for public health administration and practice. The situation is complicated even more by imperfect vaccines. How the vaccine efficacy affects individuals' vaccination behavior has yet to be fully answered. To address this issue, we combine a simple yet effective game theoretic model of vaccination behavior with an epidemiological process. Our analysis shows that, in a population of self-interested individuals, there exists an overshooting of vaccine uptake levels as the effectiveness of vaccination increases. Moreover, when the basic reproductive number, , exceeds a certain threshold, all individuals opt for vaccination for an intermediate region of vaccine efficacy. We further show that increasing effectiveness of vaccination always increases the number of effectively vaccinated individuals and therefore attenuates the epidemic strain. The results suggest that ‘number is traded for efficiency’: although increases in vaccination effectiveness lead to uptake drops due to free-riding effects, the impact of the epidemic can be better mitigated. PMID:21687680

  4. Imperfect vaccine aggravates the long-standing dilemma of voluntary vaccination.

    Directory of Open Access Journals (Sweden)

    Bin Wu

    Full Text Available Achieving widespread population immunity by voluntary vaccination poses a major challenge for public health administration and practice. The situation is complicated even more by imperfect vaccines. How the vaccine efficacy affects individuals' vaccination behavior has yet to be fully answered. To address this issue, we combine a simple yet effective game theoretic model of vaccination behavior with an epidemiological process. Our analysis shows that, in a population of self-interested individuals, there exists an overshooting of vaccine uptake levels as the effectiveness of vaccination increases. Moreover, when the basic reproductive number, R0, exceeds a certain threshold, all individuals opt for vaccination for an intermediate region of vaccine efficacy. We further show that increasing effectiveness of vaccination always increases the number of effectively vaccinated individuals and therefore attenuates the epidemic strain. The results suggest that 'number is traded for efficiency': although increases in vaccination effectiveness lead to uptake drops due to free-riding effects, the impact of the epidemic can be better mitigated.

  5. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Pneumococcal vaccine and flu vaccine. 410.57 Section 410.57 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its...

  6. Preparation for emergence of an Eastern European porcine reproductive and respiratory syndrome virus (PRRSV) strain in Western Europe: Immunization with modified live virus vaccines or a field strain confers partial protection.

    Science.gov (United States)

    Renson, P; Fablet, C; Le Dimna, M; Mahé, S; Touzain, F; Blanchard, Y; Paboeuf, F; Rose, N; Bourry, O

    2017-05-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) causes huge economic losses for the swine industry worldwide. In the past several years, highly pathogenic strains that lead to even greater losses have emerged. For the Western European swine industry, one threat is the possible introduction of Eastern European PRRSV strains (example Lena genotype 1.3) which were shown to be more virulent than common Western resident strains under experimental conditions. To prepare for the possible emergence of this strain in Western Europe, we immunized piglets with a Western European PRRSV field strain (Finistere: Fini, genotype 1.1), a new genotype 1 commercial modified live virus (MLV) vaccine (MLV1) or a genotype 2 commercial MLV vaccine (MLV2) to evaluate and compare the level of protection that these strains conferred upon challenge with the Lena strain 4 weeks later. Results show that immunization with Fini, MLV1 or MLV2 strains shortened the Lena-induced hyperthermia. In the Fini group, a positive effect was also demonstrated in growth performance. The level of Lena viremia was reduced for all immunized groups (significantly so for Fini and MLV2). This reduction in Lena viremia was correlated with the level of Lena-specific IFNγ-secreting cells. In conclusion, we showed that a commercial MLV vaccine of genotype 1 or 2, as well as a field strain of genotype 1.1 may provide partial clinical and virological protection upon challenge with the Lena strain. The cross-protection induced by these immunizing strains was not related with the level of genetic similarity to the Lena strain. The slightly higher level of protection established with the field strain is attributed to a better cell-mediated immune response. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. NKT-cell glycolipid agonist as adjuvant in synthetic vaccine.

    Science.gov (United States)

    Liu, Zheng; Guo, Jun

    2017-11-27

    NKT cells are CD1d-restricted, glycolipid antigen-reactive, immunoregulatory T lymphocytes that can serve as a bridge between the innate and adaptive immunities. NKT cells have a wide range of therapeutic application in autoimmunity, transplant biology, infectious disease, cancer, and vaccinology. Rather than triggering "danger signal" and eliciting an innate immune response, αGalCer-based NKT-cell agonist act via a unique mechanism, recruiting NKT cells which play a T helper-like role even without peptide as Th epitope. Importantly, the non-polymorphism of CD1d render glycolipid a universal helper epitope, offering the potential to simplify the vaccine construct capable of eliciting consistent immune response in different individuals. This review details recent advances in the design of synthetic vaccines using NKT-cell agonist as adjuvant, highlighting the role of organic synthesis and conjugation technique to enhance the immunological actives and to simplify the vaccine constructs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Vaccination Perceptions of College Students: With and without Vaccination Waiver.

    Science.gov (United States)

    Jadhav, Emmanuel D; Winkler, Danielle L; Anderson, Billie S

    2018-01-01

    The resurgence of vaccine preventable diseases occurs more often among intentionally unvaccinated individuals, placing at direct risk young adults not caught up on vaccinations. The objectives of this study were to characterize the sociodemographic characteristics of young adults with and without vaccination waivers and identify their perceived benefits, barriers, and influencers of vaccination. Young adults ( n  = 964) from a Midwestern rural university responded to a survey (fall 2015-spring 2016) designed to identify their perception toward vaccination. Instrument consistency was measured using the Cronbach α-scores. The Chi-square test was used to test any sociodemographic differences and Mann-Whitney U -tests results for differences between exempt and non-exempt students. Analysis occurred in spring 2017. A little over one-third of young adults with a vaccination waiver were not up to date on their vaccinations, and think that vaccinations can cause autism. The biggest identifiable benefit was effective control against disease. The surveyed young adults ranked the out of pocket cost associated with vaccination as the most important barrier and safe and easy to use vaccines as the most important influencer of vaccination. Young adults who have had a vaccination waiver appear to not be up to date on their vaccinations. Vaccine administration programs, such as university campus clinics, would benefit from addressing perceptions unique to young adults with and without a vaccine waiver. This would subsequently better provide young adults a second shot for getting appropriately caught up on vaccinations.

  9. HIV vaccine: it may take two to tango, but no party time yet

    Directory of Open Access Journals (Sweden)

    Paxton William A

    2009-10-01

    Full Text Available Abstract A press conference on Thursday September 24 in Bangkok, Thailand, released data that an experimental vaccine provided mild protection against HIV-1 infection. This is the first positive signal of any degree of vaccine efficacy in humans, more than a quarter-century after scientists discovered the virus that causes AIDS. The research was conducted by a team including Thai researchers, the U.S. Army and the U.S. National Institutes of Health. The RV144 Phase III clinical trial, which began in 2003, had been disparaged by many critics as a waste of time and money because each of the two components had been shown to produce no benefit as individual vaccines and because the scientific rationales behind the immunogens were just wrong. It was nevertheless speculated that using them together in the prime-boost scenario could be more effective, with the aim to induce heightened CD4+ cellular immune responses against the viral Envelope protein. This optimism seems to have been validated. In fact, this would not be the first time that the discovery of an effective vaccine relied as much on serendipity as opposed to scientific rationale. On the other hand, many questions remain about the RV144 trial, and these issues will be addressed in this editorial.

