WorldWideScience

Sample records for v-79 cells exposed

  1. Antioxidant, anticlastogenic and radioprotective effect of Coleus aromaticus on Chinese hamster fibroblast cells (V79) exposed to gamma radiation.

    Science.gov (United States)

    Rao, B S Satish; Shanbhoge, R; Upadhya, D; Jagetia, G C; Adiga, S K; Kumar, P; Guruprasad, K; Gayathri, P

    2006-07-01

    Coleus aromaticus (Benth, Family: Laminaceae), Indian Oregano native to India and Mediterranean, is well known for its medicinal properties. A preliminary study was undertaken to elucidate in vitro free radical scavenging potential and inhibition of lipid peroxidation by C.aromaticus hydroalcoholic extract (CAE). Anti-clastogenic and radioprotective potential of CAE were studied using micronucleus assay after irradiating Chinese hamster fibroblast (V79) cells. CAE at 10, 20, 40, 60, 80, 100 and 120 mug/ml resulted in a dose-dependent increase in radical scavenging ability against various free radicals viz., 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), superoxide anion (O(2)(*-)), hydroxyl (OH(*)) and nitric oxide (NO(*)) generated in vitro. A maximum scavenging potential was noticed at 100 mug/ml and a saturation point was reached thereafter with the increasing doses of CAE. The free radical scavenging potential of the extract was in the order of DPPH > ABTS > Superoxide > Hydroxyl > Nitric oxide. CAE also exhibited a moderate inhibition of lipid peroxidation in vitro, with a maximum inhibition at 60 mug/ml (33%), attaining saturation at higher doses. The extract also rendered protection against radiation induced DNA damage, as evidenced by the significant (P < 0.05) decrease in the percentage of radiation-induced micronucleated cells (MN) and frequency of micronuclei (total). A maximum anticlastogneic effect/ radioprotection was noticed at a very low concentration i.e., 5 mug/ml of CAE, treated 1 h prior to 2 Gy of gamma radiation. A significant (P < 0.0001) anticlastogenic/radioprotective effect was also observed when the cells were treated with an optimum dose of CAE (5 mug/ml) 1 h prior to 0.5, 1, 2 and 4 Gy of gamma radiation compared with the respective radiation control groups. Overall, our results established an efficient antioxidant, anticlastogenic and radioprotective potential of CAE, which may be of

  2. Induction and reparation of double-strand DNA breaks in V79 cells continuously exposed to low dose-rate Y-radiation

    Directory of Open Access Journals (Sweden)

    Ozerov I.V.

    2013-12-01

    Full Text Available Aim: to study the patterns of changes in the number of DNA double-strand breaks (DSB in mammalian cells continuously exposed to low dose-rate y- radiation. Material and methods. Chinese hamster lung fibroblasts (V79 were used in this study. The y- irradiation of cells at a dose rate of 0.1 mGy/min was performed using the «Gamma-Panorama» unit (Cs-137. The fluorescence immunoassay of the phosphorylated H2AX-histone (y-H2AX foci was used to investigate the DNA DSBs formation. Frequency of apoptotic cells was evaluated using «DNA halo» assay. 5 (6 — chloromethyl-2,7-dichlorodihydrofluorescein diacetate was used to estimate the reactive oxygen species (ROS production. Results, it was showed that continuous low dose-rate irradiation of Chinese hamster V79 cells induces an increase of the y-H2AX foci number and ROS production rate at the early stages of exposure time (6-24 h, doses 3.6-14.4 cGy, while increasing exposition time and, therefore, the radiation dose (48-72 h, 28.8-43.2 cGy caused a decrease in these endpoints to almost the control level. There was observed no significant changes in the frequency of apoptotic cells. Conclusion. It is assumed that the processes causing the DSB amount changes in mammalian cells continuously exposed to low dose-rate y-radiation are associated with the development of oxidative stress and subsequent activation of cellular antioxidant defense systems.

  3. Changes in the Number of Double-Strand DNA Breaks in Chinese Hamster V79 Cells Exposed to γ-Radiation with Different Dose Rates

    Directory of Open Access Journals (Sweden)

    Andreyan N. Osipov

    2013-07-01

    Full Text Available A comparative investigation of the induction of double-strand DNA breaks (DSBs in the Chinese hamster V79 cells by γ-radiation at dose rates of 1, 10 and 400 mGy/min (doses ranged from 0.36 to 4.32 Gy was performed. The acute radiation exposure at a dose rate of 400 mGy/min resulted in the linear dose-dependent increase of the γ-H2AX foci formation. The dose-response curve for the acute exposure was well described by a linear function y = 1.22 + 19.7x, where “y” is an average number of γ-H2AX foci per a cell and “x” is the absorbed dose (Gy. The dose rate reduction down to 10 mGy/min lead to a decreased number of γ-H2AX foci, as well as to a change of the dose-response relationship. Thus, the foci number up to 1.44 Gy increased and reached the “plateau” area between 1.44 and 4.32 Gy. There was only a slight increase of the γ-H2AX foci number (up to 7 in cells after the protracted exposure (up to 72 h to ionizing radiation at a dose rate of 1 mGy/min. Similar effects of the varying dose rates were obtained when DNA damage was assessed using the comet assay. In general, our results show that the reduction of the radiation dose rate resulted in a significant decrease of DSBs per cell per an absorbed dose.

  4. Induction of the bystander effect in Chinese hamster V79 cells by actinomycin D.

    Science.gov (United States)

    Jin, Cuihong; Wu, Shengwen; Lu, Xiaobo; Liu, Qiufang; Qi, Ming; Lu, Shuai; Xi, Qi; Cai, Yuan

    2011-05-10

    Bystander effect (BE) can be induced by ionizing radiation and chemicals, including alkylating agents. Ionizing radiation mostly induces the bystander effect by causing double-strand DNA breakage in the exposed cells. However, the chemical-induced bystander effect is poorly studied. Here we chose actinomycin D (ACTD), a genotoxic chemotherapeutic drug, to investigate whether it could cause bystander effect in Chinese hamster V79 cells. Results are that (1) ACTD induced apoptosis in V79 cells and an optimal apoptosis model in V79 cells was established with ACTD (4 mg/L, 1h); (2) using apoptosis rate, chromosome aberration, and ultrastructure changes as endpoints of bystander effect, ACTD could induce bystander effect in V79 cells; (3) as in the exposed cells, ACTD mainly induced apoptosis in bystander V79 cells cultured in different period conditioned medium; (4) the strongest bystander effect was induced by 4 h conditioned medium collected from cells treated with ACTD. It suggests that ACTD could cause BE through the medium soluble factors excreted from exposed cells during apoptosis and ACTD-induced BE was a novel quantitative and kinetic response. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Induction of multinucleated cells in V79 Chinese hamster cells exposed to dimethylarsinic acid, a methylated derivative of inorganic arsenics: mechanism associated with the formation of aberrant mitotic spindles.

    Science.gov (United States)

    Ochi, T; Nakajima, F; Shimizu, A; Harada, M

    1999-02-01

    Induction of multinucleated cells in V79 Chinese hamster cells exposed to dimethylarsinic acid (DMAA), a methylated derivative of inorganic arsenics, and the mechanism of induction were investigated in terms of cytoskeletal changes. DMAA caused mitotic arrest and concomitant induction of multinucleated cells. Arsenite was less effective than DMAA in causing mitotic arrest and in inducing multinucleated cells. Analysis by videograph and a study of post-mitotic incubation of cells arrested in metaphase by DMAA demonstrated that the cells escaped from metaphase with ameboid behaviour and pseudopodia, but they did not divide into daughter cells, thereby resulting in multinucleated cells. During the post-mitotic incubation in the presence of DMAA, the cells did not proliferate but retained their capacity to synthesize DNA. DMAA caused disappearance of the microtubule network in interphase cells, but did not influence the organization of actin stress fibres. Furthermore, DMAA caused aberrations of mitotic microtubules, such as tripolar or quadripolar spindles and aster-like spindles, in a concentration-dependent manner. These results suggest that DMAA specifically acted on the microtubules and that multinucleated cells appeared when cells with aberrant spindles escaped from metaphase to advance the cell cycle and the nuclear membranes were regenerated.

  6. Induction of centrosome injury, multipolar spindles and multipolar division in cultured V79 cells exposed to dimethylarsinic acid: role for microtubules in centrosome dynamics.

    Science.gov (United States)

    Ochi, T

    2000-11-06

    Role for microtubules in the induction of multiple microtubule organizing centers (MTOCs) and multipolar spindles by dimethylarsinic acid (DMAA), a methylated derivative of inorganic arsenics, was investigated with respect to the effects of microtubule disruption and reorganization. DMAA induced multiple signals of gamma-tubulin, a well-characterized component of MTOCs in the centrosome, in a manner specific to mitotic cells. The multiple signals of gamma-tubulin were co-localized with multipolar spindles caused by DMAA. Disruption of microtubules by nocodazole (NOZ) suppressed the appearance of centrosome injury caused by DMAA while disorganization of actin microfilaments by cytochalasin D did not. Post-treatment incubation of cells in which multiple signals of gamma-tubulin caused by DMAA had been coalesced to one or two dots by NOZ caused the reappearance of mitotic cells with multiple signals of gamma-tubulin, in conjunction with reorganization of the microtubules. These results suggest a role for microtubules in the dynamic behavior of the mitotic centrosome. DMAA induced aberrant cytokinesis, such as tripolar and quadripolar division, in a concentration-dependent manner. These results, together with the findings of earlier studies, suggest that the centrosome is the primary target for the induction of multipolar spindles by DMAA and the resultant induction of multinucleation and multipolar division.

  7. Genotoxic and antigenotoxic effects of organic extracts of mushroom Agaricus blazei Murrill on V79 cells

    Directory of Open Access Journals (Sweden)

    Guterres Zaira da Rosa

    2005-01-01

    Full Text Available Agaricus blazei Murrill, popularly known as the sun mushroom, is a native mushroom in SP, Brazil, that has been widely used in the treatment of cancer and many other pathologies in different parts of the world. A water-soluble protein-polysaccharide complex (1 -> 6beta-D-glucan has been isolated from its fruiting body that showed immune-modulation activity. From organic extracts, linoleic acid has been isolated and determined to be the main substance with antimutagenic activity. Using both the micronucleus (MN and comet (single cell microgel electrophoresis assays, this study determined the genotoxic and antigenotoxic potential of A. blazei (AB obtained from commercial sources or the following strains: a strains AB 97/29 (young and sporulated phases; b a mixture taken from AB 96/07, AB 96/09 and AB 97/11 strains; and c commercial mushrooms from Londrina, PR and Piedade, SP, designated as AB PR and AB SP, respectively. The extracts from these mushrooms were isolated in chloroform:methanol (3:1 and used in vitro at three different concentrations. V79 cells (Chinese hamster lung cells were exposed to the extracts under pre-, simultaneous and post-treatment conditions, combined with methyl methanesulfonate (MMS. Under the circumstances of this study, these organic extracts did not show any genotoxic or mutagenic effects, but did protect cells against the induction of micronuclei by MMS.

  8. Bystander effect induced by UVC radiation in Chinese hamster V79 cells.

    Science.gov (United States)

    Wu, Shengwen; Jin, Cuihong; Lu, Xiaobo; Yang, Jinghua; Liu, Qiufang; Qi, Ming; Lu, Shuai; Zhang, Lifeng; Cai, Yuan

    2014-01-01

    In past decades, researches on radiation-induced bystander effect mainly focused on ionizing radiation such as α-particle, β-particle, X-ray and γ-ray. But few researches have been conducted on the ability of ultraviolet (UV) radiation-induced bystander effect, and knowledge of UVC-induced bystander effect is far limited. Here, we adopted medium transfer experiment to detect whether UVC could cause bystander effect in Chinese hamster V79 cells. We determined the cell viability, apoptosis rate, chromosome aberration and ultrastructure changes, respectively. Our results showed that: (1) the viability of UVC-irradiated V79 cells declined significantly with the dosage of UVC; (2) similar to the irradiated cells, the main death type of bystander cells cultured in irradiation conditioned medium (ICMs) was also apoptosis; (3) soluble factors secreted by UVC-irradiated cells could induce bystander effect in V79 cells; (4) cells treated with 4 h ICM collected from 90 mJ cm(-2) UVC-irradiated cells displayed the strongest response. Our data revealed that UVC could cause bystander effect through the medium soluble factors excreted from irradiated cells and this bystander effect was a novel quantitative and kinetic response. These findings might provide a foundation to further explore the exact soluble bystander factors and detailed mechanism underlying UVC-induced bystander effect. © 2014 The American Society of Photobiology.

  9. Neutron-energy-dependent mutagenesis in V79 Chinese hamster cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.X.; Hill, C.K. [USC School of Medicine, Los Angeles, CA (United States)

    1994-09-01

    There has been a keen interest in the past decade in both elucidating the mutation frequency for different energy radiations and determining if mutation frequencies vary from one gene to another. This interest is driven in part by the strong link between mutational events and subsequent development of the carcinogenic state. Using fast neutrons produced by impinging protons on a beryllium target at the UCLA/VA cyclotron, we have examined the energy dependence of the induction of mutants at the hprt and tk loci. In this paper, we present studies using V79 Chinese hamster cells exposed to beams of neutrons produced from protons with 46, 30, 20 and 14 MeV energy. There is a gradually increasing cytotoxic effect of the neutrons as the energy decreases. In a similar fashion, the mutation frequency also shows a strong energy dependence with the frequency increasing as the energy decreases. The results also show that the frequency of induced mutants at the tk gene is higher than at the hprt gene. Calculations of RBE using {gamma} rays as the standard radiation showed a maximum for 14 MeV neutrons of 5.4 for the hprt locus and 36.6 for TK normal-growth mutants (TKng). Most of the curves for induction are best fitted with a linear function in the low-dose region with a few becoming curvilinear at higher doses. 28 refs., 7 figs., 2 tabs.

  10. Unique biophysical studies with diatomic deuterium beams. [Survival studies with V79 Chinese hamster cells

    Energy Technology Data Exchange (ETDEWEB)

    Rohrig, N.; Bird, R.P.; Colvett, R.D.; Rossi, H.H.; Marino, S.A.

    1978-01-01

    By irradiating cells attached to thin Mylar foils with diatomic deuteron beams, the role of interaction distance in radiobiology can be investigated in a unique manner. The molecule breaks up into two separate ions which diverge from each other because of the multiple scattering process in the foil and in the cellular material. A distribution of separation distances results whose characteristic separation depends on the Mylar foil thickness. An experimental facility to use diatomic beams is described. Cell survival results for V79 Chinese hamster cells synchronized in late S phase show that damage does result from tracks separated by as much as 250 nm. However, damage also results from interaction at nanometer dimensions.

  11. Protective effect of boric acid on lead- and cadmium-induced genotoxicity in V79 cells.

    Science.gov (United States)

    Ustündağ, Aylin; Behm, Claudia; Föllmann, Wolfram; Duydu, Yalçin; Degen, Gisela H

    2014-06-01

    The toxic heavy metals cadmium (Cd) and lead (Pb) are important environmental pollutants which can cause serious damage to human health. As the metal ions (Cd(2+) and Pb(2+)) accumulate in the organism, there is special concern regarding chronic toxicity and damage to the genetic material. Metal-induced genotoxicity has been attributed to indirect mechanisms, such as induction of oxidative stress and interference with DNA repair. Boron is a naturally occurring element and considered to be an essential micronutrient, although the cellular activities of boron compounds remain largely unexplored. The present study has been conducted to evaluate potential protective effects of boric acid (BA) against genotoxicity induced by cadmium chloride (CdCl2) and lead chloride (PbCl2) in V79 cell cultures. Cytotoxicity assays (neutral red uptake and cell titer blue assay) served to determine suitable concentrations for subsequent genotoxicity assays. Chromosomal damage and DNA strand breaks were assessed by micronucleus tests and comet assays. Both PbCl2 and CdCl2 (at 3, 5 and 10 µM) were shown to induce concentration-dependent increases in micronucleus frequencies and DNA strand breaks in V79 cells. BA itself was not cytotoxic (up to 300 µM) and showed no genotoxic effects. Pretreatment of cells with low levels of BA (2.5 and 10 µM) was found to strongly reduce the genotoxic effects of the tested metals. Based on the findings of this in vitro study, it can be suggested that boron provides an efficient protection against the induction of DNA strand breaks and micronuclei by lead and cadmium. Further studies on the underlying mechanisms for the protective effect of boron are needed.

  12. LET dependency of heavy-ion induced apoptosis in V79 cells

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Mizuho; Furusawa, Yoshiya [National Inst. of Radiological Sciences, Chiba (Japan); Yamada, Takeshi

    2000-06-01

    We investigated the relationship between the LET values and cell death, defined as either apoptosis or loss of reproductive integrity (reproductive death), using Chinese hamster V79 cells. The cells were irradiated with X-rays or carbon-ion beams from the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS). Apoptosis was defined based on the morphological change upon treating of cells with caffeine. The apoptotic index, the ratio of apoptotic cells to the total, after exposure to 2 Gy of X-rays was 0.043. Upon irradiation with carbon-ion beams, the index was gradually increased with increasing LET values, reaching a maximum of 0.076 at 110 keV/{mu}m, and then decreased to 0.054 at 237 keV/{mu}m. An analogous pattern of the LET dependence was observed between reproductive death and apoptotic death. The cell-survival values obtained after 2 Gy exposure (SF{sub 2}) were 0.64, 0.13, and 0.24, respectively. A similar trend was found for the RBE values calculated from the initial slope for both apoptosis and reproductive death. These results strongly suggest that the target for both types of cell death is the same. (author)

  13. Image analysis of DNA fragmentation and loss in V79 cells under apoptosis

    Directory of Open Access Journals (Sweden)

    Silvya Stuchi Maria

    2000-03-01

    Full Text Available Nuclear image analysis of Feulgen-stained V79 fibroblasts after three days in culture was used to discriminate apoptotic cells and cells suspected to be undergoing apoptosis from control cells based on parameters such as the Feulgen-DNA content, degree of chromatin condensation and nuclear areas, in association with visual morphology. The fibroblasts were initially plated at a density of 10(5 cells/ml and incubated under optimal culture conditions without subculturing. Following confluency, the cells underwent contact inhibition apoptosis. Image analysis revealed three nuclear phenotypes which were defined in terms of their morphological characteristics and levels of chromatin condensation. A decrease in the amount of Feulgen-DNA was detected in apoptotic cells and in cells suspected of undergoing apoptosis. This decrease was assumed to indicate DNA loss. Image analysis procedures may therefore provide a useful tool for discriminating cells in the early stages of apoptosis.Análise de imagem de núcleos de fibroblastos V79 após três dias em cultura foi realizada em preparados submetidos à reação de Feulgen para discriminar células suspeitas de estarem em fases precoces da apoptose daquelas comprovadamente apoptóticas. Parâmetros tais como conteúdo de Feulgen-DNA, grau de condensação cromatínica e área nuclear foram estudados em associação com a morfologia estabelecida em termos visuais. Os fibroblastos foram inicialmente plaqueados numa densidade de 10(5 células/ml e encubados sob condições ótimas de cultura sem subcultura. Com a confluência, as células sofreram apoptose pela inibição por contato. A análise de imagem revelou três fenótipos nucleares definidos quanto a características morfológicas e níveis de condensação cromatínica. Foi detectado decréscimo no conteúdo de Feulgen-DNA das células apoptóticas mas também nas células suspeitas de apoptose. Admite-se que este decréscimo indique perda de DNA. A

  14. Emulsions Made of Oils from Seeds of GM Flax Protect V79 Cells against Oxidative Stress.

    Science.gov (United States)

    Skorkowska-Telichowska, Katarzyna; Hasiewicz-Derkacz, Karolina; Gębarowski, Tomasz; Kulma, Anna; Moreira, Helena; Kostyn, Kamil; Gębczak, Katarzyna; Szyjka, Anna; Wojtasik, Wioleta; Gąsiorowski, Kazimierz

    2016-01-01

    Polyunsaturated fatty acids, sterols, and hydrophilic phenolic compounds are components of flax oil that act as antioxidants. We investigated the impact of flax oil from transgenic flax in the form of emulsions on stressed Chinese hamster pulmonary fibroblasts. We found that the emulsions protect V79 cells against the H2O2 and the effect is dose dependent. They reduced the level of intracellular reactive oxygen species and protected genomic DNA against damage. The rate of cell proliferation increased upon treatment with the emulsions at a low concentration, while at a high concentration it decreased significantly, accompanied by increased frequency of apoptotic cell death. Expression analysis of selected genes revealed the upregulatory impact of the emulsions on the histones, acetylases, and deacetylases. Expression of apoptotic, proinflammatory, and anti-inflammatory genes was also altered. It is thus suggested that flax oil emulsions might be useful as a basis for biomedical products that actively protect cells against inflammation and degeneration. The beneficial effect on fibroblast resistance to oxidative damage was superior in the emulsion made of oil from transgenic plants which was correlated with the quantity of antioxidants and squalene. The emulsions from transgenic flax are promising candidates for skin protection against oxidative damage.

  15. Emulsions Made of Oils from Seeds of GM Flax Protect V79 Cells against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Katarzyna Skorkowska-Telichowska

    2016-01-01

    Full Text Available Polyunsaturated fatty acids, sterols, and hydrophilic phenolic compounds are components of flax oil that act as antioxidants. We investigated the impact of flax oil from transgenic flax in the form of emulsions on stressed Chinese hamster pulmonary fibroblasts. We found that the emulsions protect V79 cells against the H2O2 and the effect is dose dependent. They reduced the level of intracellular reactive oxygen species and protected genomic DNA against damage. The rate of cell proliferation increased upon treatment with the emulsions at a low concentration, while at a high concentration it decreased significantly, accompanied by increased frequency of apoptotic cell death. Expression analysis of selected genes revealed the upregulatory impact of the emulsions on the histones, acetylases, and deacetylases. Expression of apoptotic, proinflammatory, and anti-inflammatory genes was also altered. It is thus suggested that flax oil emulsions might be useful as a basis for biomedical products that actively protect cells against inflammation and degeneration. The beneficial effect on fibroblast resistance to oxidative damage was superior in the emulsion made of oil from transgenic plants which was correlated with the quantity of antioxidants and squalene. The emulsions from transgenic flax are promising candidates for skin protection against oxidative damage.

  16. Emulsions Made of Oils from Seeds of GM Flax Protect V79 Cells against Oxidative Stress

    Science.gov (United States)

    Skorkowska-Telichowska, Katarzyna; Hasiewicz-Derkacz, Karolina; Gębarowski, Tomasz; Kulma, Anna; Kostyn, Kamil; Gębczak, Katarzyna; Szyjka, Anna; Wojtasik, Wioleta; Gąsiorowski, Kazimierz

    2016-01-01

    Polyunsaturated fatty acids, sterols, and hydrophilic phenolic compounds are components of flax oil that act as antioxidants. We investigated the impact of flax oil from transgenic flax in the form of emulsions on stressed Chinese hamster pulmonary fibroblasts. We found that the emulsions protect V79 cells against the H2O2 and the effect is dose dependent. They reduced the level of intracellular reactive oxygen species and protected genomic DNA against damage. The rate of cell proliferation increased upon treatment with the emulsions at a low concentration, while at a high concentration it decreased significantly, accompanied by increased frequency of apoptotic cell death. Expression analysis of selected genes revealed the upregulatory impact of the emulsions on the histones, acetylases, and deacetylases. Expression of apoptotic, proinflammatory, and anti-inflammatory genes was also altered. It is thus suggested that flax oil emulsions might be useful as a basis for biomedical products that actively protect cells against inflammation and degeneration. The beneficial effect on fibroblast resistance to oxidative damage was superior in the emulsion made of oil from transgenic plants which was correlated with the quantity of antioxidants and squalene. The emulsions from transgenic flax are promising candidates for skin protection against oxidative damage. PMID:26779302

  17. Evaluation of the genotoxic potential of the Casearia sylvestris extract on HTC and V79 cells by the comet assay.

    Science.gov (United States)

    Maistro, E L; Carvalho, J C T; Mantovani, M S

    2004-06-01

    Casearia sylvestris is common in tropical America growing wild in Brazil in the states of Amazonas and São Paulo. Its leaves are used in Brazilian folk medicine for several diseases. The present investigation was carried out to examine the genotoxic effects of a C. sylvestris crude ethanolic extract on Hepatoma Tissue Culture (HTC cells) of Rattus norvegicus and Chinese hamster V79 cells in culture, using the comet assay. For the genotoxic evaluation the cells were treated with three different concentrations (0.5, 1 and 2 mg/ml) of extract prepared from a 25 mg/ml aqueous solution. The positive control was cyclophosphamide for HTC cells and methyl methanesulfonate for V79 cells. The duration of the treatment was 2 h. The results showed that the extract of C. sylvestris presented no genotoxic effects and not modified effect inducing DNA damage by alkylating agents cyclophosphamide and methyl methanesulfonate in HTC and V 79 cells respectively.

  18. Paracetamol-induced spindle disturbances in V79 cells with and without expression of human CYP1A2

    DEFF Research Database (Denmark)

    Jensen, K G; Poulsen, H E; Doehmer, J

    1996-01-01

    Spindle disturbing effects in terms of c-mitosis and cytotoxicity of paracetamol were investigated in two Chinese hamster V79 cell lines, one of which (V79MZh1A2) was transfected with human CYP1A2. This enzyme catalyses the oxidative formation of the reactive paracetamol metabolite, NAPQI, believed...... to initiate hepatoxicity by covalent binding to proteins after overdose. In the native V79 cell line paracetamol increased c-mitosis frequency in a concentration dependent manner from 8.7 + or - 3.5% (control) to 66 + or - 18% at 20 mM. A significant increase to 13.3 + or - 3.5% was first seen at 2.5 m......M in the native cell line (Pmitosis frequency increased to 12.1 + or - 2.6% (Pmitosis frequency was 14.4 + or - 5.0% and 19.0 + or - 3...

  19. The cytotoxicity of mitomycin C and adriamycin in genetically engineered V79 cell lines and freshly isolated rat hepatocytes.

    NARCIS (Netherlands)

    Goeptar, A.R.; te Koppele, J.M.; Glatt, H.R.; Groot, E.J.; Seidel, A.; Barrenscheen, M.; Wölfel, C.; Doehmer, J.; Vermeulen, N.P.E.

    1995-01-01

    The objective of the present study was to investigate the cytotoxicity of Adriamycin (ADR) and mitomycin C (MMC) in tumor and non-tumor cells with respect to the role of cytochrome P450 (P450). Therefore, genetically engineered V79 Chinese hamster fibroblasts expressing only single enzymes of P450

  20. Interaction of leukotriene C4 and Chinese hamster lung fibroblasts (V79A03 cells). 1. Characterization of binding.

    Science.gov (United States)

    Fitz, T A; Contois, D F; Liu, Y X; Watt, D S; Walden, T L

    1990-10-01

    A novel, specific, and potent biological action of leukotriene C4 (LTC4) was demonstrated in the Chinese hamster lung fibroblast cell line V79A03 (V79 cells), namely the confirment of protection against subsequent gamma-irradiation. Consequently, studies were conducted to determine whether LTC4-conferred radioprotection could be attributed to a receptor-mediated phenomenon. Specific binding sites for leukotriene C4 (LTC4) were identified and characterized using intact V79 cells incubated at 4 degrees C in the presence of serine-borate, during which time conversion of LTC4 to LTD4 or LTE4 was undetectable. Binding was maximal in a broad region between pH 6.2 and 8.8. Ca2+, Mg2+, and Na+ were not required for binding, and binding was not altered by GTP, ATP, or cAMP, by leukotrienes B4, D4, or E4, or by the leukotriene end point antagonists LY 171883, FPL 55712, or Revlon 5901-5. Scatchard analyses and kinetic experiments indicated the presence of high-affinity [Kd = 2.5 +/- 0.63 nM, approximately 9.9 x 10(5) sites/cell] and low-affinity [Kd = 350 +/- 211 nM, approximately 2.7 x 10(6) sites/cell] binding sites. The observed binding characteristics of LTC4 to V79 cells are consistent with a receptor-mediated phenomenon. In a companion communication which follows this report, we report the subcellular distribution of LTC4 binding to V79 cells and demonstrate that this binding is unlikely to be attributed principally to interaction with glutathione-S-transferase.

  1. Mutagenicity of N-nitrosodiethanolamine in a V79-derived cell line expressing two human biotransformation enzymes.

    Science.gov (United States)

    Liu, Yungang; Glatt, Hansruedi

    2008-08-25

    N-nitrosodiethanolamine (NDELA) has demonstrated carcinogenic activity in various rodent models. However, it is negative or only weakly active in standard in vitro genotoxicity assays. This poor response might be due to the requirement of specific enzymes for its activation. Previous work indicated that cytochrome P450 (CYP) 2E1, alcohol dehydrogenases and sulphotransferases (SULTs) can convert NDELA into reactive metabolites. We report here that NDELA induces concentration-dependent gene mutations (at the hprt locus) in V79-hCYP2E1-hSULT1A1 cells, engineered for expression of human CYP2E1 and human SULT1A1, but is inactive in parental V79 cells. Mutagenicity of NDELA in V79-hCYP2E1-hSULT1A1 cells was abolished by the CYP2E1 inhibitor 1-aminobenzotriazole, but unaffected by the SULT1A1 inhibitor pentachlorophenol. The efficiency and specificity of these inhibitors was demonstrated in gene mutation assays using SULT- and CYP2E1-dependent reference mutagens, 2-nitropropane and N-nitrosodimethylamine, respectively. In this study, it is documented for the first time that NDELA can induce gene mutations in mammalian cells. Whereas human CYP2E1 was required for its activation, human SULT1A1 was not involved either in its activation or its inactivation in our cell model.

  2. Interaction of leukotriene C4 and Chinese hamster lung fibroblasts (V79A03 cells). 1. Characterization of binding

    Energy Technology Data Exchange (ETDEWEB)

    Fitz, T.A.; Contois, D.F.; Liu, Y.X.; Watt, D.S.; Walden, T.L.

    1990-10-01

    A novel, specific, and potent biological action of leukotriene C4 (LTC4) was demonstrated in the Chinese Hamster lung fibroblast cell line V79A03 (V79 cells), namely the conferment of protection against subsequent irradiation. Consequently, studies were conducted to determine whether LTC4-conferred radioprotection could be attributed to a receptor-mediated phenomenon. Specific binding sites for leukotriene C4 (LTC4) were identified and characterized using intact V79 cells incubated at 4 C in the presence of serine-borate, during which time conversion of LTC4 to LTD4 or LTE4 was undetectable. Binding was maximal in a broad region between pH 6.2 and 8.8. Ca2+, Mg2+, and Na+ were not required for binding, and binding was not altered by GTP, ATP, cAMP, by leukotrienes B4, D4, or E4, or by the leukotriene end point antagonists LY 171883, FPL 55712, or Revlon 5901-5.

  3. Protective Effect of Boric Acid on Oxidative DNA Damage In Chinese Hamster Lung Fibroblast V79 Cell Lines

    Science.gov (United States)

    Yılmaz, Sezen; Ustundag, Aylin; Cemiloglu Ulker, Ozge; Duydu, Yalcın

    2016-01-01

    Objective Many studies have been published on the antioxidative effects of boric acid (BA) and sodium borates in in vitro studies. However, the boron (B) concentrations tested in these in vitro studies have not been selected by taking into account the realistic blood B concentrations in humans due to the lack of comprehensive epidemiological studies. The recently published epidemiological studies on B exposure conducted in China and Turkey provided blood B concentrations for both humans in daily life and workers under extreme exposure conditions in occupational setting. The results of these studies have made it possible to test antioxidative effects of BA in in vitro studies within the concentra- tion range relevant to humans. The aim of this study was to investigate the protective ef- fects of BA against oxidative DNA damage in V79 (Chinese hamster lung fibroblast) cells. The concentrations of BA tested for its protective effect was selected by taking the blood B concentrations into account reported in previously published epidemiological studies. Therefore, the concentrations of BA tested in this study represent the exposure levels for humans in both daily life and occupational settings. Materials and Methods In this experimental study, comet assay and neutral red uptake (NRU) assay methods were used to determinacy to toxicity and genotoxicity of BA and hydrogen peroxide (H2O2). Results The results of the NRU assay showed that BA was not cytotoxic within the tested concentrations (3, 10, 30, 100 and 200 µM). These non-cytotoxic concentrations were used for comet assay. BA pre-treatment significantly reduced (P<0.05, one-way ANOVA) the DNA damaging capacity of H2O2 at each tested BA concentrations in V79 cells. Conclusion Consequently, pre-incubation of V79 cells with BA has significantly reduced the H2O2-induced oxidative DNA damage in V79 cells. The protective effect of BA against oxidative DNA damage in V79 cells at 5, 10, 50, 100 and 200 μM (54, 108, 540

  4. X-ray-induced bystander responses reduce spontaneous mutations in V79 cells

    Science.gov (United States)

    Maeda, Munetoshi; Kobayashi, Katsumi; Matsumoto, Hideki; Usami, Noriko; Tomita, Masanori

    2013-01-01

    The potential for carcinogenic risks is increased by radiation-induced bystander responses; these responses are the biological effects in unirradiated cells that receive signals from the neighboring irradiated cells. Bystander responses have attracted attention in modern radiobiology because they are characterized by non-linear responses to low-dose radiation. We used a synchrotron X-ray microbeam irradiation system developed at the Photon Factory, High Energy Accelerator Research Organization, KEK, and showed that nitric oxide (NO)-mediated bystander cell death increased biphasically in a dose-dependent manner. Here, we irradiated five cell nuclei using 10 × 10 µm2 5.35 keV X-ray beams and then measured the mutation frequency at the hypoxanthine-guanosine phosphoribosyl transferase (HPRT) locus in bystander cells. The mutation frequency with the null radiation dose was 2.6 × 10–5 (background level), and the frequency decreased to 5.3 × 10–6 with a dose of approximately 1 Gy (absorbed dose in the nucleus of irradiated cells). At high doses, the mutation frequency returned to the background level. A similar biphasic dose-response effect was observed for bystander cell death. Furthermore, we found that incubation with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), a specific scavenger of NO, suppressed not only the biphasic increase in bystander cell death but also the biphasic reduction in mutation frequency of bystander cells. These results indicate that the increase in bystander cell death involves mechanisms that suppress mutagenesis. This study has thus shown that radiation-induced bystander responses could affect processes that protect the cell against naturally occurring alterations such as mutations. PMID:23660275

  5. Influence of DMSO on Carbon K ultrasoft X-rays induced chromosome aberrations in V79 Chinese hamster cells

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Adayapalam T., E-mail: natarajan@live.nl [University of Tuscia, Viterbo (Italy); Palitti, Fabrizio [University of Tuscia, Viterbo (Italy); Hill, Mark A. [CRUK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom); MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD (United Kingdom); Stevens, David L. [MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD (United Kingdom); Ahnstroem, Gunnar [Department of Microbiology and Genetic Toxicology, Stockholm University, Stockholm (Sweden)

    2010-09-10

    Ultrasoft X-rays have been shown to be very efficient in inducing chromosomal aberrations in mammalian cells. The present study was aimed to evaluate the modifying effects of DMSO (a potent scavenger of free radicals) on the frequencies of chromosome aberrations induced by soft X-rays. Confluent held G1 Chinese hamster cells (V79) were irradiated with Carbon K ultrasoft X-rays in the presence and absence of 1 M DMSO and frequencies of chromosome aberrations in the first division cells were determined. DMSO reduced the frequencies of exchange types of aberrations (dicentrics and centric rings) by a factor of 2.1-3.5. The results indicate that free radicals induced by ultrasoft X-rays contribute to a great extent to the induction of chromosome aberrations. The possible implications of these results in interpreting the mechanisms involved in the high efficiency of ultrasoft X-rays in the induction of chromosome aberrations are discussed.

  6. Distribution of gamma-tubulin in multipolar spindles and multinucleated cells induced by dimethylarsinic acid, a methylated derivative of inorganic arsenics, in Chinese hamster V79 cells.

    Science.gov (United States)

    Ochi, T; Nakajima, F; Nasui, M

    1999-08-31

    Localization of gamma-tubulin, a well-characterized component of microtubule-organizing centers (MTOCs), was investigated because of interest in the mechanism of the induction of aberrant mitotic spindles in Chinese hamster V79 cells exposed to dimethylarsinic acid (DMAA). In control cultures, gamma-tubulin in interphase cells was located as a perinuclear dot on which the microtubules were nucleated. In metaphase cells, the location of gamma-tubulin coincided with that of the mitotic spindle poles. DMAA caused mitotic delay and aberrant spindles, such as tripolar- and quadripolar spindles, in the mitotic cells. Gamma-tubulin was co-localized with the aberrant spindles induced by DMAA. The incidence of gamma-tubulin in the mitotic cells coincided with that of the aberrant spindles and rose with an increasing concentration of DMAA. By contrast, DMAA did not influence the number and location of gamma-tubulin signals in interphase cells. These results suggest that multiple microtubule nucleation sites were induced by DMAA during transition from interphase to mitotic phase. DMAA-induced multiple signals of gamma-tubulin were integrated into one signal at the center of multinucleated cells, surrounded by multiple nuclei as the cell cycle progressed to the next interphase, suggesting the presence of a self-integration mechanism of centrosomal MTOCs during the cell cycle.

  7. Different effects of inorganic and dimethylated arsenic compounds on cell morphology, cytoskeletal organization, and DNA synthesis in cultured Chinese hamster V79 cells.

    Science.gov (United States)

    Ochi, T; Nakajima, F; Fukumori, N

    1998-09-01

    Changes in cytoskeletal organization of cultured V79 cells exposed to arsenite and dimethylarsinic acid (DMAA), a methylated derivative of inorganic arsenics, and related changes, such as mitotic arrest and induction of multinucleated cells, were investigated in comparison with their effects on DNA synthesis. DMAA caused mitotic arrest and induction of multinucleated cells with a delay of 12 h relative to the mitotic arrest. By contrast, arsenite at equitoxic concentrations to DMAA was less effective than DMAA in causing mitotic arrest and in inducing multinucleated cells. Post-mitotic incubation of cells arrested in metaphase by 6 h incubation with 10 mM DMAA showed that the incidence of multinucleated cells increased conversely with a rapid decrease in metaphase cells. This suggests that metaphase-arrested cells can escape from metaphase, resulting in the appearance of multinucleated cells. The mitotic arrest caused by DMAA was accompanied by disruption of the microtubule network. By contrast, both arsenite and DMAA did not cause disorganization of actin stress fibers even when incubated at concentrations that caused a marked retardation of cell growth. Cells exposed to arsenite for 6 h showed marked inhibition of DNA synthesis, whereas inhibition by DMAA was not observed. When incubation was prolonged by 18 h, the arsenite-induced inhibition of DNA synthesis was mitigated. By contrast, inhibition of DNA synthesis by DMAA occurred in parallel with an increase in the population of mitotic cells. These results suggest that DMAA caused growth retardation and morphological changes via disruption of the microtubule network, and that arsenite-induced retardation of cell growth and inhibition of DNA synthesis were not attributable to the cytoskeletal changes.

  8. Different effects of inorganic and dimethylated arsenic compounds on cell morphology, cytoskeletal organization, and DNA synthesis in cultured Chinese hamster V79 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Takafumi; Nakajima, Fumie [Department of Environmental Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa (Japan); Fukumori, Nobutaka [Department of Toxicology, Tokyo Metropolitan Research Laboratory of Public Health, Hyakuninchou, Shinjyuku (Japan)

    1998-09-01

    Changes in cytoskeletal organization of cultured V79 cells exposed to arsenite and dimethylarsinic acid (DMAA), a methylated derivative of inorganic arsenics, and related changes, such as mitotic arrest and induction of multinucleated cells, were investigated in comparison with their effects on DNA synthesis. DMAA caused mitotic arrest and induction of multinucleated cells with a delay of 12 h relative to the mitotic arrest. By contrast, arsenite at equitoxic concentrations to DMAA was less effective than DMAA in causing mitotic arrest and in inducing multinucleated cells. Post-mitotic incubation of cells arrested in metaphase by 6 h incubation with 10 mM DMAA showed that the incidence of multinucleated cells increased conversely with a rapid decrease in metaphase cells. This suggests that metaphase-arrested cells can escape from metaphase, resulting in the appearance of multinucleated cells. The mitotic arrest caused by DMAA was accompanied by disruption of the microtubule network. By contrast, both arsenite and DMAA did not cause disorganization of actin stress fibers even when incubated at concentrations that caused a marked retardation of cell growth. Cells exposed to arsenite for 6 h showed marked inhibition of DNA synthesis, whereas inhibition by DMAA was not observed. When incubation was prolonged by 18 h, the arsenite-induced inhibition of DNA synthesis was mitigated. By contrast, inhibition of DNA synthesis by DMAA occurred in parallel with an increase in the population of mitotic cells. These results suggest that DMAA caused growth retardation and morphological changes via disruption of the microtubule network, and that arsenite-induced retardation of cell growth and inhibition of DNA synthesis were not attributable to the cytoskeletal changes. (orig.) (orig.) With 7 figs., 31 refs.

  9. Interaction between the effects of pepleomycin with lidocaine and radiation on cultured Chinese hamster V79 cells

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Yuji

    1989-02-01

    The interaction of the cytotoxicities in combination use of lidocaine (LID), pepleomycin (PEP) and radiation in combined treatment was studied using Chinese hamster V79 cells by colony forming assay. LID showed no cytotoxic effect up to 12 mM when it was employed alone. However selective enhancement of the PEP cytotoxic effect appeared when the drugs were used simultaneously. The mechanism of this enhancing effect was thought to involve inhibition by LID of the repair of the cells from PEP potentially lethal damage. LID showed no enhancing effect on the radiation cytotoxicity when the agents were used simultaneously. Only an additive effect appeared when PEP and radiation were employed simultaneously. An interactive effect appeared when LID, PEP and radiation were used simultaneously, although this effect was not so significant. The enhancement ratio of PEP with LID on radiation was 1.58. The fundamental mechanism of enhancement of cytotoxic effect of LID on PEP and the interactive relationship among LID, PEP and radiation are analyzed and discussed. (author).

  10. Kale Extract Increases Glutathione Levels in V79 Cells, but Does not Protect Them against Acute Toxicity Induced by Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Paula B. Andrade

    2012-05-01

    Full Text Available This study aims to evaluate the antioxidant potential of extracts of Brassica oleracea L. var. acephala DC. (kale and several materials of Pieris brassicae L., a common pest of Brassica cultures using a cellular model with hamster lung fibroblast (V79 cells under quiescent conditions and subjected to H2O2-induced oxidative stress. Cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay and glutathione was determined by the 5,5'-dithiobis(2-nitrobenzoic acid (DTNB-oxidized glutathione (GSSG reductase recycling assay. The phenolic composition of the extracts was also established by HPLC-DAD. They presented acylated and non acylated flavonoid glycosides, some of them sulfated, and hydroxycinnamic acyl gentiobiosides. All extracts were cytotoxic by themselves at high concentrations and failed to protect V79 cells against H2O2 acute toxicity. No relationship between phenolic composition and cytotoxicity of the extracts was found. Rather, a significant increase in glutathione was observed in cells exposed to kale extract, which contained the highest amount and variety of flavonoids. It can be concluded that although flavonoids-rich extracts have the ability to increase cellular antioxidant defenses, the use of extracts of kale and P. brassicae materials by pharmaceutical or food industries, may constitute an insult to health, especially to debilitated individuals, if high doses are consumed.

  11. Delayed effects of accelerated heavy ions on the induction of HPRT mutations in V79 hamster cells.

    Science.gov (United States)

    Bláha, Pavel; Koshlan, Nataliya A; Koshlan, Igor V; Petrova, Daria V; Bogdanova, Yulia V; Govorun, Raisa D; Múčka, Viliam; Krasavin, Evgeny A

    2017-10-01

    Fundamental research on the harmful effects of ionizing radiation on living cells continues to be of great interest. Recently, priority has been given to the study of high-charge and high-energy (HZE) ions that comprise a substantial part of the galactic cosmic ray (GCR) spectra that would be encountered during long-term space flights. Moreover, predictions of the delayed genetic effects of high linear energy transfer (LET) exposure is becoming more important as heavy ion therapy use is increasing. This work focuses mainly on the basic research on the delayed effects of HZE ions on V79 Chinese hamster cells, with emphasis on the induction of HPRT mutations after prolonged expression times (ET). The research was conducted under various irradiation conditions with accelerated ions 18 O (E=35.2MeV/n), 20 Ne (E=47.7MeV/n and 51.8MeV/n), and 11 B (E=32.4MeV/n), with LET in the range from 49 to 149 keV/μm and with 60 Co γ-rays. The HPRT mutant fractions (MF) were detected in irradiated cells in regular intervals during every cell culture recultivation (every 3days) up to approximately 40days (70-80 generations) after irradiation. The MF maximum was reached at different ET depending on ionizing radiation characteristics. The position of the maximum was shifting towards longer ET with increasing LET. We speculate that the delayed mutations are created de novo and that they are the manifestation of genomic instability. Although the exact mechanisms involved in genomic instability initiation are yet to be identified, we hypothesize that differences in induction of delayed mutations by radiations with various LET values are related to variations in energy deposition along the particle track. A dose dependence of mutation yield is discussed as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. V-79 Chinese Hamster Cells irradiated with antiprotons, a study of peripheral damage due to medium and long range components of the annihilation radiation

    DEFF Research Database (Denmark)

    Kovacevic, Sandra; Bassler, Niels; Hartley, Oliver

    2009-01-01

    produce a significant background dose and reverse any benefits of higher biological dose in the target area. Materials and methods: Using the Antiproton Decelerator (AD) at CERN (Conseil Europeen pour la Recherche Nucleaire) we irradiated V-79 Chinese Hamster cells embedded in gelatine using an antiproton...

  13. Differential effect of manool--a diterpene from Salvia officinalis, on genotoxicity induced by methyl methanesulfonate in V79 and HepG2 cells.

    Science.gov (United States)

    Nicolella, Heloiza Diniz; de Oliveira, Pollyanna Francielli; Munari, Carla Carolina; Costa, Gizela Faleiros Dias; Moreira, Monique Rodrigues; Veneziani, Rodrigo Cassio Sola; Tavares, Denise Crispim

    2014-10-01

    Salvia officinalis (sage) is a perennial woody subshrub native to the Mediterranean region that is commonly used as a condiment and as an anti-inflammatory, antioxidant and antimicrobial agent due to its biological activities. Manool is the most abundant micro-metabolite found in Salvia officinalis essential oils and extracts. We therefore decided to evaluate the cytotoxic, genotoxic and antigenotoxic potential of manool in Chinese hamster lung fibroblasts (V79) and human hepatoma cells (HepG2). Cytotoxicity was assessed by the colony-forming assay in V79 cells and toxic effects were observed at concentrations of up to 8.0 μg/mL. The micronucleus test was used to evaluate the genotoxicity and antigenotoxicity of manool in V79 and HepG2 cells at concentrations of 0.5-6.0 μg/mL and 0.5-8.0 μg/mL, respectively. For evaluation of antigenotoxicity, the concentrations of manool were combined with methyl methanesulfonate (MMS, 44 μg/mL). The results showed a significant increase in the frequency of micronuclei in cultures of both cell lines treated with the highest concentration tested, demonstrating a genotoxic effect. On the other hand, manool exhibited a protective effect against chromosome damage induced by MMS in HepG2 cells, but not in V79 cells. These data suggest that some manool metabolite may be responsible for the antigenotoxic effect observed in HepG2 cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of ascorbate and 5-aminosalicylic acid on light-induced 8-hydroxydeoxyguanosine formation in V79 Chinese hamster cells

    DEFF Research Database (Denmark)

    Fischer-Nielsen, A; Loft, S; Jensen, K G

    1993-01-01

    Recently we showed that ascorbate and 5-aminosalicylic acid (5-ASA) prevented 8-hydroxydeoxyguanosine (8-OHdG) formation in calf thymus DNA exposed to UV-visible light. However, the ultimate defense against oxidative DNA damage depends on an intracellular/intranuclear effect of the compounds...

  15. Antimutagenic and antioxidant properties of the aqueous extracts of organic and conventional grapevine Vitis labrusca cv. Isabella leaves in V79 cells.

    Science.gov (United States)

    Trindade, Cristiano; Bortolini, Giovana Vera; Costa, Bárbara Segalotto; Anghinoni, Joanna Carra; Guecheva, Temenouga Nikolova; Arias, Ximena; Césio, Maria Verónica; Heinzen, Horácio; Moura, Dinara Jaqueline; Saffi, Jenifer; Salvador, Mirian; Henriques, João Antonio Pêgas

    2016-01-01

    Grapes are one of the most commonly consumed fruit, in both fresh and processed forms; however, a significant amount is disposed of in the environment. Searching for a use of this waste, the antigenotoxic, antimutagenic, and antioxidant activities of aqueous extracts from organic and conventional Vitis labrusca leaves were determined using V79 cells as model. The antigenotoxic activity was analyzed by the alkaline comet assay using endonuclease III and formamidopyrimidine DNA glycosylase enzymes. The antimutagenic property was assessed through the micronucleus (MN) formation, and antioxidant activities were assessed using 2',7'-dichlorodihydrofluorescin diacetate (DCFH-DA) assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH(●)) radical scavenging, as well as with superoxide dismutase (SOD) and catalase (CAT) activity assays. In addition, phenolic content and ascorbic acid levels of both extracts were determined. Data showed that both organic and conventional grapevine leaves extracts possessed antigenotoxic and antimutagenic properties. The extract of organic leaves significantly reduced intracellular reactive oxygen species (ROS) levels in V79 cells, and displayed greater ability for DPPH(●) scavenging and higher SOD and CAT activities than extract from conventional leaves. Further, the extract from organic leaves contained higher phenolic and ascorbic acid concentrations. In summary, extracts from organic and conventional grape leaves induced important in vitro biological effects.

  16. Preventive efficacy of hydroalcoholic extract of Cymbopogon citratus against radiation-induced DNA damage on V79 cells and free radical scavenging ability against radicals generated in vitro.

    Science.gov (United States)

    Rao, B S S; Shanbhoge, R; Rao, B N; Adiga, S K; Upadhya, D; Aithal, B K; Kumar, M R S

    2009-04-01

    This study presents the findings of free radical scavenging and antigenotoxic effect of hydroalcoholic extract of Cymbopogon citratus (CCE). The CCE at a concentration of 60 microg/mL resulted in a significant scavenging ability of 2,2-diphenyl-2-picryl hydrazyl (DPPH; (85%), 2,2-azinobis (3-ethyl benzothiazoline-6-sulphonic acid) (ABTS; 77%), hydroxyl (70%), superoxide (76%), nitric oxide (78%) free radicals generated using in vitro and also a moderate anti-lipid peroxidative effect (57%). Further, the radiation-induced antigenotoxic potential of CCE was assessed in Chinese hamster lung fibroblast cells (V79) using micronucleus assay. The CCE resulted in a dose-dependent decrease in the yield of radiation-induced micronuclei, with a maximum effect at 125 microg/mL CCE for 1 h before 2 Gy of radiation. Similarly, there was a significant (P < 0.05-0.0001) decrease in percentage of micronuclei when V79 cells were treated with optimal dose of CCE (125 microg/mL) before exposure to different doses of gamma radiation, that is, 0.5-4 Gy, compared with radiation alone groups. The results of the micronucleus study indicated antigenotoxic effect demonstrating the radioprotective potential of CCE and, which may partly due to its and antioxidant capacity as it presented its ability to scavenge various free radicals in vitro and anti-lipid peroxidative potential.

  17. Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells.

    Science.gov (United States)

    Ludewig, G; Dogra, S; Glatt, H

    1989-01-01

    1,4-Benzoquinone is cytotoxic in V79 Chinese hamster cells and induces gene mutations and micronuclei. The cell-damaging effects of quinones are usually attributed to thiol depletion, oxidation of NAD(P)H, and redox-cycling involving the formation of semiquinone radicals and reactive oxygen species. To elucidate the role of these mechanisms in the genotoxicity of 1,4-benzoquinone, we measured various genotoxic effects, cytotoxicity, and the levels of glutathione, NADPH, NADH, and their oxidized forms all in the same experiment. 1,4-Naphthoquinone, which does not induce gene mutations in V79 cells, was investigated for comparative reasons. The quinones had a similar effect on the levels of cofactors. Total glutathione was depleted, but levels of oxidized glutathione were slightly increased. The levels of NADPH and NADH were reduced at high concentrations of the quinones with a simultaneous increase in the levels of NADP+ and NAD+. Both compounds induced micronuclei, but neither increased the frequency of sister chromatid exchange. Only 1,4-benzoquinone induced gene mutations. This effect was observed at low concentrations, where none of the other parameters studied was affected. When the cells were depleted of glutathione prior to treatment with the quinones, the induction of gene mutations and micronuclei remained virtually unchanged. We conclude that a) induction of micronuclei and glutathione depletion by the two quinones are not linked causally, b) 1,4-benzoquinone induces gene mutations by a mechanism different from oxidative stress and glutathione depletion, and c) glutathione does not fully protect the cells against the genotoxicity of quinones. PMID:2792044

  18. Radiobiological response of U251MG, CHO-K1 and V79 cell lines to accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Sato, Eisuke; Zaboronok, Alexander; Yamamoto, Tetsuya; Nakai, Kei; Taskaev, Sergey; Volkova, Olga; Mechetina, Ludmila; Taranin, Alexander; Kanygin, Vladimir; Isobe, Tomonori; Mathis, Bryan J; Matsumura, Akira

    2017-12-21

    In the current article, we provide in vitro efficacy evaluation of a unique accelerator-based neutron source, constructed at the Budker Institute of Nuclear Physics (Novosibirsk, Russian Federation), for boron neutron capture therapy (BNCT), which is particularly effective in the case of invasive cancers. U251MG, CHO-K1 and V79 cells were incubated and irradiated in various concentrations of boric acid with epithermal neutrons for 2-3 h in a plexiglass phantom, using 2.0 MeV proton energy and 1.5-3.0 mA proton current, resulting in a neutron fluence of 2.16 × 1012 cm-2. The survival curves of cells loaded with boron were normalized to those irradiated without boron (to exclude the influence of the fast neutron and gamma dose components) and fit to the linear-quadratic (LQ) model. Colony formation assays showed the following cell survival rates (means ± SDs): CHO-K1: 0.348 ± 0.069 (10 ppm), 0.058 ± 0.017 (20 ppm), 0.018 ± 0.005 (40 ppm); V79: 0.476 ± 0.160 (10 ppm), 0.346 ± 0.053 (20 ppm), 0.078 ± 0.015 (40 ppm); and U251MG: 0.311 ± 0.061 (10 ppm), 0.131 ± 0.022 (20 ppm), 0.020 ± 0.010 (40 ppm). The difference between treated cells and controls was significant in all cases (P BNCT into the clinical phase. © The Author(s) 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  19. Cytotoxicity and Genotoxicity of Panel of Single- and Multiwalled Carbon Nanotubes: In Vitro Effects on Normal Syrian Hamster Embryo and Immortalized V79 Hamster Lung Cells

    Directory of Open Access Journals (Sweden)

    C. Darne

    2014-01-01

    Full Text Available Carbon nanotubes (CNTs belong to a specific class of nanomaterials with unique properties. Because of their anticipated use in a wide range of industrial applications, their toxicity is of increasing concern. In order to determine whether specific physicochemical characteristics of CNTs are responsible for their toxicological effects, we investigated the cytotoxic and genotoxic effects of eight CNTs representative of each of the commonly encountered classes: single- SW-, double- DW-, and multiwalled (MW CNTs, purified and raw. In addition, because most previous studies of CNT toxicity were conducted on immortalized cell lines, we decided to compare results obtained from V79 cells, an established cell line, with results from SHE (Syrian hamster embryo cells, an easy-to-handle normal cell model. After 24 hours of treatment, MWCNTs were generally found to be more cytotoxic than SW- or DWCNTs. MWCNTs also provoked more genotoxic effects. No correlation could be found between CNT genotoxicity and metal impurities, length, surface area, or induction of cellular oxidative stress, but genotoxicity was seen to increase with CNT width. The toxicity observed for some CNTs leads us to suggest that they might also act by interfering with the cell cycle, but no significant differences were observed between normal and immortalized cells.

  20. Arsenic[III] and heavy metal ions induce intrachromosomal homologous recombination in the hprt gene of V79 Chinese hamster cells.

    Science.gov (United States)

    Helleday, T; Nilsson, R; Jenssen, D

    2000-01-01

    In the present study the carcinogenic metal ions Cd[II], Co[II], Cr[VI], Ni[II], and Pb[II], as well as As[III], were examined for their ability to induce intrachromosomal homologous and nonhomologous recombination in the hprt gene of two V79 Chinese hamster cell lines, SPD8 and Sp5, respectively. With the exception of Pb[II], all of these ions enhanced homologous recombination, the order of potency being Cr>Cd>As>Co>Ni. In contrast, Cr[VI] was the only ion to enhance recombination of the nonhomologous type. In order to obtain additional information on the mechanism of recombination in the SPD8 cell line, individual clones exhibiting metal-induced recombination were isolated, and the sequence of their hprt gene determined. These findings confirmed that all recombinogenic events in this cell line were of the homologous type, involving predominantly a chromatid exchange mechanism. The mechanisms underlying the recombination induced by these ions are discussed in relationship to their genotoxicity, as well as to DNA repair and replication. Induced recombination may constitute a novel mechanism for induction of neoplastic disease. Copyright 2000 Wiley-Liss, Inc.

  1. Acquisition of resistance to 1-(4-amino-2-methyl-5-pyrimidinyl) methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride in V79 cells through increased removal of O6-alkylguanine.

    Science.gov (United States)

    Satoh, M S; Huh, N H; Horie, Y; Thomale, J; Rajewsky, M F; Kuroki, T

    1987-10-01

    The molecular mechanism of acquisition of resistance to 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl-3-(2-chloroethyl)-3-nitroso ure a hydrochloride (ACNU) was investigated using ACNU-resistant clones (ACNUr-1-4) isolated from the V79 cell line. The binding level of alkyl cyanate, a decomposition product of ACNU, to protein in ACNUr-1 cells was not less than that in the parental V79 cells, indicating that the acquired resistance was not due to a reduced intracellular concentration of ACNU. Because O6-chloroethylguanine, an intermediate in cytotoxic interstrand cross-link formation by ACNU, is known to be repaired by the same mechanism as O6-ethyldeoxyguanosine (O6-EtdGuo), we quantitated O6-EtdGuo by radioimmunoassay at various times after exposure of cells to 100 micrograms/ml N-ethyl-N-nitrosourea for 20 min. In V79 cells, elimination of O6-EtdGuo was negligible, but in all four resistant clones, 30 to 59% of the O6-EtdGuo was removed within 24 hr after exposure. This increased removal of O6-EtdGuo among the resistant clones was associated with the activity of O6-alkylguanine DNA alkyltransferase (O6-AGT) determined using cell extracts. The present results indicate that increased removal of O6-chloroethylguanine in ACNU-resistant clones by O6-AGT is mechanistically linked to the acquisition of resistance to ACNU.

  2. Biotransformation enzyme-dependent formation of micronucleus and multinuclei in cell line V79-hCYP2E1-hSULT1A1 by 2-nitropropane and N-nitrosodimethylamine.

    Science.gov (United States)

    Deng, Hong; Gao, Hai; Liu, Yungang

    2011-11-27

    V79-hCYP2E1-hSULT1A1, a V79-derived cell line co-expressing both human CYP2E1 and SULT1A1, has been constructed and efficiently used in detection of the mutagenic activities of a number of promutagens. 2-Nitropropane (2-NP) and N-nitrosodimethylamine (NDMA), both being hepatocarcinogenic to animals but inactive in standard genotoxicity assays in vitro, are activated to mutagenic metabolites by human SULT1A1 and CYP2E1, respectively. Nevertheless, little is known about the chromosomal effects of these two carcinogens. In the present study, we investigated the effects of 2-NP and NDMA on frequencies of micronucleated (F(mi)) and multinucleated cells (F(mu)) in V79-hCYP2E1-hSULT1A1 cells. The results showed induction of both F(mi) and F(mu) by 2-NP and NDMA individually, and this effect was completely suppressed by relatively specific inhibitor of SULT1A1 and CYP2E1, i.e., pentachlorophenol and 1-aminobenzotriazole, respectively. The F(mu)/F(mi) ratio in 2-NP groups was significantly higher than NDMA groups, probably indicating an aneugenic activity of 2-NP based on proposed F(mu)/F(mi) ratio as a simple index to discriminate aneugens from clastogens. The present study has established biotransformation enzyme-dependent formation of multinuclei and micronuclei induced by 2-NP and NDMA. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Flow cytometric applications of tumor biology: prospects and pitfalls. [Applications in study of spontaneous dog tumors and in drug and radiation effects on cultured V79 cells

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.; Johnson, T.S.; Tokita, N.; Gillette, E.L.

    1979-01-01

    A brief review of cytometry instrumentation and its potential applications in tumor biology is presented using our recent data. Age-distribution measurements of cells from spontaneous dog tumors and cultured cells after exposure to x rays, alpha particles, or adriamycin are shown. The data show that DNA fluorescence measurements have application in the study of cell kinetics after either radiation or drug treatment. Extensive and careful experimentation is needed to utilize the sophisticated developments in flow cytometry instrumentation.

  4. A study of V79 cell survival after for proton and carbon ion beams as represented by the parameters of Katz' track structure model

    DEFF Research Database (Denmark)

    Grzanka, Leszek; Waligórski, M. P. R.; Bassler, Niels

    carbon irradiation. 1. Katz, R., Track structure in radiobiology and in radiation detection. Nuclear Track Detection 2: 1-28 (1978). 2. Furusawa Y. et al. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3He-, 12C- and 20Ne beams. Radiat Res. 2012 Jan; 177......Katz’s theory of cellular track structure (1) is an amorphous analytical model which applies a set of four cellular parameters representing survival of a given cell line after ion irradiation. Usually the values of these parameters are best fitted to a full set of experimentally measured survival...... curves available for a variety of ions. Once fitted, using these parameter values and the analytical formulae of the model calculations, cellular survival curves and RBE may be predicted for that cell line after irradiation by any ion, including mixed ion fields. While it is known that the Katz model...

  5. Interaction of Leukotriene C4 and Chinese Hamster Lung Fibroblasts (V79A03 Cells). 2. Subcellular Distribution of Binding and Unlikely Role of Glutathione-s-Transferase

    Science.gov (United States)

    1990-10-01

    cell culture, Ms. Yvonne Caicedo for technical manipulations, and Mrs. Jane Koeser for secretarial help, are gratefully acknowledged. This work was...F.F., L.Y. Chau, and K.F. Austen . Binding of Leukotriene C. by Glutathione Transferase: A Reassessment of Biochemical and Functional Criteria for...Krillis, S., R.A. Lewis, E.J. Corey, and K.F. Austen . Specific Receptors for Laukotriene C4 on a Smooth Muscle Cell Line. J. Clin. Invest. 72:1516

  6. Inhibition of tolbutamide 4-methylhydroxylation by a series of non-steroidal anti-inflammatory drugs in V79-NH cells expressing human cytochrome P4502C10

    NARCIS (Netherlands)

    Kappers, W.A.; Groene, E.M. de; Kleij, L.A.; Witkamp, R.F.; Zweers-Zeilmaker, W.M.; Feron, V.J.; Horbach, G.J.

    1996-01-01

    1. To study the role of cytochrome P4502C10 in the metabolism of the non-steroidal antiinflammatory drugs (NSAIDs) diclofenac, phenylbutazone, fenoprofen, ibuprofen, flurbiprofen, ketoprofen and naproxen, a cell line was developed stably expressing CYP2C10 cDNA. A retroviral vector construct,

  7. Role of human sulfotransferase 1A1 and N-acetyltransferase 2 in the metabolic activation of 16 heterocyclic amines and related heterocyclics to genotoxicants in recombinant V79 cells.

    Science.gov (United States)

    Chevereau, Matthieu; Glatt, Hansruedi; Zalko, Daniel; Cravedi, Jean-Pierre; Audebert, Marc

    2017-09-01

    Heterocyclic aromatic amines (HAAs) are primarily produced during the heating of meat or fish. HAAs are mutagenic and carcinogenic, and their toxicity in model systems depend on metabolic activation. This activation is mediated by cytochrome P450 (CYP) enzymes, in particular CYP1A2. Some studies have indicated a role of human sulfotransferase (SULT) 1A1 and N-acetyltransferase (NAT) 2 in the terminal activation of HAAs. In this study, we conducted a metabolism/genotoxicity relationship analysis for 16 HAAs and related heterocyclics. We used the γH2AX genotoxicity assay in V79 cells (deficient in CYP, SULT and NAT) and V79-derived cell lines genetically engineered to express human CYP1A2 alone or in combination with human SULT1A1 or NAT2. Our data demonstrated genotoxic properties for 13 out of the 16 compounds tested. A clear relationship between metabolic bioactivation and genotoxicity allowed to distinguish four groups: (1) Trp-P-1 genotoxicity was linked to CYP1A2 bioactivation only-with negligible effects of phase II enzymes; (2) Glu-P-2, Glu-P-1, Trp-P-2, APNH, MeAαC and AαC were bioactivated by CYP1A2 in combination with either phase II enzyme tested (NAT2 or SULT1A1); (3) IQ, 4-MeIQ, IQx, 8-MeIQx, and 4,8-DiMeIQx required CYP1A2 in combination with NAT2 to be genotoxic, whereas SULT1A1 did not enhance their genotoxicity; (4) PhIP became genotoxic after CYP1A2 and SULT1A1 bioactivation-NAT2 had not effect. Our results corroborate some previous data regarding the genotoxic potency of seven HAAs and established the genotoxicity mechanism for five others HAAs. This study also permits to compare efficiently the genotoxic potential of these 13 HAAs.

  8. Arsenic compound-induced increases in glutathione levels in cultured Chinese hamster V79 cells and mechanisms associated with changes in {gamma}-glutamylcysteine synthetase activity, cystine uptake and utilization of cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Takafumi [Department of Environmental Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-01 (Japan)

    1997-11-01

    Increases in the glutathione (GSH) level in cultured Chinese hamster V79 cells incubated with arsenic compounds were investigated in terms of changes in the activity of {gamma}-glutamylcysteine synthetase ({gamma}-GCS), rate of cystine uptake, and utilization of cysteine. Arsenite at subtoxic concentrations caused a marked increase of the GSH level at 8 h after addition and then declined. Increase in the GSH level caused by arsenite was associated with an increase in the rate of cystine uptake, but not in {gamma}-GCS activity. Increase in the rate of uptake of cystine was attributed mainly to an increase in the utilization of cysteine in the synthesis of GSH. Dimethylarsinic acid (DMAA) also caused an increase in the GSH level in a time- and concentration-dependent manner. Increase in the GSH level was accompanied by increases in {gamma}-GCS activity and in the uptake of cystine. DMAA caused a reduction in the rate of utilization of cysteine for protein synthesis while enhancing the rate of cysteine utilization for GSH synthesis. Cycloheximide inhibited increases in {gamma}-GCS activity caused by DMAA and in the rate of cystine uptake caused by arsenite and DMAA. The cystine transport system is suggested to be induced by arsenite and DMAA with {gamma}-GCS induced in cells incubated with DMAA. Among the arsenic compounds, methylarsonic acid (MAA) was not effective in causing an increase in the GSH level. Accordingly, increases in the GSH level caused by arsenite and DMAA may be specific phenomena in which the cells responded to the arsenicals by increasing the GSH level. (orig.) With 13 figs., 1 tab., 47 refs.

  9. Protection by beverages, fruits, vegetables, herbs, and flavonoids against genotoxicity of 2-acetylaminofluorene and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in metabolically competent V79 cells.

    Science.gov (United States)

    Edenharder, R; Sager, J W; Glatt, H; Muckel, E; Platt, K L

    2002-11-26

    Chinese hamster lung fibroblasts, genetically engineered for the expression of rat cytochrome P450 dependent monooxygenase 1A2 and rat sulfotransferase 1C1 (V79-rCYP1A2-rSULT1C1 cells), were utilized to check for possible protective effects of beverages of plant origin, fruits, vegetables, and spices against genotoxicity induced by 2-acetylaminofluorene (AAF) or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Antigenotoxic activities of juices from spinach and red beets against AAF could be monitored with similar effectivity by the HPRT-mutagenicity test (IC(50)=0.64%; 2.57%) and alkaline single cell gel electrophoresis (comet assay; IC(50)=0.12%; 0.89%) which detects DNA strand breaks and abasic sites. Applying the comet assay, genotoxicity of PhIP could, however, be demonstrated only in the presence of hydroxyurea and 1-[beta-D-arabinofuranosyl]cytosine, known inhibitors of DNA repair synthesis. As expected, AAF and PhIP were unable to induce any genotoxic effects in the parent V79 cells. Genotoxic activity of PhIP was strongly reduced in a dose-related manner by green tea and red wine, by blueberries, blackberries, red grapes, kiwi, watermelon, parsley, and spinach, while two brands of beer, coffee, black tea, rooibos tea, morellos, black-currants, plums, red beets, broccoli (raw and cooked), and chives were somewhat less active. One brand of beer was only moderately active while white wine, bananas, white grapes, and strawberries were inactive. Similarly, genotoxicity of AAF was strongly reduced by green, black, and rooibos tea, red wine, morellos, black-currants, kiwi, watermelon, and spinach while plums, red beets, and broccoli (raw) were less potent. Broccoli cooked exerted only moderate and white wine weak antigenotoxic activity. With respect to the possible mechanism(s) of inhibition of genotoxicity, benzo[a]pyrene-7,8-dihydrodiol (BaP-7,8-OH) and N-OH-PhIP were applied as substrates for the CYP1A family and for rSULT 1C1, respectively. Morellos

  10. The BOSS Experiment of the EXPOSE-R2 Mission: Biofilms versus planktonic cells

    OpenAIRE

    Panitz, C.; Frösler, J.; Wingender, J.; Flemming, H.-C.; Rösch, P; Rettberg, P.

    2017-01-01

    In the BOSS experiment (biofilm organisms surfing space), which was performed in the context of the successfully finalized EXPOSE-R2 mission, an international consortium of scientists investigated the ability of a variety of organisms to survive in space and on Mars as a function of their life style. The question in focus is whether there are different strategies for individually living microorganisms (planktonic state) compared to a microbial consortium of the same cells (biofilm state) to c...

  11. DNA Fragmentation in mammalian cells exposed to various light ions

    Science.gov (United States)

    Belli, M.; Cherubini, R.; Dalla Vecchia, M.; Dini, V.; Esposito, G.; Moschini, G.; Sapora, O.; Signoretti, C.; Simone, G.; Sorrentino, E.; Tabocchini, M. A.

    Elucidation of how effects of densely ionizing radiation at cellular level are linked to DNA damage is fundamental for a better understanding of the mechanisms leading to genomic damage (especially chromosome aberrations) and developing biophysical models to predict space radiation effects. We have investigated the DNA fragmentation patterns induced in Chinese hamster V79 cells by 31 keV/μm protons, 123 keV/μm helium-4 ions and γ-rays in the size range 0.023-5.7 Mbp, using calibrated Pulsed Field Gel Electrophoresis (PFGE). The frequency distributions of fragments induced by the charged particles were shifted towards smaller sizes with respct to that induced by comparable doses of γ-rays. The DSB yields, evaluated from the fragments induced in the size range studied, were higher for protons and helium ions than for γ-rays by a factor of about 1.9 and 1.2, respectively. However, these ratios do not adequately reflect the RBE observed on the same cells for inactivation and mutation induced by these beams. This is a further indication for the lack of correlation between the effects exerted at cellular level and the initial yield of DSB. The dependence on radiation quality of the fragmentation pattern suggests that it may have a role in damage reparability. We have analyzed these patterns with a "random breakage" model generalized in order to consider the initial non-random distribution of the DNA molecules. Our results suggest that a random breakage mechanism can describe with a reasonable approximation the DNA fragmentation induced by γ-rays, while the approximation is not so good for light ions, likely due to the interplay between ion tracks and chromatin organization at the loop level.

  12. Radioprotection by DMSO in nitrogen-saturated mammalian cells exposed to helium ion beams

    Science.gov (United States)

    Hirayama, Ryoichi; Matsumoto, Yoshitaka; Kase, Yuki; Noguchi, Miho; Ando, Koichi; Ito, Atsushi; Okayasu, Ryuichi; Furusawa, Yoshiya

    2009-12-01

    The contribution of OH radical-mediated indirect action by particle beams under hypoxic irradiation condition was investigated by using a radical scavenger. V79 cells were irradiated with 150 MeV/nucleon helium ions at an LET of 2.2 keV/μm in the presence or absence of DMSO, and their colony survivals were determined. The contribution of indirect action to cell killing under hypoxic condition was estimated to be 52±9%. We conclude that OH radical-mediated indirect action still has a half in total contribution on cell killing under hypoxic condition.