  10. Low coverage of central point vaccination against dog rabies in Bamako, Mali.

    Science.gov (United States)

    Muthiani, Yvonne; Traoré, Abdallah; Mauti, Stephanie; Zinsstag, Jakob; Hattendorf, Jan

    2015-06-15

    Canine rabies remains an important public-health problem in Africa. Dog mass vaccination is the recommended method for rabies control and elimination. We report on the first small-scale mass dog vaccination campaign trial in Bamako, Mali. Our objective was to estimate coverage of the vaccination campaign and to quantify determinants of intervention effectiveness. In September 2013, a central point vaccination campaign--free of cost for dog owners--was carried out in 17 posts on three consecutive days within Bamako's Commune 1. Vaccination coverage and the proportion of ownerless dogs were estimated by combining mark-recapture household and transect surveys using Bayesian modeling. The estimated vaccination coverage was 17.6% (95% Credibility Interval, CI: 14.4-22.1%) which is far below the World Health Organization (WHO) recommended vaccination coverage of 70%. The Bayesian estimate for the owned dog population of Commune 1 was 3459 dogs (95% CI: 2786-4131) and the proportion of ownerless dogs was about 8%. The low coverage observed is primarily attributed to low participation by dog owners. Dog owners reported several reasons for not bringing their dogs to the vaccination posts. The most frequently reported reasons for non-attendance were lack of information (25%) and the inability to handle the dog (16%). For 37% of respondents, no clear reason was given for non-vaccination. Despite low coverage, the vaccination campaign in Bamako was relatively easy to implement, both in terms of logistics and organization. Almost half of the participating dog owners brought their pets on the first day of the campaign. Participatory stakeholder processes involving communities and local authorities are needed to identify effective communication channels and locally adapted vaccination strategies, which could include both central-point and door-to-door vaccination. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Gradual adaptation of HIV to human host populations: good or bad news?

    Science.gov (United States)

    Brander, Christian; Walker, Bruce D

    2003-11-01

    The continuous evolution and adaptation of HIV to its host has produced extensive global viral diversity. Understanding the kinetics and directions of this continuing adaptation and its impact on viral fitness, immunogenicity and pathogenicity will be crucial to the successful design of effective HIV vaccines. Here we discuss some potential scenarios of viral and host coevolution.

  12. [From new vaccine to new target: revisiting influenza vaccination].

    Science.gov (United States)

    Gérard, M

    2011-09-01

    Annual vaccination is since many years the corner stone of Influenza control strategy. Because conventional vaccine are needle-based, are less immunogenic in old people and induce only systemic IgG production, intranasal and intradermal vaccines that are recently or will be soon available in Belgium will offer distinct advantages. Intradermal vaccination is on the Belgian market since 2010. A stronger immune response that allows an antigen sparing strategy is elicited because antigens are delivered near the dermal dendritic cells. Local side effects are more pronounced than after intramuscular injection. The needle-free intranasal vaccine that has been approved for use in people less than 18 years old by the EMEA in October 2010 induces also a mucosal IgA response. Improved clinical results than with intramuscular vaccine has been documented in several studies in children. Several conditions are contraindication to nasal vaccination because of patterns of side effects and because the vaccine is an live-attenuated vaccine. Pregnant women has become a top priority for Influenza vaccination in the recommendations of the High Council of Health in Belgium since the 2009 H1N1 pandemic. Several studies has since then documented the increased risk for Influenza-related morbidity in pregnant women especially during the third trimester and independently of the presence of other comorbidities. Reduced incidence of documented Influenza and of Influenza-related hospitalizations are observed in the new born of vaccinated women until 6 months of age. Availability of new vaccines for Influenza and better knowledge of the benefit of vaccination in target populations are important tools to optimize vaccine coverage of the population.

  13. The effects of anti-vaccine conspiracy theories on vaccination intentions.

    Directory of Open Access Journals (Sweden)

    Daniel Jolley

    Full Text Available The current studies investigated the potential impact of anti-vaccine conspiracy beliefs, and exposure to anti-vaccine conspiracy theories, on vaccination intentions. In Study 1, British parents completed a questionnaire measuring beliefs in anti-vaccine conspiracy theories and the likelihood that they would have a fictitious child vaccinated. Results revealed a significant negative relationship between anti-vaccine conspiracy beliefs and vaccination intentions. This effect was mediated by the perceived dangers of vaccines, and feelings of powerlessness, disillusionment and mistrust in authorities. In Study 2, participants were exposed to information that either supported or refuted anti-vaccine conspiracy theories, or a control condition. Results revealed that participants who had been exposed to material supporting anti-vaccine conspiracy theories showed less intention to vaccinate than those in the anti-conspiracy condition or controls. This effect was mediated by the same variables as in Study 1. These findings point to the potentially detrimental consequences of anti-vaccine conspiracy theories, and highlight their potential role in shaping health-related behaviors.

  14. [VACCINES].

    Science.gov (United States)

    Bellver Capella, Vincente

    2015-10-01

    Vaccines are an extraordinary instrument of immunization of the population against infectious diseases. Around them there are many ethical issues. One of the most debated is what to do with certain groups opposition to vaccination of their children. States have managed in different ways the conflict between the duty of vaccination and the refusal to use vaccines: some impose the vaccination and others simply promote it. In this article we deal with which of these two approaches is the most suitable from an ethical and legal point of view. We stand up for the second option, which is the current one in Spain, and we propose some measures which should be kept in mind to improve immunization programs.

  15. A meningococcal NOMV-FHbp vaccine for Africa elicits broader serum bactericidal antibody responses against serogroup B and non-B strains than a licensed serogroup B vaccine.

    Science.gov (United States)

    Pajon, Rolando; Lujan, Eduardo; Granoff, Dan M

    2016-01-27

    Meningococcal epidemics in Sub-Sahara caused by serogroup A strains are controlled by a group A polysaccharide conjugate vaccine. Strains with serogroups C, W and X continue to cause epidemics. Protein antigens in licensed serogroup B vaccines are shared among serogroup B and non-B strains. Compare serum bactericidal antibody responses elicited by an investigational native outer membrane vesicle vaccine with over-expressed Factor H binding protein (NOMV-FHbp) and a licensed serogroup B vaccine (MenB-4C) against African serogroup A, B, C, W and X strains. Human Factor H (FH) transgenic mice were immunized with NOMV-FHbp prepared from a mutant African meningococcal strain containing genetically attenuated endotoxin and a mutant sub-family B FHbp antigen with low FH binding, or with MenB-4C, which contains a recombinant sub-family B FHbp antigen that binds human FH, and three other antigens, NHba, NadA and PorA P1.4, capable of eliciting bactericidal antibody. The NOMV-FHbp elicited serum bactericidal activity against 12 of 13 serogroup A, B, W or X strains from Africa, and four isogenic serogroup B mutants with sub-family B FHbp sequence variants. There was no activity against a serogroup B mutant with sub-family A FHbp, or two serogroup C isolates from a recent outbreak in Northern Nigeria, which were mismatched for both PorA and sub-family of the FHbp vaccine antigen. For MenB-4C, NHba was expressed by all 16 African isolates tested, FHbp sub-family B in 13, and NadA in five. However, MenB-4C elicited titers ≥ 1:10 against only one isolate, and against only two of four serogroup B mutant strains with sub-family B FHbp sequence variants. NOMV-FHbp has greater potential to confer serogroup-independent protection in Africa than the licensed MenB-4C vaccine. However, the NOMV-FHbp vaccine will require inclusion of sub-family A FHbp for coverage against recent serogroup C strains causing outbreaks in Northern Nigeria. Copyright © 2015 Elsevier Ltd. All rights

  16. Vaccination in Fish

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar

    vaccines have reduced the need for usage of antibiotics with more than 99 % since the 1980s. Fish can be vaccinated by three different administration routes: injection, immersion and oral vaccination. Injection vaccination (intraperitoneal injection of vaccine) is the most time consuming and labor...... intensive method, which however, provides the best protection of the fish. Immersion vaccination is used for immunization of a high number of small fish is cost-efficient and fast (30 sec immersion into vaccine). Oral vaccination (vaccine in feed) is the least efficient. As in higher vertebrates fish...... respond to vaccination by increasing the specific antibody titer and by activating the cellular responses. My talk will cover vaccination methods in fish, immune responses and some adverse effect of oil-adjuvanted vaccines in fish with reference to our work in rainbow trout, Oncorhynchus mykiss....

  17. Vaccination Perceptions of College Students: With and without Vaccination Waiver

    Directory of Open Access Journals (Sweden)

    Emmanuel D. Jadhav

    2018-02-01

    Full Text Available IntroductionThe resurgence of vaccine preventable diseases occurs more often among intentionally unvaccinated individuals, placing at direct risk young adults not caught up on vaccinations. The objectives of this study were to characterize the sociodemographic characteristics of young adults with and without vaccination waivers and identify their perceived benefits, barriers, and influencers of vaccination.MethodsYoung adults (n = 964 from a Midwestern rural university responded to a survey (fall 2015—spring 2016 designed to identify their perception toward vaccination. Instrument consistency was measured using the Cronbach α-scores. The Chi-square test was used to test any sociodemographic differences and Mann–Whitney U-tests results for differences between exempt and non-exempt students. Analysis occurred in spring 2017.ResultsA little over one-third of young adults with a vaccination waiver were not up to date on their vaccinations, and think that vaccinations can cause autism. The biggest identifiable benefit was effective control against disease. The surveyed young adults ranked the out of pocket cost associated with vaccination as the most important barrier and safe and easy to use vaccines as the most important influencer of vaccination.ConclusionYoung adults who have had a vaccination waiver appear to not be up to date on their vaccinations. Vaccine administration programs, such as university campus clinics, would benefit from addressing perceptions unique to young adults with and without a vaccine waiver. This would subsequently better provide young adults a second shot for getting appropriately caught up on vaccinations.

  18. Immunisation With Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection

    OpenAIRE

    Yang, Hui-Jie; Zhang, Jin-Yong; Wei, Chao; Yang, Liu-Yang; Zuo, Qian-Fei; Zhuang, Yuan; Feng, You-Jun; Srinivas, Swaminath; Zeng, Hao; Zou, Quan-Ming

    2016-01-01

    Vaccination strategies for Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA) infections have attracted much research attention. Recent efforts have been made to select manganese transport protein C, or manganese binding surface lipoprotein C (MntC), which is a metal ion associated with pathogen nutrition uptake, as potential candidates for an S. aureus vaccine. Although protective humoral immune responses to MntC are well-characterised, much less is known about detail...

  19. Reasons for non-vaccination: Parental vaccine hesitancy and the childhood influenza vaccination school pilot programme in England.

    Science.gov (United States)

    Paterson, Pauline; Chantler, Tracey; Larson, Heidi J

    2017-08-14

    In 2013, the annual influenza immunisation programme in England was extended to children to reduce the burden of influenza, but uptake was sub-optimal at 53.2%. To explore the reasons some parents decided not to vaccinate their child against influenza as part of the pilot programme offered in schools. Cross-sectional qualitative study conducted between February and July 2015. 913 parents whose children were not vaccinated against influenza in the school pilots in West Yorkshire and Greater Manchester, England, were asked to comment on their reasons for non-vaccination and invited to take part in a semi-structured interview. 138 parents returned response forms, of which 38 were eligible and interested in participating and 25 were interviewed. Interview transcripts were coded by theme in NVivo. A third of parents who returned response forms had either vaccinated their child elsewhere, intended to have them vaccinated, or had not vaccinated them due to medical reasons (valid or perceived). Most interviewees were not convinced of the need to vaccinate their child against influenza. Parents expressed concerns about influenza vaccine effectiveness and vaccine side effects. Several parents interviewed declined the vaccine for faith reasons due to the presence of porcine gelatine in the vaccine. To significantly decrease the burden of influenza in England, influenza vaccination coverage in children needs to be >60%. Hence, it is important to understand the reasons why parents are not vaccinating their children, and to tailor the communication and immunisation programme accordingly. Our finding that a third of parents, who did not consent to their child being vaccinated as part of the school programme, had actually vaccinated their child elsewhere, intended to have their child vaccinated, or had not vaccinated them due to medical reasons, illustrates the importance of including additional questions or data sources when investigating under-vaccination. Copyright © 2017 The

  20. Leadership Behaviors of Management for Complex Adaptive Systems

    Science.gov (United States)

    2010-04-01

    Leadership Behaviors of Management for Complex Adaptive Systems Systems and Software Technology Conference April 2010 Dr. Suzette S. Johnson...2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Leadership Behaviors of Management for Complex Adaptive...as they evolve – Control is dispersed and decentralized – Simple rules and governance used to direct behavior • Complexity Leadership Theory – Built on

  1. Tackling the issue of environmental survival of live Salmonella Typhimurium vaccines: deletion of the lon gene.

    Science.gov (United States)

    Leyman, Bregje; Boyen, Filip; Van Parys, Alexander; Verbrugghe, Elin; Haesebrouck, Freddy; Pasmans, Frank

    2012-12-01

    Vaccination is an important measure to control Salmonella contamination in the meat production chain. A previous study showed that both the ΔrfaJ and ΔrfaL strains are suitable markers and allow serological differentiation of infected and vaccinated animals. The aim of this study was to verify whether deletion of the lon gene in a Salmonella Typhimurium ΔrfaJ marker strain resulted in decreased environmental survival. Our results indicate that deletion of the lon gene in the ΔrfaJ strain did not affect invasiveness in IPEC-J2 cells and resulted in an increased susceptibility to UV, disinfectants (such as hydrogen peroxide and tosylchloramide sodium) and citric acid. Immunization of pigs with inactivated ΔrfaJ or ΔlonΔrfaJ vaccines allowed differentiation of infected and vaccinated pigs. Furthermore, deletion of the lon gene did not reduce the protection conferred by live wild type or ΔrfaJ vaccines against subsequent challenge with a virulent Salmonella Typhimurium strain in BALB/c mice. Based on our results in mice, we conclude that deletion of lon in ΔrfaJ contributes to environmental safety of the ΔrfaJ DIVA strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Development of Burkholderia mallei and pseudomallei vaccines

    Science.gov (United States)

    Silva, Ediane B.; Dow, Steven W.