  13. Inflammatory Alteration of Human T Cells Exposed Continuously to Asbestos.

    Science.gov (United States)

    Kumagai-Takei, Naoko; Yamamoto, Shoko; Lee, Suni; Maeda, Megumi; Masuzzaki, Hidenori; Sada, Nagisa; Yu, Min; Yoshitome, Kei; Nishimura, Yasumitsu; Otsuki, Takemi

    2018-02-08

    Asbestos is a known carcinogen and exposure can lead to lung cancer and malignant mesothelioma. To examine the effects of asbestos fibers on human immune cells, the human T cell leukemia/lymphoma virus (HTLV)-1 immortalized human T cell line MT-2 was employed. Following continuous exposure to asbestos fibers for more than eight months, MT-2 sublines showed acquisition of resistance to asbestos-induced apoptosis with decreased death signals and increased surviving signals. These sublines showed various characteristics that suggested a reduction in anti-tumor immunity. On the other hand, inflammatory changes such as expression of MMP7, CXCR5, CXCL13 and CD44 was found to be markedly higher in sublines continuously exposed to asbestos compared with original MT-2 cells. All of these molecules contribute to lung inflammation, T and B cell interactions and connections between mesothelial cells and T cells. Thus, further investigation focusing on these molecules may shed light on the role of chronic inflammation caused by asbestos exposure and the occurrence of malignant mesothelioma. Finally, regarding peripheral T cells from healthy donors (HD) and asbestos-exposed patients with pleural plaque (PP) or malignant pleural mesothelioma (MPM), following stimulation of CD4+ T cells, T cells from MPM patients showed reduced potential of interferon (IFN)-γ expression. Moreover, levels of interleukin (IL)-6, one of the most important cytokines in chronic inflammation, in cultured supernatants were higher in PP and MPM patients compared with HD. Overall, asbestos-induced chronic inflammation in the lung as well as the pleural cavity may facilitate the onset of asbestos-induced cancers due to alterations in the interactions among fibers, immune cells such as T and B cells and macrophages, and mesothelial and lung epithelial cells. Further investigations regarding chronic inflammation caused by asbestos fibers may assist in identifying molecular targets for preventive and

  14. Mechanical properties of MDCK II cells exposed to gold nanorods

    Directory of Open Access Journals (Sweden)

    Anna Pietuch

    2015-01-01

    Full Text Available Background: The impact of gold nanoparticles on cell viability has been extensively studied in the past. Size, shape and surface functionalization including opsonization of gold particles ranging from a few nanometers to hundreds of nanometers are among the most crucial parameters that have been focussed on. Cytoxicity of nanomaterial has been assessed by common cytotoxicity assays targeting enzymatic activity such as LDH, MTT and ECIS. So far, however, less attention has been paid to the mechanical parameters of cells exposed to gold particles, which is an important reporter on the cellular response to external stimuli.Results: Mechanical properties of confluent MDCK II cells exposed to gold nanorods as a function of surface functionalization and concentration have been explored by atomic force microscopy and quartz crystal microbalance measurements in combination with fluorescence and dark-field microscopy.Conclusion: We found that cells exposed to CTAB coated gold nanorods display a concentration-dependent stiffening that cannot be explained by the presence of CTAB alone. The stiffening results presumably from endocytosis of particles removing excess membrane area from the cell’s surface. Another aspect could be the collapse of the plasma membrane on the actin cortex. Particles coated with PEG do not show a significant change in elastic properties. This observation is consistent with QCM measurements that show a considerable drop in frequency upon administration of CTAB coated rods suggesting an increase in acoustic load corresponding to a larger stiffness (storage modulus.

  15. Endothelial cell contraction increases Candida adherence to exposed extracellular matrix.

    Science.gov (United States)

    Klotz, S A; Maca, R D

    1988-01-01

    Bovine vascular endothelial cells treated with EDTA, urea, or thrombin underwent a marked, reversible contraction resulting in exposure of the subendothelial extracellular matrix (ECM). Candida yeasts adhered more to contracted monolayers than to confluent monolayers (P less than 0.01) by preferentially adhering to the ECM. Two strains of Candida albicans and one strain of Candida tropicalis bound avidly to exposed ECM, but Pseudomonas aeruginosa did not. However, treatment of endothelium with forskolin, which induces cell shape changes without exposure of the ECM, did not cause an increase in adherence. Images PMID:3137171

  16. Chromosome aberrations in ataxia telangiectasia cells exposed to heavy ions

    Science.gov (United States)

    Kawata, T.; Cucinotta, F.; George, K.; Wu, H.; Shigematsu, N.; Furusawa, Y.; Uno, T.; Isobe, K.; Ito, H.

    Understanding of biological effects of heavy ions is important to assess healt h risk in space. One of the most important issues may be to take into account individual susceptibility. Ataxia telangiectasia (A-T) cells are known to exhibit abnormal responses to radiations but the mechanism of hyper radiosensitivity of A-T still remains unknown. We report chromosome aberrations in normal human fibroblasts and AT fibroblasts exposed to low- and high-LET radiations. A chemical-induced premature chromosome condensation (PCC) technique combined with chromosome- painting technique was applied to score chromosome aberrations in G2/M-phase cells. Following gamma irradiation, GM02052 cells were approximately 5 times more sensitive to g-rays than AG1522 cells. GM02052 cells had a much higher frequency of deletions and misrejoining than AG1522 cells. When the frequency of complex type aberrations was compared, GM02052 cells showed more than 10 times higher frequency than AG1522 cells. The results will be compared with those obtained from high-LET irradiations.

  17. The efficiency of photovoltaic cells exposed to pulsed laser light

    Science.gov (United States)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  18. Brassica oleracea L. Var. costata DC and Pieris brassicae L. aqueous extracts reduce methyl methanesulfonate-induced DNA damage in V79 hamster lung fibroblasts.

    Science.gov (United States)

    Sousa, Carla; Fernandes, Fátima; Valentão, Patrícia; Rodrigues, António Sebastião; Coelho, Marta; Teixeira, João P; Silva, Susana; Ferreres, Federico; Guedes de Pinho, Paula; Andrade, Paula B

    2012-05-30

    Brassica oleracea L. var. costata DC leaves and Pieris brassicae L. larvae aqueous extracts were assayed for their potential to prevent/induce DNA damage. None of them was mutagenic at the tested concentrations in the Ames test reversion assay using Salmonella His(+) TA98 strains, with and without metabolic activation. In the hypoxanthine-guanine phosphoribosyltransferase mutation assay using mammalian V79 fibroblast cell line, extracts at 500 μg/mL neither induced mutations nor protected against the mutagenicity caused by methyl methanesulfonate (MMS). In the comet assay, none of the extracts revealed to be genotoxic by itself, and both afforded protection, more pronounced for larvae extracts, against MMS-induced genotoxicity. As genotoxic/antigenotoxic effects of Brassica vegetables are commonly attributed to isothiocyanates, the extracts were screened for these compounds by headspace-solid-phase microextraction/gas chromatography-mass spectrometry. No sulfur compound was detected. These findings demonstrate that both extracts could be useful against damage caused by genotoxic compounds, the larvae extract being the most promising.

  19. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Sabanero, M.; Flores V, L. L. [Universidad de Guanajuato, Departamento de Biologia, DCNE, Noria Alta s/n, 36250 Guanajuato, Gto. (Mexico); Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M. [Universidad de Guanajuato, Departamento de Ingenieria Fisica, DCI, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Castruita D, J. P. [Universidad de Guadalajara, Departamento de Ecologia, CUCBA, Las Agujas, 45100 Zapopan, Jalisco (Mexico); Barbosa S, G., E-mail: myrna.sabanero@gmail.com [Universidad de Guanajuato, Departamento de Ciencias Medicas, DCS, 20 de Enero No. 929, Col. Obregon, 37000 Leon, Guanajuato (Mexico)

    2015-10-15

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H{sub 2}O{sub 2}/1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  20. Cell-derived vesicles exposing coagulant tissue factor in saliva.

    Science.gov (United States)

    Berckmans, René J; Sturk, Auguste; van Tienen, Laurens M; Schaap, Marianne C L; Nieuwland, Rienk

    2011-03-17

    On vascular damage, coagulation is initiated by extravascular tissue factor (TF). Intravascular TF, which is present on circulating cell-derived vesicles, is noncoagulant under physiologic conditions but prothrombotic under pathologic conditions. Human saliva triggers coagulation, but the mechanism and physiologic relevance are unknown. Because saliva is known to contain TF, we hypothesized that this TF may also be associated with cell-derived vesicles to facilitate coagulation when saliva directly contacts blood. The saliva-induced shortening of the clotting time of autologous plasma and whole blood from healthy subjects (n = 10) proved TF-dependent. This TF was associated with various types of cell-derived vesicles, including microparticles and exosomes. The physiologic function was shown by adding saliva to human pericardial wound blood collected from patients undergoing cardiac surgery. Addition of saliva shortened the clotting time from 300 ± 96 to 186 ± 24 seconds (P = .03). Our results show that saliva triggers coagulation, thereby reducing blood loss and the risk of pathogens entering the blood. We postulate that our reflex to lick a wound may be a mechanism to enable TF-exposing vesicles, present in saliva, to aid in the coagulation process and thus protect the organism from entering pathogens. This unique compartmentalization may be highly conserved because also animals lick their wounds.

  1. Charakterisierung von Sulfotransferasen im Gastrointestinaltrakt von Mensch und Ratte und Aktivierung von Promutagenen in V79-Zellen, die eine intestinale Form (1B1) des Menschen und der Ratte exprimieren

    Science.gov (United States)

    Teubner, Wera

    2001-05-01

    , SULTs were poorly expressed in the intestine. r1B1 and an unidentified immunoreactive protein of 35kD were found in the large intestine (rectum, colon, coecum), the proximal jejunum and glandular stomach. r1A1 protein was detected in the large intestine and forestomach. However, the highest levels of these forms in the intestine reached only 3% (r1A1) and 20% (r1B1 and 35kD-protein) of those detected in liver. Unlike in liver, SULT expression in the intestine was independent on gender. Immunohistochemical analysis of human colon and ileum using antibodies specific for either h1B1, h2A1 or all forms of h1A showed that all forms were expressed in the cytosol of the short-lived absorptive cells. In ileum, expression was restricted to villus cells with no staining of crypt cells; except for h1A forms, which were also detected in the endothelial cells of capillaries in the submucosa. In colon, h1B1 and h1A forms, but not h2A1 were detected in the upper third of the crypts. Sensitivities of the antibodies were insufficient for analysis of rat intestine. As 1B1 was the most prominent form in the intestine of both species, Ames tests and hprt gene mutation assays were performed using indicator cells constructed for heterologous expression of 1B1. 6-Hydroxymethylbenzo[a]pyrene and 4-hydroxycyclo-penta[def]chrysene were detected as strong mutagens in Salmonella typhimurium TA1538-h1B1 but neither in the SULT-deficient parental strain nor in bacteria expressing h1A1 or h1A3. Other benzylic or allylic alcohols were mutagenic in Salmonella typhimurium TA1538-h1A1 or h1A3, but not in the h1B1-expressing strain. For the mammalian system, one cell line with high 1B1 activity as determined by turnover of a-naphthol at 1µM and two cell lines with lower activity were established: V79-r1B1/A (1019 ± 224 pmol/mg/min), V79-r1B1/B (57 ± 9 pmol/mg/min) and V79-h1B1 (19 ± 5 pmol/mg/min). 1B1 expression in cytosolic fractions was comparable to rat liver and human colon for V79-r1B1/B and V79

  2. Improved immunogenicity of fusions between ethanol-treated cancer cells and dendritic cells exposed to dual TLR stimulation

    National Research Council Canada - National Science Library

    Koido, Shigeo; Homma, Sadamu; Okamoto, Masato; Namiki, Yoshihisa; Kan, Shin; Takakura, Kazuki; Kajihara, Mikio; Uchiyama, Kan; Hara, Eiich; Ohkusa, Toshifumi; Gong, Jianlin; Tajiri, Hisao

    2013-01-01

    ...) fused to whole cancer cells. We have recently revealed that ethanol-treated neoplastic cells fused to DCs exposed to 2 Toll-like receptor agonists efficiently induce cytotoxic T lymphocytes via TGF...

  3. B cells exposed to enterobacterial components suppress development of experimental colitis

    DEFF Research Database (Denmark)

    Schmidt, Esben Gjerløff Wedebye; Larsen, Hjalte List; Kristensen, Nanna Ny

    2012-01-01

    ). RESULTS: We demonstrate that splenic B cells exposed to ebx produce large amounts of IL-10 in vitro and express CD1d and CD5 previously known to be associated with regulatory B cells. In SCID mice transplanted with colitogenic CD4(+) CD25(-) T cells, co-transfer of ebx-B cells significantly suppressed...... development of colitis. Suppression was dependent on B cell-derived IL-10, as co-transfer of IL-10 knockout ebx-B cells failed to suppress colitis. Ebx-B cell-mediated suppression of colitis was associated with a decrease in interferon gamma (IFN-¿)-producing T(H) 1 cells and increased frequencies of Foxp3......-expressing T cells. CONCLUSIONS: These data demonstrate that splenic B cells exposed to enterobacterial components acquire immunosuppressive functions by which they can suppress development of experimental T cell-mediated colitis in an IL-10-dependent way. (Inflamm Bowel Dis 2011;)....

  4. Mitochondrial hyperpolarization and cytochrome-c release in microwave-exposed MCF-7 cells.

    Science.gov (United States)

    Esmekaya, Meric A; Canseven, Ayşe G; Kayhan, Handan; Tuysuz, Mehmet Z; Sirav, Bahriye; Seyhan, Nesrin

    2017-04-01

    This study examines the effects of a 2.1-GHz WCDMA-modulated microwave (MW) radiation on apoptotic activity and mitochondrial membrane potential (ΔΨm) in MCF-7 cells. The cells were exposed to the MW at a specific absorption rate (SAR) of 0.528 W/kg for 4 or 24 h. The antiproliferative effect of MW exposure was determined by the MTT test. Cytochrome-c and p53 levels were determined by an ELISA method. The relative ΔΨm was analysed by JC-1 staining using flow cytometer. Apoptotic rate of the cells was measured by Annexin-V-FITC staining. All assays were performed after certain time of incubations (15 min-4 h) following MW exposure. MW-exposed cells showed a significant decrease in viability when compared to unexposed cells. A significantly larger decrease was observed after longer exposure. The percentage of apoptotic cells, amount of cytochrome-c, and relative ΔΨm were significantly higher in MW-exposed cells. The percent of apoptotic cells and relative ΔΨm in 24 h MW-exposed group was significantly higher than those in 4 h MW-exposed group. However, no significant change was observed in p53 levels. These results demonstrated that exposure to 2.1-GHz WCDMA-modulated MW radiation caused hyperpolarization of mitochondria that in turn induced apoptosis in MCF-7 cells.

  5. Cell-derived vesicles exposing coagulant tissue factor in saliva

    NARCIS (Netherlands)

    Berckmans, René J.; Sturk, Auguste; van Tienen, Laurens M.; Schaap, Marianne C. L.; Nieuwland, Rienk

    2011-01-01

    On vascular damage, coagulation is initiated by extravascular tissue factor (TF). Intravascular TF, which is present on circulating cell-derived vesicles, is non-coagulant under physiologic conditions but prothrombotic under pathologic conditions. Human saliva triggers coagulation, but the mechanism

  6. Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field.

    Science.gov (United States)

    Hakoda, Masaru; Hirota, Yusuke

    2013-09-01

    The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.

  7. Autosomal mutants of proton-exposed kidney cells display frequent loss of heterozygosity on nonselected chromosomes.

    Science.gov (United States)

    Grygoryev, Dmytro; Dan, Cristian; Gauny, Stacey; Eckelmann, Bradley; Ohlrich, Anna P; Connolly, Marissa; Lasarev, Michael; Grossi, Gianfranco; Kronenberg, Amy; Turker, Mitchell S

    2014-05-01

    High-energy protons found in the space environment can induce mutations and cancer, which are inextricably linked. We hypothesized that some mutants isolated from proton-exposed kidneys arose through a genome-wide incident that causes loss of heterozygosity (LOH)-generating mutations on multiple chromosomes (termed here genomic LOH). To test this hypothesis, we examined 11 pairs of nonselected chromosomes for LOH events in mutant cells isolated from the kidneys of mice exposed to 4 or 5 Gy of 1 GeV protons. The mutant kidney cells were selected for loss of expression of the chromosome 8-encoded Aprt gene. Genomic LOH events were also assessed in Aprt mutants isolated from isogenic cultured kidney epithelial cells exposed to 5 Gy of protons in vitro. Control groups were spontaneous Aprt mutants and clones isolated without selection from the proton-exposed kidneys or cultures. The in vivo results showed significant increases in genomic LOH events in the Aprt mutants from proton-exposed kidneys when compared with spontaneous Aprt mutants and when compared with nonmutant (i.e., nonselected) clones from the proton-exposed kidneys. A bias for LOH events affecting chromosome 14 was observed in the proton-induced Aprt mutants, though LOH for this chromosome did not confer increased radiation resistance. Genomic LOH events were observed in Aprt mutants isolated from proton-exposed cultured kidney cells; however the incidence was fivefold lower than in Aprt mutants isolated from exposed intact kidneys, suggesting a more permissive environment in the intact organ and/or the evolution of kidney clones prior to their isolation from the tissue. We conclude that proton exposure creates a subset of viable cells with LOH events on multiple chromosomes, that these cells form and persist in vivo, and that they can be isolated from an intact tissue by selection for a mutation on a single chromosome.

  8. Estrogen enhanced cell-cell signalling in breast cancer cells exposed to targeted irradiation

    Directory of Open Access Journals (Sweden)

    Held Kathryn D

    2008-06-01

    Full Text Available Abstract Background Radiation-induced bystander responses, where cells respond to their neighbours being irradiated are being extensively studied. Although evidence shows that bystander responses can be induced in many types of cells, it is not known whether there is a radiation-induced bystander effect in breast cancer cells, where the radiosensitivity may be dependent on the role of the cellular estrogen receptor (ER. This study investigated radiation-induced bystander responses in estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231 breast cancer cells. Methods The influence of estrogen and anti-estrogen treatments on the bystander response was determined by individually irradiating a fraction of cells within the population with a precise number of helium-3 using a charged particle microbeam. Damage was scored as chromosomal damage measured as micronucleus formation. Results A bystander response measured as increased yield of micronucleated cells was triggered in both MCF-7 and MDA-MB-231 cells. The contribution of the bystander response to total cell damage in MCF-7 cells was higher than that in MDA-MB-231 cells although the radiosensitivity of MDA-MB-231 was higher than MCF-7. Treatment of cells with 17β-estradiol (E2 increased the radiosensitivity and the bystander response in MCF-7 cells, and the effect was diminished by anti-estrogen tamoxifen (TAM. E2 also increased the level of intracellular reactive oxygen species (ROS in MCF-7 cells in the absence of radiation. In contrast, E2 and TAM had no influence on the bystander response and ROS levels in MDA-MB-231 cells. Moreover, the treatment of MCF-7 cells with antioxidants eliminated both the E2-induced ROS increase and E2-enhanced bystander response triggered by the microbeam irradiation, which indicates that ROS are involved in the E2-enhanced bystander micronuclei formation after microbeam irradiation. Conclusion The observation of bystander responses in breast

  9. Metformin is also effective on lactic acidosis-exposed melanoma cells switched to oxidative phosphorylation.

    Science.gov (United States)

    Peppicelli, Silvia; Toti, Alessandra; Giannoni, Elisa; Bianchini, Francesca; Margheri, Francesca; Del Rosso, Mario; Calorini, Lido

    2016-07-17

    Low extracellular pH promotes in melanoma cells a malignant phenotype characterized by an epithelial-to-mesenchymal transition (EMT) program, endowed with mesenchymal markers, high invasiveness and pro-metastatic property. Here, we demonstrate that melanoma cells exposed to an acidic extracellular microenvironment, 6.7±0.1, shift to an oxidative phosphorylation (Oxphos) metabolism. Metformin, a biguanide commonly used for type 2 diabetes, inhibited the most relevant features of acid-induced phenotype, including EMT and Oxphos. When we tested effects of lactic acidosis, to verify whether sodium lactate might have additional effects on acidic melanoma cells, we found that EMT and Oxphos also characterized lactic acid-treated cells. An increased level of motility was the only gained property of lactic acidic-exposed melanoma cells. Metformin treatment inhibited both EMT markers and Oxphos and, when its concentration raised to 10 mM, it induced a striking inhibition of proliferation and colony formation of acidic melanoma cells, both grown in protons enriched medium or lactic acidosis. Thus, our study provides the first evidence that metformin may target either proton or lactic acidosis-exposed melanoma cells inhibiting EMT and Oxphox metabolism. These findings disclose a new potential rationale of metformin addition to advanced melanoma therapy, e.g. targeting acidic cell subpopulation.

  10. Micronucleus frequency in exfoliated buccal cells from hairdresser who expose to hair products

    Directory of Open Access Journals (Sweden)

    Koh Hui Yee

    2015-06-01

    Full Text Available Background: Hairdresser is one of the fastest growing occupations in today’s society. Hairdresser help styling, cutting, colouring, perming, curling, straightening hair and various treatment to customer. Somehow, hairdresser are constantly exposed to chemical substances such as aromatic amines, hydrogen peroxide, thioglycolic acid, formaldehyde in hair products which can cause damage to human’s genome. Micronucleus is one of the effective biomarker for processes associated with the induction of DNA damage. Purpose: The aim of this study was to determine the micronucleus frequencies in buccal mucosa epithelial cells of hairdresser who were exposed to chemical of hair products. Method: This study was conducted on twenty female subjects, who were divided into 2 groups: exposed and non-exposed (control group. All subjects recruited were working in the same beauty salon. Buccal cells were obtained from each individual by using cytobrush. The cells were stained with modified Feulgen-Ronssenback method and counting of micronucleus per 1000 cell was done under light microscope. The data were analyzed using independent t-test and one-way Anova (p<0.05. Result: The result showed a significant difference in micronucleus frequency between 2 groups. There were a significantly increase of micronucleus frequency in hairdressers and increase of  micronucleus frequency with the longer duration of exposure. Conclusion: It concluded that the chemical substances of hair products had affected the micronucleus frequency ofthe epithelial cells in buccal mucosa of hairdressers.

  11. BCG vaccination induces HIV target cell activation in HIV-exposed infants in a randomized trial.

    Science.gov (United States)

    Gasper, Melanie A; Hesseling, Anneke C; Mohar, Isaac; Myer, Landon; Azenkot, Tali; Passmore, Jo-Ann S; Hanekom, Willem; Cotton, Mark F; Crispe, I Nicholas; Sodora, Donald L; Jaspan, Heather B

    2017-04-06

    BACKGROUND. Bacillus Calmette-Guérin (BCG) vaccine is administered at birth to protect infants against tuberculosis throughout Africa, where most perinatal HIV-1 transmission occurs. We examined whether BCG vaccination alters the levels of activated HIV target T cells in HIV-exposed South African infants. METHODS. HIV-exposed infants were randomized to receive routine (at birth) or delayed (at 8 weeks) BCG vaccination. Activated and CCR5-expressing peripheral blood CD4+ T cell, monocyte, and NK cell frequencies were evaluated by flow cytometry and immune gene expression via PCR using Biomark (Fluidigm). RESULTS. Of 149 infants randomized, 92% (n = 137) were retained at 6 weeks: 71 in the routine BCG arm and 66 in the delayed arm. Routine BCG vaccination led to a 3-fold increase in systemic activation of HIV target CD4+CCR5+ T cells (HLA-DR+CD38+) at 6 weeks (0.25% at birth versus 0.08% in delayed vaccination groups; P = 0.029), which persisted until 8 weeks of age when the delayed arm was vaccinated. Vaccination of the infants in the delayed arm at 8 weeks resulted in a similar increase in activated CD4+CCR5+ T cells. The increase in activated T cells was associated with increased levels of MHC class II transactivator (CIITA), IL12RB1, and IFN-α1 transcripts within peripheral blood mononuclear cells but minimal changes in innate cells. CONCLUSION. BCG vaccination induces immune changes in HIV-exposed infants, including an increase in the proportion of activated CCR5+CD4+ HIV target cells. These findings provide insight into optimal BCG vaccine timing to minimize the risks of HIV transmissions to exposed infants while preserving potential benefits conferred by BCG vaccination. TRIAL REGISTRATION. ClinicalTrials.gov NCT02062580. FUNDING. This trial was sponsored by the Elizabeth Glaser Pediatric AIDS Foundation (MV-00-9-900-01871-0-00) and the Thrasher Foundation (NR-0095); for details, see Acknowledgments.

  12. Ultrastructure of cells of Ulmus americana cultured in vitro and exposed to the culture filtrate of Ceratocystis ulmi

    Science.gov (United States)

    Paula M. Pijut; R. Daniel Lineberger; Subhash C. Domir; Jann M. Ichida; Charles R. Krause

    1990-01-01

    Calli of American elm susceptible and resistant to Dutch elm disease were exposed to a culture filtrate of a pathogenic isolate of Ceratocystis ulmi. Cells from untreated tissue exhibited typical internal composition associated with healthy, actively growing cells. All cells exposed to culture filtrate showed appreciable ultrastructural changes....

  13. In vitro metabolism study of normal and tumor cells when exposed to red LED light

    Science.gov (United States)

    Stolbovskaya, Olga V.; Khairullin, Radik M.; Saenko, Yuri V.; Krasnikova, Ekaterina S.; Krasnikov, Aleksandr V.; Fomin, Aleksandr A.; Skaptsov, Aleksandr A.

    2016-04-01

    This work presents the results of studying the mitochondrial membrane potential, intracellular ROS, peculiarities of the cell cycle of cancer cells HCT-116 and the normal line of CHO cells when exposed to the red LED light with a wavelength range of 0.620-0.680 μm. A dose-dependent increase in mitochondrial membrane potential and intracellular ROS concentration in cancer cells HCT-116 was established. In normal CHO cell line a dose-dependent reduction of mitochondrial membrane potential and dose-dependent increase in intracellular ROS occur. It has been shown that the sensitivity of the studied cell lines to the red light depends on the stage of the cell cycle.

  14. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress.

    Science.gov (United States)

    Saeed-Zidane, Mohammed; Linden, Lea; Salilew-Wondim, Dessie; Held, Eva; Neuhoff, Christiane; Tholen, Ernst; Hoelker, Michael; Schellander, Karl; Tesfaye, Dawit

    2017-01-01

    Various environmental insults including diseases, heat and oxidative stress could lead to abnormal growth, functions and apoptosis in granulosa cells during ovarian follicle growth and oocyte maturation. Despite the fact that cells exposed to oxidative stress are responding transcriptionally, the potential release of transcripts associated with oxidative stress response into extracellular space through exosomes is not yet determined. Therefore, here we aimed to investigate the effect of oxidative stress in bovine granulosa cells in vitro on the cellular and exosome mediated defense mechanisms. Bovine granulosa cells were aspirated from ovarian follicles and cultured in DMEM/F-12 Ham culture medium supplemented with 10% exosome-depleted fetal bovine serum. In the first experiment sub-confluent cells were treated with 5 μM H2O2 for 40 min to induce oxidative stress. Thereafter, cells were subjected to ROS and mitochondrial staining, cell proliferation and cell cycle assays. Furthermore, gene and protein expression analysis were performed in H2O2-challenged versus control group 24 hr post-treatment using qRT-PCR and immune blotting or immunocytochemistry assay, respectively. Moreover, exosomes were isolated from spent media using ultracentrifugation procedure, and subsequently used for RNA isolation and qRT-PCR. In the second experiment, exosomes released by granulosa cells under oxidative stress (StressExo) or those released by granulosa cells without oxidative stress (NormalExo) were co-incubated with bovine granulosa cells in vitro to proof the potential horizontal transfer of defense molecules from exosomes to granulosa cells and investigate any phenotype changes. Exposure of bovine granulosa cells to H2O2 induced the accumulation of ROS, reduced mitochondrial activity, increased expression of Nrf2 and its downstream antioxidant genes (both mRNA and protein), altered the cell cycle transitions and induced cellular apoptosis. Granulosa cells exposed to oxidative

  15. The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria.

    Science.gov (United States)

    Yoder, Alyson C; Guo, Kejun; Dillon, Stephanie M; Phang, Tzu; Lee, Eric J; Harper, Michael S; Helm, Karen; Kappes, John C; Ochsenbauer, Christina; McCarter, Martin D; Wilson, Cara C; Santiago, Mario L

    2017-02-01

    Global transcriptome studies can help pinpoint key cellular pathways exploited by viruses to replicate and cause pathogenesis. Previous data showed that laboratory-adapted HIV-1 triggers significant gene expression changes in CD4+ T cell lines and mitogen-activated CD4+ T cells from peripheral blood. However, HIV-1 primarily targets mucosal compartments during acute infection in vivo. Moreover, early HIV-1 infection causes extensive depletion of CD4+ T cells in the gastrointestinal tract that herald persistent inflammation due to the translocation of enteric microbes to the systemic circulation. Here, we profiled the transcriptome of primary intestinal CD4+ T cells infected ex vivo with transmitted/founder (TF) HIV-1. Infections were performed in the presence or absence of Prevotella stercorea, a gut microbe enriched in the mucosa of HIV-1-infected individuals that enhanced both TF HIV-1 replication and CD4+ T cell death ex vivo. In the absence of bacteria, HIV-1 triggered a cellular shutdown response involving the downregulation of HIV-1 reactome genes, while perturbing genes linked to OX40, PPAR and FOXO3 signaling. However, in the presence of bacteria, HIV-1 did not perturb these gene sets or pathways. Instead, HIV-1 enhanced granzyme expression and Th17 cell function, inhibited G1/S cell cycle checkpoint genes and triggered downstream cell death pathways in microbe-exposed gut CD4+ T cells. To gain insights on these differential effects, we profiled the gene expression landscape of HIV-1-uninfected gut CD4+ T cells exposed to bacteria. Microbial exposure upregulated genes involved in cellular proliferation, MAPK activation, Th17 cell differentiation and type I interferon signaling. Our findings reveal that microbial exposure influenced how HIV-1 altered the gut CD4+ T cell transcriptome, with potential consequences for HIV-1 susceptibility, cell survival and inflammation. The HIV-1- and microbe-altered pathways unraveled here may serve as a molecular blueprint

  16. The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria

    Science.gov (United States)

    Dillon, Stephanie M.; Phang, Tzu; Lee, Eric J.; Helm, Karen; Kappes, John C.; McCarter, Martin D.

    2017-01-01

    Global transcriptome studies can help pinpoint key cellular pathways exploited by viruses to replicate and cause pathogenesis. Previous data showed that laboratory-adapted HIV-1 triggers significant gene expression changes in CD4+ T cell lines and mitogen-activated CD4+ T cells from peripheral blood. However, HIV-1 primarily targets mucosal compartments during acute infection in vivo. Moreover, early HIV-1 infection causes extensive depletion of CD4+ T cells in the gastrointestinal tract that herald persistent inflammation due to the translocation of enteric microbes to the systemic circulation. Here, we profiled the transcriptome of primary intestinal CD4+ T cells infected ex vivo with transmitted/founder (TF) HIV-1. Infections were performed in the presence or absence of Prevotella stercorea, a gut microbe enriched in the mucosa of HIV-1-infected individuals that enhanced both TF HIV-1 replication and CD4+ T cell death ex vivo. In the absence of bacteria, HIV-1 triggered a cellular shutdown response involving the downregulation of HIV-1 reactome genes, while perturbing genes linked to OX40, PPAR and FOXO3 signaling. However, in the presence of bacteria, HIV-1 did not perturb these gene sets or pathways. Instead, HIV-1 enhanced granzyme expression and Th17 cell function, inhibited G1/S cell cycle checkpoint genes and triggered downstream cell death pathways in microbe-exposed gut CD4+ T cells. To gain insights on these differential effects, we profiled the gene expression landscape of HIV-1-uninfected gut CD4+ T cells exposed to bacteria. Microbial exposure upregulated genes involved in cellular proliferation, MAPK activation, Th17 cell differentiation and type I interferon signaling. Our findings reveal that microbial exposure influenced how HIV-1 altered the gut CD4+ T cell transcriptome, with potential consequences for HIV-1 susceptibility, cell survival and inflammation. The HIV-1- and microbe-altered pathways unraveled here may serve as a molecular blueprint

  17. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke.

    Science.gov (United States)

    Berman, Reena; Jiang, Di; Wu, Qun; Chu, Hong Wei

    2016-01-01

    Human rhinovirus (HRV) infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS) increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT) reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air-liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS) with or without HRV-16 (5×10(4) 50% Tissue Culture Infective Dose [TCID50]/transwell) infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection.

  18. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Berman R

    2016-06-01

    Full Text Available Reena Berman, Di Jiang, Qun Wu, Hong Wei Chu Department of Medicine, National Jewish Health, Denver, CO, USA Abstract: Human rhinovirus (HRV infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air–liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS with or without HRV-16 (5×104 50% Tissue Culture Infective Dose [TCID50]/transwell infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection. Keywords: α1-antitrypsin, rhinovirus, COPD, cigarette smoke, ICAM-1

  19. Static electric fields interfere in the viability of cells exposed to ionising radiation.

    Science.gov (United States)

    Arruda-Neto, João D T; Friedberg, Errol C; Bittencourt-Oliveira, Maria C; Cavalcante-Silva, Erika; Schenberg, Ana C G; Rodrigues, Tulio E; Garcia, Fermin; Louvison, Monica; Paula, Claudete R; Mesa, Joel; Moron, Michelle M; Maria, Durvanei A; Genofre, Godofredo C

    2009-04-01

    The interference of electric fields (EF) with biological processes is an issue of considerable interest. No studies have as yet been reported on the combined effect of EF plus ionising radiation. Here we report studies on this combined effect using the prokaryote Microcystis panniformis, the eukaryote Candida albicans and human cells. Cultures of Microcystis panniformis (Cyanobacteria) in glass tubes were irradiated with doses in the interval 0.5-5 kGy, using a (60)Co gamma source facility. Samples irradiated with 3 kGy were exposed for 2 h to a 20 V . cm(-1) static electric field and viable cells were enumerated. Cultures of Candida albicans were incubated at 36 degrees C for 20 h, gamma-irradiated with doses from 1-4 kGy, and submitted to an electric field of 180 V . cm(-1). Samples were examined under a fluorescence microscope and the number of unviable (red) and viable (apple green fluorescence) cells was determined. For crossing-check purposes, MRC5 strain of lung cells were irradiated with 2 Gy, exposed to an electric field of 1250 V/cm, incubated overnight with the anti-body anti-phospho-histone H2AX and examined under a fluorescence microscope to quantify nuclei with gamma-H2AX foci. In cells exposed to EF, death increased substantially compared to irradiation alone. In C. albicans we observed suppression of the DNA repair shoulder. The effect of EF in growth of M. panniformis was substantial; the number of surviving cells on day-2 after irradiation was 12 times greater than when an EF was applied. By the action of a static electric field on the irradiated MRC5 cells the number of nuclei with gamma-H2AX foci increased 40%, approximately. Application of an EF following irradiation greatly increases cell death. The observation that the DNA repair shoulder in the survival curve of C. albicans is suppressed when cells are exposed to irradiation + EF suggests that EF likely inactivate cellular recovering processes. The result for the number of nuclei with gamma

  20. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Krumschnabel, Gerhard, E-mail: Gerhard.Krumschnabel@i-med.ac.at [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria); Ebner, Hannes L.; Hess, Michael W. [Division of Histology and Embryology, Medical University Innsbruck, Innsbruck (Austria); Villunger, Andreas [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria)

    2010-08-01

    Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120 h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell

  1. Functional activation of T cells by dendritic cells and macrophages exposed to the intracellular parasite Neospora caninum.

    Science.gov (United States)

    Dion, Sarah; Germon, Stéphanie; Guiton, Rachel; Ducournau, Céline; Dimier-Poisson, Isabelle

    2011-05-01

    Neospora caninum is an intracellular protozoan pathogen that causes abortion in cattle. We studied how the interaction between murine conventional dendritic cells or macrophages and N. caninum influences the generation of cell-mediated immunity against the parasite. We first explored the invasion and survival ability of N. caninum in dendritic cells and macrophages. We observed that protozoa rapidly invaded and proliferated into these two cell populations. We then investigated how Neospora-exposed macrophages or dendritic cells distinguish between viable and non-viable (heat-killed tachyzoites and antigenic extract) parasites. Viable tachyzoites and antigenic extract, but not killed parasites, altered the phenotype of immature dendritic cells. Dendritic cells infected with viable parasites down-regulated the expression of MHC-II, CD40, CD80 and CD86 whereas dendritic cells exposed to N. caninum antigenic extract up-regulated the expression of MHC-II and CD40 and down-regulated CD80 and CD86 expression. Moreover, only viable tachyzoites and antigenic extract induced IL-12 synthesis by dendritic cells. MHC-II expression was up-regulated and CD86 expression was down-regulated at the surface of macrophages, regardless of the parasitic form was encountered. However, IL-12 secretion by macrophages was only observed under conditions using viable and heat-killed parasite. We then analysed how macrophages and dendritic cells were involved in inducing T-cell responses. T lymphocyte IFN-γ-secretion in correlation with IL-12 production occurred after interactions between T cells and dendritic cells exposed to viable tachyzoites or antigenic extract. By contrast, for macrophages IFN-γ production was IL-12-independent and only occurred after interactions between T cells and macrophages exposed to antigenic extract. Thus, N. caninum-induced activation of murine dendritic cells, but not that of macrophages, was associated with T cell IFN-γ production after IL-12 secretion

  2. Frequency patterns of T-cell exposed motifs in immunoglobulin heavy chain peptides presented by MHCs

    Directory of Open Access Journals (Sweden)

    Robert D. Bremel

    2014-10-01

    Full Text Available Immunoglobulins are highly diverse protein sequences that are processed and presented to T-cells by B-cells and other antigen presenting cells. We examined a large dataset of immunoglobulin heavy chain variable regions (IGHV to assess the diversity of T-cell exposed motifs (TCEM. TCEM comprise those amino acids in a MHC-bound peptide which face outwards, surrounded by the MHC histotope, and which engage the T-cell receptor. Within IGHV there is a distinct pattern of predicted MHC class II binding and a very high frequency of re-use of the TCEMs. The re-use frequency indicates that only a limited number of different cognate T-cells are required to engage many different clonal B-cells. The amino acids in each outward-facing TCEM are intercalated with the amino acids of inward-facing MHC groove-exposed motifs (GEM. Different GEM may have differing, allele-specific, MHC binding affinities. The intercalation of TCEM and GEM in a peptide allows for a vast combinatorial repertoire of epitopes, each eliciting a different response. Outcome of T-cell receptor binding is determined by overall signal strength, which is a function of the number of responding T-cells and the duration of engagement. Hence, the frequency of T-cell exposed motif re-use appears to be an important determinant of whether a T-cell response is stimulatory or suppressive. The frequency distribution of TCEMs implies that somatic hypermutation is followed by clonal expansion that develop along repeated pathways. The observations of TCEM and GEM derived from immunoglobulins suggest a relatively simple, yet powerful, mechanism to correlate T-cell polyspecificity, through re-use of TCEMs, with a very high degree of specificity achieved by combination with a diversity of GEMs. The frequency profile of TCEMs also points to an economical mechanism for maintaining T-cell memory, recall, and self-discrimination based on an endogenously generated profile of motifs.

  3. Mechanisms of mutagenesis in human cells exposed to 55 MeV protons

    Science.gov (United States)

    Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    Protons represent the major type of charged particle radiation in spaceflight environments. The purpose of this study was to assess mutations arising in human lymphoid cells exposed to protons. Mutations were quantitated at the thymidine kinase (TK1) locus in cell lines derived from the same donor: TK6 cells (wt TP53) and WTK1 cells (mutant TP53). WTK1 cells were much more susceptible to mutagenesis following proton exposure than TK6 cells. Intragenic deletions were observed among early-arising TK1 mutants in TK6 cells, but not in WTK1 cells where all of the mutants arose by LOH. Deletion was the predominant mode of LOH in TK6 cells, while allelic recombination was the major mode of LOH in WTK1 cells. Deletions were of variable lengths, from recombination often extended to the telomere. In summary, proton exposures elicited many types of mutations at an autosomal locus in human cells. Most involved large scale loss of genetic information, either through deletion or by recombination.

  4. Assembly and Reorientation of Stress Fibers Drives Morphological Changes to Endothelial Cells Exposed to Shear Stress

    Science.gov (United States)

    Noria, Sabrena; Xu, Feng; McCue, Shannon; Jones, Mara; Gotlieb, Avrum I.; Langille, B. Lowell

    2004-01-01

    Fluid shear stress greatly influences the biology of vascular endothelial cells and the pathogenesis of atherosclerosis. Endothelial cells undergo profound shape change and reorientation in response to physiological levels of fluid shear stress. These morphological changes influence cell function; however, the processes that produce them are poorly understood. We have examined how actin assembly is related to shear-induced endothelial cell shape change. To do so, we imposed physiological levels of shear stress on cultured endothelium for up to 96 hours and then permeabilized the cells and exposed them briefly to fluorescently labeled monomeric actin at various time points to assess actin assembly. Alternatively, monomeric actin was microinjected into cells to allow continuous monitoring of actin distribution. Actin assembly occurred primarily at the ends of stress fibers, which simultaneously reoriented to the shear axis, frequently fused with neighboring stress fibers, and ultimately drove the poles of the cells in the upstream and/or downstream directions. Actin polymerization occurred where stress fibers inserted into focal adhesion complexes, but usually only at one end of the stress fiber. Neither the upstream nor downstream focal adhesion complex was preferred. Changes in actin organization were accompanied by translocation and remodeling of cell-substrate adhesion complexes and transient formation of punctate cell-cell adherens junctions. These findings indicate that stress fiber assembly and realignment provide a novel mode by which cell morphology is altered by mechanical signals. PMID:15039210

  5. [Pathways for maintenance of mitochondrial DNA integrity and mitochondrial functions in cells exposed to ionizing radiation].

    Science.gov (United States)

    Gaziev, A I

    2013-01-01

    The analytical review deals with the results of studies devoted to mitochondrial DNA (mtDNA) disorders, the development of oxidative stress and possible pathways for the maintenance of mitochondrial functions in cells exposed to ionizing radiation (IR). Mitochondrial functions, which are closely related to the integrity of mtDNA, play a key role in many cellular processes. A wide range of degenerative diseases, carcinogenesis, and aging is associated with disturbances in mtDNA. MtDNA and the mitochondrion as a whole are increasingly considered as sensitive targets for cancer radio-chemotherapy. Knowledge of post-radiation processes in the mitochondria also facilitates creation of possible additional ways to reduce the radiation reaction of the organism. Injuries and mutations in mtDNA occur with a greater frequency than in the nuclear DNA (nDNA) in cells exposed to IR and other genotoxicants. On the other hand, functionally active copies of mtDNA can persist and survive in the cells exposed to clinically relevant doses of radiation. This safety is ensured by numerous copies of mtDNA in the cell, and due to their shielding from the effects of reactive oxygen (and nitrogen) species (ROS) by nucleoid proteins and by the operation of base excision repair in mitochondria. However, the generation of ROS increases in the mitochondria of cells exposed to IR. The increased generation of ROS in mitochondria can sometimes persist up to several days after the exposure of cells. The prolonged increased generation of ROS may be due to the involvement in the electron transport chain of the complexes of aberrant proteins expressed by the genes of mutated mtDNA copies. This may lead to the additional DNA damage, mitochondrial dysfunction, and instability of the nuclear genome. However, the development of oxidative stress can be restrained by antioxidant systems in the mitochondria. The key role here is played by activation of Mn-SOD2 and the protein p53. In addition, activation of

  6. Identification of gene-based responses in human blood cells exposed to alpha particle radiation.

    Science.gov (United States)

    Chauhan, Vinita; Howland, Matthew; Wilkins, Ruth

    2014-07-12

    The threat of a terrorist-precipitated nuclear event places humans at danger for radiological exposures. Isotopes which emit alpha (α)-particle radiation pose the highest risk. Currently, gene expression signatures are being developed for radiation biodosimetry and triage with respect to ionizing photon radiation. This study was designed to determine if similar gene expression profiles are obtained after exposures involving α-particles. Peripheral blood mononuclear cells (PBMCs) were used to identify sensitive and robust gene-based biomarkers of α-particle radiation exposure. Cells were isolated from healthy individuals and were irradiated at doses ranging from 0-1.5 Gy. Microarray technology was employed to identify transcripts that were differentially expressed relative to unirradiated cells 24 hours post-exposure. Statistical analysis identified modulated genes at each of the individual doses. Twenty-nine genes were common to all doses with expression levels ranging from 2-10 fold relative to control treatment group. This subset of genes was further assessed in independent complete white blood cell (WBC) populations exposed to either α-particles or X-rays using quantitative real-time PCR. This 29 gene panel was responsive in the α-particle exposed WBCs and was shown to exhibit differential fold-changes compared to X-irradiated cells, though no α-particle specific transcripts were identified. Current gene panels for photon radiation may also be applicable for use in α-particle radiation biodosimetry.

  7. Ceftaroline modulates the innate immune and host defense responses of immunocompetent cells exposed to cigarette smoke.

    Science.gov (United States)

    Bruno, A; Cipollina, C; Di Vincenzo, S; Siena, L; Dino, P; Di Gaudio, F; Gjomarkaj, M; Pace, E

    2017-09-05

    Cigarette smoke, the principal risk factor for chronic obstructive pulmonary disease (COPD), negatively influences the effectiveness of the immune system's response to a pathogen. The antibiotic ceftaroline exerts immune-modulatory effects in bronchial epithelial cells exposed to cigarette smoke. The present study aims to assess the effects of ceftaroline on TLR2 and TLR4 expression, LPS binding and TNF-α and human beta defensin (HBD2) release in an undifferentiated and PMA-differentiated human monocyte cell line (THP-1) exposed or not to cigarette smoke extracts (CSE). TLR2, TLR4, and LPS binding were assessed by flow cytometry, TNF-α and HBD2 release were evaluated by ELISA. The constitutive expression of TLR2 and TLR4 and LPS binding were higher in differentiated compared to undifferentiated THP-1 cells. In undifferentiated THP-1 cells, CSE increased TLR2 and TLR4 protein levels, LPS binding and TNF-α release and reduced HBD2 release and ceftaroline counteracted all these effects. In differentiated THP-1, CSE did not significantly affect TLR2 and TLR4 expression and LPS binding but reduced HBD2 release and increased TNF-α release. Ceftaroline counteracted the effects of CSE on HBD2 release in differentiated THP-1. Ceftaroline counteracts the effect of CSE in immune cells by increasing the effectiveness of the innate immune system. This effect may also assist in reducing pathogen activity and recurrent exacerbations in COPD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Neutrophil capture by selectins on endothelial cells exposed to cigarette smoke.

    Science.gov (United States)

    Stone, P C W; Fisher, A C; Rainger, G E; Nash, G B

    2002-08-02

    We used a novel perfusion system to expose cultured human umbilical vein endothelial cells (HUVEC) to water-soluble components of cigarette smoke and study subsequent adhesion of flowing neutrophils. Neutrophils did not bind to HUVEC immediately after it had been exposed to cigarette smoke, but many adhered 90-150 min after exposure. The effect was reduced if the exposed medium was made serum-free, but this reduction was partially reversed if low density lipoprotein was added. Treatment of smoke-exposed HUVEC with antibodies against E-selectin or P-selectin reduced adhesion by approximately 50% or 75%, respectively; a combination of both antibodies essentially abolished adhesion. Enzyme-linked immunosorbent assay confirmed that exposure to smoke caused HUVEC to upregulate surface expression of E- and P-selectin. Thus, water-soluble constituent(s) of cigarette smoke cause efficient selectin-mediated capture of flowing neutrophils. This pro-inflammatory response may contribute to pathology associated with smoking, especially in tissues remote from the lung.

  9. Protective Effects of Hydroalcoholic Extract of Nasturtium officinale on Rat Blood Cells Exposed to Arsenic

    Directory of Open Access Journals (Sweden)

    Felor Zargari

    2015-06-01

    Full Text Available Background: Arsenic is one of the most toxic metalloids. Anemia and leukopenia are common results of poisoning with arsenic, which may happen due to a direct hemolytic or cytotoxic effect on blood cells. The aim of this study was to examine the effects of hydroalcoholic extract of Nasturtium officinale on blood cells and antioxidant enzymes in rats exposed to sodium (metaarsenite. Methods: 32 Male Sprague Dawley rats were randomly divided into four groups; Group I (normal healthy rats, Group II (treated with 5.5mg/kg of body weight of NaAsO2, Group III (treated with 500mg/kg of body weight of hydro-alcoholic extract of N. officinale, and Group IV (treated with group II and III supplementations. Blood samples were collected and red blood cell, white blood cell, hematocrit, hemoglobin, platelet, total protein and albumin levels and total antioxidant capacity were measured. Data was analyzed with Mann-Whitney U test. Results: WBC, RBC and Hct were decreased in the rats exposed to NaAsO2 (p<0.05. A significant increase was seen in RBC and Hct after treatment with the plant extract (p<0.05. There was no significant decrease in serum albumin and total protein in the groups exposed to NaAsO2 compared to the group I, but NaAsO2 decreased the total antioxidant capacity, significantly. Conclusion: The Nasturtium officinale extract have protective effect on arsenic-induced damage of blood cells.

  10. Cell surface differences of Naegleria fowleri and Naegleria lovaniensis exposed with surface markers.

    Science.gov (United States)

    González-Robles, Arturo; Castañón, Guadalupe; Cristóbal-Ramos, Ana Ruth; Hernández-Ramírez, Verónica Ivonne; Omaña-Molina, Maritza; Martínez-Palomo, Adolfo

    2007-12-01

    Differences in the distribution of diverse cell surface coat markers were found between Naegleria fowleri and Naegleria lovaniensis. The presence of carbohydrate-containing components in the cell coat of the two species was detected by selective staining with ruthenium red and alcian blue. Using both markers, N. fowleri presented a thicker deposit than N. lovaniensis. The existence of exposed mannose or glucose residues was revealed by discriminatory agglutination with the plant lectin Concanavalin A. These sugar residues were also visualized at the cell surface of these parasites either by transmission electron microscopy or by fluorescein-tagged Concanavalin A. Using this lectin cap formation was induced only in N. fowleri. The anionic sites on the cell surface detected by means of cationized ferritin were more apparent in N. fowleri. Biotinylation assays confirmed that even though the two amoebae species have some analogous plasma membrane proteins, there is a clear difference in their composition.

  11. Sirolimus Increases T-Cell Abundance in the Sun Exposed Skin of Kidney Transplant Recipients.

    Science.gov (United States)

    Burke, Michael Thomas; Sambira Nahum, Lauren C; Isbel, Nicole M; Carroll, Robert P; Soyer, Hans Peter; Francis, Ross; Bridge, Jennifer Anne; Hawley, Carmel; Oliver, Kimberly; Staatz, Christine E; Wells, James William

    2017-07-01

    Kidney transplant recipients (KTRs) receiving the mammalian target of rapamycin inhibitor sirolimus may display a reduced risk of skin cancer development compared to KTRs receiving calcineurin inhibitors. Despite studies investigating the effects of these 2 drug classes on T cells in patient blood, the effect these drugs may have in patient skin is not yet known. Fifteen patients with chronic kidney disease (not recipients of immunosuppressive drugs), and 30 KTRs (15 receiving a calcineurin inhibitor, and 15 receiving sirolimus) provided matched samples of blood, sun exposed (SE) and non-SE skin. The abundance of total CD8+ and CD4+ T cells, memory CD8+ and CD4+ T cells, and regulatory T (Treg) cells in each sample was then assessed by flow cytometry. Sirolimus treatment significantly increased absolute numbers of CD4+ T cells, memory CD8+- and CD4+ T cells, and Treg cells in SE skin versus paired samples of non-SE skin. No differences were found in the absolute number of any T cell subset in the blood. Correlation analysis revealed that the percentage of T cell subsets in the blood does not always accurately reflect the percentage of T-cell subsets in the skin of KTRs. Furthermore, sirolimus significantly disrupts the balance of memory CD4+ T cells in the skin after chronic sun exposure. This study demonstrated that immunosuppressive drug class and sun exposure modify the abundance of multiple T-cell subsets in the skin of KTRs. Correlation analysis revealed that the prevalence of Treg cells in KTR blood does not accurately reflect the prevalence of Treg cells in KTR skin.

  12. Phenotypic modifications in Staphylococcus aureus cells exposed to high concentrations of vancomycin and teicoplanin

    Directory of Open Access Journals (Sweden)

    Fábio D.A. Gonçalves

    2016-01-01

    Full Text Available Bacterial cells are known to change the fatty acid composition of the phospholipids as a phenotypic response to environmental conditions and to the presence of toxic compounds such as antibiotics. In the present study, Staphylococcus aureus cells collected during the exponential growth phase were challenged with 50 and 100 mg/L of vancomycin and teicoplanin, which are concentrations high enough to kill the large majority of the cell population. Colony-forming unit counts showed biphasic killing kinetics, typical for persister cell enrichment, in both antibiotics and concentrations tested. However, fluorescence microscopy showed the existence of viable but non-culturable (VBNC cells in a larger number than that of possible persister cells.The analysis of the fatty acid composition of the cells showed that, following antibiotic exposure up to 6 h, the survivor cells have an increased percentage of saturated fatty acids, a significant reduced percentage of branched fatty acids and an increased iso/anteiso branched fatty acid ratio when compared to cells exhibiting a regular phenotype. This should result in lower membrane fluidity. However, cells exposed for 8-24 h presented an increased branched/saturated and lower iso/anteiso branched fatty acid ratios, and thus increased membrane fluidity. Furthermore, the phenotypic changes were transmitted to daughter cells grown in drug-free media. The fact that VBNC cells presented nearly the same fatty acid composition as those obtained after cell growth in drug-free media, which could only be the result of growth of persister cells, suggest that VBNC and persister phenotypes share the same type of response to antibiotics at the lipid level.

  13. Assessment of DNA integrity (COMET assay) in sperm cells of boron-exposed workers.

    Science.gov (United States)

    Duydu, Yalçin; Başaran, Nurşen; Ustündağ, Aylin; Aydin, Sevtap; Undeğer, Ulkü; Ataman, Osman Yavuz; Aydos, Kaan; Düker, Yalçin; Ickstadt, Katja; Waltrup, Britta Schulze; Golka, Klaus; Bolt, Hermann M

    2012-01-01

    An extension of a male reproductive study conducted in a boric acid/borate production zone at Bandırma, Turkey, is presented. The relation between DNA-strand breaks (COMET assay, neutral and alkaline version) in sperm cells and previously described sperm quality parameters was investigated in boron-exposed males. A correlation between blood boron levels and mean DNA-strand breaks in sperm was weak, and DNA-strand breaks in sperm were statistically not different between control and exposed groups. Therefore, increasing boron exposures had no additional contribution in addition to already pre-existing DNA-strand breaks in the sperm cells. Weak but statistically significant correlations between DNA-strand breaks and motility/morphology parameters of sperm samples were observed in the neutral version of the COMET assay, while correlations between the same variables were statistically not significant in the alkaline version. A likely reason for these negative results, even in highly exposed humans, is that experimental exposures that had led to reproductive toxicity in animals were significantly higher than any boron exposures, which may be reached under realistic human conditions.

  14. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Science.gov (United States)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  15. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2011-01-01

    Full Text Available Abstract Herein we are the first to report that single-walled carbon nanotubes (SWCNTs exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

  16. Spinocerebellar ataxia: miRNAs expose biological pathways underlying pervasive Purkinje cell degeneration.

    Science.gov (United States)

    van der Stijl, Rogier; Withoff, Sebo; Verbeek, Dineke S

    2017-12-01

    Recent work has demonstrated the importance of miRNAs in the pathogenesis of various brain disorders including the neurodegenerative disorder spinocerebellar ataxia (SCA). This review focuses on the role of miRNAs in the shared pathogenesis of the different SCA types. We examine the novel findings of a recent cell-type-specific RNA-sequencing study in mouse brain and discuss how the identification of Purkinje-cell-enriched miRNAs highlights biological pathways that expose the mechanisms behind pervasive Purkinje cell degeneration in SCA. These key pathways are likely to contain targets for therapeutic development and represent potential candidate genes for genetically unsolved SCAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Colon stem cell and crypt dynamics exposed by cell lineage reconstruction.

    Directory of Open Access Journals (Sweden)

    Yitzhak Reizel

    2011-07-01

    Full Text Available Stem cell dynamics in vivo are often being studied by lineage tracing methods. Our laboratory has previously developed a retrospective method for reconstructing cell lineage trees from somatic mutations accumulated in microsatellites. This method was applied here to explore different aspects of stem cell dynamics in the mouse colon without the use of stem cell markers. We first demonstrated the reliability of our method for the study of stem cells by confirming previously established facts, and then we addressed open questions. Our findings confirmed that colon crypts are monoclonal and that, throughout adulthood, the process of monoclonal conversion plays a major role in the maintenance of crypts. The absence of immortal strand mechanism in crypts stem cells was validated by the age-dependent accumulation of microsatellite mutations. In addition, we confirmed the positive correlation between physical and lineage proximity of crypts, by showing that the colon is separated into small domains that share a common ancestor. We gained new data demonstrating that colon epithelium is clustered separately from hematopoietic and other cell types, indicating that the colon is constituted of few progenitors and ruling out significant renewal of colonic epithelium from hematopoietic cells during adulthood. Overall, our study demonstrates the reliability of cell lineage reconstruction for the study of stem cell dynamics, and it further addresses open questions in colon stem cells. In addition, this method can be applied to study stem cell dynamics in other systems.

  18. Microtubule Formation and Activities of Antioxidative Enzymes in PC12 Cells Exposed to Phosphatidylcholine Hydroperoxides

    Directory of Open Access Journals (Sweden)

    Yukako Yamanaka

    2012-11-01

    Full Text Available Aging increases free radical generation and lipid oxidation and, thereby, mediates neurodegenerative diseases. As the brain is rich in lipids (polyunsaturated fatty acids, the antioxidative system plays an important role in protecting brain tissues from oxidative injury. The changes in microtubule formation and antioxidative enzyme activities have been investigated in rat pheochromocytoma PC12 cells exposed to various concentrations of phosphatidylcholine hydroperoxides (PCOOH. We measured three typical antioxidative enzymes, superoxide dismutase (SOD, glutathione peroxidase (GPx, and catalase (CAT. The microtubule assembly system was dependent on the antioxidative enzyme system in cells exposed to oxidative stress. The activities of the three enzymes increased in a PCOOH exposure-dependent manner. In particular, the changes in the activity as a result of PCOOH exposure were similar in the three antioxidative enzymes. This is the first report indicating the compatibility between the tubulin-microtubule and antioxidative enzyme systems in cells that deteriorate as a result of phospholipid hydroperoxide administration from an exterior source. The descending order of sensitivity of the three enzymes to PCOOH is also discussed.

  19. [The intervention of nicotinamide on skin melanocyte's cell proliferation after UVA (365 nm) exposed.].

    Science.gov (United States)

    Patam, Muhammad; Jin, Xi-peng; Pan, Jian-ying; Shen, Guang-zu; Jin, Tai-Yi

    2005-02-01

    To investigate the interference effect of nicotinamide on UVA-induced cell proliferation in human skin melanocyte. To apply the optimum UVA dose expected to cause cell proliferation: 0.2 cm2, nicotinamide was added after the 0.2 cm2 UVA exposure immediately or 48 h later, then the rate of cell proliferation, calcium concentration and the activities of Na+-K+, Ca2+-ATP enzymes of melanocytes were measured respectively. After treatment with 1.000 mg/ml nicotinamide following UVA exposure, the rate of cell proliferation was decreased significantly 24 hours later. Treatment with 0.125 mg/ml nicotinamide 48 hours after UVA exposure also significantly inhibited the cell proliferation; 1.25 mg/ml nicotinamide increased calcium concentration in cells; 0.250 mg/ml nicotinamide increased the activities of Na+-K+, Ca2+-ATP enzymes in melanocytes (P Nicotinamide has more obvious effect on inhibiting melanocyte's proliferation if added immediately following UVA exposure. Our discovery indicated that nicotinamide may affect the melanocyte through modulating the calcium concentration. It is possible to consider nicotinamide as an efficient and safe sun screen to provide a certain level of protection for UVA exposed skin.

  20. Evaluation of cell types for assessment of cytogenetic damage in arsenic exposed population

    Directory of Open Access Journals (Sweden)

    Singh Keshav K

    2008-05-01

    Full Text Available Abstract Background Cytogenetic biomarkers are essential for assessing environmental exposure, and reflect adverse human health effects such as cellular damage. Arsenic is a potential clastogen and aneugen. In general, the majority of the studies on clastogenic effects of arsenic are based on frequency of micronuclei (MN study in peripheral lymphocytes, urothelial and oral epithelial cells. To find out the most suitable cell type, here, we compared cytogenetic damage through MN assay in (a various populations exposed to arsenic through drinking water retrieved from literature review, as also (b arsenic-induced Bowen's patients from our own survey. Results For literature review, we have searched the Pubmed database for English language journal articles using the following keywords: "arsenic", "micronuclei", "drinking water", and "human" in various combinations. We have selected 13 studies consistent with our inclusion criteria that measured micronuclei in either one or more of the above-mentioned three cell types, in human samples. Compared to urothelial and buccal mucosa cells, the median effect sizes measured by the difference between people with exposed and unexposed, lymphocyte based MN counts were found to be stronger. This general pattern pooled from 10 studies was consistent with our own set of three earlier studies. MN counts were also found to be stronger for lymphocytes even in arsenic-induced Bowen's patients (cases compared to control individuals having arsenic-induced non-cancerous skin lesions. Conclusion Overall, it can be concluded that MN in lymphocytes may be superior to other epithelial cells for studying arsenic-induced cytogenetic damage.

  1. Altered global gene expression profiles in human gastrointestinal epithelial Caco2 cells exposed to nanosilver

    Directory of Open Access Journals (Sweden)

    Saura C. Sahu

    2016-01-01

    Full Text Available Extensive consumer exposure to food- and cosmetics-related consumer products containing nanosilver is of public safety concern. Therefore, there is a need for suitable in vitro models and sensitive predictive rapid screening methods to assess their toxicity. Toxicogenomic profile showing subtle changes in gene expressions following nanosilver exposure is a sensitive toxicological endpoint for this purpose. We evaluated the Caco2 cells and global gene expression profiles as tools for predictive rapid toxicity screening of nanosilver. We evaluated and compared the gene expression profiles of Caco-2 cells exposed to 20 nm and 50 nm nanosilver at a concentration 2.5 μg/ml. The global gene expression analysis of Caco2 cells exposed to 20 nm nanosilver showed that a total of 93 genes were altered at 4 h exposure, out of which 90 genes were up-regulated and 3 genes were down-regulated. The 24 h exposure of 20 nm silver altered 15 genes in Caco2 cells, out of which 14 were up-regulated and one was down-regulated. The most pronounced changes in gene expression were detected at 4 h. The greater size (50 nm nanosilver at 4 h exposure altered more genes by more different pathways than the smaller (20 nm one. Metallothioneins and heat shock proteins were highly up-regulated as a result of exposure to both the nanosilvers. The cellular pathways affected by the nanosilver exposure is likely to lead to increased toxicity. The results of our study presented here suggest that the toxicogenomic characterization of Caco2 cells is a valuable in vitro tool for assessing toxicity of nanomaterials such as nanosilver.

  2. Innate Lymphoid Cells Mediate Pulmonary Eosinophilic Inflammation, Airway Mucous Cell Metaplasia, and Type 2 Immunity in Mice Exposed to Ozone.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Buglak, Nicholas; Li, Ning; White, Kaylin; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2017-08-01

    Exposure to elevated levels of ambient ozone in photochemical smog is associated with eosinophilic airway inflammation and nonatopic asthma in children. In the present study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced nonatopic asthma by using lymphoid cell-sufficient C57BL/6 mice, ILC-sufficient Rag2 -/- mice (devoid of T and B cells), and ILC-deficient Rag2 -/- Il2rg -/- mice (depleted of all lymphoid cells including ILCs). Mice were exposed to 0 or 0.8 parts per million ozone for 1 day or 9 consecutive weekdays (4 hr/day). A single exposure to ozone caused neutrophilic inflammation, airway epithelial injury, and reparative DNA synthesis in all strains of mice, irrespective of the presence or absence of ILCs. In contrast, 9-day exposures induced eosinophilic inflammation and mucous cell metaplasia only in the lungs of ILC-sufficient mice. Repeated ozone exposures also elicited increased messenger RNA expression of transcripts associated with type 2 immunity and airway mucus production in ILC-sufficient mice. ILC-deficient mice repeatedly exposed to ozone had no pulmonary pathology or increased gene expression related to type 2 immunity. These results suggest a new paradigm for the biologic mechanisms underlying the development of a phenotype of childhood nonatopic asthma that has been linked to ambient ozone exposures.

  3. T Cell Activation in South African HIV-Exposed Infants Correlates with Ochratoxin A Exposure

    Directory of Open Access Journals (Sweden)

    Lianna Frances Wood

    2017-12-01

    Full Text Available The introduction of non-breastmilk foods to HIV-infected infants is associated with increased levels of immune activation, which can impact the rate of HIV disease progression. This is particularly relevant in countries where mother-to-child transmission of HIV still occurs at unacceptable levels. The goal of this study was to evaluate the levels of the toxic food contaminant ochratoxin A (OTA in HIV-exposed South African infants that are either breastfed or consuming non-breast milk foods. OTA is a common mycotoxin, found in grains and soil, which is toxic at high doses but has immunomodulatory properties at lower doses. Samples from HIV-exposed and HIV-unexposed infants enrolled in prospective observational cohort studies were collected and analyzed at birth through 14 weeks of age. We observed that infants consuming non-breast milk foods had significantly higher plasma levels of OTA at 6 weeks of age compared to breastfed infants, increasing until 8 weeks of age. The blood levels of OTA detected were comparable to levels observed in OTA-endemic communities. OTA plasma levels correlated with HIV target cell activation (CCR5 and HLADR expression on CD4+ T cells and plasma levels of the inflammatory cytokine CXCL10. These findings provide evidence that elevated OTA levels in South African infants are associated with the consumption of non-breastmilk foods and activation of the immune system. Reducing infant OTA exposure has the potential to reduce immune activation and provide health benefits, particularly in those infants who are HIV-exposed or HIV-infected.

  4. T Cell Activation in South African HIV-Exposed Infants Correlates with Ochratoxin A Exposure.

    Science.gov (United States)

    Wood, Lianna Frances; Wood, Matthew P; Fisher, Bridget S; Jaspan, Heather B; Sodora, Donald L

    2017-01-01

    The introduction of non-breastmilk foods to HIV-infected infants is associated with increased levels of immune activation, which can impact the rate of HIV disease progression. This is particularly relevant in countries where mother-to-child transmission of HIV still occurs at unacceptable levels. The goal of this study was to evaluate the levels of the toxic food contaminant ochratoxin A (OTA) in HIV-exposed South African infants that are either breastfed or consuming non-breast milk foods. OTA is a common mycotoxin, found in grains and soil, which is toxic at high doses but has immunomodulatory properties at lower doses. Samples from HIV-exposed and HIV-unexposed infants enrolled in prospective observational cohort studies were collected and analyzed at birth through 14 weeks of age. We observed that infants consuming non-breast milk foods had significantly higher plasma levels of OTA at 6 weeks of age compared to breastfed infants, increasing until 8 weeks of age. The blood levels of OTA detected were comparable to levels observed in OTA-endemic communities. OTA plasma levels correlated with HIV target cell activation (CCR5 and HLADR expression on CD4+ T cells) and plasma levels of the inflammatory cytokine CXCL10. These findings provide evidence that elevated OTA levels in South African infants are associated with the consumption of non-breastmilk foods and activation of the immune system. Reducing infant OTA exposure has the potential to reduce immune activation and provide health benefits, particularly in those infants who are HIV-exposed or HIV-infected.

  5. Regulation of T Helper Cell Responses During Antigen Presentation by Norepinephrine-exposed Endothelial Cells.

    Science.gov (United States)

    Xu, Linghui; Ding, Wanhong; Stohl, Lori L; Zhou, Xi K; Azizi, Shayan; Chuang, Ethan; Lam, Jimmy; Wagner, John A; Granstein, Richard D

    2017-11-21

    Dermal blood vessels and regional lymph nodes are innervated by sympathetic nerves and, under stress, sympathetic nerves release norepinephrine (NE). Exposure of primary murine dermal microvascular endothelial cells (pDMECs) to NE followed by co-culture with Langerhans cells (LCs), responsive CD4+ T cells and antigen resulted in modulation of CD4+ T cell responses. NE-treatment of pDMECs induced increased production of interleukin (IL)-6 and IL-17A while downregulating interferon (IFN)-γ and IL-22 release. This effect did not require contact between pDMECs and LCs or T cells and depended on pDMEC production of IL-6. The presence of NE-treated pDMECs increased the proportion of CD4+ T cells expressing intracellular IL-17A and increased IL-17A mRNA while decreasing the proportion of IFN-γ- or IL-22-expressing CD4+ T cells and mRNA levels for those cytokines. Retinoic acid receptor-related orphan receptor gamma (RORγt) mRNA was significantly increased in CD4+ T cells while T-box transcription factor (T-bet) mRNA was decreased. Intradermal administration of NE prior to hapten immunization at the injection site produced a similar bias in draining lymph node CD4+ T cells toward IL-17A and away from IFN-γ and IL-22 production. Under stress, release of NE may have significant regulatory effects on the outcome of antigen presentation through actions on ECs as well as enhancement of inflammatory skin disorders involving IL-17/Th17 cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Ultrastructure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields

    Science.gov (United States)

    Belyavskaya, N. A.

    2001-01-01

    Investigations of low magnetic field (LMF) effects on biological systems have attracted attention of biologists due to planned space flights to other planets where the field intensity does not exceed 10 -5 Oe. Pea ( Pisum sativum L.) seeds were grown in an environment of LMF 3 days. In meristem cells of roots exposed to LMF, one could observe such ultrastructural peculiarities as a noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids. Mitochondria were the most sensitive organelle to LMF application. Their size and relative volume in cells increased, matrix was electron-transparent, and cristae reduced. Because of the significant role of calcium signalling in plant responses to different environmental factors, calcium participation in LMF effects was investigated using a pyroantimonate method to identify the localization of free calcium ions. The intensity of cytochemical reaction in root cells after LMF application was strong. The Ca 2+ pyroantimonate deposits were observed both in all organelles and in a hyaloplasm of the cells. Data obtained suggest that the observed LMF effects on ultrastructure of root cells were due to disruptions in different metabolic systems including effects on Ca 2+ homeostasis.

  7. Reduced cytotoxicity in PCB-exposed Chinese Hamster Ovary (CHO) cells pretreated with vitamin E.

    Science.gov (United States)

    Murati, Teuta; Šimić, Branimir; Pleadin, Jelka; Vukmirović, Maja; Miletić, Marina; Durgo, Ksenija; Kniewald, Jasna; Kmetič, Ivana

    2017-01-01

    The aim of this study was to evaluate protective effects of vitamin E (50 -150 μM) in ovary cells upon cytotoxic effects induced by two structurally distinct PCB congeners - planar "dioxin-like" PCB 77 and non-planar di-ortho-substituted PCB 153 with an emphasis on identifying differences in the mechanism of vitamin E action depending on the structure of congeners. Application of three bioassays confirmed that PCBs decrease ovarian cell proliferation with slightly profound effects of PCB 77. PCB - induced ROS production and lipid peroxidation were significant for both congeners with also more noticeable effect for PCB 77. Vitamin E pre-incubation has improved viability of cells, reduced ROS formation and lipid peroxidation induced by PCBs' treatment. Preincubation with vitamin E was more effective when cells where treated with non-planar PCB 153. Altogether, vitamin E action was protective, congener specific and more effective when ovary cells were exposed to ortho-substituted PCB congener. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: Reconciling the mechanisms mediating the bystander effect.

    Directory of Open Access Journals (Sweden)

    Michelle Le

    Full Text Available The objective of our study was to explore a possible molecular mechanism by which ultraviolet (UV biophotons could elicit bystander responses in reporter cells and resolve the problem of seemingly mutually exclusive mechanisms of a physical UV signal & a soluble factor-mediated bystander signal.The human colon carcinoma cell line, HCT116 p53 +/+, was directly irradiated with 0.5 Gy tritium beta particles to induce ultraviolet biophoton emission. Bystander cells were not directly irradiated but were exposed to the emitted UV biophotons. Medium was subsequently harvested from UV-exposed bystander cells. The exosomes extracted from this medium were incubated with reporter cell populations. These reporter cells were then assayed for clonogenic survival and mitochondrial membrane potential with and without prior treatment of the exosomes with RNase.Clonogenic cell survival was significantly reduced in reporter cells incubated with exosomes extracted from cells exposed to secondarily-emitted UV. These exosomes also induced significant mitochondrial membrane depolarization in receiving reporter cells. Conversely, exosomes extracted from non-UV-exposed cells did not produce bystander effects in reporter cells. The treatment of exosomes with RNase prior to their incubation with reporter cells effectively abolished bystander effects in reporter cells and this suggests a role for RNA in mediating the bystander response elicited by UV biophotons and their produced exosomes.This study supports a role for exosomes released from UV biophoton-exposed bystander cells in eliciting bystander responses and also indicates a reconciliation between the UV-mediated bystander effect and the bystander effect which has been suggested in the literature to be mediated by soluble factors.

  9. Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: Reconciling the mechanisms mediating the bystander effect.

    Science.gov (United States)

    Le, Michelle; Fernandez-Palomo, Cristian; McNeill, Fiona E; Seymour, Colin B; Rainbow, Andrew J; Mothersill, Carmel E

    2017-01-01

    The objective of our study was to explore a possible molecular mechanism by which ultraviolet (UV) biophotons could elicit bystander responses in reporter cells and resolve the problem of seemingly mutually exclusive mechanisms of a physical UV signal & a soluble factor-mediated bystander signal. The human colon carcinoma cell line, HCT116 p53 +/+, was directly irradiated with 0.5 Gy tritium beta particles to induce ultraviolet biophoton emission. Bystander cells were not directly irradiated but were exposed to the emitted UV biophotons. Medium was subsequently harvested from UV-exposed bystander cells. The exosomes extracted from this medium were incubated with reporter cell populations. These reporter cells were then assayed for clonogenic survival and mitochondrial membrane potential with and without prior treatment of the exosomes with RNase. Clonogenic cell survival was significantly reduced in reporter cells incubated with exosomes extracted from cells exposed to secondarily-emitted UV. These exosomes also induced significant mitochondrial membrane depolarization in receiving reporter cells. Conversely, exosomes extracted from non-UV-exposed cells did not produce bystander effects in reporter cells. The treatment of exosomes with RNase prior to their incubation with reporter cells effectively abolished bystander effects in reporter cells and this suggests a role for RNA in mediating the bystander response elicited by UV biophotons and their produced exosomes. This study supports a role for exosomes released from UV biophoton-exposed bystander cells in eliciting bystander responses and also indicates a reconciliation between the UV-mediated bystander effect and the bystander effect which has been suggested in the literature to be mediated by soluble factors.