    2013-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit

  3. Outbreak-related mumps vaccine effectiveness among a cohort of children and of young adults in Germany 2011.

    Science.gov (United States)

    Takla, Anja; Böhmer, Merle M; Klinc, Christina; Kurz, Norbert; Schaffer, Alice; Stich, Heribert; Stöcker, Petra; Wichmann, Ole; Koch, Judith

    2014-01-01

    Mumps outbreaks in populations with high 2-dose vaccination coverage and among young adults are increasingly reported. However, data on the duration of vaccine-induced protection conferred by mumps vaccines are scarce. As part of a supra-regional outbreak in Germany 2010/11, we conducted two retrospective cohort studies in a primary school and among adult ice hockey teams to determine mumps vaccine effectiveness (VE). Via questionnaires we collected information on demography, clinical manifestations, and reviewed vaccination cards. We estimated VE as 1-RR, RR being the rate ratio of disease among two-times or one-time mumps-vaccinated compared with unvaccinated persons. The response rate was 92.6% (100/108--children cohort) and 91.7% (44/48--adult cohort). Fourteen cases were identified in the children and 6 in the adult cohort. In the children cohort (mean age: 9 y), 2-dose VE was 91.9% (95% CI 81.0-96.5%). In the adult cohort (mean age: 26 y), no cases occurred among the 13 2-times vaccinated, while 1-dose VE was 50.0% (95% CI -9.4-87.1%). Average time since last vaccination showed no significant difference for cases and non-cases, but cases were younger at age of last mumps vaccination (children cohort: 2 vs. 3 y, P=0.04; adult cohort: 1 vs. 4 y, P=0.03). We did not observe signs of waning immunity in the children cohort. Due to the small sample size VE in the adult cohort should be interpreted with caution. Given the estimated VE, very high 2-dose vaccination coverage is required to prevent future outbreaks. Intervention efforts to increase coverage must especially target young adults who received<2 vaccinations during childhood.

  4. Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80 as a novel immunogen for Chagas disease vaccine.

    Directory of Open Access Journals (Sweden)

    Augusto E Bivona

    2018-03-01

    Full Text Available Chagas disease, also known as American Trypanosomiasis, is a chronic parasitic disease caused by the flagellated protozoan Trypanosoma cruzi that affects about 8 million people around the world where more than 25 million are at risk of contracting the infection. Despite of being endemic on 21 Latin-American countries, Chagas disease has become a global concern due to migratory movements. Unfortunately, available drugs for the treatment have several limitations and they are generally administered during the chronic phase of the infection, when its efficacy is considered controversial. Thus, prophylactic and/or therapeutic vaccines are emerging as interesting control alternatives. In this work, we proposed Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80 as a new antigen for vaccine development against Chagas disease.In a murine model, we analyzed the immune response triggered by different immunization protocols based on Tc80 and evaluated their ability to confer protection against a challenge with the parasite. Immunized mice developed Tc80-specific antibodies which were able to carry out different functions such as: enzymatic inhibition, neutralization of parasite infection and complement-mediated lysis of trypomastigotes. Furthermore, vaccinated mice elicited strong cell-mediated immunity. Spleen cells from immunized mice proliferated and secreted Th1 cytokines (IL-2, IFN-γ and TNF-α upon re-stimulation with rTc80. Moreover, we found Tc80-specific polyfunctional CD4 T cells, and cytotoxic T lymphocyte activity against one Tc80 MHC-I peptide. Immunization protocols conferred protection against a T. cruzi lethal challenge. Immunized groups showed a decreased parasitemia and higher survival rate compared with non-immunized control mice. Moreover, during the chronic phase of the infection, immunized mice presented: lower levels of myopathy-linked enzymes, parasite burden, electrocardiographic disorders and inflammatory cells.Considering that

  5. Proceedings of the thirty fifth international conference on contemporary trends in optics and optoelectronics: conference digest - extended abstracts

    International Nuclear Information System (INIS)

    2011-01-01

    Optics and optoelectronics are indispensable in all spheres of human activity, ranging from day to day needs to advanced scientific and technological pursuits and their applications for the benefit of the society. This conference covers the following topics: adaptive optics, biomedical optics and imaging, classical and quantum optics, fibre optics, optics for space applications, optical metrology and NDT, optical information processing, optical and optoelectronic materials. Papers relevant to INIS are indexed separately

  6. The Impact of Making Vaccines Thermostable in Niger’s Vaccine Supply Chain

    Science.gov (United States)

    Lee, Bruce Y.; Cakouros, Brigid E.; Assi, Tina-Marie; Connor, Diana L.; Welling, Joel; Kone, Souleymane; Djibo, Ali; Wateska, Angela R.; Pierre, Lionel; Brown, Shawn T.

    2012-01-01

    Objective Determine the effects on the vaccine cold chain of making different types of World Health Organization (WHO) Expanded Program on Immunizations (EPI) vaccines thermostable. Methods Utilizing a detailed computational, discrete-event simulation model of the Niger vaccine supply chain, we simulated the impact of making different combinations of the six current EPI vaccines thermostable. Findings Making any EPI vaccine thermostable relieved existing supply chain bottlenecks (especially at the lowest levels), increased vaccine availability of all EPI vaccines, and decreased cold storage and transport capacity utilization. By far, the most substantial impact came from making the pentavalent vaccine thermostable, increasing its own vaccine availability from 87% to 97% and the vaccine availabilities of all other remaining non-thermostable EPI vaccines to over 93%. By contrast, making each of the other vaccines thermostable had considerably less effect on the remaining vaccines, failing to increase the vaccine availabilities of other vaccines to more than 89%. Making tetanus toxoid vaccine along with the pentavalent thermostable further increased the vaccine availability of all EPI vaccines by at least 1–2%. Conclusion Our study shows the potential benefits of making any of Niger’s EPI vaccines thermostable and therefore supports further development of thermostable vaccines. Eliminating the need for refrigerators and freezers should not necessarily be the only benefit and goal of vaccine thermostability. Rather, making even a single vaccine (or some subset of the vaccines) thermostable could free up significant cold storage space for other vaccines, and thereby help alleviate supply chain bottlenecks that occur throughout the world. PMID:22789507

  7. Can VHS virus bypass the protective immunity induced by DNA vaccination in rainbow trout?

    DEFF Research Database (Denmark)

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability...... and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV), an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly...... pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus...

  8. Respiratory syncytial virus subunit vaccine based on a recombinant fusion protein expressed transiently in mammalian cells.

    Science.gov (United States)

    Nallet, Sophie; Amacker, Mario; Westerfeld, Nicole; Baldi, Lucia; König, Iwo; Hacker, David L; Zaborosch, Christiane; Zurbriggen, Rinaldo; Wurm, Florian M

    2009-10-30

    Although respiratory syncytial virus (RSV) causes severe lower respiratory tract infection in infants and adults at risk, no RSV vaccine is currently available. In this report, efforts toward the generation of an RSV subunit vaccine using recombinant RSV fusion protein (rRSV-F) are described. The recombinant protein was produced by transient gene expression (TGE) in suspension-adapted human embryonic kidney cells (HEK-293E) in 4 L orbitally shaken bioreactors. It was then purified and formulated in immunostimulating reconstituted influenza virosomes (IRIVs). The candidate vaccine induced anti-RSV-F neutralizing antibodies in mice, and challenge studies in cotton rats are ongoing. If successful in preclinical and clinical trials, this will be the first recombinant subunit vaccine produced by large-scale TGE in mammalian cells.

  9. Effect of the pre-erythrocytic candidate malaria vaccine RTS,S/AS01E on blood stage immunity in young children

    DEFF Research Database (Denmark)

    Bejon, Philip; Cook, Jackie; Bergmann-Leitner, Elke

    2011-01-01

    (See the article by Greenhouse et al, on pages 19-26.) Background. RTS,S/AS01(E) is the lead candidate malaria vaccine and confers pre-erythrocytic immunity. Vaccination may therefore impact acquired immunity to blood-stage malaria parasites after natural infection. Methods. We measured, by enzyme......, MSP-1(42), and MSP-3 antibody concentrations and no significant change in GIA. Increasing anti-merozoite antibody concentrations and GIA were prospectively associated with increased risk of clinical malaria. Conclusions. Vaccination with RTS,S/AS01E reduces exposure to blood-stage parasites and, thus......-linked immunosorbent assay, antibodies to 4 Plasmodium falciparum merozoite antigens (AMA-1, MSP-1(42), EBA-175, and MSP-3) and by growth inhibitory activity (GIA) using 2 parasite clones (FV0 and 3D7) at 4 times on 860 children who were randomized to receive with RTS,S/AS01(E) or a control vaccine. Results. Antibody...

  10. Ontology-Based Vaccine Adverse Event Representation and Analysis.

    Science.gov (United States)

    Xie, Jiangan; He, Yongqun

    2017-01-01

    ), have been developed with a specific aim to standardize AE categorization. However, these controlled terminologies have many drawbacks, such as lack of textual definitions, poorly defined hierarchies, and lack of semantic axioms that provide logical relations among terms. A biomedical ontology is a set of consensus-based and computer and human interpretable terms and relations that represent entities in a specific biomedical domain and how they relate each other. To represent and analyze vaccine adverse events (VAEs), our research group has initiated and led the development of a community-based ontology: the Ontology of Adverse Events (OAE) (He et al., J Biomed Semant 5:29, 2014). The OAE has been found to have advantages to overcome the drawbacks of those controlled terminologies (He et al., Curr Pharmacol Rep :1-16. doi:10.1007/s40495-016-0055-0, 2014). By expanding the OAE and the community-based Vaccine Ontology (VO) (He et al., VO: vaccine ontology. In The 1st International Conference on Biomedical Ontology (ICBO-2009). Nature Precedings, Buffalo. http://precedings.nature.com/documents/3552/version/1 ; J Biomed Semant 2(Suppl 2):S8; J Biomed Semant 3(1):17, 2009; Ozgur et al., J Biomed Semant 2(2):S8, 2011; Lin Y, He Y, J Biomed Semant 3(1):17, 2012), we have also developed the Ontology of Vaccine Adverse Events (OVAE) to represent known VAEs associated with licensed vaccines (Marcos E, Zhao B, He Y, J Biomed Semant 4:40, 2013).In this book chapter, we will first introduce the basic information of VAEs, VAE safety surveillance systems, and how to specifically query and analyze VAEs using the US VAE database VAERS (Chen et al., Vaccine 12(10):960-960, 1994). In the second half of the chapter, we will introduce the development and applications of the OAE and OVAE. Throughout this chapter, we will use the influenza vaccine Flublok as the vaccine example to launch the corresponding elaboration (Huber VC, McCullers JA, Curr Opin Mol Ther 10(1):75-85, 2008). Flublok is a

  11. Vaccines against poverty

    Science.gov (United States)

    MacLennan, Calman A.; Saul, Allan

    2014-01-01

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented. PMID:25136089

  12. Inkjet-based adaptive planarization (Conference Presentation)

    Science.gov (United States)

    Singhal, Shrawan; Grigas, Michelle M.; Khusnatdinov, Niyaz; Sreenivasan, Srinivasan V.

    2017-03-01

    that should have been polished away. Preventive techniques like dummy fill and patterned resist can be used to reduce the variation in pattern density. These techniques increase the complexity of the planarization process and significantly limit the device design flexibility. Contact Planarization (CP) has also been reported as an alternative to the CMP processing [7], [8]. A substrate is spin coated with a photo curable material and pre baked to remove residual solvent. An ultra-flat surface or an optical flat is pressed on the spin-coated wafer. The material is forced to reflow. Pressure is used to spread out material evenly and achieve global planarization. The substrate is then exposed to UV radiation to harden the photo curable material. Although attractive, this process is not adaptive as it does not account for differences in surface topography of the wafer and the optical flat, nor can it address all the parasitics that arise during the process itself. The optical flat leads to undesirable planarization of even the substrate nominal shape and nanotopography, which corrupts the final film thickness profile. Hence, it becomes extremely difficult to eliminate this signature to a desirable extent without introducing other parasitic signatures. An example of this is shown in Figure 1. In this paper, a novel adaptive planarization process has been presented that potentially addresses the problems associated with planarization of varying pattern density, even in the presence of pre-existing substrate topography [9]. This process is called Inkjet-enabled Adaptive Planarization (IAP). The IAP process uses an inverse optimization scheme, built around a validated fluid mechanics-based forward model [10], that takes the pre-existing substrate topography and pattern layout as inputs. It then generates an inkjet drop pattern with a material distribution that is correlated with the desired planarization film profile. This allows a contiguous film to be formed with the desired

  13. Protection against H5N1 by multiple immunizations with seasonal influenza vaccine in mice is correlated with H5 cross-reactive antibodies

    NARCIS (Netherlands)

    Roos, Anna; Roozendaal, Ramon; Theeuwsen, Jessica; Riahi, Sarra; Vaneman, Joost; Tolboom, Jeroen; Dekking, Liesbeth; Koudstaal, Wouter; Goudsmit, Jaap; Radošević, Katarina

    2015-01-01

    Background: Current seasonal influenza vaccines are believed to confer protection against a narrow range of virus strains. However, their protective ability is commonly estimated based on an in vitro correlate of protection that only considers a subset of anti-influenza antibodies that are typically

  14. Cost-effectiveness of universal rotavirus vaccination in reducing rotavirus gastroenteritis in Ireland.

    LENUS (Irish Health Repository)

    Tilson, L

    2011-10-06

    We evaluated the cost-effectiveness of universal infant rotavirus (RV) vaccination compared to current standard of care of "no vaccination". Two RV vaccines are currently licensed in Ireland: Rotarix and RotaTeq. A cohort model used in several European countries was adapted using Irish epidemiological, resource utilisation and cost data. The base case model considers the impact of Rotarix vaccination on health-related quality of life of children under five years old from a healthcare payer perspective. Other scenarios explored the use of RotaTeq, impact on one caregiver, on societal costs and on cases that do not seek medical attention. Cost was varied between the vaccine list price (€100\\/course) in the base case and an assumed tender price (€70\\/course). One-way and probabilistic sensitivity analyses were conducted. Implementing universal RV vaccination may prevent around 1970 GP visits, 3280 A&E attendances and 2490 hospitalisations. A vaccination programme was estimated to cost approximately €6.54 million per year but €4.65 million of this would be offset by reducing healthcare resource use. The baseline ICER was €112,048\\/QALY and €72,736\\/QALY from the healthcare payer and societal perspective, respectively, falling to €68,896 and €43,916\\/QALY, respectively, if the impact on one caregiver was considered. If the price fell to €70 per course, universal RV vaccination would be cost saving under all scenarios. Results were sensitive to vaccination costs, incidence of RV infection and direct medical costs. Universal RV vaccination would not be cost-effective under base case assumptions. However, it could be cost-effective at a lower vaccine price or from a wider societal perspective.