  10. Global gene expression profiling in human lung cells exposed to cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Malard, V.; Berenguer, F.; Prat, O.; Ruat, S.; Steinmetz, G.; Quemeneur, E. [CEA VALRHO, Serv Biochim and Toxicol Nucl, DSV, iBEB, F-30207 Bagnols Sur Ceze (France)

    2007-06-06

    It has been estimated that more than 1 million workers in the United States are exposed to cobalt. Occupational exposure to {sup 59}Co occurs mainly via inhalation and leads to various lung diseases. Cobalt is classified by the IARC as a possible human carcinogen (group 2B). Although there is evidence for in vivo and in vitro toxicity, the mechanisms of cobalt-induced lung toxicity are not fully known. The purpose of this work was to identify potential signatures of acute cobalt exposure using a toxico-genomic approach. Data analysis focused on some cellular processes and protein targets that are thought to be relevant for carcinogenesis, transport and bio-marker research. Results: A time course transcriptome analysis was performed on A549 human pulmonary cells, leading to the identification of 85 genes which are repressed or induced in response to soluble 59 Co. A group of 29 of these genes, representing the main biological functions, was assessed by quantitative RT-PCR. The expression profiles of six of them were then tested by quantitative RT-PCR in a time-dependent manner and three modulations were confirmed by Western blotting. The 85 modulated genes include potential cobalt carriers (FBXL2, ZNT1, SLC12A5), tumor suppressors or transcription factors (MAZ, DLG1, MYC, AXL) and genes linked to the stress response (UBC, HSPCB, BN1P3L). We also identified nine genes coding for secreted proteins as candidates for bio-marker research. Of those, T1MP2 was found to be down-regulated and this modulation was confirmed, in a dose-dependent manner, at protein level in the supernatant of exposed cells. Conclusion: Most of these genes have never been described as related to cobalt stress and provide original hypotheses for further study of the effects of this metal ion on human lung epithelial cells. A putative bio-marker of cobalt toxicity was identified. (authors)

  11. Aneuploidy studies in human cells exposed in vitro to GSM-900 MHz radiofrequency radiation using FISH.

    Science.gov (United States)

    Bourthoumieu, Sylvie; Terro, Faraj; Leveque, Philippe; Collin, Alice; Joubert, Vanessa; Yardin, Catherine

    2011-04-01

    Since previous research found an increase in the rate of aneuploidies in human lymphocytes exposed to radiofrequencies, it seems important to perform further studies. The objective of this study was then to investigate whether the exposure to RF (radiofrequency) radiation similar to that emitted by mobile phones of a second generation standard, i.e., Global System for Mobile communication (GSM) may induce aneuploidy in cultured human cells. The potential induction of genomic instability by GSM-900 MHz radiofrequency (GSM-900) was investigated after in vitro exposure of human amniotic cells for 24 h to average-specific absorption rates (SAR) of 0.25, 1, 2 and 4 W/kg in the temperature range of 36.3-39.7°C. The exposures were carried out in a wire-patch cell (WPC). The rate of aneuploidy of chromosomes 11 and 17 was determined by interphase FISH (Fluorescence In Situ Hybridisation) immediately after independent exposure of three different donors for 24 h. At least 100 interphase cells were analysed per assay. No significant change in the rate of aneuploidy of chromosomes 11 and 17 was found following exposure to GSM-900 for 24 h at average SAR up to 4 W/kg. Our study did not show any in vitro aneuploidogenic effect of GSM using FISH and is not in agreement with the results of previous research.

  12. PPARγ affects nitric oxide in human umbilical vein endothelial cells exposed to Porphyromonas gingivalis.

    Science.gov (United States)

    Li, Peng; Zhang, Dakun; Wan, Meng; Liu, Jianru

    2016-08-01

    Porphyromonas gingivalis induces nitric oxide (NO) synthesis in human umbilical vein endothelial cells (HUVECs). Peroxisome proliferator-activated receptor (PPARγ) has an anti-inflammation function, and its involvement in this NO induction process requires elucidation. Here, we focused on PPARγ expression in HUVECs exposed to P. gingivalis, and investigated its effects on NO synthesis. HUVECs were time-dependently stimulated by P. gingivalis W83 for 0-24h. PPARγ expression was assessed at the mRNA and protein levels, and PPARγ activation was measured using dual-luciferase reporter assays. NO synthesis and NO synthase (NOS) expression in response to P. gingivalis were examined in HUVECs pretreated with representative PPARγ agonist (15-deoxy-Δ12,14-prostaglandin J2 10μM) or antagonist (GW9662 10μM). In addition, NO synthesis and NOS expression in the P. gingivalis infected and control groups were detected. The PPARγ mRNA level in HUVECs increased after exposure to P. gingivalis for 1h and its protein level increased at 2h. Luciferase-induced PPARγ increased in P. gingivalis-exposed HUVECs. NO synthesis in the infected group at 4h, and in the PPARγ-activated group at 8h, was higher than that in controls. Inducible NOS increased in the infected and PPARγ-activated groups at 4 and 8h. The total endothelial NOS (eNOS) and phospho-eNOS levels were lower in the infected group than controls, but did not change in the PPARγ-activated group. Activated PPARγ induces NO generation through the NOS pathway in HUVECs exposed to P. gingivalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib.

    Science.gov (United States)

    Houessinon, Aline; François, Catherine; Sauzay, Chloé; Louandre, Christophe; Mongelard, Gaelle; Godin, Corinne; Bodeau, Sandra; Takahashi, Shinichiro; Saidak, Zuzana; Gutierrez, Laurent; Régimbeau, Jean-Marc; Barget, Nathalie; Barbare, Jean-Claude; Ganne, Nathalie; Chauffert, Bruno; Coriat, Romain; Galmiche, Antoine

    2016-05-16

    Sorafenib, a kinase inhibitor active against various solid tumours, induces oxidative stress and ferroptosis, a new form of oxidative necrosis, in some cancer cells. Clinically-applicable biomarkers that reflect the impact of sorafenib on the redox metabolism of cancer cells are lacking. We used gene expression microarrays, real-time PCR, immunoblot, protein-specific ELISA, and gene reporter constructs encoding the enzyme luciferase to study the response of a panel of cancer cells to sorafenib. Tumour explants prepared from surgical hepatocellular carcinoma (HCC) samples and serum samples obtained from HCC patients receiving sorafenib were also used. We observed that genes of the metallothionein-1 (MT1) family are induced in the HCC cell line Huh7 exposed to sorafenib. Sorafenib increased the expression of MT1G mRNA in a panel of human cancer cells, an effect that was not observed with eight other clinically-approved kinase inhibitors. We identified the minimal region of the MT1G promoter that confers inducibility by sorafenib to a 133 base pair region containing an Anti-oxidant Response Element (ARE) and showed the essential role of the transcription factor NRF2 (Nuclear factor erythroid 2-Related Factor 2). We examined the clinical relevance of our findings by analysing the regulation of MT1G in five tumour explants prepared from surgical HCC samples. Finally, we showed that the protein levels of MT1 increase in the serum of some HCC patients receiving sorafenib, and found an association with reduced overall survival. These findings indicate that MT1 constitute a biomarker adapted for exploring the impact of sorafenib on the redox metabolism of cancer cells.

  14. The Bioeffects Resulting from Prokaryotic Cells and Yeast Being Exposed to an 18 GHz Electromagnetic Field.

    Directory of Open Access Journals (Sweden)

    The Hong Phong Nguyen

    Full Text Available The mechanisms by which various biological effects are triggered by exposure to an electromagnetic field are not fully understood and have been the subject of debate. Here, the effects of exposing typical representatives of the major microbial taxa to an 18 GHz microwave electromagnetic field (EMFwere studied. It appeared that the EMF exposure induced cell permeabilisation in all of the bacteria and yeast studied, while the cells remained viable (94% throughout the exposure, independent of the differences in cell membrane fatty acid and phospholipid composition. The resulting cell permeabilisation was confirmed by detection of the uptake of propidium iodine and 23 nm fluorescent silica nanospheres using transmission electron microscopy (TEM and confocal laser scanning microscopy (CLSM. Upon EMF exposure, the bacterial cell membranes are believed to become permeable through quasi-endocytosis processes. The dosimetry analysis revealed that the EMF threshold level required to induce the uptake of the large (46 nm nanopsheres was between three and six EMF doses, with a specific absorption rate (SAR of 3 kW/kg and 5 kW/kg per exposure, respectively, depending on the bacterial taxa being studied. It is suggested that the taxonomic affiliation and lipid composition (e.g. the presence of phosphatidyl-glycerol and/or pentadecanoic fatty acid may affect the extent of uptake of the large nanospheres (46 nm. Multiple 18 GHz EMF exposures over a one-hour period induced periodic anomalous increases in the cell growth behavior of two Staphylococcus aureus strains, namely ATCC 25923 and CIP 65.8T.

  15. The Bioeffects Resulting from Prokaryotic Cells and Yeast Being Exposed to an 18 GHz Electromagnetic Field.

    Science.gov (United States)

    Nguyen, The Hong Phong; Pham, Vy T H; Nguyen, Song Ha; Baulin, Vladimir; Croft, Rodney J; Phillips, Brian; Crawford, Russell J; Ivanova, Elena P

    2016-01-01

    The mechanisms by which various biological effects are triggered by exposure to an electromagnetic field are not fully understood and have been the subject of debate. Here, the effects of exposing typical representatives of the major microbial taxa to an 18 GHz microwave electromagnetic field (EMF)were studied. It appeared that the EMF exposure induced cell permeabilisation in all of the bacteria and yeast studied, while the cells remained viable (94% throughout the exposure), independent of the differences in cell membrane fatty acid and phospholipid composition. The resulting cell permeabilisation was confirmed by detection of the uptake of propidium iodine and 23 nm fluorescent silica nanospheres using transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Upon EMF exposure, the bacterial cell membranes are believed to become permeable through quasi-endocytosis processes. The dosimetry analysis revealed that the EMF threshold level required to induce the uptake of the large (46 nm) nanopsheres was between three and six EMF doses, with a specific absorption rate (SAR) of 3 kW/kg and 5 kW/kg per exposure, respectively, depending on the bacterial taxa being studied. It is suggested that the taxonomic affiliation and lipid composition (e.g. the presence of phosphatidyl-glycerol and/or pentadecanoic fatty acid) may affect the extent of uptake of the large nanospheres (46 nm). Multiple 18 GHz EMF exposures over a one-hour period induced periodic anomalous increases in the cell growth behavior of two Staphylococcus aureus strains, namely ATCC 25923 and CIP 65.8T.

  16. Transcriptional and secretomic profiling of epidermal cells exposed to alpha particle radiation.

    Science.gov (United States)

    Chauhan, Vinita; Howland, Matthew; Greene, Hillary Boulay; Wilkins, Ruth C

    2012-01-01

    Alpha (α)-particle emitters are probable isotopes to be used in a terrorist attack. The development of biological assessment tools to identify those who have handled these difficult to detect materials would be an asset to our current forensic capacity. In this study, for the purposes of biomarker discovery, human keratinocytes were exposed to α-particle and X-radiation (0.98 Gy/h at 0, 0.5, 1.0, 1.5 Gy) and assessed for differential gene and protein expression using microarray and Bio-Plex technology, respectively. Secretomic analysis of supernatants showed expression of two pro-inflammatory cytokines (IL-13 and PDGF-bb) to be exclusively affected in α-particle exposed cells. The highest dose of α-particle radiation modulated a total of 67 transcripts (fold change>|1.5|, (False discovery rate) FDR2 fold) included KIF20A, NEFM, C7orf10, HIST1H2BD, BMP6, and HIST1H2AC. Among the high expressing genes, five (CCNB2, BUB1, NEK2, CDC20, AURKA) were also differentially expressed at the medium (1.0 Gy) dose however, these genes were unmodulated following exposure to X-irradiation. Networks of these genes clustered around tumor protein-53 and transforming growth factor-beta signaling. This study has identified some potential gene /protein responses and networks that may be validated further to confirm their specificity and potential to be signature biomarkers of α-particle exposure.

  17. Noise Removal with Maintained Spatial Resolution in Raman Images of Cells Exposed to Submicron Polystyrene Particles

    Directory of Open Access Journals (Sweden)

    Linnea Ahlinder

    2016-04-01

    Full Text Available The biodistribution of 300 nm polystyrene particles in A549 lung epithelial cells has been studied with confocal Raman spectroscopy. This is a label-free method in which particles and cells can be imaged without using dyes or fluorescent labels. The main drawback with Raman imaging is the comparatively low spatial resolution, which is aggravated in heterogeneous systems such as biological samples, which in addition often require long measurement times because of their weak Raman signal. Long measurement times may however induce laser-induced damage. In this study we use a super-resolution algorithm with Tikhonov regularization, intended to improve the image quality without demanding an increased number of collected pixels. Images of cells exposed to polystyrene particles have been acquired with two different step lengths, i.e., the distance between pixels, and compared to each other and to corresponding images treated with the super-resolution algorithm. It is shown that the resolution after application of super-resolution algorithms is not significantly improved compared to the theoretical limit for optical microscopy. However, to reduce noise and artefacts in the hyperspectral Raman images while maintaining the spatial resolution, we show that it is advantageous to use short mapping step lengths and super-resolution algorithms with appropriate regularization. The proposed methodology should be generally applicable for Raman imaging of biological samples and other photo-sensitive samples.

  18. Hemorheological characteristics of red blood cells exposed to surface functionalized graphene quantum dots.

    Science.gov (United States)

    Kim, Jeongho; Nafiujjaman, Md; Nurunnabi, Md; Lee, Yong-Kyu; Park, Hun-Kuk

    2016-11-01

    Graphene quantum dots (GQDs) are potential candidates for various biomedical applications such as drug delivery, bioimaging, cell labeling, and biosensors. However, toxicological information on their effects on red blood cells (RBCs) and the mechanisms involved remain unexplored. To the best of our knowledge, our study is the first to investigate the toxicity effects of three GQDs with different surface functionalizations on the hemorheological characteristics of human RBCs, including hemolysis, deformability, aggregation, and morphological changes. RBCs were exposed to three different forms of GQDs (non-functionalized, hydroxylated, and carboxylated GQDs) at various concentrations (0, 500, 750, and 1000 μg/mL) and incubation times (0, 1, 2, 3, or 4 h). The rheological characteristics of the RBCs were measured using microfluidic-laser diffractometry and aggregometry. Overall, the hemolysis rate and rheological alterations of the RBCs were insignificant at a concentration less than 500 μg/mL. Carboxylated GQDs were observed to have more substantial hemolytic activity and caused abrupt changes in the deformability and aggregation of the RBCs than the non-functionalized or hydroxylated GQDs at concentrations >750 μg/mL. Our findings indicate that hemorheological assessments could be utilized to estimate the degree of toxicity to cells and to obtain useful information on safety sheets for nanomaterials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Pongrac, Igor M; Pavičić, Ivan; Milić, Mirta; Brkić Ahmed, Lada; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs - uncoated, coated with d-mannose, or coated with poly-l-lysine - affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles.

  20. Sildenafil Prevents Apoptosis of Human First-Trimester Trophoblast Cells Exposed to Oxidative Stress

    Science.gov (United States)

    Bolnick, Jay M.; Kilburn, Brian A.; Bolnick, Alan D.; Diamond, Michael P.; Singh, Manvinder; Hertz, Michael; Dai, Jing

    2015-01-01

    Human first-trimester trophoblast cells proliferate at low O2, but survival is compromised by oxidative stress, leading to uteroplacental insufficiency. The vasoactive drug, sildenafil citrate (Viagra, Sigma, St Louis, Missouri), has proven useful in reducing adverse pregnancy outcomes. An important biological function of this pharmaceutical is its action as an inhibitor of cyclic guanosine monophosphate (cGMP) phosphodiesterase type 5 activity, which suggests that it could have beneficial effects on trophoblast survival. To investigate whether sildenafil can prevent trophoblast cell death, human first-trimester villous explants and the HTR-8/SVneo cytotrophoblast cell line were exposed to hypoxia and reoxygenation (H/R) to generate oxidative stress, which induces apoptosis. Apoptosis was optimally inhibited during H/R by 350 ng/mL sildenafil. Sildenafil-mediated survival was reversed by l-NG-nitro-l-arginine methyl ester hydrochloride or cGMP antagonist, indicating a dependence on both nitric oxide (NO) and cGMP. Indeed, either a cGMP agonist or an NO generator was cytoprotective independent of sildenafil. These findings suggest a novel intervention route for patients with recurrent pregnancy loss or obstetrical placental disorders. PMID:25431453

  1. Proteomic profiling of the surface-exposed cell envelope proteins of Caulobacter crescentus.

    Science.gov (United States)

    Cao, Yuan; Bazemore-Walker, Carthene R

    2014-01-31

    Biotinylation of intact cells, avidin enrichment of derivatized peptides, and shotgun proteomics were employed to reveal the composition of the surface-exposed proteome of the aquatic bacterium, Caulobacter crescentus. Ninety-one unique proteins were identified with the majority originating from the outer membrane, periplasm, and inner membrane, subcellular regions that comprise the Gram-negative bacterium cell envelope. Many of these proteins were described as 'conserved hypothetical protein' or 'hypothetical protein'; and so, the actual expression of these gene products was confirmed. Others did not have any known function or lacked annotation. However, this investigation of the Caulobacter surfaceome did reveal the unanticipated presence of a number of enzymes involved in protein degradation. The results presented here can provide a starting point for hypothesis-driven research projects focused on this bacterium in particular and centered on understanding Gram-negative cell architecture and outer membrane biogenesis broadly. The detected protein degradation enzymes anchored on or located within the outer membrane suggest that Caulobacter has nutrient sources larger than small molecules and/or further processes surface proteins once secreted to this location. Additionally, confirmation of outer membrane residency of those proteins predicted to be periplasmic or whose location prediction was not definitive could potentially elucidate the identities of Gram-negative specific anchorless surface proteins. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. © 2013.

  2. Anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract

    NARCIS (Netherlands)

    Arranz, E.; Mes, J.J.; Wichers, H.J.; Jaime, L.; Reglero, G.; Santoyo, S.

    2015-01-01

    The anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract was examined. Uptake of rosemary extract fractions was tested on Caco-2 cell monolayers (2–12 h incubation times) and the quantification of carnosic acid and carnosol was performed

  3. Alterations in body weight and blood glucose level of female hamsters exposed to electromagnetic fields of cell phones

    Directory of Open Access Journals (Sweden)

    A.R Lotfi

    2010-02-01

    Group 2 was exposed to electromagnetic field emitted by cell phones for 10 days (short term and group 3 for 50 day (long term. In the latter groups, the exposure was 1 hour per day. At the end of the experimental period, the animals were weighed and blood glucose concentrations were determined by obtaining blood samples from 8 randomly selected hamsters in each group.  The blood glucose level was significantly higher in long-term exposed group in comparison with the control and short-term exposed groups (175, 11.6 and 107 mg/dl, respectively (p

  4. Human Invariant Natural Killer T Cells Respond to Antigen-Presenting Cells Exposed to Lipids from Olea europaea Pollen.

    Science.gov (United States)

    Abos Gracia, Beatriz; López Relaño, Juan; Revilla, Ana; Castro, Lourdes; Villalba, Mayte; Martín Adrados, Beatriz; Regueiro, Jose Ramon; Fernández-Malavé, Edgar; Martínez Naves, Eduardo; Gómez Del Moral, Manuel

    2017-01-01

    Allergic sensitization might be influenced by the lipids present in allergens, which can be recognized by natural killer T (NKT) cells on antigen-presenting cells (APCs). The aim of this study was to analyze the effect of olive pollen lipids in human APCs, including monocytes as well as monocyte-derived macrophages (Mϕ) and dendritic cells (DCs). Lipids were extracted from olive (Olea europaea) pollen grains. Invariant (i)NKT cells, monocytes, Mϕ, and DCs were obtained from buffy coats of healthy blood donors, and their cell phenotype was determined by flow cytometry. iNKT cytotoxicity was measured using a lactate dehydrogenase assay. Gene expression of CD1A and CD1D was performed by RT-PCR, and the production of IL-6, IL-10, IL-12, and TNF-α cytokines by monocytes, Mϕ, and DCs was measured by ELISA. Our results showed that monocytes and monocyte-derived Mϕ treated with olive pollen lipids strongly activate iNKT cells. We observed several phenotypic modifications in the APCs upon exposure to pollen-derived lipids. Both Mϕ and monocytes treated with olive pollen lipids showed an increase in CD1D gene expression, whereas upregulation of cell surface CD1d protein occurred only in Mϕ. Furthermore, DCs differentiated in the presence of human serum enhance their surface CD1d expression when exposed to olive pollen lipids. Finally, olive pollen lipids were able to stimulate the production of IL-6 but downregulated the production of lipopolysaccharide- induced IL-10 by Mϕ. Olive pollen lipids alter the phenotype of monocytes, Mϕ, and DCs, resulting in the activation of NKT cells, which have the potential to influence allergic immune responses. © 2017 S. Karger AG, Basel.

  5. Cytogenomics of hexavalent chromium (Cr6+ exposed cells: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Akanksha Nigam

    2014-01-01

    Full Text Available The altered cellular gene expression profile is being hypothesized as the possible molecular basis navigating the onset or progress of various morbidities. This hypothesis has been evaluated here in respect of Cr 6+ induced toxicity. Several studies using gene microarray show selective and strategic dysregulations of cellular genes and pathways induced by Cr 6+ . Relevant literature has been reviewed to unravel these changes in different test systems after exposure to Cr 6+ and also to elucidate association if any, of the altered cytogenomics with Cr 6+ induced toxicity or carcinogenicity. The aim was to verify the hypothesis for critical role of altered cytogenomics in onset of Cr 6+ induced biological / clinical effects by identifying genes modulated commonly by the toxicant irrespective of test system or test concentrations / doses, and by scrutinizing their importance in regulation of the flow of mechanistically linked events crucial for resultant morbidities. Their probability as biomarkers to monitor the toxicant induced biological changes is speculative. The modulated genes have been found to cluster under the pathways that manage onset of oxidative stress, DNA damage, apoptosis, cell-cycle regulation, cytoskeleton, morphological changes, energy metabolism, biosynthesis, oncogenes, bioenergetics, and immune system critical for toxicity. In these studies, the identity of genes has been found to differ remarkably; albeit the trend of pathways′ dysregulation has been found to remain similar. We conclude that the intensity of dysregulation of genes or pathways involved in mechanistic events forms a sub-threshold or threshold level depending upon the dose and type (including speciation of the toxicant, duration of exposure, type of target cells, and niche microenvironment of cells, and the intensity of sub-threshold or threshold level of the altered cytogenomics paves way in toxicant exposed cells eventually either to opt for reversal to

  6. Interphase Death of Chinese Hamster Ovary Cells Exposed to Accelerated Heavy Ions

    Directory of Open Access Journals (Sweden)

    P. Mehnati

    2007-06-01

    Full Text Available Introduction: Heavy ions are nucleus of elements of iron, argon, carbon and neon that all carry positive electrical charges. For these particles to be useful in radiotherapy they need to accelerated to high energy by more than thousand mega volts. Also the cosmic environment is considered to be a complicated mixture of highly energetic photons and heavy ions such as iron. Therefore, the health risks to astronauts during long mission should be considered.  Materials and Methods: The induction of interphase death was tested on Chinese hamster ovary cells by exposing them to accelerated heavy ions (carbon, neon, argon and iron of 10-2000 linear energy transfers (LETs. The fraction of cells that underwent interphase death was determined by observing individual cells with time-lapse photography (direct method as well as by the indirect method of counting cells undergoing interphase death made visible by the addition of caffeine (indirect method. Results: The interphase death due to the exposure to X- rays is increased linearly as the dose exceeds the threshold dose of 10 Gy. Whereas the interphase death increases at a higher rate due to the exposure to high LET heavy ions and no threshold dose was observed. The range of LET values corresponding to the maximum RBE for the interphase death is 120-230 keV/µm. The probability of inducing the interphase death by a single heavy ion traversing through the nucleus is about 0.04-0.08. Discussion and Conclusion: The relative biological effectiveness (RBE of heavy ions as compared to X- rays as determined at the 50% level of induction is increased with LET. It reached a maximum value at a LET of approximately 230 keV/µm and then decreased with further increase in LET. The range of LET values corresponding to the maximum RBE appears to be narrower for interphase death than for reproductive death.

  7. Theoretical analysis of transmembrane potential of cells exposed to nanosecond pulsed electric field.

    Science.gov (United States)

    Lu, Wei; Wu, Ke; Hu, Xiangjun; Xie, Xiangdong; Ning, Jing; Wang, Changzhen; Zhou, Hongmei; Yang, Guoshan

    2017-02-01

    Intracellular electroporation occurs when the cells are exposed to nanosecond pulsed electric field (nsPEF). It is believed the electroporation (formation and extension of pores on the membrane induced by external electric field) is affected significantly by the transmembrane potential. This paper analyzed transmembrane potential induced by nsPEF in the term of pulse frequency spectrum, aiming to provide a theoretical explanation to intracellular bio-effects. Based on the double-shelled spherical cell model, the frequency dependence of transmembrane potential was obtained by solving Laplace's equation, while the time course of transmembrane potential was obtained by a method combined with discrete Fourier transform and Laplace transform. First-order Debye equation was used to describe the dielectric relaxation of the cell medium. Frequency-domain analysis showed that when the electric field frequency was higher than 10 5 Hz, the transmembrane potential on the organelle membrane (ΔΦ o ) was increasing to exceed the transmembrane potential on the cellular membrane (ΔΦ c ). In the time-domain analysis, transmembrane potentials induced by four nsPEF (short trapezoid, long trapezoid, bipolar and sine shapes) with the same field strength were compared with each other. It showed that ΔΦ o is obviously larger than ΔΦ c if the curve of the normalized frequency spectrum of the pulse is more similar with the curve of normalized ΔΦ o in frequency domain. Pulses with major frequency components higher than 10 8 Hz lead to both small ΔΦ o and ΔΦ c . This may explain why high power pulsed microwave lead to unobvious bio-effects of cells than nsPEF with trapezoid form. Through the pulse frequency spectrum it is clearer to understand the relationship between nsPEF and the transmembrane potential.

  8. The protective effect of curcumin in Olfactory Ensheathing Cells exposed to hypoxia.

    Science.gov (United States)

    Bonfanti, Roberta; Musumeci, Teresa; Russo, Cristina; Pellitteri, Rosalia

    2017-02-05

    Curcumin, a phytochemical component derived from the rhizomes of Curcuma longa, has shown a great variety of pharmacological activities, such as anti-inflammatory, anti-tumor, anti-depression and anti-oxidant activity. Therefore, in the last years it has been used as a therapeutic agent since it confers protection in different neurodegenerative diseases, cerebral ischemia and excitotoxicity. Olfactory Ensheathing Cells (OECs) are glial cells of the olfactory system. They are able to secrete several neurotrophic growth factors, promote axonal growth and support the remyelination of damaged axons. OEC transplantation has emerged as a possible experimental therapy to induce repair of spinal cord injury, even if the functional recovery is still limited. Since hypoxia is a secondary effect in spinal cord injury, this in vitro study investigates the protective effect of curcumin in OECs exposed to hypoxia. Primary OECs were obtained from neonatal rat olfactory bulbs and placed both in normal and hypoxic conditions. Furthermore, some cells were grown with basic Fibroblast Growth Factor (bFGF) and/or curcumin at different concentration and times. The results obtained through immunocytochemical procedures and MTT test show that curcumin stimulates cell viability in OECs grown in normal and hypoxic conditions. Furthermore, the synergistic effect of curcumin and bFGF is the most effective exerting protection on OECs. Since spinal cord injury is often accompanied by secondary insults, such as ischemia or hypoxia, our results suggest that curcumin in combination with bFGF might be considered a possible approach for restoration in injuries. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. DNA damage in blood cells exposed to low-level lasers.

    Science.gov (United States)

    Sergio, Luiz Philippe da Silva; Silva, Ana Paula Almeida da; Amorim, Philipi Freitas; Campos, Vera Maria Araújo; Magalhães, Luis Alexandre Gonçalves; de Paoli, Flavia; de Souza da Fonseca, Adenilson

    2015-04-01

    In regenerative medicine, there are increasing applications of low-level lasers in therapeutic protocols for treatment of diseases in soft and in bone tissues. However, there are doubts about effects on DNA, and an adequate dosimetry could improve the safety of clinical applications of these lasers. This work aimed to evaluate DNA damage in peripheral blood cells of Wistar rats induced by low-level red and infrared lasers at different fluences, powers, and emission modes according to therapeutic protocols. Peripheral blood samples were exposed to lasers and DNA damage was accessed by comet assay. In other experiments, DNA damage was accessed in blood cells by modified comet assay using formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III enzymes. Data show that exposure to low-level red and infrared lasers induce DNA damage depending on fluence, power and emission mode, which are targeted by Fpg and endonuclease III. Oxidative DNA damage should be considered for therapeutic efficacy and patient safety in clinical applications based on low-level red and infrared lasers. © 2015 Wiley Periodicals, Inc.

  10. Influence of dietary vitamin E on the red cells of ozone-exposed rats

    Energy Technology Data Exchange (ETDEWEB)

    Chow, C.K. (Univ. of Kentucky, Lexington); Kaneko, J.J.

    1979-06-01

    The effect of dietary vitamin E on the susceptibility of red blood cells to ozone exposure was studied in rats. One- and two-month-old male Sprague-Dawley rats were fed a basal vitamin E-deficient diet with or without 45 ppM vitamin E for 4 and 3 months, respectively, and were exposed to 0 or 0.8 ppM ozone continuously for 7 days. Ozone exposure resulted in a significant increase in the activities of glutathione (GSH) peroxidase, pyruvate kinase, and lactate dehydrogenase, and a decrease in GSH level in the red cells of vitamin E-deficient rats, but not in those of the supplemented group. The activities of glucose-6-phosphate dehydrogenase, catalase, and superoxide dismutase and levels of thiobarbituric acid reactants, methemoglobin, hemoglobin, and reticulocytes were not significantly altered by ozone exposure or by the nutritional status of vitamin E. The results suggest that depletion of dietary vitamin E renders animals more susceptible to ozone exposure.

  11. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity.

    Science.gov (United States)

    Martínez-Ballesta, M Carmen; Zapata, Lavinia; Chalbi, Najla; Carvajal, Micaela

    2016-06-08

    Carbon nanotubes have been shown to improve the germination and growth of some plant species, extending the applicability of the emerging nano-biotechnology field to crop science. In this work, exploitation of commercial multiwalled carbon nanotubes (MWCNTs) in control and 100 mM NaCl-treated broccoli was performed. Transmission electron microscopy demonstrated that MWCNTs can enter the cells in adult plants with higher accumulation under salt stress. Positive effect of MWCNTs on growth in NaCl-treated plants was consequence of increased water uptake, promoted by more-favourable energetic forces driving this process, and enhanced net assimilation of CO2. MWCNTs induced changes in the lipid composition, rigidity and permeability of the root plasma membranes relative to salt-stressed plants. Also, enhanced aquaporin transduction occurred, which improved water uptake and transport, alleviating the negative effects of salt stress. Our work provides new evidences about the effect of MWCNTs on plasma membrane properties of the plant cell. The positive response to MWCNTs in broccoli plants opens novel perspectives for their technological uses in new agricultural practices, especially when 1plants are exposed to saline environments.

  12. Development of cholesterol granuloma in a temporal bone petrous apex previously containing marrow exposed to air cells.

    Science.gov (United States)

    Selman, Yamil; Wood, John W; Telischi, Fred F; Casiano, Roy R; Angeli, Simon I

    2013-07-01

    There is ongoing debate on the pathogenic mechanisms of cholesterol granuloma formation in the temporal bone. The purpose of this report is to provide evidence in support of the exposed marrow hypothesis in explaining the pathogenesis of petrous apex cholesterol granuloma. Retrospective single case study. The primary outcome evaluated was the diagnosis of a new cholesterol granuloma in a petrous apex that previously demonstrated radiologic evidence of bone marrow exposed to petrous apex air cells. A patient with a unilateral petrous apex cholesterol granuloma develops a new, contralateral cholesterol granuloma in a hyperpneumatized temporal bone petrous apex shown previously to have medullary bone exposed to air cells. This report implicates the medullary-air cell interface in a hyperaerated temporal bone petrous apex in the development and growth of a petrous apex cholesterol granuloma.

  13. The influence of medium conductivity on cells exposed to nsPEF

    Science.gov (United States)

    Moen, Erick K.; Ibey, Bennett L.; Roth, Caleb C.; Barnes, Ronald A.; Beier, Hope T.; Armani, Andrea M.

    2017-02-01

    Nanosecond pulsed electric fields (nsPEF) have proven useful for transporting cargo across cell membranes and selectively activating cellular pathways. The chemistry and biophysics governing this cellular response, however, are complex and not well understood. Recent studies have shown that the conductivity of the solution cells are exposed in could play a significant role in plasma membrane permeabilization and, thus, the overall cellular response. Unfortunately, the means of detecting this membrane perturbation has traditionally been limited to analyzing one possible consequence of the exposure - diffusion of molecules across the membrane. This method has led to contradictory results with respect to the relationship between permeabilization and conductivity. Diffusion experiments also suffer from "saturation conditions" making multi-pulse experiments difficult. As a result, this method has been identified as a key stumbling block to understanding the effects of nsPEF exposure. To overcome these limitations, we recently developed a nonlinear optical imaging technique based on second harmonic generation (SHG) that allows us to identify nanoporation in live cells during the pulse in a wide array of conditions. As a result, we are able to explore and fully test whether lower conductivity extracellular solutions could induce more efficient nanoporation. This hypothesis is based on membrane charging and the relative difference between the extracellular solution and the cytoplasm. The experiments also allow us to test the noise floor of our methodology against the effects of ion leakage. The results emphasize that the electric field, not ionic phenomenon, are the driving force behind nsPEF-induced membrane nanoporation.

  14. Aberrant Gene Expression in Human Non Small Cell Lung Carcinoma Cells Exposed to Demethylating Agent 5-Aza-2'-Deoxycytidine

    Directory of Open Access Journals (Sweden)

    Bao-Zhu Yuan

    2004-07-01

    Full Text Available The identification of genes undergoing genetic or epigenetic alterations and contributing to the development of cancer is critical to our understanding of the molecular mechanisms of carcinogenesis. A new approach in identifying alterations of genes that might be relevant to the process of tumor development was used in this study by examining the gene expression profile in human lung cancer cells exposed to 5-aza-2'deoxycytidine (5-aza-dC. A cDNA array analysis was carried out on 5-aza-dC-treated and untreated non small cell lung cancer (NSCLC cell line NCI-H522. Sixteen and 14 genes were upregulated and downregulated, respectively, by 5-aza-dC treatment. Among them, downregulation of tyrosine protein kinase ABL2 (ABL2 gene and upregulation of hint/protein kinase C inhibitor 1 (Hint/PKCI-1, DVL1, TIMP-1, and TRP-1 genes were found in expanded observations in two or three of five 5-aza-dC-treated NSCLC cell lines. Among these genes, we found that cDNA transfer of Hint/PKCI-1 resulted in a significant in vitro growth inhibition in two cell lines exhibiting 5-aza-dC-induced upregulation of Hint/PKCI-1 and significantly reduced in vivo tumorigenicity of one NSCLC cell line. Hint/PKCI-1, which is the only other characterized human histidine triad (HIT nucleotide-binding protein in addition to tumor-suppressor gene FHIT, might be involved in lung carcinogenesis.

  15. Apoptosis of peripheral blood mononuclear cells in children exposed to arsenic and fluoride.

    Science.gov (United States)

    Rocha-Amador, Diana O; Calderón, Jaqueline; Carrizales, Leticia; Costilla-Salazar, Rogelio; Pérez-Maldonado, Iván Nelinho

    2011-11-01

    In this study, we evaluated apoptosis induction in human immune cells in children exposed to arsenic (As) and fluoride (F). Children living in two areas in Mexico (Soledad de Graciano Sanchez (SGS) in San Luis Potosí and Colonia 5 de Febrero in Durango) were studied. Water, urine and blood samples were collected. Approximately 90% of the water samples in 5 de Febrero had As and F levels above the World Health Organization intervention guideline (10 μg/L and 1.5mg/L, respectively). In SGS, 0% of the water samples exceeded Mexican guidelines. Urinary As and F levels in children living in 5 de Febrero were significantly higher than the levels found in children living in SGS. In addition, the level of apoptosis was higher in children from the 5 de Febrero community when compared with the level of apoptosis in children living in SGS. Thus, in a worldwide context, our study demonstrates the health risks to children living in these regions. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A biosensor of SRC family kinase conformation by exposable tetracysteine useful for cell-based screening.

    Science.gov (United States)

    Irtegun, Sevgi; Wood, Rebecca; Lackovic, Kurt; Schweiggert, Jörg; Ramdzan, Yasmin M; Huang, David C S; Mulhern, Terrence D; Hatters, Danny M

    2014-07-18

    We developed a new approach to distinguish distinct protein conformations in live cells. The method, exposable tetracysteine (XTC), involved placing an engineered tetracysteine motif into a target protein that has conditional access to biarsenical dye binding by conformational state. XTC was used to distinguish open and closed regulatory conformations of Src family kinases. Substituting just four residues with cysteines in the conserved SH2 domain of three Src-family kinases (c-Src, Lck, Lyn) enabled open and closed conformations to be monitored on the basis of binding differences to biarsenical dyes FlAsH or ReAsH. Fusion of the kinases with a fluorescent protein tracked the kinase presence, and the XTC approach enabled simultaneous assessment of regulatory state. The c-Src XTC biosensor was applied in a boutique screen of kinase inhibitors, which revealed six compounds to induce conformational closure. The XTC approach demonstrates new potential for assays targeting conformational changes in key proteins in disease and biology.

  17. Persistent oxidative stress in human neural stem cells exposed to low fluences of charged particles

    Directory of Open Access Journals (Sweden)

    Janet E. Baulch

    2015-08-01

    Full Text Available Exposure to the space radiation environment poses risks for a range of deleterious health effects due to the unique types of radiation encountered. Galactic cosmic rays are comprised of a spectrum of highly energetic nuclei that deposit densely ionizing tracks of damage along the particle trajectory. These tracks are distinct from those generated by the more sparsely ionizing terrestrial radiations, and define the geometric distribution of the complex cellular damage that results when charged particles traverse the tissues of the body. The exquisite radiosensitivity of multipotent neural stem and progenitor cells found within the neurogenic regions of the brain predispose the central nervous system to elevated risks for radiation induced sequelae. Here we show that human neural stem cells (hNSC exposed to different charged particles at space relevant fluences exhibit significant and persistent oxidative stress. Radiation induced oxidative stress was found to be most dependent on total dose rather than on the linear energy transfer of the incident particle. The use of redox sensitive fluorogenic dyes possessing relative specificity for hydroxyl radicals, peroxynitrite, nitric oxide (NO and mitochondrial superoxide confirmed that most irradiation paradigms elevated reactive oxygen and nitrogen species (ROS and RNS, respectively in hNSC over a 1 week interval following exposure. Nitric oxide synthase (NOS was not the major source of elevated nitric oxides, as the use of NOS inhibitors had little effect on NO dependent fluorescence. Our data provide extensive evidence for the capability of low doses of charged particles to elicit marked changes in the metabolic profile of irradiated hNSC. Radiation induced changes in redox state may render the brain more susceptible to the development of neurocognitive deficits that could affect an astronaut’s ability to perform complex tasks during extended missions in deep space.

  18. Glycophorin A somatic cell mutation frequencies in Finnish reinforced plastics workers exposed to styrene.

    Science.gov (United States)

    Bigbee, W L; Grant, S G; Langlois, R G; Jensen, R H; Anttila, A; Pfäffli, P; Pekari, K; Norppa, H

    1996-10-01

    We have used the glycophorin A (GPA) in vivo somatic cell mutation assay to assess the genotoxic potential of styrene exposure in 47 reinforced plastics workers occupationally exposed to styrene and 47 unexposed controls matched for age, gender, and active smoking status. GPA variant erythrocyte frequencies (Vf), reflecting GPA allele loss (phi/N) and allele loss and duplication (N/N) somatic mutations arising in vivo in the erythroid progenitor cells of individuals of GPA M/N heterozygous genotype, were flow cytometrically determined in peripheral blood samples from these subjects. Measurements of styrene exposure of the workers at the time of blood sampling showed a mean 8-h time-weighted average (TWA8-h) styrene concentration of 155 mg/m3 (37 ppm) in the breathing zone. Mean urinary concentrations of the styrene metabolites mandelic acid (MA) and mandelic acid plus phenyl glyoxylic acid (MA+PGA) were 4.4 mmol/liter (after workshift) and 2.1 mmol/liter (next morning), respectively. Multivariate analysis of covariance on log-transformed GPA Vf data with models allowing adjustment for age, gender, smoking status, and styrene exposure showed that N/N Vf were nearly significantly increased among all of the exposed workers (adjusted geometric mean, 6.3 per million versus 5.0 in the controls; P = 0.058) and were statistically significantly elevated (adjusted geometric mean, 6.8 versus 5.0 in the controls; P = 0.036) among workers classified into a high-exposure group according to personal TWA8-h concentration of styrene in the breathing zone of > or = 85 mg/m3 (20 ppm; Finnish threshold limit value). Women in this high exposure group showed especially elevated N/N Vf (adjusted geometric mean 8.5 versus 5.3 in control women; P = 0.020); this elevation was also significant if urinary MA+PGA of > or = 1.2 mmol/liter was used as the basis of classification (adjusted geometric mean, 8.3; P = 0.030). The occupational exposure could not be shown to influence phi/N Vf

  19. INCREASED IL-8 AND IL-6 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    Science.gov (United States)

    INCREASED IL-6 AND IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES.R Silbajoris1, A G Lenz2, I Jaspers3, J M Samet1. 1NHEERL, USEPA, RTP, NC, USA; 2GSF-Institute for Inhalation Biology, Neuherberg, Germany; 3 CEMLB, UNC-CH, Chapel Hill, ...

  20. Unirradiated cells rescue cells exposed to ionizing radiation: Activation of NF-κB pathway in irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Lam, R.K.K. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Han, Wei [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong (Hong Kong)

    2015-12-15

    Highlights: • Rescue effect was observed in both irradiated and HeLa and NIH/3T3 cells. • Novel setup and procedures to separate the rescue signals and the bystander signals. • Confirmed activation of NF-κB pathway in rescue effect using activation inhibitor. • Confirmed activation of NF-κB pathway in rescue effect using anti-NF-κB p65 antibody. - Abstract: We studied the involvement of NF-κB pathway activation in the rescue effect in HeLa and NIH/3T3 cells irradiated by α particles. Firstly, upon irradiation by 5 cGy of α particles, for both cell lines, the numbers of 53BP1 foci/cell at 12 h post-irradiation were significantly smaller when only 2.5% of the cell population was irradiated as compared to 100% irradiation, which demonstrated the rescue effect. Secondly, we studied the effect of NF-κB on the rescue effect through the use of the NF-κB activation inhibitor BAY-11-7082. Novel experimental setup and procedures were designed to prepare the medium (CM) which had conditioned the bystander cells previously partnered with irradiated cells, to ensure physical separation between rescue and bystander signals. BAY-11-7082 itself did not inflict DNA damages in the cells or have effects on activation of the NF-κB response pathway in the irradiated cells through direct irradiation. The rescue effect was induced in both cell lines by the CM, which was abrogated if BAY-11-7082 was added to the CM. Thirdly, we studied the effect of NF-κB on the rescue effect through staining for phosphorylated NF-κB (p-NF-κB) expression using the anti-NF-κB p65 (phospho S536) antibody. When the fraction of irradiated cells dropped from 100% to 2.5%, the p-NF-κB expression in the cell nuclei of irradiated NIH/3T3 cells increased significantly, while that in the cell nuclei of irradiated HeLa cells also increased although not significantly. Moreover, the p-NF-κB expression in the cell nuclei of irradiated HeLa cells and NIH/3T3 cells treated with CM also increased

  1. Increased memory T cell populations in Pb-exposed children from an e-waste-recycling area.

    Science.gov (United States)

    Cao, Junjun; Xu, Xijin; Zhang, Yu; Zeng, Zhijun; Hylkema, Machteld N; Huo, Xia

    2018-03-01

    Chronic exposure to heavy metals could affect cell-mediated immunity. The aim of this study was to explore the status of memory T cell development in preschool children from an e-waste recycling area. Blood lead (Pb) levels, peripheral T cell subpopulations, and serum levels of cytokines (IL-2/IL-7/IL-15), relevant to generation and homeostasis of memory T cells were evaluated in preschool children from Guiyu (e-waste-exposed group) and Haojiang (reference group). The correlations between blood Pb levels and percentages of memory T cell subpopulations were also evaluated. Guiyu children had higher blood Pb levels and increased percentages of CD4 + central memory T cells and CD8 + central memory T cells than in the Haojiang group. Moreover, blood Pb levels were positively associated with the percentages of CD4 + central memory T cells. In contrast, Pb exposure contributed marginally in the change of percentages of CD8 + central memory T cells in children. There was no significant difference in the serum cytokine levels between the e-waste-exposed and reference children. Taken together, preschool children from an e-waste recycling area suffer from relatively higher levels of Pb exposure, which might facilitate the development of CD4 + central memory T cells in these children. Copyright © 2017. Published by Elsevier B.V.

  2. Evaluation of Trace Elements in Augmentation of Statin-Induced Cytotoxicity in Uremic Serum-Exposed Human Rhabdomyosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Hitoshi Uchiyama

    2018-01-01

    Full Text Available Patients with end-stage kidney disease (ESKD are at higher risk for rhabdomyolysis induced by statin than patients with normal kidney function. Previously, we showed that this increase in the severity of statin-induced rhabdomyolysis was partly due to uremic toxins. However, changes in the quantity of various trace elements in ESKD patients likely contribute as well. The purpose of this study is to determine the effect of trace elements on statin-induced toxicity in rhabdomyosarcoma cells exposed to uremic serum (US cells for a long time. Cell viability, apoptosis, mRNA expression, and intracellular trace elements were assessed by viability assays, flow cytometry, real-time RT-PCR, and ICP-MS, respectively. US cells exhibited greater simvastatin-induced cytotoxicity than cells long-time exposed with normal serum (NS cells (non-overlapping 95% confidence intervals. Intracellular levels of Mg, Mn, Cu, and Zn were significantly less in US cells compared to that in NS cells (p < 0.05 or 0.01. Pre-treatment with TPEN increased simvastatin-induced cytotoxicity and eliminated the distinction between both cells of simvastatin-induced cytotoxicity. These results suggest that Zn deficiencies may be involved in the increased risk for muscle complaints in ESKD patients. In conclusion, the increased severity of statin-induced rhabdomyolysis in ESKD patients may be partly due to trace elements deficiencies.

  3. Exposed hydrophobic residues in human immunodeficiency virus type 1 Vpr helix-1 are important for cell cycle arrest and cell death.

    Directory of Open Access Journals (Sweden)

    R Anthony Barnitz

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 accessory protein viral protein R (Vpr is a major determinant for virus-induced G2/M cell cycle arrest and cytopathicity. Vpr is thought to perform these functions through the interaction with partner proteins. The NMR structure of Vpr revealed solvent exposed hydrophobic amino acids along helices 1 and 3 of Vpr, which could be putative protein binding domains. We previously showed that the hydrophobic patch along helix-3 was important for G2/M blockade and cytopathicity. Mutations of the exposed hydrophobic residues along helix-1 were found to reduce Vpr-induced cell cycle arrest and cell death as well. The levels of toxicity during virion delivery of Vpr correlated with G2/M arrest. Thus, the exposed hydrophobic amino acids in the amino-terminal helix-1 are important for the cell cycle arrest and cytopathicity functions of Vpr.

  4. Low CD4+ T-cell levels and B-cell apoptosis in vertically HIV-exposed noninfected children and adolescents.

    Science.gov (United States)

    Miyamoto, Maristela; Pessoa, Silvana D; Ono, Erika; Machado, Daisy M; Salomão, Reinaldo; Succi, Regina C de M; Pahwa, Savita; de Moraes-Pinto, Maria Isabel

    2010-12-01

    Lymphocyte subsets, activation markers and apoptosis were assessed in 20 HIV-exposed noninfected (ENI) children born to HIV-infected women who were or not exposed to antiretroviral (ARV) drugs during pregnancy and early infancy. ENI children and adolescents were aged 6-18 years and they were compared to 25 age-matched healthy non-HIV-exposed children and adolescents (Control). ENI individuals presented lower CD4(+) T cells/mm(3) than Control group (control: 1120.3 vs. ENI: 876.3; t-test, p = 0.030). ENI individuals had higher B-cell apoptosis than Control group (Control: 36.6%, ARV exposed: 82.3%, ARV nonexposed: 68.5%; Kruskal-Wallis, p ENI and in Control children and adolescents. Subtle long-term immune alterations might persist among ENI individuals, but the clinical consequences if any are unknown, and these children require continued monitoring.

  5. Proteomic signature of arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments

    NARCIS (Netherlands)

    Herranz, R.; Manzano, A.I.; van Loon, J.J.W.A.; Christianen, P.C.M.; Medina, F.J.

    2013-01-01

    Earth-based microgravity simulation techniques are required due to space research constraints. Using diamagnetic levitation, we exposed Arabidopsis thaliana in vitro callus cultures to environments with different levels of effective gravity and magnetic field strengths (B) simultaneously. The

  6. Analyzing gene expression profile in K562 cells exposed to sodium valproate using microarray combined with the connectivity map database.

    Science.gov (United States)

    Zhang, Xiang-Zhong; Yin, Ai-Hua; Lin, Dong-Jun; Zhu, Xiao-Yu; Ding, Qian; Wang, Chun-Huai; Chen, Yun-Xian

    2012-01-01

    To explore the mechanism underlying antileukaemia effect of sodium valproate, the growth and survival of the K562 cell line were investigated. Global profiles of gene expression in K562 cells exposed to sodium valproate were assessed and validated. The differentially expressed genes identified were further used to query the connectivity map database to retrieve a ranked list of compounds that act on the same intracellular targets as sodium valproate. A significant increase in cell apoptosis and a change in gene expression profile were observed in valproate-exposed K562 cells. The significant enrichment analysis of gene ontology terms for the differentially expressed genes showed that these genes were involved in many important biological processes. Eight differentially expressed genes involved in apoptosis were verified by quantitative real-time PCR. The connectivity map analysis showed gene expression profile in K562 cells exposed to sodium valproate was most similar to that of HDACi and PI3K inhibitors, suggesting that sodium valproate might exert antileukaemic action by inhibiting HDAC as well as inhibiting PI3K pathway. In conclusion, our data might provide clues to elucidate the molecular and therapeutic potential of VPA in leukaemia treatment, and the connectivity map is a useful tool for exploring the molecular mechanism of drug action.

  7. Analyzing Gene Expression Profile in K562 Cells Exposed to Sodium Valproate Using Microarray Combined with the Connectivity Map Database

    Directory of Open Access Journals (Sweden)

    Xiang-Zhong Zhang

    2012-01-01

    Full Text Available To explore the mechanism underlying antileukaemia effect of sodium valproate, the growth and survival of the K562 cell line were investigated. Global profiles of gene expression in K562 cells exposed to sodium valproate were assessed and validated. The differentially expressed genes identified were further used to query the connectivity map database to retrieve a ranked list of compounds that act on the same intracellular targets as sodium valproate. A significant increase in cell apoptosis and a change in gene expression profile were observed in valproate-exposed K562 cells. The significant enrichment analysis of gene ontology terms for the differentially expressed genes showed that these genes were involved in many important biological processes. Eight differentially expressed genes involved in apoptosis were verified by quantitative real-time PCR. The connectivity map analysis showed gene expression profile in K562 cells exposed to sodium valproate was most similar to that of HDACi and PI3K inhibitors, suggesting that sodium valproate might exert antileukaemic action by inhibiting HDAC as well as inhibiting PI3K pathway. In conclusion, our data might provide clues to elucidate the molecular and therapeutic potential of VPA in leukaemia treatment, and the connectivity map is a useful tool for exploring the molecular mechanism of drug action.

  8. β-Endorphin Neuronal Cell Transplant Reduces Corticotropin Releasing Hormone Hyperresponse to Lipopolysaccharide and Eliminates Natural Killer Cell Functional Deficiencies in Fetal Alcohol Exposed Rats

    Science.gov (United States)

    Boyadjieva, Nadka I.; Ortigüela, María; Arjona, Alvaro; Cheng, Xiaodong; Sarkar, Dipak K.

    2010-01-01

    Background Natural killer (NK) cell dysfunction is associated with hyperresponse of corticotropin releasing hormone (CRH) to immune challenge and with a loss of β-endorphin (BEP) neurons in fetal alcohol exposed animals. Recently, we established a method to differentiate neural stem cells into BEP neurons using cyclic adenosine monophosphate (cAMP)-elevating agents in cultures. Hence, we determined whether in vitro differentiated BEP neurons could be used for reversing the compromised stress response and immune function in fetal alcohol exposed rats. Methods To determine the effect of BEP neuron transplants on NK cell function, we implanted in vitro differentiated BEP neurons into the paraventricular nucleus of pubertal and adult male rats exposed to ethanol or control in utero. The functionality of transplanted BEP neurons was determined by measuring proopiomelanocortin (POMC) gene expression in these cells and their effects on CRH gene expression under basal and after lipopolysaccaride (LPS) challenge. In addition, the effectiveness of BEP neurons in activating NK cell functions is determined by measuring NK cell cytolytic activity and interferon-γ (IFN-γ) production in the spleen and in the peripheral blood mononuclear cell (PBMC) following cell transplantation. Results We showed here that when these in vitro differentiated BEP neurons were transplanted into the hypothalamus, they maintain biological functions by producing POMC and reducing the CRH neuronal response to the LPS challenge. BEP neuronal transplants significantly increased NK cell cytolytic activity in the spleen and in the PBMC and increased plasma levels of IFN-γ in control and fetal alcohol exposed rats. Conclusions These data further establish the BEP neuronal regulatory role in the control of CRH and NK cell cytolytic function and identify a possible novel therapy to treat stress hyper-response and immune deficiency in fetal alcohol exposed subjects. PMID:19320628

  9. Increase in DNA damage in lymphocytes and micronucleus frequency in buccal cells in silica-exposed workers.

    Science.gov (United States)

    Halder, Ajanta; De, Madhusnata

    2012-01-01

    The alkaline single cell gel electrophoresis (comet assay) was applied to study the genotoxic properties of silica in human peripheral blood lymphocytes (PBL). The study was designed to evaluate the DNA damage of lymphocytes and the end points like micronuclei from buccal smears in a group of 45 workers, occupationally exposed to silica, from small mines and stone quarries. The results were compared to 20 sex and age matched normal individuals. There was a statistically significant difference in the damage levels between the exposed group and the control groups. The types of damages (type I -type 1V) were used to measure the DNA damage. The numbers of micronuclei were higher in the silica-exposed population. The present study suggests that the silica exposure can induce lymphocyte DNA damage and produces significant variation of micronuclei in buccal smear.

  10. Frequency Patterns of T-Cell Exposed Amino Acid Motifs in Immunoglobulin Heavy Chain Peptides Presented by MHCs.

    Science.gov (United States)

    Bremel, Robert D; Homan, E Jane

    2014-01-01

    Immunoglobulins are highly diverse protein sequences that are processed and presented to T-cells by B-cells and other antigen presenting cells. We examined a large dataset of immunoglobulin heavy chain variable regions (IGHV) to assess the diversity of T-cell exposed motifs (TCEMs). TCEM comprise those amino acids in a MHC-bound peptide, which face outwards, surrounded by the MHC histotope, and which engage the T-cell receptor. Within IGHV there is a distinct pattern of predicted MHC class II binding and a very high frequency of re-use of the TCEMs. The re-use frequency indicates that only a limited number of different cognate T-cells are required to engage many different clonal B-cells. The amino acids in each outward-facing TCEM are intercalated with the amino acids of inward-facing MHC groove-exposed motifs (GEM). Different GEM may have differing, allele-specific, MHC binding affinities. The intercalation of TCEM and GEM in a peptide allows for a vast combinatorial repertoire of epitopes, each eliciting a different response. Outcome of T-cell receptor binding is determined by overall signal strength, which is a function of the number of responding T-cells and the duration of engagement. Hence, the frequency of TCEM re-use appears to be an important determinant of whether a T-cell response is stimulatory or suppressive. The frequency distribution of TCEMs implies that somatic hypermutation is followed by T-cell clonal expansion that develops along repeated pathways. The observations of TCEM and GEM derived from immunoglobulins suggest a relatively simple, yet powerful, mechanism to correlate T-cell polyspecificity, through re-use of TCEMs, with a very high degree of specificity achieved by combination with a diversity of GEMs. The frequency profile of TCEMs also points to an economical mechanism for maintaining T-cell memory, recall, and self-discrimination based on an endogenously generated profile of motifs.

  11. Anticlastogenic effect of β-glucan, extracted from Saccharomyces cerevisiae, on cultured cells exposed to ultraviolet radiation

    OpenAIRE

    da Silva, Ariane Fernanda; Oliveira, Rodrigo Juliano; Niwa, Andressa Megumi; D’Epiro, Gláucia Fernanda Rocha; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2012-01-01

    β-glucan is an important polysaccharide due to its medicinal properties of stimulating the immune system and preventing chronic diseases such as cancer. The aim of the present study was to determine the anticlastogenic effect of β-glucan in cells exposed to ultraviolet radiation (UV). Chromosome aberration assay was performed in drug-metabolizing cells (HTC) and non drug-metabolizing cells (CHO-K1 and repair-deficient CHO-xrs5), using different treatment protocols. Continuous treatment (UV + ...

  12. Human Monocyte-Derived Dendritic Cells Exposed to Microorganisms Involved in Hypersensitivity Pneumonitis Induce a Th1-Polarized Immune Response

    Science.gov (United States)

    Pallandre, Jean-René; Borg, Christophe; Loeffert, Sophie; Gbaguidi-Haore, Houssein; Millon, Laurence

    2013-01-01

    Hypersensitivity pneumonitis (HP) is an immunoallergic disease characterized by a prominent interstitial infiltrate composed predominantly of lymphocytes secreting inflammatory cytokines. Dendritic cells (DCs) are known to play a pivotal role in the lymphocytic response. However, their cross talk with microorganisms that cause HP has yet to be elucidated. This study aimed to investigate the initial interactions between human monocyte-derived DCs (MoDCs) and four microorganisms that are different in nature (Saccharopolyspora rectivirgula [actinomycetes], Mycobacterium immunogenum [mycobacteria], and Wallemia sebi and Eurotium amstelodami [filamentous fungi]) and are involved in HP. Our objectives were to determine the cross talk between MoDCs and HP-causative agents and to determine whether the resulting immune response varied according to the microbial extract tested. The phenotypic activation of MoDCs was measured by the increased expression of costimulatory molecules and levels of cytokines in supernatants. The functional activation of MoDCs was measured by the ability of MoDCs to induce lymphocytic proliferation and differentiation in a mixed lymphocytic reaction (MLR). E. amstelodami-exposed (EA) MoDCs expressed higher percentages of costimulatory molecules than did W. sebi-exposed (WS), S. rectivirgula-exposed (SR), or M. immunogenum-exposed (MI) MoDCs (P < 0.05, Wilcoxon signed-rank test). EA-MoDCs, WS-MoDCs, SR-MoDCs, and MI-MoDCs induced CD4+ T cell proliferation and a Th1-polarized immune response. The present study provides evidence that, although differences were initially observed between MoDCs exposed to filamentous fungi and MoDCs exposed to bacteria, a Th1 response was ultimately promoted by DCs regardless of the microbial extract tested. PMID:23720369

  13. Differential protein expression in two bivalve species; Mytilus galloprovincialis and Corbicula fluminea; exposed to Cylindrospermopsis raciborskii cells.

    Science.gov (United States)

    Puerto, Maria; Campos, Alexandre; Prieto, Ana; Cameán, Ana; de Almeida, André Martinho; Coelho, Ana Varela; Vasconcelos, Vitor

    2011-01-17

    The cyanobacteria Cylindrospermopsis raciborskii is considered a threat to aquatic organisms due to the production of the toxin cylindrospermopsin (CYN). Despite the numerous reports evidencing the toxic effects of C. raciborskii cells and CYN in different species, not much is known regarding the toxicity mechanisms associated with this toxin and the cyanobacteria. In this work, a proteomics approach based in the two-dimensional gel electrophoresis and mass spectrometry was used to study the effects of the exposure of two bivalve species, Mytilus galloprovincialis and Corbicula fluminea, to CYN producing (CYN+) and non-producing (CYN-) C. raciborskii cells. Additionally the activities of glutathione S-transferase (GST) and glutathione peroxidase (GPx) were determined. Alterations in actin and tubulin isoforms were detected in gills of both bivalve species and digestive gland of M. galloprovincialis when exposed to CYN- and CYN+ cells. Moreover, GST and GPx activities changed in gills and digestive tract of bivalves exposed to both C. raciborskii freeze dried cells, in comparison to control animals exposed to the green alga Chlorella vulgaris. These results suggest the induction of physiological stress and tissue injury in bivalves by C. raciborskii. This condition is supported by the changes observed in GPx and GST activities which indicate alterations in the oxidative stress defense mechanisms. The results also evidence the capacity of CYN non-producing C. raciborskii to induce biochemical responses and therefore its toxicity potential to bivalves. The heat shock protein 60 (HSP60), extrapallial (EP) fluid protein and triosephosphate isomerase homologous proteins from gills of M. galloprovincialis were down-regulated specifically with the presence of CYN+ C. raciborskii cells. The presence of CYN may lead to additional toxic effects in M. galloprovincialis. This work demonstrates that proteomics is a powerful approach to characterize the biochemical effects of C

  14. Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles.

    Science.gov (United States)

    Srikanth, Koigoora; Pereira, Eduarda; Duarte, Armando C; Rao, Janapala Venkateswara

    2016-05-01

    The current study is aimed to study cytotoxicity and oxidative stress mediated changes induced by copper oxide nanoparticles (CuO NPs) in Chinook salmon cells (CHSE-214). To this end, a number of biochemical responses are evaluated in CHSE-214 cells which are as follows [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] MTT, neutral red uptake (NRU), lactate dehydrogenase (LDH), protein carbonyl (PC), lipid peroxidation (LPO), oxidised glutathione (GSSG), reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione sulfo-transferase (GST), superoxide dismutase (SOD), catalase (CAT), 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and reactive oxygen species (ROS), respectively. The 50% inhibition concentration (IC50) of CuO NPs to CHSE-214 cells after 24 h exposure was found to be 19.026 μg ml(-1). Viability of cells was reduced by CuO NPs, and the decrease was dose dependent as revealed by the MTT and NRU assay. CHSE-214 cells exposed to CuO NPs induced morphological changes. Initially, cells started to detach from the surface (12 h), followed by polyhedric, fusiform appearance (19 h) and finally the cells started to shrink. Later, the cells started losing their cellular contents leading to their death only after 24 h. LDH, PC, LPO, GSH, GPx, GST, SOD, CAT, 8-OHdG and ROS responses were seen significantly increased with the increase in the concentration of CuO NPs when compared to their respective controls. However, significant decrease in GSSG was perceptible in CHSE-214 cells exposed to CuO NPs in a dose-dependent manner. Our data demonstrated that CuO NPs induced cytotoxicity in CHSE-214 cells through the mediation of oxidative stress. The current study provides a baseline for the CuO NPs-mediated cytotoxic assessment in CHSE-214 cells for the future studies.

  15. Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors

    Energy Technology Data Exchange (ETDEWEB)

    Bedia, Carmen, E-mail: carmen.bedia@idaea.csic.es; Dalmau, Núria, E-mail: nuria.dalmau@idaea.csic.es; Jaumot, Joaquim, E-mail: joaquim.jaumot@idaea.csic.es; Tauler, Romà, E-mail: roma.tauler@idaea.csic.es

    2015-07-15

    Endocrine disruptors (EDs) are a class of environmental toxic molecules able to interfere with the normal hormone metabolism. Numerous studies involve EDs exposure to initiation and development of cancers, including prostate cancer. In this work, three different EDs (aldrin, aroclor 1254 and chlorpyrifos (CPF)) were investigated as potential inducers of a malignant phenotype in DU145 prostate cancer cells after a chronic exposure. Epithelial to mesenchymal transition (EMT) induction, proliferation, migration, colony formation and release of metalloproteinase 2 (MMP-2) were analyzed in 50-day exposed cells to the selected EDs. As a result, aldrin and CPF exposure led to an EMT induction (loss of 16% and 14% of E-cadherin levels, respectively, compared to the unexposed cells). Aroclor and CPF presented an increased migration (134% and 126%, respectively), colony formation (204% and 144%, respectively) and MMP-2 release (137% in both cases) compared to the unexposed cells. An untargeted lipidomic analysis was performed to decipher the lipids involved in the observed transformations. As general results, aldrin exposure showed a global decrease in phospholipids and sphingolipids, and aroclor and CPF showed an increase of certain phospholipids, glycosphingolipids as well as a remarkable increase of some cardiolipin species. Furthermore, the three exposures resulted in an increase of some triglyceride species. In conclusion, some significant changes in lipids were identified and thus we postulate that some lipid compounds and lipid metabolic pathways could be involved in the acquisition of the malignant phenotype in exposed prostate cancer cells to the selected EDs. - Highlights: • Aldrin, aroclor and chlorpyrifos induced an aggressive phenotype in DU145 cells. • An untargeted lipidomic analysis has been performed on chronic exposed cells. • Lipidomic results showed changes in specific lipid species under chronic exposure. • These lipids may have a role in the

  16. Sodium pyruvate modulates cell death pathways in HaCaT keratinocytes exposed to half-mustard gas.

    Science.gov (United States)

    Paromov, Victor; Brannon, Marianne; Kumari, Sudha; Samala, Mallikarjun; Qui, Min; Smith, Milton; Stone, William L

    2011-03-01

    2-Chloroethyl ethyl sulfide (CEES) or half-mustard gas, a sulfur mustard (HD) analog, is a genotoxic agent that causes oxidative stress and induces both apoptotic and necrotic cell death. Sodium pyruvate induced a necrosis-to-apoptosis shift in HaCaT cells exposed to CEES levels ≤ 1.5 mmol/L and lowered markers of DNA damage, oxidative stress, and inflammation. This study provides a rationale for the future development of multicomponent therapies for HD toxicity in the skin. We hypothesize that a combination of pyruvates with scavengers/antioxidants encapsulated in liposomes for optimal local delivery should be therapeutically beneficial against HD-induced skin injury. However, the latter suggestion should be verified in animal models exposed to HD.

  17. Virus-specific nucleic acids in SV40-exposed hamster embryo cell lines: correlation with S and T antigens.

    Science.gov (United States)

    Levin, M J; Oxman, M N; Diamandopoulos, G T; Levine, A S; Henry, P H; Enders, J F

    1969-02-01

    A number of homologous SV40-exposed hamster embryonic cell lines were examined for the presence of RNA complementary to SV40 DNA. Only those lines containing the SV40 T antigen were found to have such virus-specific RNA. In lines containing the SV40 S antigen, but not the SV40 T antigen, virus-specific RNA was not detected. These findings suggest that the S antigen is not coded for directly by the SV40 genome.

  18. VIRUS-SPECIFIC NUCLEIC ACIDS IN SV40-EXPOSED HAMSTER EMBRYO CELL LINES: CORRELATION WITH S AND T ANTIGENS*

    Science.gov (United States)

    Levin, Myron J.; Oxman, Michael N.; Diamandopoulos, George Th.; Levine, Arthur S.; Henry, Patrick H.; Enders, John F.

    1969-01-01

    A number of homologous SV40-exposed hamster embryonic cell lines were examined for the presence of RNA complementary to SV40 DNA. Only those lines containing the SV40 T antigen were found to have such virus-specific RNA. In lines containing the SV40 S antigen, but not the SV40 T antigen, virus-specific RNA was not detected. These findings suggest that the S antigen is not coded for directly by the SV40 genome. PMID:4307716

  19. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    OpenAIRE

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I; Chen, Lung-Chi; Costa, Max

    2012-01-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM10 and to identify genes and pathways that may contribute to PM related adverse heal...

  20. REV-ERBα inhibits the PTGS2 expression in bovine uterus endometrium stromal and epithelial cells exposed to ovarian steroids.

    Science.gov (United States)

    Isayama, Keishiro; Chen, Huatao; Yamauchi, Nobuhiko; Hattori, Masa-Aki

    2014-01-01

    The nuclear receptor REV-ERBα (encoded by NR1D1) has a critical role in metabolism and physiology as well as circadian rhythm. Here, we investigated the possible contribution of clock genes including NR1D1 to the secretion of prostaglandin F2α (PGF2α) from bovine uterine stromal (USCs) and epithelial cells (UECs) by modulating the expression of PTGS2. The circadian oscillation of clock genes in the cells was weak compared with that reported in rodents, but the expression of BMAL1, PER1, and NR1D1 was changed temporally by treatment with ovarian steroids. Significant expression of clock genes including NR1D1 was detected in USCs exposed to progesterone. NR1D1 was also significantly expressed in UECs exposed to estradiol. The expression of PTGS2 was suppressed in USCs exposed to progesterone, while the expression was initially suppressed in UECs exposed to estradiol and then increased after long-term exposure to estradiol. BMAL1 knockdown with specific siRNA caused a significant decrease in the transcript levels of NR1D1 and PTGS2 in USCs, but not in UECs. The production of PGF2α also decreased in USCs after BMAL1 knockdown, while its level did not significantly change in UECs. The transcript level of PTGS2 was increased by treatment with the antagonist of REV-ERBα in both cell types, but the agonist was ineffective. In these two cell types treated with the agonist or antagonist, the PGF2α production coincided well with the PTGS2 expression. Collectively, these results indicate that REV-ERBα plays an inhibitory role in the expression of PTGS2 in both bovine USCs and UECs treated with ovarian steroids.

  1. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia.

    Science.gov (United States)

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A; Khoder, Mamdouh I; Chen, Lung-Chi; Costa, Max

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM(10) and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM(10) collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM(10) exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Signs of Müller cell gliotic response found in the retina of newts exposed to real and simulated microgravity

    Science.gov (United States)

    Grigoryan, E. N.; Anton, H. J.; Poplinskaya, V. A.; Aleinikova, K. S.; Domaratskaya, E. I.; Novikova, Y. P.; Almeida, E.

    2012-05-01

    The effects of real and simulated microgravity on the eye tissue regeneration of newts were investigated. For the first time changes in Müller glial cells in the retina of eyes regenerating after retinal detachment were detected in newts exposed to clinorotation. The cells divided, were hypertrophied, and their processes were thickened. Such changes suggested reactive gliosis and were more significant in animals exposed to rotation when compared with desk-top controls. Later experiments onboard the Russian biosatellite Bion-11 showed similar changes in the retinas that were regenerating in a two-week spaceflight. In the Bion-11 animals, GFAP, the major structural protein of retinal macroglial cells, was found to be upregulated. In a more recent experiment onboard Foton-M3 (2007), GFAP expression in retinas of space-flown, ground control (kept at 1 g), and basal control (sacrificed on launch day) newts was quantified, using microscopy, immunohistochemistry, and digital image analysis. A low level of immunoreactivity was observed in basal controls. In contrast, retinas of space-flown animals showed greater GFAP immunoreactivity associated with both an increased cell number and a higher thickness of intermediate filaments. This, in turn, was accompanied by up-regulation of stress protein (HSP90) and growth factor (FGF2) expressions. It can be postulated that such a response of Müller cells was to mitigate the retinal stress in newts exposed to microgravity. Taken together, the data suggest that the retinal population of macroglial cells could be sensitive to gravity changes and that in space it can react by enhancing its neuroprotective function.

  3. Increased frequency of spontaneous neoplastic transformation in progeny of bystander cells from cultures exposed to densely ionizing radiation.

    Directory of Open Access Journals (Sweden)

    Manuela Buonanno

    Full Text Available An increased risk of carcinogenesis caused by exposure to space radiation during prolonged space travel is a limiting factor for human space exploration. Typically, astronauts are exposed to low fluences of ionizing particles that target only a few cells in a tissue at any one time. The propagation of stressful effects from irradiated to neighboring bystander cells and their transmission to progeny cells would be of importance in estimates of the health risks of exposure to space radiation. With relevance to the risk of carcinogenesis, we investigated, in model C3H 10T½ mouse embryo fibroblasts (MEFs, modulation of the spontaneous frequency of neoplastic transformation in the progeny of bystander MEFs that had been in co-culture 10 population doublings earlier with MEFs exposed to moderate doses of densely ionizing iron ions (1 GeV/nucleon or sparsely ionizing protons (1 GeV. An increase (P<0.05 in neoplastic transformation frequency, likely mediated by intercellular communication through gap junctions, was observed in the progeny of bystander cells that had been in co-culture with cells irradiated with iron ions, but not with protons.

  4. Argon protects hypoxia-, cisplatin- and gentamycin-exposed hair cells in the newborn rat's organ of Corti.

    Science.gov (United States)

    Yarin, Yury M; Amarjargal, Nyamaa; Fuchs, Julia; Haupt, Heidemarie; Mazurek, Birgit; Morozova, Svetlana V; Gross, Johann

    2005-03-01

    During the last few years, an important protective effect of the noble gas xenon against neuronal hypoxic damage was observed. However, argon (Ar), a gas from the same chemical group, but less expensive and without anesthetic effect at normobaric pressure, has not been studied in terms of possible biological effects on cell protection. Ar was tested for its ability to protect organotypic cultures of the organ of Corti from 3-5 day old rats against hypoxia, cisplatin, and gentamycin toxicity. Cultures were exposed to nitrogen hypoxia (5% CO2, 95% N2), Ar hypoxia (5% CO2, 95% Ar) or normoxia for 30 h. Ar protected the hair cells from hypoxia-induced damage by about 25%. Ar-oxygen (O2) mixtures (21% O2, 5% CO2, 74% Ar) had no effect on the hair cell survival. Cisplatin (7.5-25 microM) and gentamycin (5-40 microM) exposed in medium under air damaged the hair cells in a dose-dependent manner. The exposure of cisplatin- and gentamycin-treated cultures to the Ar-O2 atmosphere significantly reduced the hair cell damage by up to 25%. This protective effect of Ar might provide a new protective approach against ototoxic processes.