  15. Dried influenza vaccines : Over the counter vaccines

    NARCIS (Netherlands)

    Saluja, Vinay; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2010-01-01

    Since last year influenza pandemic has struck again after 40 years, this is the right moment to discuss the different available formulation options for influenza vaccine. Looking back to the last 4 decades, most vaccines are still formulated as liquid solution. These vaccines have shown a poor

  16. Egg-Independent Influenza Vaccines and Vaccine Candidates

    Directory of Open Access Journals (Sweden)

    Ilaria Manini

    2017-07-01

    Full Text Available Vaccination remains the principal way to control seasonal infections and is the most effective method of reducing influenza-associated morbidity and mortality. Since the 1940s, the main method of producing influenza vaccines has been an egg-based production process. However, in the event of a pandemic, this method has a significant limitation, as the time lag from strain isolation to final dose formulation and validation is six months. Indeed, production in eggs is a relatively slow process and production yields are both unpredictable and highly variable from strain to strain. In particular, if the next influenza pandemic were to arise from an avian influenza virus, and thus reduce the egg-laying hen population, there would be a shortage of embryonated eggs available for vaccine manufacturing. Although the production of egg-derived vaccines will continue, new technological developments have generated a cell-culture-based influenza vaccine and other more recent platforms, such as synthetic influenza vaccines.

  17. Microneedles for drug and vaccine delivery

    Science.gov (United States)

    Kim, Yeu-Chun; Park, Jung-Hwan; Prausnitz, Mark R.

    2012-01-01

    Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990’s when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications. PMID:22575858

  18. Increasing vaccine potency through exosome antigen targeting.

    Science.gov (United States)

    Hartman, Zachary C; Wei, Junping; Glass, Oliver K; Guo, Hongtao; Lei, Gangjun; Yang, Xiao-Yi; Osada, Takuya; Hobeika, Amy; Delcayre, Alain; Le Pecq, Jean-Bernard; Morse, Michael A; Clay, Timothy M; Lyerly, Herbert K

    2011-11-21

    While many tumor associated antigens (TAAs) have been identified in human cancers, efforts to develop efficient TAA "cancer vaccines" using classical vaccine approaches have been largely ineffective. Recently, a process to specifically target proteins to exosomes has been established which takes advantage of the ability of the factor V like C1C2 domain of lactadherin to specifically address proteins to exosomes. Using this approach, we hypothesized that TAAs could be targeted to exosomes to potentially increase their immunogenicity, as exosomes have been demonstrated to traffic to antigen presenting cells (APC). To investigate this possibility, we created adenoviral vectors expressing the extracellular domain (ECD) of two non-mutated TAAs often found in tumors of cancer patients, carcinoembryonic antigen (CEA) and HER2, and coupled them to the C1C2 domain of lactadherin. We found that these C1C2 fusion proteins had enhanced expression in exosomes in vitro. We saw significant improvement in antigen specific immune responses to each of these antigens in naïve and tolerant transgenic animal models and could further demonstrate significantly enhanced therapeutic anti-tumor effects in a human HER2+ transgenic animal model. These findings demonstrate that the mode of secretion and trafficking can influence the immunogenicity of different human TAAs, and may explain the lack of immunogenicity of non-mutated TAAs found in cancer patients. They suggest that exosomal targeting could enhance future anti-tumor vaccination protocols. This targeting exosome process could also be adapted for the development of more potent vaccines in some viral and parasitic diseases where the classical vaccine approach has demonstrated limitations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Hepatitis Vaccines

    OpenAIRE

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B ...

  20. 4th International Conference on Dynamics in Logistics

    CERN Document Server

    Pannek, Jürgen; Thoben, Klaus-Dieter

    2016-01-01

    This contributed volume brings together research papers presented at the 4th International Conference on Dynamics in Logistics, held in Bremen, Germany in February 2014. The conference focused on the identification, analysis and description of the dynamics of logistics processes and networks. Topics covered range from the modeling and planning of processes, to innovative methods like autonomous control and knowledge management, to the latest technologies provided by radio frequency identification, mobile communication, and networking. The growing dynamic poses wholly new challenges: logistics processes and networks must be(come) able to rapidly and flexibly adapt to constantly changing conditions. The book primarily addresses the needs of researchers and practitioners from the field of logistics, but will also be beneficial for graduate students.

  1. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    Directory of Open Access Journals (Sweden)

    Samantha Sayers

    2012-01-01

    Full Text Available Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO in the Web Ontology Language (OWL format.

  2. Vaxjo: a web-based vaccine adjuvant database and its application for analysis of vaccine adjuvants and their uses in vaccine development.

    Science.gov (United States)

    Sayers, Samantha; Ulysse, Guerlain; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO) in the Web Ontology Language (OWL) format.

  3. Highlights from the first ecancer-Liga Colombiana contra el Cancer conference, 17-18 November 2016, Bogota, Colombia.

    Science.gov (United States)

    Castro, Carlos

    2017-01-01

    The first oncology conference organised by e cancer and the Liga Colombiana contra el Cancer took place on 17-18 November 2016 in Bogota. It was a highly successful event owing to the number of participants, the quality of the speakers, and the academic programme. Around 48 professors from 8 different countries came and shared their knowledge and experience of cancer management. They also talked about the most recent developments noted or achieved in this area. The keynote speech from Dr Nubia Muñoz was of great interest which was related to the safety of a HPV vaccine and the implications of a mass vaccination programme in developing countries. Geriatric oncology and palliative care were also topics that sparked great interest during the event.

  4. Experiements with an inactivated hepatitis leptospirosis vaccine in vaccination programmes for dogs.

    Science.gov (United States)

    Wilson, J H; Hermann-Dekkers, W M; Leemans-Dessy, S; Meijer, J W

    1977-06-25

    A fluid adjuvanted vaccine consisting of inactivated hepatitis virus (iH) and leptospirae antigens (L) was developed. The vaccine (Kavak iHL; Duphar) was tested in several vaccination programmes both alone and in combination with freeze dried measles (M) or distemper (D) vaccines. The results demonstrate that this new vaccine is also effective in pups with maternally derived antibodies, although a second vaccination at 14 weeks of age is recommended to boost the first vaccination. For the booster vaccination either the iHL-vaccine or the liver attenuated hepatitis vaccine (H) can be used.

  5. Early IFN-gamma production after YF 17D vaccine virus immunization in mice and its association with adaptive immune responses.

    Directory of Open Access Journals (Sweden)

    Patrícia C C Neves

    Full Text Available Yellow Fever vaccine is one of the most efficacious human vaccines ever made. The vaccine (YF 17D virus induces polyvalent immune responses, with a mixed TH1/TH2 CD4(+ cell profile, which results in robust T CD8(+ responses and high titers of neutralizing antibody. In recent years, it has been suggested that early events after yellow fever vaccination are crucial to the development of adequate acquired immunity. We have previously shown that primary immunization of humans and monkeys with YF 17D virus vaccine resulted in the early synthesis of IFN-γ. Herein we have demonstrated, for the first time that early IFN-γ production after yellow fever vaccination is a feature also of murine infection and is much more pronounced in the C57BL/6 strain compared to the BALB/c strain. Likewise, in C57BL/6 strain, we have observed the highest CD8(+ T cells responses as well as higher titers of neutralizing antibodies and total anti-YF IgG. Regardless of this intense IFN-γ response in mice, it was not possible to see higher titers of IgG2a in relation to IgG1 in both mice lineages. However, IgG2a titers were positively correlated to neutralizing antibodies levels, pointing to an important role of IFN-γ in eliciting high quality responses against YF 17D, therefore influencing the immunogenicity of this vaccine.