  5. Low doses of alpha particles do not induce sister chromatid exchanges in bystander Chinese hamster cells defective in homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, H; Wilson, P F; Chen, D J; Thompson, L H; Bedford, J S; Little, J B

    2007-10-26

    We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells (Nagasawa et al., Radiat. Res. 164, 141-147, 2005). In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33 SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16 SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23-0.33 SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3 mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after {alpha}-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.

  6. Oxidative stress and apoptosis induction in human thyroid carcinoma cells exposed to the essential oil from Pistacia lentiscus aerial parts.

    Directory of Open Access Journals (Sweden)

    Simona Catalani

    Full Text Available Essential oils from the aerial parts (leaves, twigs and berries of Pistacia lentiscus (PLEO have been well characterized for their antibacterial and anti-inflammatory properties; however, poor information exists on their potential anticancer activity.Increasing concentrations of PLEO (0.01-0.1% v/v, 80-800 μg/ml were administered to a wide variety of cultured cancer cells from breast, cervix, colon, liver, lung, prostate, and thyroid carcinomas. Fibroblasts were also included as healthy control cells. Cell viability was monitored by WST-8 assay up to 72 hours after PLEO administration. The intracellular formation of reactive oxygen species (ROS, the induction of apoptosis, and the enhancement of chemotherapeutic drug cytotoxicity by PLEO were further investigated in the most responsive cancer cell line.A dose-dependent reduction of tumor cell viability was observed upon PLEO exposure; while no cytotoxic effect was revealed in healthy fibroblasts. FTC-133 thyroid cancer cells were found to be the most sensitive cells to PLEO treatment; accordingly, an intracellular accumulation of ROS and an activation of both the extrinsic and intrinsic apoptotic pathways were evidenced in FTC-133 cells after PLEO administration. Furthermore, the cytotoxic effect of the antineoplastic drugs cisplatin, 5-fluorouracil and etoposide was enhanced in PLEO-exposed FTC-133 cells.Taking into account its mode of action, PLEO might be considered as a promising source of natural antitumor agents which might have therapeutic potential in integrated oncology.

  7. Oxidative stress and apoptosis induction in human thyroid carcinoma cells exposed to the essential oil from Pistacia lentiscus aerial parts.

    Science.gov (United States)

    Catalani, Simona; Palma, Francesco; Battistelli, Serafina; Benedetti, Serena

    2017-01-01

    Essential oils from the aerial parts (leaves, twigs and berries) of Pistacia lentiscus (PLEO) have been well characterized for their antibacterial and anti-inflammatory properties; however, poor information exists on their potential anticancer activity. Increasing concentrations of PLEO (0.01-0.1% v/v, 80-800 μg/ml) were administered to a wide variety of cultured cancer cells from breast, cervix, colon, liver, lung, prostate, and thyroid carcinomas. Fibroblasts were also included as healthy control cells. Cell viability was monitored by WST-8 assay up to 72 hours after PLEO administration. The intracellular formation of reactive oxygen species (ROS), the induction of apoptosis, and the enhancement of chemotherapeutic drug cytotoxicity by PLEO were further investigated in the most responsive cancer cell line. A dose-dependent reduction of tumor cell viability was observed upon PLEO exposure; while no cytotoxic effect was revealed in healthy fibroblasts. FTC-133 thyroid cancer cells were found to be the most sensitive cells to PLEO treatment; accordingly, an intracellular accumulation of ROS and an activation of both the extrinsic and intrinsic apoptotic pathways were evidenced in FTC-133 cells after PLEO administration. Furthermore, the cytotoxic effect of the antineoplastic drugs cisplatin, 5-fluorouracil and etoposide was enhanced in PLEO-exposed FTC-133 cells. Taking into account its mode of action, PLEO might be considered as a promising source of natural antitumor agents which might have therapeutic potential in integrated oncology.

  8. Sirolimus Increases T-Cell Abundance in the Sun Exposed Skin of Kidney Transplant Recipients

    Directory of Open Access Journals (Sweden)

    Michael Thomas Burke, MBBS

    2017-07-01

    Conclusions. This study demonstrated that immunosuppressive drug class and sun exposure modify the abundance of multiple T-cell subsets in the skin of KTRs. Correlation analysis revealed that the prevalence of Treg cells in KTR blood does not accurately reflect the prevalence of Treg cells in KTR skin.

  9. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    Science.gov (United States)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  10. Effect of amygdalin on the proliferation of hyperoxia-exposed type II alveolar epithelial cells isolated from premature rat.

    Science.gov (United States)

    Zhu, Huaping; Chang, Liwen; Li, Wenbin; Liu, Hanchu

    2004-01-01

    The pathogenesis of hyperoxia lung injury and the mechanism of amygdalin on type 2 alveolar epithelial cells (AEC2) isolated from premature rat lungs in vitro were investigated. AEC2 were obtained by primary culture from 20-days fetal rat lung and hyperoxia-exposed cell model was established. Cell proliferating viability was examined by MTT assay after treatment of amygdalin at various concentrations. DNA content and the proliferating cell nuclear antigen (PCNA) protein expression of AEC2 were measured by using flow cytometry and immunocytochemistry respectively after 24 h of hyperoxia exposure or amygdalin treatment. The results showed that hyperoxia inhibited the proliferation and decreased PCNA protein expression in A-EC2 of premature rat in vitro. Amygdalin at the concentration range of 50-200 micromol/L stimulated the proliferation of AEC2 in a dose-dependent manner, however, 400 micromol/L amygdalin inhibited the proliferation of AEC2. Amygdalin at the concentration of 200 micromol/L played its best role in facilitating proliferation of AEC2s in vitro and could partially ameliorated the changes of proliferation in hyperoxia exposed AEC2 of premature rat. It has been suggested that hyperoxia inhibited the proliferation of AEC2s of premature rat, which may contribute to hyperoxia lung injury. Amygdalin may play partial protective role in hyperoxia-induced lung injury.

  11. A DP based scheme for real-time reconfiguration of solar cell arrays exposed to dynamic changing inhomogeneous illuminations

    DEFF Research Database (Denmark)

    Shi, Liping; Brehm, Robert

    2016-01-01

    The overall energy conversion efficiency of solar cell arrays is highly effected by partial shading effects. Especially for solar panel arrays installed in environments which are exposed to inhomogeneous dynamic changing illuminations such as on roof tops of electrical vehicles the overall system...... efficiency is drastically reduced. Dynamic real-time reconfiguration of the solar panel array can reduce effects on the output efficiency due to partial shading. This results in a maximized power output of the panel array when exposed to dynamic changing illuminations. The optimal array configuration...... with respect to shading patterns can be stated as a combinatorial optimization problem and this paper proposes a dynamic programming (DP) based algorithm which finds the optimal feasible solution to reconfigure the solar panel array for maximum efficiency in real-time with linear time complexity. It is shown...

  12. A nitroimidazole derivative, PR-350, enhances the killing of pancreatic cancer cells exposed to high-dose irradiation under hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Kazuhiro; Qian, Li-Wu; Zhang, Li.; Nagai, Eishi; Kura, Shinobu; Tanaka, Masao [Kyushu Univ., Fukuoka (Japan). Graduate School of Medical Sciences

    2002-03-01

    The radiosensitizing effects of PR-350, a nitroimidazole derivative, were examined concerning the cell killing of human pancreatic cancer cell lines exposed to high doses of gamma-ray irradiation in vitro. The percentages of dead cells were analyzed with a multiwell plate reader to measure the fluorescence intensity of propidium iodide before and after a digitonin treatment. The sensitizing effect of PR-350 on cell killing by high-dose irradiation was confirmed by time-course, dose-dependency, and microscopic observations. In five of seven pancreatic cancer cell lines in which the number of dead cells was determined 5 days after 30 Gy irradiation in the presence of PR-350, the number was significantly increased under hypoxic conditions, but not under aerobic conditions. The selective radiosensitive effect of PR-350 on hypoxic cells was also confirmed by flow cytometry. The results indicate that PR-350 can enhance the killing of pancreatic cancer cells by high-dose irradiation under hypoxia, which supports its clinical radiosensitizing effects when administered during intraoperative irradiation to pancreatic cancer. (author)

  13. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hong [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Alghamdi, Mansour A.; Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Chen, Lung-Chi [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States)

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  14. Morphological alterations of Vero cell exposed to coplanar PCB 126 and noncoplanar PCB 153.

    Science.gov (United States)

    Shen, Kaili; Shen, Chaofeng; Chen, Lei; Chen, Xincai; Chen, Yingxu

    2012-01-01

    Polychlorinated biphenyls (PCBs) are widespread, persistent environmental contaminants that display a complex spectrum of toxicological properties. Exposure to PCBs has been associated with morphological anomalies in cell cultures. However, most mechanistic studies of PCBs' toxic activity have been focused on coplanar congeners. It is of importance to determine whether PCB treatment would influence cell configuration and whether these changes would depend on the structural characteristics of PCBs. In this study, we investigated cell morphological alteration in Vero cell cultures after exposure to coplanar PCB 126 and noncoplanar PCB 153. The survival of Vero cells was measured through the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test. Cytotoxicity results suggested that PCB congeners had a toxic, antiproliferative effect on Vero cells. Morphological studies described structural modifications and provided evidence that apoptosis might be the main cell death pathway in PCB 153-treated cells. The comparison between PCB 126 and PCB 153 indicated that the cell death mechanisms involved in coplanar or noncoplanar PCB congener exposure were different in Vero cells. Copyright © 2010 Wiley Periodicals, Inc.

  15. Glutaraldehyde fixation preserves the trend of elasticity alterations for endothelial cells exposed to TNF-α.

    Science.gov (United States)

    Targosz-Korecka, Marta; Brzezinka, Grzegorz Daniel; Danilkiewicz, Joanna; Rajfur, Zenon; Szymonski, Marek

    2015-03-01

    Among the users of atomic force microscopy based techniques, there is an ongoing discussion, whether cell elasticity measurements performed on fixed cells could be used for determination of the relative elasticity changes of the native (unfixed) cells subjected to physiologically active external agents. In this article, we present a case, for which the legitimacy of cell fixation for elasticity measurements is justified. We provide an evidence that the alterations of cell elasticity triggered by tumor necrosis factor alpha (TNF-α) in EA.hy926 endothelial cells are preserved after glutaraldehyde (GA) fixation. The value of post-fixation elasticity parameter is a product of the elasticity parameter obtained for living cells and a constant value, dependent on the GA concentration. The modification of the initial value of elasticity parameter caused by remodeling of the cortical actin cytoskeleton is reflected in the elasticity measurements performed on fixed cells. Thus, such fixation procedure may be particularly helpful for experiments, where the influence of an external agent on the cell cortex should be assessed and AFM measurements of living cells are problematic or better statistics is needed. © 2015 Wiley Periodicals, Inc.

  16. Area Expansivity Moduli of Regenerating Plant Protoplast Cell Walls Exposed to Shear Flows

    Science.gov (United States)

    Fujimura, Yuu; Iino, Masaaki; Watanabe, Ugai

    2005-05-01

    To control the elasticity of the plant cell wall, protoplasts isolated from cultured Catharanthus roseus cells were regenerated in shear flows of 115 s-1 (high shear) and 19.2 s-1 (low shear, as a control). The surface area expansivity modulus and the surface breaking strength of these regenerating protoplasts were measured by a micropipette aspiration technique. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye. High shear exposure for 3 h doubled both the surface area modulus and breaking strength observed under low shear, significantly decreased cell wall synthesis, and roughly quadrupled the moduli of the cell wall. Based on the cell wall synthesis data, we estimated the three-dimensional modulus of the cell wall to be 4.1± 1.2 GPa for the high shear, and 0.35± 0.2 GPa for the low shear condition, using the surface area expansivity modulus divided by the cell wall thickness, which is identical with the Young’s modulus divided by 2(1-σ), where σ is Poisson's ratio. We concluded that high shear exposure considerably strengthens the newly synthesized cell wall.

  17. Structural damage of chicken red blood cells exposed to platinum nanoparticles and cisplatin

    DEFF Research Database (Denmark)

    Kutwin, Marta; Sawosz, Ewa; Jaworski, Sławomir

    2014-01-01

    of platinum nanoparticles (NP-Pt) and cisplatin with blood compartments are important for future applications. This study investigated structural damage, cell membrane deformation and haemolysis of chicken embryo red blood cells (RBC) after treatment with cisplatin and NP-Pt. Cisplatin (4 μg/ml) and NP-Pt (2......,6 μg/ml), when incubated with chicken embryo RBC, were detrimental to cell structure and induced haemolysis. The level of haemolytic injury was increased after cisplatin and NP-Pt treatments compared to the control group. Treatment with cisplatin caused structural damage to cell membranes...... and the appearance of keratocytes, while NP-Pt caused cell membrane deformations (discoid shape of cells was lost) and the formation of knizocytes and echinocytes. This work demonstrated that NP-Pt have potential applications in anticancer therapy, but potential toxic side effects must be explored in future...

  18. Genotoxicity assessment data for exfoliated buccal cells exposed to mobile phone radiation

    Directory of Open Access Journals (Sweden)

    F.M. de Oliveira

    2017-12-01

    Full Text Available Healthy mobile phone users aged 18–30 y.o. provided exfoliated buccal cells samples from the right and left inner cheeks. A total of 2000 cells per subject were screened for the presence of micronuclei as a sign of genotoxic damage, according to the mobile phone use profile of each user. Keywords: Electromagnetic fields, Mobile phones, Genotoxicity, Micronuclei, Exfoliated buccal cells, Feulgen stain

  19. ATP Release from Human Airway Epithelial Cells Exposed to Staphylococcus aureus Alpha-Toxin

    Directory of Open Access Journals (Sweden)

    Romina Baaske

    2016-12-01

    Full Text Available Airway epithelial cells reduce cytosolic ATP content in response to treatment with S. aureus alpha-toxin (hemolysin A, Hla. This study was undertaken to investigate whether this is due to attenuated ATP generation or to release of ATP from the cytosol and extracellular ATP degradation by ecto-enzymes. Exposure of cells to rHla did result in mitochondrial calcium uptake and a moderate decline in mitochondrial membrane potential, indicating that ATP regeneration may have been attenuated. In addition, ATP may have left the cells through transmembrane pores formed by the toxin or through endogenous release channels (e.g., pannexins activated by cellular stress imposed on the cells by toxin exposure. Exposure of cells to an alpha-toxin mutant (H35L, which attaches to the host cell membrane but does not form transmembrane pores, did not induce ATP release from the cells. The Hla-mediated ATP-release was completely blocked by IB201, a cyclodextrin-inhibitor of the alpha-toxin pore, but was not at all affected by inhibitors of pannexin channels. These results indicate that, while exposure of cells to rHla may somewhat reduce ATP production and cellular ATP content, a portion of the remaining ATP is released to the extracellular space and degraded by ecto-enzymes. The release of ATP from the cells may occur directly through the transmembrane pores formed by alpha-toxin.

  20. Analysis of Pseudomonas aeruginosa cell envelope proteome by capture of surface-exposed proteins on activated magnetic nanoparticles.

    Directory of Open Access Journals (Sweden)

    Davide Vecchietti

    Full Text Available We report on specific magneto-capturing followed by Multidimensional Protein Identification Technology (MudPIT for the analysis of surface-exposed proteins of intact cells of the bacterial opportunistic pathogen Pseudomonas aeruginosa. The magneto-separation of cell envelope fragments from the soluble cytoplasmic fraction allowed the MudPIT identification of the captured and neighboring proteins. Remarkably, we identified 63 proteins captured directly by nanoparticles and 67 proteins embedded in the cell envelope fragments. For a high number of proteins, our analysis strongly indicates either surface exposure or localization in an envelope district. The localization of most identified proteins was only predicted or totally unknown. This novel approach greatly improves the sensitivity and specificity of the previous methods, such as surface shaving with proteases that was also tested on P. aeruginosa. The magneto-capture procedure is simple, safe, and rapid, and appears to be well-suited for envelope studies in highly pathogenic bacteria.

  1. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    Directory of Open Access Journals (Sweden)

    Soojin Park

    2016-01-01

    Full Text Available Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10. PM10 stimulates the production of reactive oxygen species (ROS and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and monocyte chemoattractant protein-1 (MCP-1, and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1. PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1. PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter.

  2. Protein thiol oxidation and formation of S-glutathionylated cyclophilin A in cells exposed to chloramines and hypochlorous acid.

    Science.gov (United States)

    Stacey, Melissa M; Cuddihy, Sarah L; Hampton, Mark B; Winterbourn, Christine C

    2012-11-01

    Neutrophil oxidants, including the myeloperoxidase products, HOCl and chloramines, have been linked to endothelial dysfunction in inflammatory diseases such as atherosclerosis. As they react preferentially with sulfur centers, thiol proteins are likely to be cellular targets. Our objectives were to establish whether there is selective protein oxidation in vascular endothelial cells treated with HOCl or chloramines, and to identify sensitive proteins. Cells were treated with HOCl, glycine chloramine and monochloramine, reversibly oxidized cysteines were labeled and separated by 1D or 2D SDS-PAGE, and proteins were characterized by mass spectrometry. Selective protein oxidation was observed, with chloramines and HOCl causing more changes than H(2)O(2). Cyclophilin A was one of the most sensitive targets, particularly with glycine chloramine. Cyclophilin A was also oxidized in Jurkat T cells where its identity was confirmed using a knockout cell line. The product was a mixed disulfide with glutathione, with glutathionylation at Cys-161. Glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxins and cofilin were also highly sensitive to HOCl/chloramines. Cyclophilins are becoming recognized as redox regulatory proteins, and glutathionylation is an important mechanism for redox regulation. Cells lacking Cyclophilin A showed more glutathionylation of other proteins than wild-type cells, suggesting that cyclophilin-regulated deglutathionylation could contribute to redox changes in HOCl/chloramine-exposed cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Light-induced transpiration alters cell water relations in figleaf gourd (Cucurbita ficifolia) seedlings exposed to low root temperatures.

    Science.gov (United States)

    Lee, Seong Hee; Zwiazek, Janusz J; Chung, Gap Chae

    2008-06-01

    Water relation parameters including elastic modulus (epsilon), half-times of water exchange (T(w)(1/2)), hydraulic conductivity and turgor pressure (P) were measured in individual root cortical and cotyledon midrib cells in intact figleaf gourd (Cucurbita ficifolia) seedlings, using a cell pressure probe. Transpiration rates (E) of cotyledons were also measured using a steady-state porometer. The seedlings were exposed to low ambient (approximately 10 micromol m(-2) s(-1)) or high supplemental irradiance (approximately 300 micromol m(-2) s(-1) PPF density) at low (8 degrees C) or warm (22 degrees C) root temperatures. When exposed to low irradiance, all the water relation parameters of cortical cells remained similar at both root temperatures. The exposure of cotyledons to supplemental light at warm root temperatures, however, resulted in a two- to three-fold increase in T(w)(1/2) values accompanied with the reduced hydraulic conductivity in both root cortical (Lp) and cotyledon midrib cells (Lp(c)). Low root temperature (LRT) further reduced Lp(c) and E, whether it was measured under low or high irradiance levels. The reductions of Lp as the result of respective light and LRT treatments were prevented by the application of 1 microM ABA. Midrib cells required higher concentrations of ABA (2 microM) in order to prevent the reduction in Lp(c). When the exposure of cotyledons to light was accompanied by LRT, however, ABA proved ineffective in reversing the inhibition of Lp. LRT combined with high irradiance triggered a drastic 10-fold reduction in water permeability of cortical and midrib cells and increased epsilon and T(w)(1/2) values. Measurement of E indicated that the increased water demand by the transpiring plants was fulfilled by an increase in the apoplastic pathway as principal water flow route. The importance of water transport regulation by transpiration affecting the hydraulic conductivity of the roots is discussed.

  4. Dendritic cells inversely regulate airway inflammation in cigarette smoke-exposed mice

    NARCIS (Netherlands)

    Ezzati Givi, Masoumeh; Akbari, Peyman; Boon, Louis; Puzovic, Vladimir S; Bezemer, Gillina F G; Ricciardolo, Fabio L M; Folkerts, Gert; Redegeld, Frank A; Mortaz, Esmaeil

    The recruitment and activation of inflammatory cells into the respiratory system is considered a crucial feature in the pathophysiology of chronic obstructive pulmonary disease (COPD). Since dendritic cells (DCs) have a pivotal role in the onset and regulation of immune responses, we investigated

  5. Transcriptome analysis of the human T lymphocyte cell line Jurkat and human peripheral blood mononuclear cells exposed to deoxynivalenol (DON): New mechanistic insights

    Energy Technology Data Exchange (ETDEWEB)

    Katika, Madhumohan R. [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Department of Health Risk Analysis and Toxicology, Maastricht University (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Hendriksen, Peter J.M. [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Shao, Jia [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Department of Health Risk Analysis and Toxicology, Maastricht University (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Loveren, Henk van [Department of Health Risk Analysis and Toxicology, Maastricht University (Netherlands); National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Peijnenburg, Ad, E-mail: ad.peijnenburg@wur.nl [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Netherlands Toxicogenomics Centre (Netherlands)

    2012-10-01

    Deoxynivalenol (DON) or vomitoxin is a commonly encountered type-B trichothecene mycotoxin, produced by Fusarium species predominantly found in cereals and grains. DON is known to exert toxic effects on the gastrointestinal, reproductive and neuroendocrine systems, and particularly on the immune system. Depending on dose and exposure time, it can either stimulate or suppress immune function. The main objective of this study was to obtain a deeper insight into DON-induced effects on lymphoid cells. For this, we exposed the human T-lymphocyte cell line Jurkat and human peripheral blood mononuclear cells (PBMCs) to various concentrations of DON for various times and examined gene expression changes by DNA microarray analysis. Jurkat cells were exposed to 0.25 and 0.5 μM DON for 3, 6 and 24 h. Biological interpretation of the microarray data indicated that DON affects various processes in these cells: It upregulates genes involved in ribosome structure and function, RNA/protein synthesis and processing, endoplasmic reticulum (ER) stress, calcium-mediated signaling, mitochondrial function, oxidative stress, the NFAT and NF-κB/TNF-α pathways, T cell activation and apoptosis. The effects of DON on the expression of genes involved in ER stress, NFAT activation and apoptosis were confirmed by qRT-PCR. Other biochemical experiments confirmed that DON activates calcium-dependent proteins such as calcineurin and M-calpain that are known to be involved in T cell activation and apoptosis. Induction of T cell activation was also confirmed by demonstrating that DON activates NFATC1 and induces its translocation from the cytoplasm to the nucleus. For the gene expression profiling of PBMCs, cells were exposed to 2 and 4 μM DON for 6 and 24 h. Comparison of the Jurkat microarray data with those obtained with PBMCs showed that most of the processes affected by DON in the Jurkat cell line were also affected in the PBMCs. -- Highlights: ► The human T cell line Jurkat and human

  6. Whole-Genome Expression Analysis of Human Mesenchymal Stromal Cells Exposed to Ultrasmooth Tantalum vs. Titanium Oxide Surfaces

    DEFF Research Database (Denmark)

    Stiehler, C.; Bunger, C.; Overall, R. W.

    2013-01-01

    to Ti surface. Key genes related to osteogenesis and cell adhesion were upregulated by MSCs exposed to Ta. We further identified differentially regulated candidate transcription factors, e.g., NRF2, EGR1, IRF-1, IRF-8, NF-Y, and p53 as well as relevant signaling pathways, e.g., p53 and mTOR, indicating...... to titanium (Ti) surface. The aim of this study was to extend the previous investigation of biocompatibility by monitoring temporal gene expression of MSCs on topographically comparable smooth Ta and Ti surfaces using whole-genome gene expression analysis. Total RNA samples from telomerase-immortalized human...

  7. Low-level laser therapy: Effects on human face aged skin and cell viability of HeLa cells exposed to UV radiation

    Directory of Open Access Journals (Sweden)

    Mezghani Sana

    2015-01-01

    Full Text Available Chronic and excessive exposure to UV radiation leads to photoaging and photocarcinogenesis. Adequate protection of the skin against the deleterious effects of UV irradiation is essential. Low-level laser therapy (LLLT is a light source in the red to near-infrared range that has been accepted in a variety of medical applications. In this study, we explored the effect of LLLT in human face aged skin and the cell viability of HeLa cells exposed to UV radiation. We found that LLLT significantly reduced visible wrinkles and the loss of firmness of facial skin in aging subjects. Additionally, treatment of cultured HeLa cells with LLLT prior to or post UVA or UVB exposure significantly protected cells from UV-mediated cell death. All results showed the beneficial effects of LLLT on relieving signs of skin aging and its prevention and protection of the cell viability against UV-induced damage.

  8. Purinergic signaling mediates oxidative stress in UVA-exposed THP-1 cells

    Directory of Open Access Journals (Sweden)

    Ayumi Kawano

    2015-01-01

    Full Text Available Ultraviolet A (UVA radiation, the major UV component of solar radiation, can penetrate easily to the dermis, where it causes significant damage to cellular components by inducing formation of reactive oxygen species (ROS. On the other hand, extracellular ATP is released in response to various stimuli, and activates purinergic P2X7 receptor, triggering ROS production and cell death. Here, we examined the hypothesis that ATP release followed by activation of P2X7 receptor plays a role in UVA-induced oxidative cell damage, using human acute monocytic leukemia cell line THP-1. Indeed, UVA irradiation of THP-1 cells induced ATP release and activation of P2X7 receptor. Irradiated cells showed a rapid increase of both p67phox in membrane fraction and intracellular ROS. Pretreatment with ecto-nucleotidase or P2X7 receptor antagonist blocked the UVA-initiated membrane translocation of p67phox and ROS production. Furthermore, pretreatment with antioxidant or P2X7 receptor antagonist efficiently protected UVA-irradiated cells from caspase-dependent cell death. These findings show that autocrine signaling through release of ATP and activation of P2X7 receptor is required for UVA-induced stimulation of oxidative stress in monocytes.

  9. Structural damage of chicken red blood cells exposed to platinum nanoparticles and cisplatin

    Science.gov (United States)

    Kutwin, Marta; Sawosz, Ewa; Jaworski, Sławomir; Kurantowicz, Natalia; Strojny, Barbara; Chwalibog, André

    2014-05-01

    Side effects and resistance of cancer cells to cisplatin are major drawbacks to its application, and recently, the possibility of replacing cisplatin with nanocompounds has been considered. Most chemotherapeutic agents are administered intravenously, and comparisons between the interactions of platinum nanoparticles (NP-Pt) and cisplatin with blood compartments are important for future applications. This study investigated structural damage, cell membrane deformation and haemolysis of chicken embryo red blood cells (RBC) after treatment with cisplatin and NP-Pt. Cisplatin (4 μg/ml) and NP-Pt (2,6 μg/ml), when incubated with chicken embryo RBC, were detrimental to cell structure and induced haemolysis. The level of haemolytic injury was increased after cisplatin and NP-Pt treatments compared to the control group. Treatment with cisplatin caused structural damage to cell membranes and the appearance of keratocytes, while NP-Pt caused cell membrane deformations (discoid shape of cells was lost) and the formation of knizocytes and echinocytes. This work demonstrated that NP-Pt have potential applications in anticancer therapy, but potential toxic side effects must be explored in future preclinical research.

  10. Anatase TiO2 Nanoparticles with Exposed {001} Facets for Efficient Dye-Sensitized Solar Cells

    Science.gov (United States)

    Chu, Liang; Qin, Zhengfei; Yang, Jianping; Li, Xing’ao

    2015-01-01

    Anatase TiO2 nanoparticles with exposed {001} facets were synthesized from Ti powder via a sequential hydrothermal reaction process. At the first-step hydrothermal reaction, H-titanate nanowires were obtained in NaOH solution with Ti powder, and at second-step hydrothermal reaction, anatase TiO2 nanoparticles with exposed {001} facets were formed in NH4F solution. If the second-step hydrothermal reaction was carried out in pure water, the H-titanate nanowires were decomposed into random shape anatase-TiO2 nanostructures, as well as few impurity of H2Ti8O17 phase and rutile TiO2 phase. Then, the as-prepared TiO2 nanostructures synthesized in NH4F solution and pure water were applied to the photoanodes of dye-sensitized solar cells (DSSCs), which exhibited power conversion efficiency (PCE) of 7.06% (VOC of 0.756 V, JSC of 14.80 mA/cm2, FF of 0.631) and 3.47% (VOC of 0.764 V, JSC of 6.86 mA/cm2, FF of 0.662), respectively. The outstanding performance of DSSCs based on anatase TiO2 nanoparticles with exposed {001} facets was attributed to the high activity and large special surface area for excellent capacity of dye adsorption. PMID:26190140

  11. Regulation of SUMO2 Target Proteins by the Proteasome in Human Cells Exposed to Replication Stress

    DEFF Research Database (Denmark)

    Bursomanno, Sara; McGouran, Joanna F; Kessler, Benedikt M

    2015-01-01

    In human cells, SUMO2 is predominantly conjugated to target proteins in response to cellular stress. Previous studies suggested that proteins conjugated to SUMO2, but not to SUMO1, could be regulated by the ubiquitin-mediated proteasome system. Hence, we set out to understand the role...... of the proteasome in determining the fate of proteins conjugated to SUMO2 when cells are treated with DNA replication stress conditions. We conducted a quantitative proteomic analysis in a U2OS cell line stably expressing SUMO2(Q87R) tagged with StrepHA in the presence or absence of epoxomicin (EPOX), a proteasome...

  12. Effect of roflumilast on inflammatory cells in the lungs of cigarette smoke-exposed mice

    Directory of Open Access Journals (Sweden)

    De Cunto Giovanna

    2008-08-01

    Full Text Available Abstract Background We reported that roflumilast, a phosphodiesterase 4 inhibitor, given orally at 5 mg/kg to mice prevented the development of emphysema in a chronic model of cigarette smoke exposure, while at 1 mg/kg was ineffective. Here we investigated the effects of roflumilast on the volume density (VV of the inflammatory cells present in the lungs after chronic cigarette smoke exposure. Methods Slides were obtained from blocks of the previous study and VV was assessed immunohistochemically and by point counting using a grid with 48 points, a 20× objective and a computer screen for a final magnification of 580×. Neutrophils were marked with myeloperoxidase antibody, macrophages with Mac-3, dendritic cells with fascin, B-lymphocytes with B220, CD4+ T-cells with CD4+ antibody, and CD8+T-cells with CD8-α. The significance of the differences was calculated using one-way analysis of variance. Results Chronic smoke exposure increased neutrophil VV by 97%, macrophage by 107%, dendritic cell by 217%, B-lymphocyte by 436%, CD4+ by 524%, and CD8+ by 417%. The higher dose of roflumilast prevented the increase in neutrophil VV by 78%, macrophage by 82%, dendritic cell by 48%, B-lymphocyte by 100%, CD4+ by 98% and CD8+ VV by 88%. The lower dose of roflumilast did not prevent the increase in neutrophil, macrophage and B-cell VV but prevented dendritic cells by 42%, CD4+ by 55%, and CD8+ by 91%. Conclusion These results indicate (i chronic exposure to cigarette smoke in mice results in a significant recruitment into the lung of inflammatory cells of both the innate and adaptive immune system; (ii roflumilast at the higher dose exerts a protective effect against the recruitment of all these cells and at the lower dose against the recruitment of dendritic cells and T-lymphocytes; (iii these findings underline the role of innate immunity in the development of pulmonary emphysema and (iiii support previous results indicating that the inflammatory cells of

  13. Amperometric assessment of functional changes in nanoparticle-exposed immune cells: varying Au nanoparticle exposure time and concentration.

    Science.gov (United States)

    Marquis, Bryce J; Maurer-Jones, Melissa A; Braun, Katherine L; Haynes, Christy L

    2009-11-01

    A mast cell/fibroblast co-culture system is used as a model to assess the toxicity of Au nanoparticles over the course of 72 hours of exposure. Cellular uptake of nanoparticles was found to increase over the 72 hr exposure period and the nanoparticles localized within granular bodies of the primary culture mast cells. These granules were found to increase in volume with the addition of nanoparticles. There was no decrease in viability for 24 hr exposed cells but a slight viability decrease was found after 48 and 72 hr exposure. Carbon-fiber amperometry analysis of exocytosis of serotonin from mast cells revealed changing release profiles over the time course of exposure. In early exposure times, granular secretion of serotonin increased with exposure to Au nanoparticles whereas 72 hr exposure showed decreased secretion of serotonin with nanoparticle exposure. The kinetics of this release was also found to be affected by Au colloid exposure where the rate of serotonin expulsion decreased with increasing nanoparticle exposure. These results illustrate the dynamic nature of nanoparticle-cell interactions and the critical changes in cell behavior even when viability is unaffected.

  14. Nitric oxide measurements in hTERT-RPE cells and subcellular fractions exposed to low levels of red light

    Science.gov (United States)

    Wigle, Jeffrey C.; Castellanos, Cherry C.; Denton, Michael L.; Holwitt, Eric A.

    2014-02-01

    Cells in a tissue culture model for laser eye injury exhibit increased resistance to a lethal pulse of 2.0-μm laser radiation if the cells are first exposed to 2.88 J/cm2 of red light 24 hr prior to the lethal laser exposure. Changes in expression of various genes associated with apoptosis have been observed, but the biochemical link between light absorption and gene expression remains unknown. Cytochome c oxidase (CCOX), in the electron transport chain, is the currentlyhypothesized absorber. Absorption of the red light by CCOX is thought to facilitate displacement of nitric oxide (NO) by O2 in the active site, increasing cellular respiration and intracellular ATP. However, NO is also an important regulator and mediator of numerous physiological processes in a variety of cell and tissue types that is synthesized from l-arginine by NO synthases. In an effort to determine the relative NO contributions from these competing pathways, we measured NO levels in whole cells and subcellular fractions, with and without exposure to red light, using DAF-FM, a fluorescent dye that stoichiometrically reacts with NO. Red light induced a small, but consistently reproducible, increase in fluorescence intensity in whole cells and some subcellular fractions. Whole cells exhibited the highest overall fluorescence intensity followed by (in order) cytosolic proteins, microsomes, then nuclei and mitochondria.

  15. DNA damage and apoptosis of endometrial cells cause loss of the early embryo in mice exposed to carbon disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bingzhen [Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan (China); Shen, Chunzi [Centers for Disease Control and Prevention, Zibo (China); Yang, Liu; Li, Chunhui; Yi, Anji [Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan (China); Wang, Zhiping, E-mail: zhipingw@sdu.edu.cn [Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan (China)

    2013-12-01

    Carbon disulfide (CS{sub 2}) may lead to spontaneous abortion and very early pregnancy loss in women exposed in the workplace, but the mechanism remains unclear. We designed an animal model in which gestating Kunming strain mice were exposed to CS{sub 2} via i.p. on gestational day 4 (GD4). We found that the number of implanted blastocysts on GD8 was significantly reduced by each dose of 0.1 LD{sub 50} (157.85 mg/kg), 0.2 LD{sub 50} (315.7 mg/kg) and 0.4 LD{sub 50} (631.4 mg/kg). In addition, both the level of DNA damage and apoptosis rates of endometrial cells on GD4.5 were increased, showed definite dose–response relationships, and inversely related to the number of implanted blastocysts. The expressions of mRNA and protein for the Bax and caspase-3 genes in the uterine tissues on GD4.5 were up-regulated, while the expressions of mRNA and protein for the Bcl-2 gene were dose-dependently down-regulated. Our results indicated that DNA damage and apoptosis of endometrial cells were important reasons for the loss of implanted blastocysts induced by CS{sub 2}. - Highlights: • We built an animal model of CS2 exposure during blastocyst implantation. • Endometrial cells were used in the comet assay to detect DNA damage. • CS2 exposure caused DNA damage and endometrial cell apoptosis. • DNA damage and endometrial cell apoptosis were responsible for embryo loss.

  16. Rcan1-1L overexpression induces mitochondrial autophagy and improves cell survival in angiotensin II-exposed cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hongyan; Li, Yongqiang; Yan, Lijie; Yang, Haitao; Wu, Jintao; Qian, Peng; Li, Bing; Wang, Shanling, E-mail: shanglingwang@126.com

    2015-07-01

    Mitochondrial autophagy is an important adaptive stress response and can be modulated by various key molecules. A previous study found that the regulator of calcineurin 1-1L (Rcan1-1L) may regulate mitochondrial autophagy and cause mitochondria degradation in neurocytes. However, the effect of Rcan1-1L on cardiomyocytes has not been determined. In the present study, we aimed to investigate the role of Rcan1-1L in angiotensin II (Ang II)-exposed human cardiomyocytes. Above all, Human adult cardiac myocytes (HACMs) were exposed to 200 nmol/L Ang II for 4 days. Enhanced H{sub 2}O{sub 2} production, cytochrome C release and mitochondrial permeability were observed in these cells, which were blocked by valsartan. Consistently, Ang II exposure significantly reduced cardiomyocyte viability. However, transfection of Rcan1-1L vector promoted cell viability and ameliorated the apoptosis caused by Ang II. Rcan1-1L clearly promoted mitochondrial autophagy in HACMs, with elevated autophagy protein (ATG) 5 and light chain 3 (LC3) expression. Transient mitochondrial biogenesis and reduced cytochrome C release was also induced by Rcan1-1L. Additionally, Rcan1-1L significantly inhibited calcineurin/nuclear factor of activated T cells (NFAT) signaling. We thus conclude that Rcan1-1L may play a protective role in Ang II-treated cardiomyocytes through the induction of mitochondrial autophagy, and may be an alternative method of cardiac protection. - Highlights: • Transfection of Rcan1-1L into HACMs promoted cell viability and reduced apoptosis. • Transfection of Rcan1-1L promoted mitochondrial autophagy in HACMs. • Rcan1-1L inhibited the calcineurin/nuclear factor of activated T cells signaling.

  17. Analysis of lysosomal membrane proteins exposed to melanin in HeLa cells

    OpenAIRE

    Bang, Seung Hyuck; Park, Dong Jun; Kim, Yang-Hoon; Min, Jiho

    2016-01-01

    Objectives There have been developed to use targeting ability for antimicrobial, anticancerous, gene therapy and cosmetics through analysis of various membrane proteins isolated from cell organelles. Methods It was examined about the lysosomal membrane protein extracted from lysosome isolated from HeLa cell treated by 100 ppm melanin for 24 hours in order to find associated with targeting ability to melanin using by 2-dimensional electrophoresis. Results The result showed 14 up-regulated (1.5...

  18. Influence of shear stress and size on viability of endothelial cells exposed to gold nanoparticles

    Science.gov (United States)

    Fede, C.; Albertin, Giovanna; Petrelli, L.; De Caro, R.; Fortunati, I.; Weber, V.; Ferrante, Camilla

    2017-09-01

    Screening nanoparticle toxicity directly on cell culture can be a fast and cheap technique. Nevertheless, to obtain results in accordance with those observed in live animals, the conditions in which cells are cultivated should resemble the one encountered in live systems. Microfluidic devices offer the possibility to satisfy this requirement, in particular with endothelial cell lines, because they are capable to reproduce the flowing media and shear stress experienced by these cell lines in vivo. In this work, we exploit a microfluidic device to observe how human umbilical vein endothelial cells (HUVEC) viability changes when subject to a continuous flow of culture medium, in which spherical citrate-stabilized gold nanoparticles of different sizes and at varying doses are investigated. For comparison, the same experiments are also run in multiwells where the cells do not experience the shear stress induced by the flowing medium. We discuss the results considering the influence of mode of exposure and nanoparticle size (24 and 13 nm). We observed that gold nanoparticles show a lower toxicity under flow conditions with respect to static and the HUVEC viability decreases as the nanoparticle surface area per unit volume increases, regardless of size.

  19. Amiloride-sensitive sodium currents in fungiform taste cells of rats chronically exposed to nicotine.

    Science.gov (United States)

    Bigiani, A

    2015-01-22

    Many studies have demonstrated that chronic exposure to nicotine, one of the main components of tobacco smoke, has profound effects on the functionality of the mammalian taste system. However, the mechanisms underlying nicotine action are poorly understood. In particular no information is available on the chronic effect of nicotine on the functioning of taste cells, the peripheral detectors which transduce food chemicals into electrical signals to the brain. To address this issue, I studied the membrane properties of rat fungiform taste cells and evaluated the effect of long-term exposure to nicotine on the amiloride-sensitive sodium currents (ASSCs). These currents are mediated by the epithelial sodium channels (ENaC) thought to be important, at least in part, in the transduction of salty stimuli. Patch-clamp recording data indicated that ASSCs in taste cells from rats chronically treated with nicotine had a reduced amplitude compared to controls. The pharmacological and biophysical analysis of ASSCs revealed that amplitude reduction was not dependent on changes in amiloride sensitivity or channel ionic permeability, but likely derived from a decrease in the activity of ENaCs. Since these channels are considered to be sodium receptors in taste cells, my results suggest that chronic exposure to nicotine hampers the capability of these cells to respond to sodium ions. This might represent a possible cellular mechanism underlying the reduced taste sensitivity to salt typically found in smokers. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. System for exposing cultured cells to intermittent hypoxia utilizing gas permeable cultureware.

    Science.gov (United States)

    Polak, Jan; Studer-Rabeler, Karen; McHugh, Holly; Hussain, Mehboob A; Shimoda, Larissa A

    2015-07-01

    Tissue intermittent hypoxia (IH) occurs in obstructive sleep apnea, sickle cell anemia, physical exercise and other conditions. Poor gas solubility and slow diffusion through culture media hampers mimicking IH-induced transitions of O(2) in vitro. We aimed to develop a system enabling exposure of cultured cells to IH and to validate such exposure by real-time O(2) measurements and cellular responses. Standard 24-well culture plates and plates with bottoms made from a gas permeable film were placed in a heated cabinet. Desired cycling of O(2) levels was induced using programmable solenoids to purge mixtures of 95% N(2) + 5% CO(2) or 95% O(2) + 5% CO(2). Dissolved oxygen, gas pressure, temperature, and water evaporation were measured during cycling. IH-induced cellular effects were evaluated by hypoxia inducible factor (HIF) and NF-κB luciferase reporters in HEK296 cells and by insulin secretion in rat insulinoma cells. Oxygen cycling in the cabinet was translated into identical changes of O(2) at the well bottom in gas permeable, but not in standard cultureware. Twenty-four hours of IH exposure increased HIF (112%), NF-κB (111%) and insulin secretion (44%). Described system enables reproducible and prolonged IH exposure in cultured cells while controlling for important environmental factors.

  1. Sulindac enhances the killing of cancer cells exposed to oxidative stress.

    Directory of Open Access Journals (Sweden)

    Maria Marchetti

    2009-06-01

    Full Text Available Sulindac is an FDA-approved non-steroidal anti-inflammatory drug (NSAID that affects prostaglandin production by inhibiting cyclooxygenases (COX 1 and 2. Sulindac has also been of interest for more than decade as a chemopreventive for adenomatous colorectal polyps and colon cancer.Pretreatment of human colon and lung cancer cells with sulindac enhances killing by an oxidizing agent such as tert-butyl hydroperoxide (TBHP or hydrogen peroxide. This effect does not involve cyclooxygenase (COX inhibition. However, under the conditions used, there is a significant increase in reactive oxygen species (ROS within the cancer cells and a loss of mitochondrial membrane potential, suggesting that cell death is due to apoptosis, which was confirmed by Tunel assay. In contrast, this enhanced killing was not observed with normal lung or colon cells.These results indicate that normal and cancer cells handle oxidative stress in different ways and sulindac can enhance this difference. The combination of sulindac and an oxidizing agent could have therapeutic value.

  2. Induction of anchorage-independent growth in primary human cells exposed to protons or HZE ions separately or in dual exposures.

    Science.gov (United States)

    Sutherland, B M; Cuomo, N C; Bennett, P V

    2005-10-01

    Travelers on space missions will be exposed to a complex radiation environment that includes protons and heavy charged particles. Since protons are present at much higher levels than are heavy ions, the most likely scenario for cellular radiation exposure will be proton exposure followed by a hit by a heavy ion. Although the effects of individual ion species on human cells are being investigated extensively, little is known about the effects of exposure to both radiation types. One useful measure of mammalian cell damage is induction of the ability to grow in a semi-solid agar medium highly inhibitory to the growth of normal human cells, termed neoplastic transformation. Using primary human cells, we evaluated induction of soft-agar growth and survival of cells exposed to protons only or to heavy charged particles (600 MeV/nucleon silicon) only as well as of cells exposed to protons followed after a 4-day interval by silicon ions. Both ions alone efficiently transformed the human cells to anchorage-independent growth. Initial experiments indicate that the dose responses for neoplastic transformation of cells exposed to protons and then after 4 days to silicon ions appear similar to that of cells exposed to silicon ions alone.

  3. IFNγ/IL-10 co-producing cells dominate the CD4 response to malaria in highly exposed children.

    Directory of Open Access Journals (Sweden)

    Prasanna Jagannathan

    2014-01-01

    highly exposed children. These CD4(+ T cells may play important modulatory roles in the development of antimalarial immunity.

  4. Lack of Genomic Instability in Bone Marrow Cells of SCID Mice Exposed Whole-Body to Low-Dose Radiation

    Directory of Open Access Journals (Sweden)

    Elbert Whorton

    2013-04-01

    Full Text Available It is clear that high-dose radiation is harmful. However, despite extensive research, assessment of potential health-risks associated with exposure to low-dose radiation (at doses below or equal to 0.1 Gy is still challenging. Recently, we reported that 0.05 Gy of 137Cs gamma rays (the existing limit for radiation-exposure in the workplace was incapable of inducing significant in vivo genomic instability (measured by the presence of late-occurring chromosomal damage at 6 months post-irradiation in bone marrow (BM cells of two mouse strains, one with constitutively high and one with intermediate levels of the repair enzyme DNA-dependent protein-kinase catalytic-subunit (DNA-PKcs. In this study, we present evidence for a lack of genomic instability in BM cells of the severely combined-immunodeficiency (SCID/J mouse (which has an extremely low-level of DNA-PKcs activity exposed whole-body to low-dose radiation (0.05 Gy. Together with our previous report, the data indicate that low-dose radiation (0.05 Gy is incapable of inducing genomic instability in vivo (regardless of the levels of DNA-PKcs activity of the exposed mice, yet higher doses of radiation (0.1 and 1 Gy do induce genomic instability in mice with intermediate and extremely low-levels of DNA-PKcs activity (indicating an important role of DNA-PKcs in DNA repair.

  5. Damage Thresholds for Cultures RPE Cells Exposed to Lasers at 532 nm and 458 nm

    Science.gov (United States)

    2007-06-01

    in onhuman primate studies. Results of in vivo studies have hown that laser damage in the retina depends upon wave- ength, power level, and duration...condi- ions 37 °C; 95:5 air:CO2 using 1:1 DMEM/F12 media con- aining 10% fetal bovine serum, antibiotics, and 10-mM EPES buffer pH 7.4. Cells used...laser exposure similarly to RPE cells in nonhuman primate models. Our approach was to determine threshold ED50 radiant exposures for damage over a broad

  6. DJ1 Expression Downregulates in Neuroblastoma Cells (SK-N-MC Chronically Exposed to HIV-1 and Cocaine.

    Directory of Open Access Journals (Sweden)

    Upal eRoy

    2015-07-01

    Full Text Available Background: HIV-associated neurological disorder (HAND has long been recognized as a consequence of Human Immunodeficiency Virus (HIV infection in the brain. The pathology of HAND gets more complicated with the recreational drug use such as cocaine. Recent studies have suggested multiple genetic influences involved in the pathology of addiction and HAND but only a fraction of the entire genetic risk has been investigated so far. In this regard, role of DJ1 protein (a gene linked to autosomal recessive early-onset Parkinson’s disease in regulating dopamine transmission and reactive oxygen species (ROS production in neuronal cells will be worth investigating in HIV-1 and cocaine exposed microenvironment. Being a very abundant protein in the brain, DJ1 could serve as a potential marker for early detection of HIV-1 and/or cocaine related neurological disorder.Methods: In vitro analysis was done to observe the effect of HIV-1 and/or cocaine on DJ1 protein expression in neuroblastoma cells (SK-N-MC. Gene expression and protein analysis of DJ1 was done on the HIV infected and/or cocaine treated SK-N-MC and compared to untreated cells using real time PCR, Western Blot and flow cytometry.Results: Gene expression and protein analysis indicated that there was a significant decrease in DJ1 expression in SK-N-MC chronically exposed to HIV-1 and/or cocaine.Conclusion: This is the first study to establish that DJ1 expression level in the neuronal cells significantly decreased in presence of HIV-1and/or cocaine indicating oxidative stress level of dopamine neurons.

  7. Toxic cyanobacterial cells containing microcystins induce oxidative stress in exposed tilapia fish (Oreochromis sp.) under laboratory conditions.

    Science.gov (United States)

    Jos, Angeles; Pichardo, Silvia; Prieto, Ana I; Repetto, Guillermo; Vázquez, Carmen M; Moreno, Isabel; Cameán, Ana M

    2005-04-30

    The effects of microcystins from cyanobacterial cells on various oxidative stress biomarkers in liver, kidney and gill tissues in freshwater tilapia fish (Oreochromis sp.) were investigated under laboratory conditions. Microcystins are a family of cyclic peptide toxins produced by species of freshwater cyanobacteria (blue-green algae). Fish were exposed to the cyanobacterial cells in two ways: mixed with a commercial fish food or crushed into a commercial fish food so that the toxins were released. Two different exposure times were studied: 14 and 21 days. The oxidative status of fish was evaluated by analyzing the level of lipid peroxidation (LPO), as well as the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR). The findings of the present investigation show that microcystins induce oxidative stress in a time-dependent manner and that the type of administration of the cyanobacterial cells influences the extent of these effects. Thus, the crushed cyanobacterial cells (released toxins) induced the antioxidant defences studied and increased the LPO level to a greater extent than the non-crushed cells. The liver was the most affected organ followed by kidney and gills. These results together with reports that fish can accumulate microcystins mean that cyanobacterial blooms are an important health, environmental and economic problem.

  8. Gypenosides Protected the Neural Stem Cells in the Subventricular Zone of Neonatal Rats that Were Prenatally Exposed to Ethanol

    Directory of Open Access Journals (Sweden)

    Lun Dong

    2014-11-01

    Full Text Available Fetal alcohol spectrum disorder (FASD can cause severe mental retardation in children who are prenatally exposed to ethanol. The effects of prenatal and early postnatal ethanol exposure on adult hippocampal neurogenesis have been investigated; however, the effects of prenatal ethanol exposure on the subventricular zone (SVZ have not. Gypenosides (GPs have been reported to have neuroprotective effects in addition to other bioactivities. The effects of GPs on neural stem cells (NSCs in the FASD model are unknown. Here, we test the effect of prenatal ethanol exposure on the neonatal SVZ, and the protection potential of GPs on NSCs in FASD rats. Our results show that prenatal ethanol exposure can suppress the cell proliferation and differentiation of neural stem cells in the neonatal SVZ and that GPs (400 mg/kg/day can significantly increase the cell proliferation and differentiation of neural stem cells inhibited by ethanol. Our data indicate that GPs have neuroprotective effects on the NSCs and can enhance the neurogenesis inhibited by ethanol within the SVZ of neonatal rats. These findings provide new evidence for a potential therapy involving GPs for the treatment of FASD.

  9. Uroporphyrinogen-I-synthetase activity in red blood cells of lead-exposed workers

    Energy Technology Data Exchange (ETDEWEB)

    El-Waseef, A.

    1982-01-01

    Lead-exposed (n . 26) and control (n . 12) subjects were investigated for their blood lead concentration erythrocyte 5-amino-laevulinic acid dehydratase (5-ALAD) and erythrocyte uroporphyrinogen-I-synthetase (URO-I-S) activity; 5-amino-laevulinic acid (5-ALA) and porphobilinogen (PBG) were used as substrates in the synthetase assay. In the lead workers erythrocyte 5-ALA dehydratase was grossly inhibited but with PBG as substrate the synthetase activity was not significantly different from the control group. With 5-ALA as substrate the synthetase assay showed marked inhibition. Addition of zinc (0.1 mmol/l) and dithiotheritol (0.5 mmol/l) brought the activities of both the dehydratase and synthetase (using 5-ALA as substrate) back into the ranges seen in the control group. With porphobilinogen as substrate higher concentrations of zinc caused inhibition of the synthetase, whilst reduction of added zinc to 0.01 mmol/l resulted in stimulation of the synthetase. A good correlation (r . 0.87) was obtained in synthetase assay when PBG and 5-aminolaevulinate (with added zinc and dithiothreitol) were used as substrates. With these additions 5-ALA may be used as a substrate in the URO-I-S assay in the investigation of latent cases of acute intermittent porphyria.

  10. In vitro measurements of oxygen consumption rates in hTERT-RPE cells exposed to low levels of red light

    Science.gov (United States)

    Wigle, Jeffrey C.; Castellanos, Cherry C.

    2016-03-01

    Exposure to 2.88 J/cm2 of red light induces an adaptive response against a lethal pulse of 2.0 μm laser radiation in hTERT-RPE cells in vitro, but not in a knockdown mutant for vascular endothelial growth factor c (VEGF-C). The generally accepted initiation sequence for photobiomodulation is that absorption of red light by cytochome c oxidase (CCOX) of the electron transport chain increases the binding affinity of CCOX for O2 vs. nitric oxide (NO). This results in displacement of NO by O2 in the active site of CCOX, thereby increasing cellular respiration and intracellular ATP. We've previously reported that red-light exposure induces a small, but consistently reproducible, increase in NO levels in these cells. But the relative importance of NO and oxidative phosphorylation is unclear because little is known about the relative contributions of NO and ATP to the response. However, if NO dissociation from CCOX actually increases oxidative phosphorylation, one should see a corresponding increase in oxygen consumption. A Seahorse Extracellular Flux Analyzer was used to measure oxygen consumption rates (OCR) in normal and mutant cells as a proxy for oxidative phosphorylation. Both basal respiration and maximum respiration rates in normal cells are significantly higher than in the mutant. The normal cells have a significant amount of "excess capacity," whereas the VEGF-C(KD) have little or none. The OCR in exposed normal cells is lower than in unexposed cells when measured immediately after exposure. The exposures used for these experiments had no effect on the OCR in mutant cells.

  11. Biomonitoring of genotoxic and cytotoxic effects of gingival epithelial cells exposed to digital panoramic radiography

    Directory of Open Access Journals (Sweden)

    Anuradha Pai

    2012-01-01

    Full Text Available Objective: The aim of this study was to evaluate genotoxic and cytotoxic effects of low level ionizing radiation used in digital panoramic radiography on gingival epithelial cells. Materials and Methods: We included 50 healthy individuals advised for digital panoramic radiography for diagnostic purpose were included in this study. Demographic data and personal history of all subjects were recorded in a proforma before the examination. Gingival epithelial cells were obtained by gentle scraping with a modified cytobrush immediately before X-ray exposure and 10 ± 2 days later. Cytological preparations were stained according to the Feulgen/fast green method and analyzed under a light microscope. Micronuclei and degenerative nuclear alterations (pyknosis, karyolysis, karyorrhexis and condensed chromatin were scored. Results: The frequency of formation of micronuclei was not significant with regard to age, gender and after exposure to digital panoramic radiography ( P = 0.276. However this study showed significant increase in the frequencies of nuclear alterations like karyorrhexis, pyknosis, condensed chromatin, karyolysis and indicative of cell death ( P < 0.001. Conclusion: Panoramic radiographic examination does not induce genotoxic effect like micronuclei, but it does induce cytotoxic effects leading to cell death.

  12. c-jun gene expression in human cells exposed to either ionizing radiation or hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Collart, F.R.; Horio, M.; Huberman, E.

    1993-06-01

    We investigated the role of reactive oxygen intermediates (ROIs) and protein kinase C (PKC) in radiation- and H{sub 2}O{sub 2}-evoked c-jun gene expression in human HL-205 cells. This induction of c-jun gene expression could be prevented by pretreatment of the cells with Nacetylcysteine (an antioxidant) or H7 (a PKC and PKA inhibitor) but not by HA1004, a PKA inhibitor, suggesting a role for ROls and PKC in mediating c-jun gene expression. We also investigated potential differences in c-jun gene expression in a panel of normal and tumor cells untreated or treated with ionizing radiation or H{sub 2}O{sub 2}. Treatment with radiation or H{sub 2}O{sub 2} produced a varied response, from some reduction to an increase of more than an order of magnitude in the steady-state level of c-jun mRNA. These data indicate that although induction of c-jun may be a common response to ionizing radiation and H{sub 2}O{sub 2}, this response was reduced or absent in some cell types.

  13. Disruption of glucagon receptor signaling causes hyperaminoacidemia exposing a possible liver - alpha-cell axis

    DEFF Research Database (Denmark)

    Galsgaard, Katrine D; Winther-Sørensen, Marie; Ørskov, Cathrine

    2018-01-01

    Glucagon secreted from the pancreatic alpha-cells is essential for regulation of blood glucose levels. However, glucagon may play an equally important role in the regulation of amino acid metabolism by promoting ureagenesis. We hypothesized that disruption of glucagon receptor signaling would lea...

  14. Protective effect of a mexican propolis on MDBK cells exposed to ...

    African Journals Online (AJOL)

    Background: In this paper, the evaluation of the antiviral effect of a Mexican propolis on Pseudo Rabies Virus (PRV) was performed by infecting cell cultures of MDBK. Materials and Methods: First, the level of cytotoxicity of the ethanol extract of propolis (EEP) was determined, subsequently, infective dose of PRV strain ...

  15. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation.

    Science.gov (United States)

    Pelletier, Simon J; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2014-12-07

    The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  16. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    CSIR Research Space (South Africa)

    Wesley-Smith, J

    2014-03-01

    Full Text Available Annals of Botany 113: 695–709, 2014 doi:10.1093/aob/mct284, available online at www.aob.oxfordjournals.org Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study... of factors affecting cell and ice structures JamesWesley-Smith1,2, Patricia Berjak1, N.W. Pammenter1 and ChristinaWalters3,* 1Plant Germplasm Conservation Research, School of Life Sciences, University of KwaZulu- Natal(Westville Campus), Durban, 4001...

  17. Induction of Cell Death through Alteration of Oxidants and Antioxidants in Epithelial Cells Exposed to High Energy Protons

    Science.gov (United States)

    Ramesh, Govindarajan; Wu, Honglu

    2012-01-01

    Radiation affects several cellular and molecular processes including double strand breakage, modifications of sugar moieties and bases. In outer space, protons are the primary radiation source which poses a range of potential health risks to astronauts. On the other hand, the use of proton radiation for tumor radiation therapy is increasing as it largely spares healthy tissues while killing tumor tissues. Although radiation related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton radiation remain poorly understood. Therefore, in the present study, we irradiated rat epithelial cells (LE) with different doses of protons and investigated their effects on cell proliferation and cell death. Our data showed an inhibition of cell proliferation in proton irradiated cells with a significant dose dependent activation and repression of reactive oxygen species (ROS) and antioxidants, glutathione and superoxide dismutase respectively as compared to control cells. In addition, apoptotic related genes such as caspase-3 and -8 activities were induced in a dose dependent manner with corresponding increased levels of DNA fragmentation in proton irradiated cells than control cells. Together, our results show that proton radiation alters oxidant and antioxidant levels in the cells to activate apoptotic pathway for cell death.

  18. [Ultrastructural study of the interstitial cells of the internal kidney medulla exposed to indomethacin].

    Science.gov (United States)

    Anavi, B; Dragiev, M

    1981-01-01

    Unusual cylindrical bodies-megatubules, which get in touch with lipid granules with granular endoplasmatic reticulum among themselves and with the pores of the nuclear and cellular membrane, are described in the interstitial cells of the kidneys of the control rats. After a suppression of prostaglandin synthesis with indomethacin (5 mg/kg venously of intraperitonealy per day for 6 days) there was statistically significant increase of the mass of the compact lipids in the interstitial cells (hypergranulation as the volume of the granule was preserved) - a proof that the granules contained precursors of renal prostaglandins. The nuclei were presented with round contours, while the perinuclear spaces were narrowed. The Goldgi apparatus and granular endoplasmic reticulum hyperthrophied. The megatubules atrophied. The authors suggest that they have prostaglandin synthetase activity.

  19. Cultured bovine aortic endothelial cells show increased histamine metabolism when exposed to oscillatory shear stress.

    Science.gov (United States)

    Skarlatos, S I; Hollis, T M

    1987-03-01

    Oscillatory shear stress applied to the lining of blood vessels causes endothelial cell injury, one of the essential postulated prerequisites to the development of atherosclerosis. The purpose of this investigation was to study effects of shear stress on bovine aortic endothelial cells (BAEC), in vitro, for varying lengths of time (6 h, 12 h, 24 h) on BAEC histamine content (HC) and histidine decarboxylase activity (HD). Low intensity stress (1.6 dynes/cm2) as well as intermediate and high intensity shear stresses (3.5 dynes/cm2 and 7.6 dynes/cm2) resulted in an accelerated HD (281%) and elevated HC (144%). These data indicate that oscillatory shear stress produces increases in histamine metabolism.

  20. DNA Repair in Human Cells Exposed to Combinations of Carcinogenic Agents

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R. B.; Ahmed, F. E.

    1980-01-01

    Normal human and XP2 fibroblasts were treated with UV plus UV-mimetic chemicals. The UV dose used was sufficient to saturate the UV excision repair system. Excision repair after combined treatments was estimated by unscheduled DNA synthesis, BrdUrd photolysis, and the loss of sites sensitive to a UV specific endonuclease. Since the repair of damage from UV and its mimetics is coordinately controlled we expected that there would be similar rate-limiting steps in the repair of UV and chemical damage and that after a combined treatment the total amount of repair would be the same as from UV or the chemicals separately. The expectation was not fulfilled. In normal cells repair after a combined treatment was additive whereas in XP cells repair after a combined treatment was usually less than after either agent separately. The chemicals tested were AAAF, DMBA-epoxide, 4NQO, and ICR-170.

  1. Modeling of Nanoparticle-Mediated Electric Field Enhancement Inside Biological Cells Exposed to AC Electric Fields

    Science.gov (United States)

    Tiwari, Pawan K.; Kang, Sung Kil; Kim, Gon Jun; Choi, Jun; Mohamed, A.-A. H.; Lee, Jae Koo

    2009-08-01

    We present in this article the effect of alternating electric field at kilohertz (kHz) and megahertz (MHz) frequencies on the biological cells in presence and absence of nanoparticles. The induced electric field strength distribution in the region around cell membrane and nucleus envelope display different behavior at kHz and MHz frequencies. The attachment of gold nanoparticles (GNPs), especially gold nanowires around the surface of nucleus induce enhanced electric field strengths. The induced field strengths are dependent on the length of nanowire and create varying field regions when the length of nanowire is increased from 2 to 4 µm. The varying nanowire length increased the induced field strengths inside nucleoplasm and region adjacent to the nucleus in the cytoplasm. We investigated a process of electrostatic disruption of nucleus membrane when the induced electric field strength across the nucleus exceeds its tensile strength.

  2. Modeling of a single red blood cell thermal reaction exposed to infrared laser tweezers

    Science.gov (United States)

    Seteikin, A.; Krasnikov, I.; Bernhardt, I.

    2013-02-01

    Continuous-wave laser micro-beams are generally used as diagnostic tools in laser scanning microscopes or in the case of near-infrared (NIR) micro-beams, as optical traps for cell manipulation and force characterization. Because single beam traps are created with objectives of high numerical aperture, typical trapping intensities and photon flux densities are in the order of 106 W/cm2 and 103 cm-2s-1, respectively. The main idea of our theoretical study was to investigate the thermal reaction of RBCs irradiated by laser micro-beam. The study is supported by the fact that many experiments have been carried out with RBCs in laser NIR tweezers. In the present work it has been identified that the laser affects a RBC with a density of absorbed energy at approximately 107 J/cm3, which causes a temperature rise in the cell of about 7 - 12 °C.

  3. CYTOKINESIS-BLOCK MICRONUCLEUS ASSAY IN HUMAN GLIOMA CELLS EXPOSED TO RADIATION

    Directory of Open Access Journals (Sweden)

    Jerzy Slowinski

    2011-05-01

    Full Text Available Biological tests are efficient in reflecting the biological influences of several types of generally harmful exposures. The micronucleus assay is widely used in genotoxicity studies or studies on genomic damage in general. We present methodological aspects of cytokinesis-block micronucleus assay performed in human gliomas irradiated in vitro. Eight human glioblastoma cell lines obtained from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany were gamma-irradiated (60Co over a dose range of 0-10 Gy. Cytokinesis-block micronucleus assay was performed to quantitate cytogenetic damage. The cells were fixed directly on dishes, stained with fluorochrome DAPI and evaluated under fluorescent and phase contrast microscope. The micronucleus frequency was expressed as a micronuclei (MN per binucleated cell (BNC ratio, calculated after scoring at least 100 BNC per dish. The frequency of spontaneous MN ranged from 0.17 to 0.613 (mean: 0.29 ± 0.14. After irradiation increase of MN frequency in the range of 0.312 - 2.241 (mean: 0.98 ± 0.68 was found at 10 Gy. Gliomas are extremely heterogenous in regard to cytogenetic effects of irradiation, as shown in this study by cytokinesis-block micronucleus assay. This test is easily performed on irradiated glioma cell lines and can assist in determining their radiosensitivity. However, in order to obtain reliable and reproducible results, precise criteria for MN scoring must be strictly followed. Simultaneous use of fluorescent and phase contrast equipment improves imaging of morphological details and can further optimize MN scoring.

  4. Effect of roflumilast on inflammatory cells in the lungs of cigarette smoke-exposed mice

    OpenAIRE

    Martorana, Piero A; Lunghi, Benedetta; Lucattelli, Monica; De Cunto, Giovanna; Beume, Rolf; Lungarella, Giuseppe

    2008-01-01

    Abstract Background We reported that roflumilast, a phosphodiesterase 4 inhibitor, given orally at 5 mg/kg to mice prevented the development of emphysema in a chronic model of cigarette smoke exposure, while at 1 mg/kg was ineffective. Here we investigated the effects of roflumilast on the volume density (VV) of the inflammatory cells present in the lungs after chronic cigarette smoke exposure. Methods Slides were obtained from blocks of the previous study and VV was assessed immunohistochemi...

  5. Extracellular signal-regulated kinases 1 and 2 activation in endothelial cells exposed to cyclic strain

    Science.gov (United States)

    Ikeda, M.; Takei, T.; Mills, I.; Kito, H.; Sumpio, B. E.

    1999-01-01

    The aim of this study was to determine whether extracellular signal-regulated kinases 1/2 (ERK1/ERK2) are activated and might play a role in enhanced proliferation and morphological change induced by strain. Bovine aortic endothelial cells (BAEC) were subjected to an average of 6 or 10% strain at a rate of 60 cycles/min for up to 4 h. Cyclic strain caused strain- and time-dependent phosphorylation and activation of ERK1/ERK2. Peak phosphorylation and activation of ERK1/ERK2 induced by 10% strain were at 10 min. A specific ERK1/ERK2 kinase inhibitor, PD-98059, inhibited phosphorylation and activation of ERK1/ERK2 but did not inhibit the increased cell proliferation and cell alignment induced by strain. Treatment of BAEC with 2,5-di-tert-butyl-1, 4-benzohydroquinone, to deplete inositol trisphosphate-sensitive calcium storage, and gadolinium chloride, a Ca2+ channel blocker, did not inhibit the activation of ERK1/ERK2. Strain-induced ERK1/ERK2 activation was partly inhibited by the protein kinase C inhibitor calphostin C and completely inhibited by the tyrosine kinase inhibitor genistein. These data suggest that 1) ERK1/ERK2 are not critically involved in the strain-induced cell proliferation and orientation, 2) strain-dependent activation of ERK1/ERK2 is independent of intracellular and extracellular calcium mobilization, and 3) protein kinase C activation and tyrosine kinase regulate strain-induced activation of ERK1/ERK2.

  6. Proteomic Analysis of MCF-7 Breast Cancer Cell Line Exposed To Leptin

    Directory of Open Access Journals (Sweden)

    A. Valle

    2011-01-01

    Full Text Available Background: Obesity is a well-known factor risk for breast cancer in postmenopausal women. Circulating leptin levels are increased in obese and it has been suggested to play an important role in mammary tumor formation and progression. To contribute to the understanding of the molecular mechanisms underlying leptin action in breast cancer, our aim was to identify proteins regulated by leptin in MCF-7 human breast cancer cells. Methods: We used two-dimensional gel electrophoresis (2-DE and matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS to identify proteins affected by leptin. Results: Thirty proteins were found differentially expressed in MCF-7 cells after 48 h leptin exposure. Proteins regulated by leptin included proteins previously implicated in breast cancer such as catechol-o-methyltransferase, cathepsin D, hsp27, serine/threonine-protein phosphatase and regulatory proteins of the Ras signaling pathway. Proteins involved in other cellular functions such as stress response, cytosqueleton remodeling and proteins belonging to ubiquitin-proteasome system, were also identified. Furthermore, leptin-treated cells showed a substantial uptake of the serum carrier proteins albumin and alpha-2-HS-glycoprotein. Conclusions: This screening reveals that leptin influences the levels of key proteins involved in breast cancer which opens new avenues for the study of the molecular mechanisms linking obesity to breast cancer.

  7. Photocatalytic Oxidation of Triiodide in UVA-Exposed Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Matthew Carnie

    2012-01-01

    Full Text Available UVA irradiation of glass mounted dye-sensitized solar cells without UV filtration causes failure within 400 hours of light exposure. The failure mode is shown to relate to consumption of I3−, which is directly related to TiO2 photo-catalysis. The onset of failure is easily determined from electrochemical impedance data where the recombination resistance of the TiO2/electrolyte back reaction drops markedly prior to the onset of degradation. At the point of complete cell failure this impedance value then dramatically increases as there is no longer an interfacial reaction possible between the TiO2 and the I3− depleted electrolyte. Device failure is most rapid for cells under electrical load indicating that the degradation of the electrolyte is related to photogenerated hole production by excitation of the TiO2. Once depleted by UV exposure, the I3− can be regenerated by simple application of a reverse bias which can restore severely UV degraded devices to near original working conditions.

  8. Protective Pleiotropic Effect of Flavonoids on NAD+ Levels in Endothelial Cells Exposed to High Glucose

    Directory of Open Access Journals (Sweden)

    Daniëlle M. P. H. J. Boesten

    2015-01-01

    Full Text Available NAD+ is important for oxidative metabolism by serving as an electron transporter. Hyperglycemia decreases NAD+ levels by activation of the polyol pathway and by overactivation of poly(ADP-ribose-polymerase (PARP. We examined the protective role of three structurally related flavonoids (rutin, quercetin, and flavone during high glucose conditions in an in vitro model using human umbilical vein endothelial cells (HUVECs. Additionally we assessed the ability of these flavonoids to inhibit aldose reductase enzyme activity. We have previously shown that flavonoids can inhibit PARP activation. Extending these studies, we here provide evidence that flavonoids are also able to protect endothelial cells against a high glucose induced decrease in NAD+. In addition, we established that flavonoids are able to inhibit aldose reductase, the key enzyme in the polyol pathway. We conclude that this protective effect of flavonoids on NAD+ levels is a combination of the flavonoids ability to inhibit both PARP activation and aldose reductase enzyme activity. This study shows that flavonoids, by a combination of effects, maintain the redox state of the cell during hyperglycemia. This mode of action enables flavonoids to ameliorate diabetic complications.

  9. Cytogenetic biomonitoring of oral mucosa cells from adults exposed to dental X-rays.

    Science.gov (United States)

    Ribeiro, Daniel A; Angelieri, Fernanda

    2008-07-01

    Although it has been clearly demonstrated that X-rays play a key role in diagnosing medical and dental problems, this type of ionizing radiation is also able to induce noxious activities, such as genetic damage. The aim of the present study was to evaluate DNA damage (micronucleus) and cellular death in exfoliated buccal mucosa cells from healthy individuals (smokers and nonsmokers) following dental X-ray exposure. A total of 39 healthy people who had submitted to panoramic dental radiography were included in the study: 9 smokers and 30 nonsmokers. The results indicated no significant statistically differences (P>0.05) in micronucleated oral mucosa cells before and after dental X-ray exposure. On the other hand, X-ray exposure did increase other nuclear alterations closely related to cytotoxicity, such as karyorrhexis, pyknosis, and karyolysis. It seems that cigarette smoke did not affect X-ray outcomes induced in buccal cells. These data indicate that dental panoramic radiography may not induce chromosomal damage, but it is able to promote cytotoxicity. Because cellular death is considered a prime mechanism in nongenotoxic mechanisms of carcinogenesis, dental X-ray should be used only when necessary.

  10. [Protective effects of amygdalin on hyperoxia-exposed type II alveolar epithelial cells isolated from premature rat lungs in vitro].

    Science.gov (United States)

    Chang, Li-wen; Zhu, Hua-ping; Li, Wen-bin; Liu, Han-chu; Zhang, Qian-shen; Chen, Hong-bing

    2005-02-01

    To analyze the effect of hyperoxia on the proliferation and surfactant associated protein messenger RNA levels of type II alveolar epithelial cells (AECIIs) of premature rat, and to investigate the effect of amygdalin on the change resulted from hyperoxia in AECIIs isolated from premature rat lung in vitro. The lung tissue of 20-day fetal rat was digested by trypsin and collagenase. AECIIs and lung fibroblasts (LFs) were isolated and purified at different centrifugal force and different adherence, then cultured. The nature of the cultures was identified by cytokeratin staining, vimentin staining and transmission electron micrography. For establishing hyperoxia-exposed cell model, purified AECIIs were cultured for 24 hours after culture flasks were filled with 95% oxygen-5% CO2 at 3 L/min for 10 min, and then sealed. Oxygen concentrations were tested in CYS-1 digital oxygen monitor after 24 hours of exposure. A sample was discarded if its oxygen concentration was amygdalin at various concentrations. DNA content, protein expression of proliferating cell nuclear antigen (PCNA) and mRNA levels of SPs of AECIIs were analyzed with flow cytometric assay, Western blot and reverse transcription polymerase chain reaction (RT-PCR) respectively after 24 hours of air or hyperoxia exposure in the presence or absence of 200 micromol/L amygdalin. Excellent yields of highly purified, culturable AECIIs could be obtained from 20-day fetal lungs. The expression of cytokeratin in AECIIs was positive and that of vimentin negative by immunocytochemistry. Those, however, in LFs were just opposite. Lamellar bodies in purified AECIIs were revealed by transmission electron micrography. The established hyperoxia-exposed cell model assured the oxygen concentrations of culture flasks more than 90%. Amygdalin at the concentration range from 50 micromol/L to 200 micromol/L stimulated the proliferation of AECIIs in a dose-dependent manner; however, at the concentration of 400 micromol/L inhibited

  11. Bioinformatic Analysis of Differential Protein Expression in Calu-3 Cells Exposed to Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Pin Li

    2013-10-01

    Full Text Available Carbon nanomaterials are widely produced and used in industry, medicine and scientific research. To examine the impact of exposure to nanoparticles on human health, the human airway epithelial cell line, Calu-3, was used to evaluate changes in the cellular proteome that could account for alterations in cellular function of airway epithelia after 24 hexposure to 10 μg/mL and 100 ng/mLof two common carbon nanoparticles, single- and multi-wall carbon nanotubes (SWCNT, MWCNT. After exposure to the nanoparticles, label-free quantitative mass spectrometry (LFQMS was used to study the differential protein expression. Ingenuity Pathway Analysis (IPA was used to conduct a bioinformaticanalysis of proteins identified in LFQMS. Interestingly, after exposure to ahigh concentration (10 mg/mL; 0.4 mg/cm2 of MWCNT or SWCNT, only 8 and 13 proteins, respectively, exhibited changes in abundance. In contrast, the abundance of hundreds of proteins was altered in response to a low concentration (100 ng/mL; 4 ng/cm2 of either CNT. Of the 281 and 282 proteins that were significantly altered in response to MWCNT or SWCNT respectively, 231 proteins were the same. Bioinformatic analyses found that the proteins in common to both nanotubes occurred within the cellular functions of cell death and survival, cell-to-cell signaling and interaction, cellular assembly and organization, cellular growth and proliferation, infectious disease, molecular transport and protein synthesis. The majority of the protein changes represent a decrease in amount suggesting a general stress response to protect cells. The STRING database was used to analyze the various functional protein networks. Interestingly, some proteins like cadherin 1 (CDH1, signal transducer and activator of transcription 1 (STAT1, junction plakoglobin (JUP, and apoptosis-associated speck-like protein containing a CARD (PYCARD, appear in several functional categories and tend to be in the center of the networks. This

  12. Neuroprotective effects of melatonin and omega-3 on hippocampal cells prenatally exposed to 900 MHz electromagnetic fields.

    Science.gov (United States)

    Erdem Koç, Gülüna; Kaplan, Suleyman; Altun, Gamze; Gümüş, Hasan; Gülsüm Deniz, Ömür; Aydin, Isinsu; Emin Onger, Mehmet; Altunkaynak, Zuhal

    2016-10-01

    Adverse effects on human health caused by electromagnetic fields (EMF) associated with the use of mobile phones, particularly among young people, are increasing all the time. The potential deleterious effects of EMF exposure resulting from mobile phones being used in close proximity to the brain require particular evaluation. However, only a limited number of studies have investigated the effects of prenatal exposure to EMF in the development of the pyramidal cells using melatonin (MEL) and omega-3 (ω-3). We established seven groups of pregnant rats consisting of three animals each; control (CONT), SHAM, EMF, EMF + MEL, MEL, EMF + ω-3 and ω-3 alone. The rats in the EMF, EMF + MEL, EMF + ω-3 groups were exposed to 900 MHz EMF for 60 min/day in an exposure tube during the gestation period. The CONT, MEL and ω-3 group rats were not placed inside the exposure tube or exposed to EMF during the study period. After delivery, only spontaneously delivered male rat pups were selected for the establishment of further groups. Each group of offspring consisted of six animals. The optical fractionator technique was used to determine total pyramidal neuron numbers in the rat hippocampal region. The total number of pyramidal cells in the cornu ammonis (CA) in the EMF group was significantly lower than in the CONT, SHAM, EMF + MEL, and EMF + ω-3 groups. No significant difference was observed between the EMF, MEL and ω-3 groups. No difference was also observed between any groups in terms of rats' body or brain weights. MEL and ω-3 can protect the cell against neuronal damage in the hippocampus induced by 900 MHz EMF. However, further studies are now needed to evaluate the chronic effects of 900 MHz EMF on the brain in the prenatal period.

  13. Amino Acid Mixture Acts as a Potent VEGF Lowering Agent in CHO-K1 Cells Exposed to High Glucose.

    Science.gov (United States)

    Selvi, Radhakrishnan; Bhuvanasundar, Renganathan; Angayarkanni, Narayanasamy

    2017-04-01

    Though the role of amino acids in Diabetes Mellitus is controversial, the beneficial effect of amino acids in Diabetes Mellitus has been reported based on its anti-glycating property and insulin potentiating effects. In the current study, we evaluated the ROS generation and VEGF expression in CHO-K1 cells induced by high glucose concentration. The effect of amino acids treatment was studied under this condition to evaluate the VEGF lowering effect. CHO-K1 cells were treated various concentration of glucose (7 mmol, 17 mmol and 27 mmol) with and without free amino acids (5 mmol) or the amino acids mixture (AAM). Intracellular reactive oxygen species (ROS) was estimated by fluorescein dye (DCFDA), nitric oxide (NO) by Griess reaction, hydrogen peroxide (H2O2) by fluorimetry using Amplex red dye, super oxide dismutase (SOD) by spectrophotometry and VEGF by immunoblotting. High glucose condition significantly induced the expression of VEGF and this was reduced significantly by AAM treatment (p = 0.004). AAM also significantly decreased the cellular levels of ROS, NO, H2O2 as well as the SOD activity in CHO-K1 cells exposed to high glucose condition (p <0.05). The present study identified AAM as a potential VEGF lowering agent that intervenes at the level of oxidative stress in high glucose conditions as evaluated in CHO-K1 cells. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  14. Matrix-degrading and pro-inflammatory changes in human vascular endothelial cells exposed to cigarette smoke condensate.

    Science.gov (United States)

    Nordskog, Brian K; Blixt, Allison D; Morgan, Walter T; Fields, Wanda R; Hellmann, Gary M

    2003-01-01

    Cigarette smoking has been associated with an increase in the severity and prevalence of atherosclerosis in the abdominal aorta. To begin our investigation of this finding, we used an integrated approach combining gene expression profiling, protein analysis, cytokine measurements, and cytotoxicity determinations to examine molecular responses of cultured human aortic and coronary endothelial cells exposed to cigarette smoke condensate (CSC) and nicotine. Exposure of endothelial cells to CSC (30 and 60 microg/mL TPM) for 24 h resulted in minimal cytotoxicity, and the upregulation of genes involved in matrix degradation (MMP-1, MMP-8, and MMP-9), xenobiotic metabolism (HO-1 and CYP1A2), and downregulation of genes involved in cell cycle regulation (including TOP2A, CCNB1, CCNA, CDKN3). Exposure of cells to a high physiological concentration of nicotine resulted in few differentially expressed genes. Immunoblot analysis of proteins selected from genes shown to be differentially regulated by microarray analysis revealed similar responses. Finally, a number of inflammatory cytokines measured in culture media were elevated in response to CSC. Together, these results describe a complex proinflammatory response, possibly mediating the recruitment of leukocytes through cytokine signaling. Additionally, fibrous cap destabilization may be facilitated by matrix metalloproteinase upregulation.

  15. Lineage-related cytotoxicity and clonogenic profile of 1,4-benzoquinone-exposed hematopoietic stem and progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Paik Wah [Biomedical Science Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Abdul Hamid, Zariyantey, E-mail: zyantey@ukm.edu.my [Biomedical Science Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Chan, Kok Meng [Environmental Health and Industrial Safety Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Inayat-Hussain, Salmaan Hussain [Environmental Health and Industrial Safety Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Rajab, Nor Fadilah [Biomedical Science Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia)

    2015-04-01

    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are sensitive targets for benzene-induced hematotoxicity and leukemogenesis. The impact of benzene exposure on the complex microenvironment of HSCs and HPCs remains elusive. This study aims to investigate the mechanism linking benzene exposure to targeting HSCs and HPCs using phenotypic and clonogenic analyses. Mouse bone marrow (BM) cells were exposed ex vivo to the benzene metabolite, 1,4-benzoquinone (1,4-BQ), for 24 h. Expression of cellular surface antigens for HSC (Sca-1), myeloid (Gr-1, CD11b), and lymphoid (CD45, CD3e) populations were confirmed by flow cytometry. The clonogenicity of cells was studied using the colony-forming unit (CFU) assay for multilineage (CFU-GM and CFU-GEMM) and single-lineage (CFU-E, BFU-E, CFU-G, and CFU-M) progenitors. 1,4-BQ demonstrated concentration-dependent cytotoxicity in mouse BM cells. The percentage of apoptotic cells increased (p < 0.05) following 1,4-BQ exposure. Exposure to 1,4-BQ showed no significant effect on CD3e{sup +} cells but reduced the total counts of Sca-1{sup +}, CD11b{sup +}, Gr-1{sup +}, and CD45{sup +} cells at 7 and 12 μM (p < 0.05). Furthermore, the CFU assay showed reduced (p < 0.05) clonogenicity in 1,4-BQ-treated cells. 1,4-BQ induced CFU-dependent cytotoxicity by significantly inhibiting colony growth for CFU-E, BFU-E, CFU-G, and CFU-M starting at a low concentration of exposure (5 μM); whereas for the CFU-GM and CFU-GEMM, the inhibition of colony growth was remarkable only at 7 and 12 μM of 1,4-BQ, respectively. Taken together, 1,4-BQ caused lineage-related cytotoxicity in mouse HPCs, demonstrating greater toxicity in single-lineage progenitors than in those of multi-lineage. - Highlights: • We examine 1,4-BQ toxicity targeting mouse hematopoietic cell lineages. • 1,4-BQ induces concentration-dependent cytotoxicity in bone marrow (BM) cells. • 1,4-BQ shows lineage-related toxicity on hematopoietic stem and

  16. Transcriptomics and methylomics of CD4-positive T cells in arsenic-exposed women.

    Science.gov (United States)

    Engström, Karin; Wojdacz, Tomasz K; Marabita, Francesco; Ewels, Philip; Käller, Max; Vezzi, Francesco; Prezza, Nicola; Gruselius, Joel; Vahter, Marie; Broberg, Karin

    2017-05-01

    Arsenic, a carcinogen with immunotoxic effects, is a common contaminant of drinking water and certain food worldwide. We hypothesized that chronic arsenic exposure alters gene expression, potentially by altering DNA methylation of genes encoding central components of the immune system. We therefore analyzed the transcriptomes (by RNA sequencing) and methylomes (by target-enrichment next-generation sequencing) of primary CD4-positive T cells from matched groups of four women each in the Argentinean Andes, with fivefold differences in urinary arsenic concentrations (median concentrations of urinary arsenic in the lower- and high-arsenic groups: 65 and 276 μg/l, respectively). Arsenic exposure was associated with genome-wide alterations of gene expression; principal component analysis indicated that the exposure explained 53% of the variance in gene expression among the top variable genes and 19% of 28,351 genes were differentially expressed (false discovery rate arsenic group. Arsenic exposure was associated with genome-wide DNA methylation; the high-arsenic group had 3% points higher genome-wide full methylation (>80% methylation) than the lower-arsenic group. Differentially methylated regions that were hyper-methylated in the high-arsenic group showed enrichment for immune-related gene ontologies that constitute the basic functions of CD4-positive T cells, such as isotype switching and lymphocyte activation and differentiation. In conclusion, chronic arsenic exposure from drinking water was related to changes in the transcriptome and methylome of CD4-positive T cells, both genome wide and in specific genes, supporting the hypothesis that arsenic causes immunotoxicity by interfering with gene expression and regulation.

  17. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Park, Jae Hyeon [Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Shin, In Chul [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2012-09-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  18. Stress responses and conditioning effects in mesothelial cells exposed to peritoneal dialysis fluid.

    Science.gov (United States)

    Kratochwill, Klaus; Lechner, Michael; Siehs, Christian; Lederhuber, Hans C; Rehulka, Pavel; Endemann, Michaela; Kasper, David C; Herkner, Kurt R; Mayer, Bernd; Rizzi, Andreas; Aufricht, Christoph

    2009-04-01

    Renal replacement therapy by peritoneal dialysis is frequently complicated by technical failure. Peritoneal dialysis fluids (PDF) cause injury to the peritoneal mesothelial cell layer due to their cytotoxicity. As only isolated elements of the involved cellular processes have been studied before, we aimed at a global assessment of the mesothelial stress response to PDF. Following single or repeated exposure to PDF or control medium, proteomics and bioinformatics techniques were combined to study effects in mesothelial cells (MeT-5A). Protein expression was assessed by two-dimensional gel electrophoresis, and significantly altered spots were identified by MALDI-TOF MS and MS2 techniques. The lists of experimentally derived candidate proteins were expanded by a next neighbor approach and analyzed for significantly enriched biological processes. To address the problem of an unknown portion of false positive spots in 2DGE, only proteins showing significant p-values on both levels were further interpreted. Single PDF exposure resulted in reduction of biological processes in favor of reparative responses, including protein metabolism, modification and folding, with chaperones as a major subgroup. The observed biological processes triggered by this acute PDF exposure mainly contained functionally interwoven multitasking proteins contributing as well to cytoskeletal reorganization and defense mechanisms. Repeated PDF exposure resulted in attenuated protein regulation, reflecting inhibition of stress responses by high levels of preinduced chaperones. The identified proteins were less attributable to acute cellular injury but rather to specialized functions with a reduced number of involved multitasking proteins. This finding agrees well with the concept of conditioning effects and cytoprotection. In conclusion, this study describes the reprogrammed proteome of mesothelial cells during recovery from PDF exposure and adaption to repetitive stress. A broad stress response with

  19. Transcriptomic changes in mouse embryonic stem cells exposed to thalidomide during spontaneous differentiation

    Directory of Open Access Journals (Sweden)

    Xiugong Gao

    2015-09-01

    Full Text Available Thalidomide is a potent developmental toxicant that induces a range of birth defects, notably severe limb malformations. To unravel the molecular mechanisms underpinning the teratogenic effects of thalidomide, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on the differentiation of mouse embryonic stem cells (mESCs, and published the major findings in a research article entitled “Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells” [1]. The data presented herein contains complementary information related to the aforementioned research article.

  20. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields

    Directory of Open Access Journals (Sweden)

    Kaplan David L

    2011-01-01

    Full Text Available Abstract Background Electric fields are integral to many biological events, from maintaining cellular homeostasis to embryonic development to healing. The application of electric fields offers substantial therapeutic potential, while optimal dosing regimens and the underlying mechanisms responsible for the positive clinical impact are poorly understood. Methods The purpose of this study was to track the differentiation profile and stress response of human bone marrow derived mesenchymal stem cells (hMSCs undergoing osteogenic differentiation during exposure to a 20 mV/cm, 60 kHz electric field. Morphological and biochemical changes were imaged using endogenous two-photon excited fluorescence (TPEF and quantitatively assessed through eccentricity calculations and extraction of the redox ratio from NADH, FAD and lipofuscin contributions. Real time reverse transcriptase-polymerase chain reactions (RT-PCR were used to track osteogenic differentiation markers, namely alkaline phosphatase (ALP and collagen type 1 (col1, and stress response markers, such as heat shock protein 27 (hsp27 and heat shock protein 70 (hsp70. Comparisons of collagen deposition between the stimulated hMSCs and controls were examined through second harmonic generation (SHG imaging. Results Quantitative differences in cell morphology, as described through an eccentricity ratio, were found on days 2 and days 5 (p Conclusions Electrical stimulation is a useful tool to improve hMSC osteogenic differentiation, while heat shock proteins may reveal underlying mechanisms, and optical non-invasive imaging may be used to monitor the induced morphological and biochemical changes.

  1. [Cytogenetic investigations of bone marrow cells from mice exposed onboard biosatellite "Bion-M1"].

    Science.gov (United States)

    Dorozhkina, O V; Ivanov, A A

    2015-01-01

    The results of studying the mitotic activities and chromosomal aberrations in bone marrow cells from C57/BL6N mice with the help of the anaphase technique in 12 hours after completion of the 30-day "Bion-M1" mission and ground-based experiment using flight equipment are presented. A statistically reliable decline of the mitotic activity (0.74%) was found in cells taken from the space flown animals. In the ground-based experiment, a statistically reliable downward trend in proliferative activity (1.37%) was revealed after the comparison with groups of vivarium control (1.46-1.53%). In both experiments mice increased the number of initial mitotic phases (prophase + metaphase) relative to the sum of anaphases and telophases. The number of aberrant mitoses grew reliably in the group of flight animals by 29.7%, whereas in the ground-based experiment an upward trend was insignificant as their number increased up to 2.3% only. In the vivarium controls aberrant mitoses constituted 1.75-1.8%. An increase in chromosomal aberrations was largely due to such abnormalities as fragments. These findings seem to have been a result of summation of the effects of radiation and other stressful factors in space flight.

  2. Cigarette Smoke-Exposed Candida albicans Increased Chitin Production and Modulated Human Fibroblast Cell Responses

    Directory of Open Access Journals (Sweden)

    Humidah Alanazi

    2014-01-01

    Full Text Available The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P<0.01 sensitive to oxidation but significantly (P<0.01 resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P<0.01 slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers.

  3. Epidermal Growth Factor-Like Growth Factors Prevent Apoptosis of Alcohol-Exposed Human Placental Cytotrophoblast Cells1

    Science.gov (United States)

    Wolff, Garen S.; Chiang, Po Jen; Smith, Susan M.; Romero, Roberto; Armant, D. Randall

    2007-01-01

    Maternal alcohol abuse during pregnancy can produce an array of birth defects comprising fetal alcohol syndrome. A hallmark of fetal alcohol syndrome is intrauterine growth retardation, which is associated with elevated apoptosis of placental cytotrophoblast cells. Using a human first trimester cytotrophoblast cell line, we examined the relationship between exposure to ethanol and cytotrophoblast survival, as well as the ameliorating effects of epidermal growth factor (EGF)-like growth factors produced by human cytotrophoblast cells. After exposure to 0–100 mM ethanol, cell death was quantified by the TUNEL method, and expression of the nuclear proliferation marker, Ki67, was measured by immunohistochemistry. The mode of cell death was determined by assessing annexin V binding, caspase 3 activation, pyknotic nuclear morphology, reduction of TUNEL by caspase inhibition, and cellular release of lactate dehydrogenase. Ethanol significantly reduced proliferation and increased cell death approximately 2.5-fold through the apoptotic pathway within 1–2 h of exposure to 50 mM alcohol. Exposure to 25–50 mM ethanol significantly increased transforming growth factor alpha (TGFA) and heparin-binding EGF-like growth factor (HBEGF), but not EGF or amphiregulin (AREG). When cytotrophoblasts were exposed concurrently to 100 mM ethanol and 1 nM HBEGF or TGFA, the increase in apoptosis was prevented, while EGF ameliorated at 10 nM and AREG was weakly effective. HBEGF survival-promoting activity required ligation of either of its cognate receptors, HER1 or HER4. These findings reveal the potential for ethanol to rapidly induce cytotrophoblast apoptosis. However, survival factor induction could provide cytotrophoblasts with an endogenous cytoprotective mechanism. PMID:17392498

  4. Caffeic Acid Reduces the Viability and Migration Rate of Oral Carcinoma Cells (SCC-25 Exposed to Low Concentrations of Ethanol

    Directory of Open Access Journals (Sweden)

    Arkadiusz Dziedzic

    2014-10-01

    Full Text Available Alcohol increases the risk of carcinoma originated from oral epithelium, but the biological effects of ultra-low doses of ethanol on existing carcinoma cells in combination with natural substances are still unclear. A role for ethanol (EtOH, taken in small amounts as an ingredient of some beverages or mouthwashes to change the growth behavior of established squamous cell carcinoma, has still not been examined sufficiently. We designed an in vitro study to determine the effect of caffeic acid (CFA on viability and migration ability of malignant oral epithelial keratinocytes, exposed to ultra-low concentrations (maximum 100 mmol/L EtOH. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-dimethyltetrazolium bromide and LDH (lactate dehydrogenase assays were used to assess the cytotoxic effect of EtOH/CFA and the viability of squamous carcinoma SCC-25 cells (ATCC CRL-1628, mobile part of the tongue. Tested EtOH concentrations were: 2.5, 5, 10, 25, 50, and 100 mmol/L, along with an equal CFA concentration of 50 μmol/L. Carcinoma cells’ migration was investigated by monolayer “wound” healing assay. We demonstrated that very low concentrations of EtOH ranging between 2.5 and 10 mmol/L may induce the viability of oral squamous cell carcinoma cells, while the results following addition of CFA reveal an antagonistic effect, attenuating pro-proliferative EtOH activity. The migration rate of oral squamous carcinoma cells can be significantly inhibited by the biological activity of caffeic acid.

  5. Investigating longitudinal changes in the mechanical properties of MCF-7 cells exposed to paclitaxol using particle tracking microrheology

    Science.gov (United States)

    El Kaffas, Ahmed; Bekah, Devesh; Rui, Min; Kumaradas, J. Carl; Kolios, Michael C.

    2013-02-01

    Evidence suggests that compression and shear wave elastography are sensitive to the mechanical property changes occuring in dying cells following chemotherapy, and can hence be used to monitor cancer treatment response. A qualitative and quantitative understanding of the mechanical changes at the cellular level would allow to better infer how these changes affect macroscopic tissue mechanical properties and therefore allow the optimization of elastographic techniques (such as shear wave elastography) for the monitoring of cancer therapy. We used intracellular particle tracking microrheology (PTM) to investigate the mechanical property changes of cells exposed to paclitaxol, a mitotic inhibitor used in cancer chemotherapy. The average elastic and viscous moduli of the cytoplasm of treated MCF-7 breast cancer cells were calculated for frequency ranges between 0.2 and 100 rad s-1 (corresponding to 0.03 and 15.92 Hz, respectively). A significant increase in the complex shear modulus of the cell cytoplasm was detected at 12 h post treatment. At 24 h after drug exposure, the elastic and viscous moduli increased by a total of 191.3 Pa (>8000×) and 9 Pa (˜9×), respectively for low frequency shear modulus measurements (at 1 rad s-1). At higher frequencies (10 rad s-1), the elastic and viscous moduli increased by 188.5 Pa (˜60×) and 1.7 Pa (˜1.1×), respectively. Our work demonstrates that PTM can be used to measure changes in the mechanical properties of treated cells and that cell elasticity significantly increases by 24 h after chemotherapy exposure.

  6. Decline of FoxP3+ Regulatory CD4 T Cells in Peripheral Blood of Children Heavily Exposed to Malaria.

    Directory of Open Access Journals (Sweden)

    Michelle J Boyle

    2015-07-01

    Full Text Available FoxP3+ regulatory CD4 T cells (Tregs help to maintain the delicate balance between pathogen-specific immunity and immune-mediated pathology. Prior studies suggest that Tregs are induced by P. falciparum both in vivo and in vitro; however, the factors influencing Treg homeostasis during acute and chronic infections, and their role in malaria immunopathogenesis, remain unclear. We assessed the frequency and phenotype of Tregs in well-characterized cohorts of children residing in a region of high malaria endemicity in Uganda. We found that both the frequency and absolute numbers of FoxP3+ Tregs in peripheral blood declined markedly with increasing prior malaria incidence. Longitudinal measurements confirmed that this decline occurred only among highly malaria-exposed children. The decline of Tregs from peripheral blood was accompanied by reduced in vitro induction of Tregs by parasite antigen and decreased expression of TNFR2 on Tregs among children who had intense prior exposure to malaria. While Treg frequencies were not associated with protection from malaria, there was a trend toward reduced risk of symptomatic malaria once infected with P. falciparum among children with lower Treg frequencies. These data demonstrate that chronic malaria exposure results in altered Treg homeostasis, which may impact the development of antimalarial immunity in naturally exposed populations.

  7. Effect of exposure time, particle size and uptake pathways in immune cell lysosomal cytotoxicity of mussels exposed to silver nanoparticles.

    Science.gov (United States)

    Bouallegui, Younes; Ben Younes, Ridha; Turki, Faten; Mezni, Amine; Oueslati, Ridha

    2018-04-01

    Cytotoxicity evaluation of hemocytes (lysosomal membrane stability [LMS] assay) from Mytilus galloprovincialis Lamarck, exposed to a sublethal dose (100 μg/L) of two size of silver nanoparticles (AgNPs: <50 nm and <100 nm) - prior to and after inhibition of potential uptake pathways (i.e., clathrin- and caveolae-mediated endocytosis) within different times of exposure (3, 6, 12 h) - showed that there was a significant cytotoxic effect on immune cells of mussels exposed for different times to either AgNP size (p < 0.01); the greater effect was with the smaller size. However, hemocytes seemed more sensitive to the larger AgNP after clathrin-mediated endocytosis was blocked (p < 0.01); this was not so with inhibition of caveolae-mediated endocytosis. Dimethyl-sulfoxide (DMSO) did not impart a carrier-mediated effect despite an enhanced cytotoxicity when DMSO was present with AgNP. From these results, it is concluded that the immunotoxicity of AgNP in mussels was size-dependent as well as length of exposure-dependent. It was also clear that nanoparticles (NP) internalization mechanisms were a major factor underlying any toxicity.

  8. Genomic Profiling of a Human Leukemic Monocytic Cell-Line (THP-1 Exposed to Alpha Particle Radiation

    Directory of Open Access Journals (Sweden)

    Vinita Chauhan

    2012-01-01

    Full Text Available This study examined alpha (α- particle radiation effects on global changes in gene expression in human leukemic monocytic cells (THP-1 for the purposes of mining for candidate biomarkers that could be used for the development of a biological assessment tool. THP-1 cells were exposed to α-particle radiation at a dose range of 0 to 1.5 Gy. Twenty-four hours and three days after exposure gene expression was monitored using microarray technology. A total of 16 genes were dose responsive and classified as early onset due to their expression 24 h after exposure. Forty-eight transcripts were dose responsive and classified as late-onset as they were expressed 72 h after exposure. Among these genes, 6 genes were time and dose responsive and validated further using alternate technology. These transcripts were upregulated and associated with biological processes related to immune function, organelle stability and cell signalling/communication. This panel of genes merits further validation to determine if they are strong candidate biomarkers indicative of α-particle exposure.

  9. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway

    Energy Technology Data Exchange (ETDEWEB)

    Nagane, Masaki; Yasui, Hironobu; Sakai, Yuri; Yamamori, Tohru [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Niwa, Koichi [Laboratory of Biochemistry, Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493 (Japan); Hattori, Yuichi [Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Kondo, Takashi [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Inanami, Osamu, E-mail: inanami@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan)

    2015-01-02

    Highlights: • eNOS activity is increased in BAECs exposed to X-rays. • ATM is involved in this increased eNOS activity. • HSP90 modulates the radiation-induced activation of ATM and eNOS. - Abstract: In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced by treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90.

  10. The effect of citrus flavanones on the redox homeostasis in cells exposed to oxidative stress – studies in vitro

    Directory of Open Access Journals (Sweden)

    Ewa Kurzeja

    2016-06-01

    Full Text Available ioxidants in citrus fruits are beneficial for health, which is connected with their anti-inflammatory, anti-atherogenic and anti-carcinogenic properties. The present study was undertaken to investigate whether – and in what way – the presence of flavanones influences the redox homeostasis of fibroblasts and alleviates the effects of oxidative stress. Material and methods: The study was conducted on murine fibroblast cell cultures with the addition of flavanones (hesperidin, hesperetin, naringin, naringenin, exposed to oxidative stress (Fe/Asc. In cell homogenates, the activity of superoxide dismutase (SOD and glutathione peroxidase (GPx was measured; in the medium, the concentration of nitric oxide was measured. Results and conclusion: Our results demonstrate that the addition of naringenin, hesperetin, naringin and hesperidin has a protective effect on cells subjected to oxidative stress The changes observed are particularly visible in the case of aglycone forms of both compounds. Despite the protective properties against oxidative stress which flavanones display, we determined distrubances in redox homeostasis in comparison to the control culture.

  11. Memory B cells are a more reliable archive for historical antimalarial responses than plasma antibodies in no-longer exposed children.

    Science.gov (United States)

    Ndungu, Francis Maina; Olotu, Ally; Mwacharo, Jedidah; Nyonda, Mary; Apfeld, Jordan; Mramba, Lazarus K; Fegan, Gregory W; Bejon, Philip; Marsh, Kevin

    2012-05-22

    Humans respond to foreign antigen by generating plasma Abs and memory B cells (MBCs). The Ab response then declines, sometimes to below the limit of detection. In contrast, MBCs are generally thought to be long-lived. We tested and compared Plasmodium falciparum (Pf)-specific Ab and MBC responses in two populations of children: (i) previously exposed children who had documented Pf infections several years ago, but minimal exposure since then; and (ii) persistently exposed children living in a separate but nearby endemic area. We found that although Pf-specific plasma Abs were lower in previously exposed children compared with persistently exposed children, their cognate MBCs were maintained at similar frequencies. We conclude that serological analysis by itself would greatly underestimate the true memory of Pf-specific Ab responses in previously exposed children living in areas where Pf transmission has been reduced or eliminated.

  12. Sodium nitrite induces acute central nervous system toxicity in guinea pigs exposed to systemic cell-free hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Buehler, Paul W.; Butt, Omer I. [Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); D' Agnillo, Felice, E-mail: felice.dagnillo@fda.hhs.gov [Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2011-06-10

    Highlights: {yields} Toxicological implications associated with the use of NaNO{sub 2} therapy to treat systemic cell-free Hb exposure are not well-defined. {yields} Systemic Hb exposure followed by NaNO{sub 2} infusion induces acute CNS toxicities in guinea pigs. {yields} These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO{sub 2} alone. {yields} NaNO{sub 2}-mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO{sub 2}) therapy can attenuate the hypertensive effects of Hb. However, the chemical reactivity of NaNO{sub 2} with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO{sub 2} on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO{sub 2}, at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO{sub 2} alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.

  13. Effects of Carbocysteine and Beclomethasone on Histone Acetylation/Deacetylation Processes in Cigarette Smoke Exposed Bronchial Epithelial Cells.

    Science.gov (United States)

    Pace, Elisabetta; Di Vincenzo, Serena; Ferraro, Maria; Siena, Liboria; Chiappara, Giuseppina; Dino, Paola; Vitulo, Patrizio; Bertani, Alessandro; Saibene, Federico; Lanata, Luigi; Gjomarkaj, Mark

    2017-10-01

    Histone deacetylase expression/activity may control inflammation, cell senescence, and responses to corticosteroids. Cigarette smoke exposure, increasing oxidative stress, may negatively affect deacetylase expression/activity. The effects of cigarette smoke extracts (CSE), carbocysteine, and beclomethasone dipropionate on chromatin remodeling processes in human bronchial epithelial cells are largely unknown. The present study was aimed to assess the effects of cigarette smoke, carbocysteine, and beclomethasone dipropionate on histone deacetylase 3 (HDAC3) expression/activity, N-CoR (nuclear receptor corepressor) expression, histone acetyltransferases (HAT) (p300/CBP) expression, p-CREB and IL-1 m-RNA expression, neutrophil chemotaxis. Increased p-CREB expression was observed in the bronchial epithelium of smokers. CSE increased p-CREB expression and decreased HDAC3 expression and activity and N-CoR m-RNA and protein expression. At the same time, CSE increased the expression of the HAT, p300/CBP. All these events increased acetylation processes within the cells and were associated to increased IL-1 m-RNA expression and neutrophil chemotaxis. The incubation of CSE exposed cells with carbocysteine and beclomethasone counteracted the effects of cigarette smoke on HDAC3 and N-CoR but not on p300/CBP. The increased deacetylation processes due to carbocysteine and beclomethasone dipropionate incubation is associated to reduced p-CREB, IL-1 m-RNA expression, neutrophil chemotaxis. These findings suggest a new role of combination therapy with carbocysteine and beclomethasone dipropionate in restoring deacetylation processes compromised by cigarette smoke exposure. J. Cell. Physiol. 232: 2851-2859, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Sustained induction of cytochrome P4501A1 in human hepatoma cells by co-exposure to benzo[a]pyrene and 7H-dibenzo[c,g]carbazole underlies the synergistic effects on DNA adduct formation

    Energy Technology Data Exchange (ETDEWEB)

    Gábelová, Alena, E-mail: alena.gabelova@savba.sk [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Poláková, Veronika [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Prochazka, Gabriela [Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 83 Huddinge (Sweden); Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-171 77 Stockholm (Sweden); Kretová, Miroslava; Poloncová, Katarína; Regendová, Eva; Luciaková, Katarína [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Segerbäck, Dan [Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 83 Huddinge (Sweden)

    2013-08-15

    To gain a deeper insight into the potential interactions between individual aromatic hydrocarbons in a mixture, several benzo[a]pyrene (B[a]P) and 7H-dibenzo[c,g]carbazole (DBC) binary mixtures were studied. The biological activity of the binary mixtures was investigated in the HepG2 and WB-F344 liver cell lines and the Chinese hamster V79 cell line that stably expresses the human cytochrome P4501A1 (hCYP1A1). In the V79 cells, binary mixtures, in contrast to individual carcinogens, caused a significant decrease in the levels of micronuclei, DNA adducts and gene mutations, but not in cell survival. Similarly, a lower frequency of micronuclei and levels of DNA adducts were found in rat liver WB-F344 cells treated with a binary mixture, regardless of the exposure time. The observed antagonism between B[a]P and DBC may be due to an inhibition of Cyp1a1 expression because cells exposed to B[a]P:DBC showed a decrease in Cyp1a1 mRNA levels. In human liver HepG2 cells exposed to binary mixtures for 2 h, a reduction in micronuclei frequency was also found. However, after a 24 h treatment, synergism between B[a]P and DBC was determined based on DNA adduct formation. Accordingly, the up-regulation of CYP1A1 expression was detected in HepG2 cells exposed to B[a]P:DBC. Our results show significant differences in the response of human and rat cells to B[a]P:DBC mixtures and stress the need to use multiple experimental systems when evaluating the potential risk of environmental pollutants. Our data also indicate that an increased expression of CYP1A1 results in a synergistic effect of B[a]P and DBC in human cells. As humans are exposed to a plethora of noxious chemicals, our results have important implications for human carcinogenesis. - Highlights: • B[a]P:DBC mixtures were less genotoxic in V79MZh1A1 cells than B[a]P and DBC alone. • An antagonism between B[a]P and DBC was determined in rat liver WB-F344 cells. • The inhibition of CYP1a1 expression by B[a]P:DBC mixture

  15. DNA hypermethylation of CD3(+) T cells from cord blood of infants exposed to intrauterine growth restriction.

    Science.gov (United States)

    Williams, Lyda; Seki, Yoshinori; Delahaye, Fabien; Cheng, Alex; Fuloria, Mamta; Hughes Einstein, Francine; Charron, Maureen J

    2016-08-01

    Intrauterine growth restriction (IUGR) is associated with increased susceptibility to obesity, metabolic syndrome and type 2 diabetes. Although the mechanisms underlying the developmental origins of metabolic disease are poorly understood, evidence suggests that epigenomic alterations play a critical role. We sought to identify changes in DNA methylation patterns that are associated with IUGR in CD3(+) T cells purified from umbilical cord blood obtained from male newborns who were appropriate for gestational age (AGA) or who had been exposed to IUGR. CD3(+) T cells were isolated from cord blood obtained from IUGR and AGA infants. The genome-wide methylation profile in eight AGA and seven IUGR samples was determined using the HELP tagging assay. Validation analysis using targeted bisulfite sequencing and bisulfite massARRAY was performed on the original cohort as well as biological replicates consisting of two AGA and four IUGR infants. The Segway algorithm was used to identify methylation changes within regulatory regions of the genome. A global shift towards hypermethylation in IUGR was seen compared with AGA (89.8% of 4,425 differentially methylated loci), targeted to regulatory regions of the genome, specifically promoters and enhancers. Pathway analysis identified dysregulation of pathways involved in metabolic disease (type 2 diabetes mellitus, insulin signalling, mitogen-activated protein kinase signalling) and T cell development, regulation and activation (T cell receptor signalling), as well as transcription factors (TCF3, LEF1 and NFATC) that regulate T cells. Furthermore, bump-hunting analysis revealed differentially methylated regions in PRDM16 and HLA-DPB1, genes important for adipose tissue differentiation, stem cell maintenance and function and T cell activation. Our findings suggest that the alterations in methylation patterns observed in IUGR CD3(+) T cells may have functional consequences in targeted genes, regulatory regions and transcription

  16. Live-Cell Imaging Visualizes Frequent Mitotic Skipping During Senescence-Like Growth Arrest in Mammary Carcinoma Cells Exposed to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masatoshi, E-mail: msuzuki@nagasaki-u.ac.jp [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan); Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2012-06-01

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO{sub 2}-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ss-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.

  17. Investigation of toxic factors affecting cells of rat brains exposed to 3-methylcatechol

    Directory of Open Access Journals (Sweden)

    George Emílio Sampaio Barreto

    2007-09-01

    Full Text Available The aim of this work was to study the effects of 3MC on the peroxidation of biomolecules in nuclear fractions and nonsynaptic mitochondrial respiration in organelles obtained from rat brains. The cytotoxicity towards rat primary astrocytes in vitro was also tested. 3MC at 1mM oxidized consuming oxygen at a rate of 1.98 ± 0.19 µM.min-1 and formed reactive quinones. At the same concentration, 3MC induced peroxidation of biomolecules in nuclear fractions obtained from rat brain homogenates and inhibited state 2 FADH2-linked respiration in nonsynaptic mitochondria. Furthermore, 3MC oxidized in the culture medium, leading to the formation of quinones. This toluene metabolite was cytotoxic to rat primary astrocytes. The concentration that killed 50% of cells after 72 h was 107 mM. The results of the study indicated a direct relationship between cytotoxicity and 3MC oxidation.O 3-metilcatecol (3MC é um metabólito do tolueno. Para esclarecer se o 3MC seria tóxico para o sistema nervoso central, examinou-se seus efeitos sobre a peroxidação de biomoléculas em frações nucleares e a respiração mitocondrial em organelas obtidas de cérebros de ratos. Também se testou a citotoxicidade para astrócitos primários de ratos. O 3MC a 1mM oxida-se consumindo oxigênio a uma taxa de 1,98 ± 0,19 mM.min-1, formando quinonas reativas. Nessa mesma concentração o 3MC peroxidou biomoléculas nas frações nucleares. Esse composto também inibiu o estado 2 da respiração mitocondrial associada ao FADH2. Além disso, o 3MC também se oxida em meio de cultura levando à formação de quinonas. Esse metabólito do tolueno foi citotóxico para astrócitos de ratos. A concentração que matou 50% das células após 72 horas foi 107 mM. Os resultados desse estudo indicam uma relação direta entre a citotoxicidade e a oxidação do 3MC.

  18. Cytogenetic effects in bone marrow cells of mice exposed on the biosatellite "BION-M1"

    Science.gov (United States)

    Dorozhkina, Olga; Ivanov, Alexander

    In studies of cytogenetic damage in blood lymphocytes of astronauts, conducted in recent years, have shown an increase in the frequency of chromosomal damage bound, as believe, with influence on an organism of astronauts of space radiation (B.S. Fedorenko, G.P. Snigireva, 2004). However, in recent years published evidence that both acute and chronic stress induce chromosomal aberrations and modified genome sensitivity to mutagens of different nature, including to ionizing radiation (F.I. Ingel et al, 2005 ). This question is especially actual for space biology and medicine due to a number of specific features of space flights, when the interaction of factors more pronounced than in normal terrestrial conditions. In experiment "BION - M1" by anaphase method was determined level of chromosomal aberrations in bone marrow cells of tibia of mice. Flight duration biosatellite "BION - M1" was 30 days in Earth orbit. Euthanasia of experimental animals was carried out at intervals of 15-20 minutes by method of cervical dislocation after 12 hours from the moment of landing satellite. Level of chromosomal aberrations in vivarium-housed control mice was 1,75 ± 0,6% and 1,8 ± 0,45%, while the mitotic index 1,46 ± 0,09% and 1,53 ± 0,05%. Differences are not significant. The maintenance of animals in experiment with the onboard equipment (ground experiment) led to some increase in aberrant mitoses (2,3 ± 0,4%) and to decrease in a mitotic index (1,37 ± 0,02%). In the flight experiment "BION - M1" statistically significant increase of level of chromosomal aberrations (29,7 ± 4,18%) and a decrease in the mitotic index (0,74 ± 0,07%). Since the mouse is a suitable experimental model , also had several ground experiments on research of combined effect of irradiation and other stress factors specific to space flight, with marked tendency to increase the level of aberrant mitoses under the combined action of radiation and stress exposure group housing male mice. Statistically

  19. Antibacterial and antigelatinolytic effects of Satureja hortensis L. essential oil on epithelial cells exposed to Fusobacterium nucleatum.

    Science.gov (United States)

    Zeidán-Chuliá, Fares; Keskin, Mutlu; Könönen, Eija; Uitto, Veli-Jukka; Söderling, Eva; Moreira, José Cláudio Fonseca; Gürsoy, Ulvi K

    2015-04-01

    The present report examined the effects of essential oils (EOs) from Satureja hortensis L. and Salvia fruticosa M. on the viability and outer membrane permeability of the periodontopathogen Fusobacterium nucleatum, a key bacteria in oral biofilms, as well as the inhibition of matrix metalloproteinase (MMP-2 and MMP-9) activities in epithelial cells exposed to such bacteria. Membrane permeability was tested by measuring the N-phenyl-1-naphthylamine uptake and bacterial viability by using the commercially available Live/Dead BacLight kit. In addition, gelatin zymography was performed to analyze the inhibition of F. nucleatum-induced MMP-2 and MMP-9 activities in HaCaT cells. We showed that 5, 10, and 25 μL/mL of Sat. hortensis L. EO decreased the ratio of live/dead bacteria and increased the outer membrane permeability in a range of time from 0 to 5 min. Treatments with 10 and 25 μL/mL of Sal. fruticosa M. also increased the membrane permeability and 5, 10, and 25 μL/mL of both EOs inhibited MMP-2 and MMP-9 activities in keratinocytes induced after exposure of 24 h to F. nucleatum. We conclude that antibacterial and antigelatinolytic activities of Sat. hortensis L. EO have potential for the treatment of periodontal inflammation.

  20. Changes of inflammatory cells in rat lungs exposed to diesel emissions; Diesel haiki bakuro ni yoru rat hai no ensho saibo no henka

    Energy Technology Data Exchange (ETDEWEB)

    Kato, A. [Japan Automobile Research Institute Inc., Tsukuba (Japan); Kagawa, J. [Tokyo Women`s Medical College, Tokyo (Japan)

    1998-05-01

    Study was made on the effect of exposure to diesel emissions on inflammatory cells in a rat lungs. Four kinds of exposure gases with different contents of NO2 and particulate were prepared by diluting diesel emissions. Rats were exposed to diluted diesel emissions for 24 months, and inflammatory cells were detected morphologically in light microscopic and TEM specimens. As a result, particle-laden- alveolar macrophages increased dose- and time-dependently into the submucosa of intrapulmonary bronchioles, alveolar spaces and interstitume of alveolar walls, and bronchoassociated lymphatic tissues. Mast cells infiltrated into the interspaces of epithelial cells in airways. In the submucosa of the terminal bronchioles and the interstitume of alveolar walls, some sorts of inflammatory cells such as mast cells, plasma cells, neutrophils and lymphocytes infiltrated, and some cells showed cell-to-cell contacts. However, the airways were rarely injured by infiltration of inflammatory cells except for a fibrotic change. 2 refs., 2 figs., 2 tabs.

  1. Comprehensive analysis of 5-aminolevulinic acid dehydrogenase (ALAD variants and renal cell carcinoma risk among individuals exposed to lead.

    Directory of Open Access Journals (Sweden)

    Dana M van Bemmel

    Full Text Available BACKGROUND: Epidemiologic studies are reporting associations between lead exposure and human cancers. A polymorphism in the 5-aminolevulinic acid dehydratase (ALAD gene affects lead toxicokinetics and may modify the adverse effects of lead. METHODS: The objective of this study was to evaluate single-nucleotide polymorphisms (SNPs tagging the ALAD region among renal cancer cases and controls to determine whether genetic variation alters the relationship between lead and renal cancer. Occupational exposure to lead and risk of cancer was examined in a case-control study of renal cell carcinoma (RCC. Comprehensive analysis of variation across the ALAD gene was assessed using a tagging SNP approach among 987 cases and 1298 controls. Occupational lead exposure was estimated using questionnaire-based exposure assessment and expert review. Odds ratios (OR and 95% confidence intervals (CI were calculated using logistic regression. RESULTS: The adjusted risk associated with the ALAD variant rs8177796(CT/TT was increased (OR = 1.35, 95%CI = 1.05-1.73, p-value = 0.02 when compared to the major allele, regardless of lead exposure. Joint effects of lead and ALAD rs2761016 suggest an increased RCC risk for the homozygous wild-type and heterozygous alleles ((GGOR = 2.68, 95%CI = 1.17-6.12, p = 0.01; (GAOR = 1.79, 95%CI = 1.06-3.04 with an interaction approaching significance (p(int = 0.06. No significant modification in RCC risk was observed for the functional variant rs1800435(K68N. Haplotype analysis identified a region associated with risk supporting tagging SNP results. CONCLUSION: A common genetic variation in ALAD may alter the risk of RCC overall, and among individuals occupationally exposed to lead. Further work in larger exposed populations is warranted to determine if ALAD modifies RCC risk associated with lead exposure.

  2. Discovery of novel biomarkers by microarray analysis of peripheral blood mononuclear cell gene expression in benzene-exposed workers.

    Science.gov (United States)

    Forrest, Matthew S; Lan, Qing; Hubbard, Alan E; Zhang, Luoping; Vermeulen, Roel; Zhao, Xin; Li, Guilan; Wu, Yen-Ying; Shen, Min; Yin, Songnian; Chanock, Stephen J; Rothman, Nathaniel; Smith, Martyn T

    2005-06-01

    Benzene is an industrial chemical and component of gasoline that is an established cause of leukemia. To better understand the risk benzene poses, we examined the effect of benzene exposure on peripheral blood mononuclear cell (PBMC) gene expression in a population of shoe-factory workers with well-characterized occupational exposures using microarrays and real-time polymerase chain reaction (PCR). PBMC RNA was stabilized in the field and analyzed using a comprehensive human array, the U133A/B Affymetrix GeneChip set. A matched analysis of six exposed-control pairs was performed. A combination of robust multiarray analysis and ordering of genes using paired t-statistics, along with bootstrapping to control for a 5% familywise error rate, was used to identify differentially expressed genes in a global analysis. This resulted in a set of 29 known genes being identified that were highly likely to be differentially expressed. We also repeated these analyses on a smaller subset of 508 cytokine probe sets and found that the expression of 19 known cytokine genes was significantly different between the exposed and the control subjects. Six genes were selected for confirmation by real-time PCR, and of these, CXCL16, ZNF331, JUN, and PF4 were the most significantly affected by benzene exposure, a finding that was confirmed in a larger data set from 28 subjects. The altered expression was not caused by changes in the makeup of the PBMC fraction. Thus, microarray analysis along with real-time PCR confirmation reveals that altered expressions of CXCL16, ZNF331, JUN, and PF4 are potential biomarkers of benzene exposure.

  3. Chronic arsenic exposure increases TGFalpha concentration in bladder urothelial cells of Mexican populations environmentally exposed to inorganic arsenic☆

    Science.gov (United States)

    Valenzuela, Olga L.; Germolec, Dori R.; Borja-Aburto, Víctor H.; Contreras-Ruiz, José; García-Vargas, Gonzalo G.; Del Razo, Luz M.

    2009-01-01

    Inorganic arsenic (iAs) is a well-established carcinogen and human exposure has been associated with a variety of cancers including those of skin, lung, and bladder. High expression of transforming growth factor alpha (TGF-α) has associated with local relapses in early stages of urinary bladder cancer. iAs exposures are at least in part determined by the rate of formation and composition of iAs metabolites (MAsIII, MAsV, DMAsIII, DMAsV). This study examines the relationship between TGF-α concentration in exfoliated bladder urothelial cells (BUC) separated from urine and urinary arsenic species in 72 resident women (18-51 years old) from areas exposed to different concentrations of iAs in drinking water (2-378 ppb) in central Mexico. Urinary arsenic species, including trivalent methylated metabolites were measured by hydride generation atomic absorption spectrometry method. The concentration of TGF-α in BUC was measured using an ELISA assay. Results show a statistically significant positive correlation between TGF-α concentration in BUC and each of the six arsenic species present in urine. The multivariate linear regression analyses show that the increment of TGF-α levels in BUC was importantly associated with the presence of arsenic species after adjusting by age, and presence of urinary infection. People from areas with high arsenic exposure had a significantly higher TGF-α concentration in BUC than people from areas of low arsenic exposure (128.8 vs. 64.4 pg/mg protein; p<0.05). Notably, exfoliated cells isolated from individuals with skin lesions contained significantly greater amount of TGF-α than cells from individuals without skin lesions: 157.7 vs. 64.9 pg/mg protein (p=0.003). These results suggest that TGF-α in exfoliated BUC may serve as a susceptibility marker of adverse health effects on epithelial tissue in arsenic-endemic areas. PMID:17267001

  4. Differentiated THP-1 Cells Exposed to Pathogenic and Nonpathogenic Borrelia Species Demonstrate Minimal Differences in Production of Four Inflammatory Cytokines.

    Science.gov (United States)

    Stokes, John V; Moraru, Gail M; McIntosh, Chelsea; Kummari, Evangel; Rausch, Keiko; Varela-Stokes, Andrea S

    2016-11-01

    Tick-borne borreliae include Lyme disease and relapsing fever agents, and they are transmitted primarily by ixodid (hard) and argasid (soft) tick vectors, respectively. Tick-host interactions during feeding are complex, with host immune responses influenced by biological differences in tick feeding and individual differences within and between host species. One of the first encounters for spirochetes entering vertebrate host skin is with local antigen-presenting cells, regardless of whether the tick-associated Borrelia sp. is pathogenic. In this study, we performed a basic comparison of cytokine responses in THP-1-derived macrophages after exposure to selected borreliae, including a nonpathogen. By using THP-1 cells, differentiated to macrophages, we eliminated variations in host response and reduced the system to an in vitro model to evaluate the extent to which the Borrelia spp. influence cytokine production. Differentiated THP-1 cells were exposed to four Borrelia spp., Borrelia hermsii (DAH), Borrelia burgdorferi (B31), B. burgdorferi (NC-2), or Borrelia lonestari (LS-1), or lipopolysaccharides (LPS) (activated) or media (no treatment) controls. Intracellular and secreted interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were measured using flow cytometric and Luminex-based assays, respectively, at 6, 24, and 48 h postexposure time points. Using a general linear model ANOVA for each cytokine, treatment (all Borrelia spp. and LPS compared to no treatment) had a significant effect on secreted TNF-α only. Time point had a significant effect on intracellular IFN-γ, TNF-α and IL-6. However, we did not see significant differences in selected cytokines among Borrelia spp. Thus, in this model, we were unable to distinguish pathogenic from nonpathogenic borreliae using the limited array of selected cytokines. While unique immune profiles may be detectable in an in vitro model and may reveal predictors for pathogenicity in borreliae

  5. Methods for exposing multiple cultures of endothelial cells to different fluid shear stresses and to cytokines, for subsequent analysis of inflammatory function.

    Science.gov (United States)

    Sheikh, Sajila; Gale, Zoe; Rainger, G Ed; Nash, Gerard B

    2004-05-01

    Endothelial cells are conditioned by physicochemical environmental factors, including shear stress applied by flowing blood. However, the effects of shear conditioning on the functional responses of endothelial cells, such as ability to recruit leukocytes, remain uncertain. Here we describe a system for culturing multiple samples of endothelial cells under flow for prolonged periods, either at different shear stresses, or exposed concurrently to different concentrations of cytokines, for instance, tumour necrosis factor-alpha (TNF). The endothelial cells were cultured in glass capillaries (microslides) that could be conveniently transferred to a flow-based adhesion assay, to test the ability of the cultures to support adhesion and migration of flowing leukocytes. Paired control, 'static' samples were exposed to the identical medium and culture geometry. We found that the type of tubing used in the culture flow circuit and its maintenance at 37 degrees C were critical design factors, which could influence the response to TNF of the static controls which were exposed to recirculated medium. Endothelial cells conditioned by culture under flow showed a reduction in response to TNF, as judged by ability to induce the capture and migration of neutrophils. We found that the higher the shear stress, the weaker the ability to recruit neutrophils. This sensitivity to shear stress was greater if the cells were allowed to stabilise under static conditions for 24 h, compared to cells exposed to flow immediately after seeding. The inhibition of neutrophil recruitment was similar for cultures exposed to steady flow or flow with a pulsatile element (flow oscillation approximately 20% about the mean). Thus, we have developed a versatile culture system which allows investigations of functional modifications of endothelial cells and demonstrates the potential sensitivity of inflammatory responses to the local fluid environment. Copyright 2004 Elsevier B.V.

  6. Biomarker analysis of liver cells exposed to surfactant-wrapped and oxidized multi-walled carbon nanotubes (MWCNTs)

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, W. Matthew, E-mail: Henderson.Matt@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 960 College Station Road, Athens 30605, GA (United States); Bouchard, Dermont [U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 960 College Station Road, Athens 30605, GA (United States); Chang, Xiaojun [Grantee to U.S. Environmental Protection Agency via National Research Council Cooperative Agreement, Athens 30605, GA (United States); Al-Abed, Souhail R. [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 Martin Luther King Dr. W, Cincinnati, OH 45268 (United States); Teng, Quincy [U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 960 College Station Road, Athens 30605, GA (United States)

    2016-09-15

    Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and these CNT surface modifications also increase possible human and ecological exposures to nanoparticle-contaminated waters. To determine the exposure outcomes of oxidized and surfactant-wrapped multiwalled carbon nanotubes (MWCNTs) on biochemical processes, metabolomics-based profiling of human liver cells (C3A) was utilized. Cells were exposed to 0, 10, or 100 ng/mL of MWCNTs for 24 and 48 h; MWCNT particle size distribution, charge, and aggregation were monitored concurrently during exposures. Following MWCNT exposure, cellular metabolites were extracted, lyophilized, and buffered for {sup 1}H NMR analysis. Acquired spectra were subjected to both multivariate and univariate analysis to determine the consequences of nanotube exposure on the metabolite profile of C3A cells. Resulting scores plots illustrated temporal and dose-dependent metabolite responses to all MWCNTs tested. Loadings plots coupled with t-test filtered spectra identified metabolites of interest. XPS analysis revealed the presence of hydroxyl and carboxyl functionalities on both MWCNTs surfaces. Metal content analysis by ICP-AES indicated that the total mass concentration of the potentially toxic impurities in the exposure experiments were extremely low (i.e. [Ni] ≤ 2 × 10{sup −10} g/mL). Preliminary data suggested that MWCNT exposure causes perturbations in biochemical processes involved in cellular oxidation as well as fluxes in amino acid metabolism and fatty acid synthesis. Dose-response trajectories were apparent and spectral peaks related to both dose and MWCNT dispersion methodologies were determined. Correlations of the significant changes in metabolites will help to identify potential biomarkers associated with

  7. Dental pulp stem cells from traumatically exposed pulps exhibited an enhanced osteogenic potential and weakened odontogenic capacity.

    Science.gov (United States)

    Wang, Yanping; Yan, Ming; Wang, Zhanwei; Wu, Jintao; Wang, Zilu; Zheng, Yangyu; Yu, Jinhua

    2013-11-01

    Traumatic pulp exposure can bring about some permanent damages to tooth tissues including dental pulps. This study was designed to evaluate the effects of traumatic pulp exposure on the osteo/odontogenic capacity of dental pulp stem cells (DPSCs). Rat incisors were artificially fractured and dental pulps were exposed to the oral environment for 48 h. Then, multi-colony-derived DPSCs from the injured pulps (iDPSCs) were isolated. Their osteo/odontogenic differentiation and the involvement of NF-κB pathway were subsequently investigated. iDPSCs presented a lower proliferative capacity than normal DPSCs (nDPSCs), as indicated by MTT and FCM assay. ALP levels in iDPSCs were significantly higher (Ppulp complex while all iDPSCs pellets formed the osteodentin-like tissues which were immunopositive for OCN. Mechanistically, iDPSCs expressed the higher levels of cytoplasmic phosphorylated IκBα/P65 and nuclear P65 than nDPSCs, indicating an active cellular NF-κB pathway in iDPSCs. After the inhibition of NF-κB pathway, the osteogenic potential in iDPSCs was significantly down-regulated while odontogenic differentiation was up-regulated, as indicated by the decreased Alp/Runx2/Ocn and uprised Dspp expression. Pulp exposure for 48 h decreased the odontogenic capacity and enhanced the osteogenic potential of DPSCs via the NF-κB signalling pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    Science.gov (United States)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  9. Dynamics of protein phosphatase gene expression in Corbicula fluminea exposed to microcystin-LR and to toxic Microcystis aeruginosa cells.

    Science.gov (United States)

    Martins, José Carlos; Machado, João; Martins, António; Azevedo, Joana; OlivaTeles, Luís; Vasconcelos, Vitor

    2011-01-01

    This study investigated the in vivo effects of microcystins on gene expression of several phosphoprotein phosphatases (PPP) in the freshwater clam Corbicula fluminea with two different exposure scenarios. Clams were exposed for 96 h to 5 μg L(-1) of dissolved microcystin-LR and the relative changes of gene expression of three different types of PPP (PPP1, 2 and 4) were analyzed by quantitative real-time PCR. The results showed a significant induction of PPP2 gene expression in the visceral mass. In contrast, the cyanotoxin did not cause any significant changes on PPP1 and PPP4 gene expression. Based on these results, we studied alterations in transcriptional patterns in parallel with enzymatic activity of C. fluminea for PPP2, induced by a Microcystis aeruginosa toxic strain (1 × 10(5) cells cm(-3)) during 96 h. The relative changes of gene expression and enzyme activity in visceral mass were analyzed by quantitative real-time PCR and colorimetric assays respectively. The clams exhibited a significant reduction of PPP2 activity with a concomitant enhancement of gene expression. Considering all the results we can conclude that the exposure to an ecologically relevant concentration of pure or intracellular microcystins (-LR) promoted an in vivo effect on PPP2 gene expression in C. fluminea.

  10. Dynamics of Protein Phosphatase Gene Expression in Corbicula fluminea Exposed to Microcystin-LR and to Toxic Microcystis aeruginosa Cells

    Directory of Open Access Journals (Sweden)

    Vitor Vasconcelos

    2011-12-01

    Full Text Available This study investigated the in vivo effects of microcystins on gene expression of several phosphoprotein phosphatases (PPP in the freshwater clam Corbicula fluminea with two different exposure scenarios. Clams were exposed for 96 h to 5 µg L−1 of dissolved microcystin-LR and the relative changes of gene expression of three different types of PPP (PPP1, 2 and 4 were analyzed by quantitative real-time PCR. The results showed a significant induction of PPP2 gene expression in the visceral mass. In contrast, the cyanotoxin did not cause any significant changes on PPP1 and PPP4 gene expression. Based on these results, we studied alterations in transcriptional patterns in parallel with enzymatic activity of C. fluminea for PPP2, induced by a Microcystis aeruginosa toxic strain (1 × 105 cells cm−3 during 96 h. The relative changes of gene expression and enzyme activity in visceral mass were analyzed by quantitative real-time PCR and colorimetric assays respectively. The clams exhibited a significant reduction of PPP2 activity with a concomitant enhancement of gene expression. Considering all the results we can conclude that the exposure to an ecologically relevant concentration of pure or intracellular microcystins (-LR promoted an in vivo effect on PPP2 gene expression in C. fluminea.

  11. Expression of cytokines in chicken peripheral mononuclear blood cells (PMBCs exposed to probiotic strains and Salmonella Enteritidis

    Directory of Open Access Journals (Sweden)

    Eva Husáková

    2015-01-01

    Full Text Available The mRNA expression of interleukin (IL-1β, LITAF, iNOS, macrophage inflammatory protein (MIP1-ß, and K60 were examined in peripheral blood mononuclear cells (PMBCs. The PMBCs were isolated from the chicken blood and in vitro exposed to the probiotic strains E. faecium AL41, E. faecium H31, L. fermentum AD1, and infected with Salmonella enterica serovar Enteritidis (SE147. The PMBCs were evaluated for mRNA expression levels at 24 h and 48 h post infection (p.i. using the reverse transcriptase polymerase chain reaction (RT-PCR. The level of expression of IL-1ß and MIP1-ß was upregulated (P S. Enteritidis + E. faecium AL41 group 48 h p.i. compared to 24 h p.i. Similarly, expression of LITAF was upregulated (P S. Enteritidis (SE group 48 h p.i. In PMBCs treated with E. faecium H31 and S. Enteritidis expression of IL-1ß (P P P E. faecium AL41 demonstrated the highest immunostimulatory effect on expression of selected cytokines by chicken PMBCs after Salmonella infection. It is supposed that the differences in cytokine induction within SE groups are related to lymphocytes isolated from different animals.

  12. Comparative DNA microarray analysis of human monocyte derived dendritic cells and MUTZ-3 cells exposed to the moderate skin sensitizer cinnamaldehyde.

    Science.gov (United States)

    Python, François; Goebel, Carsten; Aeby, Pierre

    2009-09-15

    The number of studies involved in the development of in vitro skin sensitization tests has increased since the adoption of the EU 7th amendment to the cosmetics directive proposing to ban animal testing for cosmetic ingredients by 2013. Several studies have recently demonstrated that sensitizers induce a relevant up-regulation of activation markers such as CD86, CD54, IL-8 or IL-1beta in human myeloid cell lines (e.g., U937, MUTZ-3, THP-1) or in human peripheral blood monocyte-derived dendritic cells (PBMDCs). The present study aimed at the identification of new dendritic cell activation markers in order to further improve the in vitro evaluation of the sensitizing potential of chemicals. We have compared the gene expression profiles of PBMDCs and the human cell line MUTZ-3 after a 24-h exposure to the moderate sensitizer cinnamaldehyde. A list of 80 genes modulated in both cell types was obtained and a set of candidate marker genes was selected for further analysis. Cells were exposed to selected sensitizers and non-sensitizers for 24 h and gene expression was analyzed by quantitative real-time reverse transcriptase-polymerase chain reaction. Results indicated that PIR, TRIM16 and two Nrf2-regulated genes, CES1 and NQO1, are modulated by most sensitizers. Up-regulation of these genes could also be observed in our recently published DC-activation test with U937 cells. Due to their role in DC activation, these new genes may help to further refine the in vitro approaches for the screening of the sensitizing properties of a chemical.

  13. Changes in organization and composition of the extracellular matrix underlying cultured endothelial cells exposed to laminar steady shear stress.

    Science.gov (United States)

    Thoumine, O; Nerem, R M; Girard, P R

    1995-10-01

    In blood vessels, the extracellular matrix (ECM) underlying the endothelium supports endothelial cell (EC) attachment, spreading, migration, and proliferation. The structure and composition of the ECM may be modulated by hemodynamic shear stress, which may play a role in the pathogenesis of vascular diseases such as atherosclerosis. In this study, in vitro effects of fluid shear stress on the ECM of EC were investigated. Cultured bovine aortic EC (BAEC) were exposed to a steady laminar shear stress of 30 dyn/cm2 from 3 to 48 hours, using a parallel-plate flow chamber. Parallel control cultures were maintained under static conditions. The organization of fibronectin (Fn), laminin (Ln), collagen type IV (Col IV), and vitronectin (Vn) was analyzed by immunofluorescence microscopy. Changes in the profile of proteins present in the deoxycholate-insoluble ECM fraction of EC were determined using two-dimensional gel electrophoresis, and the levels of Fn, Ln, and Vn were determined by Western blotting. Fn, Ln, and Col IV exhibited both a granular pattern in cell perinuclear areas and a fibrillar pattern localized underneath EC. On exposure of bovine aortic EC to shear stress, Fn fibrils grouped into thicker tracts of fibrils, and there was a tendency for some of these tracks of fibrils to align with the direction of flow. Ln and Col IV also grouped into thicker fibers, which, in contrast to Fn, were randomly oriented. Vn exhibited a diffuse granular pattern, which did not change in response to shear stress. Consistent increases in the levels of four unidentified acidic proteins (mol wt/pI = 52/4.9, 70/4.7, 70/5.5, and 110/4.4) were observed after 3 to 6 hours of exposure to flow. The level of Fn present in the ECM was decreased twofold 12 hours after exposure of the cell monolayer to flow, and then increased after 24 and 48 hours. The level of Ln showed a twofold increase after 24 and 48 hours of flow, whereas the level of Vn was not altered by shear stress. These changes

  14. Increased micronucleus frequencies in surrogate and target cells from workers exposed to crystalline silica-containing dust.

    Science.gov (United States)

    Demircigil, Gonca Cakmak; Coskun, Erdem; Vidinli, Nuri; Erbay, Yildiray; Yilmaz, Metin; Cimrin, Arif; Schins, Roel P; Borm, Paul J; Burgaz, Sema

    2010-03-01

    Mining, crushing, grinding, sandblasting and construction are high-risk activities with regard to crystalline silica exposure, especially in developing countries. Respirable crystalline silica (quartz and cristobalite) inhaled from occupational sources has been reclassified as a human carcinogen in 1997 by the International Agency for Research on Cancer. However, the biological activity of crystalline silica has been found to be variable among different industries, and this has formed the basis for further in vivo/in vitro mechanistic research and epidemiologic studies. This study was conducted for genotoxicity evaluation in a population of workers (e.g. glass industry workers, sandblasters, and stone grinders) mainly exposed to crystalline silica in four different workplaces in Turkey. The micronucleus (MN) assay was applied both in peripheral blood lymphocytes (PBL) as a surrogate tissue and in nasal epithelial cells (NEC) as a target tissue of the respiratory tract. Our study revealed significantly higher MN frequencies in the workers (n = 50) versus the control group (n = 29) (P crystalline silica levels exceeding limit values and mineralogical/elemental dust composition of the dust of at least 70% SiO(2) were used as markers of crystalline silica exposure in each of the workplaces. Moreover, 24% of the current workers were found to have early radiographical changes (profusion category of 1). In conclusion, although the PBL are not primary target cells for respiratory particulate toxicants, an evident increase in MN frequencies in this surrogate tissue was observed, alongside with a significant increase in NEC and may be an indicator of the accumulated genetic damage associated with crystalline silica exposure.

  15. Metabolomic effects in HepG2 cells exposed to four TiO2 amd two CeO2 naomaterials

    Science.gov (United States)

    Abstract It is difficult to evaluate nanomaterials potential toxicity and to make science-based societal choices. To better assess potential hepatotoxicity issues, human liver HepG2 cells were exposed to four Ti02 and two Ce02 nanomaterials at 30 ug m1-1 for t...

  16. Suppression of antigen-specific antibody responses in mice exposed to perfluorooctanoic acid: Role of PPARalpha and T- and B-cell targeting

    Science.gov (United States)

    T-cell-dependent antibody responses (TDAR) are suppressed in female C57BL/6N mice exposed to ≥3.75 mg/kg of perfluorooctanoic acid (PFOA) for 15 days. To determine if suppression of humoral immunity by PFOA is peroxisome proliferator activated receptor alpha (PPARa)-dependent and...

  17. Uranyl nitrate-exposed rat alveolar macrophages cell death: Influence of superoxide anion and TNF α mediators

    Energy Technology Data Exchange (ETDEWEB)

    Orona, N.S. [School of Science and Technology, National University of General Martín, Avda Gral Paz 5445 (1650) San Martín, Buenos Aires (Argentina); Tasat, D.R., E-mail: deborah.tasat@unsam.edu.ar [School of Science and Technology, National University of General Martín, Avda Gral Paz 5445 (1650) San Martín, Buenos Aires (Argentina); School of Dentistry, University of Buenos Aires, M. T. de Alvear 2142 (1122), Buenos Aires (Argentina)

    2012-06-15

    Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5–200 μM). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO{sub 3} 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO{sub 3}. We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O{sub 2}{sup −}). At high doses it provokes the secretion of TNFα and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O{sub 2}{sup −} may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O{sub 2}{sup −} may be blocked, prevailing damage to DNA by the TNFα route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium‐related diseases. -- Highlights: ► Uranyl nitrate effect on cultured macrophages is linked to the doses and independent of its solubility. ► At low doses uranyl nitrate induces generation of superoxide anion. ► At high doses uranyl nitrate provokes secretion of TNFα. ► Uranyl nitrate induces apoptosis through

  18. Exposed proliferation antigen 210 (XPA-210) in renal cell carcinoma (RCC) and oncocytoma: clinical utility and biological implications.

    Science.gov (United States)

    Kruck, Stephan; Hennenlotter, Joerg; Vogel, Ulrich; Schilling, David; Gakis, Georgios; Hevler, Joachim; Kuehs, Ursula; Stenzl, Arnulf; Schwentner, Christian

    2012-02-01

    •  To determine the clinical role of the exposed proliferation antigen 210 (XPA-210) of the proliferation marker thymidine kinase 1 (TK1) in a large cohort of different renal cell carcinoma (RCC) types, oncocytomas and normal renal tissues samples, as TK1 is reported to be of clinical significance in several cancer entities and is suggested as a prognostic serum biomarker for RCC. •  Expressions of XPA-210 were determined immunohistochemically in 40 clear cell RCCs (ccRCC), 25 papillary RCCs (papRCC), 17 chromophobe RCC (chRCC), 27 oncocytomas and 64 normal renal parenchyma paraffin-embedded specimens. •  Immunohistochemistry was performed with a monoclonal anti-XPA-210 antibody. Staining was measured by the percentage of positive cells. •  Expression was compared between subgroups and correlated with respective clinical data using one-way analysis of variance with post hoc Tukey-Kramer analyses. •  XPA-210 staining in the RCC subgroup was significantly different from the oncocytomas (mean [sem] 4.1 [0.4] vs 2.2 [0.4]; P = 0.004) and from normal renal tissue (1.0 [0.1]; P oncocytomas did not differ from normal renal parenchyma staining (P = 0.18). •  Subdivided into RCC groups, only ccRCC (mean [sem] 5.1 [0.6]; P renal parenchyma, whereas chRCC (1.4 [0.3]; P = 0.99) did not. •  RCC XPA-210 staining was significantly associated with higher tumour stage (T = 3, P = 0.002) and grade (G = 3, P = 0.001). •  The malignant character of RCC is reflected by higher XPA-210 expression as compared with oncocytomas and normal kidney. •  The ccRCC and papRCC subgroups had higher XPA-210 levels. •  XPA-210 could be considered a potential marker for the assessment of the proliferative activity in primary RCC. © 2011 THE AUTHORS. BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.

  19. Exposing diversity

    DEFF Research Database (Denmark)

    Nørtoft, Kamilla; Nordentoft, Helle Merete

    . A prominent research theme in health care studies is, therefore, to explicate the gap between theory and practice. The question this paper addresses is how a learning environment can be designed to bridge this theory-practice gap, expose the differences in situated interactions and qualify health...... in the homes of older people and in pedagogical institutions targeting older people. In the paper we look at the potentials and challenges in working with ethnographic video narratives as a pedagogical tool. Our findings indicate that the use of video narratives has the potential to expose the diversity...... focus on their own professional discipline and its tasks 2) stimulates collaborative learning when they discuss their different interpretations of the ethnographic video narratives and achieve a deeper understanding of each other’s work and their clients’ lifeworlds, which might lead to a better...

  20. Break Point Distribution on Chromosome 3 of Human Epithelial Cells exposed to Gamma Rays, Neutrons and Fe Ions

    Science.gov (United States)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    Most of the reported studies of break point distribution on the damaged chromosomes from radiation exposure were carried out with the G-banding technique or determined based on the relative length of the broken chromosomal fragments. However, these techniques lack the accuracy in comparison with the later developed multicolor banding in situ hybridization (mBAND) technique that is generally used for analysis of intrachromosomal aberrations such as inversions. Using mBAND, we studied chromosome aberrations in human epithelial cells exposed in vitro to both low or high dose rate gamma rays in Houston, low dose rate secondary neutrons at Los Alamos National Laboratory and high dose rate 600 MeV/u Fe ions at NASA Space Radiation Laboratory. Detailed analysis of the inversion type revealed that all of the three radiation types induced a low incidence of simple inversions. Half of the inversions observed after neutron or Fe ion exposure, and the majority of inversions in gamma-irradiated samples were accompanied by other types of intrachromosomal aberrations. In addition, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosome exchanges. We further compared the distribution of break point on chromosome 3 for the three radiation types. The break points were found to be randomly distributed on chromosome 3 after neutrons or Fe ions exposure, whereas non-random distribution with clustering break points was observed for gamma-rays. The break point distribution may serve as a potential fingerprint of high-LET radiation exposure.

  1. Activity and expression of acetylcholinesterase in PC12 cells exposed to intermittent 1.8 GHz 217-GSM mobile phone signal.