  6. Low seroprevalence of diphtheria, tetanus and pertussis in ambulatory adult patients: the need for lifelong vaccination.

    Science.gov (United States)

    Tanriover, Mine Durusu; Soyler, Canan; Ascioglu, Sibel; Cankurtaran, Mustafa; Unal, Serhat

    2014-07-01

    Tetanus, diphtheria, pertussis and measles are vaccine preventable diseases that have been reported to cause morbidity and mortality in adult population in the recent years. We aimed to document the seropositivity rates and vaccination indication for these four vaccine preventable diseases among adult and elderly patients who were seen as outpatients in a university hospital. Blood samples for tetanus, diphtheria, pertussis and measles antibodies were obtained. Results were evaluated with regards to protection levels and booster vaccine indications according to the cut-off values. A total of 1367 patients consented for the study and 1303 blood samples were available for analysis at the end of the study. The antibody levels against measles conferred protection in 98% of patients. However, 65% of the patients had no protection for diphtheria, 69% had no protection for tetanus and 90% of the patients had no protection for pertussis. Only 1.3% of the study population had seropositivity against three of the diseases-Tdap booster was indicated in 98.7%. Multivariable logistic regression showed that tetanus protection decreased with increasing age. Having a chronic disease was associated with a lower rate of protective antibodies for pertussis. We demonstrated very low rates of protection against three of the vaccine preventable diseases of childhood-diphtheria, pertussis and tetanus. Booster vaccinations are required in adult life in accordance with national and international adult vaccination guidelines. The concept of "lifelong vaccination" should be implemented and every encounter with the patient should be regarded as a chance for catch-up. Copyright © 2014 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  7. Development of a novel vaccine against canine parvovirus infection with a clinical isolate of the type 2b strain.

    Science.gov (United States)

    Park, Seon Ah; Park, Seung-Yong; Song, Chang-Seon; Choi, In-Soo; Kim, Hwi Yool; Lee, Joong-Bok; Lee, Nak-Hyung

    2012-07-01

    In spite of an extensive vaccination program, parvoviral infections still pose a major threat to the health of dogs. We isolated a novel canine parvovirus (CPV) strain from a dog with enteritis. Nucleotide and amino acid sequence analysis of the isolate showed that it is a novel type 2b CPV with asparagine at the 426th position and valine at the 555th position in VP2. To develop a vaccine against CPV infection, we passaged the isolate 4 times in A72 cells. The attenuated isolate conferred complete protection against lethal homologous CPV infection in dogs such that they did not develop any clinical symptoms, and their antibody titers against CPV were significantly high at 7-11 days post infection. These results suggest that the virus isolate obtained after passaging can be developed as a novel vaccine against paroviral infection.

  8. vaccination with newcastle disease vaccines strain i2 and lasota

    African Journals Online (AJOL)

    UP Employee

    mash feed as vaccine carriers was conducted. Newcastle disease vaccine strain I2 and. NDV La Sota vaccines provided protection to commercial and local chickens vaccinated through i/o, i/m or dw. No significant difference (P≤0.05) was observed in the antibody titre of commercial or local chickens vaccinated with either ...

  9. Genomic content of Bordetella pertussis clinical isolates circulating in areas of intensive children vaccination.

    Directory of Open Access Journals (Sweden)

    Valérie Bouchez

    Full Text Available BACKGROUND: The objective of the study was to analyse the evolution of Bordetella pertussis population and the influence of herd immunity in different areas of the world where newborns and infants are highly vaccinated. METHODOLOGY: The analysis was performed using DNA microarray on 15 isolates, PCR on 111 isolates as well as GS-FLX sequencing technology on 3 isolates and the B. pertussis reference strain, Tohama I. PRINCIPAL FINDINGS: Our analyses demonstrate that the current circulating isolates are continuing to lose genetic material as compared to isolates circulating during the pre-vaccine era whatever the area of the world considered. The lost genetic material does not seem to be important for virulence. Our study confirms that the use of whole cell vaccines has led to the control of isolates that were similar to vaccine strains. GS-FLX sequencing technology shows that current isolates did not acquire any additional material when compared with vaccine strains or with isolates of the pre-vaccine era and that the sequenced strain Tohama I is not representative of the isolates. Furthermore, this technology allowed us to observe that the number of Insertion Sequence elements contained in the genome of the isolates is temporally increasing or varying between isolates. CONCLUSIONS: B. pertussis adaptation to humans is still in progress by losing genetic material via Insertion Sequence elements. Furthermore, recent isolates did not acquire any additional material when compared with vaccine strains or with isolates of the pre-vaccine era. Herd immunity, following intensive vaccination of infants and children with whole cell vaccines, has controlled isolates similar to the vaccine strains without modifying significantly the virulence of the isolates. With the replacement of whole cell vaccines by subunit vaccines, containing only few bacterial antigens targeting the virulence of the bacterium, one could hypothesize the circulation of isolates

  10. EDITORIAL Smart materials, multifunctional composites, and morphing structures: selected papers from the 20th International Conference on Adaptive Structures and Technologies (ICAST 2009) Smart materials, multifunctional composites, and morphing structures: selected papers from the 20th International Conference on Adaptive Structures and Technologies (ICAST 2009)

    Science.gov (United States)

    Liao, Wei-Hsin

    2010-12-01

    The 20th International Conference on Adaptive Structures and Technologies (ICAST) was held on 20-22 October 2009 in Hong Kong. This special section of Smart Materials and Structures is derived from the research papers presented at the conference. Of the 106 papers presented at the conference, 11 papers were reviewed and accepted for this special section, following the regular review procedures of the journal. This special section is focused on smart materials, multifunctional composites, and applications on morphing structures. Smart materials. Smart materials are the foundation of adaptive structures and intelligent systems. The development of new materials will lead to significant improvement in various applications. Three articles are focused on the fabrication of new materials and investigation of their behaviors: Barium strontium zirconate titanate ((Ba1-xSrx)(ZrxTi1-x)O3; BSZT, x = 0.25 and 0.75) ceramics with a highly crystalline structure were fabricated using the combustion technique. The microstructure of BSZT powders exhibited an almost-spherical morphology and had a porous agglomerated form. Polyaniline (PANI)/clay nanoparticles with unique core-shell structure were synthesized via Pickering emulsion polymerization. By dispersing PANI/clay nanoparticles in silicone oil, the ER fluid was made. Magnetic field effects were investigated on the deposition rate and surface morphology of chromium nitride coatings deposited by magnetron sputtering for superior hardness, excellent wear and oxidation resistance. The surface morphology of chromium nitride films was also examined by a scanning electron microscope (SEM). Multifunctional composites. Composites are made from two or more constituent materials so they can combine the best properties of different materials. Five papers deal with fabrication, testing, and modeling of various multifunctional composites: A new active structural fiber (ASF) was fabricated by coating a single carbon fiber with a concentric

  11. Oncolytic viruses as anticancer vaccines

    Directory of Open Access Journals (Sweden)

    Norman eWoller

    2014-07-01

    Full Text Available Oncolytic virotherapy has shown impressive results in preclinical studies and first promising therapeutic outcomes in clinical trials as well. Since viruses are known for a long time as excellent vaccination agents, oncolytic viruses are now designed as novel anticancer agents combining the aspect of lysis-dependent cytoreductive activity with concomitant induction of antitumoral immune responses. Antitumoral immune activation by oncolytic virus infection of tumor tissue comprises both, immediate effects of innate immunity and also adaptive responses for long lasting antitumoral activity which is regarded as the most prominent challenge in clinical oncology. To date, the complex effects of a viral tumor infection on the tumor microenvironment and the consequences for the tumor-infiltrating immune cell compartment are poorly understood. However, there is more and more evidence that a tumor infection by an oncolytic virus opens up a number of options for further immunomodulating interventions such as systemic chemotherapy, generic immunostimulating strategies, dendritic cell-based vaccines, and antigenic libraries to further support clinical efficacy of oncolytic virotherapy.