    Science.gov (United States)

    Valbonesi, Paola; Franzellitti, Silvia; Bersani, Ferdinando; Contin, Andrea; Fabbri, Elena

    2016-01-01

    Due to its role in learning, memory and in many neurodegenerative diseases, acetylcholinesterase (AChE) represents an interesting endpoint to assess possible targets of exposure to radiofrequency electromagnetic fields (RF-EMF) generated by mobile phones. We investigated possible alterations of enzymatic activity, gene and protein expression of AChE in neuronal-like cells exposed to a 1.8 GHz Global System for Mobile Communication (GSM) modulated signal (217-GSM). Rat PC12 cells were exposed for 24 h to 1.8 GHz 217-GSM signal. Specific adsorption rate (SAR) was 2 W/kg. AChE enzyme activity was assessed spectrophotometrically by Ellman's method, mRNA expression level was evaluated by real time polymerase chain reaction, and protein expression was assessed by Western blotting. AChE enzymatic activity increased of 1.4-fold in PC12 cells exposed to 217-GSM signal for 24 h, whilst AChE transcriptional or translational pathways were not affected. Our results provide the first evidence of effects on AChE activity after in vitro exposure of mammalian cells to the RF-EMF generated by GSM mobile phones, at the SAR value 2 W/kg. The obtained evidence promotes further investigations on AChE as a possible target of RF-EMF and confirm the ability of 1.8 GHz 217-GSM signal to induce biological effects in different mammalian cells.

  2. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment.

    Science.gov (United States)

    Jing, Xuefang; Park, Jae Hong; Peters, Thomas M; Thorne, Peter S

    2015-04-01

    The toxicity of spark-generated copper oxide nanoparticles (CuONPs) was evaluated in human bronchial epithelial cells (HBEC) and lung adenocarcinoma cells (A549 cells) using an in vitro air-liquid interface (ALI) exposure system. Dose-response results were compared to in vivo inhalation and instillation studies of CuONPs. Cells were exposed to filtered, particle-free clean air (controls) or spark-generated CuONPs. The number median diameter, geometric standard deviation and total number concentration of CuONPs were 9.2 nm, 1.48 and 2.27×10(7)particles/cm(3), respectively. Outcome measures included cell viability, cytotoxicity, oxidative stress and proinflammatory chemokine production. Exposure to clean air (2 or 4h) did not induce toxicity in HBEC or A549 cells. Compared with controls, CuONP exposures significantly reduced cell viability, increased lactate dehydrogenase (LDH) release and elevated levels of reactive oxygen species (ROS) and IL-8 in a dose-dependent manner. A549 cells were significantly more susceptible to CuONP effects than HBEC. Antioxidant treatment reduced CuONP-induced cytotoxicity. When dose was expressed per area of exposed epithelium there was good agreement of toxicity measures with murine in vivo studies. This demonstrates that in vitro ALI studies can provide meaningful data on nanotoxicity of metal oxides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Genetic and epigenetic alterations in normal and sensitive COPD-diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM2.5.

    Science.gov (United States)

    Leclercq, B; Platel, A; Antherieu, S; Alleman, L Y; Hardy, E M; Perdrix, E; Grova, N; Riffault, V; Appenzeller, B M; Happillon, M; Nesslany, F; Coddeville, P; Lo-Guidice, J-M; Garçon, G

    2017-11-01

    Even though clinical, epidemiological and toxicological studies have progressively provided a better knowledge of the underlying mechanisms by which air pollution-derived particulate matter (PM) exerts its harmful health effects, further in vitro studies on relevant cell systems are still needed. Hence, aiming of getting closer to the human in vivo conditions, primary human bronchial epithelial cells derived from normal subjects (NHBE) or sensitive chronic obstructive pulmonary disease (COPD)-diseased patients (DHBE) were differentiated at the air-liquid interface. Thereafter, they were repeatedly exposed to air pollution-derived PM2.5 to study the occurrence of some relevant genetic and/or epigenetic endpoints. Concentration-, exposure- and season-dependent increases of OH-B[a]P metabolites in NHBE, and to a lesser extent, COPD-DHBE cells were reported; however, there were more tetra-OH-B[a]P and 8-OHdG DNA adducts in COPD-DHBE cells. No increase in primary DNA strand break nor chromosomal aberration was observed in repeatedly exposed cells. Telomere length and telomerase activity were modified in a concentration- and exposure-dependent manner in NHBE and particularly COPD-DHBE cells. There were a global DNA hypomethylation, a P16 gene promoter hypermethylation, and a decreasing DNA methyltransferase activity in NHBE and notably COPD-DHBE cells repeatedly exposed. Changes in site-specific methylation, acetylation, and phosphorylation of histone H3 (i.e., H3K4me3, H3K9ac, H3K27ac, and H3S10ph) and related enzyme activities occurred in a concentration- and exposure-dependent manner in all the repeatedly exposed cells. Collectively, these results highlighted the key role played by genetic and even epigenetic events in NHBE and particularly sensitive COPD-DHBE cells repeatedly exposed to air pollution-derived PM2.5 and their different responsiveness. While these specific epigenetic changes have been already described in COPD and even lung cancer phenotypes, our

  4. In Oesophageal Squamous Cells Exposed to Acidic Bile Salt Medium, Omeprazole Inhibits IL-8 Expression through Effects on Nuclear Factor-κB and Activator Protein-1

    Science.gov (United States)

    Huo, Xiaofang; Zhang, Xi; Yu, Chunhua; Zhang, Qiuyang; Cheng, Edaire; Wang, David H.; Pham, Thai H.; Spechler, Stuart J.; Souza, Rhonda F.

    2013-01-01

    Objective Oesophagitis might result from the effects of chemokines produced by oesophageal cells in response to gastro-oesophageal reflux, and not solely from the direct, caustic effects of refluxed gastric juice. Proton pump inhibitors (PPIs) can block chemokine production through mechanisms independent of their antisecretory effects. We studied omeprazole effects on chemokine production by oesophageal epithelial cells exposed to acidic bile salts. Design Human primary and telomerase-immortalised oesophageal squamous cells were exposed to acidic bile salt medium with or without omeprazole pretreatment. Interleukin (IL)-8 expression was determined by RT-PCR and ELISA. IL-8 promoter activity was measured by luciferase reporter assay. Binding of NF-κB and AP-1 subunits to the IL-8 promoter was assessed by ChIP assay. Immune cell migration induced by conditioned medium was determined by a double-chamber migration assay system. Results Acidic bile salt medium caused oesophageal epithelial cells to express IL-8 mRNA and protein by activating the IL-8 promoter through NF-κB and AP-1 binding. Omeprazole inhibited that acidic bile salt-stimulated IL-8 expression by blocking the nuclear translocation of p65 (an NF-κB subunit) and by blocking the binding of p65, c-jun and c-fos (AP-1 subunits) to the IL-8 promoter. Omeprazole also blocked the ability of conditioned medium from cells exposed to acidic bile salts to induce immune cell migration. Conclusions In oesophageal squamous epithelial cells, omeprazole inhibits IL-8 expression through effects on NF-κB and AP-1 that are entirely independent of effects on gastric acid secretion. These previously unrecognized PPI effects might contribute to the healing of reflux oesophagitis. PMID:24048734

  5. Adaptive HIV-specific B cell-derived humoral immune defenses of the intestinal mucosa in children exposed to HIV via breast-feeding.

    Directory of Open Access Journals (Sweden)

    Sandrine Moussa

    Full Text Available BACKGROUND: We evaluated whether B cell-derived immune defenses of the gastro-intestinal tract are activated to produce HIV-specific antibodies in children continuously exposed to HIV via breast-feeding. METHODS: Couples of HIV-1-infected mothers (n = 14 and their breastfed non HIV-infected (n = 8 and HIV-infected (n = 6 babies, and healthy HIV-negative mothers and breastfed babies (n = 10 as controls, were prospectively included at the Complexe Pédiatrique of Bangui, Central African Republic. Immunoglobulins (IgA, IgG and IgM and anti-gp160 antibodies from mother's milk and stools of breastfed children were quantified by ELISA. Immunoaffinity purified anti-gp160 antibodies were characterized functionally regarding their capacity to reduce attachment and/or infection of R5- and X4- tropic HIV-1 strains on human colorectal epithelial HT29 cells line or monocyte-derived-macrophages (MDM. RESULTS: The levels of total IgA and IgG were increased in milk of HIV-infected mothers and stools of HIV-exposed children, indicating the activation of B cell-derived mucosal immunity. Breast milk samples as well as stool samples from HIV-negative and HIV-infected babies exposed to HIV by breast-feeding, contained high levels of HIV-specific antibodies, mainly IgG antibodies, less frequently IgA antibodies, and rarely IgM antibodies. Relative ratios of excretion by reference to lactoferrin calculated for HIV-specific IgA, IgG and IgM in stools of HIV-exposed children were largely superior to 1, indicating active production of HIV-specific antibodies by the intestinal mucosa. Antibodies to gp160 purified from pooled stools of HIV-exposed breastfed children inhibited the attachment of HIV-1NDK on HT29 cells by 63% and on MDM by 77%, and the attachment of HIV-1JRCSF on MDM by 40%; and the infection of MDM by HIV-1JRCSF by 93%. CONCLUSIONS: The intestinal mucosa of children exposed to HIV by breast-feeding produces HIV-specific antibodies harbouring

  6. Micronucleus, Nucleoplasmic Bridge, and Nuclear Budding in Peripheral Blood Cells of Workers Exposed to Low Level Benzene

    Directory of Open Access Journals (Sweden)

    I Jamebozorgi

    2016-10-01

    Full Text Available Background: Benzene is one of the important occupational pollutants. There are some reports about the leukemogenic effects related to low-level exposure to benzene. Objective: To study the frequency of micronucleus (MN, nucleoplasmic bridge (NB, and nuclear budding (NBUD in the peripheral blood lymphocytes of petrochemical workers with low level exposure to benzene. Methods: We enrolled 50 workers exposed to low-level benzene and 31 unexposed workers of a petrochemical industry. After exclusion of 3 samples, peripheral blood lymphocytes of the remaining 47 exposed and 31 unexposed workers were analyzed for the frequency of MN, NB, and NBUD by cytochalasin-blocked MN technique. Results: MN was present in 28 (60% exposed and 18 (58% unexposed workers. NB was observed in 6 (13%, and 2 (7% exposed and unexposed workers, respectively; the frequency for NBUD was 20 (43%, and 13 (42%, respectively. No significant difference was found in the observed frequencies of MN, NB, and NBUD in the peripheral blood lymphocytes between the exposed and unexposed group workers. Conclusion: Occupational exposure to low-level benzene does not increase the frequency of MN, NB, and NBUD in the peripheral blood lymphocytes, biomarkers for DNA damage.

  7. Inhibition of p38 MAP kinase pathway induces apoptosis and prevents Epstein Barr virus reactivation in Raji cells exposed to lytic cycle inducing compounds

    Directory of Open Access Journals (Sweden)

    Di Renzo Livia

    2009-03-01

    Full Text Available Abstract Background EBV lytic cycle activators, such as phorbol esters, anti-immunoglobulin, transforming growth factor β (TGFβ, sodium butyrate, induce apoptosis in EBV-negative but not in EBV-positive Burkitt's lymphoma (BL cells. To investigate the molecular mechanisms allowing EBV-infected cells to be protected, we examined the expression of viral and cellular antiapoptotic proteins as well as the activation of signal transduction pathways in BL-derived Raji cells exposed to lytic cycle inducing agents. Results Our data show that, following EBV activation, the latent membrane protein 1 (LMP1 and the cellular anti-apoptotic proteins MCL-1 and BCL-2 were quickly up-regulated and that Raji cells remained viable even when exposed simultaneously to P(BU2, sodium butyrate and TGFβ. We report here that inhibition of p38 pathway, during EBV activation, led to a three fold increment of apoptosis and largely prevented lytic gene expression. Conclusion These findings indicate that, during the switch from the latent to the lytic phase of EBV infection, p38 MAPK phosphorylation plays a key role both for protecting the host cells from apoptosis as well as for inducing viral reactivation. Because Raji cells are defective for late antigens expression, we hypothesize that the increment of LMP1 gene expression in the early phases of EBV lytic cycle might contribute to the survival of the EBV-positive cells.

  8. RelA-Mediated BECN1 Expression Is Required for Reactive Oxygen Species-Induced Autophagy in Oral Cancer Cells Exposed to Low-Power Laser Irradiation.

    Directory of Open Access Journals (Sweden)

    Chih-Wen Shu

    Full Text Available Low-power laser irradiation (LPLI is a non-invasive and safe method for cancer treatment that alters a variety of physiological processes in the cells. Autophagy can play either a cytoprotective role or a detrimental role in cancer cells exposed to stress. The detailed mechanisms of autophagy and its role on cytotoxicity in oral cancer cells exposed to LPLI remain unclear. In this study, we showed that LPLI at 810 nm with energy density 60 J/cm2 increased the number of microtubule associated protein 1 light chain 3 (MAP1LC3 puncta and increased autophagic flux in oral cancer cells. Moreover, reactive oxygen species (ROS production was induced, which increased RelA transcriptional activity and beclin 1 (BECN1 expression in oral cancer cells irradiated with LPLI. Furthermore, ROS scavenger or knockdown of RelA diminished LPLI-induced BECN1 expression and MAP1LC3-II conversion. In addition, pharmacological and genetic ablation of autophagy significantly enhanced the effects of LPLI-induced apoptosis in oral cancer cells. These results suggest that autophagy may be a resistant mechanism for LPLI-induced apoptosis in oral cancer cells.

  9. Genotoxic Evaluation of Mexican Welders Occupationally Exposed to Welding-Fumes Using the Micronucleus Test on Exfoliated Oral Mucosa Cells: A Cross-Sectional, Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Ana Cecilia Jara-Ettinger

    Full Text Available An estimated 800,000 people worldwide are occupationally exposed to welding-fumes. Previous studies show that the exposure to such fumes is associated with damage to genetic material and increased cancer risk. In this study, we evaluate the genotoxic effect of welding-fumes using the Micronucleus Test on oral mucosa cells of Mexican welders.We conducted a cross-sectional, matched case-control study of n = 66 (33 exposed welders, and 33 healthy controls. Buccal mucosa smears were collected and stained with acridine orange, observed under 100x optical amplification with a fluorescence lamp, and a single-blinded observer counted the number of micronuclei and other nuclear abnormalities per 2,000 observed cells. We compared the frequencies of micronuclei and other nuclear abnormalities, and fitted generalised linear models to investigate the interactions between nuclear abnormalities and the exposure to welding-fumes, while controlling for smoking and age.Binucleated cells and condensed-chromatin cells showed statistically significant differences between cases and controls. The frequency of micronuclei and the rest of nuclear abnormalities (lobed-nuclei, pyknosis, karyolysis, and karyorrhexis did not differ significantly between the groups. After adjusting for smoking, the regression results showed that the occurrence of binucleated cells could be predicted by the exposure to welding-fumes plus the presence of tobacco consumption; for the condensed-chromatin cells, our model showed that the exposure to welding-fumes is the only reliable predictor.Our findings suggest that Mexican welders who are occupationally exposed to welding-fumes have increased counts of binucleated and condensed-chromatin cells. Nevertheless, the frequencies of micronuclei and the rest of nuclear abnormalities did not differ between cases and controls. Further studies should shed more light on this subject.

  10. Cross-sectional study on respiratory effect of toner-exposed work in manufacturing plants, Japan: pulmonary function, blood cells, and biochemical markers.

    Science.gov (United States)

    Kitamura, H; Terunuma, N; Kurosaki, S; Hata, K; Ide, R; Kuga, H; Kakiuchi, N; Masuda, M; Totsuzaki, T; Osato, A; Uchino, B; Kitahara, K; Iwasaki, A; Yoshizumi, K; Morimoto, Y; Kasai, H; Murase, T; Higashi, T

    2009-06-01

    The aim of the study is to examine the relationship between toner-exposed work and health indices related to respiratory disorders and to confirm the baseline of a cohort study to clarify the effect of toner exposure in manufacturing plants. Subjects were 1614 male workers (809 toner-exposed workers and 805 referents) who were engaged in toner manufacturing plants in Japan (Fuji Xerox Co., Ltd). The age of subjects was from 19 to 59 years, and the average age was 40.2 years(median 40 years, SD 7.67). We conducted a pulmonary function test (PEFR, VC, FVC, FEV(1.0)%, V25/Ht) and a blood cell test (RBC, Hb, Hct, Plt, WBC, cell contents of WBC) and measured biochemical indices in blood (ALT, AST, gamma-GTP, CRP, IgE) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine. Student t-test and logistic regression analysis were applied to compare between the toner-exposed workers and the referents and to analyze the relationship among indices of effects and independent factors. There was no significant difference between the two groups in blood cell count and biochemical indices. Inflammation- and allergy-related markers such as 8OHdG and IgE also showed no significant difference between toner-exposed workers and the referents. The influence of smoking on pulmonary function indices was observed, but there was no relationship between the pulmonary function and toner-exposed work. In this article, we report a preliminary cross-sectional analysis in the subjects of a cohort study. No difference in pulmonary function indices was observed between the toner-exposed workers and the referents, and there was no consistent relationship between the exposure status and examined indices; however, the prevalence of subjective respiratory symptoms was higher in the exposed workers as presented in another report. Further analysis is important in the ongoing cohort study to clarify the effect of toner exposure on respiratory systems.

  11. Cytotoxicity, oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles

    DEFF Research Database (Denmark)

    Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K

    2013-01-01

    Abstract Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells...... were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1....... In conclusion, sanding dust from nanoparticle-containing paint did not generate more oxidative stress or expression of cell adhesion molecules than sanding dust from paint without nanoparticles, whereas the primary particles had the largest effect on mass basis....

  12. Studying the protein expression in human B lymphoblastoid cells exposed to 1.8-GHz (GSM) radiofrequency radiation (RFR) with protein microarray.

    Science.gov (United States)

    Zhijian, Chen; Xiaoxue, Li; Wei, Zheng; Yezhen, Lu; Jianlin, Lou; Deqiang, Lu; Shijie, Chen; Lifen, Jin; Jiliang, He

    2013-03-29

    In the present study, the protein microarray was used to investigate the protein expression in human B-cell lymphoblastoid cells intermittently exposed to 1.8-GHz GSM radiofrequency radiation (RFR) at the specific absorption rate (SAR) of 2.0 W/kg for 24 h. The differential expression of 27 proteins was found, which were related to DNA damage repair, apoptosis, oncogenesis, cell cycle and proliferation (ratio >1.5-fold, P<0.05). The results validated with Western blot assay indicated that the expression of RPA32 was significantly down-regulated (P<0.05) while the expression of p73 was significantly up-regulated in RFR exposure group (P<0.05). Because of the crucial roles of those proteins in DNA repair and cell apoptosis, the results of present investigation may explain the biological effects of RFR on DNA damage/repair and cell apoptosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Sensitivity of different cytotoxic responses of Vero cells exposed to organic chemical pollutants and their reliability in the bio-toxicity test of trace chemical pollutants.

    Science.gov (United States)

    Liao, Ting-Ting; Shi, Yan-Ling; Jia, Jian-Wei; Wang, Lei

    2010-06-01

    To find a sensitive cytotoxic response to reflect the bio-toxicity of trace organic pollutants, the sensitivity and reliability of morphological change and proliferation inhibition of Vero cells exposed to 2, 4, 6-trichlorophenol (TCP) and the leachate from products related to drinking water (PRDW) were compared, and the mechanism of the morphological change in Vero cells exposed to chemical pollutants was studied. Vero cells were treated by different concentration of TCP and the leachate from PRDW. Methylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide (MTT) assay was carried out for proliferation inhibition. Bioluminescence method was carried out as another method to test the toxicity of TCP. Flow Cytometry assay was used to test cell Apoptosis and damage of cell-membrane. 0.25 mg/L TCP had an effect on cell morphology, and the proportion of morphologically changed cells increased with increasing TCP concentration. At low TCP concentrations, inhibition of cell proliferation did not seem to correlate to TCP concentration, and was negative when TCP concentration was cells increased with extracting temperature, but the inhibition of cell proliferation failed to reflect the correlation between extracting temperature and proliferation inhibition of Vero cells. Although the Sensitivity of bioluminescence method seems to be similar to morphological change in Vero cells, the bacterial in this method is not homologous enough with human body cells to reflect the toxicity to human body. These imply cell morphological change is a more sensitive and reliable method to reflect bio-toxicity of organic pollutants than proliferation inhibition. Flow cytometry analysis and cell rejuvenation experiments indicated cell membrane damage, which results in cell morphological change, was an early and sensitive cytotoxic response comparing with necrosis. These results indicated that the cell membrane toxicity represented by morphological changes is a more sensitive and reliable method to

  14. Nitroreduction is not involved in the genotoxicity of 2-nitropropane in cultured mammalian cells.

    Science.gov (United States)

    Haas-Jobelius, M; Ziegler-Skylakakis, K; Andrae, U

    1991-01-01

    We have investigated the importance of nitroreduction for the genotoxicity of the carcinogen 2-nitropropane (2-NP) in primary cultures of rat hepatocytes and in V79 Chinese hamster cells. Induction of DNA repair synthesis was used as an indicator of genotoxic effects in hepatocytes. Genotoxicity in V79 cells was determined as induction of DNA repair, micronuclei and mutations to 6-thioguanine (TG) resistance. Both hepatocytes and V79 cells were found capable of reducing and oxidizing 2-NP. Reduction of 2-NP was indicated by the formation of acetone oxime, the tautomeric form of 2-nitrosopropane, the first reduction product of 2-NP. Oxidation of 2-NP was indicated by the production of acetone and nitrite. 2-NP strongly elicited repair in hepatocytes, but acetone oxime and the products of a possible further nitroreduction, isopropyl hydroxylamine (IPHA) and 2-aminopropane did not. None of the reduction products caused repair synthesis in V79 cells. However, in these cells IPHA and 2-NP increased the frequency of TG-resistant mutants. IPHA also markedly induced micronuclei. This was not seen with 2-NP. Acetone oxime was not genotoxic in V79 cells. The observations suggest that reduced metabolites are responsible neither for the induction of DNA repair synthesis by 2-NP in hepatocytes nor for the induction of gene mutations by 2-NP in V79 cells.

  15. Metabolomic effects in HepG2 cells exposed to CeO2, SiO2 and CuO nanomaterials.

    Science.gov (United States)

    To better assess potential hepatotoxicity of nanomaterials, human liver HepG2 cells were exposed for three days to 5 different CeO2 (either 30 or 100 ug/ml), 3 SiO2 based (30 ug/ml) or 1 CuO (3 ug/ml) nanomaterials with dry primary particle sizes ranging from 15 to 213 nm. Metab...

  16. DIFFERENTIAL MODULATION OF CANCER-RELATED MOLECULAR NETWORKS IN HUMAN AND RAT URINARY BLADDER CELLS EXPOSED TO TRIVALENT ARSENICALS

    Science.gov (United States)

    Arsenic (As) is classified as a known human carcinogen with primary targets of urinary bladder (UB), skin and lung. The most prevalent source of As exposure in humans is drinking water contaminated with inorganic As (iAs), and millions of people worldwide are exposed to drinking ...

  17. Clinical and Immunological Effects in Patients with Advanced Non-Small Cell Lung-Cancer after Vaccination with Dendritic Cells Exposed to an Allogeneic Tumor Cell Lysate*

    DEFF Research Database (Denmark)

    Engell-Noerregaard, Lotte; Kvistborg, Pia; Zocca, Mai-Britt

    2013-01-01

    Background: We evaluated the clinical and immunological effects of dendritic cell (DC) vaccination of patients with NSCLC. Autologous DCs were pulsed with a MAGE containing allogeneic melanoma cell lysate (MelCancerVac®, Dandrit Biotech, Copenhagen, Denmark). Imiquimod cream, proleukin and celeco...

  18. Characterization of sub-nuclear changes in Caenorhabditis elegans embryos exposed to brief, intermediate and long-term anoxia to analyze anoxia-induced cell cycle arrest.

    Science.gov (United States)

    Hajeri, Vinita A; Trejo, Jesus; Padilla, Pamela A

    2005-12-20

    The soil nematode C. elegans survives oxygen-deprived conditions (anoxia; animation in which cell cycle progression reversibly arrests. The majority of blastomeres of embryos exposed to anoxia arrest at interphase, prophase and metaphase. The spindle checkpoint proteins SAN-1 and MDF-2 are required for embryos to survive 24 hours of anoxia. To further investigate the mechanism of cell-cycle arrest we examined and compared sub-nuclear changes such as chromatin localization pattern, post-translational modification of histone H3, spindle microtubules, and localization of the spindle checkpoint protein SAN-1 with respect to various anoxia exposure time points. To ensure analysis of embryos exposed to anoxia and not post-anoxic recovery we fixed all embryos in an anoxia glove box chamber. Embryos exposed to brief periods to anoxia (30 minutes) contain prophase blastomeres with chromosomes in close proximity to the nuclear membrane, condensation of interphase chromatin and metaphase blastomeres with reduced spindle microtubules density. Embryos exposed to longer periods of anoxia (1-3 days) display several characteristics including interphase chromatin that is further condensed and in close proximity to the nuclear membrane, reduction in spindle structure perimeter and reduced localization of SAN-1 at the kinetochore. Additionally, we show that the spindle checkpoint protein SAN-1 is required for brief periods of anoxia-induced cell cycle arrest, thus demonstrating that this gene product is vital for early anoxia responses. In this report we suggest that the events that occur as an immediate response to brief periods of anoxia directs cell cycle arrest. From our results we conclude that the sub-nuclear characteristics of embryos exposed to anoxia depends upon exposure time as assayed using brief (30 minutes), intermediate (6 or 12 hours) or long-term (24 or 72 hours) exposures. Analyzing these changes will lead to an understanding of the mechanisms required for

  19. Characterization of sub-nuclear changes in Caenorhabditis elegans embryos exposed to brief, intermediate and long-term anoxia to analyze anoxia-induced cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Trejo Jesus

    2005-12-01

    Full Text Available Abstract Background The soil nematode C. elegans survives oxygen-deprived conditions (anoxia; 2 by entering into a state of suspended animation in which cell cycle progression reversibly arrests. The majority of blastomeres of embryos exposed to anoxia arrest at interphase, prophase and metaphase. The spindle checkpoint proteins SAN-1 and MDF-2 are required for embryos to survive 24 hours of anoxia. To further investigate the mechanism of cell-cycle arrest we examined and compared sub-nuclear changes such as chromatin localization pattern, post-translational modification of histone H3, spindle microtubules, and localization of the spindle checkpoint protein SAN-1 with respect to various anoxia exposure time points. To ensure analysis of embryos exposed to anoxia and not post-anoxic recovery we fixed all embryos in an anoxia glove box chamber. Results Embryos exposed to brief periods to anoxia (30 minutes contain prophase blastomeres with chromosomes in close proximity to the nuclear membrane, condensation of interphase chromatin and metaphase blastomeres with reduced spindle microtubules density. Embryos exposed to longer periods of anoxia (1–3 days display several characteristics including interphase chromatin that is further condensed and in close proximity to the nuclear membrane, reduction in spindle structure perimeter and reduced localization of SAN-1 at the kinetochore. Additionally, we show that the spindle checkpoint protein SAN-1 is required for brief periods of anoxia-induced cell cycle arrest, thus demonstrating that this gene product is vital for early anoxia responses. In this report we suggest that the events that occur as an immediate response to brief periods of anoxia directs cell cycle arrest. Conclusion From our results we conclude that the sub-nuclear characteristics of embryos exposed to anoxia depends upon exposure time as assayed using brief (30 minutes, intermediate (6 or 12 hours or long-term (24 or 72 hours exposures

  20. Epigenetic Regulation of Placenta-Specific 8 Contributes to Altered Function of Endothelial Colony-Forming Cells Exposed to Intrauterine Gestational Diabetes Mellitus.

    Science.gov (United States)

    Blue, Emily K; Sheehan, BreAnn M; Nuss, Zia V; Boyle, Frances A; Hocutt, Caleb M; Gohn, Cassandra R; Varberg, Kaela M; McClintick, Jeanette N; Haneline, Laura S

    2015-07-01

    Intrauterine exposure to gestational diabetes mellitus (GDM) is linked to development of hypertension, obesity, and type 2 diabetes in children. Our previous studies determined that endothelial colony-forming cells (ECFCs) from neonates exposed to GDM exhibit impaired function. The current goals were to identify aberrantly expressed genes that contribute to impaired function of GDM-exposed ECFCs and to evaluate for evidence of altered epigenetic regulation of gene expression. Genome-wide mRNA expression analysis was conducted on ECFCs from control and GDM pregnancies. Candidate genes were validated by quantitative RT-PCR and Western blotting. Bisulfite sequencing evaluated DNA methylation of placenta-specific 8 (PLAC8). Proliferation and senescence assays of ECFCs transfected with siRNA to knockdown PLAC8 were performed to determine functional impact. Thirty-eight genes were differentially expressed between control and GDM-exposed ECFCs. PLAC8 was highly expressed in GDM-exposed ECFCs, and PLAC8 expression correlated with maternal hyperglycemia. Methylation status of 17 CpG sites in PLAC8 negatively correlated with mRNA expression. Knockdown of PLAC8 in GDM-exposed ECFCs improved proliferation and senescence defects. This study provides strong evidence in neonatal endothelial progenitor cells that GDM exposure in utero leads to altered gene expression and DNA methylation, suggesting the possibility of altered epigenetic regulation. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. PDGF-DD, a novel mediator of smooth muscle cell phenotypic modulation, is upregulated in endothelial cells exposed to atherosclerosis-prone flow patterns.

    Science.gov (United States)

    Thomas, James A; Deaton, Rebecca A; Hastings, Nicole E; Shang, Yueting; Moehle, Christopher W; Eriksson, Ulf; Topouzis, Stavros; Wamhoff, Brian R; Blackman, Brett R; Owens, Gary K

    2009-02-01

    Platelet-derived growth factor (PDGF)-BB is a well-known smooth muscle (SM) cell (SMC) phenotypic modulator that signals by binding to PDGF alphaalpha-, alphabeta-, and betabeta-membrane receptors. PDGF-DD is a recently identified PDGF family member, and its role in SMC phenotypic modulation is unknown. Here we demonstrate that PDGF-DD inhibited expression of multiple SMC genes, including SM alpha-actin and SM myosin heavy chain, and upregulated expression of the potent SMC differentiation repressor gene Kruppel-like factor-4 at the mRNA and protein levels. On the basis of the results of promoter-reporter assays, changes in SMC gene expression were mediated, at least in part, at the level of transcription. Attenuation of the SMC phenotypic modulatory activity of PDGF-DD by pharmacological inhibitors of ERK phosphorylation and by a small interfering RNA to Kruppel-like factor-4 highlight the role of these two pathways in this process. PDGF-DD failed to repress SM alpha-actin and SM myosin heavy chain in mouse SMCs lacking a functional PDGF beta-receptor. Importantly, PDGF-DD expression was increased in neointimal lesions in the aortic arch region of apolipoprotein C-deficient (ApoE(-/-)) mice. Furthermore, human endothelial cells exposed to an atherosclerosis-prone flow pattern, as in vascular regions susceptible to the development of atherosclerosis, exhibited a significant increase in PDGF-DD expression. These findings demonstrate a novel activity for PDGF-DD in SMC biology and highlight the potential contribution of this molecule to SMC phenotypic modulation in the setting of disturbed blood flow.

  2. Genetic damage in human cells exposed to non-ionizing radiofrequency fields: a meta-analysis of the data from 88 publications (1990-2011).

    Science.gov (United States)

    Vijayalaxmi; Prihoda, Thomas J

    2012-12-12

    Based on the 'limited' evidence suggesting an association between exposure to radiofrequency fields (RF) emitted from mobile phones and two types of brain cancer, glioma and acoustic neuroma, the International Agency for Research on Cancer has classified RF as 'possibly carcinogenic to humans' in group 2B. In view of this classification and the positive correlation between increased genetic damage and carcinogenesis, a meta-analysis was conducted to determine whether a significant increase in genetic damage in human cells exposed to RF provides a potential mechanism for its carcinogenic potential. The extent of genetic damage in human cells, assessed from various end-points, viz., single-/double-strand breaks in the DNA, incidence of chromosomal aberrations, micronuclei and sister chromatid exchanges, reported in a total of 88 peer-reviewed scientific publications during 1990-2011 was considered in the meta-analysis. Among the several variables in the experimental protocols used, the influence of five specific variables related to RF exposure characteristics was investigated: (i) frequency, (ii) specific absorption rate, (iii) exposure as continuous wave, pulsed wave and occupationally exposed/mobile phone users, (iv) duration of exposure, and (v) different cell types. The data indicated the following. (1) The magnitude of difference between RF-exposed and sham-/un-exposed controls was small with some exceptions. (2) In certain RF exposure conditions there was a statistically significant increase in genotoxicity assessed from some end-points: the effect was observed in studies with small sample size and was largely influenced by publication bias. Studies conducted within the generally recommended RF exposure guidelines showed a smaller effect. (3) The multiple regression analyses and heterogeneity goodness of fit data indicated that factors other than the above five variables as well as the quality of publications have contributed to the overall results. (4) More

  3. Bacteria modulate the CD8+ T cell epitope repertoire of host cytosol-exposed proteins to manipulate the host immune response.

    Directory of Open Access Journals (Sweden)

    Yaakov Maman

    2011-10-01

    Full Text Available The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested.

  4. The FOXM1 inhibitor RCM-1 suppresses goblet cell metaplasia and prevents IL-13 and STAT6 signaling in allergen-exposed mice.

    Science.gov (United States)

    Sun, Lifeng; Ren, Xiaomeng; Wang, I-Ching; Pradhan, Arun; Zhang, Yufang; Flood, Hannah M; Han, Bo; Whitsett, Jeffrey A; Kalin, Tanya V; Kalinichenko, Vladimir V

    2017-04-18

    Goblet cell metaplasia and excessive mucus secretion associated with asthma, cystic fibrosis, and chronic obstructive pulmonary disease contribute to morbidity and mortality worldwide. We performed a high-throughput screen to identify small molecules targeting a transcriptional network critical for the differentiation of goblet cells in response to allergens. We identified RCM-1, a nontoxic small molecule that inhibited goblet cell metaplasia and excessive mucus production in mice after exposure to allergens. RCM-1 blocked the nuclear localization and increased the proteasomal degradation of Forkhead box M1 (FOXM1), a transcription factor critical for the differentiation of goblet cells from airway progenitor cells. RCM-1 reduced airway resistance, increased lung compliance, and decreased proinflammatory cytokine production in mice exposed to the house dust mite and interleukin-13 (IL-13), which triggers goblet cell metaplasia. In cultured airway epithelial cells and in mice, RCM-1 reduced IL-13 and STAT6 (signal transducer and activator of transcription 6) signaling and prevented the expression of the STAT6 target genes Spdef and Foxa3, which are key transcriptional regulators of goblet cell differentiation. These results suggest that RCM-1 is an inhibitor of goblet cell metaplasia and IL-13 signaling, providing a new therapeutic candidate to treat patients with asthma and other chronic airway diseases. Copyright © 2017, American Association for the Advancement of Science.

  5. Pharmacological doses of melatonin induce alterations in mitochondrial mass and potential, bcl-2 levels and K+ currents in UVB-exposed U937 cells.

    Science.gov (United States)

    Canonico, Barbara; Luchetti, Francesca; Ambrogini, Patrizia; Arcangeletti, Marcella; Betti, Michele; Cesarini, Erica; Lattanzi, Davide; Ciuffoli, Stefano; Palma, Fulvio; Cuppini, Riccardo; Papa, Stefano

    2013-03-01

    Apoptosis is observed in 'actively' dying cells after the exposure to cell stressors such as ultraviolet light irradiation. Since melatonin has been proposed to act under stressful conditions as cell protection factor, in this study we examined the potential of this molecule when used at pharmacological concentrations to control mitochondrial damage and apoptotic signalling of UVB irradiated U937 human leukaemic cells. Moreover, the effect of melatonin treatment on electrophysiological properties and membrane K(+) currents of irradiated U937 cells was investigated as functional aspects relevant to the anti-apoptotic role of melatonin. The general effect is associated with the restoration of mass, number and membrane potential of mitochondria, with a lower caspase activation and bcl-2 upregulation. In the presence of the caspase inhibitor ZVAD-Fmk, melatonin seems to drive UVB stressed cells to follow the mitochondrial intrinsic pathway, interfering just at the mitochondrial level. Moreover, treatment with melatonin, as well as ZVAD-Fmk, prevented the K(+) current reduction observed late following the UVB insult application, by sparing cells from death; this result also indicates that the decrease of K(+) leakage currents could represent a functional feature of apoptotic process in UV-exposed U937 cells. © 2013 International Federation for Cell Biology.

  6. Adrenal Chromaffin Cells Exposed to 5-ns Pulses Require Higher Electric Fields to Porate Intracellular Membranes than the Plasma Membrane: An Experimental and Modeling Study.

    Science.gov (United States)

    Zaklit, Josette; Craviso, Gale L; Leblanc, Normand; Yang, Lisha; Vernier, P Thomas; Chatterjee, Indira

    2017-10-01

    Nanosecond-duration electric pulses (NEPs) can permeabilize the endoplasmic reticulum (ER), causing release of Ca 2+ into the cytoplasm. This study used experimentation coupled with numerical modeling to understand the lack of Ca 2+ mobilization from Ca 2+ -storing organelles in catecholamine-secreting adrenal chromaffin cells exposed to 5-ns pulses. Fluorescence imaging determined a threshold electric (E) field of 8 MV/m for mobilizing intracellular Ca 2+ whereas whole-cell recordings of membrane conductance determined a threshold E-field of 3 MV/m for causing plasma membrane permeabilization. In contrast, a 2D numerical model of a chromaffin cell, which was constructed with internal structures representing a nucleus, mitochondrion, ER, and secretory granule, predicted that exposing the cell to the same 5-ns pulse electroporated the plasma and ER membranes at the same E-field amplitude, 3-4 MV/m. Agreement of the numerical simulations with the experimental results was obtained only when the ER interior conductivity was 30-fold lower than that of the cytoplasm and the ER membrane permittivity was twice that of the plasma membrane. A more realistic intracellular geometry for chromaffin cells in which structures representing multiple secretory granules and an ER showed slight differences in the thresholds necessary to porate the membranes of the secretory granules. We conclude that more sophisticated cell models together with knowledge of accurate dielectric properties are needed to understand the effects of NEPs on intracellular membranes in chromaffin cells, information that will be important for elucidating how NEPs porate organelle membranes in other cell types having a similarly complex cytoplasmic ultrastructure.

  7. [Effect of phosphatidylinositol 3-kinase/serine-threonine kinase signalling pathway during the proliferation process of HL-60 cells exposed to benzoquinone].

    Science.gov (United States)

    Liu, Yi-min; Li, Yong-sheng; Wang, Zhi; Li, Xu-dong; Guo, Xiao; Gu, Chun-hui

    2011-05-01

    To explore the effects of phosphatidylinositol 3-kinase/Serine-threonine kinase (PI3K/Akt) signal pathway on the proliferation of HL-60 cells exposed to benzoquinone (BQ). HL60 cells were divided into 3 groups: control group (treated with PBS), BQ group (treated with 3 micromol/L BQ) and LY294002 plus BQ group (treated with 20 micromol/L LY294002 plus 3 micromol/L BQ). The cell proliferation was measured with alamar blue dye assay. Western blot assay was used to detect the expression of p-Akt and Akt proteins and flow cytometer was used to observe the cell cycle. The cell proliferation rate and the cell proportion in the S, G2 phase of BQ group were 185.00% +/- 30.00%, 48.23% +/- 1.37% and 15.40% +/- 1.21%, respectively, which were significantly higher than those (100.00% +/- 0.00%, 42.47% +/- 0.45% and 5.40% +/- 0.40%) of control group (Pcell proportion rate (36.37% +/- 0.40%) in the G1 phase in BQ group was significantly lower than that (52.13 +/- 0.75%) in control group (Pcell proliferation rate and the cell proportion in the S, G2 phase of LY294002 plus BQ group were 82.59% +/- 15.00%, 42.03% +/- 0.50% and 3.87% +/- 0.47%, respectively, which were significantly lower than those of BQ group (Pcell proportion rate (54.43% +/- 0.40%) in the G1 phase in LY294002 plus BQ group was significantly higher than that in BQ group (Pproliferation of HL-60 cells exposed to BQ.

  8. Clinical and Immunological Effects in Patients with Advanced Non-Small Cell Lung-Cancer after Vaccination with Dendritic Cells Exposed to an Allogeneic Tumor Cell Lysate*

    DEFF Research Database (Denmark)

    Engell-Noerregaard, Lotte; Kvistborg, Pia; Zocca, Mai-Britt

    2013-01-01

    vaccinations. Seven patients remained in stable disease (SD) three months after the first vac- cination. After ten vaccinations (six months), four patients still showed SD and continued vaccinations on a monthly basis. These four patients received a total of 12, 16, 26 and 35 vaccinations, respectively. Five......Background: We evaluated the clinical and immunological effects of dendritic cell (DC) vaccination of patients with NSCLC. Autologous DCs were pulsed with a MAGE containing allogeneic melanoma cell lysate (MelCancerVac®, Dandrit Biotech, Copenhagen, Denmark). Imiquimod cream, proleukin...... and celecoxib were used as adjuvants to the vaccines. The objective of the study was to evaluate specific T cell response in vitro by IFN EliSpot. Secondary objec- tives were overall survival, response and quality of life (QoL). Results: Twenty-two patients initiated the vaccination program consisting of ten...

  9. Dose-response relationships in gene expression profiles in a harbor seal B lymphoma cell line exposed to 17α-ethinyl estradiol

    Directory of Open Access Journals (Sweden)

    Christine Kleinert

    2017-05-01

    Full Text Available The determination of changes in gene expression profiles with xenobiotic dose will allow identifying biomarkers and modes of toxicant action. The harbor seal (Phoca vitulina 11B7501 B lymphoma cell line was exposed to 1, 10, 100, 1000, 10,000, or 25,000 μg/L 17α-ethinyl estradiol (EE2, the active compound of the contraceptive pill for 24 h. Following exposure, RNA was extracted and transformed into cDNA. Transcript expression in exposed vs. control lymphocytes was analyzed via RT-qPCR to identify genes with altered expression. Our analysis indicates that gene expression for all but the reference gene varied with dose, suggesting that different doses induce distinct physiological responses. These findings demonstrate that RT-qPCR could be used to identify immunotoxicity and relative dose in harbor seal leukocytes.

  10. Low Dose Radiation Response Curves, Networks and Pathways in Human Lymphoblastoid Cells Exposed from 1 to 10 cGy of Acute Gamma Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wyrobek, A. J.; Manohar, C. F.; Nelson, D. O.; Furtado, M. R.; Bhattacharya, M. S.; Marchetti, F.; Coleman, M.A.

    2011-04-18

    We investigated the low dose dependency of the transcriptional response of human cells to characterize the shape and biological functions associated with the dose response curve and to identify common and conserved functions of low dose expressed genes across cells and tissues. Human lymphoblastoid (HL) cells from two unrelated individuals were exposed to graded doses of radiation spanning the range of 1-10 cGy were analyzed by transcriptome profiling, qPCR and bioinformatics, in comparison to sham irradiated samples. A set of {approx}80 genes showed consistent responses in both cell lines; these genes were associated with homeostasis mechanisms (e.g., membrane signaling, molecule transport), subcellular locations (e.g., Golgi, and endoplasmic reticulum), and involved diverse signal transduction pathways. The majority of radiation-modulated genes had plateau-like responses across 1-10 cGy, some with suggestive evidence that transcription was modulated at doses below 1 cGy. MYC, FOS and TP53 were the major network nodes of the low-dose response in HL cells. Comparison our low dose expression findings in HL cells with those of prior studies in mouse brain after whole body exposure, in human keratinocyte cultures, and in endothelial cells cultures, indicates that certain components of the low dose radiation response are broadly conserved across cell types and tissues, independent of proliferation status.

  11. Tailored Synthesis of Porous TiO₂ Nanocubes and Nanoparallelepipeds with Exposed {111} Facets and Mesoscopic Void Space: A Superior Candidate for Efficient Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Amoli, Vipin; Bhat, Shekha; Maurya, Abhayankar; Banerjee, Biplab; Bhaumik, Asim; Sinha, Anil Kumar

    2015-12-02

    Anatase TiO2 nanocubes and nanoparallelepipeds, with highly reactive {111} facets exposed, were developed for the first time through a modified one pot hydrothermal method, through the hydrolysis of tetrabutyltitanate in the presence of oleylamine as the morphology-controlling capping-agent and using ammonia/hydrofluoric acid for stabilizing the {111} faceted surfaces. These nanocubes/nanoparallelepipeds were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and high angle annular dark-field scanning TEM (HAADF-STEM). Accordingly, a possible growth mechanism for the nanostructures is elucidated. The morphology, surface area and the pore size distribution of the TiO2 nanostructures can be tuned simply by altering the HF and ammonia dosage in the precursor solution. More importantly, optimization of the reaction system leads to the assembly of highly crystalline, high surface area, {111} faceted anatase TiO2 nanocubes/nanoparallelepipeds to form uniform mesoscopic void space. We report the development of a novel double layered photoanode for dye sensitized solar cells (DSSCs) made of highly crystalline, self-assembled faceted TiO2 nanocrystals as upper layer and commercial titania nanoparticles paste as under layer. The bilayered DSSC made from TiO2 nanostructures with exposed {111} facets as upper layer shows a much higher power conversion efficiency (9.60%), than DSSCs fabricated with commercial (P25) titania powder (4.67%) or with anatase TiO2 nanostructures having exposed {101} facets (7.59%) as the upper layer. The improved performance in bilayered DSSC made from TiO2 nanostructures with exposed {111} facets as the upper layer is attributed to high dye adsorption and fast electron transport dynamics owing to the unique structural features of the {111} facets in TiO2. Electrochemical impedance spectroscopy (EIS) measurements conducted on the cells supported these conclusions

  12. Circulating endothelial microparticles involved in lung function decline in a rat exposed in cigarette smoke maybe from apoptotic pulmonary capillary endothelial cells.

    Science.gov (United States)

    Liu, Hua; Ding, Liang; Zhang, Yanju; Ni, Songshi

    2014-06-01

    Plasma levels of endothelial microparticles (EMPs), small membrane vesicles, shed from activated or apoptotic endothelial cells are elevated in patients with COPD and in smokers with normal lung function. Whether plasma EMPs levels are elevated in a rat exposed in cigarette smoke, whether the elevated EMPs derived from pulmonary endothelial cell apoptosis, and the relationship between EMP and lung function are obscure. All 60 wister rats were divided into six groups, three groups of ten rats were exposed to cigarette smoke of ten non-filter cigarettes per day, 5 days a week, using a standard smoking machine (Beijing BeiLanBo Company, China) for a period of 2, 4 and 6 months (n=10, respectively). Age-matched three control groups were sham-smoked. Pulmonary function parameters, including the ratio of forced expiratory volume in 0.3 second over forced vital capacity (FEV0.3/FVC) and dynamic compliance (Cdyn), were tested at the end of each period (2, 4, 6 months). Blood samples were collected and platelet-free plasma was isolated. Then CD42b-/CD31+ EMPs were analysed by flow cytometry. In parallel, lungs were removed and Colocalization with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), Hoeschts and CD31 was performed to evaluate pulmonary capillaries-specific apoptosis and identify the origins of the EMPs. At 2, 4 and 6 months, in comparison with control groups, rats in cigarette smoke exposed groups had a significant increase in CD42b-/CD31+ EMPs (Pfunction indicated that FEV0.3/FVC (Pfunction in the rats exposed cigarette smoke. The increased EMPs may derive from pulmonary capillaries-specific apoptosis.

  13. CaNa2EDTA chelation attenuates cell damage in workers exposed to lead--a pilot study.

    Science.gov (United States)

    Čabarkapa, A; Borozan, S; Živković, L; Stojanović, S; Milanović-Čabarkapa, M; Bajić, V; Spremo-Potparević, B

    2015-12-05

    Lead induced oxidative cellular damage and long-term persistence of associated adverse effects increases risk of late-onset diseases. CaNa2EDTA chelation is known to remove contaminating metals and to reduce free radical production. The objective was to investigate the impact of chelation therapy on modulation of lead induced cellular damage, restoration of altered enzyme activities and lipid homeostasis in peripheral blood of workers exposed to lead, by comparing the selected biomarkers obtained prior and after five-day CaNa2EDTA chelation intervention. The group of smelting factory workers diagnosed with lead intoxication and current lead exposure 5.8 ± 1.2 years were administered five-day CaNa2EDTA chelation. Elevated baseline activity of antioxidant enzymes Cu, Zn-SOD and CAT as well as depleted thiols and increased protein degradation products-carbonyl groups and nitrites, pointing to Pb induced oxidative damage, were restored toward normal values following the treatment. Lead showed inhibitor potency on both RBC AChE and BChE in exposed workers, and chelation re-established the activity of BChE, while RBC AChE remained unaffected. Also, genotoxic effect of lead detected in peripheral blood lymphocytes was significantly decreased after therapy, exhibiting 18.9% DNA damage reduction. Administration of chelation reversed the depressed activity of serum PON 1 and significantly decreased lipid peroxidation detected by the post-chelation reduction of MDA levels. Lactate dehydrogenase LDH1-5 isoenzymes levels showed evident but no significant trend of restoring toward normal control values following chelation. CaNa2EDTA chelation ameliorates the alterations linked with Pb mediated oxidative stress, indicating possible benefits in reducing health risks associated with increased oxidative damage in lead exposed populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: Reconciling the mechanisms mediating the bystander effect

    OpenAIRE

    Le, Michelle; Fernandez-Palomo, Cristian; McNeill, Fiona E.; Seymour, Colin B.; Rainbow, Andrew J.; Mothersill, Carmel E.

    2017-01-01

    OBJECTIVE: The objective of our study was to explore a possible molecular mechanism by which ultraviolet (UV) biophotons could elicit bystander responses in reporter cells and resolve the problem of seemingly mutually exclusive mechanisms of a physical UV signal & a soluble factor-mediated bystander signal. METHODS: The human colon carcinoma cell line, HCT116 p53 +/+, was directly irradiated with 0.5 Gy tritium beta particles to induce ultraviolet biophoton emission. Bystander cells...

  15. Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: Reconciling the mechanisms mediating the bystander effect

    OpenAIRE

    Le, Michelle; Fernandez-Palomo, Cristian; McNeill, Fiona E.; Seymour, Colin B.; Rainbow, Andrew J.; Mothersill, Carmel E

    2017-01-01

    Objective The objective of our study was to explore a possible molecular mechanism by which ultraviolet (UV) biophotons could elicit bystander responses in reporter cells and resolve the problem of seemingly mutually exclusive mechanisms of a physical UV signal & a soluble factor-mediated bystander signal. Methods The human colon carcinoma cell line, HCT116 p53 +/+, was directly irradiated with 0.5 Gy tritium beta particles to induce ultraviolet biophoton emission. Bystander cells were not di...

  16. Cytogenetic studies in human cells exposed in vitro to GSM-900 MHz radiofrequency radiation using R-banded karyotyping.

    Science.gov (United States)

    Bourthoumieu, S; Joubert, V; Marin, B; Collin, A; Leveque, P; Terro, F; Yardin, C

    2010-12-01

    It is important to determine the possible effects of exposure to radiofrequency (RF) radiation on the genetic material of cells since damage to the DNA of somatic cells may be linked to cancer development or cell death and damage to germ cells may lead to genetic damage in next and subsequent generations. The objective of this study was to investigate whether exposure to radiofrequency radiation similar to that emitted by mobile phones of second-generation standard Global System for Mobile Communication (GSM) induces genotoxic effects in cultured human cells. The cytogenetic effects of GSM-900 MHz (GSM-900) RF radiation were investigated using R-banded karyotyping after in vitro exposure of human cells (amniotic cells) for 24 h. The average specific absorption rate (SAR) was 0.25 W/kg. The exposures were carried out in wire-patch cells (WPCs) under strictly controlled conditions of temperature. The genotoxic effect was assessed immediately or 24 h after exposure using four different samples. One hundred metaphase cells were analyzed per assay. Positive controls were provided by using bleomycin. We found no direct cytogenetic effects of GSM-900 either 0 h or 24 h after exposure. To the best of our knowledge, our work is the first to study genotoxicity using complete R-banded karyotyping, which allows visualizing all the chromosomal rearrangements, either numerical or structural.

  17. Anaerobic glycolysis and specific gravity of the red blood cells of rats exposed to pure oxygen at 600 torr.

    Science.gov (United States)

    Sabine, J. C.; Leon, H. A.

    1971-01-01

    Rats were exposed to 100% oxygen at 600 torr for up to 8 days. Highly significant increases in RBC anaerobic glycolysis occurred during the first 4 days of exposure and then subsided. Two significant peaks were found, one on days 1 and 2 and one on day 4. The first peak is attributed to reticulocytosis, which was maximal after 90 minutes and had disappeared by day 3. A second mechanism must account for the peak on day 4. An interpretation of the second peak is provided by existing evidence that selective removal of older RBCs occurs during the first few days of exposure to hypobaric oxygen, with maximum effect on day 4. Results in splenectomized, sham-operated and intact animals were indistinguishable from each other. A significant decrease in RBC specific gravity was found in exposed animals with spleens intact, but not in splenectomized animals. Theoretical aspects of age-related parameters as an aid to continuous detection and evaluation of changes in RBC populations are discussed.

  18. Melatonin and amfenac modulate calcium entry, apoptosis, and oxidative stress in ARPE-19 cell culture exposed to blue light irradiation (405 nm).

    Science.gov (United States)

    Argun, M; Tök, L; Uğuz, A C; Çelik, Ö; Tök, Ö Y; Naziroğlu, M

    2014-06-01

    Under conditions of oxidative stress, cell apoptosis is triggered through the mitochondrial intrinsic pathway. Increased levels of reactive oxygen species (ROS) are linked to excess cell loss and mediate the initiation of apoptosis in a diverse range of cell types. The aims of this study were to assess intracellular Ca(2+) release, ROS production, and caspase-3, and -9 activation in ARPE-19 cells during the blue light-mediated cell death, and to examine a potential protective effect of melatonin and amfenac, in the apoptotic cascade. ARPE-19 cells were cultured in their medium. First, MTT tests were performed to determine the protective effects of amfenac and melatonin. Cells were then exposed to blue light irradiation in an incubator. Intracellular Ca(2+) release experiments, mitochondrial membrane depolarization, apoptosis assay, glutathione (GSH), glutathione peroxidase (GSH-Px), and ROS experiments were done according to the method stated in the Materials and methods section. Cell death was clearly associated with increased levels of ROS production, as measured by 2',7'-dichlorofluorescein fluorescence, and associated increase in Ca(2+) levels, as measured by Fura-2-AM. Blue light-induced cell death was associated with an increased level of caspase-3 and 9, suggesting mediation via the apoptotic pathway. Cell death was also associated with mitochondrial depolarization. Melatonin was shown to delay these three steps. Melatonin, amfenac, and their combination protect ARPE-19 cells against blue light-triggered ROS accumulation and caspase-3 and -9 activation. The antiapoptotic effect of melatonin and amfenac at doses inhibiting caspase synthesis modified Ca(2+) release and prevented excessive ROS production, suggesting a new therapeutic approach to age-related macular degeneration.

  19. Cell death induction and nitric oxide biosynthesis in white poplar (Populus alba) suspension cultures exposed to alfalfa saponins.

    Science.gov (United States)

    Balestrazzi, Alma; Agoni, Valentina; Tava, Aldo; Avato, Pinarosa; Biazzi, Elisa; Raimondi, Elena; Macovei, Anca; Carbonera, Daniela

    2011-03-01

    The present work reports on the biological activity of alfalfa (Medicago sativa) saponins on white poplar (Populus alba, cultivar 'Villafranca') cell suspension cultures. The extracts from alfalfa roots, aerial parts and seeds were characterized for their saponin content by means of thin layer chromatography (TLC) and electrospray ionisation coupled to mass spectrometry. The quantitative saponin composition from the different plant extracts was determined considering the aglycone moieties and determined by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) analyses. Only soyasapogenin I was detected in the seed extract while several other saponins were found in the root and leaf extracts. Actively proliferating white poplar cell cultures were challenged with the different saponin extracts. Only alfalfa root saponins, at 50 µg ml⁻¹, induced significant cell death rates (75.00 ± 4.90%). Different cell subpopulations with peculiar cell death morphologies were observed and the programmed cell death (PCD)/necrosis ratio was reduced at increasing saponin concentrations. Enhancement of nitric oxide (NO) production was observed in white poplar cells treated with root saponins (RSs) at 50 µg ml⁻¹ and release of reactive oxygen species (ROS) in the culture medium was also demonstrated. Saponin-induced NO production was sensitive to sodium azide and N(G)-monomethyl-L-arginine, two specific inhibitors of distinct pathways for NO biosynthesis in plant cells. Copyright © Physiologia Plantarum 2010.

  20. Defect internalization and tyrosine kinase activation in Aire deficient antigen presenting cells exposed to Candida albicans antigens.

    Science.gov (United States)

    Brännström, Johan; Hässler, Signe; Peltonen, Leena; Herrmann, Björn; Winqvist, Ola

    2006-12-01

    Patients with Autoimmune polyendocrine syndrome type I (APS I) present with multiple endocrine failures due to organ-specific autoimmune disease, thought to be T-cell-mediated. Paradoxically, APS I patients suffer from chronic mucocutaneous candidiasis. The mutated gene has been identified as the Autoimmune regulator (AIRE). Aire is expressed in medullary epithelial cells of the thymus and in antigen presenting cells in the periphery. T cells from Aire deficient mice and men displayed an enhanced proliferative response against Candida antigen in vitro, suggesting that Aire deficient T cells are competent in recognizing Candida albicans. In contrast, monocytes from APS I patients displayed a decreased and delayed internalization of zymosan. Furthermore, Candida antigen activated monocytes from APS I patients show decreased and altered phoshotyrosine kinase activation. In conclusion, Aire deficient APCs have a defect receptor mediated internalization of Candida which affects kinase activation, likely altering the innate Candida immune response.

  1. The function of TLR4 in interferon gamma or interleukin-13 exposed and lipopolysaccharide stimulated gingival epithelial cell cultures.

    Science.gov (United States)

    Beklen, A; Sarp, A S; Uckan, D; Tsaous Memet, G

    2014-10-01

    Gingival epithelial cells are part of the first line of host defense against infection. Toll-like receptors (TLRs) serve important immune and nonimmune functions. We investigated how interferon gamma (INF-γ) and interleukin 13 (IL-13) are involved in the TLR4 ligand-induced regulation of interleukin-8 (IL-8) effects on gingival epithelial cells. We used immunohistochemistry to localize TLR4 in ten healthy and ten periodontitis tissue specimens. Gingival epithelial cells then were primed with Th1 cytokine (INF-γ) or Th2 cytokine (IL-13) before stimulation with Escherichia coli-derived lipopolysaccharide (LPS) and enzyme-linked immunosorbent assay (ELISA) was performed to detect the level of IL-8 secretion in cell culture supernatants. Although both healthy and periodontitis gingival tissue samples expressed TLR4, the periodontitis samples showed more intense expression on gingival epithelial cells. Gingival epithelial cell cultures were primed with either INF-γ or IL-13 before stimulation with TLR4 ligand. Supernatants from co-stimulated epithelial cells exhibited IL-8 production in opposite directions, i.e., as one stimulates the release, the other reduces the release. INF-γ significantly increased TLR4 function, whereas IL-13 significantly decreased TLR4 function, i.e., production of IL-8. Pathogen associated molecular pattern-LPS, shared by many different periodonto-pathogenic bacteria, activates the gingival epithelial cells in a TLR-dependent manner. Diminished or increased TLR function in gingival epithelial cells under the influence of different Th cell types may protect or be harmful due to the altered TLR signaling.

  2. Pneumococcal infection of respiratory cells exposed to welding fumes; Role of oxidative stress and HIF-1 alpha.

    Science.gov (United States)

    Grigg, Jonathan; Miyashita, Lisa; Suri, Reetika

    2017-01-01

    Welders are more susceptible to pneumococcal pneumonia. The mechanisms are yet unclear. Pneumococci co-opt the platelet activating factor receptor (PAFR) to infect respiratory epithelial cells. We previously reported that exposure of respiratory cells to welding fumes (WF), upregulates PAFR-dependent pneumococcal infection. The signaling pathway for this response is unknown, however, in intestinal cells, hypoxia-inducible factor-1 α (HIF 1α) is reported to mediate PAFR-dependent infection. We sought to assess whether oxidative stress plays a role in susceptibility to pneumococcal infection via the platelet activating factor receptor. We also sought to evaluate the suitability of nasal epithelial PAFR expression in welders as a biomarker of susceptibility to infection. Finally, we investigated the generalisability of the effect of welding fumes on pneumococcal infection and growth using a variety of different welding fume samples. Nasal epithelial PAFR expression in welders and controls was analysed by flow cytometry. WF were collected using standard methodology. The effect of WF on respiratory cell reactive oxygen species production, HIF-1α expression, and pneumococcal infection was determined using flow cytometry, HIF-1α knockdown and overexpression, and pneumococcal infection assays. We found that nasal PAFR expression is significantly increased in welders compared with controls and that WF significantly increased reactive oxygen species production, HIF-1α and PAFR expression, and pneumococcal infection of respiratory cells. In unstimulated cells, HIF-1α knockdown decreased PAFR expression and HIF-1α overexpression increased PAFR expression. However, in knockdown cells pneumococcal infection was paradoxically increased and in overexpressing cells infection was unaffected. Nasal epithelial PAFR expression may be used as a biomarker of susceptibility to pneumococcal infection in order to target individuals, particularly those at high risk such as welders

  3. Studies of micronuclei and other nuclear abnormalities in red blood cells of Colossoma macropomum exposed to methylmercury

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Machado da Rocha

    2011-01-01

    Full Text Available The frequencies of micronuclei (MN and morphological nuclear abnormalities (NA in erythrocytes in the peripheral blood of tambaqui (Colossoma macropomum, treated with 2 mg.L-1 methylmercury (MeHg, were analyzed. Two groups (nine specimens in each were exposed to MeHg for different periods (group A - 24 h; group B - 120 h. A third group served as negative control (group C, untreated; n = 9. Although, when compared to the control group there were no significant differences in MN frequency in the treated groups, for NA, the differences between the frequencies of group B (treated for 120 h and the control group were extremely significant (p < 0.02, thus demonstrating the potentially adverse effects of MeHg on C. macropomum erythrocytes after prolonged exposure.

  4. High-mobility group box 1 regulates cytoprotective autophagy in a mouse spermatocyte cell line (GC-2spd) exposed to cadmium.

    Science.gov (United States)

    Ou, Z; Chen, Y; Niu, X; He, W; Song, B; Fan, D; Sun, X

    2017-11-01

    Cadmium (Cd) is an environmental and industrial pollutant that induces a broad spectrum of toxicological effects, influences a variety of human organs, and is associated with poor semen quality and male infertility. Increasing evidence demonstrates that Cd induces testicular germ cell apoptosis in rodent animals. However, the specific effect of Cd exposure on autophagy in germ cells is poorly understood. We investigate the role of high-mobility group box 1 protein (HMGB1), a ubiquitous nuclear protein, on Cd-evoked autophagy in a mouse spermatocyte cell line (GC-2spd). Our data have shown that autophagy was significantly elevated in GC-2spd cells exposed to Cd. Furthermore, there was a reduction in rapamycin (RAP)-mediated apoptosis. In addition, Cd exposure reduced cell viability, which is an effect that could be significantly inhibited by RAP treatment. These results indicate that autophagy appears to serve a positive function in reducing Cd-induced cytotoxicity. In addition, HMGB1 increased coincident with the processing of LC3-I to LC3-II. Thus, the upregulation of HMGB1 increases LC3-II levels. Our data suggest that HMGB1-induced autophagy appears to act as a defense/survival mechanism against Cd cytotoxicity in GC-2spd cells.

  5. Assessment of functional changes in nanoparticle-exposed neuroendocrine cells with amperometry: exploring the generalizability of nanoparticle-vesicle matrix interactions.

    Science.gov (United States)

    Love, Sara A; Haynes, Christy L

    2010-09-01

    Using two of the most commonly synthesized noble metal nanoparticle preparations, citrate-reduced Au and Ag, the impacts of short-term accidental nanoparticle exposure are examined in primary culture murine adrenal medullary chromaffin cells. Transmission electron microscopy (TEM), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Alamar Blue viability studies revealed that nanoparticles are taken up by cells but do not decrease cell viability within 48 hours of exposure. Carbon-fiber microelectrode amperometry (CFMA) examination of exocytosis in nanoparticle-exposed cells revealed that nanoparticle exposure does lead to decreased secretion of chemical messenger molecules, of up to 32.5% at 48 hours of Au exposure. The kinetics of intravesicular species liberation also slows after nanoparticle exposure, between 30 and 50% for Au and Ag, respectively. Repeated stimulation of exocytosis demonstrated that these effects persisted during subsequent stimulations, meaning that nanoparticles do not interfere directly with the vesicle recycling machinery but also that cellular function is unable to recover following vesicle content expulsion. By comparing these trends with parallel studies done using mast cells, it is clear that similar exocytosis perturbations occur across cell types following noble metal nanoparticle exposure, supporting a generalizable effect of nanoparticle-vesicle interactions.

  6. [Effect of American Ginseng Capsule on the liver oxidative injury and the Nrf2 protein expression in rats exposed by electromagnetic radiation of frequency of cell phone].

    Science.gov (United States)

    Luo, Ya-ping; Ma, Hui-Rong; Chen, Jing-Wei; Li, Jing-Jing; Li, Chun-xiang

    2014-05-01

    To observe the effect of American Ginseng Capsule (AGC) on the liver oxidative injury and the Nrf2 protein expression in the liver tissue of rats exposed by 900 MHz cell phone electromagnetic radiation. Totally 40 male SD rats were randomly divided into the normal control group, the model group, the Shuifei Jibin Capsule (SJC) group, and the AGC group,10 in each group. Rats in the normal control group were not irradiated. Rats in the rest three groups were exposed by imitated 900 MHz cellular phone for 4 h in 12 consecutive days. Meanwhile, rats in the SJC group and the AGC group were intragastrically administrated with suspension of SJC and AGC (1 mL/200 g body weight) respectively. Normal saline was administered to rats in the normal control group and the model group. The histolomorphological changes of the liver tissue were observed by HE staining. Contents of malonic dialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-PX)were detected by colorimetry. The Nrf2 protein expression of hepatocytes was detected by immunohistochemical assay and Western blot. Compared with the normal control group, hepatocyte nucleus was atrophied or partially disappeared, the contents of liver MDA and Nrf2 protein obviously increased (P electromagnetic radiation induced by 900 MHz cell phone could affect the expression of Nrf2 protein, induce oxidative injury, and induce abnormal morphology of liver cells. SJC and AGC could promote the morphological recovery of the liver cells. Its mechanism might be related to affecting the expression of Nrf2 protein and attenuating oxidative damage of liver cells.

  7. Delayed BCG vaccination results in minimal alterations in T cell immunogenicity of acellular pertussis and tetanus immunizations in HIV-exposed infants.

    Science.gov (United States)

    Blakney, Anna K; Tchakoute, Christophe Toukam; Hesseling, Anneke C; Kidzeru, Elvis B; Jones, Christine E; Passmore, Jo-Ann S; Sodora, Donald L; Gray, Clive M; Jaspan, Heather B

    2015-09-11

    Bacille Calmette-Guerin (BCG) is effective in preventing disseminated tuberculosis (TB) in children but may also have non-specific benefits, and is thought to improve immunity to unrelated antigens through trained innate immunity. In HIV-infected infants, there is a risk of BCG-associated adverse events. We aimed to explore whether delaying BCG vaccination by 8 weeks, in utero or perinatal HIV infection is excluded, affected T-cell responses to B. pertussis (BP) and tetanus toxoid (TT), in HIV-exposed, uninfected infants. Infants were randomized to receive BCG vaccination at birth or 8 weeks of age. At 8 and 14 weeks, T cell proliferation and intracellular cytokine (IL-2, IL-13, IL-17, and IFN-γ) expression was analyzed in response to BP, TT and Staphylococcal enterotoxin B (SEB) antigens. Delaying BCG vaccination did not alter T-cell proliferation to BP or TT antigens. Infants immunized with BCG at birth had higher CD4+ T cell proliferation to SEB at 14 weeks of age (p=0.018). Birth-vaccinated infants had increased CD8+ IL-2 expression in response to BP, but not TT or SEB, at 8 weeks. Infants vaccinated with BCG at 8 weeks had significantly lower IL-13 expression by BP-specific CD4+ and CD8+ T cells at 14 weeks (p=0.032 and p=0.0035, respectively). There were no observed differences in multifunctional cytokine response to TT, BP or SEB between infants vaccinated with BCG at birth versus 8 weeks of age. Delaying BCG vaccination until 8 weeks of age results in robust T-cellular responses to BP and TT in HIV-exposed infants. NCT02062580. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Erythrophagocytosis of lead-exposed erythrocytes by renal tubular cells: possible role in lead-induced nephrotoxicity

    National Research Council Canada - National Science Library

    Kwon, So-Youn; Bae, Ok-Nam; Noh, Ji-Yoon; Kim, Keunyoung; Kang, Seojin; Shin, Young-Jun; Lim, Kyung-Min; Chung, Jin-Ho

    ...) externalization on the erythrocyte membrane and generation of PS-bearing microvesicles. Increased oxidative stress and up-regulation of nephrotoxic biomarkers, such as NGAL, were observed in HK-2 cells undergoing erythrophagocytosis...

  9. Examination by EPR spectroscopy of free radicals in melanins isolated from A-375 cells exposed on valproic acid and cisplatin.

    Science.gov (United States)

    Chodurek, Ewa; Zdybel, Magdalena; Pilawa, Barbara; Dzierzewicz, Zofia

    2012-01-01

    Drug binding by melanin biopolymers influence the effectiveness of the chemotherapy, radiotherapy and photodynamic therapy. Free radicals of melanins take part in formation of their complex with drugs. The aim of this work was to determine the effect of the two compounds: valproic acid (VPA) and cisplatin (CPT) on free radicals properties of melanin isolated from A-375 melanoma cells. Free radicals were examined by an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. EPR spectra were measured for the model synthetic eumelanin - DOPA-melanin, the melanin isolated from the control A-375 cells and these cells treated by VPA, CPT and both VPA and CPT. For all the examined samples broad EPR lines (deltaBpp: 0.48-0.68 mT) with g-factors of 2.0045-2.0060 characteristic for o-semiquinone free radicals were observed. Free radicals concentrations (N) in the tested samples, g-factors, amplitudes (A), integral intensities (I) and linewidths (deltaBpp) of the EPR spectra, were analyzed. The EPR lines were homogeneously broadened. Continuous microwave saturation of the EPR spectra indicated that slow spin-lattice relaxation processes existed in all the tested melanin samples. The relatively slowest spin-lattice relaxation processes characterized melanin isolated from A-375 cells treated with both VPA and CPT. The changes of the EPR spectra with increasing microwave power in the range of 2.2-70 mW were evaluated. Free radicals concentrations in the melanin from A-375 cells were higher than in the synthetic DOPA-melanin. The strong increase of free radicals concentration in the melanin from A-375 cells was observed after their treating by VPA. CPT also caused the increase of free radicals concentrations in the examined natural melanin. The free radicals concentration in melanin isolated from A-375 cells treated with both VPA and CPT was slightly higher than those in melanin from the control cells.

  10. Poly(ADP-ribose) polymerase-1 is a survival factor for radiation-exposed intestinal epithelial stem cells in vivo

    Science.gov (United States)

    Ishizuka, Satoshi; Martin, Kareen; Booth, Catherine; Potten, Christopher S.; de Murcia, Gilbert; Bürkle, Alexander; Kirkwood, Thomas B. L.

    2003-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a key enzyme mediating the cellular response to DNA strand breaks. It plays a critical role in genomic stability and survival of proliferating cells in culture undergoing DNA damage. Intestinal epithelium is the most proliferative tissue in the mammalian body and its stem cells show extreme sensitivity to low-level genotoxic stress. We investigated the role of PARP-1 in the in vivo damage response of intestinal stem cells in crypts of PARP-1–/– and control mice following whole-body γ-irradiation (1 Gy). In the PARP-1–/– mice there was a significant delay during the first 6 h in the transient p53 accumulation in stem cells whereas an increased number of cells were positive for p21CIP1/WAF1. Either no or only marginal differences were noted in MDM2 expression, apoptosis, induction of or recovery from mitotic blockage, or inhibition of DNA synthesis. We further observed a dose-dependent reduction in crypt survival measured at 4 days post-irradiation in control mice, and this crypt-killing effect was significantly potentiated in PARP-1–/– mice. Our results thus establish that PARP-1 acts as a survival factor for intestinal stem cells in vivo and suggest a functional link with early p53 and p21CIP1/WAF1 responses. PMID:14576306

  11. Changes in expression of bcl-2 and bax in Syrian hamster embryo (SHE) cells exposed to ZnCl2.

    Science.gov (United States)

    Maire, M A; Rast, C; Pagnout, C; Vasseur, P

    2005-02-01

    Zinc is involved in many physiological processes and plays a critical role in functional and structural cells. Zinc at concentrations ranging from 100 to 150 micromol L(-1) has been shown to induce morphological transformation of Syrian hamster embryo (SHE) cells. At these concentrations, zinc inhibited apoptosis in SHE cells. The objective of this study was to elucidate the mechanisms of action of zinc on the apoptotic pathway. Effects of 100 and 150 micromol L(-1) ZnCl(2) on the expression of two members of the Bcl-2 family of proteins and on the transcription factor c-Myc in SHE cells was investigated using RT-PCR. No effect on the proto-oncogene c-myc was observed. Up-regulation of bcl-2 expression was found and bax expression was reduced. These changes have been corroborated by immunoblotting. Effects of Zn(2+) on bcl-2/bax ratio were confirmed in apoptotic camptothecin-treated SHE cells. Cloned and sequenced cDNAs obtained from RT-PCR amplifications allowed us to check the RT-PCR products encoded the expected proteins. This study demonstrated that zinc acts in the early phases of the apoptotic process by modification of the bcl-2/bax ratio in normal and apoptotic SHE cells.

  12. Oxidation of thiols and modification of redox-sensitive signaling in human lung epithelial cells exposed to Pseudomonas pyocyanin.

    Science.gov (United States)

    Ahmad, Iman M; Britigan, Bradley E; Abdalla, Maher Y

    2011-01-01

    The aim of this study was to examine the effects of pyocyanin exposure on mitochondrial GSH, other cellular thiols (thioredoxin-1, Trx-1), and oxidant-sensitive signaling pathways hypoxia inducible factor (HIF-1α) and heme oxygenase (HO-1) in A549 and HBE cell lines. A549 human type II alveolar epithelial cells and human bronchial epithelial (HBE) cells were treated with varying concentrations of pyocyanin extracted from Pseudomonas aeruginosa bacteria. Cytoplasmic and mitochondrial thiols and oxidant sensitive signal transduction proteins (HIF-1α and HO-1) were measured. Exposure to pyocyanin generated reactive oxygen species (ROS) in cellular mitochondria and altered total cellular glutathione (GSH). Pyocyanin, at concentrations present in conditions in vivo, increased oxidized Trx-1 in A549 human type II alveolar epithelial cells and HBE cells by 184 and 74%, respectively. Oxidized mitochondrial glutathione (GSSG) was elevated more than twofold in both cell types. Pyocyanin also increased the cellular oxidant-sensitive proteins HIF-1α and HO-1. Data indicate that pyocyanin-induced alterations in mitochondrial and cytosolic thiols, as well as oxidant-sensitive proteins, may contribute to P. aeruginosa-mediated lung injury.

  13. Exposing human retinal pigmented epithelial cells to red light in vitro elicits an adaptive response to a subsequent 2-μm laser challenge

    Science.gov (United States)

    Schuster, K. J.; Estlack, L. E.; Wigle, J. C.

    2013-03-01

    The objective of this study was to elucidate cellular mechanisms of protection against laser-induced thermal killing utilizing an in vitro retina model. When exposed to a 1-sec pulse of 2-μm laser radiation 24 hr after illuminating hTERT-RPE cells with red light (preconditioning), the cells are more resistant to thermal challenge than unilluminated controls (adaptive response). Results of efforts to understand the physiology of this effect led us to two genes: Vascular Endothelial Growth Factor C (VEGF-C) and Micro RNA 146a (miR-146a). Transfecting wild type (WT) cells with siRNA for VEGF-C and miR-146a mRNA resulted in knockdown strains (VEGF-C(KD) and miR- 146a(-)) with 10% and 30% (respectively) of the constitutive levels expressed in the WT cells. To induce gene expression, WT or KD cells were preconditioned with 1.44 to 5.40 J/cm2, using irradiances between 0.40 and 1.60 mW/cm2 of either 671-nm (diode) or 637-nm (laser) radiation. Probit analysis was used to calculate threshold damage irradiance, expressed as ED50, between 10 and 100 W/cm2 for the 2-μm laser pulse. In the WT cells there is a significant increase in ED50 (p 0.05) with the maximum response occurring at 2.88 J/cm2 in the preconditioned cells. Neither KD cell strain showed a significant increase in the ED50, although some data suggest the response may just be decreased in the knockdown cells instead of absent. So far the response does not appear to be dependent upon either wavelength (637 vs. 671 nm) or coherence (laser vs. LED), but there is an irradiance dependence.

  14. Comparison of gene expression profiles of HepG2 cells exposed to Crambescins C1 and A1

    Directory of Open Access Journals (Sweden)

    María R. Sánchez

    2014-06-01

    Full Text Available Crambescins are guanidine alkaloids firstly isolated in the early 90s from the encrusting Mediterranean sponge Crambe crambe (Schmidt, 1862 (Bondu et al., 2012, Laville et al., 2009, Berlinck et al., 1990. C. crambe derivatives are divided in two families named crambescins and crambescidins (Gerlinck et al., 1992. Although data on the bioactivity of these compounds is scarce, crambescidins have recognized cytotoxic, antifungal, antioxidant, antimicrobial and antiviral activities (Buscema and Van de Vyver, 1985, Jares-Erijman., 1998, Olszewski et al., 2004, Lazaro et al., 2006, Suna et al., 2007, AOKI et al., 2004. Recently we have carefully evaluated the cytotoxic activity of C816 over several human tumor cell types and characterized some of the cellular mechanisms responsible of the anti-proliferative effect of this compound on human liver-derived tumor cells (Rubiolo et al., 2013. Taking this into account, and to better understand the mechanism of action of crambescins and their potential as therapeutic agents, we made a comparative gene expression profiling of HepG2 cells after crambescin C1 (C1 and crambescin A1 (CA1 exposures. Results have shown that C1 induces genes involved in sterol and glucose metabolisms and metabolism involving growth factors. It also down regulates genes mainly involved in cell cycle control, DNA replication, recombination and repair, and drug metabolism. Flow cytometry assays revealed that C1 produces a G0/G1 arrest in HepG2 cell cycle progression. CA1 also down-regulates genes involved in cell cycle regulation, DNA recombination and pathways related to tumor cells proliferation with lower potency when compared to C1.

  15. Reduced Expression of Cytoskeletal and Extracellular Matrix Genes in Human Adult Retinal Pigment Epithelium Cells Exposed to Simulated Microgravity

    Directory of Open Access Journals (Sweden)

    Thomas J. Corydon

    2016-11-01

    Full Text Available Background/Aims: Microgravity (µg has adverse effects on the eye of humans in space. The risk of visual impairment is therefore one of the leading health concerns for NASA. The impact of µg on human adult retinal epithelium (ARPE-19 cells is unknown. Methods: In this study we investigated the influence of simulated µg (s-µg; 5 and 10 days (d, using a Random Positioning Machine (RPM, on ARPE-19 cells. We performed phase-contrast/fluorescent microscopy, qRT-PCR, Western blotting and pathway analysis. Results: Following RPM-exposure a subset of ARPE-19 cells formed multicellular spheroids (MCS, whereas the majority of the cells remained adherent (AD. After 5d, alterations of F-actin and fibronectin were observed which reverted after 10d-exposure, suggesting a time-dependent adaptation to s-µg. Gene expression analysis of 12 genes involved in cell structure, shape, adhesion, migration, and angiogenesis suggested significant changes after a 10d-RPM-exposure. 11 genes were down-regulated in AD and MCS 10d-RPM-samples compared to 1g, whereas FLK1 was up-regulated in 5d- and 10d-RPM-MCS-samples. Similarly, TIMP1 was up-regulated in 5d-RPM-samples, whereas the remaining genes were down-regulated in 5d-RPM-samples. Western blotting revealed similar changes in VEGF, β-actin, laminin and fibronectin of 5d-RPM-samples compared to 10d, whereas different alterations of β-tubulin and vimentin were observed. The pathway analysis showed complementing effects of VEGF and integrin β-1. Conclusions: These findings clearly show that s-µg induces significant alterations in the F-actin-cytoskeleton and cytoskeleton-related proteins of ARPE-19, in addition to changes in cell growth behavior and gene expression patterns involved in cell structure, growth, shape, migration, adhesion and angiogenesis.

  16. Space experiment "Rad Gene"-report 1; p53-Dependent gene expression in human cultured cells exposed to space environment

    Science.gov (United States)

    Takahashi, Akihisa; Ohnishi, Takeo; Suzuki, Hiromi; Omori, Katsunori; Seki, Masaya; Hashizume, Toko; Shimazu, Toru; Ishioka, Noriaki

    The space environment contains two major biologically significant influences: space radiations and microgravity. A p53 tumor suppressor protein plays a role as a guardian of the genome through the activity of p53-centered signal transduction pathways. The aim of this study was to clarify the biological effects of space radiations, microgravity and a space environment on the gene and protein expression of p53-dependent regulated genes. Space experiments were performed with two human cultured lymphoblastoid cell lines: one cells line (TSCE5) bears a wild-type p53 gene status, and another cells line (WTK1) bears a mutated p53 gene status. Un-der one gravity or microgravity condition, the cells were grown in the cell biology experimental facility (CBEF) of the International Space Station (ISS) for 8 days without experiencing the stress during launching and landing because the cells were frozen during these periods. Ground control samples also were cultured for 8 days in the CBEF on the ground during the same periods as space flight. Gene and protein expression was analyzed by using DNA chip (a 44k whole human genome microarray, Agilent Technologies Inc.) and protein chip (PanoramaTM Ab MicroArray, Sigma-Aldrich Co.), respectively. In addition, we analyzed the gene expression in cultured cells after space flight during 133 days with frozen condition. We report the results and discussion from the viewpoint of the functions of the up-regulated and down-regulated genes after an exposure to space radiations and/or microgravity. The initial goal of this space experiment was completely achieved. It is expected that data from this type of work will be helpful in designing physical protection from the deleterious effects of space radiations during long term stays in space.

  17. Radiosensitizing effects of arsenic trioxide on MCF-7 human breast cancer cells exposed to 89 strontium chloride.

    Science.gov (United States)

    Liu, Hengchao; Tao, Xinquan; Ma, Fang; Qiu, Jun; Wu, Cuiping; Wang, Mingming

    2012-11-01

    The aim of this study was to investigate the radiosensitizing effects of arsenic trioxide (As2O3) on MCF-7 human breast cancer cells irradiated with 89 strontium chloride (89SrCl2). The 50% inhibitory concentration (IC50) was calculated from results of an MTT assay. The concentration of As2O3 less than 20% IC50 was selected for subsequent experiments. Cells were treated with As2O3 and 89SrCl2. Morphological changes of cells were observed under an inverted microscope. The radiosensitivity enhancing ratio (SER) was computed based on a clone formation assay. Cell cycle distribution and apoptosis were measured by flow cytometry (FCM). Expression of Bcl-2 and Bax at both the mRNA and protein levels was assessed by RT-PCR and western blotting. The IC50 of As2O3 at 24 h was 11.7 µM. Doses of As2O3 (1 and 2 µM) were used in combination treatments and SER values were 1.25 and 1.79, respectively. As2O3 significantly suppressed cell growth, caused G2/M arrest, enhanced cell death and apoptosis induced by 89SrCl2 and decreased expression of the Bcl-2 gene. Since expression of Bax was unchanged following treatment, As2O3 effectively reduced the Bcl-2/Bax ratio. As2O3 (1-2 µM) enhances the cytotoxic effects of 89SrCl2 on the MCF-7 human breast cancer cell line by inducing G2 phase delay and promoting apoptosis through the reduction of the Bcl-2/Bax ratio.

  18. A Comparitive Assessement of Cytokine Expression in Human-Derived Cell Lines Exposed to Alpha Particles and X-Rays

    Directory of Open Access Journals (Sweden)

    Vinita Chauhan

    2012-01-01

    Full Text Available Alpha- (α- particle radiation exposure has been linked to the development of lung cancer and has been identified as a radiation type likely to be employed in radiological dispersal devices. Currently, there exists a knowledge gap concerning cytokine modulations associated with exposure to α-particles. Bio-plex technology was employed to investigate changes in proinflammatory cytokines in two human-derived cell lines. Cells were irradiated at a dose of 1.5 Gy to either α-particles or X-rays at equivalent dose rates. The two cell lines exhibited a unique pattern of cytokine expression and the response varied with radiation type. Of the 27 cytokines assessed, only vascular endothelin growth factor (VEGF was observed to be modulated in both cell lines solely after α-particle exposure, and the expression of VEGF was shown to be dose responsive. These results suggest that certain proinflammatory cytokines may be involved in the biological effects related to α- particle exposure and the responses are cell type and radiation type specific.

  19. T cell clones from Schistosoma haematobium infected and exposed individuals lacking distinct cytokine profiles for Th1/Th2 polarisation

    Directory of Open Access Journals (Sweden)

    Mduluza T

    2001-01-01

    Full Text Available T cell clones were derived from peripheral blood mononuclear cells of Schistosoma haematobium infected and uninfected individuals living in an endemic area. The clones were stimulated with S. haematobium worm and egg antigens and purified protein derivative. Attempts were made to classify the T cell clones according to production of the cytokines IL-4, IL-5 and IFN-gamma. All the T cell clones derived were observed to produce cytokines used as markers for the classification of Th1/Th2 subsets. However, the 'signature' cytokines marking each subset were produced at different levels. The classification depended on the dominating cytokine type, which was having either Th0/1 or Th0/2 subsets. The results indicated that no distinct cytokine profiles for polarisation of Th1/Th2 subsets were detected in these S. haematobium infected humans. The balance in the profiles of cytokines marking each subset were related to infection and re-infection status after treatment with praziquantel. In the present study, as judged by the changes in infection status with time, the T cell responses appeared to be less stable and more dynamic, suggesting that small quantitative changes in the balance of the cytokines response could result in either susceptibility or resistant to S. haematobium infection.

  20. Assessment of the effect of distance and duration of illumination on retinal pigment epithelial cells exposed to varying doses of Brilliant Blue Green.

    Science.gov (United States)

    Balaiya, Sankarathi; Koushan, Keyvan; McLauchlan, Tatiana; Chalam, K V

    2014-10-01

    To assess the cytotoxicity of varying concentrations of Brilliant Blue Green (BBG) on human retinal pigment epithelial (HRPE) cells exposed to metal halide surgical endoilluminator (SE) at varying distances of illumination. HRPE (ARPE-19) were exposed to 2 concentrations (0.25 and 0.5 mg/mL) of BBG and illuminated with SE for 1, 5, and 15 min. Illumination (measured with light meter) was positioned at varying distances (1 and 2.5 cm) to mimic surgical distance of illumination. Cell viability (WST-1 assay) as well as structural changes in cells was quantified. At 1 cm distance of illumination, 0.25 mg/mL BBG decreased viability of HRPE to 89.6%±4.3%, 83.9%±10.9%, and 38.9%±5.1% of controls after 1, 5, and 15 min of exposure, respectively. Similarly, 0.5 mg/mL BBG at 1 cm distance of illumination reduced the viability of HRPE to 93.7%±2.8%, 59.6%±16%, and 34.7%±3.5% of controls. At the distance of 2.5 cm, HRPE showed improved viability; cells exposed to 0.25 mg/mL BBG maintained 98.85%±3.3%, 95.31%±7.12%, and 62.07%±3.0% of viability compared with controls after 1, 5, and 15 min of exposure. Morphometric evaluation of RPE cells showed increased width (swelling) of HRPE. BBG at its clinically used concentration (0.25 mg/mL) during vitreoretinal surgery is safe and not toxic to HRPE for up to 5 min under focal illumination (1 cm) and up to 15 min under diffuse illumination (2.5 cm) from the commonly used SE. RESULTS of our study are useful in establishing safety parameters for the use of BBG dye in vitreoretinal surgery.

  1. Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy

    KAUST Repository

    Pouchol, Camille

    2017-10-27

    We consider a system of two coupled integro-differential equations modelling populations of healthy and cancer cells under chemotherapy. Both populations are structured by a phenotypic variable, representing their level of resistance to the treatment. We analyse the asymptotic behaviour of the model under constant infusion of drugs. By designing an appropriate Lyapunov function, we prove that both cell densities converge to Dirac masses. We then define an optimal control problem, by considering all possible infusion protocols and minimising the number of cancer cells over a prescribed time frame. We provide a quasi-optimal strategy and prove that it solves this problem for large final times. For this modelling framework, we illustrate our results with numerical simulations, and compare our optimal strategy with periodic treatment schedules.

  2. Virus-Specific Deoxyribonucleic Acid in Simian Virus 40-Exposed Hamster Cells: Correlation with S and T Antigens 1

    Science.gov (United States)

    Levine, Arthur S.; Oxman, Michael N.; Henry, Patrick H.; Levin, Myron J.; Diamandopoulos, George T.; Enders, John F.

    1970-01-01

    Several homologous hamster embryonic cell lines, transformed in association with simian virus (SV) 40 infection, were examined for the presence of deoxyribonucleic acid (DNA) complementary to SV40 ribonucleic acid (RNA) made in vitro. The methods employed permitted the detection of 10−5 μg of viral DNA in 100 μg of cellular DNA, corresponding to one-fifth of an SV40 DNA molecule per cell. Those lines which contained both the SV40 surface (S) and tumor (T) antigens also contained DNA complementary to SV40 RNA synthesized in vitro. In contrast, neither of two lines which contained S, but not T, antigen contained detectable DNA complementary to SV40 RNA. These findings suggest that the production of S antigen does not depend upon the persistence of SV40 DNA in transformed cells. PMID:4322872

  3. Virus-specific deoxyribonucleic acid in simian virus 40-exposed hamster cells: correlation with S and T antigens.

    Science.gov (United States)

    Levine, A S; Oxman, M N; Henry, P H; Levin, M J; Diamandopoulos, G T; Enders, J F

    1970-08-01

    Several homologous hamster embryonic cell lines, transformed in association with simian virus (SV) 40 infection, were examined for the presence of deoxyribonucleic acid (DNA) complementary to SV40 ribonucleic acid (RNA) made in vitro. The methods employed permitted the detection of 10(-5) mug of viral DNA in 100 mug of cellular DNA, corresponding to one-fifth of an SV40 DNA molecule per cell. Those lines which contained both the SV40 surface (S) and tumor (T) antigens also contained DNA complementary to SV40 RNA synthesized in vitro. In contrast, neither of two lines which contained S, but not T, antigen contained detectable DNA complementary to SV40 RNA. These findings suggest that the production of S antigen does not depend upon the persistence of SV40 DNA in transformed cells.

  4. Identification of a unique gene expression signature in mercury and 2,3,7,8-tetrachlorodibenzo-p-dioxin co-exposed cells.

    Science.gov (United States)

    Jagannathan, Lakshmanan; Jose, Cynthia C; Tanwar, Vinay Singh; Bhattacharya, Sudin; Cuddapah, Suresh

    2017-05-01

    Mercury (Hg) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are major environmental contaminants that commonly co-occur in the environment. Both Hg and TCDD are associated with a number of human diseases including cancers. While the individual toxicological effects of Hg and TCDD have been extensively investigated, studies on co-exposure are limited to a few genes and pathways. Therefore, a significant knowledge gap exists in the understanding of the deleterious effects of co-exposure to Hg and TCDD. Due to the prevalence of Hg and TCDD co-contamination in the environment and the major human health hazards they pose, it is important to obtain a fuller understanding of genome-wide effects of Hg and TCDD co-exposure. In this study, by performing a comprehensive transcriptomic analysis of human bronchial epithelial cells (BEAS-2B) exposed to Hg and TCDD individually and in combination, we have uncovered a subset of genes with altered expression only in the co-exposed cells. We also identified the additive as well as antagonistic effects of Hg and TCDD on gene expression. Moreover, we found that co-exposure impacted several biological and disease processes not affected by Hg or TCDD individually. Our studies show that the consequences of Hg and TCDD co-exposure on the transcriptional program and biological processes could be substantially different from single exposures, thus providing new insights into the co-exposure-specific pathogenic processes.

  5. Biomonitoring with Micronuclei Test in Buccal Cells of Female Farmers and Children Exposed to Pesticides of Maneadero Agricultural Valley, Baja California, Mexico

    Directory of Open Access Journals (Sweden)

    Idalia Jazmin Castañeda-Yslas

    2016-01-01

    Full Text Available Feminization of the agricultural labor is common in Mexico; these women and their families are vulnerable to several health risks including genotoxicity. Previous papers have presented contradictory information with respect to indirect exposure to pesticides and DNA damage. We aimed to evaluate the genotoxic effect in buccal mucosa from female farmers and children, working in the agricultural valley of Maneadero, Baja California. Frequencies of micronucleated cells (MNc and nuclear abnormalities (NA in 2000 cells were obtained from the buccal mucosa of the study population (n=144, divided in four groups: (1 farmers (n=37, (2 unexposed (n=35, (3 farmers’ children (n=34, and (4 unexposed children (n=38. We compared frequencies of MNc and NA and fitted generalized linear models to investigate the interaction between these variables and exposition to pesticides. Differences were found between farmers and unexposed women in MNc (p<0.0001, CC (p=0.3376, and PN (p<0.0001. With respect to exposed children, we found higher significant frequencies in MNc (p<0.0001, LN (p<0.0001, CC (p<0.0001, and PN (p<0.004 when compared to unexposed children. Therefore working as a farmer is a risk for genotoxic damage; more importantly indirectly exposed children were found to have genotoxic damage, which is of concern, since it could aid in future disturbances of their health.

  6. cDNA microarray assessment of early gene expression profiles in Escherichia coli cells exposed to a mixture of heavy metals.

    Science.gov (United States)

    Gómez-Sagasti, María T; Becerril, José M; Martín, Iker; Epelde, Lur; Garbisu, Carlos

    2014-08-01

    Many contaminated sites are characterized by the presence of different metals, thus increasing the complexity of toxic responses in exposed organisms. Within toxicogenomics, transcriptomics can be approached through the use of microarrays aimed at producing a genetic fingerprint for the response of model organisms to the presence of chemicals. We studied temporal changes in the early gene expression profiles of Escherichia coli cells exposed to three metal doses of a polymetallic solution over three exposure times, through the application of cDNA microarray technology. In the absence of metals, many genes belonging to a variety of cellular functions were up- and down-regulated over time. At the lowest metal dose, an activation of metal-specific transporters (Cus and ZraP proteins) and a mobilization of glutathione transporters involved in metal sequestration and trafficking was observed over time; this metal dose resulted in the generation of ROS capable of stimulating the transcription of Mn-superoxide dismutase, the assembly of Fe-S clusters and the synthesis of cysteine. At the intermediate dose, an overexpression of ROS scavengers (AhpF, KatG, and YaaA) and heat shock proteins (ClpP, HslV, DnaK, and IbpAB) was observed. Finally, at the highest dose, E. coli cells showed a repression of genes related with DNA mutation correctors (MutY glycopeptidases).

  7. Autosomal mutations in mouse kidney epithelial cells exposed to high-energy protons in vivo or in culture.

    Science.gov (United States)

    Turker, Mitchell S; Grygoryev, Dmytro; Dan, Cristian; Eckelmann, Bradley; Lasarev, Michael; Gauny, Stacey; Kwoh, Ely; Kronenberg, Amy

    2013-05-01

    Proton exposure induces mutations and cancer, which are presumably linked. Because protons are abundant in the space environment and significant uncertainties exist for the effects of space travel on human health, the purpose of this study was to identify the types of mutations induced by exposure of mammalian cells to 4-5 Gy of 1 GeV protons. We used an assay that selects for mutations affecting the chromosome 8-encoded Aprt locus in mouse kidney cells and selected mutants after proton exposure both in vivo and in cell culture. A loss of heterozygosity (LOH) assay for DNA preparations from the in vivo-derived kidney mutants revealed that protons readily induced large mutational events. Fluorescent in situ hybridization painting for chromosome 8 showed that >70% of proton-induced LOH patterns resembling mitotic recombination were in fact the result of nonreciprocal chromosome translocations, thereby demonstrating an important role for DNA double-strand breaks in proton mutagenesis. Large interstitial deletions, which also require the formation and resolution of double-strand breaks, were significantly induced in the cell culture environment (14% of all mutants), but to a lesser extend in vivo (2% of all mutants) suggesting that the resolution of proton-induced double-strand breaks can differ between the intact tissue and cell culture microenvironments. In total, the results demonstrate that double-strand break formation is a primary determinant for proton mutagenesis in epithelial cell types and suggest that resultant LOH for significant genomic regions play a critical role in proton-induced cancers.

  8. Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation

    Directory of Open Access Journals (Sweden)

    Bertrand P. Tseng

    2013-01-01

    Full Text Available Past work has shown that exposure to gamma rays and protons elicit a persistent oxidative stress in rodent and human neural stem cells (hNSCs. We have now adapted these studies to more realistic exposure scenarios in space, using lower doses and dose rates of these radiation modalities, to further elucidate the role of radiation-induced oxidative stress in these cells. Rodent neural stem and precursor cells grown as neurospheres and human neural stem cells grown as monolayers were subjected to acute and multi-dosing paradigms at differing dose rates and analyzed for changes in reactive oxygen species (ROS, reactive nitrogen species (RNS, nitric oxide and superoxide for 2 days after irradiation. While acute exposures led to significant changes in both cell types, hNSCs in particular, exhibited marked and significant elevations in radiation-induced oxidative stress. Elevated oxidative stress was more significant in hNSCs as opposed to their rodent counterparts, and hNSCs were significantly more sensitive to low dose exposures in terms of survival. Combinations of protons and γ-rays delivered as lower priming or higher challenge doses elicited radioadaptive changes that were associated with improved survival, but in general, only under conditions where the levels of reactive species were suppressed compared to cells irradiated acutely. Protective radioadaptive effects on survival were eliminated in the presence of the antioxidant N-acetylcysteine, suggesting further that radiation-induced oxidative stress could activate pro-survival signaling pathways that were sensitive to redox state. Data corroborates much of our past work and shows that low dose and dose rate exposures elicit significant changes in oxidative stress that have functional consequences on survival.

  9. DNA damage and decreased DNA repair in peripheral blood mononuclear cells in individuals exposed to arsenic and lead in a mining site.

    Science.gov (United States)

    Jasso-Pineda, Yolanda; Díaz-Barriga, Fernando; Calderón, Jaqueline; Yáñez, Leticia; Carrizales, Leticia; Pérez-Maldonado, Iván N

    2012-05-01

    The aim of this study was to evaluate DNA damage and the capacity for DNA repair in children exposed to arsenic and lead. During 2006, we studied a total of 85 healthy children (aged 4-11 years) who were residents of Villa de la Paz (community A), Matehuala (community B), and Soledad de Graciano Sanchez (community C) in San Luis Potosi, Mexico. The quantification of arsenic in urine (AsU) and lead in blood (PbB) was performed by atomic absorption spectrophotometry. The alkaline comet assay was used to evaluate DNA damage and DNA repair. The highest levels of AsU and PbB in children were found in community A (44.5 μg/g creatinine for arsenic and 11.4 μg/dL for lead), followed by community B (16.8 μg/g creatinine for arsenic and 7.3 μg/dL for lead) and finally by children living in community C (12.8 μg/g creatinine for arsenic and 5.3 μg/dL for lead). When DNA damage was assessed, children living in community A had the highest DNA damage. Analysis of these same cells 1 h after a challenge with H(2)O(2) 10 μM showed a dramatic increase in DNA damage in the cells of children living in community B and community C, but not in the cells of children living in community A. Moreover, significantly higher levels of DNA damage were observed 3 h after the challenge ended (repair period) in cells from individuals living in community A. Our results show that children exposed to metals might be more susceptible to DNA alterations.

  10. Cytotoxicity, oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles.

    Science.gov (United States)

    Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K; Saber, Anne T; Wallin, Håkan; Loft, Steffen; Vogel, Ulla; Møller, Peter

    2013-03-01

    Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), but paint sanding dust samples generally generated less response than primary particles of TiO(2) and carbon black. We found no relationship between the expression of adhesion molecules, cytotoxicity and production of reactive oxygen species. In conclusion, sanding dust from nanoparticle-containing paint did not generate more oxidative stress or expression of cell adhesion molecules than sanding dust from paint without nanoparticles, whereas the primary particles had the largest effect on mass basis.

  11. Cell membrane fatty acid changes and desaturase expression of Saccharomyces bayanus exposed to high pressure homogenization in relation to the supplementation of exogenous unsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Diana Isabella eSerrazanetti

    2015-10-01

    Full Text Available Aims: The aim of this work was to study the responses of Saccharomyces bayanus cells exposed to sub-lethal high-pressure homogenization (HPH and determine whether the plasmatic membrane can sense HPH in the presence, or absence, of exogenous unsaturated fatty acids (UFAs in the growth medium. Methods and Results: HPH damaged and caused the collapse of cell walls and membranes of a portion of cells; however, HPH did not significantly affect S. bayanus cell viability (less than 0.3 Log CFU ml-1. HPH strongly affected the membrane fatty acid composition by increasing the percentage of total UFA when compared with saturated fatty acids. The gene expression showed that the transcription of OLE1, ERG3 and ERG11 increased after HPH. The presence of exogenous UFA abolished HPH-induced effects on the OLE1 and ERG3 genes, increased the percentage of membrane lipids and decreased the expression of OLE1 and ERG3 within 30 min of treatment. Conclusions: The results suggest a key role for UFA in the microbial cell response to sub-lethal stress. In addition, these data provide insight into the molecular basis of the response of S. bayanus to this innovative technology. Significance and Impact of the Study: Elucidation of the mechanism of action for sub-lethal HPH will enable the utilization of this technology to modulate the starter performance at the industrial scale.

  12. Cell membrane fatty acid changes and desaturase expression of Saccharomyces bayanus exposed to high pressure homogenization in relation to the supplementation of exogenous unsaturated fatty acids.

    Science.gov (United States)

    Serrazanetti, Diana I; Patrignani, Francesca; Russo, Alessandra; Vannini, Lucia; Siroli, Lorenzo; Gardini, Fausto; Lanciotti, Rosalba

    2015-01-01

    The aim of this work was to study the responses of Saccharomyces bayanus cells exposed to sub-lethal high-pressure homogenization (HPH) and determine whether the plasmatic membrane can sense HPH in the presence, or absence, of exogenous unsaturated fatty acids (UFAs) in the growth medium. High-pressure homogenization damaged and caused the collapse of cell walls and membranes of a portion of cells; however, HPH did not significantly affect S. bayanus cell viability (less than 0.3 Log CFU ml(-1)). HPH strongly affected the membrane fatty acid (FA) composition by increasing the percentage of total UFA when compared with saturated fatty acids. The gene expression showed that the transcription of OLE1, ERG3, and ERG11 increased after HPH. The presence of exogenous UFA abolished HPH-induced effects on the OLE1 and ERG3 genes, increased the percentage of membrane lipids and decreased the expression of OLE1 and ERG3 within 30 min of treatment. The results suggest a key role for UFA in the microbial cell response to sub-lethal stress. In addition, these data provide insight into the molecular basis of the response of S. bayanus to this innovative technology. Elucidation of the mechanism of action for sub-lethal HPH will enable the utilization of this technology to modulate the starter performance at the industrial scale.

  13. 2,6-Dithiopurine blocks toxicity and mutagenesis in human skin cells exposed to sulfur mustard analogs, 2-chloroethyl ethyl sulfide and 2-chloroethyl methyl sulfide

    Science.gov (United States)

    Powell, K. Leslie; Boulware, Stephen; Thames, Howard; Vasquez, Karen M.; MacLeod, Michael C.

    2010-01-01

    Sulfur mustard (bis-(2-chloroethyl)sulfide) is a well known chemical warfare agent that induces debilitating cutaneous toxicity in exposed individuals. It is also known to be carcinogenic and mutagenic due to its ability to damage DNA via electrophilic attack. We previously showed that a nucleophilic scavenger, 2,6-dithiopurine (DTP), reacts chemically with several electrophilic carcinogens, blocking DNA damage in vitro and in vivo and abolishing tumor formation in a two-stage mouse skin carcinogenesis model. To assess the potential of DTP as an antagonist of sulfur mustard, we have utilized monofunctional chemical analogs of sulfur mustard, 2-chloroethyl ethyl sulfide (CEES) and 2-chloroethyl methyl sulfide (CEMS), to induce toxicity and mutagenesis in a cell line, NCTC2544, derived from a human skin tumor. We show that DTP blocks cytotoxicity in CEMS- and CEES-treated cells when present at approximately equimolar concentration. A related thiopurine, 9-methyl-6-mercaptopurine, is similarly effective. Correlated with this, we find that DTP is transported into these cells, and that adducts between DTP and CEES are found intracellularly. Using a shuttle vector-based mutagenesis system, which allows enumeration of mutations induced in the skin cells by a blue/white colony screen, we find that DTP completely abolishes mutagenesis induced by CEMS and CEES in the human cells. PMID:20050631

  14. 2,6-Dithiopurine blocks toxicity and mutagenesis in human skin cells exposed to sulfur mustard analogues, 2-chloroethyl ethyl sulfide and 2-chloroethyl methyl sulfide.

    Science.gov (United States)

    Powell, K Leslie; Boulware, Stephen; Thames, Howard; Vasquez, Karen M; MacLeod, Michael C

    2010-03-15

    Sulfur mustard (bis-(2-chloroethyl)sulfide) is a well-known chemical warfare agent that induces debilitating cutaneous toxicity in exposed individuals. It is also known to be carcinogenic and mutagenic because of its ability to damage DNA via electrophilic attack. We previously showed that a nucleophilic scavenger, 2,6-dithiopurine (DTP), reacts chemically with several electrophilic carcinogens, blocking DNA damage in vitro and in vivo and abolishing tumor formation in a two-stage mouse skin carcinogenesis model. To assess the potential of DTP as an antagonist of sulfur mustard, we have utilized monofunctional chemical analogues of sulfur mustard, 2-chloroethyl ethyl sulfide (CEES) and 2-chloroethyl methyl sulfide (CEMS), to induce toxicity and mutagenesis in a cell line, NCTC2544, derived from a human skin tumor. We show that DTP blocks cytotoxicity in CEMS- and CEES-treated cells when present at approximately equimolar concentration. A related thiopurine, 9-methyl-6-mercaptopurine, is similarly effective. Correlated with this, we find that DTP is transported into these cells and that adducts between DTP and CEES are found intracellularly. Using a shuttle vector-based mutagenesis system, which allows enumeration of mutations induced in the skin cells by a blue/white colony screen, we find that DTP completely abolishes the mutagenesis induced by CEMS and CEES in human cells.

  15. Minocycline Promotes Neurite Outgrowth of PC12 Cells Exposed to Oxygen-Glucose Deprivation and Reoxygenation Through Regulation of MLCP/MLC Signaling Pathways.

    Science.gov (United States)

    Tao, Tao; Feng, Jin-Zhou; Xu, Guang-Hui; Fu, Jie; Li, Xiao-Gang; Qin, Xin-Yue

    2017-04-01

    Minocycline, a semi-synthetic second-generation derivative of tetracycline, has been reported to exert neuroprotective effects both in animal models and in clinic trials of neurological diseases. In the present study, we first investigated the protective effects of minocycline on oxygen-glucose deprivation and reoxygenation-induced impairment of neurite outgrowth and its potential mechanism in the neuronal cell line, PC12 cells. We found that minocycline significantly increased cell viability, promoted neurite outgrowth and enhanced the expression of growth-associated protein-43 (GAP-43) in PC12 cells exposed to oxygen-glucose deprivation/reoxygenation injury. In addition, immunoblots revealed that minocycline reversed the overexpression of phosphorylated myosin light chain (MLC) and the suppression of activated extracellular signal-regulated kinase 1/2 (ERK1/2) caused by oxygen-glucose deprivation/reoxygenation injury. Moreover, the minocycline-induced neurite outgrowth was significantly blocked by Calyculin A (1 nM), an inhibitor of myosin light chain phosphatase (MLCP), but not by an ERK1/2 inhibitor (U0126; 10 μM). These findings suggested that minocycline activated the MLCP/MLC signaling pathway in PC12 cells after oxygen-glucose deprivation/reoxygenation injury, which resulted in the promotion of neurite outgrowth.

  16. Effects of niacin and betaine on bovine mammary and uterine cells exposed to thermal shock in vitro.

    Science.gov (United States)

    Xiao, Y; Rungruang, S; Hall, L W; Collier, J L; Dunshea, F R; Collier, R J

    2017-05-01

    The objective of this study was to investigate the direct effects of feed supplements niacin and betaine on the heat shock responses of in vitro cultured cells derived from bovine mammary and uterine tissues. First, we determined the mRNA expression profiles of the niacin receptor (GPR109A) in bovine tissues (liver, skin, uterus, udder, and ovary) and in cells derived from bovine mammary epithelium (mammary alveolar cells, MAC-T; bovine mammary epithelial cells, BMEC) and endometrium (bovine endometrial cells, BEND). We found that GPR109A was distributed in all examined tissues and cells, and the highest expression was in cells from skin and udder. Second, we evaluated the effects of niacin treatment on the mRNA abundance of heat shock proteins 70 and 27 (HSP70 and HSP27) in MAC-T, BMEC, and BEND under thermoneutral conditions and heat stress, and whether these effects were associated with alterations in the mRNA expression of prostaglandin E2 synthesis-related genes, including cyclooxygenase 1 and 2 (COX-1 and COX-2) and microsomal prostaglandin E synthase 1 and 2 (mPGES-1 and mPGES-2). Quantitative PCR data indicated that niacin suppressed HSP70 mRNA expression in BMEC and both HSP70 and HSP27 in BEND under thermoneutral conditions. Only COX-2 expression was downregulated by niacin in BMEC; other prostaglandin E2 synthesis-related genes stayed unaltered in BMEC and BEND. The mRNA abundance of HSP70, COX-1, COX-2, and mPGES-1 were elevated in niacin-treated MAC-T. During heat stress, niacin increased mRNA levels of HSP70 and HSP27 in MAC-T and HSP27 in BEND, but decreased HSP70 in BMEC. Although mPGES-2 was stimulated by niacin in BEND, the mRNA expression of prostaglandin E2 synthesis-related genes were consistent with neither HSP70 nor HSP27 expression patterns in niacin-treated BMEC and MAC-T. These data suggest that the effects of niacin on heat shock protein expression and prostaglandin E2 synthesis were not well coupled in these cells. Finally, we tested the

  17. Increased protein synthesis by cells exposed to a 1,800-MHz radio-frequency mobile phone electromagnetic field, detected by proteome profiling.

    Science.gov (United States)

    Gerner, Christopher; Haudek, Verena; Schandl, Ulla; Bayer, Editha; Gundacker, Nina; Hutter, Hans Peter; Mosgoeller, Wilhelm

    2010-08-01

    To investigate whether or not low intensity radio frequency electromagnetic field exposure (RF-EME) associated with mobile phone use can affect human cells, we used a sensitive proteome analysis method to study changes in protein synthesis in cultured human cells. Four different cell kinds were exposed to 2 W/kg specific absorption rate in medium containing 35S-methionine/cysteine, and autoradiography of 2D gel spots was used to measure the increased synthesis of individual proteins. While short-term RF-EME did not significantly alter the proteome, an 8-h exposure caused a significant increase in protein synthesis in Jurkat T-cells and human fibroblasts, and to a lesser extent in activated primary human mononuclear cells. Quiescent (metabolically inactive) mononuclear cells, did not detectably respond to RF-EME. Since RF exposure induced a temperature increase of less than 0.15 degrees C, we suggest that the observed cellular response is a so called "athermal" effect of RF-EME. Our finding of an association between metabolic activity and the observed cellular reaction to low intensity RF-EME may reconcile conflicting results of previous studies. We further postulate that the observed increased protein synthesis reflects an increased rate of protein turnover stemming from protein folding problems caused by the interference of radio-frequency electromagnetic fields with hydrogen bonds. Our observations do not directly imply a health risk. However, vis-a-vis a synopsis of reports on cells stress and DNA breaks, after short and longer exposure, on active and inactive cells, our findings may contribute to the re-evaluation of previous reports.

  18. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    Science.gov (United States)

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Suh, Hwa-Jin; Kim, Young Mi; Boo, Yong Chool

    2016-01-01

    Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter. PMID:27247608

  19. Transmission electron microscopy study of Listeria monocytogenes serotype 1/2a cells exposed to sublethal heat stress and carvacrol

    Science.gov (United States)

    The objective of this study was to investigate the morphological changes that occurred in Listeria monocytogenes serotype 1/2a cells as visualized by transmission electron microscopy (TEM) after exposure to sublethal heat stress at 48°C for 60 min and in combination with lethal concentration of carv...

  20. Mutation spectrum in FE1-MUTA(TM) Mouse lung epithelial cells exposed to nanoparticulate carbon black

    DEFF Research Database (Denmark)

    Jacobsen, Nicklas Raun; White, Paul A; Gingerich, John

    2011-01-01

    It has been shown previously that carbon black (CB), Printex 90 exposure induces cII and lacZ mutants in the FE1-Muta(TM) Mouse lung epithelial cell line and causes oxidatively damaged DNA and the production of reactive oxygen species (ROS). The purpose of this study was to determine the mutation...

  1. Analysis of mutant frequencies and mutation spectra in hMTH1 knockdown TK6 cells exposed to UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fotouhi, Asal [Center for Radiation Protection Research, Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University (Sweden); Hagos, Winta Woldai [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Ilic, Marina; Wojcik, Andrzej; Harms-Ringdahl, Mats [Center for Radiation Protection Research, Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University (Sweden); Gruijl, Frank de [Department of Dermatology, Leiden University Medical Center, Leiden (Netherlands); Mullenders, Leon; Jansen, Jacob G. [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Haghdoost, Siamak, E-mail: Siamak.Haghdoost@su.se [Center for Radiation Protection Research, Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University (Sweden)

    2013-11-15

    Highlights: • hMTH1 protects cells from mutagenesis induced by UVA and UVB, but not UVC. • No protective role of hMTH1 in cell survival post UVB and UVC irradiation. • hMTH1 prevents induction of transition-type mutations at AT and GC post UVA irradiation. • 2-OH-dATP rather than 8-oxo-dGTP in the nucleotide pool likely contributes in UVA-induced mutations. - Abstract: Ultraviolet radiation is a highly mutagenic agent that damages the DNA by the formation of mutagenic photoproducts at dipyrimidine sites and by oxidative DNA damages via reactive oxygen species (ROS). ROS can also give rise to mutations via oxidation of dNTPs in the nucleotide pool, e.g. 8-oxo-dGTP and 2-OH-dATP and subsequent incorporation during DNA replication. Here we show that expression of human MutT homolog 1 (hMTH1) which sanitizes the nucleotide pool by dephosphorylating oxidized dNTPs, protects against mutagenesis induced by long wave UVA light and by UVB light but not by short wave UVC light. Mutational spectra analyses of UVA-induced mutations at the endogenous Thymidine kinase gene in human lymphoblastoid cells revealed that hMTH1 mainly protects cells from transitions at GC and AT base pairs.

  2. Identification of differentially expressed genes in SHSY5Y cells exposed to okadaic acid by suppression subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Valdiglesias Vanessa

    2012-01-01

    Full Text Available Abstract Background Okadaic acid (OA, a toxin produced by several dinoflagellate species is responsible for frequent food poisonings associated to shellfish consumption. Although several studies have documented the OA effects on different processes such as cell transformation, apoptosis, DNA repair or embryogenesis, the molecular mechanistic basis for these and other effects is not completely understood and the number of controversial data on OA is increasing in the literature. Results In this study, we used suppression subtractive hybridization in SHSY5Y cells to identify genes that are differentially expressed after OA exposure for different times (3, 24 and 48 h. A total of 247 subtracted clones which shared high homology with known genes were isolated. Among these, 5 specific genes associated with cytoskeleton and neurotransmission processes (NEFM, TUBB, SEPT7, SYT4 and NPY were selected to confirm their expression levels by real-time PCR. Significant down-regulation of these genes was obtained at the short term (3 and 24 h OA exposure, excepting for NEFM, but their expression was similar to the controls at 48 h. Conclusions From all the obtained genes, 114 genes were up-regulated and 133 were down-regulated. Based on the NCBI GenBank and Gene Ontology databases, most of these genes are involved in relevant cell functions such as metabolism, transport, translation, signal transduction and cell cycle. After quantitative PCR analysis, the observed underexpression of the selected genes could underlie the previously reported OA-induced cytoskeleton disruption, neurotransmission alterations and in vivo neurotoxic effects. The basal expression levels obtained at 48 h suggested that surviving cells were able to recover from OA-caused gene expression alterations.

  3. Effects of ceftaroline on the innate immune and on the inflammatory responses of bronchial epithelial cells exposed to cigarette smoke.

    Science.gov (United States)

    Pace, E; Ferraro, M; Di Vincenzo, S; Siena, L; Gjomarkaj, M

    2016-09-06

    The tobacco smoking habit interferes with the innate host defence system against infections. Recurrent infections accelerated the functional respiratory decline. The present study assessed the effects of ceftaroline on TLR2 and TLR4 and on pro-inflammatory responses in airway epithelial cells (16HBE cell line and primary bronchial epithelial cells) with or without cigarette smoke extracts (CSE 10%). TLR2, TLR4, LPS binding and human beta defensin 2 (HBD2) were assessed by flow cytometry, NFkB nuclear translocation by western blot analysis, IL-8 and HBD2 mRNA by Real Time PCR; the localization of NFkB on the HBD2 and IL-8 promoters by ChiP Assay. CSE increased TLR4, TLR2 expression, LPS binding and IL-8 mRNA; CSE decreased HBD2 (protein and mRNA), activated NFkB and promoted the localization of NFkB on IL-8 promoter and not on HBD2 promoter. Ceftaroline counteracted the CSE effect on TLR2 expression, on LPS binding, on IL-8 mRNA, HBD2 and NFkB in 16HBE. The effects of ceftaroline on HBD2 protein and on IL-8 mRNA were confirmed in primary bronchial epithelial cells. In conclusion, ceftaroline is able to counteract the effects of CSE on the innate immunity and pro-inflammatory responses modulating TLR2, LPS binding, NFkB activation and activity, HBD2 and IL-8 expression in bronchial epithelial cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. The Kinetic Response of the Proteome in A549 Cells Exposed to ZnSO4 Stress.

    Directory of Open Access Journals (Sweden)

    Wen-Jie Zhao

    Full Text Available Zinc, an essential trace element, is involved in many important physiological processes. Cell responses to zinc stress show time-dependent effects besides concentration-dependence and tissue-specificity. Herein, we investigated the time-dependent differential expression of the proteome in A549 cells after administered with ZnSO4 for both 9 and 24 h using 2DE. 123 differentially expressed protein spots were detected, most of which were up-regulated by Zn2+ treatment. Interestingly, 49 proteins exhibited significant differential expression repeatedly during these two treatment periods, and moreover showed a conserved change with different ratios and four time-dependent expression patterns. Pattern 1 (up-regulated with rapid initial induction and subsequent repression and pattern 4 (down-regulated with steady repression were the predominant expression patterns. The abundances of the proteins in patterns 1 and 4 after 24 h of zinc treatment are always lower than that after 9 h, indicating that exogenous zinc reduced the expression of proteins in cells after 24 h or longer. Importantly, these findings could also reflect the central challenge in detecting zinc homeostasis proteins by 2DE or other high throughput analytical methods resulting from slight variation in protein expression after certain durations of exogenous zinc treatment and/or low inherent protein content in cells. These time-dependent proteome expression patterns were further validated by measuring dynamic changes in protein content in cells and in expression of two proteins using the Bradford method and western blotting, respectively. The time-dependent changes in total zinc and free Zn2+ ion contents in cells were measured using ICP-MS and confocal microscopy, respectively. The kinetic process of zinc homeostasis regulated by muffling was further revealed. In addition, we identified 50 differentially expressed proteins which are predominantly involved in metabolic process, cellular

  5. A Nonpolar Blueberry Fraction Blunts NADPH Oxidase Activation in Neuronal Cells Exposed to Tumor Necrosis Factor-α

    Science.gov (United States)

    Gustafson, Sally J.; Dunlap, Kriya L.; McGill, Colin M.; Kuhn, Thomas B.

    2012-01-01

    Inflammation and oxidative stress are key to the progressive neuronal degeneration common to chronic pathologies, traumatic injuries, and aging processes in the CNS. The proinflammatory cytokine tumor necrosis factor-alpha (TNF-α) orchestrates cellular stress by stimulating the production and release of neurotoxic mediators including reactive oxygen species (ROS). NADPH oxidases (NOX), ubiquitously expressed in all cells, have recently emerged as pivotal ROS sources in aging and disease. We demonstrated the presence of potent NOX inhibitors in wild Alaska bog blueberries partitioning discretely into a nonpolar fraction with minimal antioxidant capacity and largely devoid of polyphenols. Incubation of SH-SY5Y human neuroblastoma cells with nonpolar blueberry fractions obstructed the coalescing of lipid rafts into large domains disrupting NOX assembly therein and abolishing ROS production characteristic for TNF-α exposure. These findings illuminate nutrition-derived lipid raft modulation as a novel therapeutic approach to blunt inflammatory and oxidative stress in the aging or diseased CNS. PMID:22530077

  6. Disordered redox metabolism of brain cells in rats exposed to low doses of ionizing radiation or UHF electromagnetic radiation.

    Science.gov (United States)

    Burlaka, A P; Druzhyna, M O; Vovk, A V; Lukin, S М

    2016-12-01

    To investigate the changes of redox-state of mammalian brain cells as the critical factor of initiation and formation of radiation damage of biological structures in setting of continuous exposure to low doses of ionizing radiation or fractionated ultra high frequency electromagnetic radiation (UHF EMR) at non-thermal levels. The influence of low-intensity ionizing radiation was studied on outbred female rats kept for 1.5 years in the Chernobyl accident zone. The effects of total EMR in the UHF band of non-thermal spectrum were investigated on Wistar rats. The rate of formation of superoxide radicals and the rate of NO synthesis in mitochondria were determined by the EPR. After exposure to ionizing or UHF radiation, the levels of ubisemiquinone in brain tissue of rats decreased by 3 and 1.8 times, respectively. The content of NO-FeS-protein complexes in both groups increased significantly (р < 0.05). In the conditions of ionizing or EMR the rates of superoxide radical generation in electron-transport chain of brain cell mitochondria increased by 1.5- and 2-fold, respectively (р < 0.05). In brain tissue of rats kept in the Chernobyl zone, significant increase of NO content was registered; similar effect was observed in rats treated with UHFR (р < 0.05). The detected changes in the electron transport chain of mitochondria of brain cells upon low-intensity irradiation or UHF EMR cause the metabolic reprogramming of cell mitochondria that increases the rate of superoxide radical generation and nitric oxide, which may initiate the development of neurodegenerative diseases and cancer. This article is part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  7. Molecular genetic and biochemical responses in human airway epithelial cell cultures exposed to titanium nanoparticles in vitro.

    Science.gov (United States)

    Aydın, Elanur; Türkez, Hasan; Hacımüftüoğlu, Fazıl; Tatar, Abdulgani; Geyikoğlu, Fatime

    2017-07-01

    Titanium nanoparticles (NPs) have very wide application areas such as paint, cosmetics, pharmaceuticals, and biomedical applications. And, to translate these nanomaterials to the clinic and industrial domains, their safety needs to be verified, particularly in terms of genotoxicity and cytotoxicity. Therefore, in this study, we aimed to investigate of cytotoxicity and changes in gene expression profiles influenced by commonly titanium (as titanium carbide, titanium carbo-nitride, titanium (II) oxide, titanium (III) oxide, titanium (IV) oxide, titanium nitride, titanium silicon oxide) NPs in human alveolar epithelial (HPAEpiC) and pharynx (HPPC) cell lines in vitro since inhalation is an important pathway for exposure to these NPs. HPAEpiC and HPPC cells were treated with titanium (0-100 µg/mL), NPs for 24 and 48 h, and then cytotoxicity was detected by, [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT), uptake of neutral red (NR) and lactate dehydrogenase (LDH) release assays, while genotoxicity was also analyzed by cDNA array - RT-PCR assay. According to the results of MTT, NR and LDH assays, all tested NPs induced cytotoxicity on both HPAEpiC and HPPC cells in a time- and dose-dependent manner. Determining and analyzing the gene expression profiles of HPAEpiC and HPPC cells, titanium NPs showed more changes in genes related to DNA damage or repair, oxidative stress, and apoptosis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2056-2064, 2017. © 2017 Wiley Periodicals, Inc.

  8. Gene Expression Changes in Human Lung Cells Exposed to Arsenic, Chromium, Nickel or Vanadium Indicate the First Steps in Cancer

    OpenAIRE

    Clancy, Hailey A.; Sun, Hong; Passantino, Lisa; Kluz, Thomas; Muñoz, Alexandra; Zavadil, Jiri; Costa, Max

    2012-01-01

    The complex process of carcinogenesis begins with transformation of a single cell to favor aberrant traits such as loss of contact inhibition and unregulated proliferation – features found in every cancer. Despite cancer’s widespread prevalence, the early events that initiate cancer remain elusive, and without knowledge of these events cancer prevention is difficult. Here we show that exposure to As, Cr, Ni, or Vanadium (V) promotes changes in gene expression that occur in conjunction with ab...

  9. Cross-platform metabolomics investigating the intracellular metabolic alterations of HaCaT cells exposed to phenanthrene.

    Science.gov (United States)

    Jiang, Guoting; Kang, Hongyan; Yu, Yunqiu

    2017-08-15

    Phenanthrene (Phe) is one of the most abundant Polycyclic aromatic hydrocarbons (PAHs) contamination from various ambient sources, which has a tremendous impact on public health. However, our knowledge regarding its effects on skin remains limited. In this study, we investigated the metabolite profiling of the human keratinocytes HaCaT cells after Phe exposure to understand the toxic effects of Phe exposure on skin. To obtain a broad picture of metabolome with various hydrophilicity, a cross-platform approach with GC-MS and UHPLC-QTOF-MS has been employed. Data were analyzed by multivariate statistical analysis and samples were separated successfully using supervised PLS-DA models. It was shown that the impacts of Phe exposure on HaCaT cells were both dose-related and time-related. A total of 48 Phe-regulated metabolites were identified and among which 19 were confirmed by reference standards. By pathway analysis, amino acid metabolism, glutathione metabolism and glycerophospholipid metabolism were highlighted as the major metabolic pathways disturbed by Phe. Furthermore, it was found that the mechanisms included a reduced amino pool and a reduced antioxidant status. Overall, these results aid in improving understanding of the dermal toxicology related to Phe, and demonstrate this cross-platform approach is suitable for metabolomics researches on HaCaT cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Morphological alteration, lysosomal membrane fragility and apoptosis of the cells of Indian freshwater sponge exposed to washing soda (sodium carbonate).

    Science.gov (United States)

    Mukherjee, Soumalya; Ray, Mitali; Dutta, Manab Kumar; Acharya, Avanti; Mukhopadhyay, Sandip Kumar; Ray, Sajal

    2015-12-01

    Washing soda is chemically known as sodium carbonate and is a component of laundry detergent. Domestic effluent, drain water and various anthropogenic activities have been identified as major routes of sodium carbonate contamination of the freshwater ecosystem. The freshwater sponge, Eunapius carteri, bears ecological and evolutionary significance and is considered as a bioresource in aquatic ecosystems. The present study involves estimation of morphological damage, lysosomal membrane integrity, activity of phosphatases and apoptosis in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Exposure to washing soda resulted in severe morphological alterations and damages in cells of E. carteri. Fragility and destabilization of lysosomal membranes of E. carteri under the sublethal exposure was indicative to toxin induced physiological stress in sponge. Prolonged exposure to sodium carbonate resulted a reduction in the activity of acid and alkaline phosphatases in the cells of E. carteri. Experimental concentration of 8 mg/l of washing soda for 192 h yielded an increase in the physiological level of cellular apoptosis among the semigranulocytes and granulocytes of E. carteri, which was suggestive to possible shift in apoptosis mediated immunoprotection. The results were indicative of an undesirable shift in the immune status of sponge. Contamination of the freshwater aquifers by washing soda thus poses an alarming ecotoxicological threat to sponges. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Comparative analysis of cell killing and autosomal mutation in mouse kidney epithelium exposed to 1 GeV protons in vitro or in vivo.

    Science.gov (United States)

    Kronenberg, Amy; Gauny, Stacey; Kwoh, Ely; Grossi, Gianfranco; Dan, Cristian; Grygoryev, Dmytro; Lasarev, Michael; Turker, Mitchell S

    2013-05-01

    Human exposure to high-energy protons occurs in space flight scenarios or, where necessary, during radiotherapy for cancer or benign conditions. However, few studies have assessed the mutagenic effectiveness of high-energy protons, which may contribute to cancer risk. Mutations cause cancer and most cancer-associated mutations occur at autosomal loci. This study addresses the cytotoxic and mutagenic effects of 1 GeV protons in mouse kidney epithelium. Mutant fractions were measured for an endogenous autosomal locus (Aprt) that detects all types of mutagenic events. Results for kidneys irradiated in vivo are compared with the results for kidney cells from the same strain exposed in vitro. The results demonstrate dose-dependent cell killing in vitro and for cells explanted 3-4 months postirradiation in vivo. Incubation in vivo for longer periods (8-9 months) further attenuates proton-induced cell killing. Protons are mutagenic to cells in vitro and for in vivo irradiated kidneys. The dose-response for Aprt mutation is curvilinear after in vitro or in vivo exposure, bending upward at the higher doses. While the absolute mutant fractions are higher in vivo, the fold-increase over background is similar for both in vitro and in situ exposures. Results are also presented for a limited study on the effect of dose fractionation on the induction of Aprt mutations in kidney epithelial cells. Dose-fractionation reduces the fraction of proton-induced Aprt mutants in vitro and in vivo and also results in less cell killing. Taken together, the mutation burden in the epithelium is slightly reduced by dose-fractionation. Autosomal mutations accumulated during clinical exposure to high-energy protons may contribute to the risk of treatment-associated neoplasms, thereby highlighting the need for rigorous treatment planning to reduce the dose to normal tissues. For low dose exposures that occur during most space flight scenarios, the mutagenic effects of protons appear to be modest.

  12. Neuroprotective effects of nimodipine and nifedipine in the NGF-differentiated PC12 cells exposed to oxygen-glucose deprivation or trophic withdrawal.

    Science.gov (United States)

    Lecht, Shimon; Rotfeld, Elena; Arien-Zakay, Hadar; Tabakman, Rinat; Matzner, Henry; Yaka, Rami; Lelkes, Peter I; Lazarovici, Philip

    2012-10-01

    The goal of this study was to compare the neuroprotective properties of the L-type Ca²⁺ channel blockers, nimodipine and nifedipine, using nerve growth factor (NGF)-differentiated PC12 neuronal cultures exposed to oxygen-glucose deprivation (OGD) and trophic withdrawal-induced cell death. Nimodipine (1-100 μM) conferred 65±13% neuroprotection upon exposure to OGD and 35±6% neuroprotection towards different trophic withdrawal-induced cell death measured by lactate dehydrogenase and caspase 3 activities. The time window of nimodipine conferred neuroprotection was detected during the first 5h but not at longer OGD exposures. Nifedipine (1-100 μM), to a lower potency than nimodipine, conferred 30-55±8% neuroprotection towards OGD in PC12 cells and 29±5% in rat hypocampal slices, and 10±3% neuroprotection at 100 μM towards trophic withdrawal-induced PC12 cell death. The ability to demonstrate that nimodipine conferred neuroprotection in a narrow therapeutic time-window indicates that the OGD PC12 model mimics the in vivo models and therefore suitable for neuroprotective drug discovery and development. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. Single-strand breaks in the DNA of human cells exposed to visible light from phototherapy lamps in the presence and absence of bilirubin.

    Science.gov (United States)

    Christensen, T; Reitan, J B; Kinn, G

    1990-11-01

    Clinical evidence indicates that phototherapy of hyperbilirubinaemia in newborn infants is a safe and efficient form of therapy. The short-term side effects are not serious and seem to be well controlled. There are few long-term follow-up studies of phototherapy-treated infants. Therefore one cannot completely exclude the possibility that side effects can be found in future studies. With this background we undertook the present study of possible genotoxic effects of phototherapy. Human cells of the established glioblastoma cell line TMG-1 were used. The cells were exposed to visible light in the presence of different concentrations of bilirubin or in the absence of bilirubin. DNA was unwound in alkaline solution and the induction of strand breaks was assayed by a method taking advantage of the fluorescence from the dye Hoechst 33258. Blue light induced single-strand breaks in the DNA of cells in culture in the absence of bilirubin. During irradiation of bilirubin solutions with blue and green phototherapy light, long-lived toxic photoproducts were formed under in vitro conditions. At high and clinically relevant bilirubin concentrations, the effects of blue and green light were relatively similar. At low concentrations, there was a smaller effect of green light as expected from the absorption spectrum of bilirubin. It remains to be seen whether the genotoxic effect observed in the present studies can occur in vivo.

  14. In vitro toxicoproteomic analysis of A549 human lung epithelial cells exposed to urban air particulate matter and its water-soluble and insoluble fractions.

    Science.gov (United States)

    Vuong, Ngoc Q; Breznan, Dalibor; Goegan, Patrick; O'Brien, Julie S; Williams, Andrew; Karthikeyan, Subramanian; Kumarathasan, Premkumari; Vincent, Renaud

    2017-10-02

    Toxicity of airborne particulate matter (PM) is difficult to assess because PM composition is complex and variable due to source contribution and atmospheric transformation. In this study, we used an in vitro toxicoproteomic approach to identify the toxicity mechanisms associated with different subfractions of Ottawa urban dust (EHC-93). A549 human lung epithelial cells were exposed to 0, 60, 140 and 200 μg/cm2 doses of EHC-93 (total), its insoluble and soluble fractions for 24 h. Multiple cytotoxicity assays and proteomic analyses were used to assess particle toxicity in the exposed cells. The cytotoxicity data based on cellular ATP, BrdU incorporation and LDH leakage indicated that the insoluble, but not the soluble, fraction is responsible for the toxicity of EHC-93 in A549 cells. Two-dimensional gel electrophoresis results revealed that the expressions of 206 protein spots were significantly altered after particle exposures, where 154 were identified by MALDI-TOF-TOF-MS/MS. The results from cytotoxicity assays and proteomic analyses converged to a similar finding that the effects of the total and insoluble fraction may be alike, but their effects were distinguishable, and their effects were significantly different from the soluble fraction. Furthermore, the toxic potency of EHC-93 total is not equal to the sum of its insoluble and soluble fractions, implying inter-component interactions between insoluble and soluble materials resulting in synergistic or antagonistic cytotoxic effects. Pathway analysis based on the low toxicity dose (60 μg/cm2) indicated that the two subfractions can alter the expression of those proteins involved in pathways including cell death, cell proliferation and inflammatory response in a distinguishable manner. For example, the insoluble and soluble fractions differentially affected the secretion of pro-inflammatory cytokines such as MCP-1 and IL-8 and distinctly altered the expression of those proteins (e.g., TREM1, PDIA3 and ENO1

  15. The heat-shock factor is not activated in mammalian cells exposed to cellular phone frequency microwaves.

    Science.gov (United States)

    Laszlo, Andrei; Moros, Eduardo G; Davidson, Teri; Bradbury, Matt; Straube, William; Roti Roti, Joseph

    2005-08-01

    There has been considerable interest in the biological effects of exposure to radiofrequency electromagnetic radiation, given the explosive growth of cellular telephone use, with the possible induction of malignancy being a significant concern. Thus the determination of whether nonthermal effects of radiofrequency electromagnetic radiation contribute to the process leading to malignancy is an important task. One proposed pathway to malignancy involves the induction of the stress response by exposures to cell phone frequency microwaves. The first step in the induction of the stress response is the activation of the DNA-binding activity of the specific transcription factor involved in this response, the heat-shock factor (HSF). The DNA-binding activity of HSF in hamster, mouse and human cells was determined after acute and continuous exposures to frequency domain multiple access (FDMA)- or code domain multiple access (CDMA)-modulated microwaves at low (0.6 W/kg) or high (approximately 5 W/kg) SARs at frequencies used for mobile communication. The DNA-binding activity of HSF was monitored using a gel shift assay; the calibration of this assay indicated that an increase of approximately 10% in the activation of the DNA-binding activity of HSF after a 1 degrees C increase in temperature could be detected. We failed to detect any increase in the DNA-binding ability of HSF in cultured mammalian cells as a consequence of any exposure tested, within the sensitivity of our assay. Our results do not support the notion that the stress response is activated as a consequence of exposure to microwaves of frequencies associated with mobile communication devices.

  16. Kinetics of B Cell responses to Plasmodium falciparum erythrocyte membrane protein 1 in Ghanaian women naturally exposed to malaria parasites

    DEFF Research Database (Denmark)

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F

    2014-01-01

    confirmed earlier reports of high atypical memory B cell frequencies among residents of P. falciparum-endemic areas, and indicated an additional effect of pregnancy. Our study provides new knowledge regarding immunity to P. falciparum malaria and underpins efforts to develop PfEMP1-based vaccines against......Naturally acquired protective immunity to Plasmodium falciparum malaria takes years to develop. It relies mainly on Abs, particularly IgG specific for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins on the infected erythrocyte surface. It is only partially understood why...

  17. Induction of chromatin damage and distribution of isochromatid breaks in human fibroblast cells exposed to heavy ions

    Science.gov (United States)

    Kawata, Tetsuya; Ito, Hisao; Motoori, Ken; Ueda, Takuya; Shigematsu, Naoyuki; Furusawa, Yoshiya; Durante, Marco; George, Kerry; Wu, Honglu; Cucinotta, Francis A.

    2002-01-01

    The frequency of chromatid breaks and the distribution of isochromatid breaks were measured in G2-phase normal human fibroblasts prematurely condensed a short time after exposure to low- or high-LET radiations. The average number of isochromatid breaks from a single particle traversal increased with increasing LET values, while the average number of chromatid-type breaks appeared to reach a plateau. The distribution of isochromatid breaks after high-LET iron particles exposure was overdispersed compared to gamma-rays, indicating that a single iron particle traversal through a cell nucleus can produce multiple isochromatid breaks.

  18. Lead induces similar gene expression changes in brains of gestationally exposed adult mice and in neurons differentiated from mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Francisco Javier Sánchez-Martín

    Full Text Available Exposure to environmental toxicants during embryonic life causes changes in the expression of developmental genes that may last for a lifetime and adversely affect the exposed individual. Developmental exposure to lead (Pb, an ubiquitous environmental contaminant, causes deficits in cognitive functions and IQ, behavioral effects, and attention deficit hyperactivity disorder (ADHD. Long-term effects observed after early life exposure to Pb include reduction of gray matter, alteration of myelin structure, and increment of criminal behavior in adults. Despite growing research interest, the molecular mechanisms responsible for the effects of lead in the central nervous system are still largely unknown. To study the molecular changes due to Pb exposure during neurodevelopment, we exposed mice to Pb in utero and examined the expression of neural markers, neurotrophins, transcription factors and glutamate-related genes in hippocampus, cortex, and thalamus at postnatal day 60. We found that hippocampus was the area where gene expression changes due to Pb exposure were more pronounced. To recapitulate gestational Pb exposure in vitro, we differentiated mouse embryonic stem cells (ESC into neurons and treated ESC-derived neurons with Pb for the length of the differentiation process. These neurons expressed the characteristic neuronal markers Tubb3, Syp, Gap43, Hud, Ngn1, Vglut1 (a marker of glutamatergic neurons, and all the glutamate receptor subunits, but not the glial marker Gafp. Importantly, several of the changes observed in Pb-exposed mouse brains in vivo were also observed in Pb-treated ESC-derived neurons, including those affecting expression of Ngn1, Bdnf exon IV, Grin1, Grin2D, Grik5, Gria4, and Grm6. We conclude that our ESC-derived model of toxicant exposure during neural differentiation promises to be a useful model to analyze mechanisms of neurotoxicity induced by Pb and other environmental agents.

  19. Functional Metabolomics Uncovers Metabolic Alterations Associated to Severe Oxidative Stress in MCF7 Breast Cancer Cells Exposed to Ascididemin

    Directory of Open Access Journals (Sweden)

    Daniel Morvan

    2013-10-01

    Full Text Available Marine natural products are a source of promising agents for cancer treatment. However, there is a need to improve the evaluation of their mechanism of action in tumors. Metabolomics of the response to anti-tumor agents is a tool to reveal candidate biomarkers and metabolic targets. We used two-dimensional high-resolution magic angle spinning proton-NMR spectroscopy-based metabolomics to investigate the response of MCF7 breast cancer cells to ascididemin, a marine alkaloid and lead molecule for anti-cancer treatment. Ascididemin induced severe oxidative stress and apoptosis within 48 h of exposure. Thirty-three metabolites were quantified. Metabolic response involved downregulation of glycolysis and the tricarboxylic acid cycle, and phospholipid metabolism alterations. Candidate metabolic biomarkers of the response of breast cancer cells to ascididemin were proposed including citrate, gluconate, polyunsaturated fatty acids, glycerophospho-choline and -ethanolamine. In addition, candidate metabolic targets were identified. Overall, the response to Asc could be related to severe oxidative stress and anti-inflammatory effects.

  20. Decreasing NF-κB expression enhances odontoblastic differentiation and collagen expression in dental pulp stem cells exposed to inflammatory cytokines.

    Directory of Open Access Journals (Sweden)

    Neda S T Hozhabri

    Full Text Available Inflammatory response in the dental pulp can alter the collagen matrix formation by dental pulp stem cells and lead to a delay or poor healing of the pulp. This inflammatory response is mediated by cytokines, including interleukin-1β and tumor necrosis factor-α. In this study, it is hypothesized that suppressing the actions of these inflammatory cytokines by knocking down the activity of transcription factor Nuclear Factor-κB will lead to dental pulp stem cell differentiation into odontoblasts and the production of collagen. Here, the role of Nuclear Factor-κB signaling and its reduction was examined during odontogenic behavior in the presence of these cytokines. The results showed a significant increase in Nuclear Factor-κB gene expression and p65 protein expression by interleukin-1β and tumor necrosis factor-α. Nuclear Factor-κB activation in the presence of these cytokines decreased significantly in a dose-dependent manner by a Nuclear Factor-κB inhibitor (MG132 and p65 siRNA. Down-regulation of Nuclear Factor-κB activity also enhanced the gene expression of the odontoblastic markers (dentin sialophosphoprotein, Nestin, and alkaline phosphatase and displayed an odontoblastic cell morphology indicating the promotion of odontogenic differentiation of dental pulp stem cells. Finally, dental pulp stem cells exposed to reduced Nuclear Factor-κB activity resulted in a significant increase in collagen (I-α1 expression in the presence of these cytokines. In conclusion, a decrease in Nuclear Factor-κB in dental pulp stem cells in the presence of inflammatory cytokines enhanced odontoblastic differentiation and collagen matrix formation.

  1. Decreasing NF-κB expression enhances odontoblastic differentiation and collagen expression in dental pulp stem cells exposed to inflammatory cytokines.

    Science.gov (United States)

    Hozhabri, Neda S T; Benson, M Douglas; Vu, Michael D; Patel, Rinkesh H; Martinez, Rebecca M; Nakhaie, Fatemeh N; Kim, Harry K W; Varanasi, Venu G

    2015-01-01

    Inflammatory response in the dental pulp can alter the collagen matrix formation by dental pulp stem cells and lead to a delay or poor healing of the pulp. This inflammatory response is mediated by cytokines, including interleukin-1β and tumor necrosis factor-α. In this study, it is hypothesized that suppressing the actions of these inflammatory cytokines by knocking down the activity of transcription factor Nuclear Factor-κB will lead to dental pulp stem cell differentiation into odontoblasts and the production of collagen. Here, the role of Nuclear Factor-κB signaling and its reduction was examined during odontogenic behavior in the presence of these cytokines. The results showed a significant increase in Nuclear Factor-κB gene expression and p65 protein expression by interleukin-1β and tumor necrosis factor-α. Nuclear Factor-κB activation in the presence of these cytokines decreased significantly in a dose-dependent manner by a Nuclear Factor-κB inhibitor (MG132) and p65 siRNA. Down-regulation of Nuclear Factor-κB activity also enhanced the gene expression of the odontoblastic markers (dentin sialophosphoprotein, Nestin, and alkaline phosphatase) and displayed an odontoblastic cell morphology indicating the promotion of odontogenic differentiation of dental pulp stem cells. Finally, dental pulp stem cells exposed to reduced Nuclear Factor-κB activity resulted in a significant increase in collagen (I)-α1 expression in the presence of these cytokines. In conclusion, a decrease in Nuclear Factor-κB in dental pulp stem cells in the presence of inflammatory cytokines enhanced odontoblastic differentiation and collagen matrix formation.

  2. An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Directory of Open Access Journals (Sweden)

    van Delft Joost

    2011-05-01

    Full Text Available Abstract Background In vitro cell systems together with omics methods represent promising alternatives to conventional animal models for toxicity testing. Transcriptomic and proteomic approaches have been widely applied in vitro but relatively few studies have used metabolomics. Therefore, the goal of the present study was to develop an untargeted methodology for performing reproducible metabolomics on in vitro systems. The human liver cell line HepG2, and the well-known hepatotoxic and non-genotoxic carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, were used as the in vitro model system and model toxicant, respectively. Results The study focused on the analysis of intracellular metabolites using NMR, LC-MS and GC-MS, with emphasis on the reproducibility and repeatability of the data. State of the art pre-processing and alignment tools and multivariate statistics were used to detect significantly altered levels of metabolites after exposing HepG2 cells to TCDD. Several metabolites identified using databases, literature and LC-nanomate-Orbitrap analysis were affected by the treatment. The observed changes in metabolite levels are discussed in relation to the reported effects of TCDD. Conclusions Untargeted profiling of the polar and apolar metabolites of in vitro cultured HepG2 cells is a valid approach to studying the effects of TCDD on the cell metabolome. The approach described in this research demonstrates that highly reproducible experiments and correct normalization of the datasets are essential for obtaining reliable results. The effects of TCDD on HepG2 cells reported herein are in agreement with previous studies and serve to validate the procedures used in the present work.

  3. Osmolarity and spectrophotometric property of brilliant blue green define the degree of toxicity on retinal pigment epithelial cells exposed to surgical endoilluminator.

    Science.gov (United States)

    Balaiya, Sankarathi; Sambhav, Kumar; Cook, William B; Chalam, Kakarla V

    2016-01-01

    To evaluate the effect of varying concentrations of brilliant blue green (BBG) and their different biochemical characteristics on retinal pigment epithelial (RPE) cells under xenon light source illumination at varying distances to identify safe parameters for intraoperative use. Human retinal RPE cells (ARPE-19) were exposed to two concentrations (0.25 and 0.50 mg/mL) of BBG and illuminated with a xenon surgical illuminator at varying distances (10 and 25 mm), intensity levels, and time intervals (1, 5, and 15 minutes). Additionally, the effect of osmolarity was examined by diluting BBG in different concentrations of glucose. Cytotoxicity of BBG and osmolarity effects on cell viability were evaluated using a WST-1 assay. Light absorption and emission characteristic of BBG in different solvents were measured using a plate reader at different wavelengths. Lastly, the activity of caspase-3 was also studied. Cell viability of ARPE-19 cells was 77.4%±12.7%, 78.7%±17.0%, and 65.0%±19.7% at 1, 5, and 15 minutes to exposure of high illumination xenon light at 10 mm (Plight in different osmolar solutions concentrations of glucose (P>0.05). Maximal light absorption of BBG was noted between 540 and 680 nm. Activated caspase-3 level was not significant in both the concentrations of BBG (P>0.05). Our findings suggest that BBG at 0.25 mg/mL during vitreoretinal surgery is safe and not toxic to RPE cells up to 5 minutes under focal high illumination (10 mm) and up to 15 minutes under medium diffuse illumination (25 mm). BBG was safe to be mixed with isotonic glucose solution at the concentration range of 2.5%-10%, regardless of the illumination status.