  12. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis.

    Science.gov (United States)

    Santosuosso, Michael; McCormick, Sarah; Zhang, Xizhong; Zganiacz, Anna; Xing, Zhou

    2006-08-01

    Parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. We examined a heterologous prime-boost regimen utilizing BCG as a prime vaccine and our recently described adenoviral vector expressing Ag85A (AdAg85A) as a boost vaccine. Since we recently demonstrated that a single intranasal but not intramuscular immunization with AdAg85A was able to induce potent protection from pulmonary Mycobacterium tuberculosis challenge in a mouse model, we compared the protective effects of parenteral and mucosal booster immunizations following subcutaneous BCG priming. Protection by BCG prime immunization was not effectively boosted by subcutaneous BCG or intramuscular AdAg85A. In contrast, protection by BCG priming was remarkably boosted by intranasal AdAg85A. Such enhanced protection by intranasal AdAg85A was correlated to the numbers of gamma interferon-positive CD4 and CD8 T cells residing in the airway lumen of the lung. Our study demonstrates that intranasal administration of AdAg85A represents an effective way to boost immune protection by parenteral BCG vaccination.

  13. Strategies for continuous evaluation of the benefit-risk profile of HPV-16/18-AS04-adjuvanted vaccine.

    Science.gov (United States)

    Angelo, Maria-Genalin; Taylor, Sylvia; Struyf, Frank; Tavares Da Silva, Fernanda; Arellano, Felix; David, Marie-Pierre; Dubin, Gary; Rosillon, Dominique; Baril, Laurence

    2014-11-01

    The HPV types 16/18-AS04-adjuvanted cervical cancer vaccine, Cervarix(®) (HPV-16/18-vaccine, GlaxoSmithKline, Belgium) was first approved in 2007 and is licensed in 134 countries for the prevention of persistent infection, premalignant cervical lesions and cervical cancer caused by oncogenic HPV. Benefit-risk status requires continual re-evaluation as vaccine uptake increases, as the epidemiology of the disease evolves and as new information becomes available. This paper provides an example of benefit-risk considerations and risk-management planning. Evaluation of the benefit-risk of HPV-16/18-vaccine post-licensure includes studies with a range of designs in many countries and in collaboration with national public agencies and regulatory authorities. The strategy to assess benefit versus risk will continue to evolve and adapt to the changing HPV-16/18-vaccine market.

  14. Polyclonal immune responses to antigens associated with cancer signaling pathways and new strategies to enhance cancer vaccines.

    Science.gov (United States)

    Clay, Timothy M; Osada, Takuya; Hartman, Zachary C; Hobeika, Amy; Devi, Gayathri; Morse, Michael A; Lyerly, H Kim

    2011-04-01

    Aberrant signaling pathways are a hallmark of cancer. A variety of strategies for inhibiting signaling pathways have been developed, but monoclonal antibodies against receptor tyrosine kinases have been among the most successful. A challenge for these therapies is therapeutic unresponsiveness and acquired resistance due to mutations in the receptors, upregulation of alternate growth and survival pathways, or inadequate function of the monoclonal antibodies. Vaccines are able to induce polyclonal responses that can have a multitude of affects against the target molecule. We began to explore therapeutic vaccine development to antigens associated with these signaling pathways. We provide an illustrative example in developing therapeutic cancer vaccines inducing polyclonal adaptive immune responses targeting the ErbB family member HER2. Further, we will discuss new strategies to augment the clinical efficacy of cancer vaccines by enhancing vaccine immunogenicity and reversing the immunosuppressive tumor microenvironment.

  15. Improved protection conferred by vaccination with a recombinant vaccinia virus that incorporates a foreign antigen into the extracellular enveloped virion

    International Nuclear Information System (INIS)

    Kwak, Heesun; Mustafa, Waleed; Speirs, Kendra; Abdool, Asha J.; Paterson, Yvonne; Isaacs, Stuart N.

    2004-01-01

    Recombinant poxviruses have shown promise as vaccine vectors. We hypothesized that improved cellular immune responses could be developed to a foreign antigen by incorporating it as part of the extracellular enveloped virion (EEV). We therefore constructed a recombinant vaccinia virus that replaced the cytoplasmic domain of the B5R protein with a test antigen, HIV-1 Gag. Mice immunized with the virus expressing Gag fused to B5R had significantly better primary CD4 T-cell responses than recombinant virus expressing HIV-Gag from the TK-locus. The CD8 T-cell responses were less different between the two groups. Importantly, although we saw differences in the immune response to the test antigen, the vaccinia virus-specific immune responses were similar with both constructs. When groups of vaccinated mice were challenged 30 days later with a recombinant Listeria monocytogenes that expresses HIV-Gag, mice inoculated with the virus that expresses the B5R-Gag fusion protein had lower colony counts of Listeria in the liver and spleen than mice vaccinated with the standard recombinant. Thus, vaccinia virus expressing foreign antigen incorporated into EEV may be a better vaccine strategy than standard recombinant vaccinia virus

  16. Flu Vaccination

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  17. Flu vaccination

    CERN Multimedia

    CERN Medical Service

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor.CERN Medical Service

  18. FLU VACCINATION

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  19. Flu Vaccination

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical service

  20. Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate.

    Science.gov (United States)

    Kabanova, Anna; Margarit, Immaculada; Berti, Francesco; Romano, Maria R; Grandi, Guido; Bensi, Giuliano; Chiarot, Emiliano; Proietti, Daniela; Swennen, Erwin; Cappelletti, Emilia; Fontani, Paola; Casini, Daniele; Adamo, Roberto; Pinto, Vittoria; Skibinski, David; Capo, Sabrina; Buffi, Giada; Gallotta, Marilena; Christ, William J; Campbell, A Stewart; Pena, John; Seeberger, Peter H; Rappuoli, Rino; Costantino, Paolo

    2010-12-10

    Bacterial infections caused by Group A Streptococcus (GAS) are a serious health care concern that currently cannot be prevented by vaccination. The GAS cell-wall polysaccharide (GAS-PS) is an attractive vaccine candidate due to its constant expression pattern on different bacterial strains and protective properties of anti-GAS-PS antibodies. Here we report for the first time the immunoprotective efficacy of glycoconjugates with synthetic GAS oligosaccharides as compared to those containing the native GAS-PS. A series of hexa- and dodecasaccharides based on the GAS-PS structure were prepared by chemical synthesis and conjugated to CRM(197). When tested in mice, the conjugates containing the synthetic oligosaccharides conferred levels of immunoprotection comparable to those elicited by the native conjugate. Antisera from immunized rabbits promoted phagocytosis of encapsulated GAS strains. Furthermore we discuss variables that might correlate with glycoconjugate immunogenicity and demonstrate the potential of the synthetic approach that benefits from increased antigen purity and facilitated manufacturing. Copyright © 2010 Elsevier Ltd. All rights reserved.