  4. Transcriptome analysis of human peripheral blood mononuclear cells exposed to Lassa virus and to the attenuated Mopeia/Lassa reassortant 29 (ML29), a vaccine candidate.

    Science.gov (United States)

    Zapata, Juan Carlos; Carrion, Ricardo; Patterson, Jean L; Crasta, Oswald; Zhang, Yan; Mani, Sachin; Jett, Marti; Poonia, Bhawna; Djavani, Mahmoud; White, David M; Lukashevich, Igor S; Salvato, Maria S

    2013-01-01

    Lassa virus (LASV) is the causative agent of Lassa Fever and is responsible for several hundred thousand infections and thousands of deaths annually in West Africa. LASV and the non-pathogenic Mopeia virus (MOPV) are both rodent-borne African arenaviruses. A live attenuated reassortant of MOPV and LASV, designated ML29, protects rodents and primates from LASV challenge and appears to be more attenuated than MOPV. To gain better insight into LASV-induced pathology and mechanism of attenuation we performed gene expression profiling in human peripheral blood mononuclear cells (PBMC) exposed to LASV and the vaccine candidate ML29. PBMC from healthy human subjects were exposed to either LASV or ML29. Although most PBMC are non-permissive for virus replication, they remain susceptible to signal transduction by virus particles. Total RNA was extracted and global gene expression was evaluated during the first 24 hours using high-density microarrays. Results were validated using RT-PCR, flow cytometry and ELISA. LASV and ML29 elicited differential expression of interferon-stimulated genes (ISG), as well as genes involved in apoptosis, NF-kB signaling and the coagulation pathways. These genes could eventually serve as biomarkers to predict disease outcomes. The remarkable differential expression of thrombomodulin, a key regulator of inflammation and coagulation, suggests its involvement with vascular abnormalities and mortality in Lassa fever disease.

  5. Phenological and liver antioxidant profiles of adult Nile tilapia (Oreochromis niloticus) exposed to toxic live cyanobacterium (Microcystis aeruginosa Kützing) cells.

    Science.gov (United States)

    Khairy, Hanan M; Ibrahim, Marwa A; Ibrahem, Mai D

    2012-01-01

    Blue-green algae (cyanobacteria) constitute the greater part of the phytoplankton. Microcystis aeruginosa is amongst the most ubiquitously distributed cyanobacterial species, and almost invariably produces cyclic heptapeptide toxins called microcystins (MCs). The present study was designed to investigate the phenological and liver antioxidant profiles of the Nile tilapia Oreochromis niloticus chronically exposed to toxic live M. aeruginosa cells. Fish were grown in the absence and presence of M. aeruginosa in three different concentrations for seven days, and subsequently reared for another 30 days in the absence of the cyanobacteria. While cyanobacteria did not cause any fish mortality, there was a progressive development of yellowish discolouration in the livers of exposed fish. In the livers, the activities and levels of superoxide dismutase (SOD), lactate dehydrogenase (LDH), glutathione (GSH), and lipid peroxidation products like malondialdehyde (MDA) were elevated in response to the concentration of M. aeruginosa. Moreover, DNA fragmentation and DNA-protein crosslinks were measured. These parameters can thus be considered potential biomarkers for the fish exposure to M. aeruginosa. The present study sheds light on cyanobacterial blooms like health, environmental, and economic problem, respectively.

  6. Apoptosis inhibition and ornithine decarboxylase superinduction as early epigenetic events in morphological transformation of Syrian hamster embryo cells exposed to 2-methoxyacetaldehyde, a metabolite of 2-methoxyethanol.

    Science.gov (United States)

    Dhalluin, S; Elias, Z; Poirot, O; Gate, L; Pages, N; Tapiero, H; Vasseur, P; Nguyen-Ba, G

    1999-03-29

    We have conducted a study to determine the carcinogenic potential of ethylene glycol monomethyl ether (EGME), a member of the glycol ether family, as compared to its reactive metabolite 2-methoxy-acetaldehyde (MALD). Since disruption of equilibrium between cell proliferation and cell death is thought to play a key role in multistage carcinogenesis, we investigated, in Syrian hamster embryo (SHE) cells exposed to various doses of EGME and MALD, impairment in apoptosis rate and in ornithine decarboxylase (ODC) metabolism. The activity of this rate-limiting enzyme of polyamine biosynthesis is closely related to cell proliferation and cell transformation. At the end-point, comparative action of the two products on SHE cell morphological transformation frequency was evaluated. One-stage exposure of SHE cells to 2 mM EGME and 200 microM MALD for 5 h did not change basal apoptotic level, whereas 0.16 microM phorbol ester (TPA) decreased it. Using two-stage exposure protocol (1 h xenobiotic followed by 5 h TPA), MALD strongly inhibited apoptosis more than did TPA alone; the parent compound EGME did not have any effect on TPA inhibiting action. Western blotting analysis showed that sequential treatment (MALD/TPA) increased Bcl-2 oncoprotein expression, whereas Bcl-XL and Bax proteins were not changed. The same staged exposure of SHE cells to MALD/TPA strongly induced ODC activity, and the rate was higher than that obtained with TPA alone: this was accompanied by an increase of ODC protein level. This ODC superinduction was not observed with EGME/TPA treatment. In long-term SHE-cell morphological transformation assay, staged exposure to MALD (800 microM or 1 mM for 24 h) followed by TPA applications increased the number of transformed colonies at the seventh day. Such early cooperative events as apoptosis inhibition and ODC superinduction, followed by the increase of SHE-cell transformation frequency, are highly indicative of a carcinogenic potential for the metabolite, MALD.

  7. Oxidative stress enhances and modulates protein S-nitrosation in smooth muscle cells exposed to S-nitrosoglutathione.

    Science.gov (United States)

    Belcastro, E; Wu, W; Fries-Raeth, I; Corti, A; Pompella, A; Leroy, P; Lartaud, I; Gaucher, C

    2017-09-30

    Among S-nitrosothiols showing reversible binding between NO and -SH group, S-nitrosoglutathione (GSNO) represents potential therapeutics to treat cardiovascular diseases (CVD) associated with reduced nitric oxide (NO) availability. It also induces S-nitrosation of proteins, responsible for the main endogenous storage form of NO. Although oxidative stress parallels CVD development, little is known on the ability of GSNO to restore NO supply and storage in vascular tissues under oxidative stress conditions. Aortic rat smooth muscle cells (SMC) were stressed in vitro with a free radical generator (2,2'-azobis(2-amidinopropane) dihydrochloride, AAPH). The cellular thiol redox status was reflected through levels of reduced glutathione and protein sulfhydryl (SH) groups. The ability of GSNO to deliver NO to SMC and to induce protein S-nitrosation (investigated via mass spectrometry, MS), as well as the implication of two redox enzymes involved in GSNO metabolism (activity of gamma-glutamyltransferase, GGT, and expression of protein disulfide isomerase, PDI) were evaluated. Oxidative stress decreased both intracellular glutathione and protein -SH groups (53% and 32% respectively) and caused a 3.5-fold decrease of GGT activity, while PDI expression at the plasma membrane was 1.7-fold increased without any effect on extracellular GSNO catabolism. Addition of GSNO (50 μM) increased protein -SH groups and protein S-nitrosation (50%). Mass spectrometry analysis revealed a higher number of S-nitrosated proteins under oxidative stress (83 proteins, vs 68 in basal conditions) including a higher number of cytoskeletal proteins (15, vs 9 in basal conditions) related with cell contraction, morphogenesis and movement. Furthermore, proteins belonging to additional protein classes (cell adhesion, transfer/carrier, and transporter proteins) were S-nitrosated under oxidative stress. In conclusion, higher levels of GSNO-dependent S-nitrosation of proteins from the cytoskeleton and the

  8. DNA damage in buccal mucosa cells of pre-school children exposed to high levels of urban air pollutants.

    Directory of Open Access Journals (Sweden)

    Elisabetta Ceretti

    Full Text Available Air pollution has been recognized as a human carcinogen. Children living in urban areas are a high-risk group, because genetic damage occurring early in life is considered able to increase the risk of carcinogenesis in adulthood. This study aimed to investigate micronuclei (MN frequency, as a biomarker of DNA damage, in exfoliated buccal cells of pre-school children living in a town with high levels of air pollution. A sample of healthy 3-6-year-old children living in Brescia, Northern Italy, was investigated. A sample of the children's buccal mucosa cells was collected during the winter months in 2012 and 2013. DNA damage was investigated using the MN test. Children's exposure to urban air pollution was evaluated by means of a questionnaire filled in by their parents that included items on various possible sources of indoor and outdoor pollution, and the concentration of fine particulate matter (PM10, PM2.5 and NO2 in the 1-3 weeks preceding biological sample collection. 181 children (mean age ± SD: 4.3 ± 0.9 years were investigated. The mean ± SD MN frequency was 0.29 ± 0.13%. A weak, though statistically significant, association of MN with concentration of air pollutants (PM10, PM2.5 and NO2 was found, whereas no association was apparent between MN frequency and the indoor and outdoor exposure variables investigated via the questionnaire. This study showed a high MN frequency in children living in a town with heavy air pollution in winter, higher than usually found among children living in areas with low or medium-high levels of air pollution.

  9. High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells

    Science.gov (United States)

    Gonzalez Carter, Daniel A.; Motskin, Michael; Pienaar, Ilse S.; Chen, Shu; Hu, Sheng; Ruenraroengsak, Pakatip; Ryan, Mary P.; Shaffer, Milo S. P.; Dexter, David T.

    2016-01-01

    Multi-walled carbon nanotubes (MWNTs) are increasingly being developed both as neuro-therapeutic drug delivery systems to the brain and as neural scaffolds to drive tissue regeneration across lesion sites. MWNTs with different degrees of acid oxidation may have different bioreactivities and propensities to aggregate in the extracellular environment, and both individualised and aggregated MWNTs may be expected to be found in the brain. Before practical application, it is vital to understand how both aggregates and individual MWNTs will interact with local phagocytic immune cells, the microglia, and ultimately to determine their biopersistence in the brain. The processing of extra- and intracellular MWNTs (both pristine and when acid oxidised) by microglia was characterised across multiple length scales by correlating a range of dynamic, quantitative and multi-scale techniques, including: UV-vis spectroscopy, light microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy. Dynamic, live cell imaging revealed the ability of microglia to break apart and internalise micron-sized extracellular agglomerates of acid oxidised MWNT, but not pristine MWNTs. The total amount of MWNTs internalised by, or strongly bound to, microglia was quantified as a function of time. Neither the significant uptake of oxidised MWNTs, nor the incomplete uptake of pristine MWNTs affected microglial viability, pro-inflammatory cytokine release or nitric oxide production. However, after 24 hrs exposure to pristine MWNTs, a significant increase in the production of reactive oxygen species was observed. Small aggregates and individualised oxidised MWNTs were present in the cytoplasm and vesicles, including within multilaminar bodies, after 72 hours. Some evidence of morphological damage to oxidised MWNT structure was observed including highly disordered graphitic structures, suggesting possible biodegradation. This work demonstrates the utility of dynamic

  10. Characterization of exoelectrogenic bacteria enterobacter strains isolated from a microbial fuel cell exposed to copper shock load.

    Directory of Open Access Journals (Sweden)

    Cuijie Feng

    Full Text Available Microorganisms capable of generating electricity in microbial fuel cells (MFCs have gained increasing interest. Here fourteen exoelectrogenic bacterial strains were isolated from the anodic biofilm in an MFC before and after copper (Cu shock load by Hungate roll-tube technique with solid ferric (III oxide as an electron acceptor and acetate as an electron donor. Phylogenetic analysis of the 16S rRNA gene sequences revealed that they were all closely related to Enterobacter ludwigii DSM 16688T within the Enterobacteriaceae family, although these isolated bacteria showed slightly different morphology before and after Cu shock load. Two representative strains R2B1 (before Cu shock load and B4B2 (after Cu shock load were chosen for further analysis. B4B2 is resistant to 200 mg L-1 of Cu(II while R2B1 is not, which indicated the potential selection of the Cu shock load. Raman analysis revealed that both R2B1 and B4B2 contained c-type cytochromes. Cyclic voltammetry measurements revealed that strain R2B1 had the capacity to transfer electrons to electrodes. The experimental results demonstrated that strain R2B1 was capable of utilizing a wide range of substrates, including Luria-Bertani (LB broth, cellulose, acetate, citrate, glucose, sucrose, glycerol and lactose to generate electricity, with the highest current density of 440 mA·m-2 generated from LB-fed MFC. Further experiments indicated that the bacterial cell density had potential correlation with the current density.

  11. Reduction of pluripotent gene expression in murine embryonic stem cells exposed to mechanical loading or Cyclo RGD peptide.

    Science.gov (United States)

    Hazenbiller, Olesja; Duncan, Neil A; Krawetz, Roman J

    2017-11-14

    Self-renewal and differentiation of embryonic stem cells (ESCs) is directed by biological and/or physical cues that regulate multiple signaling cascades. We have previously shown that mESCs seeded in a type I collagen matrix demonstrate a loss of pluripotent marker expression and differentiate towards an osteogenic lineage. In this study, we examined if this effect was mediated in part through Arginylglycylaspartic acid (RGD) dependent integrin activity and/or mechano-transduction. The results from this study suggest that mESC interaction with the local microenvironment through RGD dependent integrins play a role in the regulation of mESC core transcription factors (TF), Oct-4, Sox 2 and Nanog. Disruption of this interaction with a cyclic RGD peptide (cRGDfC) was sufficient to mimic the effect of a mechanical stimulus in terms of pluripotent gene expression, specifically, we observed that supplementation with cRGDfC, or mechanical stimulus, significantly influenced mESC pluripotency by down-regulating core transcription factors. Moreover, our results indicated that the presence of the cRGDfC peptide inhibited integrin expression and up-regulated early lineage markers (mesoderm and ectoderm) in a Leukemia inhibitory factor (LIF) dependent manner. When cRGDfC treated mESCs were injected in Severe combined immunodeficiency (SCID) mice, no tissue growth and/or teratoma formation was observed, suggesting that the process of mESC tumor formation in vivo is potentially dependent on integrin interaction. Overall, the disruption of cell-integrin interaction via cRGDfC peptide can mimic the effect of mechanical stimulation on mESC pluripotency gene expression and also inhibit the tumorigenic potential of mESCs in vivo.

  12. Global transcriptional response of Escherichia coli MG1655 cells exposed to the oxygenated monoterpenes citral and carvacrol.

    Science.gov (United States)

    Chueca, Beatriz; Pérez-Sáez, Elisa; Pagán, Rafael; García-Gonzalo, Diego

    2017-09-18

    DNA microarrays were used to study the mechanism of bacterial inactivation by carvacrol and citral. After 10-min treatments of Escherichia coli MG1655 cells with 100 and 50ppm of carvacrol and citral, 76 and 156 genes demonstrated significant transcriptional differences (p≤0.05), respectively. Among the up-regulated genes after carvacrol treatment, we found gene coding for multidrug efflux pumps (acrA, mdtM), genes related to phage shock response (pspA, pspB, pspC, pspD, pspF and pspG), biosynthesis of arginine (argC, argG, artJ), and purine nucleotides (purC, purM). In citral-treated cells, transcription of purH and pyrB and pyrI was 2 times higher. Deletion of several differentially expressed genes confirmed the role of ygaV, yjbO, pspC, sdhA, yejG and ygaV in the mechanisms of E. coli inactivation by carvacrol and citral. These results would indicate that citral and carvacrol treatments cause membrane damage and activate metabolism through the production of nucleotides required for DNA and RNA synthesis and metabolic processes. Comparative transcriptomics of the response of E. coli to a heat treatment, which caused a significant change of the transcription of 1422 genes, revealed a much weaker response to both individual constituents of essential oils (ICs).·Thus, inactivation by citral or carvacrol was not multitarget in nature. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of L-carnitine, erythritol and betaine on pro-inflammatory markers in primary human corneal epithelial cells exposed to hyperosmotic stress.

    Science.gov (United States)

    Hua, Xia; Su, Zhitao; Deng, Ruzhi; Lin, Jing; Li, De-Quan; Pflugfelder, Stephen C

    2015-07-01

    To explore the effects of osmoprotectants on pro-inflammatory mediator production in primary human corneal epithelial cells (HCECs) exposed to hyperosmotic stress. HCECs cultured in iso-osmolar medium (312 mOsM) were switched to hyperosmotic media with or without prior incubation with 2-20 mM of l-carnitine, erythritol or betaine for different time periods. The mRNA expression and protein production of pro-inflammatory markers in HCECs were evaluated by RT-qPCR and ELISA. Hyperosmolar media significantly stimulated the mRNA and protein expression of pro-inflammatory cytokines, TNF-α, IL-1β and IL-6, and chemokines, IL-8, CCL2 and CCL20 in HCECs in an osmolarity dependent manner. The stimulated expression of these pro-inflammatory mediators was significantly but differentially suppressed by l-carnitine, erythritol or betaine. l-Carnitine displayed the greatest inhibitory effects and down-regulated 54-77% of the stimulated mRNA levels of TNF-α (down from 12.3-5.7 fold), IL-1β (2.2-0.9 fold), IL-6 (7.3-2.9 fold), IL-8 (4.6-2.0 fold), CCL2 (15.3-3.5 fold) and CCL20 (4.1-1.5 fold) in HCECs exposed to 450 mOsM. The stimulated protein production of TNF-α, IL-1β, IL-6 and IL-8 was also significantly suppressed by l-carnitine, erythritol and betaine. l-carnitine suppressed 49-79% of the stimulated protein levels of TNF-α (down from 81.3 to 17.4 pg/ml), IL-1β (56.9-29.2 pg/ml), IL-6 (12.8-4.6 ng/ml) and IL-8 (21.2-10.9 ng/ml) by HCECs exposed to 450 mOsM. Interestingly, hyperosmolarity stimulated increase in mRNA and protein levels of TNF-α, IL-1β and IL-6 were significantly suppressed by a transient receptor potential vanilloid channel type 1 (TRPV1) activation inhibitor capsazepine. l-carnitine, erythritol and betaine function as osmoprotectants to suppress inflammatory responses via TRPV1 pathway in HCECs exposed to hyperosmotic stress. Osmoprotectants may have efficacy in reducing innate inflammation in dry eye disease.

  14. Live-cell imaging to detect phosphatidylserine externalization in brain endothelial cells exposed to ionizing radiation: implications for the treatment of brain arteriovenous malformations.

    Science.gov (United States)

    Zhao, Zhenjun; Johnson, Michael S; Chen, Biyi; Grace, Michael; Ukath, Jaysree; Lee, Vivienne S; McRobb, Lucinda S; Sedger, Lisa M; Stoodley, Marcus A

    2016-06-01

    OBJECT Stereotactic radiosurgery (SRS) is an established intervention for brain arteriovenous malformations (AVMs). The processes of AVM vessel occlusion after SRS are poorly understood. To improve SRS efficacy, it is important to understand the cellular response of blood vessels to radiation. The molecular changes on the surface of AVM endothelial cells after irradiation may also be used for vascular targeting. This study investigates radiation-induced externalization of phosphatidylserine (PS) on endothelial cells using live-cell imaging. METHODS An immortalized cell line generated from mouse brain endothelium, bEnd.3 cells, was cultured and irradiated at different radiation doses using a linear accelerator. PS externalization in the cells was subsequently visualized using polarity-sensitive indicator of viability and apoptosis (pSIVA)-IANBD, a polarity-sensitive probe. Live-cell imaging was used to monitor PS externalization in real time. The effects of radiation on the cell cycle of bEnd.3 cells were also examined by flow cytometry. RESULTS Ionizing radiation effects are dose dependent. Reduction in the cell proliferation rate was observed after exposure to 5 Gy radiation, whereas higher radiation doses (15 Gy and 25 Gy) totally inhibited proliferation. In comparison with cells treated with sham radiation, the irradiated cells showed distinct pseudopodial elongation with little or no spreading of the cell body. The percentages of pSIVA-positive cells were significantly higher (p = 0.04) 24 hours after treatment in the cultures that received 25- and 15-Gy doses of radiation. This effect was sustained until the end of the experiment (3 days). Radiation at 5 Gy did not induce significant PS externalization compared with the sham-radiation controls at any time points (p > 0.15). Flow cytometric analysis data indicate that irradiation induced growth arrest of bEnd.3 cells, with cells accumulating in the G2 phase of the cell cycle. CONCLUSIONS Ionizing radiation

  15. B-cell responses to pregnancy-restricted and -unrestricted Plasmodium falciparum erythrocyte membrane protein 1 antigens in Ghanaian women naturally exposed to malaria parasites

    DEFF Research Database (Denmark)

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F

    2014-01-01

    -linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two...... immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme...... commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods...

  16. Changes of Gene Expression in the Apoptosis Pathway in Lncap and PC3 Cells Exposed to X-Rays or Protons

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. In our current studies, we investigated the expressions of apoptosis related gene expression profile (84 genes) in two distinct prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-) before and after exposure to X-rays or protons, using cDNA PCR arrays. In Lncap cells, 10Gy X-ray radiation significantly induced the expression of 19 out of 84 genes at 4h after irradiation. The changed genes were mostly in death and death receptor domain families, TNF ligand and receptor families, and apoptotic group of the BCL2 family, especially in P53 related genes, such as FAS, BAX, BAK1 and GADD45A. In PC3, X-rays only induced the expression of 3 genes, including an increased expression of BIRC3. There was no difference of the X-ray mediated cell killing in both cell lines using the cell cycle analysis. However, these X-ray-induced gene expression differences between PC3 and Lncap may explain the phenotype of PC3 cells that shows more tolerant not only to radiation, but also to other apoptosis inducing and sensitizing reagents. To compare the effectiveness of cell killing with X-rays, we also exposed PC3 cells to 10Gy protons at the Bragg peak region. Protons did not induce more apoptosis than X-rays for the same dose. In comparison to X-rays, protons significantly altered expressions of 13 genes in PC3, which included decreased expressions of anti-apoptosis genes (BCL2 and BCL2L2), and increased expressions of death and death receptor domain family genes, TNF ligand and receptor family and several kinases (FAS, DAPK1 and RIPK2). These data suggest that proton treatment is more effective in influencing the apoptosis pathways in PC3 cells than X-rays, thus protons may be more effective in the treatment of specific prostate tumor.

  17. Osmolarity and spectrophotometric property of brilliant blue green define the degree of toxicity on retinal pigment epithelial cells exposed to surgical endoilluminator

    Directory of Open Access Journals (Sweden)

    Balaiya S

    2016-08-01

    Full Text Available Sankarathi Balaiya, Kumar Sambhav, William B Cook, Kakarla V Chalam Department of Ophthalmology, University of Florida College of Medicine, Jacksonville, FL, USA Objective: To evaluate the effect of varying concentrations of brilliant blue green (BBG and their different biochemical characteristics on retinal pigment epithelial (RPE cells under xenon light source illumination at varying distances to identify safe parameters for intraoperative use. Methods: Human retinal RPE cells (ARPE-19 were exposed to two concentrations (0.25 and 0.50 mg/mL of BBG and illuminated with a xenon surgical illuminator at varying distances (10 and 25 mm, intensity levels, and time intervals (1, 5, and 15 minutes. Additionally, the effect of osmolarity was examined by diluting BBG in different concentrations of glucose. Cytotoxicity of BBG and osmolarity effects on cell viability were evaluated using a WST-1 assay. Light absorption and emission characteristic of BBG in different solvents were measured using a plate reader at different wavelengths. Lastly, the activity of caspase-3 was also studied. Results: Cell viability of ARPE-19 cells was 77.4%±12.7%, 78.7%±17.0%, and 65.0%±19.7% at 1, 5, and 15 minutes to exposure of high illumination xenon light at 10 mm (P<0.05 compared to controls. At both distances of illumination (10 and 25 mm, similar cell viabilities were seen between 1 and 5 minutes of exposure. However, there was a decline in viability when the illumination was carried out to 15 minutes in all groups (P<0.05. There was no significant reduction in cell viability in presence or absence of xenon light in different osmolar solutions concentrations of glucose (P>0.05. Maximal light absorption of BBG was noted between 540 and 680 nm. Activated caspase-3 level was not significant in both the concentrations of BBG (P>0.05. Conclusion: Our findings suggest that BBG at 0.25 mg/mL during vitreoretinal surgery is safe and not toxic to RPE cells up to 5 minutes

  18. Sildenafil Prevents Apoptosis of Human First-Trimester Trophoblast Cells Exposed to Oxidative Stress: Possible Role for Nitric Oxide Activation of 3',5'-cyclic Guanosine Monophosphate Signaling.

    Science.gov (United States)

    Bolnick, Jay M; Kilburn, Brian A; Bolnick, Alan D; Diamond, Michael P; Singh, Manvinder; Hertz, Michael; Dai, Jing; Armant, D Randall

    2015-06-01

    Human first-trimester trophoblast cells proliferate at low O2, but survival is compromised by oxidative stress, leading to uteroplacental insufficiency. The vasoactive drug, sildenafil citrate (Viagra, Sigma, St Louis, Missouri), has proven useful in reducing adverse pregnancy outcomes. An important biological function of this pharmaceutical is its action as an inhibitor of cyclic guanosine monophosphate (cGMP) phosphodiesterase type 5 activity, which suggests that it could have beneficial effects on trophoblast survival. To investigate whether sildenafil can prevent trophoblast cell death, human first-trimester villous explants and the HTR-8/SVneo cytotrophoblast cell line were exposed to hypoxia and reoxygenation (H/R) to generate oxidative stress, which induces apoptosis. Apoptosis was optimally inhibited during H/R by 350 ng/mL sildenafil. Sildenafil-mediated survival was reversed by l-N(G)-nitro-l-arginine methyl ester hydrochloride or cGMP antagonist, indicating a dependence on both nitric oxide (NO) and cGMP. Indeed, either a cGMP agonist or an NO generator was cytoprotective independent of sildenafil. These findings suggest a novel intervention route for patients with recurrent pregnancy loss or obstetrical placental disorders. © The Author(s) 2014.

  19. APO-9′-Fucoxanthinone Extracted from Undariopsis peteseniana Protects Oxidative Stress-Mediated Apoptosis in Cigarette Smoke-Exposed Human Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jun-Ho Jang

    2016-07-01

    Full Text Available Long-term cigarette smoking increases the risk for chronic obstructive pulmonary disease (COPD, characterized by irreversible expiratory airflow limitation. The pathogenesis of COPD involves oxidative stress and chronic inflammation. Various natural marine compounds possess both anti-oxidant and anti-inflammatory properties, but few have been tested for their efficacy in COPD models. In this study, we conducted an in vitro screening test to identify natural compounds isolated from various brown algae species that might provide protection against cigarette smoke extract (CSE-induced cytotoxicity. Among nine selected natural compounds, apo-9′-fucoxanthinone (Apo9F exhibited the highest protection against CSE-induced cytotoxicity in immortalized human bronchial epithelial cells (HBEC2. Furthermore, the protective effects of Apo9F were observed to be associated with a significant reduction in apoptotic cell death, DNA damage, and the levels of mitochondrial reactive oxygen species (ROS released from CSE-exposed HBEC2 cells. These results suggest that Apo9F protects against CSE-induced DNA damage and apoptosis by regulating mitochondrial ROS production.

  20. High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells.

    Science.gov (United States)

    Goode, Angela E; Gonzalez Carter, Daniel A; Motskin, Michael; Pienaar, Ilse S; Chen, Shu; Hu, Sheng; Ruenraroengsak, Pakatip; Ryan, Mary P; Shaffer, Milo S P; Dexter, David T; Porter, Alexandra E

    2015-11-01

    Multi-walled carbon nanotubes (MWNTs) are increasingly being developed both as neuro-therapeutic drug delivery systems to the brain and as neural scaffolds to drive tissue regeneration across lesion sites. MWNTs with different degrees of acid oxidation may have different bioreactivities and propensities to aggregate in the extracellular environment, and both individualised and aggregated MWNTs may be expected to be found in the brain. Before practical application, it is vital to understand how both aggregates and individual MWNTs will interact with local phagocytic immune cells, the microglia, and ultimately to determine their biopersistence in the brain. The processing of extra- and intracellular MWNTs (both pristine and when acid oxidised) by microglia was characterised across multiple length scales by correlating a range of dynamic, quantitative and multi-scale techniques, including: UV-vis spectroscopy, light microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy. Dynamic, live cell imaging revealed the ability of microglia to break apart and internalise micron-sized extracellular agglomerates of acid oxidised MWNTs, but not pristine MWNTs. The total amount of MWNTs internalised by, or strongly bound to, microglia was quantified as a function of time. Neither the significant uptake of oxidised MWNTs, nor the incomplete uptake of pristine MWNTs affected microglial viability, pro-inflammatory cytokine release or nitric oxide production. However, after 24 h exposure to pristine MWNTs, a significant increase in the production of reactive oxygen species was observed. Small aggregates and individualised oxidised MWNTs were present in the cytoplasm and vesicles, including within multilaminar bodies, after 72 h. Some evidence of morphological damage to oxidised MWNT structure was observed including highly disordered graphitic structures, suggesting possible biodegradation. This work demonstrates the utility of dynamic

  1. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Hidenori; Fujimori, Hiroaki [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Gunji, Akemi [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Maeda, Daisuke [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Hirai, Takahisa [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Poetsch, Anna R. [ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Harada, Hiromi [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Yoshida, Tomoko [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minatoku, Tokyo 105-8512 (Japan); Sasai, Keisuke [Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Okayasu, Ryuichi [International Open Laboratory, National Institute of Radiological Science, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Masutani, Mitsuko, E-mail: mmasutan@ncc.go.jp [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2013-05-24

    Highlights: •Parg{sup −/−} ES cells were more sensitive to γ-irradiation than Parp-1{sup −/−} ES cells. •Parg{sup −/−} cells were more sensitive to carbon-ion irradiation than Parp-1{sup −/−} cells. •Parg{sup −/−} cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg{sup −/−} and poly(ADP-ribose) polymerase-1 deficient (Parp-1{sup −/−}) ES cells were used and responses to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg{sup −/−} cells were more sensitive to γ-irradiation than Parp-1{sup −/−} cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg{sup −/−} cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg{sup −/−} ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1{sup −/−} cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg{sup −/−} ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg{sup −/−} cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1{sup −/−} cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at ser18 was

  2. Ginger Extract Suppresses Inflammatory Response and Maintains Barrier Function in Human Colonic Epithelial Caco-2 Cells Exposed to Inflammatory Mediators.

    Science.gov (United States)

    Kim, Yunyoung; Kim, Dong-Min; Kim, Ji Yeon

    2017-05-01

    The beneficial effects of ginger in the management of gastrointestinal disturbances have been reported. In this study, the anti-inflammatory potential of ginger extract was assessed in a cellular model of gut inflammation. In addition, the effects of ginger extract and its major active compounds on intestinal barrier function were evaluated. The response of Caco-2 cells following exposure to a mixture of inflammatory mediators [interleukin [IL]-1β, 25 ng/mL; lipopolysaccharides [LPS], 10 ng/mL; tumor necrosis factor [TNF]-α, 50 ng/mL; and interferon [INF]-γ, 50 ng/mL] were assessed by measuring the levels of secreted IL-6 and IL-8. In addition, the mRNA levels of cyclooxygenase-2 and inducible nitric oxide synthase were measured. Moreover, the degree of nuclear factor (NF)-κB inhibition was examined, and the intestinal barrier function was determined by measuring the transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran transfer. It was observed that ginger extract and its constituents improved inflammatory responses by decreasing the levels of nitrite, PGE2, IL-6, and IL-8 via NF-κB inhibition. The ginger extract also increased the TEER and decreased the transfer of FITC-dextran from the apical side of the epithelium to the basolateral side. Taken together, these results show that ginger extract may be developed as a functional food for the maintenance of gastrointestinal health. © 2017 Institute of Food Technologists®.

  3. Identification of proteins susceptible to thiol oxidation in endothelial cells exposed to hypochlorous acid and N-chloramines.

    Science.gov (United States)

    Summers, Fiona A; Forsman Quigley, Anna; Hawkins, Clare L

    2012-08-24

    Hypochlorous acid (HOCl) is a potent oxidant produced by the enzyme myeloperoxidase, which is released by neutrophils under inflammatory conditions. Although important in the immune system, HOCl can also damage host tissue, which contributes to the development of disease. HOCl reacts readily with free amino groups to form N-chloramines, which also cause damage in vivo, owing to the extracellular release of myeloperoxidase and production of HOCl. HOCl and N-chloramines react readily with cellular thiols, which causes dysfunction via enzyme inactivation and modulation of redox signaling processes. In this study, the ability of HOCl and model N-chloramines produced on histamine and ammonia at inflammatory sites, to oxidize specific thiol-containing proteins in human coronary artery endothelial cells was investigated. Using a proteomics approach with the thiol-specific probe, 5-iodoacetamidofluorescein, we show that several proteins including peptidylprolyl isomerase A (cyclophilin A), protein disulfide isomerase, glyceraldehyde-3-phosphate dehydrogenase and galectin-1 are particularly sensitive to oxidation by HOCl and N-chloramines formed at inflammatory sites. This will contribute to cellular dysfunction and may play a role in inflammatory disease pathogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Glutathione levels in and total antioxidant capacity of Candida sp. cells exposed to oxidative stress caused by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Maxwel Adriano Abegg

    2012-10-01

    Full Text Available INTRODUCTION: The capacity to overcome the oxidative stress imposed by phagocytes seems to be critical for Candida species to cause invasive candidiasis. METHODS: To better characterize the oxidative stress response (OSR of 8 clinically relevant Candida sp., glutathione, a vital component of the intracellular redox balance, was measured using the 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB-glutathione disulfide (GSSG reductase reconversion method; the total antioxidant capacity (TAC was measured using a modified method based on the decolorization of the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS*+. Both methods were used with cellular Candida sp. extracts treated or not with hydrogen peroxide (0.5 mM. RESULTS: Oxidative stress induced by hydrogen peroxide clearly reduced intracellular glutathione levels. This depletion was stronger in Candida albicans and the levels of glutathione in untreated cells were also higher in this species. The TAC demonstrated intra-specific variation. CONCLUSIONS: Glutathione levels did not correlate with the measured TAC values, despite this being the most important non-enzymatic intracellular antioxidant molecule. The results indicate that the isolated measurement of TAC does not give a clear picture of the ability of a given Candida sp. to respond to oxidative stress.

  5. Orginal Article. Nephritic cell damage and antioxidant status in rats exposed to leachate from battery recycling industry

    Directory of Open Access Journals (Sweden)

    Akintunde Jacob K.

    2016-03-01

    Full Text Available Limited studies have assessed the toxic effect of sub-acute and sub-chronic exposure of leachate (mixture of metals in mammalian kidney. The sub-acute and sub-chronic exposure of mature male Wistar-strain albino rats (200-220 g were given by oral administration with leachate from Elewi Odo municipal battery recycling industry (EOMABRIL for period of 7 and 60 days respectively, at different concentrations (20%, 40%, 60%, 80% and 100%. This was to evaluate its toxic effects on male renal functions using biomarkers of oxidative stress and nephro-cellular damage. Control groups were treated equally, but given distilled water instead of the leachate. All the groups were fed with the same standard food and had free access to drinking water. Following the exposure, results showed that the treatment induced systemic toxicity at the doses tested by causing a significant (p<0.05 alteration in enzymatic antioxidantscatalase (CAT and superoxide dismutase (SOD in the kidneys which resulted into elevated levels of malonaldehyde (MDA. Reduced glutathione (GSH levels were found to be significantly (p<0.05 depleted relative to the control group. Considerable renal cortical congestion and numerous tubules with protein casts were observed in the lumen of EOMABRIL-treated rats. These findings conclude that possible mechanism by which EOMABRIL at the investigated concentrations elicits nephrotoxicity could be linked to the individual, additive, synergistic or antagonistic interactions of this mixture of metals with the renal bio-molecules, alteration of kidney detoxifying enzymes and necrosis of nephritic tubular epithelial cells.

  6. Hemolymph cells apoptosis in imported shrimp Litopenaeus vannamei from Hawaii to Iran, exposed to white spot virus

    Directory of Open Access Journals (Sweden)

    Zeliha Selamoglu Talas

    2014-07-01

    Full Text Available Objective: To show hemolymph apoptosis in imported shrimp Litopenaeus vannamei from Hawaii to Iran. Methods: One hundred and eighty shrimps [(7.98±0.54 g] which were collected from a research shrimp farm located in Heleh site in north of Bushehr Province were distributed equally to 6 glass aquariums (50 cm×50 cm×60 cm as group A in triplicate (imported batch in 2011, without crossing with other generations with well clean aerated sea water (100 L per aquarium, salinity of 40 ‰ and temperature of 29 °C. Shrimps of group B (produced by crossing the adults of imported batches in 2009 up to 2011 were distributed also among 6 aquariums with the same conditions. Both shrimp groups were injected with concentration of LD50=1×10 5.4 white spot virus. Results: The results showed that in group A, the mortality began approximately 24 h after exposure and reached 100% after 36 h but no mortality was occurred up to 15 d in shrimps of group B. The slide evaluation of hemolymph of group B showed an increasing trend of apoptosis occurrence in all three types of hemolymph cells, hyalinocytes, semi-granulocytes and granulocytes from 24 h to 72 h in contrary to group A that not any apoptosis was observed during the course of the study (15 d. Conclusions: It is concluded that crossing among the specific pathogen free generations could induce the increasing immunity level through apoptosis to protect them against white spot disease.

  7. Absolute quantification of superoxide dismutase in cytosol and mitochondria of mice hepatic cells exposed to mercury by a novel metallomic approach

    Energy Technology Data Exchange (ETDEWEB)

    García-Sevillano, M.A.; García-Barrera, T. [Department of Chemistry and Materials Science, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva 21007 (Spain); Research Center on Health and Environment (CYSMA), University of Huelva (Spain); International Campus of Excellence on Agrofood (ceiA3), University of Huelva (Spain); Navarro, F. [International Campus of Excellence on Agrofood (ceiA3), University of Huelva (Spain); Department of Environmental Biology and Public Health, Cell Biology, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Huelva 21007 (Spain); Gómez-Ariza, J.L., E-mail: ariza@uhu.es [Department of Chemistry and Materials Science, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva 21007 (Spain); Research Center on Health and Environment (CYSMA), University of Huelva (Spain); International Campus of Excellence on Agrofood (ceiA3), University of Huelva (Spain)

    2014-09-09

    Highlights: • Identification and quantification of Cu,Zn-superoxide dismutase in mice hepatic cells. • IDA-ICP-MSis applied to obtain a high degree of accuracy, precision and sensibility. • This methodology reduces the time of analysis and avoids clean-up procedures. • The application of this method to Hg-exposed mice reveals perturbations in Cu,Zn-SOD. - Abstract: In the last years, the development of new methods for analyzing accurate and precise individual metalloproteins is of increasing importance, since numerous metalloproteins are excellent biomarkers of oxidative stress and diseases. In that way, methods based on the use of post column isotopic dilution analysis (IDA) or enriched protein standards are required to obtain a sufficient degree of accuracy, precision and high limits of detection. This paper reports the identification and absolute quantification of Cu,Zn-superoxide dismutase (Cu,Zn-SOD) in cytosol and mitochondria from mice hepatic cells using a innovative column switching analytical approach. The method consisted of orthogonal chromatographic systems coupled to inductively coupling plasma-mass spectrometry equipped with a octopole reaction systems (ICP-ORS-MS) and UV detectors: size exclusion fractionation (SEC) of the cytosolic and mitochondrial extracts followed by online anion exchange chromatographic (AEC) separation of Cu/Zn containing species. After purification, Cu,Zn-SOD was identified after tryptic digestion by molecular mass spectrometry (MS). The MS/MS spectrum of a doubly charged peptide was used to obtain the sequence of the protein using the MASCOT searching engine. This optimized methodology reduces the time of analysis and avoids the use of sample preconcentration and clean-up procedures, such as cut-off centrifuged filters, solid phase extraction (SPE), precipitation procedures, off-line fractions insolates, etc. In this sense, the method is robust, reliable and fast with typical chromatographic run time less than 20 min

  8. Immune cell counts and risks of respiratory infections among infants exposed pre- and postnatally to organochlorine compounds: a prospective study

    Directory of Open Access Journals (Sweden)

    Darnerud Per

    2008-12-01

    Full Text Available Abstract Background Early-life chemical exposure may influence immune system development, subsequently affecting child health. We investigated immunomodulatory potentials of polychlorinated biphenyls (PCBs and p,p'-DDE in infants. Methods Prenatal exposure to PCBs and p,p'-DDE was estimated from maternal serum concentrations during pregnancy. Postnatal exposure was calculated from concentrations of the compounds in mother's milk, total number of nursing days, and percentage of full nursing each week during the 3 month nursing period. Number and types of infections among infants were registered by the mothers (N = 190. White blood cell counts (N = 86 and lymphocyte subsets (N = 52 were analyzed in a subgroup of infants at 3 months of age. Results Infants with the highest prenatal exposure to PCB congeners CB-28, CB-52 and CB-101 had an increased risk of respiratory infection during the study period. In contrast, the infection odds ratios (ORs were highest among infants with the lowest prenatal mono-ortho PCB (CB-105, CB-118, CB-156, CB-167 and di-ortho PCB (CB-138, CB-153, CB-180 exposure, and postnatal mono- and di-ortho PCB, and p,p'-DDE exposure. Similar results were found for pre- and postnatal CB-153 exposure, a good marker for total PCB exposure. Altogether, a negative relationship was indicated between infections and total organochlorine compound exposure during the whole pre- and postnatal period. Prenatal exposure to CB-28, CB-52 and CB-101 was positively associated with numbers of lymphocytes and monocytes in infants 3 months after delivery. Prenatal exposure to p,p'-DDE was negatively associated with the percentage of eosinophils. No significant associations were found between PCB and p,p'-DDE exposure and numbers/percentages of lymphocyte subsets, after adjustment for potential confounders. Conclusion This hypothesis generating study suggests that background exposure to PCBs and p,p'-DDE early in life modulate immune system

  9. Oxidative stress, genotoxicity, and vascular cell adhesion molecule expression in cells exposed to particulate matter from combustion of conventional diesel and methyl ester biodiesel blends

    DEFF Research Database (Denmark)

    Hemmingsen, Jette Gjerke; Møller, Peter; Nøjgaard, Jakob Klenø

    2011-01-01

    Our aim was to compare hazards of particles from combustion of biodiesel blends and conventional diesel (D(100)) in old and improved engines. We determined DNA damage in A549 cells, mRNA levels of CCL2 and IL8 in THP-1 cells, and expression of ICAM-1 and VCAM-1 in human umbilical cord endothelial...

  10. Assessment of Some Immune Parameters in Occupationally Exposed Nuclear Power Plants Workers: Flowcytometry Measurements of T, B, NK and NKT Cells.

    Science.gov (United States)

    Gyuleva, Ilona; Panova, Delyana; Djounova, Jana; Rupova, Ivanka; Penkova, Kalina

    2015-01-01

    The purpose of this article is to analyze the results of a 10-year survey of the radiation effects of some immune parameters of occupationally exposed personnel from the Nuclear Power Plant "Kozloduy", Bulgaria. 438 persons working in NPP with cumulative doses between 0.06 mSv and 766.36mSv and a control group with 65 persons were studied. Flow cytometry measurements of T, B, natural killer (NK) and natural killer T (NKT) cell lymphocyte populations were performed. Data were interpreted with regard to cumulative doses, length of service and age. The average values of the studied parameters of cellular immunity were in the reference range relative to age and for most of the workers were not significantly different from the control values. Low doses of ionizing radiation showed some trends of change in the number of CD3+CD4+ helper-inducer lymphocytes, CD3+ CD8+ and NKT cell counts. The observed changes in some of the studied parameters could be interpreted in terms of adaptation processes at low doses. At doses above 100-200 mSv, compensatory mechanisms might be involved to balance deviations in lymphocyte subsets. The observed variations in some cases could not be attributed only to the radiation exposure because of the impact of a number of other exogenous and endogenous factors on the immune system.

  11. A Whole-Genome Microarray Study of Arabidopis Thaliana Cell Cultures Exposed to Real and Simulated Partial-G Forces: A Comparison of Parabolic Flight and Clinostat Data

    Science.gov (United States)

    Fengler, S.; Spirer, I.; Neef, M.; Ecke, M.; Hauslage, J.; Hampp, R.

    2015-09-01

    Cell cultures of the plant model organism Arabidopsis thaliana were exposed to partial-g forces during parabolic flight and clinostat experiments (0.38 g, 0. 16 g and 0.5 g). To investigate gravity-dependent alterations in gene expression, samples were metabolically quenched and used for microarray analysis. An attempt to identify the potential threshold acceleration showed that the smaller the experienced g-force, the greater was the susceptibility of the cell cultures. Compared to short-term ~sg during a regular parabolic flight, the number of differentially expressed genes under partial-g was lower. In addition, the effect on the alteration of amounts of transcripts decreased during partial-g parabolic flight due to the sequence of the different parabolas (0.38 g, 0.16 g and ~sg). A time-dependent analysis under simulated 0.5 g indicates that adaptation occurs within minutes. Differentially expressed genes (at least 2-fold altered in expression) under real flight conditions were to some extent identical with those affected by clinorotation. The highest number of identical genes was detected within seconds of exposure to 0.38 g.

  12. Effects of Garlic (Allium sativum L. Hydroalcoholic Extract on Estrogen, Progesterone and Testosterone Levels in Rats Exposed to Cell Phone Radiation

    Directory of Open Access Journals (Sweden)

    Behnaz Hajiuon

    2014-12-01

    Full Text Available Background: The aim of this study was to investigate the probable effects of radiation and consumption of garlic on estrogen, progesterone and testosterone levels. Materials and Methods: In this experimental study, 5 male and 5 female groups of rat were used: control, sham (under exposed, experimental 1 (receiving garlic extract, and experimental 2 and 3 (receiving both extract and microwaves. After a one month, rats were weighed and serum levels of hormones were measured. Results: In male the mean body weight in the sham showed a significant decrease, whereas, an increase was seen in the experimental 3 compared with sham. Also, mean plasma testosterone levels in experimental 2 and 3 were reduced. Estrogen showed this decrease in all groups. Also in all groups progesterone showed increase. In female the mean body weights in different groups showed no significant changes, whereas a significant increase was seen in serum level of progesterone in experimental 2 and 3. Conclusion: Although, microwaves can cause weight lost, presence of allicin and vitamins A and B in garlic can compensate some of this weight lost. Microwaves and garlic extract have fewer effects on female reproductive system, reflected only in the serum progesterone concentration. Also they reflected in the number of Leydig cells and serum testosterone and estrogen concentration. The differences observed in the responses of male and female to cell phone radiation might be attributed to the position of gonads in the body and sensitivity of testis to heat.

  13. Oxidative stress, apoptosis, and cell cycle arrest are induced in primary fetal alveolar type II epithelial cells exposed to fine particulate matter from cooking oil fumes.

    Science.gov (United States)

    Liu, Ying; Chen, Yan-Yan; Cao, Ji-Yu; Tao, Fang-Biao; Zhu, Xiao-Xia; Yao, Ci-Jiang; Chen, Dao-Jun; Che, Zhen; Zhao, Qi-Hong; Wen, Long-Ping

    2015-07-01

    Epidemiological studies demonstrate a linkage between morbidity and mortality and particulate matter (PM), particularly fine particulate matter (PM2.5) that can readily penetrate into the lungs and are therefore more likely to increase the incidence of respiratory and cardiovascular diseases. The present study investigated the compositions of cooking oil fume (COF)-derived PM2.5, which is the major source of indoor pollution in China. Furthermore, oxidative stress, cytotoxicity, apoptosis, and cell cycle arrest induced by COF-derived PM2.5 in primary fetal alveolar type II epithelial cells (AEC II cells) were also detected. N-acetyl-L-cysteine (NAC), a radical scavenger, was used to identify the role of oxidative stress in the abovementioned processes. Our results suggested that compositions of COF-derived PM2.5 are obviously different to PM2.5 derived from other sources, and COF-derived PM2.5 led to cell death, oxidative stress, apoptosis, and G0/G1 cell arrest in primary fetal AEC II cells. Furthermore, the results also showed that COF-derived PM2.5 induced apoptosis through the endoplasmic reticulum (ER) stress pathway, which is indicated by the increased expression of ER stress-related apoptotic markers, namely GRP78 and caspase-12. Besides, the induction of oxidative stress, cytotoxicity, apoptosis, and cell cycle arrest was reversed by pretreatment with NAC. These findings strongly suggested that COF-derived PM2.5-induced toxicity in primary fetal AEC II cells is mediated by increased oxidative stress, accompanied by ER stress which results in apoptosis.

  14. Protective Effects of Cerium Oxide Nanoparticles on MC3T3-E1 Osteoblastic Cells Exposed to X-Ray Irradiation

    Directory of Open Access Journals (Sweden)

    Cuifen Wang

    2016-04-01

    Full Text Available Background/Aims: Exposure to ionizing radiation can result in bone damage, including decreased osteocyte number and suppressed osteoblastic activity. However, molecular mechanisms remain to be elucidated, and effective prevention strategies are still limited. This study was to investigate whether cerium oxide nanoparticles (CeO2 NP can protect MC3T3-E1 osteoblast-like cells from damaging effects of X-ray irradiation, and to study the underpinning mechanism(s. Methods: MC3T3-E1, a osteoblast-like cell line, was exposed to X-ray irradiation and treated with different concentration of CeO2 nanoparticles. The micronucleus frequency was counted under a fluorescence microscope. Cell viability was evaluated using MTT assay. The effects of irradiation and CeO2 nanoparticles on alkaline phosphatase activity and MC3T3-E1 mineralization were further assayed. Results: We found that the ratio of micronuclei to binuclei was dose-dependently increased with X-ray irradiation (from 2 to 6 Gy, but diminished with the increased concentration of CeO2 NP treatment (from 50 to 100 nM. Exposure to X-rays (6 Gy decreased cell viability, differentiation and the mineralization, but CeO2 NP treatment (100 nM attenuated the deteriorative effects of irradiation. Both intracellular reactive oxygen species (ROS production and extracellular H2O2 concentration were increased after X-ray irradiation, but reduced following CeO2 NP treatment. Similar to irradiation, exposure to H2O2 (10 µM elevated the frequency of micronuclei and diminished cell viability and mineralization, while these changes were ameliorated following CeO2 NP treatment. Conclusions: Taken together, our findings suggest that CeO2 nanoparticles exhibit astonishing protective effects on irradiation-induced osteoradionecrosis in MC3T3-E1 cells, and the protective effects appear to be mediated, at least partially, by reducing oxidative stress.

  15. Changes in mitochondrial carriers exhibit stress-specific signatures in INS-1Eβ-cells exposed to glucose versus fatty acids.

    Directory of Open Access Journals (Sweden)

    Thierry Brun

    Full Text Available Chronic exposure of β-cells to metabolic stresses impairs their function and potentially induces apoptosis. Mitochondria play a central role in coupling glucose metabolism to insulin secretion. However, little is known on mitochondrial responses to specific stresses; i.e. low versus high glucose, saturated versus unsaturated fatty acids, or oxidative stress. INS-1E cells were exposed for 3 days to 5.6 mM glucose, 25 mM glucose, 0.4 mM palmitate, and 0.4 mM oleate. Culture at standard 11.1 mM glucose served as no-stress control and transient oxidative stress (200 µM H2O2 for 10 min at day 0 served as positive stressful condition. Mito-array analyzed transcripts of 60 mitochondrion-associated genes with special focus on members of the Slc25 family. Transcripts of interest were evaluated at the protein level by immunoblotting. Bioinformatics analyzed the expression profiles to delineate comprehensive networks. Chronic exposure to the different metabolic stresses impaired glucose-stimulated insulin secretion; revealing glucotoxicity and lipo-dysfunction. Both saturated and unsaturated fatty acids increased expression of the carnitine/acylcarnitine carrier CAC, whereas the citrate carrier CIC and energy sensor SIRT1 were specifically upregulated by palmitate and oleate, respectively. High glucose upregulated CIC, the dicarboxylate carrier DIC and glutamate carrier GC1. Conversely, it reduced expression of energy sensors (AMPK, SIRT1, SIRT4, metabolic genes, transcription factor PDX1, and anti-apoptotic Bcl2. This was associated with caspase-3 cleavage and cell death. Expression levels of GC1 and SIRT4 exhibited positive and negative glucose dose-response, respectively. Expression profiles of energy sensors and mitochondrial carriers were selectively modified by the different conditions, exhibiting stress-specific signatures.

  16. The Effects of Choline on Hepatic Lipid Metabolism, Mitochondrial Function and Antioxidative Status in Human Hepatic C3A Cells Exposed to Excessive Energy Substrates

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2014-07-01

    Full Text Available Choline plays a lipotropic role in lipid metabolism as an essential nutrient. In this study, we investigated the effects of choline (5, 35 and 70 μM on DNA methylation modifications, mRNA expression of the critical genes and their enzyme activities involved in hepatic lipid metabolism, mitochondrial membrane potential (Δψm and glutathione peroxidase (GSH-Px in C3A cells exposed to excessive energy substrates (lactate, 10 mM; octanoate, 2 mM and pyruvate, 1 mM; lactate, octanoate and pyruvate-supplemented medium (LOP. Thirty five micromole or 70 μM choline alone, instead of a low dose (5 μM, reduced hepatocellular triglyceride (TG accumulation, protected Δψm from decrement and increased GSH-Px activity in C3A cells. The increment of TG accumulation, reactive oxygen species (ROS production and Δψm disruption were observed under LOP treatment in C3A cells after 72 h of culture, which were counteracted by concomitant treatment of choline (35 μM or 70 μM partially via reversing the methylation status of the peroxisomal proliferator-activated receptor alpha (PPARα gene promoter, upregulating PPARα, carnitine palmitoyl transferase-I (CPT-I and downregulating fatty acid synthase (FAS gene expression, as well as decreasing FAS activity and increasing CPT-I and GSH-Px activities. These findings provided a novel insight into the lipotropic role of choline as a vital methyl-donor in the intervention of chronic metabolic diseases.

  17. The effects of black garlic on the working memory and pyramidal cell number of medial prefrontal cortex of rats exposed to monosodium glutamate.

    Science.gov (United States)

    Nurmasitoh, Titis; Sari, Dwi Cahyani Ratna; Partadiredja, Ginus

    2017-12-27

    Monosodium glutamate-induced exitotoxicity causes oxidative stress in many brain areas, including the medial prefrontal cortex. The ethanolic garlic (Allium sativum) extract is considered as a neuroprotective substance. The present study aimed at investigating the effects of the ethanolic fermented garlic extract on the working memory and the pyramidal cell number of the medial prefrontal cortex of adolescent male Wistar rats exposed to monosodium glutamate (MSG). Twenty-five rats were randomly divided into five groups. The C- group was given 0.9% NaCl solution. The C + group was given 2 mg/g bw of MSG. The T1, T2, and T3 groups were given MSG and garlic extract (0.0125, 0.025, and 0.05 mg/g bw, respectively). All treatments were conducted for 10 days. The working memory capability of the rats was measured using Y-maze test. The total number of pyramidal cells of the medial prefrontal cortex was estimated using physical fractionator method. The working memory performances of the T1, T2, and T3 groups were significantly better than that of the C + group. There were no significant differences between groups in the estimated total number of pyramidal cell of medial prefrontal cortex. The MSG may not cause the death of neurons, but it may modify neuronal architectures that are sufficient to disrupt memory functions. Black garlic may play a role as an antioxidant agent that prevents the prefrontal cortex from glutamate-induced oxidative stress. It is concluded that the ethanolic fermented garlic extract prevented the working memory impairment following MSG administration.

  18. Late-occurring chromosome aberrations and global DNA methylation in hematopoietic stem/progenitor cells of CBA/CaJ mice exposed to silicon ({sup 28}Si) ions

    Energy Technology Data Exchange (ETDEWEB)

    Rithidech, Kanokporn Noy, E-mail: kanokporn.rithidech@stonybrookmedicine.edu [Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691 (United States); Honikel, Louise M. [Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691 (United States); Reungpathanaphong, Paiboon [Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691 (United States); Department of Applied Radiation and Isotopes, Faculty of Sciences, Kasetsart University, Chatuchuck, Bangkok 10900 (Thailand); Tungjai, Montree [Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691 (United States); Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Excellence for Molecular Imaging, Chiang Mai University, Chiang Mai 50200 (Thailand); Jangiam, Witawat [Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691 (United States); Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131 (Thailand); Whorton, Elbert B. [StatCom, PO Box 3041, Galveston, TX 77551 (United States)

    2015-11-15

    Highlights: • Late-occurring chromosome aberrations were found in HSPCs of exposed CBA/CaJ mice. • A dose-dependent reduction in the level of global 5hmC was detected in HSPCs. • There is a link between reduced global 5hmC levels and genomic instability in vivo. • The level of global 5hmC is a better marker of radiation exposure than that of 5mC. - Abstract: Although myeloid leukemia (ML) is one of the major health concerns from exposure to space radiation, the risk prediction for developing ML is unsatisfactory. To increase the reliability of predicting ML risk, a much improved understanding of space radiation-induced changes in the target cells, i.e. hematopoietic stem/progenitor cells (HSPCs), is important. We focused on the in vivo induction of late-occurring damage in HSPCs of mice exposed to {sup 28}Si ions since such damage is associated with radiation-induced genomic instability (a key event of carcinogenesis). We gave adult male CBA/CaJ mice, known to be sensitive to radiation-induced ML, a whole-body exposure (2 fractionated exposures, 15 days apart, that totaled each selected dose, delivered at the dose-rate of 1 cGy/min) to various doses of 300 MeV/n {sup 28}Si ions, i.e. 0 (sham controls), 0.1, 0.25, or 0.5 Gy. At 6 months post-irradiation, we collected bone marrow cells from each mouse (five mice per treatment-group) for obtaining the myeloid-lineage of HSPC-derived clones for analyses. We measured the frequencies of late-occurring chromosome aberrations (CAs), using the genome-wide multicolor fluorescence in situ hybridization method. The measurement of CAs was coupled with the characterization of the global DNA methylation patterns, i.e. 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). A dose-dependent increase in the frequencies of CAs was detected (Analysis of Variance or ANOVA, p < 0.01), indicating the induction of genomic instability after exposure of mice to 300 MeV/n {sup 28}Si ions. Slight increases in the levels of 5m

  19. Uptake and efflux of rhenium in cells exposed to rhenium diseleno-ether and tissue distribution of rhenium and selenium after rhenium diseleno-ether treatment in mice.

    Science.gov (United States)

    Collery, Philippe; Bastian, Gérard; Santoni, François; Mohsen, Ahmed; Wei, Ming; Collery, Thomas; Tomas, Alain; Desmaele, Didier; D'Angelo, Jean

    2014-04-01

    We proposed a new water-soluble rhenium diseleno-ether compound (with one atom of Re and two atoms of Se) and investigated the uptake of Re into the nucleus of malignant cells in culture exposed to the compound for 48 h and its efflux from the nucleus after a post-exposure period of 48 h, as DNA is the main target of Re. We also studied the distribution of both Re and Se in the main organs after an oral administration of 10 or 40 mg/kg Re diseleno-ether to mice for four weeks, five days-a-week. Re and Se concentrations were assayed by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis was performed using the Wilcoxon signed-rank test, comparing two related groups. We observed that Re was well incorporated into the nucleus of malignant cells in the most sensitive cells MCF-7, derived from human breast cancer, and that there was no efflux of Re. In contrast, in MCF-7 resistant cells (MCF-7 Mdr and MCF-7 R), A549 and HeLa cells, there was significant efflux of Re from the nucleus after the wash-out period. In mice, an important and dose-dependent uptake of both Re and Se was observed in the liver, with lower concentrations in kidneys. The lowest concentrations were observed in blood, lung, spleen and bones. There was a significant increase of Re concentrations in the blood, liver and kidney in mice treated with Re diseleno-ether at the dose of 40 mg/kg/24 h versus those treated at the dose of 10 mg/kg/24 h. There was a significant increase of Se concentrations in all tissues with the dose of Re diseleno-ether of 10 mg/kg/24 h versus controls, and a significant increase in the liver in mice treated with dose of Re diseleno-ether of 40 mg/kg/24h versus those treated with 10 mg/kg/24 h. We are the first to demonstrate that a compound combining Re and Se in a single molecule, is able to deliver Re and Se to the organism via an oral route, for cancer treatment.

  20. Proteomic profiling of glucocorticoid-exposed myogenic cells: Time series assessment of protein translocation and transcription of inactive mRNAs

    Directory of Open Access Journals (Sweden)

    Hoffman Eric P

    2009-07-01

    Full Text Available Abstract Background Prednisone, one of the most highly prescribed drugs, has well characterized effects on gene transcription mediated by the glucocorticoid receptor. These effects are typically occurring on the scale of hours. Prednisone also has a number of non-transcriptional effects (occurring on minutes scale on protein signaling, yet these are less well studied. We sought to expand the understanding of acute effects of prednisone action on cell signaling using a combination of SILAC strategy and subcellular fractionations from C2C12 myotubes. Results De novo translation of proteins was inhibited in both SILAC labeled and unlabeled C2C12 myotubes. Unlabeled cells were exposed to prednisone while SILAC labeled cells remained untreated. After 0, 5, 15, and 30 minutes of prednisone exposure, labeled and unlabeled cells were mixed at 1:1 ratios and fractionated into cytosolic and nuclear fractions. A total of 534 proteins in the cytosol and 626 proteins in the nucleus were identified and quantitated, using 3 or more peptides per protein with peptide based probability ≤ 0.001. We identified significant increases (1.7- to 3.1- fold in cytoplasmic abundance of 11 ribosomal proteins within 5 minutes of exposure, all of which returned to baseline by 30 min. We hypothesized that these drug-induced acute changes in the subcellular localization of the cell's protein translational machinery could lead to altered translation of quiescent RNAs. To test this, de novo protein synthesis was assayed after 15 minutes of drug exposure. Quantitative fluorography identified 16 2D gel spots showing rapid changes in translation; five of these were identified by MS/MS (pyruvate kinase, annexin A6 isoform A and isoform B, nasopharyngeal epithelium specific protein 1, and isoform 2 of Replication factor C subunit 1, and all showed the 5' terminal oligopyrimidine motifs associated with mRNA sequestration to and from inactive mRNA pools. Conclusion We describe novel

  1. In Vivo 5FU-Exposed Human Medullary Thyroid Carcinoma Cells Contain a Chemoresistant CD133+Tumor-Initiating Cell Subset

    Czech Academy of Sciences Publication Activity Database

    Kučerová, L.; Feketeová, L.; Kozovská, Z.; Poturnajová, M.; Matusková, M.; Nencka, Radim; Babál, P.

    2014-01-01

    Roč. 24, č. 3 (2014), s. 520-532 ISSN 1050-7256 Institutional support: RVO:61388963 Keywords : cancer stem cells * thymidylate synthase * colorectal cancer Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.493, year: 2014

  2. Microarray analysis of expression of cell death-associated genes in rat spinal cord cells exposed to cyclic tensile stresses in vitro

    Directory of Open Access Journals (Sweden)

    Roberts Sally

    2010-07-01

    Full Text Available Abstract Background The application of mechanical insults to the spinal cord results in profound cellular and molecular changes, including the induction of neuronal cell death and altered gene expression profiles. Previous studies have described alterations in gene expression following spinal cord injury, but the specificity of this response to mechanical stimuli is difficult to investigate in vivo. Therefore, we have investigated the effect of cyclic tensile stresses on cultured spinal cord cells from E15 Sprague-Dawley rats, using the FX3000® Flexercell Strain Unit. We examined cell morphology and viability over a 72 hour time course. Microarray analysis of gene expression was performed using the Affymetrix GeneChip System®, where categorization of identified genes was performed using the Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG systems. Changes in expression of 12 genes were validated with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR. Results The application of cyclic tensile stress reduced the viability of cultured spinal cord cells significantly in a dose- and time-dependent manner. Increasing either the strain or the strain rate independently was associated with significant decreases in spinal cord cell survival. There was no clear evidence of additive effects of strain level with strain rate. GO analysis identified 44 candidate genes which were significantly related to "apoptosis" and 17 genes related to "response to stimulus". KEGG analysis identified changes in the expression levels of 12 genes of the mitogen-activated protein kinase (MAPK signaling pathway, which were confirmed to be upregulated by RT-PCR analysis. Conclusions We have demonstrated that spinal cord cells undergo cell death in response to cyclic tensile stresses, which were dose- and time-dependent. In addition, we have identified the up regulation of various genes, in particular of the MAPK pathway, which

  3. Effects of Garlic (Allium sativum L. Hydro Alcoholic Extract on Estrogen, Progesterone and Testosterone Levels in Rats Exposed to Cell Phone Radiation

    Directory of Open Access Journals (Sweden)

    B Hajiuon

    2014-08-01

    Full Text Available Background & aim: waves cause hormonal disorders, whereas garlic is known as reducing risk factors associated with various diseases. The aim of this study was to investigate the protective effects of garlic against a hormonal disorder caused by the waves. Methods: In the present experimental study, sixty rats were divided into 5male and 5female groups: control, sham (under exposed, experimental1 (garlic extract, and experimental2 and3 (both extract and microwaves. After a month, the rats were weighed, their blood samples were collected and concentration of estrogen, progesterone and testosterone were measured. Results were analyzed by SPSS, ANOVA and Tukey tests. Results: In males, the mean weight were reduced in the control group than in the sham group, but increased in the experimental group than the control group 3. Testosterone concentrations of experimental groups 2 and 3 were decreased but in all groups showed a decline in estrogen. Progesterone also increased in all groups. Conclusion: Weight loss due to radiation observed in males were compensated with compounds such as thiamine, vitamin A contained in garlic allicin. Microwaves and garlic extract have effects on testes which reflected in the number of Leydig cells and serum testosterone and estrogen concentration. Progesterone increased as a result of waves on the hypothalamus and the stimulatory effect of garlic on the secretion of ovarian hormones. Thus, Garlic cannot overcome all detrimental effects of waves.

  4. Cannabinoid CB2 Receptor Mediates Nicotine-Induced Anti-Inflammation in N9 Microglial Cells Exposed to β Amyloid via Protein Kinase C

    Directory of Open Access Journals (Sweden)

    Ji Jia

    2016-01-01

    Full Text Available Background. Reducing β amyloid- (Aβ- induced microglial activation is considered to be effective in treating Alzheimer’s disease (AD. Nicotine attenuates Aβ-induced microglial activation; the mechanism, however, is still elusive. Microglia could be activated into classic activated state (M1 state or alternative activated state (M2 state; the former is cytotoxic and the latter is neurotrophic. In this investigation, we hypothesized that nicotine attenuates Aβ-induced microglial activation by shifting microglial M1 to M2 state, and cannabinoid CB2 receptor and protein kinase C mediate the process. Methods. We used Aβ1–42 to activate N9 microglial cells and observed nicotine-induced effects on microglial M1 and M2 biomarkers by using western blot, immunocytochemistry, and enzyme-linked immunosorbent assay (ELISA. Results. We found that nicotine reduced the levels of M1 state markers, including inducible nitric oxide synthase (iNOS expression and tumor necrosis factor α (TNF-α and interleukin- (IL- 6 releases; meanwhile, it increased the levels of M2 state markers, including arginase-1 (Arg-1 expression and brain-derived neurotrophic factor (BDNF release, in the Aβ-stimulated microglia. Coadministration of cannabinoid CB2 receptor antagonist or protein kinase C (PKC inhibitor partially abolished the nicotine-induced effects. Conclusion. These findings indicated that cannabinoid CB2 receptor mediates nicotine-induced anti-inflammation in microglia exposed to Aβ via PKC.

  5. Cell fate regulated by nuclear factor-κB- and activator protein-1-dependent signalling in human melanocytes exposed to ultraviolet A and ultraviolet B

    Science.gov (United States)

    Wäster, P; Rosdahl, I; Öllinger, K

    2014-01-01

    activator protein (AP)-1 and nuclear factor (NF)-κB as mediators of the UV response in other cell types. What does this study add? The present study identifies NF-κB as an antiapoptotic/prosurvival factor and shows that AP-1 stimulates proapoptotic signalling during both UVA- and UVB-induced apoptosis in human melanocytes. An improved understanding of cellular responses in UV-exposed melanocytes is essential to understanding and preventing the formation of melanoma, and might provide an opportunity to identify apoptotic regulators. PMID:25046326

  6. Transcriptomic Profiling of MDA-MB-231 Cells Exposed toBoswellia Serrataand 3-O-Acetyl-B-Boswellic Acid; ER/UPR Mediated Programmed Cell Death.

    Science.gov (United States)

    Mazzio, Elizabeth A; Lewis, Charles A; Soliman, Karam F A

    2017-01-01

    Triple-negative breast cancer (TNBC) is characterized by the absence of hormone receptors (estrogen, progesterone and human epidermal growth factor receptor-2) and a relatively poor prognosis due to inefficacy of hormone receptor-based chemotherapies. It is imperative that we continue to explore natural products with potential to impede growth and metastasis of TNBC. In this study, we screened over 1,000 natural products for capacity to induce cell death in TNBC (MDA-MB -231) cells. Frankincense (Boswellia serrata extract (BSE)) and 3-O-Acetyl-β-boswellic acid (3-OAβBA) were relatively potent, findings that corroborate the body of existing literature. The effects of BSE and 3-OAβBA on genetic parameters in MDA-MB-231 cells were evaluated by examining whole-transcriptomic influence on mRNAs, long intergenic non-coding RNA transcripts (lincRNA) and non-coding miRNAs. Bio-statistical analysis demarcates the primary effect of both BSE/3-OAβBA on the up-regulation of PERK (protein kinase RNA-like endoplasmic reticulum kinase)- endoplasmic reticulum (ER)/unfolded protein response (UPR) pathways that are closely tied to activated programmed cell death (APCD). Global profiling confirms concomitant effects of BSE/3-OAβBA on upwardly expressed ER/URP APCD key components PERK (EIF2AK3), XBP1, C/EBP homologous protein transcription factor (CHOP), ATF3 and DDIT3,4/DNA-damage-inducible transcript 3,4 (GADD34). Further, BSE and/or 3-OAβBA significantly down-regulated oncogenes (OG) which, heretofore, lack functional pathway mapping, but are capable of driving epithelial-mesenchymal transition (EMT), cell survival, proliferation, metastasis and drug resistance. Among these are cell migration-inducing protein hyaluronan binding (CEMIP) [-7.22]; transglutaminase 2 [-4.96], SRY box 9 (SOX9) [-4.09], inhibitor of DNA binding 1, dominant negative helix-loop-helix protein (ID1) [-6.56]; and endothelin 1 (EDN1, [-5.06]). Likewise, in the opposite manner, BSE and/or 3-OAβBA induced

  7. Antigen-presenting cells exposed to Lactobacillus acidophilus NCFM, Bifidobacterium bifidum BI-98, and BI-504 reduce regulatory T cell activity

    DEFF Research Database (Denmark)

    Schmidt, Esben Gjerløff Wedebye; Claesson, Mogens Helweg; Jensen, Simon Skjøde

    2010-01-01

    BACKGROUND:: The effect in vitro of six different probiotic strains including Lactobacillus acidophilus NCFM, Lactobacillus salivarius Ls-33, Lactobacillus paracasei subsp. paracasei YS8866441, Lactobacillus plantarum Lp-115, Bifidobacterium bifidum BI-504 and BI-98 was studied on splenic....... acidophilus NCFM consistently reduced the suppressive activity of Tregs. The suppressive activity was analyzed using fractionated components of the probiotics, and showed that a component of the cell wall is responsible for the decreased Treg activity in the system. The probiotic-induced suppression of Treg...

  8. Terapi Sel Punca Mesenkimal Sumsum Tulang Tikus dalam Meregenerasi Sel Sitotrofoblas Nekrosis yang Dipapar Carbon Black (RAT BONE MARROW MESENCHYMAL STEM CELL THERAPY IN REGENERATING NECROTIC CYTOTROPHOBLAST CELL FOLLOWING EXPOSED TO CARBON BLACK

    Directory of Open Access Journals (Sweden)

    Widjiati .

    2015-08-01

    Full Text Available The objective of this study is to find out the potency of Rat Bone Marrow Mesenchymal Stem Cell(RBMMSC in regenerating necrotic cytotrophoblast cells of rats (Rattusnorvegicus following exposure tocarbon black at day 6 of gestation at different time of exposure (6 days and 12 days. This study usedrandomized factorial design with two factors (gestation day and treatment. Forty-eight gravid femalerats were divided into six treatment groups i.e. (i animals at day 6-11 gestation and not expose to carbonblack; (ii 6-11 days gestation animals + 532mg/m3 carbon black for 4 hours; (iii 6-11 days gestationanimals + 532mg/m3 carbon black for 4 hours +1x107/0.1ml RBMMSC intravenously; (iv animals at day6-17 gestation and not expose to carbon black; (v 6-17 days gestation animals + 532mg/m3 carbon blackfor 4 hours; (vi 6-17 days gestation animals + 532mg/m3 carbon black for 4 hours +1x107/0.1ml RBMMSCintravenously, respectively. Data were analyzed using univariat analysis and analysis of variance. Theresults showed that there were no significance differences in regenerating necrotic cytotrophoblast betweenthe groups treated with RBMMSC and carbon black exposure. The results indicated that the stem celltherapy following exposure to carbon black was incapable in regenerating the necrotic cytotrophoblastcells.

  9. The alkaline comet assay as a method to investigate th